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CHAPTER

Spatial populations with seed-bank,
proofs

§3.1 Proofs: Well-posedness and duality

In Section we prove Theorem [2:2:4] in Section Theorems 2:2:§ and
2.2.10, and in Section Theorems [2.2.11] and [2.2.13}

§3.1.1 Well-posedness
In this section we prove Theorem

Proof. (a) We first prove Theorem [2.2.4f(a): existence and uniqueness of solutions to
the SSDE. We do this for each of the three models separately.

Model 1. Existence of the process defined in (2.4)—(2.5)) for model 1 is a consequence
of the assumptions in (2.1, (2.17) and (2.20]), in combination with [67, Theorem 3.2],

which reads as follows:

Theorem 3.1.1 (Unique strong solution). Let S be a countable set, and let
Z = {2y }ues € [0,1]5. Consider the stochastic differential equation

dz, (t) = a (2, (t)) dBy(t) + fu(Z(t)) dt, u €S, (3.1)
where a2 [0,1] = R forallu € S, fu: [0,1]° — [0,1] for allu € S, and B = {By }ues
is a collection of independent standard Brownian motions. Suppose that:

(1) The functions a,, u € S, are real-valued, %-Hélder continuous (i.e., there are
C, € (0,00) such that o (z) — au(y)] < Culz — y|z for all 2,y € [0,1]) and
uniformly bounded, with a,,(0) = (1) =0, u € S.

(2) The functions f,, u € S, are continuous and satisfy:

o There exists a matriz Q = {Qu,v fuves such that Qu > 0 for all u,v €S,
SUPyes Zves Quw < 00, and

‘fU(Zl) - fU(Z2)| < ZquP«’i - Zi|,
vES (32)

for  Z' ={z}}ves € [0,1°, 2% = {z]}ves € [0,1]°,
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e For Z € [0,1)° and z, = 0,
fu(Z) > 0. (3.3)
e For Z € [0,1]° and z, = 1,
fu(Z) < 0. (3.4)
Then has a unique [0,1]%-valued strong solution with a continuous path.
To apply Theorem to model 1, recall that
S=G x {A, D}, (3.5)

where A denotes the active part of a colony and D the dormant part of a colony. Since
G is countable and {A, D} is finite, S is countable. As before, we denote the fraction
of active individuals of type © at colony i € G by z; and the fraction of dormant
individuals of type © at colony i € G by y;. Note that for every u € S we have either
u = (i, A) or u= (i, D) for some i € G. Therefore

Z = {zutues = {z:: i € GYU {y;: i € G}, (3.6)

and z, = x; when u = (4, A) and z,, = y; when u = (i, D). We can rewrite (2.4)—(2.5))
in the form of (3.1 by picking

_ g(zi), u= (i, A),

and

e (s 33) u=Gp). ¥

Since g € G (recall (2.23)), the conditions in (1) are satisfied. To check the conditions
in (2), define the matrix @ = {Qu,v }u,ves by

fu(Z) = {ZjeGa(i,j) (xj —x;) + Ke(y; —x;), u=(i,A),

ZjeGa(i,j)+Ke, u=(i,A), v= (i, 4),
a(i7j)7 u:(i7A)7v:(j7A)7
Qu,'u =< Ke, u = (’i,A), v = (i,D), (39)
e, u=(i,D), v=(i,D) or u= (i, D), v = (i, A),
0, otherwise.
Then

ZQu,U _ 23 jegali,j) +2Ke, u= (z',A), (3.10)
hperd 2e, u= (i,D).

Since we have assumed that >, ¢ a(i,j) = > ,cqa(0,j — i) < oo, it follows that
SUP,es D pes Quo < 00. Since x; € [0,1] and y; € [0,1], the requirements on f,, are
immediate. Hence we have a unique strong solution with a continuous path.

By Ito’s formula, the law of the strong solution solves the martingale problem.
Uniqueness of that solution follows from [62], Theorem IX 1.7(i)]. This in turn implies
the Markov property.
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§3.1. Proofs: Well-posedness and duality

Model 2. To apply Theorem to model 2, recall that

S =G x {A, (Dy)meng }- (3.11)
Pick
) — (i A
o (2) = gl@:), u (Z.’ ) (3.12)
0, u = (i, Dy), m € Ny,
and
fu(Z) = ZJEG a(l7]) (zj - 'TZ) + ZmENo Kpem (yi,m - 177;)7 u = (7’3 A)v (313)
€m (Iz - yi,m)a u = (7'3 Dm)
Set
ZjEG a(%]) + ZmGNO K’mema U= (7’7 A)v v = (Za A)7
a/(i7j)7 u:(i7A)7’U:(j7'A)7j#i7
K, = (i, A = (i, D
Qu v — mema u (Z7 )? v Za ) m)7 (314)
' €m, U = (Zva)a v = (ZaDm)
or u = (i, Dp,), v = (i, A),
0, otherwise.

Then, by assumptions (2.1) and (2.20), @, f and « satisfy the conditions of The-
orem 3.1l

Model 3. The state space S and the function « are the same as in model 2. When
u € S is of the form (i, A), we must adapt the function f, such that it takes the
displacement of seeds into account. The matrix () must be adapted accordingly and,
by assumption (2.17), the conditions of Theorem are again satisfied.

(b) The proof of Theorem [2.2.4b) is the same for models 1-3. The Feller property
can be proved by using duality if ¢ = dgrw, d € (0,00). For general g we use [67,
Remark 3.2] (see also [0, Theorem 5.8]). The Feller property in turn implies the
strong Markov property. (]

§3.1.2 Duality
In this section we prove Theorems [2.2.5] 2.2.8] and 2.2.10]

Model 1: Proof of Theorem [2.2.5]

Proof. We use the generator criterion (see [32, p.190-193] or [48, Proposition 1.2]) to
prove the duality relation given in (2.35). Let F' be the generator of the spatial block-
counting process defined in (2.33), and let H((m;,n;);ec) be defined as in (2.34)), but
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read as a function of the second sequence only. Then

(FH)((mj,n5)jec)

= Z {Z mia(i, k) [H((mj,n;)jec — 6,4y + 0k,a)) — H((mj,n5)jec)]

i€G ~keG
+d (77;1) [H((mjynj)jeG - 5(1'7,4)) - H((mjvnj)je@,)] (3.15)
+ m;Ke [H((mjynj)je([} —0(i,4) T (5(“3)) — H((mj, nj)jé@)}

+ n;e [H((mj,nj)je@, + 5(1-714) — 5(1‘7[))) — H((mj,nj)jgg)] .

Recall that G is the generator of the SSDE (recall (2.24)—(2.25))). Let D¢ denote
the domain of G and Dp the domain of F. Let (S;);>o denote the semigroup of

the process (Z(t));>0 in (2.2) and (R;):>o the semigroup of the process (L(t));>o in
(2.32). Since

d2
oz (BeH) (2,5, n5,m;5)je6) = (F?R.H)((25,y5, nj, mj)jec), (3.16)

we see that H((z;,y;,nj,m;)jec) € Dg and (R:H)((x},y;,nj,m;)jec) € Dg. It is
also immediate that H((z;,y;,n;,m;)jec) € Dp and

(S¢H)((x5,yj,mj.m;)jec) € Dr. Applying the generator G in (2.25) with g = 4 gpw
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§3.1. Proofs: Well-posedness and duality

to 7 we find
(GH)((x5,9;)jec)

= { lza(i, k) (zx —xz-)] %( ijy?j>
i\igs

i€G keG
4 0? m; n SR
+§$i(1—$i)@(nxjj J>+K6( (Hm J J)
i jeG 1EG
+e(z; — (H i nJ)}
Yi jeG
_Z{lZml a(i k) [T 270y (2 tyfa sty —afiyf lelygk)]
o = e (3.17)
jzllc
J
+ [Ty dmatma = 1) (@ — 2 ) Ln, 22y
j€G
J#i
+miKe [[aiyy? (a Ty — 2yl
j€G
i
+mge [[af 7y (2 iy xi"iyzm)}
j€G
JF#i

= (FH)((mj,n))jec)-
Consequently, it follows from the generator criterion that
B[H((X:(8), Yi(t), mini)ies ) | = B[H (w50, Mi(t), NiWies )| (3.18)

This settles Theorem [2.2.5)] O

Model 2: Proof of Theorem [2.2.8l

Proof. Theorem follows after replacing in the above proof the block-counting
process in (2.33]) by the one in (2.43)), the duality function by the one in (2.44)), and

checking the generator criterion. |
Model 3: Proof of Theorem [2.2.10L

Proof. Theorem [2.2.10| follows after replacing the block-counting process in (2.33)

by the one in (2.54)), the duality function is by the one in (2.44)), and checking the
generator criterion. |

§3.1.3 Dichotomy criterion
In this section we prove Theorems [2.2.11] and [2.2.13]
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Model 1: Proof of Theorem [2.2.11l
Proof.

“<=" The proof uses the duality relation in Theorem Define 0, = E,0)[xo]
and 0, = E,0)[yo]. Note that, since x(0) is invariant under translations, we have
E,.0)[xi] = 0, and E,,o)[y;] = 0, for all i € G. We proceed as in [12], Proposition 2.9].
Let (mg,n;)icc € E' be such that }; [mi(0) 4+ n;(0)] < oo, and put

1nf{t>0 Zml + ni(t _1}. (3.19)

i€G

By assumption, each pair of partition elements coalesces with probability 1, and hence
P(T < o0) = 1. By duality

tli?goE [H T ’rnl n1‘|

i€G
H x:ni(t)y?i(t)]
1€G
H xzm(t)y?i(t) ‘ T < o0

icG

11 gm0y m®) ‘ T =0
i€G

= lim E

t—o0

= lim E

t—o00

P(T < o0)

P(T = )

= lim E

t—o00

[Tar@yp® \ T < 0o, m(t) =1, n(t) = o] P(m(t) = 1, n(t) = 0)
i€G
. m;(t) n;(t)
1 0 K
1+ K Ty + K’

T < oo, m(t) =0, n(t) = 11 P(m(t) =0, n(t) =1)

:9‘,1/,

(3.20)
where in the last step we use that a single lineage in the dual behaves like the Markov
chain with transition kernel b(1)(-,.) defined in (2.31)). It follows from (3.20) that, for

alli,j € G,
lim E [fﬁi(t) + Kyi(t) (1 () + Kyj(t)ﬂ _0 (3.21)

Hence, either lim;_, o (x(t), y(t)) = (0,0)€ or limy_, oo (z(t), y(t)) = (1,1)¢. Computing
lim; o, E[z;(¢)] with the help of (3.20)), we find

lim p(t) = (1 - 0) [60,0)® € +0[601,1)]®€ (3.22)

t—o0

with 6 = E,, ) [“{fl((yo] = ezltfl{(ey, which means that the system clusters.
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§3.1. Proofs: Well-posedness and duality

“==" Suppose that the systems clusters. Then (3.21) holds for all i,j € G, which
means that

tlgroloE [2.(t) (1 —2,(t))] =0  Vu,v€S. (3.23)
Let
L) = Lu(t), (3.24)
u€s

be the total number of lineages left at time ¢. Applying the duality relation in (2.38)|)

to (3.23)), we find

0= lim E[z,(t)(1 — 2,(t))]

t—o0
Eau lH z{;u(t)

u€es

= lim E#(O) - E,u((])

E5’u+6v [H Zi‘u(t)‘| ]

u€es

0, + K0, (3.25)

1+ K

Es, 15, lH Zﬁlu(t)

u€eS

[1—Ps, 45, (

L(t)] = 1)]

—Eu0) IL(t)] = 2H Ps,+s, (L) = 2)] :

As to the last term in the right-hand side of (3.25|), we note that

limsupE,, o) |Es,+s, Hzfu(t) ‘ |L(t)] = 2H
u€ES

t—o0

= lim sup

1 .
P WE H Zﬁ/u(t) ’ L(t) = 5(1,A) + 5(3‘714), 1,] S G

u€es

+ lim sup (3.26)

t—o0

2K
— - _E
(1+ K)?

11z ’ L(t) = 0s,4) +0(j,0), 1, ] €G
ues

K2
+ limsup ————=FE
il (14 K)2
0, Ko, + K0, KZHy 0.+ K0,

SATEP T atK? Ok 1+k U

I[ze-® ’ L(t) = 6(i,p) + 6(j,p), 4, ] €G
ueES

Here, the strict inequality follows from the non-trivial invariant initial distribution
(ruling out z = 0 and z = 1), together with the fact that the swapping between active
and dormant is driven by a positive recurrent Markov chain on {A, D}. Hence
holds if and only if lim;_, o Ps, 45, (|L(t)] = 2||L(0)] = 2) = 0 for every u,v € S.
Therefore every pair of lineages coalesces with probability 1. Thus, we have proved

Theorem 2.2.11]

Model 2: Proof of Theorem [2.2.13l
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Case p < 0o. Like for model 1, we define

) et S Kby
1+p

0 = Eyoy o), Oym = Epu0) [Yo,mls (3.27)
For p < oo, a lineage in the dual moves as a positive recurrent Markov chain on
{4, (Dim)men, }- Therefore the argument for “<==" given for model 1 goes through
via the duality relation, which gives

11 zgum} _ et 2menty Kmbym. (3.28)

. lu _ .
Jm E lH zu(t) ] = fim B T+ > e K

u€eS u€ES

With the duality relation in (2.47)), the argument for “==-" given for model 1 also
goes through directly.

Case p = co. For p = 00, a lineage in the dual moves as a null-recurrent Markov
chain, which has no stationary distribution, and so (3.28)) does not carry over. How-
ever, from [58] Section 3] it follows that, for all uy,us € S,

Hm [Py, (L(t) = 0y | L(t) = 1) = Py, (L(t) = & | L(t) = 1)|],, = 0. (3.29)

t—o0

Moreover, by null-recurrence,
llm]P)(()—(S(A) 0,

lim P =d.py) =0 Vm € Ny,
Jim P(L(t) = 6(.p,,)) 0 (3.30)

o0

tl—lglo 7MP(L(7§) = 6(‘1Dm)) =1 VM € Np.

