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PART I

SPATIAL POPULATIONS WITH
SEED-BANK:

WELL-POSEDNESS, DUALITY
AND EQUILIBRIUM

This part is based on:

A. Greven, F. den Hollander, and M. Oomen. Spatial populations with seed-bank:

well-posedness, duality and equilibrium. Preprint, 2020
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CHAPTER 2
Spatial populations with seed-bank,

models and results

§2.1 Background and outline

§2.1.1 Background and goals

In populations with a seed-bank, individuals can become dormant and stop repro-

ducing themselves, until they can become active and start reproducing themselves

again. In [10] and [12], the evolution of a population evolving according to the Fisher-

Wright model with a seed-bank was studied. In this model individuals are subject to

resampling and can move in and out of a seed-bank. While in the seed-bank they sus-

pend resampling, i.e., the seed-bank acts as a repository for the genetic information

of the population. Individuals that do not reside in the seed-bank are called active,

those that do are called dormant. In the present paper we extend the single-colony

Fisher-Wright model with seed-bank introduced in [12] to a multi-colony setting in

which individuals live in different colonies and move between colonies. In other words,

we introduce spatialness.

Seed-banks are observed in many taxa, including plants, bacteria and other micro-

organisms. Typically, they arise as a response to unfavourable environmental condi-

tions. The dormant state of an individual is characterised by low metabolic activity

and interruption of phenotypic development (see e.g. Lennon and Jones [55]). After

a varying and possibly large number of generations, dormant individuals can be re-

suscitated under more favourable conditions and reprise reproduction after having

become active. This strategy is known to have important implications for population

persistence, maintenance of genetic variability and stability of ecosystems. It acts as

a buffer against evolutionary forces such as genetic drift, selection and environmental

variability. The importance of this evolutionary trait has led to several attempts to

model seed-banks from a mathematical perspective, see e.g. [50], [11], [40], [9]. In

[12] it was shown that the continuum model obtained by taking the large-colony-size

limit of the individual-based model with seed-bank is the Fisher-Wright diffusion with

seed-bank. Also the long-time behaviour and the genealogy of the continuum model

with seed-bank were analysed in [12].

In the present paper we consider a spatial version of the continuum model with

seed-bank, in which individuals live in colonies, each with their own seed-bank, and
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are allowed to migrate between colonies. Our goal is to understand the change in

behaviour compared to the spatial model without seed-bank. The latter has been the

object of intense study. A sample of relevant papers and overviews is [66], [17], [20],

[25], [22], [33], [29], [27], [24], [41]. We expect the presence of the seed-bank to affect

the long-time behaviour of the system not only quantitatively but also qualitatively.

To understand how this comes about, we must find ways to deal with the richer

behaviour of the population caused by the motion in and out of the seed-bank. Earlier

work on a spatial model with seed-bank, migration and mutation was carried out

in [28], where the probability to be identical by decent for two individuals drawn

randomly from two colonies was computed as a function of the distance between the

colonies.

It has been recognised that qualitatively different behaviour may occur when the

wake-up time in the seed-bank changes from having a thin tail to having a fat tail

[55]. One challenge in modelling seed-banks has been that fat tails destroy the Markov

property for the evolution of the system. A key idea of the present paper is that we

can enrich the seed-bank with internal states – which we call colours – to allow for fat

tails and still preserve the Markov property for the evolution. We will see that fat

tails induce new universality classes.

The main goals of the present paper are the following:

(1) Identify the typical features of the long-time behaviour of populations with a

seed-bank. In particular, prove convergence to equilibrium, and identify the

parameter regimes for clustering (= convergence towards locally mono-type

equilibria) and coexistence (= convergence towards locally multi-type equilib-

ria).

(2) Identify the role of finite versus infinite mean wake-up time. Identify the critical

dimension in case the geographic space is Zd, d ≥ 1, i.e., the dimension at which

the crossover between clustering and coexistence occurs for migration with finite

variance.

(2a) Show that if the wake-up time has finite mean, then the dichotomy between

coexistence and clustering is controlled by the migration only and the seed-

bank has no effect. In particular, clustering prevails when the symmetrised

migration kernel is recurrent while coexistence prevails when it is transient.

This is the classical dichotomy for populations without seed-bank [14]. The

critical dimension is d = 2.

(2b) Show that if the wake-up time has infinite mean with moderately fat tails,

then the dichotomy is controlled by both the migration and the seed-bank.

In particular, the parameter regimes for clustering and coexistence reveal

an interesting interplay between rates for migration and rates for exchange

with the seed-bank. The critical dimension is 1 < d < 2.

(2c) Show that if the wake-up time has infinite mean with very fat tails, then

the dichotomy is controlled by the seed-bank only and the migration has

no effect. The critical dimension is d = 1.
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We focus on the situation where the individuals can be of two types. The exten-

sion to infinitely many types, called the Fleming-Viot measure-valued diffusion, only

requires standard adaptations and will not be considered here (see [25]). Also, in-

stead of Fisher-Wright resampling we will allow for state-dependent resampling, i.e.,

the rate of resampling in a colony depends on the fractions of the two types in that

colony. In what follows we only work with continuum models, in which the com-

ponents represent type frequencies in the colonies labelled by a discrete geographic

space.

The techniques of proof that we use include duality, moment relations, semigroup

comparisons and coupling. These techniques are standard, but have to be adapted to

the fact that individuals move into and out of seed-banks. Since there is no resampling

and no migration in the seed-bank, the motion of ancestral lineages in the dual process

looses part of the random-walk structure that is crucial in models without seed-bank.

Moreover, for seed-banks with infinite mean wake-up times, we encounter fat-tailed

wake-up time distributions in the dual process, and we need to deal with lineages

that are dormant most of the time and therefore are much slower to coalesce. The

coupling arguments also change. Already in a single colony, if the seed-bank has

infinitely many internal states, then we are dealing with an infinite system in which

the manipulation of Lyapunov functions and the construction of successful couplings

from general classes of initial states is hard. In the multi-colony setting this becomes

even harder, and conceptually challenging issues arise.

§2.1.2 Outline

In Section 2.2 we introduce three models of increasing generality, establish their well-

posedness via a martingale problem, and introduce their dual processes, which play

a crucial role in the analysis. In Section 2.3 we state our main results. We focus on

the long-time behaviour, prove convergence to equilibrium, and establish a dichotomy

between clustering and coexistence. We show that this dichotomy is affected by the

presence of the seed-bank, namely, the dichotomy depends not only on the migration

rates, but can also depend on the relative sizes of the active and the dormant popu-

lation and their rates of exchange. In particular, if the dormant population is much

larger than the active population, then the residence time in the seed-bank has a fat

tail that enhances genetic diversity significantly.

Sections 3.1–3.4 are devoted to the proofs of the theorems stated in Sections 2.2–

2.3. In Appendix A.1 we give the derivation of the single-colony continuummodel from

the single-colony individual-based Fisher-Wright model in the large-colony-size limit.

In the individual-based model active individuals exchange with dormant individuals,

i.e., for each active individual that becomes dormant a dormant individual becomes

active. In Appendix A.2 we look at the continuum limit of the single-colony individual-

based Moran model in which active and dormant individuals no longer exchange state

but rather change state independently. We show that change instead of exchange

does not affect the long-time behaviour. Appendices A.3 and A.4 contain the proof

of technical lemmas that are needed in the proof of the convergence to equilibrium.

In three companion papers we deal with three further aspects:
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(I) In [44] we establish the finite-systems scheme, i.e., we identify in the coexistence

regime how a finite truncation of the system behaves as both the time and

the truncation level tend to infinity, properly tuned together. This underlines

the relevance of systems with an infinite geographic space and a seed-bank

with infinitely many colours for the description of systems with a large finite

geographic space and a seed-bank with a large finite number of colours. We

show that there is a single universality class for the scaling limit, represented

by a Fisher-Wright diffusion whose volatility constant is reduced by the seed-

bank. We show that if the wake-up time has finite mean, then the scaling time

is proportional to the geographical volume of the system, while if the wake-up

time has infinite mean, then the scaling time grows faster than the geographical

volume of the system. We also investigate what happens for systems with a large

finite geographic space and a seed-bank with infinitely many colours, where the

behaviour turns out to be different.

