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CHAPTER 1
Introduction

§1.1 Spatial populations with seedbank

In populations with a seed-bank, individuals can temporarily become dormant and re-

frain from reproduction, until they can become active again. Seed-banks are observed

in many taxa, including plants, bacteria and other micro-organisms. Typically, they

arise as a response to unfavourable environmental conditions. The dormant state of

an individual is characterised by low metabolic activity and interruption of phenotypic

development (see e.g. [55]). After a varying and possibly large number of generations,

a dormant individual can be resuscitated under more favourable conditions and re-

prise reproduction after having become active again. This strategy is known to have

important implications for population persistence, maintenance of genetic variability

and stability of ecosystems, (see e.g. [54]). It acts as a buffer against evolutionary

forces such as genetic drift, selection and environmental variability.

Various attempts were made to include a seed-bank in already existing mathem-

atical models that describe the genetic evolution of populations (see [50], [11], [10]

and [70].) However, after inclusion of the seed-bank these models become complex,

because they have long memory. In [12] the so-called “two-type Fisher-Wright model

with seed-bank” was introduced. This was the first model that describes the evolution

of a population with seed-bank as a Markov process. In this model individuals move

in and out of the seed-bank at prescribed rates. Outside the seed-bank individuals

are subject to resampling, while inside the seed-bank their resampling is suspended.

Both the long-time behaviour and the genealogy of the population were analysed in

detail. In particular, it was shown that the seed-bank increases the genetic variability

of the population.

The goal of this thesis is to extend the seed-bank model introduced in [12] to

the spatial setting where individuals can migrate between different colonies. We

analyse the long-time behaviour of the evolution of a spatial population with seed-

bank in different settings. We show how the seed-bank increases the genetic variability,

compared to spatial population models without seed-bank. In particular, we show how

certain types of seed-banks can even prevent the loss of genetic variability altogether.
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1 §1.2 Modeling population genetics

We give a short introduction to modeling genetic evolution of populations. We also

introduce two important tools to analyse the genetic evolution in populations, namely,

the Kingman coalescent and duality.

§1.2.1 The Fisher-Wright model

One of the driving forces in the genetic evolution of populations is genetic drift.

Genetic drift is the evolutionary mechanism that selects genes randomly. To illustrate

the concept of genetic drift, consider a population of turtles. Each year the turtles lay

plenty of eggs on the beach, but only a few of these eggs grow into a mature turtle.

Which of the eggs will do so is random. In this way, randomness plays an important

part in the genetic evolution of populations, and this randomness is called genetic

drift.

In mathematics genetic drift is modeled through the Fisher-Wright model. In

the Fisher-Wright model we consider a population of N individuals. Each individual

can carry one of two genetic types, denoted by ♡ and ♢. In each generation all the

individuals will reproduce themselves according to the following rule:

� Each individual chooses uniformly at random an individual from the population

and adopts its type. The chosen individual may be the individual itself.

This way of modeling reproduction is called resampling. Note that the number of

individuals remains fixed during the evolution. Since we mostly consider very large

populations without external evolutionary forces, we may assume the population size

to be approximately constant. Therefore the assumption that the population size

remains fixed is reasonable. An example of a population of 5 individuals is shown in

Fig. 1.1. The resampling mechanism can be interpreted as follows: Each individual

in the population gets a random number of offspring between 1 and N , and the

total number of offspring in the next generation is N . This gives a more natural

interpretation of resampling, but the way resampling is phrased above makes the

mathematical analysis easier.

Evolution equation. To describe the genetic evolution in the population, we ana-

lyse the fraction of individuals of type♡. Label theN individuals by [N ] = {1, . . . , N}.
Define ξ(k) = (ξj(k))j∈[N ] ∈ {0, 1}[N ] as the random vector where ξj(k) = 1 if the

j’th individual is of type ♡ at time k and ξj(k) = 0 if the j’th individual is of type ♢
at time k. Then

XN (k) =
1

N

∑
j∈[N ]

1{ξj(k)=1} (1.1)

is the fraction of individuals of type ♡ in generation k. Since there are two types of

individuals in the population, the fraction of individuals of type ♢ in generation k is

given by 1−XN (k). The distribution of XN (k+ 1) given XN (k) is BIN(N,XN (k)).

A key question is whether eventually there is only one type of individual left in the

2



§1.2. Modeling population genetics

C
h
a
p
t
e
r
1

♡ ♡ ♡♢ ♢
♡♢ ♢ ♢ ♢

♡♢ ♢ ♢ ♢
♡ ♡♢ ♢ ♢

♡ ♡♢ ♢ ♢0

1

2

3

4

t

Figure 1.1: Example of the evolution for a population with N = 5 individuals in 5 generations.
The solid lines within the active population represent resampling in the first generation.

population, or there are always two types of individuals in the population. If only

one of the two types is left, then we say that genetic variability is lost. For a finite

population, genetic variability is lost eventually. The expected time until this happens

is of order N , the size of the population [30].

In this thesis we look at genetic evolution in populations where the number of

individuals tends to infinity. This large population model is referred to as the con-

tinuum model. To obtain this continuum model, we let the number of individuals in

the population tend to infinity and speed up time proportionally to the number of

individuals in the population, i.e.,

lim
N→∞

L[
(
XN (⌊Nt⌋)

)
t≥0

]. (1.2)

Thus, we observe larger and larger populations on time scales where these populations

start to loose their genetic variability. The limit in (1.2) is the law of the continuous-

time process (x(t))t≥0 that evolves according to the stochastic differential equation

(SDE)

dx(t) =
√
x(t)(1− x(t)) dw(t), (1.3)

where (w(t))t≥0 is a standard Brownian motion. Its initial law is given by L[x(0)] =
limN→∞ L[XN (0)]. The process (x(t))t≥0 evolving according to (1.3) is called the

Fisher-Wright diffusion and has state space [0, 1]. The stochastic differential equation

(SDE) in (1.3) has a unique solution that is a Markov process (see [72]). The fixed

points of (1.3) are 0 (only individuals of type ♢ are left) and 1 (only individuals of

type ♡ are left). The Fisher-Wright diffusion reaches its fixed points in finite time

[30].

Geneology. After sampling n ∈ N individuals from a large population at some

large time, we can ask ourselves what the lineages of these n individuals are. If two of

the n sampled individuals have a common ancestor a time s backwards in time, then

their lineages coalesce, ( see Figure 1.2). It turns out that if we sample individuals

from the continuum model, then any two lineages coalesce at rate 1, independently

3
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s

1 2 3 4 5 6
{{1}, {2}, {3}, {4}, {5}, {6}}
{{1}, {2}, {3}, {4}, {5, 6}}
{{1}, {2}, {3, 4}, {5, 6}}

{{1, 2}, {3, 4}, {5, 6}}

{{1, 2, 3, 4}, {5, 6}}

{{1, 2, 3, 4, 5, 6}}

Figure 1.2: Example of a genealogy of 6 individuals sampled from a Fisher-Wright diffusion.
The corresponding Kingman coalescent is written on the right. Each time two lineages merge,
the corresponding partition elements merge. Time is indicated by s and is running backwards.

of the other lineages. The ancestral lineages together are called the genealogy of the

n individuals.

The process that formally describes the genealogy of the n sampled individuals

in the continuum model is called the Kingman coalescent. The Kingman coalescent

is a partition-valued process that at time s = 0 assigns to each of the n individuals

a partition element, i.e., at time s = 0 the Kingman coalescent starts from state

{{1}, {2}, . . . , {n}}. If two lineages coalesce, then the corresponding two partition

elements of the Kingman coalescent merge (see Fig. 1.2). Thus, any two partition

elements merge at rate 1, independently of the other partition elements. The Kingman

coalescent describes how the genetic evolution of a population took place in the past.

The Kingman coalescent runs backwards in time. For this reason it is sometimes

called the backward process. In contrast, the Fisher-Wright diffusion is called the

forward process.

Since in the Fisher-Wright model individuals inherit their type from their parents,

any two individuals whose lineages have a common ancestor are of the same type. If

the number of sampled individuals tends to infinity, then the related ancestral lineages

still have a common ancestor a finite time s backwards, (see [30]). Consequently, all

the individuals in the population are of the same type and genetic variability is lost.

We say that the Kingman coalescent comes down from infinity in finite time. This is

the backward counterpart of the fact that the Fisher-Wright diffusion hits its fixed

points in finite time.

Duality. Related to the coalescent process is the block-counting process. Suppose

that at some large time t > 0 we sample n individuals from a population evolving ac-

4
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cording to the Fisher-Wright diffusion in (1.3). The block counting process (N(s))s≥0

counts the number of ancestral lineages when we traverse s backwards in time,

N(s) = # lineages left at time s. (1.4)

Since any two lineages merge at rate 1, the process (N(s))s≥0 has transition rates

n→ n− 1 at rate

(
n

2

)
. (1.5)

Therefore the block-counting process is a death-process. Like the Kingman coalescent,

the block-counting process is a backward process.

Let (x(t))t≥0 be the Fisher-Wright diffusion starting from state x ∈ [0, 1]. Let

(N(t))t≥0 be the block-counting process starting from n ∈ N. Then, for all n ∈ N,
x ∈ [0, 1] and t ≥ 0, the following relation holds:

Ex[(x(t))n] = En[xN(t)]. (1.6)

Here the expectation on the left-hand side is taken over the Fisher-Wright diffusion

(x(t))t≥0 and the expectation on the right-hand side is taken over the block-counting

process (N(t))t≥0. The relation is called moment duality. This moment duality allows

us to calculate all the moments of the Fisher-Wright diffusion at a given time t in

terms of the death process at time t, which is simple to analyse. Note that the duality

relation also expresses a relation between the backward and the forward processes.