“<=" By duality, we have

. Ly | _ 1: L (t)
tlggoE qu(t) ‘|_tlinoloE HZ“ ‘|
u€ES u€S
= lim |6.P(L(t) = 6(.a)) + D OymP(L() = 6(.p,)| ;
meNy
(3.31)

where we follow an argument similar as in (3.20) and use that P(T" < o0) = 1.
Because the initial measure is colour regular, we know that lim,, . 0y, = 6 (recall
Definition|2.2.12)). But (3.30)—(3.31) imply that all moments tend to 6. In particular,

lim E[z;(t)] = 6 = lim Ely; . (t)], i € G, m € Ny. (3.32)

t—o00 t—o0
“=—=>" By the duality relation in (2.47)) and the assumption of clustering, we find

tlggOIE [z, () (1 — 2,())] =0  Yu,veS. (3.33)
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Therefore
Jim B [z, (£)(1 = 2o (t))]
= lim B, [Ea HZf“(t)H Epo) |Esuts, [H ZuL“(t)H
wES u€eS
| (3.34)
=0 lim | [1—Ps, 45, (|L()] = 1)]

—Eu0

Es,+, [H 20 | L(8)] = 2H Ps, 45, (1L (1)] = 2)] =0,

ues

Suppose that lim;_,o Ps, 15, (|L(¢)| = 2) # 0. Then

Jlim Es, s, [H 2L ® ) L) = 2] (3.35)
u€eS
However,
limsup E, ) lE5u+5v [H zE® ‘ |L(t)| = 2“ (3.36)
t—o0
u€eS

< ]EM(O) 9, (3.37)

Es,+s, [H 2@ | L) = 1H
u€eS

because we start from a nontrivial stationary distribution. Thus, we have proved

Theorem 2.2.131

Model 3: Proof of Theorem [2.2.13] Since the duality relation for model 3 is
exactly the same as for model 2, the same results hold by translation invariance and
the extra displacement does not affect the dichotomy criterion. ]

§3.1.4 Outline remainder of paper
In Sections we prove Theorems [2.3.1] 2.3.3] and 2.3.6] respectively. For each

of the three models we split the proof into four parts:

a) Moment relations.

b)

(c) The coexistence case.
)

(d) Proof of the dichotomy.

(
(

The clustering case.

§3.2 Proofs: Long-time behaviour for Model 1

In Section we relate the first and second moments of the process (Z(t));>0 in
(2.4)—(2.5) to the random walk with internal states {A, D} that evolves according to
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the transition kernel b(1)(-,-) given in ([2.31) (Lemma below). These moment
relations hold for all g € G. In Section :3.2.2 we deal with the clustering case (Lem-

mas [3.2.4/[3.2.5 below), in Section [3.2.3] with the coexistence case (Lemmas
m 3.2.13| below). In Sectlon “ we prove Theorem [2.3.1] “ In Sections [3.2.2] n and [3.2.3 -

we will see that the moment relations are crucial when no duality is available.
Below we write E, for Es_, the expectation when the process starts from the initial
distribution é,, z € F.

§3.2.1 Moment relations

Lemma 3.2.1 (First and second moment). Forz € E,t >0 and (i, R;), (j, R;) €
G x {A, D},

E-lory®)= Y. bV (G R, (B Ri)) 2k,my) (3.38)
(k,Rr)eGx{A,D}
and
E.[2,r,) () 2(,r;) ()]
= 3 b (6, Ra), (k, Be)) 0 (G, Ry), (1 RD)) 2, m 210
(k,Ry.),(I,R)€GX{A,D} (3.39)
/ as 300 (G Ry), (6, ADBE (G Ry (ks A)) Esfg(a(s))-
keG

Proof. We derive systems of differential equations for the moments and solve these in
terms of the random walk. Let (RW}):>o denote the semigroup of the random walk
with transition kernel b(l)(~, -), and recall that the corresponding generator is given

by
Grw NG R) = D bW((R), G, Ry) [FUs Ry) — f(i, R)]. (3.40)

(4,R;)€GX{A,D}
Applying the generator (2 of the system in . to the function
farys B =R, fir)(2) = 2R (3.41)
we obtain by standard stochastic calculus

dE; [2(,Rr,)(t)]
dt

.. 3.42
= 1> ali,5) (Bafa; (1)) — Eafas (1)) + Ke (B.[yi(D)] — E=[2:(1)]) | 1(r,=a) (342)
JEG
+e (Exlai(t)] = Ea[yi(1)]) Lri=D)-
Hence denoting by (S;);>0 the semigroup of the system in (2.4)-(2.5)), we see from

and the definition of b(V)(-,-) in - ) that (S:fu,r, ) Solves the differential
equatlon

F'(t) = (Grw F)(t). (3.43)
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On the other hand, for each f € Cp(G x {A, D}), RW,f also solves (3.43)). In par-
ticular, for z € E define f,: G x {4, D} — R by f.(i,R;) = 2(4, R;) for z € E, then
RW, f, is a solution to (3.43). Since

(BWof2)(i, Ri) = 2(i, Ri) = (Sof(i,r)) (2), (3.44)

we see that holds. To prove , we derive a similar system of differential
equations and again solve this in terms of the random walk moving according to the
kernel b(-,-). Let f: £ — R be given by f(2) = 2( r,)2(j r,;)- Using the generator
, we obtain via Ito-calculus that

d
EEZ [2(, Ri)(f)z(g‘ r;)(1)]

= ali,k) k)2, ()] = Ex[2i(t)2(,r,) (D)]) 1{r,=a)
keG
+K€(]Ez[ i(t ) 2(,1;) (O] = Bz [2i()2(,r,) (D)]) 1{ri=a)
+ e (Ea[2i(t)2(,r,) (1)] = E:[yi(t)2(,r,) (V)]) L{r=D) (3.45)
+ Y a( ) (Balzi(t)z,m) (0] = Eal; (8)20,10 (1)) 1ir,=a)
leG

+ Ke (Exly; (8)z,r) ()] = Bzl ()206.7) (D]) Lir,=a)
e (Bl (8)2(6,r0) ()] = Baly; (1)2,R0) (D)) Lm, ~D)
+ Ee[g(i(t)) 1i=jy Lri=r,=a}-

Let U be the generator of two independent random walks each moving with transition
kernel bV (-, ), i.e., for all h € C,((G x {A, D})?),

(Uh)((la Rz)7 (.7? Rj))
= Z a(iv k) [h((k, A)v (.77 Rj)) - h((lv Rz)7 (]7 RJ))] 1{1’,R7::A}

keG
+ Ke [n((i, D), (j, B;)) = h((i, Ri), (G, R))] 1i.r,= 2y
[ ((7’7 ) ( )) (( ),(_77 ))} 1{1 R;=D} (346)
+Y_ali,l) Ry), (I, A)) = h((i, Ri), (4, R))] 1, =)
1eG
+ Ke [h((Z, R1)7 (.77 D)) - h((la Rz)a (Ja RJ))] 1{RJ=A}
te [h((lv Rz)7 (]7 A)) - h((lv Rz)? (]7 D))] ]'{Rj:D}'
Let F'(t) = E.[2,r,)(t)2(,r;)(t)] and H(t) = 2E.[g(2i(?))]1{i=j}1{r,=r,=a}- Then

we can rewrite (3.45)) as

d

SE®) = (UF)(®) + H(?). (3.47)

Denote by (RWt(Q))tZO the semigroup corresponding to U. Applying [56, Theorem
1.2.15], we obtain

F(t) = RW2 F(0) + / ds RW 2, H (s). (3.48)
0
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Hence

E.[26,r) (1) 2(j,r;) (1))

- > b (3, Ra), (k, Be)) b (GG Ry), (1 R1)) Balze my 20, m0)
(k,Ri),(I,R)€EGx{A,D}
/ ds »_ b2, Ok, ) 012, (7, Ry), (k, A)) Eclg(a(s))]-
- (3.49)
[l

Remark 3.2.2 (Density). From Lemma we obtain that if 4 is a translation
invariant measure such that E,[z¢(0)] = 6, and E,[yo(0)] = 6,, then

Euleary®) =0 > 0" ((i,R), (k,Ry))

(k,Ri)EGx{A}

W (3.50)
+0, > b (i Ri), (k, Ry)),
(k,Ri)EGX{D}
in particular, lim; o E,[2(,r,) (t)] = Oa 1111{(% =0, recall -, and
Eulz¢,r) (1), R,) (P)]
= 3 b (6, Ri), (k, Re)) 00 (GG Ry), (1 R)) B2k, miy 20,10
(k,Ri),(L,R1)eEGX{A,D}
/ ds 3700, (G, Ro), (B, 4) B2, (G, Ry), (K, 4)) Eplg(a(s)))
keG

(3.51)
O

Remark 3.2.3 (First moment duality). Note that shows that even for gen-
eral g € G there is a first moment duality between the process Z(t) and the random
walk RW(t), that moves according to the kernel b()(-,-). The duality function is
given by

H:ExGx{A,D} - R, H(z, (i, Ri)) = 23i,R,)- (3.52)
Equation (3.38)) in Lemma[3.2.1tells us that E[H (Z(t), RW(0))] = E[H(Z(0), RW(1))].

§3.2.2 The clustering case

The proof that the system in f converges to a unique trivial equilibrium
when a(-,-) is recurrent goes as follows. We first consider the case where g = dgpw,
for which duality is available (Lemma. Afterwards we use a duality comparison
argument to show that the dichotomy between coexistence and clustering does not
depend on the choice of g € G (Lemma [3.2.5)).
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e Case g = dgrw-

Lemma 3.2.4 (Clustering). Suppose that 11(0) € Ty'® and g = dgew. Moreover,
suppose that a(-,-) defined in (2.59) is recurrent, i.e., Iz = oco. Let u(t) be the law at

time t of the system defined in (2.4)—(2.5). Then
lim pu(t) = 0[61,1)]%% + (1 = 0) [60,0)] % (3.53)

t—o0

Proof. Since g = dgpw, we can use duality. By the dichotomy criterion in Theorem
2.2.11} it is enough to show that in the dual two partition elements coalesce with
probability 1. Recall from Section that each of the partition elements in the
dual moves according to the transition kernel b)) (-,-) on G x {A, D} defined by
[2.31)) (see Fig. [2.3). Recall from Section that b™M)(-,-) describes a random
walk on G with migration rate kernel a(-,-) that becomes dormant (state D) at rate
Ke (after which it stops moving), and becomes active (state A) at rate e (after which
it can move again). When two partition elements in the dual are active and are at the
same site, they coalesce at rate d, i.e., each time they are active and meet at the same
site they coalesce with probability d/[>_ ;¢4 a(i,j) + Ke+d] > 0. Hence, in order to
show that two partition elements coalesce with probability 1, we have to show that
with probability 1 two partition elements meet infinitely often while being active. The
latter holds if and only if the expected total time the random walks spend together
at the same colony while being active is infinite. We will show that this occurs if and
only the random walk with symmetrised transition rate kernel a(-, -) is recurrent. The
proof comes in 4 Steps.

1. Active and dormant time lapses. Consider two copies of the random walk with
kernel () (-, ), both starting at 0 and in the active state. Let

(ok)ken, (0% )ken, (3.54)

denote the successive time lapses during which they are active and let

(Tk)kens  (Tg)ken, (3.55)

denote the successive time lapses during which they are dormant (see Fig.|3.1)). These
are mutually independent sequences of i.i.d. random variables with marginal laws

Ploy >t) = Plo})>t) = e Ket) t>0,

P(n>t) = P(ri>t) = et t>0, (3.56)

where we use the symbol P to denote the joint law of the two sequences.
Let as(-,-) denote the time-t transition kernel of the random walk with migration
kernel a(-,-). Let

~
I
—

k
E(k,t) = {Z(Uz—l—ﬂg)<t< (0’£+Tz)+0k+1},

~
=l e
_

(3.57)

B

E'(K 1) = (op+7) <t <) (0p+7)+0hy1 ¢

~
Il
—_
o~
Il
—_
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Figure 8.1: Successive periods during which the two random walks are active and dormant.
The time lapses between the dotted lines represent periods of joint activity.

be the events that the random walks are active at time ¢ after having become dormant
and active exactly k, k' times, and let

k k
T(k,t) = Zog + ((t - Z(ae + Te)> A Uk+1) ;
=1

=1
B . (3.58)
T (K ,t) :Zaé—&— t—Z(aé+Té) Aokt |,
=1 =1

be the total accumulated activity times of the random walks on the events in (3.57).
Note that the terms between brackets in (3.58) are at most 041, respectively, o7}, 115
and therefore are negligible as k, k' — oo.

Given the outcome of the sequences in (3.54)—(3.55)), the probability that at time
t both random walks are active and are at the same colony equals

Z (ZGT(k,t)(O,i) aT/(k’,t)(Oai)> lere,ny lerr o) (3.59)

k,k’eEN \ieG

Therefore the expected total time the random walks are active and are at the same
colony equals

o0
I :/ dt Z E(O,A),(O,A) [(Z aT(k7t)(O7i) aT/(k’,t)(O7i)> 15(](:775) 15’(k’,t)‘| 5
0

k,k'EN i€G
(3.60)
where E is the expectation over the sequences in ([3.54)). Let
k
N(t) = max{k e N: Z(O’g +70) < t} ,
(=1
v (3.61)
N'(t)=maxq kK €N: Y (or+7)<ty,
=1

be the number of times the random walks have become dormant and active up to
time . Let

T(t)=T(N(t),t), T'(t)=T(N'(t),t), E(t)=E(N(t),1), E'(t)=E(N'(t),1),
(3.62)
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be the total accumulated activity times of the random walks up to time ¢, respectively,
the events that the random walks are active at time ¢t. Then we may write

I =/ dt E(0,4),(0,4) KZ ar)(0,1) ar ) (O7i)> Le 18’(t)‘| . (3.63)
0

i€G
We know that coalescence occurs with probability 1 if and only if I = oc.