(II) In [45] we consider the special case where the colonies are organised in a hier-

archical fashion, i.e., the geographic space is the hierarchical group ΩN of order

N . We identify the parameter regime for clustering for all N < ∞, and ana-

lyse the multi-scale behaviour of the system in the hierarchical mean-field limit

N → ∞ by looking at block averages on successive hierarchical space-time

scales. Playing with the migration kernel, we can choose the migration to be

close to critically recurrent in the sense of potential theory. By letting N → ∞
we can approach the critical dimension, so that the migration becomes similar

to migration on the two-dimensional Euclidean geographic space. With the help

of renormalisation arguments we show that, close to the critical dimension, the

scaling behaviour on large space-time scales is universal.

(III) Our goal for the fourth paper is to identify the pattern of cluster formation in

the clustering regime (= how fast mono-type clusters grow in time) and describe

the genealogy of the population. The latter provides further insight into how

the seed-bank enhances genetic diversity.

In these papers too we will see that the seed-bank can cause not only quantitative

but also qualitative changes in the scaling behaviour of the system.

§2.2 Introduction of the three models and their ba-
sic properties

In Section 2.2.1 we give a formal definition of the three models of increasing gener-

ality. In Section 2.2.2 we comment on their biological significance. In Section 2.2.3

we establish their well-posedness via a martingale problem (Theorem 2.2.4). In Sec-

tion 2.2.4 we introduce the associated dual processes and state the relevant duality

relations (Theorems 2.2.5, 2.2.8 and 2.2.10). In Section 2.2.5 we use these duality

relations to formulate a criterion for clustering versus coexistence (Theorems 2.2.11

and 2.2.13).
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§2.2.1 Migration, resampling and seed-bank: three
models

In this section we extend the model for a population with seed-bank from [12] to three

models of increasing generality for spatial populations with seed-bank. In each of the

three models, we consider populations of individuals of two types – either ♡ or ♢ –

located in a geographic space G that is a countable Abelian group endowed with the

discrete topology. In each of the three models, the population in a colony consist of an

active part and a dormant part. The repository of the dormant population at colony

i ∈ G is called the seed-bank at i ∈ G. Individuals in the active part of a colony

i ∈ G can resample, migrate and exchange with a dormant population. Individuals

in the dormant part of a colony i ∈ G only exchange with the active population.

An active individual that resamples chooses uniformly at random another individual

from its colony and adopts its type. (Alternatively, resampling may be viewed as the

active individual being replaced by a copy of the active individual chosen. Because

individuals carry a type and not a label, this gives the same model.) When an active

individual at colony i ∈ Gmigrates, it chooses a parent from another colony j ∈ G and

adopts its type. In each of the three models the migration is described by a migration

kernel a(·, ·), which is an irreducible G×G matrix of transition rates satisfying

a(i, j) = a(0, j − i) ∀ i, j ∈ G,
∑
i∈G

a(0, i) <∞. (2.1)

Here, a(i, j) is to be interpreted as the rate at which an active individual at colony

i ∈ G chooses a parent in the active part of colony j ∈ G and adopts its type. An

active individual that becomes dormant exchanges with a randomly chosen dormant

individual that becomes active. The three models we discuss in the present paper differ

in the way the active population exchanges with the dormant population. However,

in each of the three models the exchange mechanism guarantees that the sizes of the

active and the dormant population stay fixed over time. The dormant part of the

population only evolves due to exchange of individuals with the active part of the

population.

Since we look at continuum models obtained from individual-based models, we

are interested in the frequencies of type ♡ in the different colonies. In Appendix A.1

we discuss the individual-based models underlying the continuum models described

below.

Remark 2.2.1 (Notation). Throughout the paper we use lower case letters for

components and upper case letters for systems of components. ■

Model 1: single-layer seed-bank. Each colony i ∈ G has an active part A and

a dormant part D. Therefore we say that the effective geographic space is given by

G×{A,D}. For i ∈ G and t ≥ 0, let xi(t) denote the fraction of individuals in colony

i of type ♡ that are active at time t, and yi(t) the fraction of individuals in colony i

of type ♡ that are dormant at time t. Then the system is described by the process

(Z(t))t≥0, Z(t) =
(
zi(t)

)
i∈G, zi(t) = (xi(t), yi(t)), (2.2)
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on the state space

E = ([0, 1]× [0, 1])
G
, (2.3)

and (Z(t))t≥0 evolves according to the following SSDE:

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.4)

+Ke [yi(t)− xi(t)] dt,

dyi(t) = e [xi(t)− yi(t)] dt, i ∈ G, (2.5)

where (wi(t))t≥0, i ∈ G, are independent standard Brownian motions. As initial state

Z(0) = z we may pick any z ∈ E. The first term in (2.4) describes the migration of

active individuals at rate a(i, j). The second term in (2.4) describes the resampling

of individuals at rate d ∈ (0,∞). The third term in (2.4) together with the term in

(2.5) describe the exchange of active and dormant individuals at rate e ∈ (0,∞).

A D

exchange

resampling

migration

Ke

e

d

Figure 2.1: The evolution in model 1. Individuals are subject to migration, resampling and
exchange with the seed-bank.

The factor K ∈ (0,∞) is defined by

K =
size dormant population

size active population
, (2.6)

and is the same for all colonies i ∈ G. The factor K turns up in the scaling limit

of the individual-based model when there is an asymmetry between the sizes of the

active and the dormant population (see Appendix A.1). In Fig. 2.1 we give a schem-

atic illustration of the process (2.4)–(2.5). A detailed description of the underlying

individual-based model, as well as a derivation of the continuum limit (2.4)–(2.5)

from the individual-based model following [12], can be found in Appendix A.1. The

continuum limit is also referred to as the frequency limit or the diffusion limit.
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Remark 2.2.2 (Interpretation of the state space.). Note that the state space

of the system can also be written as

E = [0, 1]S, S = G× {A,D}, (2.7)

where A denotes the reservoir of the active population and D the repository of the

dormant population. With that interpretation, the process is denoted by

(Z(t))t≥0, Z(t) =
(
zu(t)

)
u∈S (2.8)

with zu(t) = xi(t) if u = (i, A) and zu(t) = yi(t) if u = (i,D). To analyse the system

we need both interpretations of the state space. ■

A

D0

D1

Dm

exchange

resampling

K0e0

e0
K1e1

e1

Kmem

em

dmigration

Figure 2.2: The evolution in model 2. Individuals are subject to migration, resampling and
exchange with the seed-bank, as in model 1. Additionally, when individuals become dormant
they get a colour and when they become active they loose their colour.

Model 2: multi-layer seed-bank. In this model we give the seed-bank an internal

structure by colouring the dormant individuals with countably many colours m ∈
N0. Active individuals that become dormant are assigned a colour m that is drawn

randomly from an infinite sequence of colours labeled by N0 (see Fig. 2.2 for an

illustration). As will be explained in Section 2.2.2, this captures the different ways

in which individuals can enter into the seed-bank. In Section 2.2.4 we will show how

this internal structure allows for fat tails in the wake-up times of individuals while

preserving the Markov property.

For each i ∈ G a colony now consists of an active part A and a whole sequence

(Dm)m∈N0 of dormant parts, labeled by their colour m ∈ N0. Therefore in this model

the effective geographic space is given by G× {A, (Dm)m∈N0}.
As before, for i ∈ G, let xi(t) denote the fraction of individuals in colony i of type

♡ that are active at time t, but now let yi,m(t) denote the fraction of individuals in
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colony i of type ♡ that are dormant with colour m at time t. Then the system is

described by the process

(Z(t))t≥0, Z(t) =
(
zi(t)

)
i∈G, zi(t) = (xi(t), (yi,m(t))m∈N0), (2.9)

on the state space

E = ([0, 1]× [0, 1]N0)G. (2.10)

Suppose that active individuals exchange with dormant individuals with colour m at

rate em ∈ (0,∞), and let the factor Km ∈ (0,∞) capture the asymmetry between

the size of the active population and the m-dormant population, i.e., similarly as in

(2.6),

Km =
size m-dormant population

size active population
, m ∈ N0, (2.11)

where Km ∈ (0,∞) is the same for all colonies. Then the process (Z(t))t≥0 evolves

according to the SSDE

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.12)

+
∑
m∈N0

Kmem [yi,m(t)− xi(t)] dt,

dyi,m(t) = em [xi(t)− yi,m(t)] dt, m ∈ N0, i ∈ G, (2.13)

where we have to assume that ∑
m∈N0

Kmem <∞, (2.14)

since otherwise active individuals become dormant instantly. Comparing (2.12)–(2.13)

with the SSDE of model 1 in (2.4)–(2.5), we see that active individuals migrate (the

first term in (2.12)), resample (the second term in (2.12)), but now interact with a

whole sequence of dormant populations (the third term in (2.12) and the term in

(2.13)). As initial state Z(0) = z we may again take any z ∈ E.

