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CHAPTER 1
Introduction

§1.1 Spatial populations with seedbank

In populations with a seed-bank, individuals can temporarily become dormant and re-

frain from reproduction, until they can become active again. Seed-banks are observed

in many taxa, including plants, bacteria and other micro-organisms. Typically, they

arise as a response to unfavourable environmental conditions. The dormant state of

an individual is characterised by low metabolic activity and interruption of phenotypic

development (see e.g. [55]). After a varying and possibly large number of generations,

a dormant individual can be resuscitated under more favourable conditions and re-

prise reproduction after having become active again. This strategy is known to have

important implications for population persistence, maintenance of genetic variability

and stability of ecosystems, (see e.g. [54]). It acts as a buffer against evolutionary

forces such as genetic drift, selection and environmental variability.

Various attempts were made to include a seed-bank in already existing mathem-

atical models that describe the genetic evolution of populations (see [50], [11], [10]

and [70].) However, after inclusion of the seed-bank these models become complex,

because they have long memory. In [12] the so-called “two-type Fisher-Wright model

with seed-bank” was introduced. This was the first model that describes the evolution

of a population with seed-bank as a Markov process. In this model individuals move

in and out of the seed-bank at prescribed rates. Outside the seed-bank individuals

are subject to resampling, while inside the seed-bank their resampling is suspended.

Both the long-time behaviour and the genealogy of the population were analysed in

detail. In particular, it was shown that the seed-bank increases the genetic variability

of the population.

The goal of this thesis is to extend the seed-bank model introduced in [12] to

the spatial setting where individuals can migrate between different colonies. We

analyse the long-time behaviour of the evolution of a spatial population with seed-

bank in different settings. We show how the seed-bank increases the genetic variability,

compared to spatial population models without seed-bank. In particular, we show how

certain types of seed-banks can even prevent the loss of genetic variability altogether.
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We give a short introduction to modeling genetic evolution of populations. We also

introduce two important tools to analyse the genetic evolution in populations, namely,

the Kingman coalescent and duality.

§1.2.1 The Fisher-Wright model

One of the driving forces in the genetic evolution of populations is genetic drift.

Genetic drift is the evolutionary mechanism that selects genes randomly. To illustrate

the concept of genetic drift, consider a population of turtles. Each year the turtles lay

plenty of eggs on the beach, but only a few of these eggs grow into a mature turtle.

Which of the eggs will do so is random. In this way, randomness plays an important

part in the genetic evolution of populations, and this randomness is called genetic

drift.

In mathematics genetic drift is modeled through the Fisher-Wright model. In

the Fisher-Wright model we consider a population of N individuals. Each individual

can carry one of two genetic types, denoted by ♡ and ♢. In each generation all the

individuals will reproduce themselves according to the following rule:

� Each individual chooses uniformly at random an individual from the population

and adopts its type. The chosen individual may be the individual itself.

This way of modeling reproduction is called resampling. Note that the number of

individuals remains fixed during the evolution. Since we mostly consider very large

populations without external evolutionary forces, we may assume the population size

to be approximately constant. Therefore the assumption that the population size

remains fixed is reasonable. An example of a population of 5 individuals is shown in

Fig. 1.1. The resampling mechanism can be interpreted as follows: Each individual

in the population gets a random number of offspring between 1 and N , and the

total number of offspring in the next generation is N . This gives a more natural

interpretation of resampling, but the way resampling is phrased above makes the

mathematical analysis easier.

Evolution equation. To describe the genetic evolution in the population, we ana-

lyse the fraction of individuals of type♡. Label theN individuals by [N ] = {1, . . . , N}.
Define ξ(k) = (ξj(k))j∈[N ] ∈ {0, 1}[N ] as the random vector where ξj(k) = 1 if the

j’th individual is of type ♡ at time k and ξj(k) = 0 if the j’th individual is of type ♢
at time k. Then

XN (k) =
1

N

∑
j∈[N ]

1{ξj(k)=1} (1.1)

is the fraction of individuals of type ♡ in generation k. Since there are two types of

individuals in the population, the fraction of individuals of type ♢ in generation k is

given by 1−XN (k). The distribution of XN (k+ 1) given XN (k) is BIN(N,XN (k)).

A key question is whether eventually there is only one type of individual left in the
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Figure 1.1: Example of the evolution for a population with N = 5 individuals in 5 generations.
The solid lines within the active population represent resampling in the first generation.

population, or there are always two types of individuals in the population. If only

one of the two types is left, then we say that genetic variability is lost. For a finite

population, genetic variability is lost eventually. The expected time until this happens

is of order N , the size of the population [30].

In this thesis we look at genetic evolution in populations where the number of

individuals tends to infinity. This large population model is referred to as the con-

tinuum model. To obtain this continuum model, we let the number of individuals in

the population tend to infinity and speed up time proportionally to the number of

individuals in the population, i.e.,

lim
N→∞

L[
(
XN (⌊Nt⌋)

)
t≥0

]. (1.2)

Thus, we observe larger and larger populations on time scales where these populations

start to loose their genetic variability. The limit in (1.2) is the law of the continuous-

time process (x(t))t≥0 that evolves according to the stochastic differential equation

(SDE)

dx(t) =
√
x(t)(1− x(t)) dw(t), (1.3)

where (w(t))t≥0 is a standard Brownian motion. Its initial law is given by L[x(0)] =
limN→∞ L[XN (0)]. The process (x(t))t≥0 evolving according to (1.3) is called the

Fisher-Wright diffusion and has state space [0, 1]. The stochastic differential equation

(SDE) in (1.3) has a unique solution that is a Markov process (see [72]). The fixed

points of (1.3) are 0 (only individuals of type ♢ are left) and 1 (only individuals of

type ♡ are left). The Fisher-Wright diffusion reaches its fixed points in finite time

[30].