2. Fourier analysis. Define

M(t) =T(t) ANT'(t), At)=[T#) VT (t)] - [T(t) AT (t)]. (3.64)
Then
Z art)(0,4) agr(4)(0,1) = Z aanr(t)(0,7) an (4, 0)- (3.65)
i€G JEG

Indeed, the difference of the two random walks at time M (¢t) has distribution
agnr(#)(0,+), and in order for the random walk with the largest activity time to meet
the random walk with the smallest activity time at time 2M (t) + A(t), it must bridge
this difference in time A(t). To work out (3.65)), we assume without loss of generality
that >, a(0,j) = 1, and use Fourier analysis. For ease of exposition we focus on
the special case where G = Z%, but the argument below extends to any countable
Abelian group endowed with the discrete topology, because these properties ensure
that there is a version of Fourier analysis on G [64, Section 1.2]. For ¢ € [, 74,
define

a(¢) =Y e @Da(0,),  a(¢) =Rea(¢),  a(¢)=TIma(¢). (3.66)

jezd
Then
1 o .
a ) = do e~ 1(#:3) o—tl1—a(¢)]
at(O,J) (27T)d /['—Tr,ﬂ']d d)e (§] ) (3 67)
) 1 gAY gy mean eai .
ar(j,0) = ) /[T”r]ddqs’e@%s 9) g=tll=a(¢")—ia(@")]

where we use that a(¢) = a(¢) + ia(¢). Inserting these representations into (3.65)),
we get

‘ . 1 _ _a .
Z ar(0,4) apr () (0,1) = (%)d/[ . dg e~ RPMOFAMIN-a(D)] cog(A(t)a()),
iczZd T

(3.68)
where we use that »; 74 el(0'=0.9) = (271)4§(¢ — ¢), with 8(-) the Dirac distribution
(Folland [37), Chapter 7]).

3. Limit theorems. By the strong law of large numbers, we have
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Therefore, by the standard renewal theorem (Asmussen [3, Chapter I, Theorem 2.2]),

lim 1N(t) = lim 1N’(t) =A P-as.,

Ty o0 t
tliglo ! T(t) = tlgrolo T’( )=DB P-as, (3.70)
Jim P(E(t)) = lim P(£'(t)) = B,
with . X N .
A=Y Pr it R (8.71)

Moreover, by the central limit theorem, we have

<T(t)Bt T'(t) —
vt eVt

with (Z,Z’) independent standard normal random variables and

Bt
> = (Z,7') in P-distribution ast - oo (3.72)

¢ = A[(1 - B)*Var(oy) + B> Var(r)] (3.73)

(see [68] or [3, Theorem VI.3.2]). Since T'(t),E(t) and T'(t),E'(t) are independent,
and each pair is asymptotically independent as well, we find that

E0,4),(0,4) Z ar (0,4) arr)(0,1) | 1ey 1oy | ~ B2 f(2), t — o0, (3.74)

i€Z%
with
1 [1+0(1)] 2Bt [1—a(¢)] / ~
£ = G . dpe! E [cos ([1 to(l)elZ — 2 )\/Za(qs))]
- G 1)d / o~ [HHe(D] 2B [1-a(0)] o~[1+0(1)] ta()?
2 d
[~ 7]

(3.75)
where we use that cos is symmetric, Z 7' = 227" in IP’ distribution with Z”
standard normal, and E(e#Z") = ¢~ /2 1 € R. From and (3.74) we have
that I < oo if and only if t — f(t) is 1ntegrable. By Cramer S theorem deviations of
T(t)/t and T'(t)/t away from B are exponentially costly in ¢. Hence the error terms

in , arising from and , do not affect the integrability of ¢ — f(t).
Note that, because a(-,-) is assumed to be irreducible (recall (2.1)), a(¢) = 1 if and
only if ¢ = 0. Hence the integrability of ¢t — f(t) is determined by the behaviour of
a(¢) and a(¢) as ¢ — 0.

4. Trrelevance of asymmetric part of migration. We next observe that
a(¢)? < 1—a(¢)” < 2[1—a(¢)]. (3.76)

Hence, ta(¢)? < 2t [1 — a(¢)]. Therefore we see from (3.75)) that for sufficiently large
T € R we can bound ¢ — f(t) on [T,00) from above and below by functions of the
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form t — g (t) with
1

gc(t) = W/ dpe CtI=al e (0,00). (3.77)
[777’7T]d

From (3.67) we have
go(t) = ac+(0,0) =< a:(0,0), (3.78)

where the last asymptotics uses that ¢ — @;(0, 0) is regularly varying at infinity (recall

(2.60))). Combining (3.63)), (3.74) and (3.77)—(3.78)), we get

I=0 < I[;=x (3.79)

with I; = [ dta,(0,0). Thus, if a(-,-) is recurrent, then I = co and the system
clusters. Moreover, we see from the bounds on f(t) (recall (3.75)) that the asymmetric
part of the migration kernel has no effect on the integrability.

This settles the dichotomy between clustering and coexistence when g = gpw. U

e Case g # dgrw. For g # dgpw the proof of Lemma does not go through.
However, the moments relations in Lemma hold for general g € G. Using
these moment relations and a technique called duality comparison (see [14]), we prove

Lemma for general g € G.

Lemma 3.2.5 (Duality comparison). Suppose that ;1(0) € T,'® and g € G.
Moreover, suppose that a(-,-) defined in (2.59) is recurrent, i.e., Iz = co. Let u(t) be
the law at time t of the system defined in (2.4)—(2.5). Then

lim (1) = 0[61,1)]%% + (1 = 0) [60.0)] % (3.80)

t—o0

Proof. We proceed as in the proof of [I4, Theorem]. First assume that u(0) = 4, for
some z € E, that satisfies

Tm o ST V(0 Ra), (6 Be)) 6, = 6 (3.81)
(k,R)EGx{A,D}
By Lemma we have
E. [z6.1)(t)] = 3 b8 (6, Ri), (ks Ri)) 20k, 5y - (3.82)

(k,Rr)EGx{A,D}

Hence, by assumption, for all (i, R;) € G x {A, D} we have

Since we have clustering if, for all (i, R;), (j, R;) € G x {A, D},
i E. [z (01~ 25 (1))] = 0, (3.84)
we are left to prove that
Jim B (26,28, = 0. (3.85)
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Since (3.83) implies that limsup,_, . E.[2( r,)2(j,r,)] < 0, we are left to prove that
htIglOI.}f Ez [Z(i,Ri)Z(j,Rj)} > 0. (386)

Like in [14], we will prove (3.86) by comparison duality.
Fix € > 0. Since g € G we can choose a ¢ = ¢(€) > 0 such that

9(x) = §(z) = c(x — €)(1 = (z +¢)), z € [0, 1]. (3.87)

Note that g(z) < 0 for = € [0,¢) U (1 —¢, 1], so we cannot replace g by g in the SSDE.
Instead we use ¢ as an auxiliary function.
Consider the Markov chain (B(t)):>0, with state space

{1,2} x (G x {A4,D}) x (G x {A,D}) (3.88)
and B(t) = (Bo(t), B1(t), Ba(t)), evolving according to

(17 (i7Ri>7 (Z7Rz)) - (1 (k Rk) (k7Rk))v at rate b(l)((ZaRz)a (k7Rk))a
(2, (k, Ry,), (4, R;)), at rate bV ((i, R;), (k, Ri)),
(2,6, Ri), (45, R;)) = (2, (6, Ri), (L R))),  at rate bV ((4, Ry), (I, Ry)):,
(1

,( ) (Z,Ri))7 at rate Cl{Z:]}l{I:Q:Rj:A}'

(3.89)

This describes two random walks, evolving independently according to the transition
kernel b(V)(-,-), that coalesce at rate ¢ > 0 when they are at the same site and are
active. We put By(t) = 1 when the two random walks have already coalesced by time
t, and By(t) = 2 otherwise. Let Po (; r,),(j,r,)) denote the law of the Markov Chain
B(t) that starts in (2, (¢, R;), (4, R;)). Note that

P, o),y (Bi(t) = (k, Ry)) = bV (i, Ry), (k, Ry.)), (3.90)
and similarly
P, ). Gy (B2(t) = (1, R)) = bV (4, R;), (1, Ry)). (3.91)

Since we have assumed that a(,-) is recurrent, i.e., Iz = oo, the two random walks
meet infinitely often at the same site while being active and hence coalesce with
probability 1. Therefore

tllglo ]P)(Q,(i,R,i),(j,Rj)) (Bo(t) = 2) =0. (392)

We can rewrite the SSDE in (2.4)-(2.5) in terms of b(1)(-,-), namely, for all (i, R;) €
G x {A, D},

dz(,p,)(t) = Z b (i, Ry), (3, Ry))[2G.m,y) (£) — 200, moy (£)] dt
(k)G {A,D} (3.93)

+1/9(2i.r, (1)) 1 r,=ay dwi(t).
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Using (3.93)) and It6-calculus, we obtain

dE.[z(,r,)(t) — €]

dt
3.94
= > b ((i, Ry), (k, Ri)) E [(2(k, me) (t) — €) — (2(i,m,)(t) — €)] (394
(k.Ri)ECx {A,D}

and

dE- (20,10 () = €) (2,1, () + €)]
dt

= Z b(l)(<zaRz)a(k’Rk))

(k,Ri)€Gx {A,D}
X B [(2(j,r,)(t) + €)(z2(k, ri) (£) — €) — (2(j,r,) () + €)(2(3,r)) (t) — €)]
+ > (G Ry), (K Ry))
(1,R))€Gx {A,D}
X E. [(2(,r,)(t) = €)(24,r) () + €) = (2,10 (t) — €)(2(j,R,) () + €)]
+E. [e(z(,r) () — 6)(1 - (Z(] ry) () + )= 1R =R, = a}]
+E. [(9(26.r)(1) = 92,00 (1)) Lpi=y L {Ri=R; =4} ] -

(3.95)
For ¢ > 0, define Fy: {0,1} x (G x {4, D}) x (G x {A,D}) — R by
Fy(1, (4, Ry), (i, R;)) = E. [Z(LRi)(t) - 6] (3.96)
Fy(2, (i, Rs), (4, Rj)), = E: [(23,r0) (t) — €) (2(,r,) (1) + €)] '
and H;: {0,1} x (G x {4, D}) x (G x {4,D}) = R by
Hi(1, (i, R;), (i, R;)) =0, (3.97)

Ht(27 (iaRi)7 (.77 RJ)) =E, [(g(z(Z,Rl)(t)) - g(z(l,Rl)(t))) 1{i:j} 1{Ri:Rj:A}] :

Let B denote the generator of (B(t)):>0, and let (Vi):>0 the associated semigroup.
Then

F,
% = BF, + H,. (3.98)

Hence, by [66, Theorem 1.2.15], it follows that

t
F, = ViFy + / ds Vs Hs. (3.99)
0
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Since H; > 0 for all t > 0, we obtain
Fy(2, (i, Ri), (4, Rj)) > ViFo(2, (i, Ri), (4, Rj))
= E2.(i.r).(5.8,)) [Fo(B(1))]
=E,,r:),6.8,)) [Fo(Bt)1{By)=13 + Fo(B()11By()=2}]

= > P2,i,r),(,R,)) [Bo(t) = 1, Bi(t) = (k, Ri)] (2(k,R,) — €)

(k,Ry),(l,R;))eEGx{A,D}
+E2,i,R:),G,R,)) [Fo(B(1))1By(1)=2}]

= > P, i,R)), (G Ry)) [B1(t) = (k, Ri)] (2(k,r,) — €)

(k,Ri),(1,R)€Gx{A,D}

- > P,i,r).(,Ry)) [Bo(t) = 2, B1(t) = (k, Ry)] (2(k,r,) — €)

(k,Ri),(l,R1)EGx{A,D}
+Eo,(i,r),.8,)) [Fo(B()1(By(1)=2}]

> 3 bV (4, Ry), (ky Ri)) (21, m0) — €)
(k,Ri)EGx{A,D}

-1+ 62)P(2,(i,Ri),(j,Rj)) [B1(t) = 2].

Hence, by (3.92)), we obtain

liminf F3(2, (i, R:), (4, R;)) > lim inf ., [(2(,r0) () — €)(2(j,r,) (t) + €)]

>0 — €2

Letting € | 0, we get (3.85).

(3.100)

(3.101)

To get rid of the assumption p(0) = ., note that for (0) € T,® we have (recall

Remark [3.2.2))

lim Z bt((za Rl)? (k7 Rk))]Eu[Z(k,Rk)] =0.

t—o0
(k,Rr)eGx{A,D}

Hence, by the above argument,
Ey [(2,r,) () — €)(2,r, (t) + €)]

= / E. [(2,r) (1) — €)(2),r, () + €)] du(2)

>[Y R R G —
(k,Rr)eGx{A,D}

— (14 )P2,i.r,)..1,)) [Bi(t) = 2] dp(2)
Letting first t — oo and then € | 0, we find that
Jim E, (2,5 (6) — ) (2., (1) + )] =6,
and, for all (¢, R;), (j, R;) € G x {4, D},

tll)rgo E, [z(LRi)(t)(l — 2j.R; (t))] =0.
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§3.2.3 The coexistence case

For the coexistence case we proceed as in [I4] with small adaptations. For the conveni-
ence of the reader we have written out the full proof. The proof relies on the moment
relations in Lemma and no distinction between g = dgrw and general g € G is
needed. The proof consist of several lemmas (Lemmas below), organised
into 4 Steps. In Step 1 we use the moment relations in Lemma to define a set of
measures that are preserved under the evolution. In Step 2 we use coupling to prove
that, for each given 6, the system converges to a unique equilibrium. In Step 3 we
show that, for each given 6, each initial measure under the evolution converges to an
invariant measure. In Step 4 we show that the limiting measure is invariant, ergodic
and mixing under translations, and is associated.