Remark 2.2.3 (Interpretation of the state space.). Note that, like in Remark

2.2.2, the state space of the system can also be written as

E = [0, 1]S, S = G× {A, (Dm)m∈N0
}. (2.15)

With this interpretation, the process is denoted by

(Z(t))t≥0, Z(t) =
(
zu(t)

)
u∈S, (2.16)

with zu(t) = xi(t) if u = (i, A) and zu(t) = yi,m(t) if u = (i,Dm) for m ∈ N0. ■
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Model 3: multi-layer seed-bank with displaced seeds. We can extend the

mechanism of model 2 by allowing active individuals that become dormant to do so

in a randomly chosen colony. This amounts to introducing a sequence of irreducible

displacement kernels am(·, ·), m ∈ N0, satisfying

am(i, j) = am(0, j − i) ∀ i, j ∈ G,
∑
i∈G

am(0, i) = 1 ∀m ∈ N0, (2.17)

and replacing (2.12)–(2.13) by

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.18)

+
∑
j∈G

∑
m∈N0

Kmem am(j, i) [yj,m(t)− xi(t)] dt,

dyi,m(t) =
∑
j∈G

em am(i, j) [xj(t)− yi,m(t)] dt, m ∈ N0, i ∈ G. (2.19)

Here, the third term in (2.18) together with the term in (2.19) describe the switch

of colony when individuals exchange between active and dormant. Namely, with

probability am(i, j) simultaneously an active individual in colony i becomes dormant

with colour m in colony j and a randomly chosen dormant individual with colour m

in colony j becomes active in colony i. The state space E is the same as in (2.10).

Also (2.9), (2.11), (2.14) and (2.16) remain the same.

Two key quantities. In models 2 and 3 we must assume that

χ =
∑
m∈N0

Kmem <∞ (2.20)

in order to make sure that active individuals do not become dormant instantly. Define

ρ =
∑
m∈N0

Km =
size dormant population

size active population
. (2.21)

It turns out that ρ and χ are two key quantities of our system. In particular, we will

see that the long-time behaviour of model 2 and model 3 is different for ρ < ∞ and

ρ = ∞.

§2.2.2 Comments

(1) Models 1–3 are increasingly more general. Model 2 is the special case of model

3 when am(0, 0) = 1 for all m ∈ N0, while model 1 is the special case of model

2 when e0 = e, K0 = K and em = Km = 0 for all m ∈ N. Nonetheless, in what

follows we prefer to state our main theorems for each model separately, in order

to exhibit the increasing level of complexity. In Appendix A.1 we explain how

(2.4)–(2.5), (2.12)–(2.13) and (2.18)–(2.19) arise as the large-colony-size limit

of individual-based Fisher-Wright models.
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(2) As geographic space G we allow any countable Abelian group endowed with the

discrete topology. Key examples are the Euclidean lattice G = Zd, d ∈ N, and
the hierarchical lattice G = ΩN , N ∈ N. In this paper we will focus G = Zd.
The case G = ΩN will be considered in more detail in [45].

(3) In model 1, each colony has a seed-bank that serves as a repository for the

genetic information (type ♡ or ♢) carried by the individuals. Because the active

and the dormant population exchange individuals, the genetic information can

be temporarily stored in the seed-bank and thereby be withdrawn from the

resampling. We may think of dormant individuals as seeds that drop into the

soil and preserve their type until they come to the surface again and grow into

a plant.

In model 2, the seed-bank is a repository for seeds with one of infinitely many

colours. The colours provide us with a tool to model different distributions for

the time an individual stays dormant without loosing the Markov property for

the evolution of the system. Tuning the parameters Km and em properly and

subsequently forgetting about the colours, we can mimic different distributions

for the time an individual stays dormant. This is of biological significance,

especially in colonies of bacteria, where individuals stay dormant for random

times whose distribution is fat-tailed (see [55]).

In model 3, the seed may even be blown elsewhere. Individuals that displace

before becoming dormant are observed in plant-species as well as in bacteria

populations (see [55]).

(4) In Appendix A.2 we comment on what happens when the rates to become active

or dormant are decoupled, i.e., individuals are no longer subject to exchange

but move in and out of the seed-bank independently. This leads to a Moran

model where the sizes of the active and the dormant population can fluctuate.

We will show that, modulo a change of variables and a short transient period in

which the sizes of the active and the dormant population establish equilibrium,

this model has the same behaviour as the model with exchange.

(5) In (2.4), (2.12) and (2.18) we may replace the diffusion functions dgFW, d ∈
(0,∞), where

gFW(x) = x(1− x), x ∈ [0, 1], (2.22)

is the Fisher-Wright diffusion function, by a general diffusion function in the

class G defined by

G =
{
g : [0, 1] → [0,∞) : g(0) = g(1) = 0, g(x) > 0 ∀x ∈ (0, 1), g Lipschitz

}
.

(2.23)

This class is appropriate because a diffusion with a diffusion function g ∈ G
stays confined to [0, 1], yet can go everywhere in [0,1] (Breiman [13, Chapter

16, Section 7]). Picking g ̸= gFW amounts to allowing the resampling rate

to be state-dependent, i.e., the resampling rate in state x equals g(x)/x(1− x),

x ∈ (0, 1). An example is the Kimura-Ohta diffusion function g(x) = [x(1−x)]2,
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x ∈ [0, 1], for which the resampling rate is equal to the genetic diversity of the

colony. In the sequel we allow for general diffusion functions g ∈ G in all three

models, unless stated otherwise.

§2.2.3 Well-posedness

For every law on E, with E depending on the choice of model, we want the SSDE for

models 1, 2 and 3 to define a Borel Markov process, i.e., the law of the path is a Borel

measurable function of the initial state for every starting point in the state space [17,

p.62]. We use a martingale problem, in the sense of [32, p.173], to characterize the

SSDE. Let

F =
{
f ∈ Cb(E,R) : f depends on finitely many components

and is twice continuously differentiable in each component
}
.

(2.24)

The generator G of the process acting on F reads for model 1 ((2.4)–(2.5)),

G =
∑
i∈G

([∑
j∈G

a(i, j)(xj − xi)

]
∂

∂xi
+

1

2
g(xi)

∂2

∂x2i

+Ke (yi − xi)
∂

∂xi
+ e (xi − yi)

∂

∂yi

)
,

(2.25)

for model 2 ((2.12)–(2.13)),

G =
∑
i∈G

([∑
j∈G

a(i, j)(xj − xi)

]
∂

∂xi
+

1

2
g(xi)

∂2

∂x2i

+
∑
m∈N0

[
Kmem (yi,m − xi)

∂

∂xi
+ em (xi − yi,m)

∂

∂yi,m

])
,

(2.26)

while for model 3 ((2.18)–(2.19)) the last term in the right-hand side of (2.26) is to

be replaced by

∑
i,j∈G

∑
m∈N0

[
Kmem am(j, i) (yj,m − xi)

∂

∂xi
+ em am(i, j) (xj − yi,m)

∂

∂yi,m

]
. (2.27)

Theorem 2.2.4 (Well-posedness: models 1–3). For each of the three models the

following holds:

(a) The SSDE has a unique strong solution in C([0,∞), E). Its law is the unique

solution of the (G,F , δu)-martingale problem for all u ∈ E.