Geneology. After sampling n ∈ N individuals from a large population at some

large time, we can ask ourselves what the lineages of these n individuals are. If two of

the n sampled individuals have a common ancestor a time s backwards in time, then

their lineages coalesce, ( see Figure 1.2). It turns out that if we sample individuals

from the continuum model, then any two lineages coalesce at rate 1, independently

3



1. Introduction

C
h
a
p
t
e
r
1

s

1 2 3 4 5 6
{{1}, {2}, {3}, {4}, {5}, {6}}
{{1}, {2}, {3}, {4}, {5, 6}}
{{1}, {2}, {3, 4}, {5, 6}}

{{1, 2}, {3, 4}, {5, 6}}

{{1, 2, 3, 4}, {5, 6}}

{{1, 2, 3, 4, 5, 6}}

Figure 1.2: Example of a genealogy of 6 individuals sampled from a Fisher-Wright diffusion.
The corresponding Kingman coalescent is written on the right. Each time two lineages merge,
the corresponding partition elements merge. Time is indicated by s and is running backwards.

of the other lineages. The ancestral lineages together are called the genealogy of the

n individuals.

The process that formally describes the genealogy of the n sampled individuals

in the continuum model is called the Kingman coalescent. The Kingman coalescent

is a partition-valued process that at time s = 0 assigns to each of the n individuals

a partition element, i.e., at time s = 0 the Kingman coalescent starts from state

{{1}, {2}, . . . , {n}}. If two lineages coalesce, then the corresponding two partition

elements of the Kingman coalescent merge (see Fig. 1.2). Thus, any two partition

elements merge at rate 1, independently of the other partition elements. The Kingman

coalescent describes how the genetic evolution of a population took place in the past.

The Kingman coalescent runs backwards in time. For this reason it is sometimes

called the backward process. In contrast, the Fisher-Wright diffusion is called the

forward process.

Since in the Fisher-Wright model individuals inherit their type from their parents,

any two individuals whose lineages have a common ancestor are of the same type. If

the number of sampled individuals tends to infinity, then the related ancestral lineages

still have a common ancestor a finite time s backwards, (see [30]). Consequently, all

the individuals in the population are of the same type and genetic variability is lost.

We say that the Kingman coalescent comes down from infinity in finite time. This is

the backward counterpart of the fact that the Fisher-Wright diffusion hits its fixed

points in finite time.

Duality. Related to the coalescent process is the block-counting process. Suppose

that at some large time t > 0 we sample n individuals from a population evolving ac-
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cording to the Fisher-Wright diffusion in (1.3). The block counting process (N(s))s≥0

counts the number of ancestral lineages when we traverse s backwards in time,

N(s) = # lineages left at time s. (1.4)

Since any two lineages merge at rate 1, the process (N(s))s≥0 has transition rates

n→ n− 1 at rate

(
n

2

)
. (1.5)

Therefore the block-counting process is a death-process. Like the Kingman coalescent,

the block-counting process is a backward process.

Let (x(t))t≥0 be the Fisher-Wright diffusion starting from state x ∈ [0, 1]. Let

(N(t))t≥0 be the block-counting process starting from n ∈ N. Then, for all n ∈ N,
x ∈ [0, 1] and t ≥ 0, the following relation holds:

Ex[(x(t))n] = En[xN(t)]. (1.6)

Here the expectation on the left-hand side is taken over the Fisher-Wright diffusion

(x(t))t≥0 and the expectation on the right-hand side is taken over the block-counting

process (N(t))t≥0. The relation is called moment duality. This moment duality allows

us to calculate all the moments of the Fisher-Wright diffusion at a given time t in

terms of the death process at time t, which is simple to analyse. Note that the duality

relation also expresses a relation between the backward and the forward processes.

State-dependent resampling rates. In the Fisher-Wright model individuals res-

ample at rate 1. However, it is natural to allow for resampling rates that depend on

the state of the population. To do this, let g : [0, 1] → R≥0 be any function that

satisfies

� g(0) = g(1) = 0,

� g(x) > 0 for x ∈ (0, 1),

� g is Lipschitz continuous on [0, 1].

The evolution of the continuum model with resampling function g is given by

dx(t) =
√
g(x(t)) dw(t), (1.7)

where (w(t))t≥0 is a standard Brownian motion. If we choose g(x) = x(1 − x),

we recognize the Fisher-Wright diffusion in (1.3). Since the Fisher-Wright diffusion

resamples at rate 1, the resampling rate in state x for the model in (1.7) is g(x)
x(1−x) .

The first condition on g ensures that once the genetic diversity is lost, i.e., there are

only ♡ or ♢ left in the population, it cannot return.

The drawback of the continuum model in (1.7) is that it does not have a duality

relation as in (1.6). Therefore this model is more difficult to analyse. Comparing

the continuum model in (1.7) with the continuum models where g = dx(1 − x) for

some constant d ∈ (0,∞), we are still able to analyse (1.7). This technique is called

comparison.
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Extensions of the Fisher-Wright model. The Fisher-Wright model can be ex-

tended in several ways to include other evolutionary forces. For example, selection

of a fitter type and mutation of genes can be included. Also, more than two gene

types can be included, which leads to the multi-type Fisher-Wright model. The ex-

tension to infinitely many gene types is called the Fleming Viot model. In the spa-

tial Fisher-Wright model, there are multiple colonies, each evolving according to the

Fisher-Wright model, and individuals are allowed to migrate. For all these extensions,

extensive research was done. For an overview of the state of the art we refer the reader

to [4]. The addition of a seed-bank to the Fisher-Wright model is relatively new and

was introduced in 2016 in [12]. The Fisher-Wright model with seed-bank will be the

building block of the spatial models considered in this thesis, and is introduced in the

next section.

§1.2.2 The Fisher-Wright model with seed-bank

The Fisher-Wright model with (strong) seed-bank defined in [12] consists of a single

colony with N ∈ N active individuals and M ∈ N dormant individuals. Each indi-

vidual can carry one of two types: ♡ or ♢. Let ϵ ∈ [0, 1] be such that ϵN is integer and

ϵN ≤M . Put δ = ϵN
M . The evolution of the population is described by a discrete-time

Markov chain that undergoes four transitions per step:

(1) From the N active individuals, (1 − ϵ)N are selected uniformly at random

without replacement. Each of these selected individuals resamples, i.e., adopts

the type of an active individual selected uniformly at random with replacement,

and remains active.