1. Properties of measures preserved under the evolution. Let 6 be defined
as in (2.62) such that 60 = [“Olj_ff(yo} = 9”11[29*’.

Definition 3.2.6 (Preserved class of measure). Let Rél) denote the set of meas-
ures p € T satisfying:

(1) For all (4, R;) € G x {A, D},

Jim B, [z, (8)] = 6. (3.106)

(2) for all (i, R;), (4, R;) € G x {A, D},

A > b (G, Re), (k, Be)) 0 (G Ry), (1, )
(k,Ry),(1,R;)€GX{A,D} (3.107)

X Eplz(k,ry)20,10)) = 0%

]
Clearly, if p1 € 73(91)7 then (1) and (2) together with Lemma imply
2
fim B, > 0GR (b Rz —0) | =0, (3.108)

(k,Rr)EGx{A,D}

and so lim;_, oo 2; g, (t) = 0 in L?(p).
On the other hand, suppose that (3.108]) holds for some (i, R;) € G x {A, D}.
Then, by Lemma ([3.2.1]), we can rewrite (3.108) as

. 2
lim B, [(Ez[z(iﬂi)(t)] —0) } = 0. (3.109)
This implies
Jim B, [ r,)(6)] = 0, (3.110)

(0]
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and hence, by translation invariance,

Using that switches between the active state at the dormant state occur at a positive
rate, we can use the strong Markov property to obtain that (3.111)) holds both for
R; = A and for R; = D. Hence holds. Combining and , we see
that also holds.

Lemma 3.2.7. u € Rél) for all € T, ™.

Proof. The proof relies on Fourier analysis and the existence of spectral measures.
As in Section for ease of exposition we focus on the special case where G = Z,
but the argument below extends to any countable Abelian group endowed with the
discrete topology.

By translation invariance and the Herglotz theorem, there exist spectral measures
Aa and Ap such that, for all j, k € Z¢,

Bl — 00 = [ 0000,
T (3.112)
By = )~ 0] = [ d0anp(0).

(_ﬂ—vﬂ']d

Let a(¢) = 4 czq €®Pa(0, k) be the characteristic function of the kernel a(-, -) (recall
(3.66)), and T'(t) the activity time of the random walk up to time ¢ (recall (3.58)).
Then

. efT(t) T ()™ .
> ar (0, k)l = " 7TE' ®) > a"(0, k) el

kezd n€Ny ’ kezd
B e~ TO[T(t) a(e)]™ (3.113)
- Z n!
n€Np

_ o T(H)(1-a())
Let £(t) be defined as in (3.62)). Then, for fixed ¢ > 0,

Plo.ay(E() = D bV((0,4), (k, A)) > 0. (3.114)
kezd
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and hence

kezd

= ﬁz;zgag(jj— j{j bEV (0, A), (k, A) 6V (0, A), (1, A)) By [(mr — 02) (1 — 02)]

! : Z B0 (0, A), (k, A)) b ((0, A), (1, A)

1 1
E, [(W > (0, A), (b, A))ar — 9x> }

Po.a(EM)? 7=,
)
(=m,m]d
1
- m Z E(O,A),((),A) I:aT(t) (07 k:) aT’(t) (0, l) 15(0 15’(t):|
©.4) k,lezd
)
(—m,m]d
-
Peo,4)(E(2))?
x/ E0,4),0,4) | D ar €F(0,k) e > arwe 09 (0, 1)1 | dAa(0)
(=l kezd lezd
! =T(t)(1—a(e)) —T'(t)(1—a(e))
e E [ ( 1 1o ] .
Peo,4)(E(2))? /(_7r - ©,4),(0,4) O ey | dra(o)

(3.115)
Since af(-, -) is irreducible, a(¢) # 1 for all ¢ € (—, 7]%\{0}. Taking the limit ¢t — oo,
we find

lim E, WZbS%(o,A»(k,A))xkax — a0}, (3.116)
’ keZd
Similarly,
lim E, mzb@((o?mmk,m)yk—% =p({0}). (3.117)
) kezZa

7
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Hence
2

(1)
Jlim E, > bi (0, A), (k, Rie) 2(,ri) — 0
(k,Ri)EZIx{A,D}

. bV (0, 4), (k, A)) 0o
= o B [(P“’vf‘) (EW) kéd Poa(E®) FTI+K
. bV ((0, A), (k, D)) K6, \’
FRoMEW) 2, T sE@m) T TeR

(1) 2
(0,4, (k, 4)) 0. 1
tlirgo ]P)(O A) (E(t)) ]Eu (k%Z:d (0 A)( (f)) Tk — (1 I K) ]P(O,A) (5(t)))

‘ b ((0.4), (kD) Kb, 1 2
+ IP’(o,A) (&) E, (kg{i P, (E<(t)) Yk — 1+ K P, (&<(t))

K
= T A OD) + (o))
(3.118)
Hence, if A4({0}) =0 and Ap({0}) =0, then u € Rél). We will show that
Aa({0}) =0 and Ap({0}) =0 for u € T, "%
Let Ay = [0, N)¥ N Z%. By the L'-ergodic theorem, we have, for u € 7,"®,

2

] =0. .
Jim E, Z zj— 0, 0 (3.119)
]GAN

(For general G not that countable groups endowed with the discrete topology are
amenable. For amenable groups G, (Ax)nyeny must be replaced by a so-called Folner
sequence, i.e., a sequence of finite subsets of G that exhaust G and satisfy

N—o0

for any g € G [57]. ) Using the spectral measure, we can write

2
A By ( 2. )

JEAN
— lim — Z / RICRLIOR WA
2
N—>ooA X e e (3.121)
~ lim 1 3 i) (1 3 ei(/m»)) D
N—00 (—m,m]d AN fryye AN keAn
— a0}
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In the last equality we use dominated convergence and

(a) For all ¢ € (—, 7],

lim > e R = 1401(9). (3.122)

(b) For all § > 0 there exist ¢(NV,d) > 0 such that if J5 = (-9, ), then

LS i) 10 (6)] < 15,(0) + €N, 9), (3.123)

A
N JkEAN

where €(N,d) L 0 as N — oo.

We conclude that A4({0}) = 0. Similarly we can show that Ap({0}) = 0, and hence
(1)
HeER . O

Recall that (S;);>0 is the semigroup associated with (2.4)—(2.5)).

Lemma 3.2.8 (Preservation). If b(-,-) is transient and p € Rél), then the follow-
ing hold:

(a) uS; € ’Rél) for each t > 0.

(b) If tp, — o0 and uS;, — wu(oo0), then p(co) € Rél).

Proof. Our dynamics preserve translation invariance. To check property (1) of Rél)
(see (3.106))), set f(z) = 2(;,Rr,). Since p € Rél), applying Lemma multiple times,

we obtain
Jim By, [, (s)] = lim. > bV ((4, Ri), (K, Ri)) Epus, [2(k, ry)]
(k,Ri)€Gx {A,D}
=lim Y oG R, (b Re) Byl (1)
(k,Ri)€Gx {A,D}
- shﬁrgo Z b-(:izt ((Z’ Ri)’ (k/’ Rk')) EN [Z(k’7Rk/)]

(k',R!,)EGX{A,D}
= lim B[z (t+5)] = 0.
(3.124)
To check property (2) of Rél) (see (3.107)), we set f(2) = z(i r,)%(j,r,)- Lhen, again
by applying Lemma [3.2.1] we find
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Jim > bW (G, Ri), (k, Ri)) b (s Ry), (1, R1)) Bpus, (200, m) 20, 10)]
(k,Ri), (1, Ry)
eGx{A,D}

= glggo Z bgl) ((7" Ri)’ (k’ Rk)) bgl) ((]7 Rj)a (l’ Rl)) EM[Z(k,Rk)(t)Z(l,Rz)(t)]

(k,Ry),(L,Ry)
eGx{A,D}

= sll{go [ Z bg}i-)s((iaRi)a(k/7Rk’)) bg—li-)s((jv Rj)a(l/aRl’))
(k/7Rk/)v(l/7Rl’)
€eGx{A,D}

X B[z, r) 20 Ry

+ / dr 70 (G R, (K, A) Y, ((G Ry, (K A)) By ()] |-

k'eG
(3.125)
Since p € Rél), we are left to show that
t+s
lim [ du ];;b;”((z‘, Ri), (K, 4)) b (5. Ry). (K, A)) Eplg(ane (t + 5 — )] = 0.
S =
(3.126)
Using the notation of Section we get
t+s )
Slggo du Z bg ) ((Z, Ri)ﬂ (klv A)) b7(11) ((Ja Rj)v (klv A)) ]E# [g(mk’ (t +5— u))]
s k'eG
o (M) (M
< . - / C o /
<ol Jim [ du 3 00 (G R (K, 4)) 0 (G Ry, (0, )
s k'eG
t+s
= gl Sli{go/ du B ) Gk | Y arw (6 k) Leq) arrw (G, K) 15’(u)]
s k' eG
t+s
< gl Slggo/ du Eo.4),0,4) | Y @7 (i K) Lequy azr(uy (3, k) Leruy | =0,
s k' eG
(3.127)

where the last equality follows from the assumption I; < oo in Theorem
and . The last inequality follows from the Markov property and the observation
that, in order to get a contribution to the integral, the two random walks first have to
meet at the same site and both be active. We conclude that u.S; € Rél) for all t > 0.

To show that u(co) € R((,l), we proceed like in (3.124)), to obtain

lim B, o0)[26,r,)(5)] = lim lim E,s, [2¢,r,)(s)] = lim lim E,[z; g, (tn+s)] =0,

5—00 5—00 N—00 §—00 N—00
(3.128)

80



§3.2. Proofs: Long-time behaviour for Model 1

and so (3.106]) is satisfied. To get (3.107)), we note that, by Lemma
1. 1),
> bh) (6, o), (k Be)) b)) (. Ry), (1 R)) Bl 2.0

(k,Ry),(l,R;)eEGx{A,D}
< Bulz(i,r) (tn) 2(,r,) (tn)]

= Z b'gb) ((l’RZ)’(k’Rk)) bg,ll)((:% Rj)’ (Z7Rl)) EH[Z(k,Rk)Z(l,Rz)}
(k,Ri),(1,R1)€Gx{A,D}
+ ”9”/ ds b (G0, R, Ok, A)) 6L (G, R)), (, A))
keG
(3.129)

Letting n — oo, we see that, since p € Rél),

6% < B0 [2(6,70) 25, y)]

. 3.130
<ol [ ds 3 U0 (G R (6 ) O (G R, (). O
keG
Inserting (3.130)) into (3.107)), we see that it is enough to show that
i M ((; R MW ((;: R
Slggo Z bs ((ZvRi)v(kka)) bs ((J’Rj)a(lle))
(k,Ry),(L,R)eEGXx{A,D}
gl [ dr X b0k R, AD BO( R, (8 ) (3.131)
k'eG
= lim ||g||/ dr 700 (6 Re), (K, A) b (G, Ry). (K, A)) = 0.
k'eG
However, from the assumption I; < oo in Theorem [2.3.1] (3.60)) and (3.79), we have
i foll [ dr S b0, (6 R ' A0) B2, (G ), (' )
k'eG
= lim ||9||/ dr E; r,),i.R;) [Z ar) (i, K e@yar oy (G, K ey | =
k'eG
(3.132)
O

2. Uniqueness of the equilibrium. In this section we show that, for given 6, the
equilibrium when it exists is unique. To prove this we extend the coupling argument
n [14]. Consider two copies of the system (2.4)—(2.5) coupled via their Brownian
motions:

daf(t) = ali,j) [} (1) — 2§ (£)] dt + \/g(af (1)) dwi(t) + Ke [yf (t) — «F(t)] dt,

j€eG

dyf(t) = elaf () — yEO)dt, ke {1,2).
(3.133)
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Here, k labels the copy, and the two copies are driven by the same set of Brownian
motions (w;(t))¢>0, @ € G. As initial probability distributions we choose u'(0) and
#%(0) that are both invariant and ergodic under translations.

Let

Zi(t) = (2 (1), 27(1),  2(t) = (aF (). 47 (1), ke{1,2}. (3.134)

The coupled system (Z;(t));cc has a unique strong solution [67, Theorem 3.2] whose
marginals are the single—componen‘c systems. Write P to denote the law of the coupled
system, and let A;(t) = z}(t) — 22(t) and §;(t) = y} (t) — y2(2).