(b) The process starting in u ∈ E is Feller and strong Markov. Consequently, the

SSDE defines a unique Borel Markov process starting from any initial law on E.
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coalescence
migration

Ke e

dormant

active

Figure 2.3: Transition scheme for an ancestral lineage in the dual, which moves according
to the transition kernel b(·, ·) in (2.31). Two active ancestral lineages that are at the same
colony coalesce at rate d.

§2.2.4 Duality

For g = dgFW the three models have a tractable dual, which will be seen to play

a crucial role in the analysis of their long-time behaviour. For g ̸= dgFW the three

models do not have a tractable dual. However, we compare them with models that

do and determine their long-time behaviour. In [12, Sections 2.2 and 3] it was shown

that the non-spatial Fisher-Wright diffusion with seed-bank is dual to the so-called

block-counting process of a seed-bank coalescent. The latter describes the evolution

of the number of partition elements in a partition of n ∈ N individuals, sampled from

the current population, into subgroups of individuals with the same ancestor (i.e.,

individuals that are identical by descent). The enriched dual generates the ancestral

lineages of the individuals evolving according to a Fisher-Wright diffusion with seed-

bank, i.e., generates their full genealogy. The corresponding block-counting process

counts the number of ancestral lineages left when traveling backwards in time. In this

section we will extend the duality results in [12] to the spatial setting.

t

Figure 2.4: Picture of the evolution of lineages in the spatial coalescent. The purple blocks
depict the colonies, the blue lines the active lineages, and the red lines the dormant lineages.
Blue lineages can migrate and become dormant, (i.e., become red lineages). Two blue lineages
can coalesce when they are at the same colony. Red dormant lineages first have to become
active (blue) before they can coalesce with other blue and active lineages or migrate. Note
that the dual runs backwards in time. The collection of all lineages determines the genealogy
of the system.

Model 1. Recall that for model 1, S = G×{A,D} is the effective geographic space.

For n ∈ N the state space of the n-spatial seed-bank coalescent is the set of partitions

of {1, . . . , n}, where the partition elements are marked with a position vector giving

38



§2.2. Introduction of the three models and their basic properties

C
h
a
p
t
e
r
2

their location. A state is written as π, where

π = ((π1, η1), . . . , (πn̄, ηn̄)), n̄ = |π|,
πℓ ⊂ {1, . . . , n}, {π1, · · ·πn̄} is a partition of {1, . . . , n},
ηℓ ∈ S, ℓ ∈ {1, . . . , n̄}, 1 ≤ n̄ ≤ n.

(2.28)

A marked partition element (πℓ, ηℓ) is called active if ηℓ = (j, A) and called dormant

if ηℓ = (j,D) for some j ∈ G. The n-spatial seed-bank coalescent is denoted by

(C(n)(t))t⩾0, (2.29)

and starts from

C(n)(0) = π(0), π(0) = {({1}, ηℓ1), . . . , ({n}, ηℓn)}, ηℓ1 , . . . , ηℓn ∈ S. (2.30)

The n-spatial seed-bank coalescent is a Markov process that evolves according to

the following two rules.

(a) Each partition element moves independently of all other partition elements ac-

cording the kernel

b(1)((i, Ri), (j, Rj)) =


a(i, j), if Ri = Rj = A,
Ke, if i = j, Ri = A, Rj = D,
e, if i = j, Ri = D, Rj = A,
0, otherwise,

(2.31)

where a(·, ·) is the migration kernel defined in (2.1), K is the relative size of the

dormant population defined in (2.6), and e is the rate of exchange between the

active and the dormant population shown in (2.4)–(2.5). Therefore an active

partition element migrates according to the transition kernel a(·, ·) and becomes

dormant at rate Ke, while a dormant partition element can only become active

and does so at rate e. In (2.31), the notation b(1) marks that the kernel refers

to model 1. Later we will use the notation b(2) for model 2 and b(3) for model

3.

(b) Independently of all other partition elements, two partition elements that are at

the same colony and are both active coalesce with rate d, i.e., the two partition

elements merge into one partition element.

The spatial seed-bank coalescent (C(t))t≥0 is defined as the projective limit of the

n-spatial seed-bank coalescents (C(n)(t))t≥0 as n→ ∞. This object is well-defined by

Kolmogorov’s extension theorem (see [12, Section 3]).

For n ∈ N we define the block-counting process (L(t))t≥0 corresponding to the n-

spatial seed-bank coalescent as the process that counts at each site (i, Ri) ∈ G×{A,D}
the number of partition elements of C(n)(t), i.e.,

L(t) =
(
L(i,A)(t), L(i,D)(t)

)
i∈G,

L(i,A)(t) = L(i,A)(C(n)(t)) =

n̄∑
ℓ=1

1{ηℓ(t)=(i,A)},

L(i,D)(t) = L(i,D)(C(n)(t)) =

n̄∑
ℓ=1

1{ηℓ(t)=(i,D)}.

(2.32)
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Therefore (L(t))t≥0 has state space E′ = (N0 × N0)
G. We denote the elements of E′

by sequences (mi, ni)i∈G, and define δ(j,Rj) ∈ E′ to be the element of E′ that is 0 at

all sites (i, Ri) ∈ G× {A,D}\(j, Rj), but 1 at the site (j, Rj). From the evolution of

C(n)(t) described below (2.29) we see that the block-counting process has the following

transition kernel:

(mi, ni)i∈G →


(mi, ni)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, ni)i∈G − δ(j,A), at rate d

(
mj

2

)
for j ∈ G,

(mi, ni)i∈G − δ(j,A) + δ(j,D), at rate mjKe for j ∈ G,
(mi, ni)i∈G + δ(j,A) − δ(j,D), at rate nje for j ∈ G.

(2.33)

The process (Z(t))t≥0 defined in (2.4)–(2.5) is dual to the block-counting process

(L(t))t≥0. The duality function H : E × E′ → R is defined by

H
(
(xi, yi)i∈G, (mi, ni)i∈G

)
=
∏
i∈G

xmi
i yni

i . (2.34)

The duality relation reads as follows.

Theorem 2.2.5 (Duality relation: model 1). Let H be defined as in (2.34). Then

for all (xi, yi)i∈G ∈ E and (mi, ni)i∈G ∈ E′,

E(xi,yi)i∈G

[
H
(
(xi(t), yi(t))i∈G, (mi, ni)i∈G

)]
= E(mi,ni)i∈G

[
H
(
(xi, yi)i∈G, (L(i,A)(t), L(i,D)(t))i∈G

)] (2.35)

with E the generic symbol for expectation (on the left over the original process, on the

right over the dual process).

Since the duality function H gives all the mixed moments of (Z(t))t≥0, the duality

relation in Theorem 2.2.5 is called a moment dual.

Remark 2.2.6 (Effective geographic space). Interpreting (Z(t))t≥0 as a process

on the effective geographic space S, recall Remark 2.2.2, we can rewrite the duality

relation. Let the block-counting process (L(t))t≥0 = (L(C(t))t≥0 count at each site

u ∈ S the number of partition elements of C(t), i.e.,

L(t) = (Lu(t))u∈S,

Lu(t) = Lu(C(t)) =
n̄∑
ℓ=1

1{ηℓ(t)=u},
(2.36)

and rewrite the duality function H in (2.34) as

H((zu, lu)u∈S) =
∏
u∈S

zluu . (2.37)

Then, for z ∈ E and l ∈ E′, the duality relation reads

E
[
H(zu(t), lu)

]
= E

[
H(zu, Lu(t))

]
. (2.38)
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Interpreting the duality relation in terms of the effective geographic space S, we see

that each ancestral lineage in the dual is a Markov chain that moves according to the

transition kernel b(1)(·, ·). Interpreting the duality relation in terms of the geographic

space G, we see that an ancestral lineage is a random walk moving on G, with internal

states A and D. Both interpretations turn out to be useful in analysing the long-time

behaviour of the system. ■

Remark 2.2.7 (Wake-up times). Define (see Fig. 2.3)

σ = typical time spent by an ancestral lineage in state A

before switching to state D,

τ = typical time spent by an ancestral lineage in state D

before switching to state A.