(2) Each of the ϵN active individuals not selected resamples, i.e., adopts the type

of an active individual selected uniformly at random with replacement, and

subsequently becomes dormant.

(3) From the M dormant individuals, δM = ϵN are selected uniformly at random

without replacement. These selected individuals become active. Since these

individuals come from the dormant population, they do not resample.

(4) Each of (1−δ)M dormant individuals not selected remains dormant and retains

its type.

Note that the total sizes of the active and the dormant population remain fixed.

During the evolution the dormant and the active population exchange individuals.

We will refer to the repository of the dormant population as the seed-bank. Fig. 1.3

depicts the first five generations of a population with 5 individuals in the active

population and 3 individuals in the dormant population. Fig. 1.3 also shows how in

the Fisher-Wright model with seed-bank genetic variability in the active population

can be lost, but can be reintroduced again due to the exchange with the dormant

population.

6
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Figure 1.3: Example of the evolution for a population with N = 5 active individuals and M =
3 dormant individuals. The solid lines within the active population represent resampling,
those between the active and the dormant population represent exchange with the seed-bank.
Only 1 active individual and 1 dormant individual exchange places per unit of time, which
corresponds to ϵ = 1

5
and δ = 1

3
. The relative size of the dormant and the active population

is K = 3
5
. Note that the genetic diversity in the active population is lost in generation t = 2,

but returns in generation t = 3 via the seed-bank.

Evolution equation. To formally describe the Fisher-Wright model with seed-

bank, we keep track of the fractions of individuals of type ♡ in the active and the

dormant population. Let c = ϵN = δM , i.e., c is the number of pairs of individuals

that change state. Label the N active individuals from 1 to N and the M dormant

individuals from 1 up to M . Write [N ] = {1, . . . , N} and [M ] = {1, . . . ,M}. Let
ξ(k) = (ξj(k))j∈[N ] ∈ {0, 1}[N ] be the random vector where ξj(k) = 1 if the j’th

active individual is of type ♡ at time k and ξj(k) = 0 if the j’th active individual is

of type ♢ at time k. Similarly, we let η(k) = (ηj(k))j∈[M ] ∈ {0, 1}[M ] be the random

vector where ηj(k) = 1 if the j’th dormant individual is of type ♡ at time k and

ηj(k) = 0 if the j’th dormant individual is of type ♢ at time k. Define

XN (k) =
1

N

∑
j∈[N ]

1{ξj(k)=1},

YM (k) =
1

M

∑
j∈[M ]

1{ηj(k)=1}.

(1.8)

Like for the Fisher-Wright model without seed-bank, we can pass to the continuum

model. To do so we let both the active and the dormant population size tend to

infinity, while keeping their relative sizes fixed, and speed up time proportional by

the size of the active population, i.e.,

lim
N→∞

L
[(
XN (⌊Nt⌋), YM (⌊Nt⌋)

)
t≥0

]
= L

[
(x(t), y(t))t≥0

]
. (1.9)
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Define

K =
size dormant population

size active population
=
M

N
, (1.10)

which is the relative size of the dormant population compared to the active population.

It was shown in [12] that the limiting process (x(t), y(t))t≥0 in (1.9) evolves according

to the stochastic differential equation

dx(t) = c [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) =
c

K
[x(t)− y(t)] dt,

(1.11)

where (w(t))t≥0 is a standard Brownian motion. The first term in the first line of

(1.11) and the term in the second line of (1.11) describe the exchange of active and

dormant individuals in the population. The second term in the first line of (1.11)

describes the resampling in the active population. Note that the dormant population

does not resample and hence evolves only due the exchange with the active population.

In [12] it was shown that in the continuum Fisher-Wright model with seed-bank

eventually only one type is left.

For later generalisations, we define the exchange rate

e =
c

K
, (1.12)

and rewrite equation (1.11) as

dx(t) = Ke [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) = e [x(t)− y(t)] dt.
(1.13)

The continuum process (x(t), y(t))t≥0 evolving according to (1.13) will be the build-

ing block of the models analyzed in this thesis. The evolution given in (1.13) is

schematically depicted in Fig. 1.4.

The seed-bank coalescent. To describe the genealogy of the continuum Fisher-

Wright model with seed-bank, we sample n active individuals and m dormant indi-

viduals from the population at some large time and describe their ancestral lineages.

We distinguish between active and dormant lineages by giving them labels A for active

and D for dormant. The lineages behave according to the following rules:

� Each pair of active lineages coalesces at rate 1, independently of all other lin-

eages.

� Each active lineage becomes dormant at rate Ke.

� Each dormant lineage becomes active at rate e.

Note that dormant lineages cannot coalesce: they can only become active.

Formally the lineages are decribed by the so-called seed-bank coalescent that

was introduced in [12]. Like the Kingman coalescent, the seed-bank coalescent is

8
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Figure 1.4: Schematic picture of the Fisher-Wright diffusion with seed-bank in (1.13). Active
individuals resample at rate 1 and become dormant at rate Ke. Dormant individuals become
active at rate e.

a partition-valued process, but in the seed-bank coalescent each partition element is

labeled by A or D to indicate whether the corresponding lineage is active or dormant.

In [12] it was shown that, as n and m tend to infinity, the ancestral lineages no longer

have a common ancestor a finite time back. Hence the seed-bank coalescent does not

come down from infinity in finite time. This result shows that the Fisher-Wright

model with seed-bank behaves qualitatively differently than the Fisher-Wright model

seed-bank.

Duality for the seed-bank model. For the Fisher-Wright model with seed-bank

we have a similar duality relation as for the Fisher-Wright model without seed-bank.

Let
N(s) = # active lineages left at time s,

M(s) = # dormant lineages left at time s.
(1.14)

Then the block-counting process (N(s),M(s))s≥0 has transition rates

(n,m) →


(n− 1,m), at rate

(
n
2

)
,

(n− 1,m+ 1), at rate nKe,

(n+ 1,m− 1), at rate me.