Lemma 3.2.9 (Coupling dynamics). For every t > 0,

&E[|A()|+K\5 **22 a(i, ) )|1{sgnA(t)¢sgnA(t)}]
JjeG
= 2KeE [(|A:i(®)] + 10:(t)]) Lisgn Ai () £ sgmsi(0)}] -

(3.135)

Proof. Let f(x) = |z|, € R. Then f’'(z) =sgnx and f’(z) =0 for x #£ 0, but [ is
not differentiable at x = 0, a point the path hits. Therefore, by a generalization of
1td’s formula, we have

d|A; ()] = sgn A;(t) dA;(t) + dLY,

dA(t) = > ali, /)[As(t) — As(t)] dt + [\/g(ff% \/g } dwi(t) (3.136)

Jj€G

+ Ke [6;(t) — Ay(1)] dt,

where LY is the local time of A;(t) at 0 (see [63] Section IV.43]). Next, we use that
A;(t) has zero local time at 2 = 0 because g is Lipschitz (see [63, Proposition V.39.3]).
Taking expectation, we get

LEIan) =Y ati, )& [sm A1) 123 (1)~ 2 (0] | + K e B [sgn (1) [8:(6) - As(1)]]-
jeG
(3.137)
Similarly, we have
d|5 (1) = sgn d;(t) do;(2),
do;(t) = e [A;(t) — &;(t)] dt. (3.138)
Taking expectation, we get
4 g5, )] = e & s (1) (A1) — 5,(0)]. (3.139)
Combining (3.137)) and (3.139)), we get
SR+ KI5.0)]) = 3 ali,5) & [sen 8,(0) [351) ~ A1)
J€G (3.140)

+Kel [[sgn Ai(t) — sgn 8 (8)] [0:(t) — Ai(t)]} .
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Note that
sgn Ay (1) [A; (1) — Ay(t)] = [A; ()] — [Ai ()] = 2[A; (8)] Lisgn as(t)sgn 2, 1)y (3.141)

By translation invariance, E[|A;(t)]] is independent of . Hence the first sum in the
right-hand side can be rewritten as

=23 a0, ) B[ A5 ()] Lisgn o,y ssn s, 00} (3.142)
j€G

Similarly, the second sum in the right-hand side can be rewritten as

—2Kelk [(|A2(t)| + ‘(51(15)‘) 1{sgnAi(t);£sgn571(t)}] . (3.143)
Combining (3.140)) and (3.142)—(3.143)), we get the claim. O

Lemma tells us that ¢ — E[|A;(t)| + K|6;(t)]] is a non-increasing Lyapunov
function. Therefore lim;_, E[|A;(t)| + K16;(¢)|]] = ¢; € [0,1 4+ K] exists. To show
that the coupling is successful we need the following lemma.

Lemma 3.2.10 (Uniqueness of equilibrium). If a(-,-) is transient, then ¢; = 0
for alli € G, and so the coupling is successful, i.e.,

Jim B[1A:0)] + K15:(1)]] = 0. (3.144)

Proof. Write —h;(t) to denote the right-hand side of (3.135). We begin with the
observation that ¢ — h;(¢) has the following properties:

(b) 0 < [T dthi(t) <1+ K.
(c) h; is differentiable with h] bounded.

Property (a) is evident. Property (b) follows from integration of (3.135)):
t
/O ds hi(s) = B[|A0)] + K15:(0)]] — E[|A(6)] + K15:(0)]]. (3.145)

The proof of Property (c) is given in Appendix It follows from (a)—(c) that
lim;_, h(t) = 0. Hence, for every € > 0,

Vi,j € G with a(i,j) > 0:
Jim I@’({Ai(t) <6, A > FU{A) > e, Aj(E) < —e}) —0,

. (3.146)
VieG:
lim I@’({Ai(t) < —6 6;(t) > e} U{A(t) > €, 6i(t) < —e}) =0.
In Appendix we will prove the following lemma:
Lemma 3.2.11 (Successful coupling ). For alli,j € G and ¢ > 0,
lim P({Ai(t) < —e, Aj(t) > F U{A() > €, Aj(t) < —e}) = 0. (3.147)

83

¢ YALJIVH)



CHAPTER 3

3. Spatial populations with seed-bank, proofs

The proof of this lemma relies on the fact that a(-,-) is irreducible. Let

By x Ey = {z €EX E: 2} () > 2% gy (1) ¥(6, Ri) € G x {A,D}}
o o (3.148)
U {2 €EXE: 2%, () = 2l oy (£) Y(i, Ri) € G x {A,D}} .

Then Lemma [3.2.11] together with (3.146) imply that lim,_, o P (Eg x Ep) = 1, which
we express by saying that “one diffusion lies on top of the other”.

Using Lemma [3.2.11] we can complete the proof of the successful coupling. Let
t, — 00 as n — oo and suppose, by possibly going to further subsequences, that

limy, o0 p'(tn) = v and lim, oo p?(t,) = vj. Let Uy be the measure on E x F

given by 7 = v} x v5. Using dominated convergence, invoking the preservation of

translation invariance, and using the limiting distribution of bgl)(-, ) on {A,D}, we
find

/ dvg |Ai] + K|d;]
ExXE

:(1+K)/ Ay lim bV ((i, Ry), (5, A)) |z} — 22|
Eogx Ey n—>ooj§; |: o ( )

+ 65 (6, R). (. D)) Ly = 2]

. _ 1 . .
= Jim (1+K) / dog| > b (LR, G R)) (my) = i)
Eox Eo jeGx{A,D}

< Jim (1K) [ arf| 3 WD (R G R) iy 0
n—o00 E )
JEGX{A,D}

+n1Ln;O(I+K)/dV§ Z bg)((i,Ri),(j,Rj)) Ziry — 0] =0
E i€GX{A,D}

(3.149
Here, the last equality follows because both 1/91 and 1/92 are in Rél) by Lemma
Thus, we see that 7y concentrates on the diagonal. Suppose now that there ex-

ists a sequence (tp)neny such that lim, oo E[|A;(¢,)| + K1d;:(t,)|]] = § > 0. Since
{L(Z(tn)) }nen is tight (recall (3.134))), by Prokhorov’s theorem there exists a con-
verging subsequence {L£(Z(t,,))}ken. Let 7 denote the limiting measure. Then, by

Lemma and ((3.149),

§ = lim E[|A;(tn, )] + K| (tn,)] :/ g [| ] + K16]] = 0. (3.150)
k—oc0 EXE

Thus, lim;_, o E[|A;(¢)|+K]d;(t)|] = 0, and we conclude that the coupling is successful.
Hence, given the initial average density 6 in (2.62)), the equilibrium measure is unique
if it exists. O

3. Stationarity of vy and convergence to vy.
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Lemma 3.2.12 (Existence of equilibrium). Let u(0) € 7,8, Then
lim; o p(t) = vg for some invariant measure vy.

Proof. To prove that the limit is an invariant measure, suppose that p(0) = u =
dp. Since the state space of (Z(t)):>0 is compact, each sequence {L£(Z(t))}nen is
tight. Hence, by Prokhorov’s theorem, there exists a converging subsequence such that
limy, 00 69.St, = vg. Since dp € Rél), Lemmatells us that lim,_, o 69S:, € Rgl).
To prove that vy is invariant, fix any so > 0. Let p = 69Ss,. Then, by Lemma
s Rél) and, by Lemma we can find a further subsequence such that
limy 00 f4(tn,, ) = vg. By the Feller property of the SSDE in 7, we obtain

vgSs, = nl;rrgo 09St, Sso = len;O 595505%% = len;O uStnk_ = 1. (3.151)

Hence, vy is indeed an invariant measure.

To prove the convergence of u(t) to vy, note that vy € R(gl) by Lemma m Let
v = vy. Then, by the invariance of vy, we have lim;_,, vS; = vy. By Lemma [3.2.10
we have limy_, oo puS; = limy_, oo Sy = vy for all p € Rél . O

4. Ergodicity, mixing and associatedness.

Lemma 3.2.13 (Properties of equilibrium). Let u(0) € Rél) be ergodic under
translations. Then vg = lim;_,o pu(t) is ergodic and mizing under translations, and is
associated.

Proof. After a standard approximation argument, [46, Corollary 1.5 and subsequent
discussion] implies that associatedness is preserved over time. Note that dg is an
associated measure and lies in Rél). Hence, by Lemma [3.2.12] vy = limy_, . §5.5; and

therefore vy is associated.

We prove the ergodicity of vy by showing that the random field of components is
mixing. To prove that vy is mixing, we use associatedness and decay of correlations.
Let B, B’ C G be finite, and let ¢;, d; be positive constants for j € B, i € B’. For
k € G, define the random variables

YO = Z CjZ(j’R].), Yk = Z diz(i+k7Ri+k). (3.152)
JEB i€B’

Note that Yy and Y}, are associated under v because (2(; r,))(i,r,)eGx{A,D} are asso-
ciated. Therefore, by [61, Eq.(2.2)], it follows that for s,t € R,

E,,[elYo+Y)] |, [5Y0) E,, [e®Y"]| < |st| Covy, (Yo, Yy). (3.153)
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Since p € R(l) by Lemma

Covy, (Yo, Y) Z Z c;jd; hm Cov“(z(j R) () 2(i4k,Risr) ()
jeBieB’

<llgll D" esds

jEBiEB’

< [Car b (G By (1 A) B (0 + k. o). (1, A)).

(L,Ry) GGX{A}

(3.154)
The last integral gives the expected total time for two partition elements in the dual,
starting in (j, R;) and (i + k, Ri4x), to be active at the same site. To show that this
integral converges to 0 as ||k|| — oo, we rewrite the sum as (recall (3.64)—(3.65))

E(itk,Risr). (i, Ry) KZ are) (J,1) ar ) (i + k, l)> Ler) 16'<r>]

leG

= E(itk,Risr),GiRy) [(Z aonry (i +k—3,) anery (U, 0)> Lery 15/(7:)]

I'eG

< E(ivk,Ritn), (. R)) KZ aoni(ry (i 4+ k = 3,1) [aay (1, 0) + aney (0, l')]) legr) 15'(r)]
I'eG
= Bk, Risn).GoRy) G200 (r)+2a() (0 + K — 5,001y L) -
(3.155)
Because a(-,-) is symmetric, we have Gonr(ry+2a(r) (@ + &k = 7,0) < aanr(r)+2a()(0,0).
Since

T)+T'(t) <2M(r)+2A(r) <2(T(t) +T'(t)), (3.156)
and the Fourier transform in (3.74)—(3.75) implies that
oo
/ ArE i Ri0),G.8y) [G200) 1280 (0,0)1e(r) Lo (] < 00, (3.157)
0

if and only if I; < co. Since we are in the transient regime, i.e., I; < 0o, we can use
dominated convergence, in combination with the fact that lim, o G¢(i4+k—35,0) =0
for all 4, 7, ¢, to conclude that limjj,— oo Cov,, (Yo, Yx) = 0. O

§3.2.4 Proof of the dichotomy

Theorem a) follows from Lemmas|3.2.7}|3.2.12)and [3.2.13} The equality |, [z0] =
E.,[yo] = 0 follows from the evolution equations in (2.4)—(2.5), the fact that vy is an

equilibrium measure, and the preservation of 6 (see (2.63))). Theorem [2.3.1|(b) follows
from Lemma B.2.5

§3.3 Proofs: Long-time behaviour for Model 2

In Sections [3.3.1H3.3.4] we show that the results proved in Sections [3.2.1H3.2.4] carry
over from model 1 to model 2. In Section we show that symmetry of a(-,-)
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is needed. In Section we show what happens when for infinite seed-bank the
fat-tailed wake-up time is modulated by a slowly varying function.

§3.3.1 Moment relations

Like in model 1, we start by relating the first and second moments of the system
in 7 to the random walk that evolves according to the transition kernel
b3 () on G x {A, (Dm)men, } given by (2-41). Also here these moment relations
hold for all g € G. Moreover these moment relations holds for p < oo as well as for
p = 0o. Below we write E, for Es_, the expectation when the process starts from the
initial measure §,, z € E.

Lemma 3.3.1 (First and second moment). Forz € E,t >0 and (i, R;), (j,R;) €
G x {A7 (Dm)mENo};

E.[2(;r0) (8)] = oo PG R, (ks BY) 20 m) (3.158)
(k,Ri)
EGX{A,(Dm)meng }

and
E.[2(,r,) (t)2(,Rr,)(t)]

= 3 b (i, Ry), (ky Bi)) 0 (s Ry), (L RY)) 200, me) 20.50)

k,Ry),(l,R
O (M Bureer) (3.159)

t/mZd (G R, (k, A)) b (G, Ry). (K, 4)) Ex[g(ae(s)))

keG
Proof. The proof follows from that of Lemma after we replace bV (-, -) by b2 (-, -)
and use (2.12))—(2.13]) instead of (2.4)—(2.5). O

Remark 3.3.2 (Density). From Lemma we obtain that if p is invariant under
translations with E,[z((0)] = 6, and E,,[y0.,(0)] = 0, for all m € Ny, then

Eulzary@®) =0 > 02 ((,Ri), (k, Ry)

(k,Rr)eGx{A}

o (3.160)
+ Z ey,m Z bt ((ZvRi)7(k7Rk))
meNy (k,Rk)EGX{Dm}
and
Epul2,r) () 2(,R;) (8)]
= > b7 (4, Ry), (ks Ri)) 07 (G, Ry)s (L Ra)) B [2h, me) 20, 10))
(k7Rk)7(laRl)
€GX{A,(Dm)meng }
s S0, 05 A0) 62 G ), (0 A) B
keG
(3.161)
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e For p < oo, the kernel b()(-,-) projected on the second component (= the
seed-bank) corresponds to recurrent Markov chain. Therefore, by translation
invariance in the first component, we have

On + 3 neny Kmbym
lim E i rH()] = S -
e ulz.r) (0] 1+ ZmENO K

= 0. (3.162)

e For p = oo, the kernel b?) (-, -) viewed as a kernel on {4, (D,,)men, } corresponds
to a null-recurrent Markov chain. Hence, for all (i, R;) and all D,,, m € Ny,

lim S 6 ((i, Ry), (k, D)) = 0. (3.163)
t—o0
keG
Since for p = co we assume not only that x4 € T,® but also that p is colour
regular, it follows that, for all M € Ny,

tli>Igo EM[Z(i,Ri) (t)] = tli>1£10 HLE Z b§2) ((la Ri)7 (k7 Rk}))
keG
+ Z ay»m Z b§2)((27R1)7(k7Rk))
meNy (k,Ri)EGX{Dy, }

o0

= lim 0y m > b\ ((i, Ry), (k, Ry,)).

t—o0
m=M (k,Rr)EGX{Dn}

(3.164)
Therefore

lim B, (2.5, (t)] = 6. (3.165)

t—o0

O

§3.3.2 The clustering case

In this section we prove convergence to a trivial equilibrium when p < co and I; = oo
and when p = oo and I; , = co. The proof follows along the same lines as in Section
3.2.2l Therefore we again first consider ¢ = dgrw, and subsequently use a duality
comparison argument to show that the results hold for g # dgpw as well.