(2.39)

(Here, the word typical refers to what happens to an ancestral lineage each time it

switches state at some geographic location. For a more precise definition we refer to

Section 3.2.2 and Fig. 3.1.) It follows from (2.31) that

P(σ > t) = e−Ket,

P(τ > t) = e−et.
(2.40)

An ancestral lineage in the dual of the spatial seed-bank process behaves as an an-

cestral lineage in the dual of a spatial Fisher-Wright diffusion without seed-bank (see

e.g. [36]), but becomes dormant every once in a while. On the long run we expect an

ancestral lineage to be active only a fraction 1
1+K of the time. We will see in Section

3.2 that the effect of the seed-bank on the long-time behaviour of the ancestral lin-

eages in the dual is a slow down by a factor 1
1+K compared to the long-time behaviour

of the ancestral lineages in the dual of interacting Fisher-Wright diffusions without

seed-bank. ■

Model 2. The dual for model 2 arises naturally from the dual for model 1 by

adding internal states to the seed-bank and adapting the rates of becoming active

and dormant accordingly. Recall that for model 2 the effective geographic space is

S = G × {A, (Dm)m∈N0
}. Migration and coalescence are as before, but at every

colony switches between an active copy A and a dormant copy Dm now occur at rates

em, respectively, Km em. The spatial coalescent (C(t))t≥0 in (2.29) starts from an

initial configuration like (2.30) and evolves according to the same two rules, but the

transition kernel b(·, ·) must be replaced by

b(2)((i, Ri), (j, Rj)) =


a(i, j), Ri = Rj = A,
Kmem, i = j, Ri = A, Rj = Dm,m ∈ N0,
em, i = j, Ri = Dm, m ∈ N0, Rj = A,
0, otherwise.

(2.41)
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The corresponding block-counting process becomes

L(t) =
(
L(i,A)(t),

(
L(i,Dm)(t)

)
m∈N0

)
i∈G

,

L(i,A)(t) = L(i,A)(C(t)) =
n̄∑
ℓ=1

1{ηℓ(t)=(i,A)},

L(i,Dm)(t) = L(i,Dm)(C(t)) =
n̄∑
ℓ=1

1{ηℓ(t)=(i,Dm)}, m ∈ N0.

(2.42)

The state space is now given by E′ =
(
N0 × NN0

0

)G
, and the transition kernel becomes

(mi, (ni,m)m∈N0)i∈G

→


(mi, (ni,m)m∈N0)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, (ni,m)m∈N0)i∈G − δ(j,A), at rate d

(
mj

2

)
for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G − δ(j,A) + δ(j,Dm), at rate mjKmem for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G + δ(j,A) − δ(j,Dm), at rate nj,mem for j ∈ G.

(2.43)

The duality function H : E × E′ → R is defined by

H
(
(xi, yi,m)i∈G,m∈N0

, (mi, ni,m)i∈G,m∈N0

)
=
∏
i∈G

∏
m∈N0

xmi
i y

ni,m

i,m . (2.44)

Theorem 2.2.8 (Duality relation: model 2). For (xi, yi,m)i∈G,m∈N0 ∈ E and

(mi, ni,m)i∈G,m∈N0 ∈ E′,

E(xi,yi,m)i∈G,m∈N0

[
H
(
(xi(t), yi,m(t))i∈G,m∈N0

, (mi, ni,m)i∈G,m∈N0

)]
= E(mi,ni,m)i∈G,m∈N0

[
H
(
(xi, yi,m)i∈G,m∈N0

, (L(i,A)(t), L(i,Dm)(t))i∈G,m∈N0

)]
.

(2.45)

By rewriting the block-counting process as in Remark 2.2.6, the duality function can

be rewritten as

H((zu, lu)u∈S) =
∏
u∈S

zluu (2.46)

and the duality relation reads

E
[
H
(
(zu(t))u∈S, (lu)u∈S

)]
= E

[
H
(
(zu)u∈S, (Lu(t))u∈S)

)]
. (2.47)

Remark 2.2.9 (Fat-tailed wake-up times.). Recall the definition of χ in (2.20)

and the definition of ρ in (2.21). Define

σ = typical time spent by an ancestral lineage in the active state A

before switching to a dormant state ∪m∈N0 Dm,

τ = typical time spent by an ancestral lineage in the dormant state ∪m∈N0 Dm

before switching to the active state A.
(2.48)
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Note that τ does not look at the colour of the dormant state. It follows from (2.41)

that
P(σ > t) = e−χt,

P(τ > t) =
∑
m∈N0

Kmem
χ

e−emt,
(2.49)

independently of the colony i ∈ G. Hence

E [τ ] =
ρ

χ
. (2.50)

If ρ < ∞, then we invoke the seed-bank colours and use the balance equations for

recurrent Markov chains to see that each ancestral lineage in the dual in the long run

spends a fraction ρ
1+ρ of the time in the dormant state. Like in model 1, an ancestral

lineage in the dual behaves like an ancestral lineage in the dual of interacting Fisher-

Wright diffusions, but is slowed down by a factor ρ
1+ρ . However, if ρ = ∞, then (2.41)

together with (2.50) imply that each ancestral lineage in the dual behaves like a null-

recurrent Markov chain on {A, (Dm)m∈N0
}, and consequently the probability to be

active tends to 0 as t → ∞. Therefore we may expect that the long-time behaviour

of the system is affected by the seed-bank. In particular, choosing

Km ∼ Am−α, em ∼ Bm−β , m→ ∞,

A,B ∈ (0,∞), α, β ∈ R : α ≤ 1 < α+ β,
(2.51)

we see that (2.49) implies

P(τ > t) ∼ Ct−γ , t→ ∞, (2.52)

with γ = α+β−1
β and C = A

χβ B
1−γ Γ(γ), where Γ is the Gamma-function. The

conditions on α, β guarantee that ρ = ∞, χ <∞ (recall (2.20) and (2.21)). Examples

are: α = 0, β > 1 and α ∈ (0, 1), β > 1−α. Thus, for ρ = ∞ we can model individuals

with a fat-tailed wake-up time simply by not taking their colours into account. The

internal structure of the seed-bank captured by the colours allows us to model fat-tailed

wake-up times without loosing the Markov property for the evolution. ■

Model 3. The effective geographic space is again S = G×{A, (Dm)m∈N0
}. On top of

migration and coalescence, each switch from A to Dm and vice versa is accompanied

by a displacement according to the displacement kernel am(·, ·) defined in (2.17).

Therefore each lineage in the dual evolves according to

b(3)((i, Ri), (j, Rj)) =

 a(i, j), Ri = Rj = A,
Kmemam(j, i), Ri = A, Rj = Dm,m ∈ N0,
emam(i, j), Ri = Dm, m ∈ N0Rj = A.

(2.53)

Again, when two ancestral lineages are active at the same site they coalesce at rate

1 and the corresponding block-counting process evolves according to the transition
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kernel

(mi, (ni,m)m∈N0
)i∈G

→


(mi, (ni,m)m∈N0

)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, (ni,m)m∈N0

)i∈G − δ(j,A), at rate d
(
mj

2

)
for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G − δ(j,A) + δ(k,Dm), at rate mjKmemam(k, j) for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G + δ(k,A) − δ(j,Dm), at rate nj,memam(j, k) for j ∈ G.

(2.54)

Theorem 2.2.10 (Duality relation: model 3). The same duality relation holds

as in (2.45), where now the dual dynamics includes not only the exchange between

active and dormant but also the accompanying displacement in space.

§2.2.5 Dichotomy criterion

For g = dgFW the duality relations in Theorems 2.2.5, 2.2.8 and 2.2.10 provide us

with the following criterion to characterise the long-term behaviour. If, in the limit

as t → ∞, locally only one type survives in the population, then we say that the

system exhibits clustering. If, in the limit as t → ∞, locally both types survive in

the population, then we say that the system exhibits coexistence. For model 1 the

criterion reads as follows.

Theorem 2.2.11 (Dichotomy criterion: model 1). Suppose that µ(0) is invari-

ant and ergodic under translations. Let d ∈ (0,∞). Then the system with g = dgFW
clusters if and only if in the dual two partition elements coalesce with probability 1.