(1.15)

Let (x(t), y(t))t≥0 be the Fisher-Wright diffusion with seed-bank evolving according

to (1.13) and starting from state (x, y) ∈ [0, 1]2. Let (N(t),M(t))t≥0 be the block-

counting process starting from state (n,m) ∈ N2. Then, for all (n,m) ∈ N2, (x, y) ∈
[0, 1]2 and t ≥ 0, the following relation holds:

E(x,y)[(x(t))n(y(t))m] = E(n,m)[xN(t)yM(t)]. (1.16)

Here, the expectation on the left-hand side is taken over the Fisher-Wright diffusion

with seed-bank, and the expectation on the right-hand side is taken over the block-

9
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counting process starting in (n,m). Thus, also the Fisher-Wright model with seed-

bank has a moment dual.

Wake-up time distribution of individuals. It has been recognised that qual-

itatively different behaviour may occur when the wake-up time of individuals in the

seed-bank changes from having a thin tail to having a fat tail [55], [50]. Fat-tailed

behaviour of the wake-up times is observed in colonies of bacteria. The drawback of

the Fisher-Wright model with seed-bank is that it gives thin tails for the wake-up

time of individuals. If we define the wake-up time

τ = time a lineage spends in the seed-bank before it wakes up again, (1.17)

then

τ
d
=EXP(e). (1.18)

In Section 1.2.3 we will show how we can adapt the Fisher-Wright model with seed-

bank to allow for more general wake-up times without loosing the Markov property.

Extensions of the Fisher-Wright model with seed-bank. Eventhough the

addition of a seed-bank to the Fisher-Wright model is relatively new, in the past

five years extensive research was done on extensions of the Fisher-Wright model with

seed-bank. An overview of the state of the art is given in [54].

§1.2.3 The Fisher-Wright model with multi-layer
seed-bank

A key idea in this thesis is that we can enrich the seed-bank with internal states to

allow for fat tails and still preserve the Markov property for the evolution. To give the

seed-bank an internal structure, we colour the dormant individuals with countably

many colours m ∈ N0. Thus, instead of one seed-bank we have an infinite sequence

of seed-banks, each with its own colour. Active individuals that become dormant are

assigned a colour m at rate em. If an active individual is assigned a colour m, then it

exchanges with a dormant individual of colour m. The colour m-dormant individual

loses its colour when it becomes active, but retains its type. Therefore, during the

evolution the relative size of the active population and the m-coloured seed-bank is

fixed.

Evolution equation. Define

Km =
size m-dormant population

size active population
, m ∈ N0, (1.19)

which denotes the relative size of them-dormant population with respect to the active

population. Let (x(t))t≥0 denote the fraction of ♡ in the active population at time t,

and (ym(t))t≥0 the fraction of ♡ in the m-dormant population at time t. So, we keep

10
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Figure 1.5: Schematic picture of the Fisher-Wright diffusion with layered seed-bank in (1.20).
Active individuals resample at rate 1, but exchange with a countable sequence of dormant
populations. At rate Kmem an active individual becomes dormant with colour m. An m-
dormant individual becomes active at rate em.

track of the complete sequence of dormant populations. In the continuum limit, the

process (x(t), (ym(t))m∈N0
)t≥0 evolves according to

dx(t) =
∑
m∈N0

Kmem [ym(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dym(t) = em [x(t)− ym(t)] dt, m ∈ N0.

(1.20)

Comparing (1.20) to (1.13), we see that the active population exchanges with the

whole sequence of dormant populations. However, each dormant population only

evolves due to exchange with the active population. To ensure that active individuals

do not become dormant instantaneously, we must assume that∑
m∈N0

Kmem <∞. (1.21)

The evolution in (1.20) is depicted in Fig. 1.5.

Genealogy. Like for the Fisher-Wright model with seed-bank, we can describe the

genealogy of the population. At a large time we sample from the population n active

individuals, labeled by A, and km m-dormant individuals, labeled by Dm, form ∈ N0.

Then the lineages of the sampled individuals evolve according to the following rules.

� Each pair of active lineages coalesces at rate 1, independently of all other lin-

eages.

� Each active lineage becomes m-dormant at rate Kmem.

� Each m-dormant lineage becomes active at rate em.

Similarly as for the Fisher-Wright model with (non-layered) seed-bank, we can define

a layered seed-bank coalescent and a corresponding block-counting process.
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Fat-tailed wake-up times. We define χ to be the total rate at which an active

lineage becomes dormant, i.e.,

χ =
∑
m∈N0

Kmem. (1.22)

Note that χ <∞ by (1.21). The distribution of the wake-up time τ defined in (1.17)

for a lineage in the multi-layer seed-bank is given by

P(τ > t) =
∑
m∈N0

Kmem
χ

e−emt. (1.23)

Choosing the relative sizes of the seed-banks (Km)m∈N0
and the rates of exchange

(em)m∈N0
properly, we can mimic different wake-up time distributions. For example,

we can choose

Km ∼ Amα, em ∼ Bm−β , m→ ∞
A, B ∈ (0,∞), α, β ∈ R, α ≤ 1 < α+ β,

(1.24)

where ∼ means asymptotically equal. Then

P(τ > t) ∼ Ct−γ , t→ ∞, (1.25)

where γ = α+β−1
β and C = A

χβB
1−γΓ(γ), with Γ the Gamma-function. Therefore

we can choose the sizes Km and the rates em such that when we take the colours

into account we still have a Markov process, but when we ignore the colours in the

seed-bank we have a wake-up time that is fat-tailed.

Using the layered seed-bank model, we can choose the sequences (Km)m∈N0
and

(em)m∈N0
such that 0 < γ < 1

2 in (1.25). It turns out that in this case the Fisher-

Wright diffusion with seed-bank in (1.20) no longer eventually reach its fixed points.

(This was also observed in [11] for a non-Markovian seed-bank model.) Hence, in this

parameter regime, the layered seed-bank can prevent loss of genetic variability.