State-dependent resampling rates. In the Fisher-Wright model individuals res-

ample at rate 1. However, it is natural to allow for resampling rates that depend on

the state of the population. To do this, let g : [0, 1] → R≥0 be any function that

satisfies

� g(0) = g(1) = 0,

� g(x) > 0 for x ∈ (0, 1),

� g is Lipschitz continuous on [0, 1].

The evolution of the continuum model with resampling function g is given by

dx(t) =
√
g(x(t)) dw(t), (1.7)

where (w(t))t≥0 is a standard Brownian motion. If we choose g(x) = x(1 − x),

we recognize the Fisher-Wright diffusion in (1.3). Since the Fisher-Wright diffusion

resamples at rate 1, the resampling rate in state x for the model in (1.7) is g(x)
x(1−x) .

The first condition on g ensures that once the genetic diversity is lost, i.e., there are

only ♡ or ♢ left in the population, it cannot return.

The drawback of the continuum model in (1.7) is that it does not have a duality

relation as in (1.6). Therefore this model is more difficult to analyse. Comparing

the continuum model in (1.7) with the continuum models where g = dx(1 − x) for

some constant d ∈ (0,∞), we are still able to analyse (1.7). This technique is called

comparison.
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Extensions of the Fisher-Wright model. The Fisher-Wright model can be ex-

tended in several ways to include other evolutionary forces. For example, selection

of a fitter type and mutation of genes can be included. Also, more than two gene

types can be included, which leads to the multi-type Fisher-Wright model. The ex-

tension to infinitely many gene types is called the Fleming Viot model. In the spa-

tial Fisher-Wright model, there are multiple colonies, each evolving according to the

Fisher-Wright model, and individuals are allowed to migrate. For all these extensions,

extensive research was done. For an overview of the state of the art we refer the reader

to [4]. The addition of a seed-bank to the Fisher-Wright model is relatively new and

was introduced in 2016 in [12]. The Fisher-Wright model with seed-bank will be the

building block of the spatial models considered in this thesis, and is introduced in the

next section.

§1.2.2 The Fisher-Wright model with seed-bank

The Fisher-Wright model with (strong) seed-bank defined in [12] consists of a single

colony with N ∈ N active individuals and M ∈ N dormant individuals. Each indi-

vidual can carry one of two types: ♡ or ♢. Let ϵ ∈ [0, 1] be such that ϵN is integer and

ϵN ≤M . Put δ = ϵN
M . The evolution of the population is described by a discrete-time

Markov chain that undergoes four transitions per step:

(1) From the N active individuals, (1 − ϵ)N are selected uniformly at random

without replacement. Each of these selected individuals resamples, i.e., adopts

the type of an active individual selected uniformly at random with replacement,

and remains active.

(2) Each of the ϵN active individuals not selected resamples, i.e., adopts the type

of an active individual selected uniformly at random with replacement, and

subsequently becomes dormant.

(3) From the M dormant individuals, δM = ϵN are selected uniformly at random

without replacement. These selected individuals become active. Since these

individuals come from the dormant population, they do not resample.

(4) Each of (1−δ)M dormant individuals not selected remains dormant and retains

its type.

Note that the total sizes of the active and the dormant population remain fixed.

During the evolution the dormant and the active population exchange individuals.

We will refer to the repository of the dormant population as the seed-bank. Fig. 1.3

depicts the first five generations of a population with 5 individuals in the active

population and 3 individuals in the dormant population. Fig. 1.3 also shows how in

the Fisher-Wright model with seed-bank genetic variability in the active population

can be lost, but can be reintroduced again due to the exchange with the dormant

population.
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♡♢ ♢ ♢ ♢ ♡ ♡♢
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♡ ♡♢ ♢ ♢ ♡ ♡♢

♡ ♡♢ ♢ ♢ ♡ ♢ ♢0

1

2

3

4

t

Dormant
population

Active
population

Figure 1.3: Example of the evolution for a population with N = 5 active individuals and M =
3 dormant individuals. The solid lines within the active population represent resampling,
those between the active and the dormant population represent exchange with the seed-bank.
Only 1 active individual and 1 dormant individual exchange places per unit of time, which
corresponds to ϵ = 1

5
and δ = 1

3
. The relative size of the dormant and the active population

is K = 3
5
. Note that the genetic diversity in the active population is lost in generation t = 2,

but returns in generation t = 3 via the seed-bank.

Evolution equation. To formally describe the Fisher-Wright model with seed-

bank, we keep track of the fractions of individuals of type ♡ in the active and the

dormant population. Let c = ϵN = δM , i.e., c is the number of pairs of individuals

that change state. Label the N active individuals from 1 to N and the M dormant

individuals from 1 up to M . Write [N ] = {1, . . . , N} and [M ] = {1, . . . ,M}. Let
ξ(k) = (ξj(k))j∈[N ] ∈ {0, 1}[N ] be the random vector where ξj(k) = 1 if the j’th

active individual is of type ♡ at time k and ξj(k) = 0 if the j’th active individual is

of type ♢ at time k. Similarly, we let η(k) = (ηj(k))j∈[M ] ∈ {0, 1}[M ] be the random

vector where ηj(k) = 1 if the j’th dormant individual is of type ♡ at time k and

ηj(k) = 0 if the j’th dormant individual is of type ♢ at time k. Define

XN (k) =
1

N

∑
j∈[N ]

1{ξj(k)=1},

YM (k) =
1

M

∑
j∈[M ]

1{ηj(k)=1}.

(1.8)

Like for the Fisher-Wright model without seed-bank, we can pass to the continuum

model. To do so we let both the active and the dormant population size tend to

infinity, while keeping their relative sizes fixed, and speed up time proportional by

the size of the active population, i.e.,

lim
N→∞

L
[(
XN (⌊Nt⌋), YM (⌊Nt⌋)

)
t≥0

]
= L

[
(x(t), y(t))t≥0

]
. (1.9)
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Define

K =
size dormant population

size active population
=
M

N
, (1.10)

which is the relative size of the dormant population compared to the active population.

It was shown in [12] that the limiting process (x(t), y(t))t≥0 in (1.9) evolves according

to the stochastic differential equation

dx(t) = c [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) =
c

K
[x(t)− y(t)] dt,

(1.11)

where (w(t))t≥0 is a standard Brownian motion. The first term in the first line of

(1.11) and the term in the second line of (1.11) describe the exchange of active and

dormant individuals in the population. The second term in the first line of (1.11)

describes the resampling in the active population. Note that the dormant population

does not resample and hence evolves only due the exchange with the active population.

In [12] it was shown that in the continuum Fisher-Wright model with seed-bank

eventually only one type is left.

For later generalisations, we define the exchange rate

e =
c

K
, (1.12)

and rewrite equation (1.11) as

dx(t) = Ke [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) = e [x(t)− y(t)] dt.
(1.13)

The continuum process (x(t), y(t))t≥0 evolving according to (1.13) will be the build-

ing block of the models analyzed in this thesis. The evolution given in (1.13) is

schematically depicted in Fig. 1.4.

The seed-bank coalescent. To describe the genealogy of the continuum Fisher-

Wright model with seed-bank, we sample n active individuals and m dormant indi-

viduals from the population at some large time and describe their ancestral lineages.

We distinguish between active and dormant lineages by giving them labels A for active

and D for dormant. The lineages behave according to the following rules:

� Each pair of active lineages coalesces at rate 1, independently of all other lin-

eages.

� Each active lineage becomes dormant at rate Ke.

� Each dormant lineage becomes active at rate e.

Note that dormant lineages cannot coalesce: they can only become active.

Formally the lineages are decribed by the so-called seed-bank coalescent that

was introduced in [12]. Like the Kingman coalescent, the seed-bank coalescent is
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Figure 1.4: Schematic picture of the Fisher-Wright diffusion with seed-bank in (1.13). Active
individuals resample at rate 1 and become dormant at rate Ke. Dormant individuals become
active at rate e.

a partition-valued process, but in the seed-bank coalescent each partition element is

labeled by A or D to indicate whether the corresponding lineage is active or dormant.

In [12] it was shown that, as n and m tend to infinity, the ancestral lineages no longer

have a common ancestor a finite time back. Hence the seed-bank coalescent does not

come down from infinity in finite time. This result shows that the Fisher-Wright

model with seed-bank behaves qualitatively differently than the Fisher-Wright model

seed-bank.

Duality for the seed-bank model. For the Fisher-Wright model with seed-bank

we have a similar duality relation as for the Fisher-Wright model without seed-bank.

Let
N(s) = # active lineages left at time s,

M(s) = # dormant lineages left at time s.
(1.14)

Then the block-counting process (N(s),M(s))s≥0 has transition rates

(n,m) →


(n− 1,m), at rate

(
n
2

)
,

(n− 1,m+ 1), at rate nKe,

(n+ 1,m− 1), at rate me.

(1.15)

Let (x(t), y(t))t≥0 be the Fisher-Wright diffusion with seed-bank evolving according

to (1.13) and starting from state (x, y) ∈ [0, 1]2. Let (N(t),M(t))t≥0 be the block-

counting process starting from state (n,m) ∈ N2. Then, for all (n,m) ∈ N2, (x, y) ∈
[0, 1]2 and t ≥ 0, the following relation holds:

E(x,y)[(x(t))n(y(t))m] = E(n,m)[xN(t)yM(t)]. (1.16)

Here, the expectation on the left-hand side is taken over the Fisher-Wright diffusion

with seed-bank, and the expectation on the right-hand side is taken over the block-
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counting process starting in (n,m). Thus, also the Fisher-Wright model with seed-

bank has a moment dual.