The idea behind Theorem 2.2.11 is as follows. If in the dual two partition elements

coalesce with probability 1, then a random sample of n individuals drawn from the

current population has a common ancestor some finite time backwards in time. Since

individuals inherit their type from their parent individuals, this means that all n

individuals have the same type. A formal proof will be given in Section 3.1.3.

For model 2–3 we need an extra assumption on µ(0) when ρ = ∞.

Definition 2.2.12 (Colour regular initial measures). We say that µ(0) is colour

regular when

lim
N→∞

Eµ(0)[y0,N ] exists, (2.55)

i.e., µ(0) has asymptotically converging colour means. □

Thus, colour regularity is a condition on the deep seed-banks (where deep means

m → ∞). This condition is needed because as time proceeds lineages starting from

deeper and deeper seed-banks become active for the first time, and bring new types

into the active population. Without control on the initial states of the deep seed-

banks, there may be no convergence to equilibrium.

Theorem 2.2.13 (Dichotomy criterion: models 2–3). The same as in

Theorem 2.2.11 is true for ρ < ∞, but for ρ = ∞ additionally requires that µ(0) is

colour regular.
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Remark 2.2.14 (Clustering criterion general g ∈ G). In Section 2.3 we will see

that the dichotomy criterion in Theorems 2.2.11 and 2.2.13 for g = dgFW does not

depend on d, the rate of resampling. We will use duality comparison arguments to

carry over the dichotomy criterion in Theorems 2.2.11 and 2.2.13 to g ∈ G. We will

see later that for all three models the system with g exhibits clustering if and only if

the system with gFW exhibits clustering. ■

Remark 2.2.15 (Liggett conditions). We will see in Section 3.3.3 that, for model

2 with ρ = ∞, if an initial measure µ is invariant and ergodic under translations and

is colour regular, then the Markov chain evolving according to b(2)(·, ·) satisfies the

following two conditions:

(1)

lim
t→∞

∑
(k,Rk)∈G×{A,(Dm)m∈N0}

b
(2)
t

(
(i, Ri), (k,Rk)

)
Eµ[z(k,Rk)] = θ, (2.56)

(2)

lim
t→∞

∑
(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
× Eµ[z(k,Rk)z(l,Rl)] = θ2.

(2.57)

These are precisely the conditions in [56, Chapter V.1] necessary to determine the

dichotomy in the long-time behaviour of the voter model. We show that (1) and

(2) imply convergence to a unique equilibrium that is invariant and ergodic under

translations. It is difficult to identify exactly which initial measures µ satisfy (1) and

(2). This is the reason why we work with sufficient conditions and need the notion of

colour regularity.

For model 2 with ρ <∞, conditions (1) and (2) are satisfied when µ(0) is invariant

and ergodic under translations, and colour regularity is not needed. The same holds

for model 1, once the state space is replaced by G × {A,D} and b(2)(·, ·) is replaced

by b(1)(·, ·). Also for model 3 conditions (1) and (2) hold after replacing b(2)(·, ·) by

b(3)(·, ·). If ρ = ∞ in model 3 we need to assume colour regularity, if ρ < ∞, this is

not needed. ■

§2.3 Long-time behaviour

In this section we study the long-time behaviour of models 1–3. In Sections 2.3.1–

2.3.3 we prove convergence to a unique equilibrium measure, establish the dichotomy

between clustering and coexistence, and identify which of the two occurs in terms

of the migration kernel and the rates governing the exchange with the seed-bank

(Theorems 2.3.1–2.3.6).

Throughout the sequel, g is a general diffusion function from the class G defined

in (2.23). Special cases are the multiples of the standard Fisher-Wright diffusion
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function: g = dgFW, d ∈ (0,∞), with gFW(x) = x(1 − x), x ∈ [0, 1]. We use the

following notation (with P(E) denotes the set of probability measures on E):

T =
{
µ ∈ P(E) : µ is invariant under translations in G

}
,

T erg =
{
µ ∈ T : µ is ergodic under translations in G

}
,

I =
{
µ ∈ T : µ is invariant under the evolution

}
.

(2.58)

§2.3.1 Long-time behaviour of Model 1

Let a(·, ·) be as in (2.1). Define the symmetrized migration kernel

â(i, j) = 1
2 [a(i, j) + a(j, i)], i, j ∈ G, (2.59)

which describes the difference of two independent copies of the migration each driven

by a(·, ·). Let ât(0, 0) denote the time-t transition kernel of the random walk with

migration kernel â(·, ·), and suppose that

t 7→ ât(0, 0) is regularly varying at infinity. (2.60)

(Examples can be found in [47, Chapter 3].) Define

Iâ =

∫ ∞

1

dt ât(0, 0). (2.61)

Note that Iâ = ∞ if and only if â(·, ·) is recurrent (see e.g. [69, Chapter 1]). Define

θ = Eµ(0)
[
x0 +Ky0
1 +K

]
. (2.62)

If µ(0) is invariant and ergodic under translations, then θ is the initial density of ♡
in the population.

From the SSDE in (2.4)–(2.5) we see that(
x0(t) +Ky0(t)

1 +K

)
t≥0

(2.63)

is a martingale. In particular,

θ = Eµ(t)
[
x0 +Ky0
1 +K

]
∀ t ≥ 0. (2.64)

For θ ∈ [0, 1], we define

T erg
θ =

{
µ ∈ T erg : Eµ(0)

[
x0 +Ky0
1 +K

]
= θ

}
. (2.65)

Write µ(t) to denote the law of (Z(t))t≥0, defined in (2.2). Recall that associated

means that increasing functions of the configuration are positively correlated, i.e.,

if f : E → R and g : E → R depend on only finitely many coordinates and are

coordinate-wise increasing, then

Eνθ [f(x)g(x)] ≥ Eνθ [f(x)]Eνθ [g(x)]. (2.66)
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Theorem 2.3.1 (Long-time behaviour: model 1). Suppose that µ(0) ∈ T erg
θ .

(a) (Coexistence regime) If â(·, ·) is transient, i.e., Iâ <∞, then

lim
t→∞

µ(t) = νθ, (2.67)

where

νθ is an equilibrium measure for the process on E, (2.68)

νθ is invariant, ergodic and mixing under translations, (2.69)

νθ is associated, (2.70)

Eνθ [x0] = Eνθ [y0] = θ, (2.71)

with Eνθ denoting expectation over νθ.

(b) (Clustering regime) If â(·, ·) is recurrent, i.e., Iâ = ∞, then

lim
t→∞

µ(t) = θ [δ(1,1)]
⊗G + (1− θ) [δ(0,0)]

⊗G. (2.72)

The results in (2.67)–(2.72) say that the system converges to an equilibrium whose

density of type ♡ equals θ in (2.62), a parameter that is controlled by the initial state

µ(0) and the asymmetry parameter K. The equilibrium can be either locally mono-

type or locally multi-type, depending on whether the symmetrised migration kernel is

recurrent or transient. If the equilibrium is mono-type, then the system grows large

mono-type clusters (= clustering). If the equilibrium is multi-type, then the system

allows ♡ and ♢ to mix (= coexistence). In the case of coexistence, the equilibrium

measure νθ also depends on the migration kernel a(·, ·), the values of the parameters

e,K, and the diffusion function g ∈ G (recall (2.23)). The dichotomy itself, however, is

controlled by Iâ only. In particular, g ∈ G plays no role, a fact that will be shown with

the help of a duality comparison argument. In view of Theorem 2.2.11, if g = dgFW,

then Iâ = ∞ implies that with probability 1 two ancestral lineages in the dual coalesce.

Therefore Iâ = ∞ is said to be the total hazard of coalescence. Remarkably, this

dichotomy is the same as the dichotomy observed for systems without seed-bank (see

[14]): clustering prevails for recurrent migration; coexistence prevails for transient

migration; for G = Zd the critical dimension is d = 2. From the proof in Section

3.2.2 it will become clear that in the dual the ancestral lineages in the long run

behave like the ancestral lineages without seed-bank, but are slowed down by a factor
1

1+K . Consequently, the dormant periods of the ancestral lineages do not affect the

dichotomy of the system. In particular, it does not affect the critical dimension

separating clustering from coexistence.