A key quantity in the Fisher-Wright model with layered seed-bank is the relative

size of the total seed-bank with respect to the active population:

ρ =
∑
m∈N0

Km. (1.26)

The case ρ = ∞ shows different behaviour than the case ρ <∞ (also this was observed

in [11]). For example, for the expected wake-up time τ is we find

E[τ ] =
ρ

χ
. (1.27)

In the next section we will turn to the layered Fisher-Wright model with seed-bank in

the spatial setting. Also there the cases ρ < ∞ and ρ = ∞ give rise to qualitatively

different long-term behaviour.
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§1.3 Summary of Part I

In Part I of this thesis we consider a spatial version of the continuum Fisher-Wright

models with seed-bank introduced in Sections 1.2.2–1.2.3. In the spatial version in-

dividuals live in colonies, each with their own seed-bank, and are allowed to migrate

between colonies. The underlying geographic space is a countable Abelian group G.

The spatial Fisher-Wright model without seed-bank has been the object of intense

study. A sample of relevant papers and overviews is [66], [17], [20], [25], [22], [33],

[29], [27], [24], [41]. In these papers the convergence of the system to equilibrium was

proven. Parameter regimes were identified in which the spatial system converges to a

mono-type equilibrium, i.e., the system grows locally mono-type clusters of only ♡ or

of only ♢, or in which the system converges to a multi-type equilibrium, i.e., locally

both types are present. The first type of long-term behaviour is called clustering, the

second type is called coexistence. It was shown that the dichotomy between clustering

and coexistence for the spatial Fisher-Wright model without seed-bank is completely

determined by the migration kernel according to which individuals migrate between

colonies. If the migration kernel is transient, then coexistence prevails, while if the

migration kernel is recurrent, then clustering prevails.

We expect that the presence of the seed-bank affects the long-time behaviour

of the spatial system not only quantitatively but also qualitatively. To understand

how this comes about, we must find ways to deal with the richer behaviour of the

population caused by the motion in and out of the seed-bank. In [28] a spatial model

with seed-bank, migration and mutation was analysed. There the probability for two

individuals drawn randomly from two colonies to be identical by decent was computed

as a function of the distance between the colonies.

The first goal in Part I is to prove convergence to equilibrium for the spatial Fisher-

Wright model with seed-bank, and to identify the parameter regimes for clustering and

coexistence. The second goal is to identify the role of the wake-up time. We will show

that if the expected wake-up time is finite, then the dichotomy between clustering

and coexistence is completely determined by the migration kernel and the seed-bank

has only a quantitative effect on the long-term behaviour. However, if we allow the

wake-up time to have infinite mean and moderately fat tails, then both the exchange

rates with the seed-bank and the migration kernel determine the dichotomy. In that

case the seed-bank has both a quantitative and a qualitative effect on the long-term

behaviour. If the wake-up time has very fat tails, then the dichotomy is completely

determined by the seed-bank, independently of the migration kernel.

In what follows we first introduce three models of increasing generality that are

studied in Part I. After that we state the main results of Part I in words and briefly

comment on the techniques used.

Basic ingredients for the models in Part I. We extend the continuum Fisher-

Wright models with seed-bank introduced in Sections 1.2.2–1.2.3 to three spatial

models of increasing generality. In each of the three models, we consider populations

of individuals of two types – either ♡ or ♢ – located in colonies on a geographic space

G that is a countable Abelian group. In each of the three models, the population in a
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colony consist of an active part and a dormant part. The repository of the dormant

population at colony i ∈ G is called the seed-bank at i ∈ G. Individuals in the active

part of colony i ∈ G can resample, migrate and exchange with a dormant population.

Individuals in the dormant part of colony i ∈ G can only exchange with the active

population. An active individual that resamples chooses uniformly at random another

individual from its colony and adopts its type. The rate of resampling can be state-

dependent and is controlled by a diffusion function g : [0, 1] → R≥0 that satisfies the

criteria for state-dependent resampling in Section 1.2.1. When an active individual

at colony i ∈ G migrates, it chooses a parent from another colony j ∈ G and adopts

its type. In each of the three models the migration is described by a migration kernel

a(·, ·), which is an irreducible G×G matrix of transition rates satisfying

a(i, j) = a(0, j − i) ∀ i, j ∈ G,
∑
i∈G

a(0, i) <∞. (1.28)

Here, a(i, j) has to be interpreted as the rate at which an active individual at colony

i ∈ G chooses an individual in the active part of colony j ∈ G and adopts its type. An

active individual that becomes dormant exchanges with a randomly chosen dormant

individual that becomes active. The dormant part of the population only evolves due

to exchange of individuals with the active part of the population.

The three models we introduce below differ in the way the active population

exchanges with the dormant population. However, in each of the three models the ex-

change mechanism guarantees that the sizes of the active and the dormant population

stay fixed over time.

Since we look at continuum models obtained from individual-based models, we

are interested in the fraction of individuals of type ♡ in the different colonies.

Model 1: single-layer seed-bank. In this model we consider a multi-colony ver-

sion of the continuum model in (1.13). Each colony i ∈ G has an active part A and

a dormant part D. For i ∈ G and t ≥ 0, let xi(t) denote the fraction of individuals

in colony i of type ♡ that are active at time t, and yi(t) the fraction of individuals

in colony i of type ♡ that are dormant at time t. Like in (1.10) in Section 1.2.2, let

K ∈ (0,∞) be the relative size of the dormant population w.r.t. the active popula-

tion, and let e be the rate at which active and dormant individuals exchange. We

assume K and e to be the same for all colonies. The fractions of individuals of type ♡
in the population evolve according to the system of stochastic differential equations

(SSDE)

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
g(xi(t)) dwi(t) (1.29)

+Ke [yi(t)− xi(t)] dt,

dyi(t) = e [xi(t)− yi(t)] dt, i ∈ G, (1.30)

where (wi(t))t≥0, i ∈ G, are independent standard Brownian motions. The first term

in (1.29) describes the migration of active individuals from i to j at rate a(i, j). The
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second term in (1.29) describes the resampling of individuals at rate g(x)
x(1−x) in state

x. The third term in (1.29) together with the term in (1.30) describe the exchange of

active and dormant individuals at rate e ∈ (0,∞).