Case g = dgrpw. We start by proving the equivalent of Lemma which is
Lemma [3.3.3] below.

Lemma 3.3.3 (Clustering). Suppose that 1(0) € T,™® and g = dgpw. Let p(t)
be the law at time t of the system defined in (2.12)—(2.13)). Then the following two

statements hold:
o If p< oo and Iz = oo, i.e., a(-,-) is recurrent, then

Hm p(t) = 0[5(1 100y]%F + (1 = 0) [6(0,0%0)] 2. (3.166)

t—o0
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o If p=o00 and I, = oo then

Hm p(t) = 6[5(1,19y] %€ + (1= 0) [0 0v] . (3.167)

t—o0

Proof. We distinguish between p < co and p = oo, which exhibit different behaviour.

Case p < co. The same dichotomy as for model 1 holds when the average wake-up
time is finite (recall (2.20)-(2.21)), ([2.50)). Indeed, the argument in (3.69)—(3.79) can
be copied with Ke,e replaced by x,x/p and A, B by x/(1 + p),1/(1 + p). Under
the symmetry assumption in we have a(¢) = 0. Hence only the law of large
numbers in is needed, not the central limit theorem in , which may fail

(see Section [3.3.5)).

Case p = co. When the average wake-up time is infinite, we need the assumptions
in (2.60) and (2.76]). By the standard law of large numbers for stable random variables
(see e.g. [34, Section XIII.6]), we have

k k
.1 1 . 1 . .
klirglo Z ;_1 op = X P-a.s., kl;rgo RV ;_1 7e =W  in P-probability, (3.168)

with W a stable law random variable on (0, 00) with exponent «. Therefore

.1 o Lo s
thj?o = N(t) = tlirglo =t N'(t)=W in P-probability,
lim T(t) = lim 1 T'(t) = Y i P-probability (3.169)
t—oo tY t—oo tY X ’
. _ . _ 1 _
tlgxolotl TP(E(L) = tlgxolotl TP(E () = i]E[W ], t — oo.

For the last statement to make sense, we must check the following.

Lemma 3.3.4 (Finite limits). E[W 7] < co.

Proof. Let Wy, = k=7 Zf:l 7. Then W, 7 < k(maxi<;<j 7; )~ ' and, since 7; are
i.i.d. random variables,

%) -1 %)
EW, "< [ daP(k(max ) >az|=[ dP(<b"  (3.170)
k 1<i<k * L~
0 s 0

To estimate the integral in the right-hand side of (3.170)), we introduce three constants,
T, Cq, Cy. Let € € (0,1) and choose T € R such that, for all ¢t > T,

[P(r > t)/(Ct )] — 1] < ¢ (3.171)

Since P(1 < t) = 1 — x7! > meng Kmeém e~ °n! we note that, under assumption
(2.76), T admits a continuous bounded density. Hence there exists a C; € Ry such
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that P(7 < t) < Cqt. Finally, choose Cy € Ry such that Cy > max(1,CY). Split
S & k/T &
/ dIP(T;<§) :/ deP’(T{Y<§)
0 0

k?Cz k o0 k
+/ P (i <)+ [ ap@<b)t
k/T kC2

(3.172)

We estimate each of the three integrals separately. For the first integral, we use the
estimate (1 — P(r] > %))* < exp[—kP(r] > %)] to obtain

[ <t = [ e [rr (2 )

k/T
< / doe—(1—o)Cx (3.173)
0

< 1
~ (1-eC”

For the second integral, we note that ¢t — ¢P(r{ > t) is a continuous function on

[C%, T1], and hence attains a minimum value C3 € Ry on [C%, T]. Therefore

kCo . kCo k
[, wrli<y) =] Cari-peyz )
R/T k)T

kCo k
< / dx exp [—x (IP’(T;’ > ’;))} (3.174)
k/T €

1
< —.
=5

For the third integral, we compute

0o 00 % 1/Cs ¥ ¥ %*1
/ dzP (7] < %)k S/ da (CTE)~ :/ dv & (Cv)7 = kclk <Cl> :
- - 0 TG (3.175)

. .

where in the first equality we substitute v = . Since Co > C7, we see that the
right-hand side tends to zero as k — co. Hence

1 1 Ok o\t
- < - - 1 71
E[W, ]—(1—6)(0/7)+C3+§1<02) ) (3.176)

2>

and by dominated convergence it follows that E[W 7] = limy_, o E[W, "] <oco. O

By (2.73), we have a(¢) = a(¢) and a(¢) = 0 in (3.66]), and so (3.74])) becomes,
with the help of (3.169)),

E(0,4),(0,4) KZ ar()(0,7) a1 (0, i)) Leq 15’(t)] = 7207 f (1), t — oo,
icC
(3.177)
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with (recall (3.68))
f(t) = ac~(0,0) (3.178)

for some ¢ € (0,00). Here we use that deviations of T'(t)/t” and T"'(¢t)/t” away from
order 1 are stretched exponentially costly in ¢ [31], and therefore are negligible. Since
t — a4(0,0) is regularly varying at infinity (recall (2.60)), it follows that

Ger(0,0) < a1 (0,0), ¢ — oo. (3.179)
Combining (3.63)) and (3.177)—(3.179), we get
I=x <<= I,=0 (3.180)

with I, = [ dtt=2(1=7) 4,,(0,0). Putting s = ¢7, we have

Ly = / ds s~ =/74,(0,0), (3.181)
1
which is precisely the integral defined in (2.80)). a

Case g # dgrw. To prove that the dichotomy criterion of Lemma [3.3.3] holds for
general g € G we need the equivalent of Lemma Replacing f by f
, replacing b by b in the proof of Lemma and using the moment
relations in Lemma |3.3.1]instead of the moment relations in Lemma [3.2.1] we see that
Lemma |3.3.3| also holds for g € G.

§3.3.3 The coexistence case

In this section we prove the coexistence results stated in Theorem Like for
model 1 the proofs hold for general ¢ € G and we need not distinguish between
g = dgrw and g # dgrw. For p < oo, the argument is given in Section [3:3.3] and
proceeds as in Section It is organised along the same 4 Steps as the argument
for model 1, plus an extra Step 5 that settles the statement in . For p = oo, the
argument is given in Section [3.3.3] and is also organised along 5 Steps, but structured
differently. In Step 1 we define a set of measures that is preserved under the evolution.
In Step 2 we use a coupling argument to show the existence of invariant measures. In
Step 3 we show that these invariant measures have vanishing covariances in the seed-
bank direction. In Step 4 we use the vanishing covariances to show uniqueness of the
invariant measure by coupling. Finally, in Step 5 we show that the unique equilibrium
measure is invariant, ergodic and mixing under translations, and is associated.

e Proof of coexistence for finite seed-bank

1. Properties of measures preserved under the evolution. For model 2 with
p < 00, the class of preserved measures is equivalent to R(gl) for model 1 and is now
defined as follows.

Definition 3.3.5 (Preserved class of measures). Let Réz) denote the set of meas-
ures p € T satisfying, for all (¢, R;), (j, Rj) € G x {A, (Dm)men, }
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(1)
A By [z gy ()] = 0, (3.182)
(2)
fm o ST b (R, (B Re) O (G Ry), (1 R)
k,Ri),(l,R
cax Al Dot} (3.183)

X B2, me) 20,00 = 0°-

O
Like for model 1, properties (1) and (2) of Definition hold if and only if
2
(2) —
tli{gloE Z bt ((OaA)7(kaRk))Z(k,Rk) -0 =0

(k’Rk)ﬂ(l’RZ)GGX{A7(D'm)"mEN0}
for some (i, R;) € G x {A, (D) men, }-

(3.184)

Also for model 2 with p < oo we have 7,"® C R((,l). To see why, note for all ¢ > 0 and
m € Ny, (z;(t))icc and (yim(t))icc still are stationary time series. Hence with the
help of the Herglotz theorem we can define spectral measures Aa, Ap,, for m € Ny

as in E Let (RWy)¢>0 be the random walk evolving according to b(z)( ).
Introduce the sets

£(t) = {at time ¢ the random walk is active},

. . : (3.185)
Em(t) = {at time ¢ the random walk is dormant with colour m}.
Note that
2
A B, [( > bi”((o,A),(k,Rk»zac,Rm—6) ]
(ks Rp)s (LR )EGX{A,(Dm)meng
2
b2 ((0, A), (k, A)) 1 6
< lim P4y (1) E g 2,35 - -
= tgglo (O,A)( ( )) Iz [(kez;d P(O,A)(g(t)) Tk P(O,A)(g(t)) T+p
2
b2 ((0, A), (k, (Dm)) 1 Ko
+ P g’m NE t ) 9 9 m Ve — mUy,m
mZ (0.4)(Em (1)) Ep [(Z P o) P P ) T
(3.186)

Hence we can use the same argument as in the proof of Lemma to show that
T CRY.

Also Lemma carries over after we replace b (-,-) by b@(.,-) and RS by
RE)Q), as defined in (3.3.5]).
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2. Uniqueness of the equilibrium. To prove uniqueness of the equilibrium for
given 0, we use a similar coupling as for model 1 in Section [3.2.3]in Step 3. Consider
two copies of the system in (2.12)—(2.13) coupled via their Brownian motions:

def(t) = > ali,j) [25(t) — 2F(®)] dt + \/g(2F (1)) dw;(t) (3.187)

JjeG
+ ) Knew [yF,,(0) — 2k (@) dt, (3.188)
meENg
dyf (1) = em [25(t) =yl (8)] dt, m € Ny, ke {1,2}. (3.189)

Here, k labels the copy, and the two copies are driven by the same Brownian motions
(w;(t))i>0, i € G. As initial measures we choose p'(0), u2(0) € T,.
Let

Z(t) = (2 (0), (1), 2(t) = (27 @), Wn®))men,), ke€{1,2}.  (3.190)

By [67, Theorem 3.2], the coupled system (Z;(t));ec has a unique strong solution
whose marginals are the single-component systems. Write P to denote the law of the
coupled system, and let A;(t) = z;(t) — z7(t) and 8; m(t) = yi , (t) — 7, (t), m € No.
The analogue of Lemma [3.2.9| reads:

Lemma 3.3.6 (Coupling dynamics p < c0). For everyt > 0,

O+ Y Kmldi(t)

m&ENp

:—22 Z] )|1{5gnA (t) #sgn Aj ()}]
jeG

=2 Knen B [(1800)] + 18im(0)) Lsgn as(6) £ sgn sim )] -
m&ENy

(3.191)

Proof. Note that the left-hand side of is well deﬁned because p < oco. The
proof of Lemma|3.3.6|carries over from that of Lemma after replacing (2.4 . .

by @212)-213).

The analogue of Lemma [3.2.10] reads as follows.

Lemma 3.3.7 (Successful coupling p < 00). If a(-,-) is transient, then the coup-
ling is successful, i.e.,

Jlim E[A®)]+ D Enldim®)] =0, VieG. (3.192)
m&ENy

Proof. This follows in the same way as in the proof of Lemma [3.2.10, by defining
—h;(t) as in the right-hand side of (3.191]). Using that the second line of (3.146) now

holds for &; (¢ ) and all m € Ny, we can finish the proof after replacing bgl)(~, -) in
(3-149) by b?(.,-) and summing over the seed-banks D,,, m € No. O
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3. Stationarity of the equilibrium vy and convergence to vy. Lemma|3.2.12
holds also for u € Ré,Q). This follows after replacing u € ’Rél) by € Rég) in the proof
of Lemma [3.2.12] using the equivalent of Lemma [3.2.8] and invoking Lemma [3.3.7
instead of Lemma [32.101

4. Ergodicity, mixing and associatedness. Also Lemma [3.2.13] holds, after
replacing b1 (-,-) by b3)(-,-). The proof even simplifies, since we can invoke the
symmetry of a(-,-) in (3.155]).

5. Variances under the equilibrium measure vy. If limsup,, ., em = 0, then

the claim in (2.87)) is a direct consequence of the proof of Lemma [3.3.10| for p = oo
R

If liminf,, o €, > 0, then the claim follows from the fact that u € ) and

Vary, (yo.m) = / as b2, ), (ks 4)) B2, ((0, D), (k, 4)) Elg(i(s))]
keG
(3.193)

Since e,, > 0 for all m € Ny and liminf,, .. e, > 0, there is a positive probability
that after the first steps the two random walks are both active at 0, i.e., are both in
state (0, A). Hence, for all m € Ny there exists a constant ¢ > 0 such that

Vary, (yo,m) > cVary, (o). (3.194)

Since vy is a non-trivial equilibrium, we have Var,,(zg) > 0.

e Proof of coexistence for infinite seed-bank

1. Properties of measures preserved under the evolution. For p = oo, the
class of preserved measures is also given by ’R((f) (recall Definition . We show
that if 4 € T, "® is colour regular, then y € R((,Q). Let the sets &, (t), t > 0, m € Ny, be

defined as in (3.185)), and define A4 and Ap,, analogously to (3.112)), like for p < oo.