Wake-up time distribution of individuals. It has been recognised that qual-

itatively different behaviour may occur when the wake-up time of individuals in the

seed-bank changes from having a thin tail to having a fat tail [55], [50]. Fat-tailed

behaviour of the wake-up times is observed in colonies of bacteria. The drawback of

the Fisher-Wright model with seed-bank is that it gives thin tails for the wake-up

time of individuals. If we define the wake-up time

τ = time a lineage spends in the seed-bank before it wakes up again, (1.17)

then

τ
d
=EXP(e). (1.18)

In Section 1.2.3 we will show how we can adapt the Fisher-Wright model with seed-

bank to allow for more general wake-up times without loosing the Markov property.

Extensions of the Fisher-Wright model with seed-bank. Eventhough the

addition of a seed-bank to the Fisher-Wright model is relatively new, in the past

five years extensive research was done on extensions of the Fisher-Wright model with

seed-bank. An overview of the state of the art is given in [54].

§1.2.3 The Fisher-Wright model with multi-layer
seed-bank

A key idea in this thesis is that we can enrich the seed-bank with internal states to

allow for fat tails and still preserve the Markov property for the evolution. To give the

seed-bank an internal structure, we colour the dormant individuals with countably

many colours m ∈ N0. Thus, instead of one seed-bank we have an infinite sequence

of seed-banks, each with its own colour. Active individuals that become dormant are

assigned a colour m at rate em. If an active individual is assigned a colour m, then it

exchanges with a dormant individual of colour m. The colour m-dormant individual

loses its colour when it becomes active, but retains its type. Therefore, during the

evolution the relative size of the active population and the m-coloured seed-bank is

fixed.

Evolution equation. Define

Km =
size m-dormant population

size active population
, m ∈ N0, (1.19)

which denotes the relative size of them-dormant population with respect to the active

population. Let (x(t))t≥0 denote the fraction of ♡ in the active population at time t,

and (ym(t))t≥0 the fraction of ♡ in the m-dormant population at time t. So, we keep
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Figure 1.5: Schematic picture of the Fisher-Wright diffusion with layered seed-bank in (1.20).
Active individuals resample at rate 1, but exchange with a countable sequence of dormant
populations. At rate Kmem an active individual becomes dormant with colour m. An m-
dormant individual becomes active at rate em.

track of the complete sequence of dormant populations. In the continuum limit, the

process (x(t), (ym(t))m∈N0
)t≥0 evolves according to

dx(t) =
∑
m∈N0

Kmem [ym(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dym(t) = em [x(t)− ym(t)] dt, m ∈ N0.

(1.20)

Comparing (1.20) to (1.13), we see that the active population exchanges with the

whole sequence of dormant populations. However, each dormant population only

evolves due to exchange with the active population. To ensure that active individuals

do not become dormant instantaneously, we must assume that∑
m∈N0

Kmem <∞. (1.21)

The evolution in (1.20) is depicted in Fig. 1.5.

Genealogy. Like for the Fisher-Wright model with seed-bank, we can describe the

genealogy of the population. At a large time we sample from the population n active

individuals, labeled by A, and km m-dormant individuals, labeled by Dm, form ∈ N0.

Then the lineages of the sampled individuals evolve according to the following rules.

� Each pair of active lineages coalesces at rate 1, independently of all other lin-

eages.

� Each active lineage becomes m-dormant at rate Kmem.

� Each m-dormant lineage becomes active at rate em.

Similarly as for the Fisher-Wright model with (non-layered) seed-bank, we can define

a layered seed-bank coalescent and a corresponding block-counting process.
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Fat-tailed wake-up times. We define χ to be the total rate at which an active

lineage becomes dormant, i.e.,

χ =
∑
m∈N0

Kmem. (1.22)

Note that χ <∞ by (1.21). The distribution of the wake-up time τ defined in (1.17)

for a lineage in the multi-layer seed-bank is given by

P(τ > t) =
∑
m∈N0

Kmem
χ

e−emt. (1.23)

Choosing the relative sizes of the seed-banks (Km)m∈N0
and the rates of exchange

(em)m∈N0
properly, we can mimic different wake-up time distributions. For example,

we can choose

Km ∼ Amα, em ∼ Bm−β , m→ ∞
A, B ∈ (0,∞), α, β ∈ R, α ≤ 1 < α+ β,

(1.24)

where ∼ means asymptotically equal. Then

P(τ > t) ∼ Ct−γ , t→ ∞, (1.25)

where γ = α+β−1
β and C = A

χβB
1−γΓ(γ), with Γ the Gamma-function. Therefore

we can choose the sizes Km and the rates em such that when we take the colours

into account we still have a Markov process, but when we ignore the colours in the

seed-bank we have a wake-up time that is fat-tailed.

Using the layered seed-bank model, we can choose the sequences (Km)m∈N0
and

(em)m∈N0
such that 0 < γ < 1

2 in (1.25). It turns out that in this case the Fisher-

Wright diffusion with seed-bank in (1.20) no longer eventually reach its fixed points.

(This was also observed in [11] for a non-Markovian seed-bank model.) Hence, in this

parameter regime, the layered seed-bank can prevent loss of genetic variability.

A key quantity in the Fisher-Wright model with layered seed-bank is the relative

size of the total seed-bank with respect to the active population:

ρ =
∑
m∈N0

Km. (1.26)

The case ρ = ∞ shows different behaviour than the case ρ <∞ (also this was observed

in [11]). For example, for the expected wake-up time τ is we find

E[τ ] =
ρ

χ
. (1.27)

In the next section we will turn to the layered Fisher-Wright model with seed-bank in

the spatial setting. Also there the cases ρ < ∞ and ρ = ∞ give rise to qualitatively

different long-term behaviour.
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§1.3 Summary of Part I

In Part I of this thesis we consider a spatial version of the continuum Fisher-Wright

models with seed-bank introduced in Sections 1.2.2–1.2.3. In the spatial version in-

dividuals live in colonies, each with their own seed-bank, and are allowed to migrate

between colonies. The underlying geographic space is a countable Abelian group G.

The spatial Fisher-Wright model without seed-bank has been the object of intense

study. A sample of relevant papers and overviews is [66], [17], [20], [25], [22], [33],

[29], [27], [24], [41]. In these papers the convergence of the system to equilibrium was

proven. Parameter regimes were identified in which the spatial system converges to a

mono-type equilibrium, i.e., the system grows locally mono-type clusters of only ♡ or

of only ♢, or in which the system converges to a multi-type equilibrium, i.e., locally

both types are present. The first type of long-term behaviour is called clustering, the

second type is called coexistence. It was shown that the dichotomy between clustering

and coexistence for the spatial Fisher-Wright model without seed-bank is completely

determined by the migration kernel according to which individuals migrate between

colonies. If the migration kernel is transient, then coexistence prevails, while if the

migration kernel is recurrent, then clustering prevails.

We expect that the presence of the seed-bank affects the long-time behaviour

of the spatial system not only quantitatively but also qualitatively. To understand

how this comes about, we must find ways to deal with the richer behaviour of the

population caused by the motion in and out of the seed-bank. In [28] a spatial model

with seed-bank, migration and mutation was analysed. There the probability for two

individuals drawn randomly from two colonies to be identical by decent was computed

as a function of the distance between the colonies.

The first goal in Part I is to prove convergence to equilibrium for the spatial Fisher-

Wright model with seed-bank, and to identify the parameter regimes for clustering and

coexistence. The second goal is to identify the role of the wake-up time. We will show

that if the expected wake-up time is finite, then the dichotomy between clustering

and coexistence is completely determined by the migration kernel and the seed-bank

has only a quantitative effect on the long-term behaviour. However, if we allow the

wake-up time to have infinite mean and moderately fat tails, then both the exchange

rates with the seed-bank and the migration kernel determine the dichotomy. In that

case the seed-bank has both a quantitative and a qualitative effect on the long-term

behaviour. If the wake-up time has very fat tails, then the dichotomy is completely

determined by the seed-bank, independently of the migration kernel.

In what follows we first introduce three models of increasing generality that are

studied in Part I. After that we state the main results of Part I in words and briefly

comment on the techniques used.

Basic ingredients for the models in Part I. We extend the continuum Fisher-

Wright models with seed-bank introduced in Sections 1.2.2–1.2.3 to three spatial

models of increasing generality. In each of the three models, we consider populations

of individuals of two types – either ♡ or ♢ – located in colonies on a geographic space

G that is a countable Abelian group. In each of the three models, the population in a
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colony consist of an active part and a dormant part. The repository of the dormant

population at colony i ∈ G is called the seed-bank at i ∈ G. Individuals in the active

part of colony i ∈ G can resample, migrate and exchange with a dormant population.

Individuals in the dormant part of colony i ∈ G can only exchange with the active

population. An active individual that resamples chooses uniformly at random another

individual from its colony and adopts its type. The rate of resampling can be state-

dependent and is controlled by a diffusion function g : [0, 1] → R≥0 that satisfies the

criteria for state-dependent resampling in Section 1.2.1. When an active individual

at colony i ∈ G migrates, it chooses a parent from another colony j ∈ G and adopts

its type. In each of the three models the migration is described by a migration kernel

a(·, ·), which is an irreducible G×G matrix of transition rates satisfying

a(i, j) = a(0, j − i) ∀ i, j ∈ G,
∑
i∈G

a(0, i) <∞. (1.28)

Here, a(i, j) has to be interpreted as the rate at which an active individual at colony

i ∈ G chooses an individual in the active part of colony j ∈ G and adopts its type. An

active individual that becomes dormant exchanges with a randomly chosen dormant

individual that becomes active. The dormant part of the population only evolves due

to exchange of individuals with the active part of the population.

The three models we introduce below differ in the way the active population

exchanges with the dormant population. However, in each of the three models the ex-

change mechanism guarantees that the sizes of the active and the dormant population

stay fixed over time.

Since we look at continuum models obtained from individual-based models, we

are interested in the fraction of individuals of type ♡ in the different colonies.