Model 2: multi-layer seed-bank. In this model we consider a multi-colony ver-

sion of the continuum model in (1.20). Therefore, for each i ∈ G a colony now consists

of an active part A and a sequence (Dm)m∈N0
of dormant parts, labeled by their colour

m ∈ N0. As before, for i ∈ G, let xi(t) denote the fraction of individuals in colony i of

type ♡ that are active at time t, but now let yi,m(t) denote the fraction of individuals

in colony i of type ♡ that are dormant with colour m at time t. Let em ∈ (0,∞) be

the rate at which active individuals exchange with dormant individuals of colour m,

and let Km ∈ (0,∞) denote the relative size of the m-dormant population w.r.t. the

active population as in (1.19). We assume em and Km to be the same for all colonies.

Then the fraction of ♡ in the population evolves according to the SSDE

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
g(xi(t)) dwi(t) (1.31)

+
∑
m∈N0

Kmem [yi,m(t)− xi(t)] dt,

dyi,m(t) = em [xi(t)− yi,m(t)] dt, m ∈ N0, i ∈ G, (1.32)

where (wi(t))t≥0, i ∈ G, are independent standard Brownian motions. Comparing

(1.31)–(1.32) with (1.29)–(1.30), we see that active individuals migrate (the first term

in (1.31)) and resample (the second term in (1.31)) in the same way, but now interact

with a sequence of dormant populations (the third term in (1.31) and the term (1.32)).

The dormant individuals only exchange with the active individuals.

Model 3: multi-layer seed-bank with displaced seeds. We can extend the

mechanism of Model 2 by allowing active individuals that become dormant to do so

in a randomly chosen colony. This amounts to introducing a sequence of irreducible

displacement kernels am(·, ·), m ∈ N0, satisfying

am(i, j) = am(0, j − i) ∀ i, j ∈ G,
∑
i∈G

am(0, i) = 1 ∀m ∈ N0, (1.33)

and replacing (1.31)–(1.32) by

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
g(xi(t)) dwi(t) (1.34)

+
∑
j∈G

∑
m∈N0

Kmem am(j, i) [yj,m(t)− xi(t)] dt,

dyi,m(t) =
∑
j∈G

em am(i, j) [xj(t)− yi,m(t)] dt, m ∈ N0, i ∈ G. (1.35)

Here, the third term in (1.34) together with the term in (1.35) describe the switch

of colony when individuals exchange between active and dormant. Namely, with
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probability am(i, j) simultaneously an active individual in colony i becomes dormant

with colour m in colony j and a randomly chosen dormant individual with colour m

in colony j becomes active in colony i.

Two key quantities. Like in Section 1.2.3, in Models 2 and 3 we must assume that

χ =
∑
m∈N0

Kmem <∞ (1.36)

in order to make sure that active individuals do not become dormant instantly. Like

in Section 1.2.3, in Models 2 and 3 we set

ρ =
∑
m∈N0

Km =
size dormant population

size active population
. (1.37)

It turns out that χ and ρ are key quantities of the system. In particular, we will see

that the long-time behaviour of Models 2 and 3 is different for ρ <∞ and ρ = ∞.

Main results of Part I.

(1) For all three models the system convergences to a unique equilibrium that ex-

hibits a dichotomy between clustering and coexistence. In all three models the

density of ♡ in the population is preserved over time, and in both the clustering

case and the coexistence case the equilibrium depends on the initial density of ♡.

In the coexistence case the limiting equilibrium also depends on the resampling

function, the exchange rates with the seed-bank and the migration kernel.

(2) For all three models we identify the parameter regimes for clustering and co-

existence. These parameter regimes do not depend on the resampling function

g.

(2a) In Model 1 the wake-up time has finite mean. The dichotomy between

coexistence and clustering is controlled by the migration only and the seed-

bank has no effect on the dichotomy. In particular, clustering prevails when

the symmetrised migration kernel is recurrent, while coexistence prevails

when it is transient. This result is the classical dichotomy for populations

without seed-bank [14].

(2b) In Model 2 the wake-up time can have both finite mean and infinite mean.

If the wake-up time has finite mean, then the dichotomy between coexist-

ence and clustering is controlled by the migration only and the seed-bank

has no effect, similarly as for Model 1. If the wake-up time has infinite

mean with moderately fat tails, then the dichotomy is controlled by both

the migration and the seed-bank. In particular, the parameter regimes for

clustering and coexistence reveal an interesting interplay between rates for

migration and rates for exchange with the seed-bank. If the wake-up time

has infinite mean with very fat tails, then the dichotomy is controlled by

the seed-bank only and the migration has no effect. For infinite mean
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wake-up times it turns out that in the coexistence regime the seed-banks

with colour m→ ∞ are in a state that is almost surely equal to the initial

density of ♡ in the population. Therefore deep seed-banks become determ-

inistic.

(2c) In Model 3, the extra migration of active individuals that become dormant

makes coexistence more likely. This extra migration can be incorperated

into the dichotomy criterion obtained for model 2.

Techniques used in Part I. To prove the dichotomy, we first consider the three

models when the resampling function is g(x) = dx(1−x), d ∈ R+. For these diffusion

functions we have duality relations similarly as those introduced in Section 1.2. As will

be explained in detail in Part I, the lineages in the dual of the spatial model behave

like a set of coalescing random walks. Afterwards, we can use comparison techniques

to extend the results to a general resampling function g. To prove convergence to a

unique equilibrium in the case of coexistence, we make use of coupling techniques.

§1.4 Summary of Part II

Part II of this thesis focuses on spatial populations with seed-bank where the under-

lying geographic space is the so-called hierarchical group, which we introduce next.