Remark 2.3.2 (Ergodic decomposition). Because T is a Choquet simplex, The-

orem 2.3.1 carries over from µ(0) ∈ T erg to µ(0) ∈ T , after decomposition into ergodic

components. ■
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§2.3.2 Long-time behaviour of Model 2

For model 2 we need the extra condition that a(·, ·) is symmetric, i.e.,

a(i, j) = a(j, i) ∀ i, j ∈ G. (2.73)

Note that ât(0, 0) = at(0, 0) because of (2.73). Below we comment on what happens

when we drop this assumption. Recall (2.20)–(2.21). It turns out that the long-time

behaviour of model 2 is different for ρ <∞ and ρ = ∞.

Case ρ <∞. For a finite seed-bank, we define the initial density as

θ = Eµ(0)
[
x0 +

∑
m∈N0

Km y0,m

1 + ρ

]
, (2.74)

which is the counter part of (2.62) in model 1. Like in model 1, it follows from the

SSDE in (2.12)–(2.13) that(
x0(t) +

∑
m∈N0

Km y0,m(t)

1 + ρ

)
t≥0

(2.75)

is a martingale. Hence also here the density is a preserved quantity under the evolution

of the system. The dichotomy is controlled by the same integral Iâ as defined in (2.61)

for model 1.

Case ρ = ∞. For an infinite seed-bank, we assume that (recall Remark 2.2.9)

Km ∼ Am−α, em ∼ Bm−β , m→ ∞,

A,B ∈ (0,∞), α, β ∈ R : α ≤ 1 < α+ β,
(2.76)

for which

P (τ > t) ∼ C t−γ , t→ ∞, (2.77)

with γ = α+β−1
β ∈ (0, 1) and C = A

β B
1−γ γΓ(γ) ∈ (0,∞), where Γ is the Gamma-

function. In addition, we assume that the initial measure µ(0) is colour regular (recall

Definition 2.2.12), and define

θ = lim
m→∞

E[y0,m]. (2.78)

This ensures the existence of the initial density

θ = lim
M→∞

Eµ(0)

[
x0 +

∑M
m=0Km y0,m

1 +
∑M
m=0Km

]
. (2.79)

It turns out that the dichotomy is controlled by the integral

Iâ,γ =

∫ ∞

1

dt t−(1−γ)/γ ât(0, 0) (2.80)
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instead of the integral Iâ for ρ <∞.

For θ ∈ (0, 1), define (both for ρ <∞ and ρ = ∞)

T erg
θ =

{
µ ∈ T erg : lim

M→∞
Eµ(0)

[
x0 +

∑M
m=0Kmy0,m

1 +
∑M
m=0Km

]
= θ

}
. (2.81)

Theorem 2.3.3 (Long-time behaviour: model 2). (I) Let ρ < ∞. Assume

(2.60) and (2.73). Suppose that µ(0) ∈ T erg
θ .

(a) (Coexistence regime) If Iâ <∞, then

lim
t→∞

µ(t) = νθ, (2.82)

where

νθ is an equilibrium measure for the process on E, (2.83)

νθ is invariant, ergodic and mixing under translations, (2.84)

νθ is associated, (2.85)

Eνθ [x0] = Eνθ [y0,m] = θ ∀m ∈ N0, (2.86)

with Eνθ denoting expectation over νθ. Moreover,

lim inf
m→∞

em > 0: lim inf
m→∞

Varνθ (y0,m) > 0,

lim sup
m→∞

em = 0: lim sup
m→∞

Varνθ (y0,m) = 0.
(2.87)

(b) (Clustering regime) If Iâ = ∞, then

lim
t→∞

µ(t) = θ [δ(1,1N0 )]
⊗G + (1− θ) [δ(0,0N0 )]

⊗G. (2.88)

(II) Let ρ = ∞. Assume (2.60), (2.73) and (2.76). Suppose that µ(0) ∈ T erg and, in

addition, is colour regular with initial density θ given by (2.79). Then the same

results as in (I) hold after Iâ in (2.61) is replaced by Iâ,γ in (2.80). Moreover,

lim
M→∞

Eνθ

[
x0 +

∑M
m=0Km y0,m

1 +
∑M
m=0Km

]
= θ, (2.89)

and νθ is colour regular.

The result in part (I) shows that for ρ < ∞ the long-time behaviour is similar

to that of model 1. Like in model 1, the results in (2.82)–(2.88) say that the system

converges to an equilibrium whose density of type ♡ equals θ in (2.62), the density

of ♡ under the initial measure µ(0). Again, the equilibrium can be either mono-type

or multi-type, depending on whether the symmetrised migration kernel is recurrent

or transient. Like in model 1, in both cases the equilibrium measure depends on θ.

In the case of coexistence, the equilibrium measure νθ also depends on the migration
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kernel a(·, ·), the sequences of parameters (em)m∈N0
and (Km)m∈N0

, and the diffusion

function g ∈ G (recall (2.23)). Again, the dichotomy itself is controlled by Iâ only,

and the resampling rate given by g ∈ G plays no role. Therefore if g = dgFW , in

view of Theorem 2.2.11, whether or not two ancestral lineages in the dual coalesce

with probability 1 is still only determined by the migration kernel a(·, ·). The same

dichotomy holds as for systems without seed-bank (see [14]). Therefore part (I) of

Theorem 2.3.3 indicates that, as long as the dormant periods of the ancestral lineages

in the dual have a finite mean ( ρ
1+ρ ; recall Remark 2.2.9), the seed-bank does not

affect the dichotomy of the system.

Even so, (2.87) indicates that there is interesting behaviour in the deep seed-banks.

Indeed, when the exchange rate em between the m-dormant and the active popula-

tion is bounded away from zero as m → ∞ the deep seed-banks are asymptotically

random, while when em tend to zero as m → ∞ the deep seed-banks are asymptot-

ically deterministic. The latter means that the deep seed-banks serve as a reservoir,

containing a fixed mixture of types. For ρ <∞ this reservoir is too small to influence

the dichotomy of the system, but not for ρ = ∞.

For ρ = ∞ the system again converges to an equilibrium whose density of type ♡
equals θ in (2.79), the density of ♡ under the initial measure µ(0). The equilibrium

can be mono-type or multi-type, but the dichotomy criterion has changed. Instead

of Iâ, the dichotomy is now controlled by the integral Iâ,γ (recall (2.80)), where γ is

the parameter determined by relative sizes Km of the colour m-dormant populations

with respect to the active population and the exchanges rates (em)m∈N0
with the seed-

bank, recall (2.76)–(2.77). If g = dgFW , γ is the parameter of the tail of the wake-up

time of an ancestral lineages in the dual (recall (2.2.9)). Therefore if g = dgFw, in

view of Theorem 2.2.13, we see that the dormant periods of the ancestral lineages

in the dual do affect whether or not two ancestral lineages in the dual coalesce with

probability 1. For general g ∈ G, the integral Iâ,γ in (2.80) shows a competition

between migration and exchange. The smaller γ is, the longer the individuals remain

dormant in the seed-bank, the smaller Iâ,γ is, and the more coexistence becomes

likely. As a consequence clustering requires more stringent conditions than recurrent

migration; for G = Zd the critical dimension is 1 < d < 2 for γ ∈ [ 12 , 1] and d = 1 for

γ ∈ (0, 12 ). The seed-bank enhances genetic diversity. Note that γ ↑ 1 links up with

the case ρ < ∞, where coexistence occurs if and only if the migration is transient.

Also note that for γ ∈ (0, 12 ) there is always coexistence irrespective of the migration.

In the case of clustering the equilibrium measure only depends on θ, while in

the case of coexistence, like for ρ < ∞, νθ depends on the migration kernel a(·, ·),
the sequences of parameters (em)m∈N0

, (Km)m∈N0
, and the diffusion function g ∈ G.

Since we assumed (2.76), we have lim supm→∞ em = 0 , and so we are automatically in

the second case of (2.87). Hence the deep seed-banks are asymptotically deterministic,

i.e., the m-dormant population converges in law to a deterministic state θ as m→ ∞.