Model 1: single-layer seed-bank. In this model we consider a multi-colony ver-

sion of the continuum model in (1.13). Each colony i ∈ G has an active part A and

a dormant part D. For i ∈ G and t ≥ 0, let xi(t) denote the fraction of individuals

in colony i of type ♡ that are active at time t, and yi(t) the fraction of individuals

in colony i of type ♡ that are dormant at time t. Like in (1.10) in Section 1.2.2, let

K ∈ (0,∞) be the relative size of the dormant population w.r.t. the active popula-

tion, and let e be the rate at which active and dormant individuals exchange. We

assume K and e to be the same for all colonies. The fractions of individuals of type ♡
in the population evolve according to the system of stochastic differential equations

(SSDE)

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
g(xi(t)) dwi(t) (1.29)

+Ke [yi(t)− xi(t)] dt,

dyi(t) = e [xi(t)− yi(t)] dt, i ∈ G, (1.30)

where (wi(t))t≥0, i ∈ G, are independent standard Brownian motions. The first term

in (1.29) describes the migration of active individuals from i to j at rate a(i, j). The
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second term in (1.29) describes the resampling of individuals at rate g(x)
x(1−x) in state

x. The third term in (1.29) together with the term in (1.30) describe the exchange of

active and dormant individuals at rate e ∈ (0,∞).

Model 2: multi-layer seed-bank. In this model we consider a multi-colony ver-

sion of the continuum model in (1.20). Therefore, for each i ∈ G a colony now consists

of an active part A and a sequence (Dm)m∈N0
of dormant parts, labeled by their colour

m ∈ N0. As before, for i ∈ G, let xi(t) denote the fraction of individuals in colony i of

type ♡ that are active at time t, but now let yi,m(t) denote the fraction of individuals

in colony i of type ♡ that are dormant with colour m at time t. Let em ∈ (0,∞) be

the rate at which active individuals exchange with dormant individuals of colour m,

and let Km ∈ (0,∞) denote the relative size of the m-dormant population w.r.t. the

active population as in (1.19). We assume em and Km to be the same for all colonies.

Then the fraction of ♡ in the population evolves according to the SSDE

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
g(xi(t)) dwi(t) (1.31)

+
∑
m∈N0

Kmem [yi,m(t)− xi(t)] dt,

dyi,m(t) = em [xi(t)− yi,m(t)] dt, m ∈ N0, i ∈ G, (1.32)

where (wi(t))t≥0, i ∈ G, are independent standard Brownian motions. Comparing

(1.31)–(1.32) with (1.29)–(1.30), we see that active individuals migrate (the first term

in (1.31)) and resample (the second term in (1.31)) in the same way, but now interact

with a sequence of dormant populations (the third term in (1.31) and the term (1.32)).

The dormant individuals only exchange with the active individuals.

Model 3: multi-layer seed-bank with displaced seeds. We can extend the

mechanism of Model 2 by allowing active individuals that become dormant to do so

in a randomly chosen colony. This amounts to introducing a sequence of irreducible

displacement kernels am(·, ·), m ∈ N0, satisfying

am(i, j) = am(0, j − i) ∀ i, j ∈ G,
∑
i∈G

am(0, i) = 1 ∀m ∈ N0, (1.33)

and replacing (1.31)–(1.32) by

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
g(xi(t)) dwi(t) (1.34)

+
∑
j∈G

∑
m∈N0

Kmem am(j, i) [yj,m(t)− xi(t)] dt,

dyi,m(t) =
∑
j∈G

em am(i, j) [xj(t)− yi,m(t)] dt, m ∈ N0, i ∈ G. (1.35)

Here, the third term in (1.34) together with the term in (1.35) describe the switch

of colony when individuals exchange between active and dormant. Namely, with
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probability am(i, j) simultaneously an active individual in colony i becomes dormant

with colour m in colony j and a randomly chosen dormant individual with colour m

in colony j becomes active in colony i.

Two key quantities. Like in Section 1.2.3, in Models 2 and 3 we must assume that

χ =
∑
m∈N0

Kmem <∞ (1.36)

in order to make sure that active individuals do not become dormant instantly. Like

in Section 1.2.3, in Models 2 and 3 we set

ρ =
∑
m∈N0

Km =
size dormant population

size active population
. (1.37)

It turns out that χ and ρ are key quantities of the system. In particular, we will see

that the long-time behaviour of Models 2 and 3 is different for ρ <∞ and ρ = ∞.

Main results of Part I.

(1) For all three models the system convergences to a unique equilibrium that ex-

hibits a dichotomy between clustering and coexistence. In all three models the

density of ♡ in the population is preserved over time, and in both the clustering

case and the coexistence case the equilibrium depends on the initial density of ♡.

In the coexistence case the limiting equilibrium also depends on the resampling

function, the exchange rates with the seed-bank and the migration kernel.

(2) For all three models we identify the parameter regimes for clustering and co-

existence. These parameter regimes do not depend on the resampling function

g.

(2a) In Model 1 the wake-up time has finite mean. The dichotomy between

coexistence and clustering is controlled by the migration only and the seed-

bank has no effect on the dichotomy. In particular, clustering prevails when

the symmetrised migration kernel is recurrent, while coexistence prevails

when it is transient. This result is the classical dichotomy for populations

without seed-bank [14].

(2b) In Model 2 the wake-up time can have both finite mean and infinite mean.

If the wake-up time has finite mean, then the dichotomy between coexist-

ence and clustering is controlled by the migration only and the seed-bank

has no effect, similarly as for Model 1. If the wake-up time has infinite

mean with moderately fat tails, then the dichotomy is controlled by both

the migration and the seed-bank. In particular, the parameter regimes for

clustering and coexistence reveal an interesting interplay between rates for

migration and rates for exchange with the seed-bank. If the wake-up time

has infinite mean with very fat tails, then the dichotomy is controlled by

the seed-bank only and the migration has no effect. For infinite mean
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wake-up times it turns out that in the coexistence regime the seed-banks

with colour m→ ∞ are in a state that is almost surely equal to the initial

density of ♡ in the population. Therefore deep seed-banks become determ-

inistic.

(2c) In Model 3, the extra migration of active individuals that become dormant

makes coexistence more likely. This extra migration can be incorperated

into the dichotomy criterion obtained for model 2.

Techniques used in Part I. To prove the dichotomy, we first consider the three

models when the resampling function is g(x) = dx(1−x), d ∈ R+. For these diffusion

functions we have duality relations similarly as those introduced in Section 1.2. As will

be explained in detail in Part I, the lineages in the dual of the spatial model behave

like a set of coalescing random walks. Afterwards, we can use comparison techniques

to extend the results to a general resampling function g. To prove convergence to a

unique equilibrium in the case of coexistence, we make use of coupling techniques.

§1.4 Summary of Part II

Part II of this thesis focuses on spatial populations with seed-bank where the under-

lying geographic space is the so-called hierarchical group, which we introduce next.

Hierachical lattice. The hierarchical lattice of order N is given by

ΩN =

{
ξ = (ξk)k∈N0

: ξk ∈ {0, 1, . . . , N − 1},
∑
k∈N0

ξk <∞

}
, (1.38)

which with addition modulo N becomes the hierarchical group of order N (see

Fig. 1.6). The hierarchical distance is defined by

dΩN
(ξ, η) = dΩN

(0, ξ − η) = min {k ∈ N0 : ξl = ηl ∀ l ≥ k} , ξ, η ∈ ΩN . (1.39)

Intuitively, depicting ΩN as the leaves of an infinite tree as in Fig. 1.6, the distance

between two points on ΩN is the number of branches we have to travel upwards in

the tree to find a common node.

The choice of ΩN as geographic space plays an important role for population

models, and was first exploited in [65] in an attempt to formalise ideas coming from

ecology. One interpretation is that the sequence (ξk)k∈N0
encodes the ‘address’ of

colony ξ: ξ0 is the ‘house’, ξ1 is the ‘street’, ξ2 is the ‘village’, ξ3 is the ‘province’, ξ4
is the ‘country’, and so on.

The goal of Part II of this thesis is to study the spatial Fisher-Wright model

with seed-bank on the hierarchical lattice when the order N of the hierarchical group

tends to infinity. This limit is called the hierarchical mean-field limit. To analyse

the limiting system, it turns out that we have to consider different space-time scales.

In what follows we first set up the model. After that we explain how the different

space-time scales come into play in a natural way.
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Figure 1.6: Close-ups of a 1-block, a 2-block and a 3-block in the hierarchical group of
order N = 3. The elements of the group are the leaves of the tree (indicated by □’s). The
hierarchical distance between two elements in the group is the graph distance to the most
recent common ancestor in the tree: dΩ3(η, ζ) = 2 for η and ζ in the picture.

Hierarchical migration. We construct a migration kernel aΩN (·, ·) on the hier-

archical group ΩN built from a sequence of migration rates

c = (ck)k∈N0
∈ (0,∞)N0 (1.40)

that do not depend on N . Individuals migrate as follows:

� For all k ∈ N, each individual chooses at rate ck−1/N
k−1 the block of radius k

around its present location and selects a colony uniformly at random from that

block. Subsequently it selects an individual in this colony uniformly at random

and adopts its type.

Since the block of radius k contains Nk colonies, the migration kernel is given by

aΩN (η, ξ) =
∑

k≥dΩN
(η,ξ)

ck−1

Nk−1

1

Nk
, η, ξ ∈ ΩN , η ̸= ξ, aΩN (η, η) = 0, η ∈ ΩN .

(1.41)

We assume that ∑
ξ∈ΩN

aΩN (η, ξ) <∞ (1.42)

to guarantee that the total migration rate per individual is finite.