Hierachical lattice. The hierarchical lattice of order N is given by

ΩN =

{
ξ = (ξk)k∈N0

: ξk ∈ {0, 1, . . . , N − 1},
∑
k∈N0

ξk <∞

}
, (1.38)

which with addition modulo N becomes the hierarchical group of order N (see

Fig. 1.6). The hierarchical distance is defined by

dΩN
(ξ, η) = dΩN

(0, ξ − η) = min {k ∈ N0 : ξl = ηl ∀ l ≥ k} , ξ, η ∈ ΩN . (1.39)

Intuitively, depicting ΩN as the leaves of an infinite tree as in Fig. 1.6, the distance

between two points on ΩN is the number of branches we have to travel upwards in

the tree to find a common node.

The choice of ΩN as geographic space plays an important role for population

models, and was first exploited in [65] in an attempt to formalise ideas coming from

ecology. One interpretation is that the sequence (ξk)k∈N0
encodes the ‘address’ of

colony ξ: ξ0 is the ‘house’, ξ1 is the ‘street’, ξ2 is the ‘village’, ξ3 is the ‘province’, ξ4
is the ‘country’, and so on.

The goal of Part II of this thesis is to study the spatial Fisher-Wright model

with seed-bank on the hierarchical lattice when the order N of the hierarchical group

tends to infinity. This limit is called the hierarchical mean-field limit. To analyse

the limiting system, it turns out that we have to consider different space-time scales.

In what follows we first set up the model. After that we explain how the different

space-time scales come into play in a natural way.
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Figure 1.6: Close-ups of a 1-block, a 2-block and a 3-block in the hierarchical group of
order N = 3. The elements of the group are the leaves of the tree (indicated by □’s). The
hierarchical distance between two elements in the group is the graph distance to the most
recent common ancestor in the tree: dΩ3(η, ζ) = 2 for η and ζ in the picture.

Hierarchical migration. We construct a migration kernel aΩN (·, ·) on the hier-

archical group ΩN built from a sequence of migration rates

c = (ck)k∈N0
∈ (0,∞)N0 (1.40)

that do not depend on N . Individuals migrate as follows:

� For all k ∈ N, each individual chooses at rate ck−1/N
k−1 the block of radius k

around its present location and selects a colony uniformly at random from that

block. Subsequently it selects an individual in this colony uniformly at random

and adopts its type.

Since the block of radius k contains Nk colonies, the migration kernel is given by

aΩN (η, ξ) =
∑

k≥dΩN
(η,ξ)

ck−1

Nk−1

1

Nk
, η, ξ ∈ ΩN , η ̸= ξ, aΩN (η, η) = 0, η ∈ ΩN .

(1.41)

We assume that ∑
ξ∈ΩN

aΩN (η, ξ) <∞ (1.42)

to guarantee that the total migration rate per individual is finite.

Evolution on the hierarchical lattice. The evolution of the single colonies in

Part II is similar to the evolution of the single colonies in Part I in Model 2. The

difference is that in the hierarchical setting we let the migration rates and the exchange

rates depend on the order N of the hierarchical group. For ξ ∈ ΩN , define

xξ(t) = the fraction of active individuals of type ♡ at colony ξ at time t,

yξ,m(t) = the fraction of m-dormant individuals of type ♡ at colony ξ and time t.
(1.43)

Active individuals exchange with dormant individuals with colour m at rate em
Nm ,

where em ∈ (0,∞). Like in (1.19), let Km be the relative size of the m-dormant pop-

ulation with respect to the active population. Like in Part I, the sequences (Km)m∈N0
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and (em)m∈N0
are the same for all colonies. Also here we allow for a general diffusion

function g : [0, 1] → R≥0 satisfying the conditions in Section 1.2.1.

The fraction of individuals of type ♡ in the population evolves according to the

SSDE

dxξ(t) =
∑
η∈ΩN

aΩN (ξ, η)[xη(t)− xξ(t)] dt+
√
g(xξ(t)) dwξ(t)

+
∑
m∈N0

Kmem
Nm

[yξ,m(t)− xξ(t)] dt,

dyξ,m(t) =
em
Nm

[xξ(t)− yξ,m(t)] dt, m ∈ N0, ξ ∈ ΩN ,

(1.44)

where we assume that
∑
m∈N0

Kmem
Nm < ∞. The first term in the first equation

describes the evolution of the active population at colony ξ due to migration, the

second term due to resampling. The third term in the first equation and the term

in the second equation describe the exchange between the active and the dormant

population at colony ξ (see Fig. 1.7). Like the migration rates, the exchange rates

between the active and the dormant population depend on the order N of the hier-

archical group. Since dormant individuals are not subject to resampling or migration,

the dynamics of the dormant population is completely determined by the exchange

with the active population.

A

D0

D1

Dm

exchangeresampling

migration

K0e0

e0
K1e1/N

e1/N

Kmem/N
m

em/N
m

Figure 1.7: Active individuals (A) are subject to migration, resampling and exchange with
dormant individuals (D). When active individuals become dormant they are assigned a colour
(Dm, m ∈ N0), which they lose when they become active again. The resampling rate in the
active popluation depends on the type-♡ frequency x and equals g(x)/x(1− x).

Evolution of block averages. The choice of the migration kernel in (1.41) implies

that, for every k ∈ N, at rate ≍ 1
Nk individuals choose a space horizon of distance

k + 1 and subsequently choose a random colony from that space horizon. Therefore,

in order to see interactions over a distance k+1 for large N , we need to speed up time
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by a factor Nk. A similar observation applies to the interaction with the seed-bank.

Dormant individuals with colour k become active at rate ≍ 1
Nk . Therefore, in order

to see interactions with the k-dormant population for large N , we need to speed up

time by a factor Nk. To analyse the effective interaction on different time scales Nk,

k ∈ N0 we introduce successive block averages.

Definition 1.4.1. For k ∈ N0, let

Bk(0) = {η ∈ ΩN : dΩN
(0, η) ≤ k}

denote the k-block around 0. Define the k-block average around 0 at time Nkt by

xΩN

k (t) =
1

Nk

∑
η∈Bk(0)

xη(N
kt),

yΩN

m,k(t) =
1

Nk

∑
η∈Bk(0)

yη,m(Nkt), m ∈ N0.