Roughly speaking, in case g = dgFW , in equilibrium the volatility of a colour is

inversely proportional to its average wake-up time in the dual. Since ρ = ∞, for

each M ∈ N0 we have
∑∞
m=M Km = ∞, and in the coexistence regime the effect of

the seed-bank can be interpreted as a migration towards an infinite reservoir with

deterministic density θ.

50



§2.3. Long-time behaviour

C
h
a
p
t
e
r
2

Like for model 1, also here T is a Choquet simplex, and Theorem 2.3.3 carries

over from T erg to T , after decomposition into ergodic components.

Example of effect of infinite seed-bank. For a symmetric migration kernel with

finite second moment the following holds:

� For G = Z2, ât(0, 0) ≍ t−1, t→ ∞, and so coexistence occurs for all γ ∈ (0, 1).

� For G = Z, ât(0, 0) ≍ t−1/2, t → ∞, and so coexistence occurs if and only if

γ ∈ (0, 23 ).

In both cases the migration is recurrent, so that clustering prevails in model 1.

Corollary 2.3.4 (Three regimes). Under the conditions of Theorem 2.3.3, the sys-

tem in (2.12)–(2.13) has three different parameter regimes:

(1) γ ∈ (1,∞): migration determines the dichotomy.

(2) γ ∈ [ 12 , 1]: interplay between migration and seed-bank determines the dichotomy.

(3) γ ∈ (0, 12 ): seed-bank determines the dichotomy.

Role of symmetry in migration. Unlike in model 1, it is not possible to remove

the symmetry assumption in (2.73), as the following counterexample shows. We

consider model 2 with ρ <∞ under assumption (2.60), but we do not assume (2.73).

� Counterexample: Let G = Z2, and for η ∈ (0, 1) pick

a(i, j) =

{
1
4 (1 + η), j = i+ (1, 0) or i+ (0, 1),

1
4 (1− η), j = i− (1, 0) or i− (0, 1),

(2.90)

i.e., two-dimensional nearest-neighbour random walk with drift upward and

rightward. Suppose that τ in (2.77) has a one-sided stable distribution with

parameter γ ∈ (1, 2) (obtained from (2.76) but with α, β ∈ R: 1 < α < 1 + β).

Then coexistence occurs while Iâ = ∞.

Recall that for the two-dimensional nearest-neighbour random walk without drift we

get clustering according to Theorem 2.3.3, independently of the distribution of τ . The

key feature of the counterexample is that it corresponds to E(τ) <∞ and E(τ2) = ∞.

Hence the central limit theorem fails for τ . We will see in Section 3.3.5 that the failure

of the central limit theorem for τ is responsible for turning clustering into coexistence.

The above raises the question to what extent the equilibrium behaviour depends

on the nature of the geographic space. To answer this question, we need a key concept

for random walks on countable Abelian groups, which we describe next.

Remark 2.3.5 (Dichotomy criterion and degrees of random walk). We can

read the condition Iâ,γ < ∞ for coexistence versus Ia,γ = ∞ for clustering in terms

of the degree of the random walk. Namely, let â(·, ·) be the transition kernel of an
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irreducible random walk on a countable Abelian group. Then the degree δ of â(·, ·) is
defined as

δ = sup

{
ζ > −1:

∫ ∞

1

dt tζ ât(0, 0) <∞
}
. (2.91)

The degree is defined to be δ+ when the integral is finite at the degree and δ− when

the integral is infinite at the degree. Hence we can rephrase the dichotomy criterion

in Theorem 2.3.3 as

clustering ⇐⇒ either − 1− γ

γ
≥ δ− or − 1− γ

γ
> δ+. (2.92)

For further details we refer to [18], [19], which relate the degree of the random walk

to the tail of its return time to the origin. ■

Modulation of wake-up time with slowly varying function. Under weak

conditions it is possible to modulate (2.77) by a slowly varying function. Assume

that
P(τ ∈ dt)

dt
∼ φ(t) t−(1+γ), t→ ∞, (2.93)

with φ slowly varying at infinity. Define

φ̂(t) =

{
φ(t), γ ∈ (0, 1),∫ t
1
dsφ(s)s−1, γ = 1.

(2.94)

As shown in [8, Section 1.3], without loss of generality we may take φ̂ to be infinitely

differentiable and to be represented by the integral

φ̂(t) = exp

[∫ t

(·)

du

u
ψ(u)

]
(2.95)

for some ψ : [0,∞) → R such that limu→∞ |ψ(u)| = 0. If we assume that ψ eventually

has a sign and satisfies |ψ(u)| ≤ C/ log u for some C < ∞, then (2.80) needs to be

replaced by

Iâ,γ,φ =

∫ ∞

1

dt φ̂(t)−1/γ t−(1−γ)/γ ât(0, 0). (2.96)

A proof is given in Section 3.3.6. The modulation of the wake-up time by a slowly

varying function appears naturally for the model on the hierarchical group, analysed

in [45]. There the integral criterion for the dichotomy in (2.96) is needed to apply

Theorem 2.3.3.

§2.3.3 Long-time behaviour of Model 3

It remains to see how the switch of colony during the exchange affects the dichotomy.

We will focus on the special case where the displacement kernels do not depend on

m, i.e.,

am(·, ·) = a†(·, ·) ∀m ∈ N0, (2.97)
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with a†(·, ·) an irreducible symmetric random walk kernel on G×G. Let â†t(·, ·) denote
the time-t transition kernel of the random walk with symmetrised displacement kernel

â†(·, ·) (= a†(·, ·)) and jump rate 1. Assume that (compare with (2.60))

t 7→ (ât ∗ â†t)(0, 0) is regularly varying at infinity,

(âCt ∗ â†t)(0, 0) ≍ (ât ∗ â†t)(0, 0) as t→ ∞ for every C ∈ (0,∞),
(2.98)

where ∗ stands for convolution. Let

Iâ∗â† =

∫ ∞

1

dt (ât ∗ â†t)(0, 0) (2.99)

and

Iâ∗â†,γ =

∫ ∞

1

dt t−(1−γ)/γ (ât ∗ â†t)(0, 0). (2.100)

Theorem 2.3.6 (Long-time behaviour: model 3). Suppose that, in addition to

the assumptions of Theorem 2.3.3, both (2.97) and (2.98) hold. Then the same results

as for model 2 hold: (I) for ρ < ∞ after Iâ in (2.61) is replaced by Iâ∗â† in (2.99);

(II) for ρ = ∞ after Iâ,γ in (2.80) is replaced by Iâ∗â†,γ in (2.100).

In the case of coexistence the equilibrium measure νθ depends on a(·, ·), a†(·, ·),
(em)m∈N0

, (Km)m∈N0
and g ∈ G. The dichotomy itself, however, is controlled by

Iâ∗â† , respectively, Iâ∗â†,γ alone.

An interesting observation is the following. Since ât(·, ·) and â†t(·, ·) are symmetric,

we have (by a standard Fourier argument)

ât(i, j) ≤ ât(0, 0), â†t(i, j) ≤ â†t(0, 0) ∀ i, j ∈ G ∀ t ≥ 0. (2.101)

Hence, Iâ∗â†,γ ≤ Iâ,γ ∧ Iâ†,γ . Consequently, the extra displacement in model 3 can

only make coexistence more likely compared to model 2, which is intuitively plausible.

If a(·, ·) = a†(·, ·), then (at∗a†t)(0, 0) = a2t(0, 0) and therefore the dichotomy is the

same as for model 2. Hence the extra displacement has in this case no effect on the

dichotomy. However, if the displacement is transient while the migration is recurrent,

then there is a difference. For instance, if ρ < ∞, the migration is a simple random

walk on Z, and the displacement is a symmetric random walk on Z with infinite mean,

e.g. a†(0, x) = a†(0,−x) ∼ D|x|−δ, D ∈ (0,∞), δ ∈ (1, 2), then Iâ = ∞, Iâ† <∞ and

Iâ∗â† < ∞ [69, Section 8]. Therefore there is clustering in model 2, but coexistence

in model 3.
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