Evolution on the hierarchical lattice. The evolution of the single colonies in

Part II is similar to the evolution of the single colonies in Part I in Model 2. The

difference is that in the hierarchical setting we let the migration rates and the exchange

rates depend on the order N of the hierarchical group. For ξ ∈ ΩN , define

xξ(t) = the fraction of active individuals of type ♡ at colony ξ at time t,

yξ,m(t) = the fraction of m-dormant individuals of type ♡ at colony ξ and time t.
(1.43)

Active individuals exchange with dormant individuals with colour m at rate em
Nm ,

where em ∈ (0,∞). Like in (1.19), let Km be the relative size of the m-dormant pop-

ulation with respect to the active population. Like in Part I, the sequences (Km)m∈N0
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and (em)m∈N0
are the same for all colonies. Also here we allow for a general diffusion

function g : [0, 1] → R≥0 satisfying the conditions in Section 1.2.1.

The fraction of individuals of type ♡ in the population evolves according to the

SSDE

dxξ(t) =
∑
η∈ΩN

aΩN (ξ, η)[xη(t)− xξ(t)] dt+
√
g(xξ(t)) dwξ(t)

+
∑
m∈N0

Kmem
Nm

[yξ,m(t)− xξ(t)] dt,

dyξ,m(t) =
em
Nm

[xξ(t)− yξ,m(t)] dt, m ∈ N0, ξ ∈ ΩN ,

(1.44)

where we assume that
∑
m∈N0

Kmem
Nm < ∞. The first term in the first equation

describes the evolution of the active population at colony ξ due to migration, the

second term due to resampling. The third term in the first equation and the term

in the second equation describe the exchange between the active and the dormant

population at colony ξ (see Fig. 1.7). Like the migration rates, the exchange rates

between the active and the dormant population depend on the order N of the hier-

archical group. Since dormant individuals are not subject to resampling or migration,

the dynamics of the dormant population is completely determined by the exchange

with the active population.

A

D0

D1

Dm

exchangeresampling

migration

K0e0

e0
K1e1/N

e1/N

Kmem/N
m

em/N
m

Figure 1.7: Active individuals (A) are subject to migration, resampling and exchange with
dormant individuals (D). When active individuals become dormant they are assigned a colour
(Dm, m ∈ N0), which they lose when they become active again. The resampling rate in the
active popluation depends on the type-♡ frequency x and equals g(x)/x(1− x).

Evolution of block averages. The choice of the migration kernel in (1.41) implies

that, for every k ∈ N, at rate ≍ 1
Nk individuals choose a space horizon of distance

k + 1 and subsequently choose a random colony from that space horizon. Therefore,

in order to see interactions over a distance k+1 for large N , we need to speed up time
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by a factor Nk. A similar observation applies to the interaction with the seed-bank.

Dormant individuals with colour k become active at rate ≍ 1
Nk . Therefore, in order

to see interactions with the k-dormant population for large N , we need to speed up

time by a factor Nk. To analyse the effective interaction on different time scales Nk,

k ∈ N0 we introduce successive block averages.

Definition 1.4.1. For k ∈ N0, let

Bk(0) = {η ∈ ΩN : dΩN
(0, η) ≤ k}

denote the k-block around 0. Define the k-block average around 0 at time Nkt by

xΩN

k (t) =
1

Nk

∑
η∈Bk(0)

xη(N
kt),

yΩN

m,k(t) =
1

Nk

∑
η∈Bk(0)

yη,m(Nkt), m ∈ N0.

(1.45)

■

The k-block average represents the dynamics of the system averaged over the Nk

colonies around 0 with time speeded up by a factor Nk. Therefore we say that the

k-block average represents the dynamics of the system on space-time scale k, or on

hierarchical level k.

To obtain the hierarchical mean-field limit, we analyse the block averages defined

above in the limit as N → ∞, for which we expect a seperation of space-time scales.

It turns out that in this limit each of the block averages preforms an autonomous

diffusion, similar to the diffusion preformed by a single colony.

Main results Part II.

(1) For fixed N the results obtained in Part I are applied to the hierarchical model

with seed-bank. For two classes of parameters the clustering regime is identified.

In case the wake-up time has infinite mean, the clustering regime exhibits a trade

off between the exchange rates and the migration rates.

(2) The hierarchical mean-field limit is identified, i.e., the evolution of the k-block

averages defined in (1.45) is determined in the limit N → ∞. For all k ∈ N0, the

limiting k-block averages evolve according to a k-dependent SSDE, from which

we can read off the following results:

(2a) For each k ∈ N0, if N → ∞, then the migration terms in the evolution of

the active k-block average can be replaced by a drift towards the active

block one level up, i.e., a drift towards the active (k + 1)-block average.

This phenomenon is called decoupling.

(2b) For each k ∈ N0, if N → ∞, then the resampling rate of the active k-

block average is the average resampling rate of the colonies within the

k-block. The resampling rate of the active k-block is given by the k-fold
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iteration of a renormalisation transformation F applied to the original

diffusion function g. The resulting diffusion function F (k)g is called the

renormalised diffusion function.

(2c) For each k ∈ N0, if N → ∞, then the active k-block exchanges only with

the dormant k-block of colour k. Therefore we say that the k-dormant

population is the effective seed-bank on level k. The k-block averages of

dormant populations of colours m < k start equalising with the active k-

block averages and are called fast seed-banks. The seed-banks of colours

m > k do not change and stay in a fixed state. These seed-banks are

refered to as slow seed-banks.

(2d) For each k ∈ N0, if N → ∞, then the migration terms in the evolution

of the active k-block averages, induce a drift towards the (k + 1)-block

average. It is in this way that subsequent block averages are connected.

The connection between different hierarchical levels is captured by what is

called the interaction chain.

(3) With the help of the interaction chain, the attracting orbit of the renormalisa-

tion transformation acting on the space of diffusion functions is analysed. In

the clustering regime and after appropriate scaling, the renormalised diffusion

function F (k)g converges to the Fisher-Wright diffusion function as k → ∞,

irrespective of the diffusion function g controlling the resampling in the single

colonies. This convergence shows that the hierarchical system exhibits uni-

versality on large space-time scales in terms of the scaling limit. For several

subclasses of parameters the scaling of the renormalised diffusion function is

identified. This scaling reveals a delicate interplay between the parameters con-

trolling the migration and the seed-bank and also determines the speed at which

mono-type clusters grow in space and time.

Techniques used in Part II. To prove the results in Part II we use the abstract

schemes for mean-field analysis that were introduced in [21], [25] and [15]. To analyse

the behaviour of the seed-bank, we use coupling results and a random walk interpret-

ation of the system that is proven in Part I. For the analysis of the renormalisation

transformation we proceed like in [5].

§1.5 Further research

Two topics that would be interesting to study are the finite-systems scheme and the

genealogy and cluster formation.

Finite-systems scheme. In Part I we analyse a spatial version of the Fisher-Wright

model with seed-bank where the underlying space is a countable Abelian group. A key

question is how well the infinite systems introduced in Part I can approximate “real-

world” finite systems. To answer this question, we use the so-called finite-systems

scheme that was introduced in [15]. In the finite-systems scheme we trucate both the
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geographic space and the seed-bank, and subsequently let both the truncation level

and the time tend to infinity, properly tuned together.

In an upcoming paper [44], we focus on Model 2, introduced in Section 1.3 and

evolving according to (1.31)–(1.32). We study the truncated system in the parameter

regime of coexistence for the non-truncated system. This parameter regime is iden-

tified in one of the main theorems in Part I. For truncated finite systems, we always

get clustering. To obtain a meaningful scaling limit, the truncation level and the time

are scaled in such a way that we are just at the verge of seeing the clustering of the

finite system coming in. We find that, with this scaling, the finite system behaves like

the infinite system in equilibrium in the coexistence regime, but with a density of ♡
that is random.

Again we see a difference in behaviour between ρ <∞ and ρ = ∞. In case ρ <∞,

we can adapt classical techniques to analyse the finite-systems scheme and the results

lead to a single universality class. In case ρ = ∞, we can tune the speed at which the

seed-bank tends to infinity relative to the speed at which the geographic space tends

to infinity. This leads to new phenomena, and different universality classes appear.

Cluster formation and genealogy. It would be interesting to study the growth

of monotone clusters in the spatial setting. A short introduction to cluster formation

will be given in the setting of the hierarchical group in Part II. However, it would be

interesting to see what the effect of the seed-bank is on the cluster formation. Closely

related to the cluster formation is the genealogy. Scaling of the genealogy leads to

continuum random trees with dormancy. We have not yet started this part of the

research.

§1.6 Outline of the thesis

Part I of this thesis is based on [43]. It treats the general setting of spatial popula-

tions with seed-bank. In Chapter 2 we formally introduce the models of Section 1.3,

and subsequently state the main results about well-posedness, duality and long-term

behaviour. Chapter 3 is devoted to the proofs of the main results stated in Chapter 2.

Part II is based on the upcoming paper [45]. It treats the spatial hierarchical

seed-bank model introduced in Section 1.4. In Chapter 4 we formally introduce the

hierarchical seed-bank model and subsequently state the main results about multi-

scaling renormalisation and universality. Chapters 5–10 are devoted to the proofs of

the main results stated in Chapter 4.

22



§1.6. Outline of the thesis

C
h
a
p
t
e
r
1

23



1. Introduction

C
h
a
p
t
e
r
1

24



PART I

SPATIAL POPULATIONS WITH
SEED-BANK:

WELL-POSEDNESS, DUALITY
AND EQUILIBRIUM

This part is based on:

A. Greven, F. den Hollander, and M. Oomen. Spatial populations with seed-bank:

well-posedness, duality and equilibrium. Preprint, 2020
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CHAPTER 2
Spatial populations with seed-bank,

models and results

§2.1 Background and outline

§2.1.1 Background and goals

In populations with a seed-bank, individuals can become dormant and stop repro-

ducing themselves, until they can become active and start reproducing themselves

again. In [10] and [12], the evolution of a population evolving according to the Fisher-

Wright model with a seed-bank was studied. In this model individuals are subject to

resampling and can move in and out of a seed-bank. While in the seed-bank they sus-

pend resampling, i.e., the seed-bank acts as a repository for the genetic information

of the population. Individuals that do not reside in the seed-bank are called active,

those that do are called dormant. In the present paper we extend the single-colony

Fisher-Wright model with seed-bank introduced in [12] to a multi-colony setting in

which individuals live in different colonies and move between colonies. In other words,

we introduce spatialness.