The equivalent of (3.115|) is

2
L (2)
" (w%b <<0,A>a<k7A>>xkaz>

1

= o e Eo.4).0.4) |6 TO=00D 15 e~ T BN, T d) 4.
Pro,4)(£(1))? /[_m]d (0,4),(0 )[ ) (t)]

(3.195)
Using that T'(¢), T'(t) — oo as t — oo (see (3.169)), that T'(¢), T'(t), E(t), E'(t)

are asymptotically independent and that a(-,-) is irreducible, we still find

lim E,, (P Zb (ky Ay — 9$> =xa({0})  (3.196)
(0.4)(€

t—o0
kEG
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and, similarly,

2
1 (2)
Im E, || =——=—= ) b7(0,A4), (k,A)yk,m — 0y, = Ap,, ({0}).
Pargol (P(O,A)(gm(t)) ];G t (( ) ( ))ykm ym) D ({ })

(3.197)
Since p is ergodic, we have A4({0}) = 0 and Ap,, ({0}) = 0 for all m € Ny (recall
(3.121))). By the colour regularity,

Jlim 6,P 0,4 (€ + Y OymPo.a)(Em(t) = 0. (3.198)

meENy

Therefore we can rewrite (3.186)) as

lim E,

t—o0

2
[( b2 ((0, A), (k, Ri)) 2(k, ) — e) ]
(k,Rg),(1,R1) ECX{A, (D) meng }

(2) :
< lim P01 (E0)E, [( I o en) ]

kezd

(2) :
+ Z IP)((J,zél)(‘c/‘m(t))EM [( Z bt g2)7z)(7é:7(§§m)) (yk,m _eyml)) ]

meNp kezd
= tllglo P(()’A) (5( )\A {0} Z P @ A) ADm({o}) =0.
meNg

(3.199)
We conclude that indeed p € R,

Like for p < co, Lemma carries over after we replace b(!)(-,-) by b(®)(.,-) and
RO by D
g DY g -

2. Existence of invariant measures vy for p = oco. Since the dynamics for
p = oo and p < oo are the same, we can still use the coupling in 7 3.189).
Also Lemma holds for p = oo, but if p = co, then the left-hand side of(](]?):i.[)
can become infinite. Therefore we cannot use the line of argument used for model 1
to show that the coupling is successful for arbitrary colour regular initial measures
p, po € T8 However, we can prove the following lemma.

Lemma 3.3.8 (Successful coupling). If p1, pus € T,® are both colour regular and
satisfy

0)|+ Y Knl6:(0)]| < o0, (3.200)

m&ENy
then the coupling in (3.187)—(3.189)) is successful.

Proof. We proceed similarly as in Step 3 for p < co. Note, in particular, that h;(t)
(recall (8.191)) is bounded from above by E [|A;(0)] + 3, cn, Kml0i(0)]] (compare
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with (3.145))). Also for p = co we obtain Lemma|3.2.11] Like for model 1, if we define

Eo x Ey = {2 €E X E: 2} () = 23 5y (1) ¥(i, R;) € G x {4, (Dm)meNO}}

U {z €EX E: 2, 5y (t) 2 24 (1) ¥(i, Ry) € G x {4, (Dm)meNo}} :
(3.201)
then we find lim;_,o, P(Ey x Ey) = 1 and hence the coupled diffusions (Z*(t)):>0 and
(Z%(t))i>0 lay on top of each other as t — co. However, in the limiting distri-
bution of bgi) (,-) was used “to compensate” the factors K, in [A;|+> 2, o, Kml0im].
Since, for p = oo, bgi)(~, -) does not have a well-defined limiting distribution for the
projection on the colour components, we need a different strategy.

To obtain a successful coupling, as before, let (¢,)n,eny be a subsequence such
that v} = lim, . £(Z*(t,)) with £(Z(0)) = p!' and 13 = lim, 00 L(Z2%(t,)) with
L(Z%0)) = p%. For G = Z4, let Ay = [0, N)¥NZ% N € N. (As noted before, for
amenable groups G, (Ax)yen must be replaced by a so-called Folner sequence.) Note
that

E,; \AN\ Z T — Z Cov,a (@i, 7). (3.202)

JEAN i, JEAN

Since ! is colour regular and p' € 7,7, we have p! € Réz). Hence, by Lemma ,

Cov, (z,2;) = lim Covy (zi(tn), z;(tn))

n— oo

2) .
< 1im |lg| / as 30 (5, A), (k, AN BE (G A), (K, A))
keG
< HQH/ ds Y B a),0,4) [ar() (i k) Legs) ari() (4, k) Lero)]
keG
< HQH/O ds Eg;,4),(j,4) [ar(s)+77(5) (0 — 5,0) 1g(s) Ler(s)] -
(3.203)

Since I, < oo, we see that the last integral is finite. Since limj;;_;j|5o00 ae (i —
J,0) = 0 for all ¢ > 0, it follows by transience and dominated convergence that

limyj;— |00 Cov,z (2, ;) = 0. Since Cov, (xj,z;) <lforalli,jeG,foralle >0
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there exists an L € N such that

N By IAN\ 2w~ = N AE |AN|2 > Covyy(wi,zy)
JEAN 1,jEAN
_ngnoo |AN\2 Z Cov,i (@i, ;) Z Cov,i (@i, z;)
i,jEAN i,JEAN
lli=jll<L li—jlI>L
_ < . _
g LT €A li—GISIH L g€ Aw: =il > L} _
N—voo INVE N—o0 |An|?
(3.204)
We conclude that
2
Jim E,, j{: z; — =0, (3.205)

JGAN
and the same holds for v§. Let lim,, o, £(Z(t,)) = Dy such that lim,, ., £(Z'(t,)) =

vy and lim,, o £(Z2(t,)) = v3. Then by translation invariance of 7y and the fact
that 179(E0 X EQ) = 17 we find

dig|A; :/ dy, x;
»/EXE el ‘ FEo X Ey 0 Z |

jEA
. (3.206)
S/ du(, J; /dug— 2 —0].
|AN\ Z o |AN] jez/\:N J
Letting N — oo, we see by translation invariance of 7y that Eg, [|A;]] = 0 for all

i€ G.

The result in (3.205)) holds also for x; replaced by ¥; m, m € Ny, since the integral
in (3.203]) can only become smaller when we start from a dormant site. Replacing
|A;] in (3.206) by |0;.m|, we obtain, for all m € Ny,

By, [10ml] =0,  Vm € No. (3.207)
We conclude that the coupling is successful. O

Let (S;)¢>0 denote the semigroup associated with 7. To prove the
existence of an invariant measure, note that £ x F is a compact space. Hence, if
t, — oo, then the sequence pS; has a convergent subsequence. In Lemma m
below we show that each weak limit point of the sequence pS;, is invariant under the

evolution of (2.12)—(2.13).

Lemma 3.3.9 (Invariant measure). Suppose that p € Rff) and that 1 is colour
regular. If t, — oo and wS:, — vy, then vy is an invariant measure under the

evolution in (2.12])—(2.13).
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Proof. Fix s > 0. Let u; = p and ps = uSs. We couple uq and po via their Brownian

motions (see (3.187)—(3.189))). Note that, by the SSDE in (2.12)—(2.13)),

E

NOIESY Kmai,m(on]

m€ENy

=E lm(o) —zi(s)| + Y Kmltim(0) — yi,m(s)|]

meENy

=FE /0 ;}a(i,j) [z;(r) — x;(r)] dr +/0 g(z;(r)) dw;(r) (3.208)
+ /0 m%() Kpem [Yim(r) — xi(r)] dr
+ m%o Kom /0 |em [Yim(r) — zi(r)]] dr].

Using that all rates are finite and that, by Knight’s theorem (see [62, Theorem V.1.9
p.183]), we can write the Brownian integral as a time-transformed Brownian motion,
we see that E[|A;(0)| + > meny Kmldim(0)]] < oco. Hence, by Lemma we can
successfully couple p! and p?, and lim,, oo u2S;, = lim, oo uSsS;, = vp. By the
Feller property of the SSDE in 7, it follows that

vpSs = lim p(t,)Ss = lim pS;,Se = Um wuSsSt, = vp. (3.209)
n—oo n—oo n—r oo
We conclude that vy is indeed an invariant measure for the SSDE in (2.12)—(2.13). O

3. Invariant measures have vanishing covariances in the seed-bank direc-
tion for p = co. In this step we prove that an invariant measure vy has vanishing
variances in the seed-bank direction. In Step 5 we use this property to successfully
couple any two invariant measures.

Lemma 3.3.10 (Deterministic deep seed-banks). Ifvy = lim, o uSy, for some
colour regular | € R(;) and t, — 0o, then

lim Vary,[y;m] =0 VieG. (3.210)

Proof. Since vy is translation invariant, it is enough to show that lim,, _,~, Var,, [yo,m] =
0. Since p(0) € Rff), it follows from Lemma that

lim Var,, [yo.m]
m—r o0

= lim_ Tim By [(gom(tn) = Eulyo,m(tn)])’]

m—00 Nn—r0o0

= Jim_ i [ ds 3700, D), ADBE, - ((0, D, O, A))Bxlg ()]

m—00 N—00
keG

(3.211)
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Since g is positive and bounded, it is therefore enough to prove that

t

lim lim "dqu§>((o,Dm),(k,A))ng’)((o,Dm),(k,A)):o. (3.212)

m—oon—oo [
keG

Recall (see e.g. (3.203))) that IJELZ)((O,DM)7 (k, A)) bf)((O,Dm), (k, A)) is the probab-
ility that two random walks, denoted by RW and RW’ and moving according to
b(3)(.,.), are at time v at the same site k and both active. Define

7={t>0: RW(t) = RW'(t) = (i, A) for some i € G}. (3.213)

Then we can rewrite the left-hand side of (3.212)) as

tim tim [ du 6O (0, Do), (h, A) B2 (0, Do), (k. A))

m—oon—oo Jq
keG

tn
= lim lim dulE(o,p,,).(0,0:m) [Z Lrw (wy=k} Lrw' )=k} le(u) 15/(@]

m—oon—oo [q
keG

tn
= lim lim duE(0,0,,),(0,0m) [Z Lerw (wy=k} Lrw )=k} Le) Ler @

m—oon—oo [
keG

X (1{T<0(>} + 1{7—00}):|

m—»00 n— o0

= lim lim K, p,,),(0,0.m) [1{T<oo}

t7L
X E(0,D1),(0,D1m) [/ dud  Lirw(w=k Lirws =k} Lew Ler IEH
keG

M—00 N—>00

= lim lim ]E(O7Dm)»(0aD7n) |:1{T<°°}

tn—T
XK (0,4),0,4) [/ du 1{RW(u)k}l{Rw'm)k}16<u>1£'(u>H
0 keG

< lim lim E,p,,),(0,0,n) [1{T<oo}

m— 00 N— 00

xE(0,4),(0,4) {/ du > " Law =k} LRW" (w)=k) 1s(u>1£'<u)H
0 keG

= lim Pe,0,,),0,0) (T < 00) Loy,
(3.214)
where we use that I; , < oo, the strong Markov property, and the fact that for 7 = oo
the product of the indicators equals 0 for all u € R>o. Therefore holds if

rr%gnoo P(O,Dm),(O,Dm) (T < OO) =0. (3.215)
Define
7 =inf {t > 0: both RW and RW’ are active at time ¢}. (3.216)

99

¢ YALJIVH)



CHAPTER 3

3. Spatial populations with seed-bank, proofs

Note that 7* < 7. Theorefore we can write (recall that in model 2 the random walk
kernel a(-, ) is assumed to be symmetric),

Jim Po,p,.),(0.0,,) (T < 00)

- Tr}gnoo E(Ova)a(O:Dm) [1{T<OO}]

= Mm o p,),0.0,) [Lir<oo} Bo,0,)2 [Lir<oo} [ Fre]]

m—00
i RW (%), RW' (r*
= B0, 0.0 [E™ D (1<)
= Jim 3" Plo.p,0, 00, (BW() = (1 A), RV () = (1, 4))
k,leG

X Bk, 4),0.4) [Lir<oo)]
= lim > E(o.p,.),0,0m)a1(r) (0, k) a7y (0, 1) E0,a), (1. 4) [L{r<oc}]

m—00
k,leG

= lim > E0.00). 0.0 la1() (0, k) g (rey (=, 1= k) B0, a), 1=k, 4) [1{r<o0}]
k,leG

= 1im > E,0,),0,00) 1) (0, k) a7/ () (k)] Eq0,4),(7,4) [Lir<ooy]
k,jeG

= 1im > E0,0,),0,00) [@7(r) 47/ (0, )] E(o,4),.4) [Lir<oc]
Jj€G

= lim Y E(,0,.).0.0ma1r )47 () (0, )] E0,4),(.4) [1{r<o0]
jeG

m—r o0
Jje
II<c
+ mlgnoo Z E(O,Dm),(O,Dm) [CAlT(T*)JrT/(T*)(O,j)] E(O,A),(j,A) [1{T<OO}] .
HES?
(3.217)

To prove that the expression in the right-hand side tends to zero, we fix € > 0 and
prove that there exists an L € N such that both sums are smaller that 5.

Claim 1: There exists an L such that

. (3.218)

N

lim > E,p, e er (0,5 E,a),.4) Lir<so] <

m—00 -
JE€G,|l5lI>L
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Using the symmetry of the kernel a(-,-) in model 2, we find

E(0,4),(,4) [1{r<co}] = E(0,4),(5,4) /0 dsl{Teds}}

< E0,4),.4) /0 ds Z 15(8)15’(5)1{RW—k}1{RW’_k}]
keG

< Eo,4),(,4) /o ds Z ar(s)(0, k) arr(s)(J, k) Le(s) 15/(3)]
I keG

< E0,4),j,4) / ds ar(s)+ 1 (s) (j,U)le(s)lg'(s)] :
LJo
(3.219)
The last integral in the right-hand side is dominated by I, ., (recall (2.100)). Since,
for all t € R>,
lim a.(0,5) =0, (3.220)
3l —o00
it follows by dominated convergence that for each € > 0 we can find an L such that,
for all ||7]| > L,

E0,4),(,4) [L{r<oo}] < §- (3.221)

Hence, for L sufficiently large, we find

Jim > B,),0.00 @re 11 (0:)] [Bo.),6,4) [Lr<oo) ]
PEEATHIES?