(1.45)

■

The k-block average represents the dynamics of the system averaged over the Nk

colonies around 0 with time speeded up by a factor Nk. Therefore we say that the

k-block average represents the dynamics of the system on space-time scale k, or on

hierarchical level k.

To obtain the hierarchical mean-field limit, we analyse the block averages defined

above in the limit as N → ∞, for which we expect a seperation of space-time scales.

It turns out that in this limit each of the block averages preforms an autonomous

diffusion, similar to the diffusion preformed by a single colony.

Main results Part II.

(1) For fixed N the results obtained in Part I are applied to the hierarchical model

with seed-bank. For two classes of parameters the clustering regime is identified.

In case the wake-up time has infinite mean, the clustering regime exhibits a trade

off between the exchange rates and the migration rates.

(2) The hierarchical mean-field limit is identified, i.e., the evolution of the k-block

averages defined in (1.45) is determined in the limit N → ∞. For all k ∈ N0, the

limiting k-block averages evolve according to a k-dependent SSDE, from which

we can read off the following results:

(2a) For each k ∈ N0, if N → ∞, then the migration terms in the evolution of

the active k-block average can be replaced by a drift towards the active

block one level up, i.e., a drift towards the active (k + 1)-block average.

This phenomenon is called decoupling.

(2b) For each k ∈ N0, if N → ∞, then the resampling rate of the active k-

block average is the average resampling rate of the colonies within the

k-block. The resampling rate of the active k-block is given by the k-fold
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iteration of a renormalisation transformation F applied to the original

diffusion function g. The resulting diffusion function F (k)g is called the

renormalised diffusion function.

(2c) For each k ∈ N0, if N → ∞, then the active k-block exchanges only with

the dormant k-block of colour k. Therefore we say that the k-dormant

population is the effective seed-bank on level k. The k-block averages of

dormant populations of colours m < k start equalising with the active k-

block averages and are called fast seed-banks. The seed-banks of colours

m > k do not change and stay in a fixed state. These seed-banks are

refered to as slow seed-banks.

(2d) For each k ∈ N0, if N → ∞, then the migration terms in the evolution

of the active k-block averages, induce a drift towards the (k + 1)-block

average. It is in this way that subsequent block averages are connected.

The connection between different hierarchical levels is captured by what is

called the interaction chain.

(3) With the help of the interaction chain, the attracting orbit of the renormalisa-

tion transformation acting on the space of diffusion functions is analysed. In

the clustering regime and after appropriate scaling, the renormalised diffusion

function F (k)g converges to the Fisher-Wright diffusion function as k → ∞,

irrespective of the diffusion function g controlling the resampling in the single

colonies. This convergence shows that the hierarchical system exhibits uni-

versality on large space-time scales in terms of the scaling limit. For several

subclasses of parameters the scaling of the renormalised diffusion function is

identified. This scaling reveals a delicate interplay between the parameters con-

trolling the migration and the seed-bank and also determines the speed at which

mono-type clusters grow in space and time.

Techniques used in Part II. To prove the results in Part II we use the abstract

schemes for mean-field analysis that were introduced in [21], [25] and [15]. To analyse

the behaviour of the seed-bank, we use coupling results and a random walk interpret-

ation of the system that is proven in Part I. For the analysis of the renormalisation

transformation we proceed like in [5].

§1.5 Further research

Two topics that would be interesting to study are the finite-systems scheme and the

genealogy and cluster formation.

Finite-systems scheme. In Part I we analyse a spatial version of the Fisher-Wright

model with seed-bank where the underlying space is a countable Abelian group. A key

question is how well the infinite systems introduced in Part I can approximate “real-

world” finite systems. To answer this question, we use the so-called finite-systems

scheme that was introduced in [15]. In the finite-systems scheme we trucate both the
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geographic space and the seed-bank, and subsequently let both the truncation level

and the time tend to infinity, properly tuned together.

In an upcoming paper [44], we focus on Model 2, introduced in Section 1.3 and

evolving according to (1.31)–(1.32). We study the truncated system in the parameter

regime of coexistence for the non-truncated system. This parameter regime is iden-

tified in one of the main theorems in Part I. For truncated finite systems, we always

get clustering. To obtain a meaningful scaling limit, the truncation level and the time

are scaled in such a way that we are just at the verge of seeing the clustering of the

finite system coming in. We find that, with this scaling, the finite system behaves like

the infinite system in equilibrium in the coexistence regime, but with a density of ♡
that is random.

Again we see a difference in behaviour between ρ <∞ and ρ = ∞. In case ρ <∞,

we can adapt classical techniques to analyse the finite-systems scheme and the results

lead to a single universality class. In case ρ = ∞, we can tune the speed at which the

seed-bank tends to infinity relative to the speed at which the geographic space tends

to infinity. This leads to new phenomena, and different universality classes appear.

Cluster formation and genealogy. It would be interesting to study the growth

of monotone clusters in the spatial setting. A short introduction to cluster formation

will be given in the setting of the hierarchical group in Part II. However, it would be

interesting to see what the effect of the seed-bank is on the cluster formation. Closely

related to the cluster formation is the genealogy. Scaling of the genealogy leads to

continuum random trees with dormancy. We have not yet started this part of the

research.

§1.6 Outline of the thesis

Part I of this thesis is based on [43]. It treats the general setting of spatial popula-

tions with seed-bank. In Chapter 2 we formally introduce the models of Section 1.3,

and subsequently state the main results about well-posedness, duality and long-term

behaviour. Chapter 3 is devoted to the proofs of the main results stated in Chapter 2.

Part II is based on the upcoming paper [45]. It treats the spatial hierarchical

seed-bank model introduced in Section 1.4. In Chapter 4 we formally introduce the

hierarchical seed-bank model and subsequently state the main results about multi-

scaling renormalisation and universality. Chapters 5–10 are devoted to the proofs of

the main results stated in Chapter 4.
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