Seed-banks are observed in many taxa, including plants, bacteria and other micro-

organisms. Typically, they arise as a response to unfavourable environmental condi-

tions. The dormant state of an individual is characterised by low metabolic activity

and interruption of phenotypic development (see e.g. Lennon and Jones [55]). After

a varying and possibly large number of generations, dormant individuals can be re-

suscitated under more favourable conditions and reprise reproduction after having

become active. This strategy is known to have important implications for population

persistence, maintenance of genetic variability and stability of ecosystems. It acts as

a buffer against evolutionary forces such as genetic drift, selection and environmental

variability. The importance of this evolutionary trait has led to several attempts to

model seed-banks from a mathematical perspective, see e.g. [50], [11], [40], [9]. In

[12] it was shown that the continuum model obtained by taking the large-colony-size

limit of the individual-based model with seed-bank is the Fisher-Wright diffusion with

seed-bank. Also the long-time behaviour and the genealogy of the continuum model

with seed-bank were analysed in [12].

In the present paper we consider a spatial version of the continuum model with

seed-bank, in which individuals live in colonies, each with their own seed-bank, and
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are allowed to migrate between colonies. Our goal is to understand the change in

behaviour compared to the spatial model without seed-bank. The latter has been the

object of intense study. A sample of relevant papers and overviews is [66], [17], [20],

[25], [22], [33], [29], [27], [24], [41]. We expect the presence of the seed-bank to affect

the long-time behaviour of the system not only quantitatively but also qualitatively.

To understand how this comes about, we must find ways to deal with the richer

behaviour of the population caused by the motion in and out of the seed-bank. Earlier

work on a spatial model with seed-bank, migration and mutation was carried out

in [28], where the probability to be identical by decent for two individuals drawn

randomly from two colonies was computed as a function of the distance between the

colonies.

It has been recognised that qualitatively different behaviour may occur when the

wake-up time in the seed-bank changes from having a thin tail to having a fat tail

[55]. One challenge in modelling seed-banks has been that fat tails destroy the Markov

property for the evolution of the system. A key idea of the present paper is that we

can enrich the seed-bank with internal states – which we call colours – to allow for fat

tails and still preserve the Markov property for the evolution. We will see that fat

tails induce new universality classes.

The main goals of the present paper are the following:

(1) Identify the typical features of the long-time behaviour of populations with a

seed-bank. In particular, prove convergence to equilibrium, and identify the

parameter regimes for clustering (= convergence towards locally mono-type

equilibria) and coexistence (= convergence towards locally multi-type equilib-

ria).

(2) Identify the role of finite versus infinite mean wake-up time. Identify the critical

dimension in case the geographic space is Zd, d ≥ 1, i.e., the dimension at which

the crossover between clustering and coexistence occurs for migration with finite

variance.

(2a) Show that if the wake-up time has finite mean, then the dichotomy between

coexistence and clustering is controlled by the migration only and the seed-

bank has no effect. In particular, clustering prevails when the symmetrised

migration kernel is recurrent while coexistence prevails when it is transient.

This is the classical dichotomy for populations without seed-bank [14]. The

critical dimension is d = 2.

(2b) Show that if the wake-up time has infinite mean with moderately fat tails,

then the dichotomy is controlled by both the migration and the seed-bank.

In particular, the parameter regimes for clustering and coexistence reveal

an interesting interplay between rates for migration and rates for exchange

with the seed-bank. The critical dimension is 1 < d < 2.

(2c) Show that if the wake-up time has infinite mean with very fat tails, then

the dichotomy is controlled by the seed-bank only and the migration has

no effect. The critical dimension is d = 1.
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We focus on the situation where the individuals can be of two types. The exten-

sion to infinitely many types, called the Fleming-Viot measure-valued diffusion, only

requires standard adaptations and will not be considered here (see [25]). Also, in-

stead of Fisher-Wright resampling we will allow for state-dependent resampling, i.e.,

the rate of resampling in a colony depends on the fractions of the two types in that

colony. In what follows we only work with continuum models, in which the com-

ponents represent type frequencies in the colonies labelled by a discrete geographic

space.

The techniques of proof that we use include duality, moment relations, semigroup

comparisons and coupling. These techniques are standard, but have to be adapted to

the fact that individuals move into and out of seed-banks. Since there is no resampling

and no migration in the seed-bank, the motion of ancestral lineages in the dual process

looses part of the random-walk structure that is crucial in models without seed-bank.

Moreover, for seed-banks with infinite mean wake-up times, we encounter fat-tailed

wake-up time distributions in the dual process, and we need to deal with lineages

that are dormant most of the time and therefore are much slower to coalesce. The

coupling arguments also change. Already in a single colony, if the seed-bank has

infinitely many internal states, then we are dealing with an infinite system in which

the manipulation of Lyapunov functions and the construction of successful couplings

from general classes of initial states is hard. In the multi-colony setting this becomes

even harder, and conceptually challenging issues arise.

§2.1.2 Outline

In Section 2.2 we introduce three models of increasing generality, establish their well-

posedness via a martingale problem, and introduce their dual processes, which play

a crucial role in the analysis. In Section 2.3 we state our main results. We focus on

the long-time behaviour, prove convergence to equilibrium, and establish a dichotomy

between clustering and coexistence. We show that this dichotomy is affected by the

presence of the seed-bank, namely, the dichotomy depends not only on the migration

rates, but can also depend on the relative sizes of the active and the dormant popu-

lation and their rates of exchange. In particular, if the dormant population is much

larger than the active population, then the residence time in the seed-bank has a fat

tail that enhances genetic diversity significantly.

Sections 3.1–3.4 are devoted to the proofs of the theorems stated in Sections 2.2–

2.3. In Appendix A.1 we give the derivation of the single-colony continuummodel from

the single-colony individual-based Fisher-Wright model in the large-colony-size limit.

In the individual-based model active individuals exchange with dormant individuals,

i.e., for each active individual that becomes dormant a dormant individual becomes

active. In Appendix A.2 we look at the continuum limit of the single-colony individual-

based Moran model in which active and dormant individuals no longer exchange state

but rather change state independently. We show that change instead of exchange

does not affect the long-time behaviour. Appendices A.3 and A.4 contain the proof

of technical lemmas that are needed in the proof of the convergence to equilibrium.

In three companion papers we deal with three further aspects:
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(I) In [44] we establish the finite-systems scheme, i.e., we identify in the coexistence

regime how a finite truncation of the system behaves as both the time and

the truncation level tend to infinity, properly tuned together. This underlines

the relevance of systems with an infinite geographic space and a seed-bank

with infinitely many colours for the description of systems with a large finite

geographic space and a seed-bank with a large finite number of colours. We

show that there is a single universality class for the scaling limit, represented

by a Fisher-Wright diffusion whose volatility constant is reduced by the seed-

bank. We show that if the wake-up time has finite mean, then the scaling time

is proportional to the geographical volume of the system, while if the wake-up

time has infinite mean, then the scaling time grows faster than the geographical

volume of the system. We also investigate what happens for systems with a large

finite geographic space and a seed-bank with infinitely many colours, where the

behaviour turns out to be different.

(II) In [45] we consider the special case where the colonies are organised in a hier-

archical fashion, i.e., the geographic space is the hierarchical group ΩN of order

N . We identify the parameter regime for clustering for all N < ∞, and ana-

lyse the multi-scale behaviour of the system in the hierarchical mean-field limit

N → ∞ by looking at block averages on successive hierarchical space-time

scales. Playing with the migration kernel, we can choose the migration to be

close to critically recurrent in the sense of potential theory. By letting N → ∞
we can approach the critical dimension, so that the migration becomes similar

to migration on the two-dimensional Euclidean geographic space. With the help

of renormalisation arguments we show that, close to the critical dimension, the

scaling behaviour on large space-time scales is universal.

(III) Our goal for the fourth paper is to identify the pattern of cluster formation in

the clustering regime (= how fast mono-type clusters grow in time) and describe

the genealogy of the population. The latter provides further insight into how

the seed-bank enhances genetic diversity.

In these papers too we will see that the seed-bank can cause not only quantitative

but also qualitative changes in the scaling behaviour of the system.

§2.2 Introduction of the three models and their ba-
sic properties

In Section 2.2.1 we give a formal definition of the three models of increasing gener-

ality. In Section 2.2.2 we comment on their biological significance. In Section 2.2.3

we establish their well-posedness via a martingale problem (Theorem 2.2.4). In Sec-

tion 2.2.4 we introduce the associated dual processes and state the relevant duality

relations (Theorems 2.2.5, 2.2.8 and 2.2.10). In Section 2.2.5 we use these duality

relations to formulate a criterion for clustering versus coexistence (Theorems 2.2.11

and 2.2.13).
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§2.2.1 Migration, resampling and seed-bank: three
models

In this section we extend the model for a population with seed-bank from [12] to three

models of increasing generality for spatial populations with seed-bank. In each of the

three models, we consider populations of individuals of two types – either ♡ or ♢ –

located in a geographic space G that is a countable Abelian group endowed with the

discrete topology. In each of the three models, the population in a colony consist of an

active part and a dormant part. The repository of the dormant population at colony

i ∈ G is called the seed-bank at i ∈ G. Individuals in the active part of a colony

i ∈ G can resample, migrate and exchange with a dormant population. Individuals

in the dormant part of a colony i ∈ G only exchange with the active population.