_ | (3.222)
< "}lm 5 Z E(0,D,.),0, Do) @1y +17 (741 (0,7)] < 5.
JEG,|IFlI>L
Claim 2: For L given as in Claim 1,
. ~ . : €
lim > Eoplaree s (0, HEOD G 1 4] < 3 (3229
JEG,[IFIISL
For the first sum, note that
im > E0,.0,).0.0m lar 4700 (0,5 Eqo,4),(7,4) [1r<o0}]
jec
HES?
S'rr}i—rgloo 2 E(O,Dm),(O,Dm)[&T(T*)JrT’(T*)(O?j)] (3224)
HE?
= lim > Eo,4),0,0m 011104 (0, 4)],
JjEG
HES?

where in the last equality we condition on the first time one of the two random walks
wakes up, and use the strong Markov property. We will show that the right-hand side
tends to zero as m — oco. Recall that we assumed : em ~ Bm™8 for g > 0.
Note that, in order for the random walks to be both active at the same time, the
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random walk starting in (0, D,,) has to become active at least once. Hence, for all
t > 0, we have

mlgnoo ]P)(07Dm),(07A) (r"<t) < lim 1-— e emt = 0. (3.225)

m—r oo

By (3.169) and [31], we also have for the random walk starting in (0, A) that

lim T'(t) ~ ct”. (3.226)

t—o0

Fix € > 0. Since lim;_, o, G;(0,7) = 0 for all j € G, we can find a T* such that, for
all t > T*,

D a(0,4) < §. (3.227)
JEG
llill<L
By (3.226)), we can find a £ € R such that P _4)(T(¢) > T*) > 1 — £. By (3.225),
we can find an M € Ny such that for all m > M,

Jim Po.p,,),04) (7 <1) <§, (3.228)
and hence
dim Y Eo,a),0,00) a4 () (0,0)] < §+ 5+ § = 5. (3.229)
JEG
IIJ’HESL
O

4. Uniqueness of the invariant measure vy when p = cc.

Lemma 3.3.11 (Uniqueness of and convergence to vy.). Foralld € (0,1) there
exists a unique invariant measure vy such that lim;_, o u(t) = v for all colour regular

u(0) € T
Proof. Suppose that v} and v and are two different weak limit points of p(t,) as
t, — 00, and that p € R((f) is colour regular. Let (Z(t))¢>0 = (Z*(t), Z%(t))¢>0 be the

coupled process from (3.133)) with £(Z(0)) = vy, L(Z1(0)) = v} and L(Z2(0)) = v3.
Define the process Y by

Yl = (Yl(m))mG{fl}UNo b (3 230)
YH(=1) = (@ (0)ies,  Y'(m) = (4im(0))iec for m € No.
Thus, Y! has state space [0,1]¢ and £(Y?) = £(Z'(0)) = vi. We can interpret Y

as a process that describes the states of the population in the seed-bank direction.
Similarly, define the process Y2 by

Vi=(Y (m))me{—l}uNo’ (3.231)
Y2(71) - (xf(o))ZGGv Yz(m) = (yzm(o))ze([} for m € No.

Thus, Y2 has state space [0,1]¢ and £(Y?) = £(Z%(0)) = v2.
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§3.3. Proofs: Long-time behaviour for Model 2

Define the o-algebra’s B}, and B!, respectively, B3, and B? by
B* =NyenBiy,  Biy=o(yf,:i€G, m>M), ke{l,2} (3.232)

Here, B! and B? are the tail-o-algebras in the seed-bank direction. By Lemma [3.3.10

we have

i Ly (4im) = L, (yim) = by, (3.233)
Hence, B! = B2, both are trivial, and 1/5 and 1/92 agree on B. Therefore Gold-

stein’s Theorem [39] implies that there exists a successful coupling of Y! and Y?2.
Consequently, there exists a random variable T°°"P € {—1} U Ny such that, for all
m > T Y1(m) =Y?(m), ie., |6;,,m(0)] =0 for all i € G and P(T*"P < o0) = 1.
Hence

Teoup

12:0)[ + > Knldi(0)]] - (3.234)
m=0

E|12:0)+ Y Kmai(on] =k

m€ENy

However, we cannot conclude that the left-hand side of is finite. Therefore, let
Ug|preow <7y denote the restriction of the measure 7 to the set {T°°"P < T'}. Since
{T°"? < T} is a translation-invariant event in the spatial direction, the measure
Ug|rreow <1y is translation invariant. Moreover,

Do | (reoup <1

[A;(0)] + Z Km|6i(0)|]
meNy

(3.235)
— R,

6| {rcoup <1}

T
INOIESY Km|5i(0)|] < .
m=0

Therefore we can use the dynamics in (3.191)) and conclude that, for all T' € N,

Pog| reoup <y (Eo X Eg) = 1 (recall ) Since lim7 ;o0 Pg|{peoww<ry = g, it
follows that
Py, (Eo X Eg) =1. (3.236)
By (8.206) and (3.207)), we conclude that v} = v and hence that all weak limit
points of (u(t))¢>0 are the same. Suppose now that p!(0) € 7, and p2(0) € 7,7 are
two different colour regular initial measures. By the above argument, we know that
lim; oo ' (t) = v4 and limy— oo p2(t) = v3. By Lemma we know that v} and
v§ have the same trivial tail-o-algebras in the seed-bank direction. Hence, repeating
the above argument, we find that v} = 1/92 . We conclude that for each colour regular
initial measure p € 7, the SSDE in (2.12)—(2.13) converges to a unique non-trivial
equilibrium measure vy. O

5. Ergodicity, mixing and associatedness. The equivalent of Lemma [3.2.13|for
p = oo follows in the same way as for p < co.
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§3.3.4 Proof of the dichotomy

Theorem HI ) follows from Lemma and Steps 3-5 in Section [3.3.3] The
equality E,, [zo] = El,g [Yom] =6, m € No, follows from (2.12)—(2.13), the fact that
Vg is an equilibrium measure, and the preservation of 6 (see Section [2.3.2)). The-

orem [2.3.3|(I)(b) follows by combining Lemma|3.3.3[with the analogue of Lemma
Theorem [2.3.3{(IT) follows from Lemmas |3.3.3} [3.3.10} [3.3.11] the analogue of

Lemma and Step 6 in Section [3.3.3} The equality E,,[zo] = Ey,[yom] = 0,

m € Ny, follows from (3.165)) in Step 1 of Sectionm

Corollary 4)(1) corresponds to vy € (1,00) and p < oo, and migration dominates.
Corollary 2 ) corresponds to v € [4,1] and p = oo, and I; , shows in mterplay

between rmgratron and seed-bank. Corollary -(3 corresponds to v € (0, 1,1) and
p = 00, and the seed-bank dominates: I; , < oo because @(0,0) < 1.

9

§3.3.5 Different dichotomy for asymmetric migra-
tion

It remains to explain how the counterexample below Theorem [2.3.3] arises. We focus
on the case when p < oo, which implies E(7) < oo, but we assume E( %) = oo
Therefore the central limit theorem does not hold for T'(¢ ( ), T'(t), and A(t) > /M
Hence (3.75)) must be replaced by

1

f(t):W

/ dge[+eMI2Bt1-a(@)] g [cos (A(t)d(qﬁ))l : (3.237)
lfﬂ"ﬂld
The key observation is that if a( ) # 0 (due to the asymmetry of a(-, -); recall (3.66)),
then the expectation in can change the integrability propertles of f(¢t).
Under the assumption that 7 has a one-sided stable distribution with parameter
€ (1,2), we have with A = x/(1+ p) and B = 1/(1+ p), while there exists a
constant C' € (0, 00) such that (see [34, Chapter XVII])

E[cos(A(t)a(p))] = e~ Iro®lAtlCa@)” (3.238)

Substituting (3.238)) into (3.237)), we see that for large ¢ the contribution to f(¢) comes

from ¢ such that a(¢) — 1 and a(¢) — 0. By our choice of the migration kernel in
([2:90), this holds as ¢ = (¢1,$2) — (0,0). Using that 1 — a(¢) ~ (6% + ¢3) and
a(e) ~ 277(¢1 + ¢2) for (¢1, P2) — (0,0), we find that (3.237) equals
F(t) = (2717)2 / dp e~ IHoMIBHGHHDHANTOne oY 4 Ly o0 (3.230)
[—m,m]?

Hence the integral in (3.239) is determined by ¢ such that

B(6F + ¢3) + A[l5Cn(é1 + ¢2)]]” < (3.240)

Sl e

for ¢ a positive constant, and we find that f(t) <t~ (5+2). Since v € (1,2), f(¢)
is much smaller than a.(0,0) < 1/¢, valid for two-dimensional simple random walk.
Thus we see that t — f(¢) is integrable, while ¢ — G,(0, 0) is not.
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§3.3.6 Modulation of the law of the wake-up times
by a slowly varying function

The integral in (2.96) is the total hazard of coalescence of two dual lineages:

e If v € (0,1), then the probability for each of the lineages to be active at time s
decays like =< ¢(s)~ts~(1=7) [I]. Hence the expected total time they are active
up to time s is < ¢(s) ~1s7. Because the lineages only move when they are active,

the probability that the two lineages meet at time s is < afﬁ) (0,0). Hence

s)~1lsY
the total hazard is < [~ ds¢(s)~2s7201=7) afajzfs))_ls7 (0,0). After the trans-
formation t = t(s) = ¢(s)~1s?, we get the integral in (2.96)), modulo a constant.
(When carrying out this transformation, we need that lims_, s¢’(s)/p(s) =0,
which is immediate from (2.95), and ¢(¢(s))/¢(s) < 1 as s — oo, which
is immediate from the bound we imposed on ¥ together with the fact that

limg_, o0 log (s)/log s = 0.)

e If v = 1, then the probability for each of the lineages to be active at time s
decays like ¢(s)~! [1]. Hence the expected total time they are active up to time

sis < sp(s)~!. Hence the total hazard is < [~ ds (s) > af;(“),ls(o, 0). After
the transformation t = t(s) = @(s)~'s, we get the integral in (2.96]), modulo a
constant.

§3.4 Proofs: Long-time behaviour for Model 3

The arguments for model 2 in Section [3.3| all carry over with minor adaptations. The
only difference is that for p = oo the clustering criterion changes. In this section we
prove the new clustering criterion and comment on the modifications needed in the
corresponding proofs for model 2 in Section [3.3

§3.4.1 Moment relations

Like in model 1 and 2, we can relate the first and second moments of the system
in (2.18)—(2.19) to the random walk that evolves according to the transition kernel

b3 () on G x {A, (D) men, } given by ([2.53). Replacing in Lemma the kernel

b3 (-,-) by b®)(-, ), we find the moment relation for model 3. Also here these moment
relations hold for all g € G. Moreover these moment relations holds for p < oo as well
as for p = oo.

§3.4.2 The clustering case

To obtain the equivalent of Lemma we need to replace the kernel a(-,-) by the
convoluted kernel (a * a)(-,-). Each time one of the two copies of the random walk
with migration kernel a(-, -) moves from the active state to the dormant state, it makes
a transition according to the displacement kernel a'(-,-) (recall (2.97))). Therefore the
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expression in (3.60)) needs to be replaced by

I =

/ dt > > D Eou {“T(k 0(0,4) agr (i 1)(0,3") af (3, 5) @l (7, 5) Le oy 15/(1«,0}7

k,k'eNi,i'eG j€G
(3.241)
where dL(-, -) is the step-k transition kernel of the random walk with displacement
kernel a'(-,-). Using the symmetry of both kernels, we can carry out the sum over
7,1" and write

]:/ dt Z Z]E(O,A) [&T(k,t)JrT’(k’,t)(Oaj) &LM/(OJ) Le(k,t) 15/(1«,@]
0

k,k'eNj€G
:/0 dt » Eo.a [dT(t)JrT’(t)(Ovj) &;fv(t)+N/(t)(Oaj)1E(t) 15’(t):| (3.242)
jeG

= /O A Eqo,4) | (ars1 ) * v ) 0:0) Lew Lo |

The last expression is the analogue of ([3.63]).
For p < oo, following the same line of argument as for model 2, we find with the

help of (2.98) that

= /1 " dt (g + a1)(0,0). (3.243)

For p = oo, with the help of the Fourier transform we compute
T
Eo,4) [(ar()+7 () * @y nry) (0,0) ]

=E,4) [(21)(1/ dpe~TOFT OA-a(@)] gt (H)NO+N'(1)
e (3.244)

_ b / dip e~ 11+0(] 26477 [1=a(68)] o= [1-+0(1)] 26 [1-a"(9)]
(<

(2
= (e * a]_,)(0,0) = (- *al_,)(0,0),

where we use (2.98)), (3.169)) and the fact that deviations of T'(¢)/t” and T"(t)/t” away
from order 1 are stretched exponentially costly in ¢ [31]. Hence

(oo}
I= / At t720=") (a4 % @l )(0,0). (3.245)
1

Putting s = t” we obtain, instead of (3.180)),
I = (0. ¢] <~ I&*(ﬂ,'\/ =0 (3246)

with .
Tisat y = / ds s~/ (a4 % a1)(0,0), (3.247)
1

which is precisely the integral in (2.100)).
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§3.4.3 The coexistence case

The coexistence results in Theorem follow for both p < co and p = oo by the
same type of argument as the one we used for model 2 in Section [3.3.3] We replace
@212)-[2.13) by @.18)(2.19), replace b2 (-,-) (see by b®)(-,-) (see [2.53), and
use the Fourier transform of @ * a'(-,-) instead of a(-,-). The key of the argument is
that, in the coexistence case, for p < oo we have I;,5+ < 0o, while for p = co we have

I&*&T,'y < 0.

§3.4.4 Proof of the dichotomy

This follows in exactly the same way as for model 2.
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