An active individual that resamples chooses uniformly at random another individual

from its colony and adopts its type. (Alternatively, resampling may be viewed as the

active individual being replaced by a copy of the active individual chosen. Because

individuals carry a type and not a label, this gives the same model.) When an active

individual at colony i ∈ Gmigrates, it chooses a parent from another colony j ∈ G and

adopts its type. In each of the three models the migration is described by a migration

kernel a(·, ·), which is an irreducible G×G matrix of transition rates satisfying

a(i, j) = a(0, j − i) ∀ i, j ∈ G,
∑
i∈G

a(0, i) <∞. (2.1)

Here, a(i, j) is to be interpreted as the rate at which an active individual at colony

i ∈ G chooses a parent in the active part of colony j ∈ G and adopts its type. An

active individual that becomes dormant exchanges with a randomly chosen dormant

individual that becomes active. The three models we discuss in the present paper differ

in the way the active population exchanges with the dormant population. However,

in each of the three models the exchange mechanism guarantees that the sizes of the

active and the dormant population stay fixed over time. The dormant part of the

population only evolves due to exchange of individuals with the active part of the

population.

Since we look at continuum models obtained from individual-based models, we

are interested in the frequencies of type ♡ in the different colonies. In Appendix A.1

we discuss the individual-based models underlying the continuum models described

below.

Remark 2.2.1 (Notation). Throughout the paper we use lower case letters for

components and upper case letters for systems of components. ■

Model 1: single-layer seed-bank. Each colony i ∈ G has an active part A and

a dormant part D. Therefore we say that the effective geographic space is given by

G×{A,D}. For i ∈ G and t ≥ 0, let xi(t) denote the fraction of individuals in colony

i of type ♡ that are active at time t, and yi(t) the fraction of individuals in colony i

of type ♡ that are dormant at time t. Then the system is described by the process

(Z(t))t≥0, Z(t) =
(
zi(t)

)
i∈G, zi(t) = (xi(t), yi(t)), (2.2)
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on the state space

E = ([0, 1]× [0, 1])
G
, (2.3)

and (Z(t))t≥0 evolves according to the following SSDE:

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.4)

+Ke [yi(t)− xi(t)] dt,

dyi(t) = e [xi(t)− yi(t)] dt, i ∈ G, (2.5)

where (wi(t))t≥0, i ∈ G, are independent standard Brownian motions. As initial state

Z(0) = z we may pick any z ∈ E. The first term in (2.4) describes the migration of

active individuals at rate a(i, j). The second term in (2.4) describes the resampling

of individuals at rate d ∈ (0,∞). The third term in (2.4) together with the term in

(2.5) describe the exchange of active and dormant individuals at rate e ∈ (0,∞).

A D

exchange

resampling

migration

Ke

e

d

Figure 2.1: The evolution in model 1. Individuals are subject to migration, resampling and
exchange with the seed-bank.

The factor K ∈ (0,∞) is defined by

K =
size dormant population

size active population
, (2.6)

and is the same for all colonies i ∈ G. The factor K turns up in the scaling limit

of the individual-based model when there is an asymmetry between the sizes of the

active and the dormant population (see Appendix A.1). In Fig. 2.1 we give a schem-

atic illustration of the process (2.4)–(2.5). A detailed description of the underlying

individual-based model, as well as a derivation of the continuum limit (2.4)–(2.5)

from the individual-based model following [12], can be found in Appendix A.1. The

continuum limit is also referred to as the frequency limit or the diffusion limit.
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Remark 2.2.2 (Interpretation of the state space.). Note that the state space

of the system can also be written as

E = [0, 1]S, S = G× {A,D}, (2.7)

where A denotes the reservoir of the active population and D the repository of the

dormant population. With that interpretation, the process is denoted by

(Z(t))t≥0, Z(t) =
(
zu(t)

)
u∈S (2.8)

with zu(t) = xi(t) if u = (i, A) and zu(t) = yi(t) if u = (i,D). To analyse the system

we need both interpretations of the state space. ■

A

D0

D1

Dm

exchange

resampling

K0e0

e0
K1e1

e1

Kmem

em

dmigration

Figure 2.2: The evolution in model 2. Individuals are subject to migration, resampling and
exchange with the seed-bank, as in model 1. Additionally, when individuals become dormant
they get a colour and when they become active they loose their colour.

Model 2: multi-layer seed-bank. In this model we give the seed-bank an internal

structure by colouring the dormant individuals with countably many colours m ∈
N0. Active individuals that become dormant are assigned a colour m that is drawn

randomly from an infinite sequence of colours labeled by N0 (see Fig. 2.2 for an

illustration). As will be explained in Section 2.2.2, this captures the different ways

in which individuals can enter into the seed-bank. In Section 2.2.4 we will show how

this internal structure allows for fat tails in the wake-up times of individuals while

preserving the Markov property.

For each i ∈ G a colony now consists of an active part A and a whole sequence

(Dm)m∈N0 of dormant parts, labeled by their colour m ∈ N0. Therefore in this model

the effective geographic space is given by G× {A, (Dm)m∈N0}.
As before, for i ∈ G, let xi(t) denote the fraction of individuals in colony i of type

♡ that are active at time t, but now let yi,m(t) denote the fraction of individuals in
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colony i of type ♡ that are dormant with colour m at time t. Then the system is

described by the process

(Z(t))t≥0, Z(t) =
(
zi(t)

)
i∈G, zi(t) = (xi(t), (yi,m(t))m∈N0), (2.9)

on the state space

E = ([0, 1]× [0, 1]N0)G. (2.10)

Suppose that active individuals exchange with dormant individuals with colour m at

rate em ∈ (0,∞), and let the factor Km ∈ (0,∞) capture the asymmetry between

the size of the active population and the m-dormant population, i.e., similarly as in

(2.6),

Km =
size m-dormant population

size active population
, m ∈ N0, (2.11)

where Km ∈ (0,∞) is the same for all colonies. Then the process (Z(t))t≥0 evolves

according to the SSDE

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.12)

+
∑
m∈N0

Kmem [yi,m(t)− xi(t)] dt,

dyi,m(t) = em [xi(t)− yi,m(t)] dt, m ∈ N0, i ∈ G, (2.13)

where we have to assume that ∑
m∈N0

Kmem <∞, (2.14)

since otherwise active individuals become dormant instantly. Comparing (2.12)–(2.13)

with the SSDE of model 1 in (2.4)–(2.5), we see that active individuals migrate (the

first term in (2.12)), resample (the second term in (2.12)), but now interact with a

whole sequence of dormant populations (the third term in (2.12) and the term in

(2.13)). As initial state Z(0) = z we may again take any z ∈ E.

Remark 2.2.3 (Interpretation of the state space.). Note that, like in Remark

2.2.2, the state space of the system can also be written as

E = [0, 1]S, S = G× {A, (Dm)m∈N0
}. (2.15)

With this interpretation, the process is denoted by

(Z(t))t≥0, Z(t) =
(
zu(t)

)
u∈S, (2.16)

with zu(t) = xi(t) if u = (i, A) and zu(t) = yi,m(t) if u = (i,Dm) for m ∈ N0. ■

34



§2.2. Introduction of the three models and their basic properties

C
h
a
p
t
e
r
2

Model 3: multi-layer seed-bank with displaced seeds. We can extend the

mechanism of model 2 by allowing active individuals that become dormant to do so

in a randomly chosen colony. This amounts to introducing a sequence of irreducible

displacement kernels am(·, ·), m ∈ N0, satisfying

am(i, j) = am(0, j − i) ∀ i, j ∈ G,
∑
i∈G

am(0, i) = 1 ∀m ∈ N0, (2.17)

and replacing (2.12)–(2.13) by

dxi(t) =
∑
j∈G

a(i, j) [xj(t)− xi(t)] dt+
√
dxi(t)[1− xi(t)] dwi(t) (2.18)

+
∑
j∈G

∑
m∈N0

Kmem am(j, i) [yj,m(t)− xi(t)] dt,

dyi,m(t) =
∑
j∈G

em am(i, j) [xj(t)− yi,m(t)] dt, m ∈ N0, i ∈ G. (2.19)

Here, the third term in (2.18) together with the term in (2.19) describe the switch

of colony when individuals exchange between active and dormant. Namely, with

probability am(i, j) simultaneously an active individual in colony i becomes dormant

with colour m in colony j and a randomly chosen dormant individual with colour m

in colony j becomes active in colony i. The state space E is the same as in (2.10).

Also (2.9), (2.11), (2.14) and (2.16) remain the same.

Two key quantities. In models 2 and 3 we must assume that

χ =
∑
m∈N0

Kmem <∞ (2.20)

in order to make sure that active individuals do not become dormant instantly. Define

ρ =
∑
m∈N0

Km =
size dormant population

size active population
. (2.21)

It turns out that ρ and χ are two key quantities of our system. In particular, we will

see that the long-time behaviour of model 2 and model 3 is different for ρ < ∞ and

ρ = ∞.

§2.2.2 Comments

(1) Models 1–3 are increasingly more general. Model 2 is the special case of model

3 when am(0, 0) = 1 for all m ∈ N0, while model 1 is the special case of model

2 when e0 = e, K0 = K and em = Km = 0 for all m ∈ N. Nonetheless, in what

follows we prefer to state our main theorems for each model separately, in order

to exhibit the increasing level of complexity. In Appendix A.1 we explain how

(2.4)–(2.5), (2.12)–(2.13) and (2.18)–(2.19) arise as the large-colony-size limit

of individual-based Fisher-Wright models.
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(2) As geographic space G we allow any countable Abelian group endowed with the

discrete topology. Key examples are the Euclidean lattice G = Zd, d ∈ N, and
the hierarchical lattice G = ΩN , N ∈ N. In this paper we will focus G = Zd.
The case G = ΩN will be considered in more detail in [45].

(3) In model 1, each colony has a seed-bank that serves as a repository for the

genetic information (type ♡ or ♢) carried by the individuals. Because the active

and the dormant population exchange individuals, the genetic information can

be temporarily stored in the seed-bank and thereby be withdrawn from the

resampling. We may think of dormant individuals as seeds that drop into the

soil and preserve their type until they come to the surface again and grow into

a plant.

In model 2, the seed-bank is a repository for seeds with one of infinitely many

colours. The colours provide us with a tool to model different distributions for

the time an individual stays dormant without loosing the Markov property for

the evolution of the system. Tuning the parameters Km and em properly and

subsequently forgetting about the colours, we can mimic different distributions

for the time an individual stays dormant. This is of biological significance,

especially in colonies of bacteria, where individuals stay dormant for random

times whose distribution is fat-tailed (see [55]).

In model 3, the seed may even be blown elsewhere. Individuals that displace

before becoming dormant are observed in plant-species as well as in bacteria

populations (see [55]).

(4) In Appendix A.2 we comment on what happens when the rates to become active

or dormant are decoupled, i.e., individuals are no longer subject to exchange

but move in and out of the seed-bank independently. This leads to a Moran

model where the sizes of the active and the dormant population can fluctuate.

We will show that, modulo a change of variables and a short transient period in

which the sizes of the active and the dormant population establish equilibrium,

this model has the same behaviour as the model with exchange.

(5) In (2.4), (2.12) and (2.18) we may replace the diffusion functions dgFW, d ∈
(0,∞), where

gFW(x) = x(1− x), x ∈ [0, 1], (2.22)

is the Fisher-Wright diffusion function, by a general diffusion function in the

class G defined by

G =
{
g : [0, 1] → [0,∞) : g(0) = g(1) = 0, g(x) > 0 ∀x ∈ (0, 1), g Lipschitz

}
.

(2.23)

This class is appropriate because a diffusion with a diffusion function g ∈ G
stays confined to [0, 1], yet can go everywhere in [0,1] (Breiman [13, Chapter

16, Section 7]). Picking g ̸= gFW amounts to allowing the resampling rate

to be state-dependent, i.e., the resampling rate in state x equals g(x)/x(1− x),

x ∈ (0, 1). An example is the Kimura-Ohta diffusion function g(x) = [x(1−x)]2,

36



§2.2. Introduction of the three models and their basic properties

C
h
a
p
t
e
r
2

x ∈ [0, 1], for which the resampling rate is equal to the genetic diversity of the

colony. In the sequel we allow for general diffusion functions g ∈ G in all three

models, unless stated otherwise.

§2.2.3 Well-posedness

For every law on E, with E depending on the choice of model, we want the SSDE for

models 1, 2 and 3 to define a Borel Markov process, i.e., the law of the path is a Borel

measurable function of the initial state for every starting point in the state space [17,

p.62]. We use a martingale problem, in the sense of [32, p.173], to characterize the

SSDE. Let

F =
{
f ∈ Cb(E,R) : f depends on finitely many components

and is twice continuously differentiable in each component
}
.

(2.24)

The generator G of the process acting on F reads for model 1 ((2.4)–(2.5)),

G =
∑
i∈G

([∑
j∈G

a(i, j)(xj − xi)

]
∂

∂xi
+

1

2
g(xi)

∂2

∂x2i

+Ke (yi − xi)
∂

∂xi
+ e (xi − yi)

∂

∂yi

)
,

(2.25)

for model 2 ((2.12)–(2.13)),

G =
∑
i∈G

([∑
j∈G

a(i, j)(xj − xi)

]
∂

∂xi
+

1

2
g(xi)

∂2

∂x2i

+
∑
m∈N0

[
Kmem (yi,m − xi)

∂

∂xi
+ em (xi − yi,m)

∂

∂yi,m

])
,

(2.26)

while for model 3 ((2.18)–(2.19)) the last term in the right-hand side of (2.26) is to

be replaced by

∑
i,j∈G

∑
m∈N0

[
Kmem am(j, i) (yj,m − xi)

∂

∂xi
+ em am(i, j) (xj − yi,m)

∂

∂yi,m

]
. (2.27)

Theorem 2.2.4 (Well-posedness: models 1–3). For each of the three models the

following holds:

(a) The SSDE has a unique strong solution in C([0,∞), E). Its law is the unique

solution of the (G,F , δu)-martingale problem for all u ∈ E.

(b) The process starting in u ∈ E is Feller and strong Markov. Consequently, the

SSDE defines a unique Borel Markov process starting from any initial law on E.
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coalescence
migration

Ke e

dormant

active

Figure 2.3: Transition scheme for an ancestral lineage in the dual, which moves according
to the transition kernel b(·, ·) in (2.31). Two active ancestral lineages that are at the same
colony coalesce at rate d.

§2.2.4 Duality

For g = dgFW the three models have a tractable dual, which will be seen to play

a crucial role in the analysis of their long-time behaviour. For g ̸= dgFW the three

models do not have a tractable dual. However, we compare them with models that

do and determine their long-time behaviour. In [12, Sections 2.2 and 3] it was shown

that the non-spatial Fisher-Wright diffusion with seed-bank is dual to the so-called

block-counting process of a seed-bank coalescent. The latter describes the evolution

of the number of partition elements in a partition of n ∈ N individuals, sampled from

the current population, into subgroups of individuals with the same ancestor (i.e.,

individuals that are identical by descent). The enriched dual generates the ancestral

lineages of the individuals evolving according to a Fisher-Wright diffusion with seed-

bank, i.e., generates their full genealogy. The corresponding block-counting process

counts the number of ancestral lineages left when traveling backwards in time. In this

section we will extend the duality results in [12] to the spatial setting.

t

Figure 2.4: Picture of the evolution of lineages in the spatial coalescent. The purple blocks
depict the colonies, the blue lines the active lineages, and the red lines the dormant lineages.
Blue lineages can migrate and become dormant, (i.e., become red lineages). Two blue lineages
can coalesce when they are at the same colony. Red dormant lineages first have to become
active (blue) before they can coalesce with other blue and active lineages or migrate. Note
that the dual runs backwards in time. The collection of all lineages determines the genealogy
of the system.

Model 1. Recall that for model 1, S = G×{A,D} is the effective geographic space.

For n ∈ N the state space of the n-spatial seed-bank coalescent is the set of partitions

of {1, . . . , n}, where the partition elements are marked with a position vector giving
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their location. A state is written as π, where

π = ((π1, η1), . . . , (πn̄, ηn̄)), n̄ = |π|,
πℓ ⊂ {1, . . . , n}, {π1, · · ·πn̄} is a partition of {1, . . . , n},
ηℓ ∈ S, ℓ ∈ {1, . . . , n̄}, 1 ≤ n̄ ≤ n.

(2.28)

A marked partition element (πℓ, ηℓ) is called active if ηℓ = (j, A) and called dormant

if ηℓ = (j,D) for some j ∈ G. The n-spatial seed-bank coalescent is denoted by

(C(n)(t))t⩾0, (2.29)

and starts from

C(n)(0) = π(0), π(0) = {({1}, ηℓ1), . . . , ({n}, ηℓn)}, ηℓ1 , . . . , ηℓn ∈ S. (2.30)

The n-spatial seed-bank coalescent is a Markov process that evolves according to

the following two rules.

(a) Each partition element moves independently of all other partition elements ac-

cording the kernel

b(1)((i, Ri), (j, Rj)) =


a(i, j), if Ri = Rj = A,
Ke, if i = j, Ri = A, Rj = D,
e, if i = j, Ri = D, Rj = A,
0, otherwise,

(2.31)

where a(·, ·) is the migration kernel defined in (2.1), K is the relative size of the

dormant population defined in (2.6), and e is the rate of exchange between the

active and the dormant population shown in (2.4)–(2.5). Therefore an active

partition element migrates according to the transition kernel a(·, ·) and becomes

dormant at rate Ke, while a dormant partition element can only become active

and does so at rate e. In (2.31), the notation b(1) marks that the kernel refers

to model 1. Later we will use the notation b(2) for model 2 and b(3) for model

3.

(b) Independently of all other partition elements, two partition elements that are at

the same colony and are both active coalesce with rate d, i.e., the two partition

elements merge into one partition element.

The spatial seed-bank coalescent (C(t))t≥0 is defined as the projective limit of the

n-spatial seed-bank coalescents (C(n)(t))t≥0 as n→ ∞. This object is well-defined by

Kolmogorov’s extension theorem (see [12, Section 3]).

For n ∈ N we define the block-counting process (L(t))t≥0 corresponding to the n-

spatial seed-bank coalescent as the process that counts at each site (i, Ri) ∈ G×{A,D}
the number of partition elements of C(n)(t), i.e.,

L(t) =
(
L(i,A)(t), L(i,D)(t)

)
i∈G,

L(i,A)(t) = L(i,A)(C(n)(t)) =

n̄∑
ℓ=1

1{ηℓ(t)=(i,A)},

L(i,D)(t) = L(i,D)(C(n)(t)) =

n̄∑
ℓ=1

1{ηℓ(t)=(i,D)}.

(2.32)
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Therefore (L(t))t≥0 has state space E′ = (N0 × N0)
G. We denote the elements of E′

by sequences (mi, ni)i∈G, and define δ(j,Rj) ∈ E′ to be the element of E′ that is 0 at

all sites (i, Ri) ∈ G× {A,D}\(j, Rj), but 1 at the site (j, Rj). From the evolution of

C(n)(t) described below (2.29) we see that the block-counting process has the following

transition kernel:

(mi, ni)i∈G →


(mi, ni)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, ni)i∈G − δ(j,A), at rate d

(
mj

2

)
for j ∈ G,

(mi, ni)i∈G − δ(j,A) + δ(j,D), at rate mjKe for j ∈ G,
(mi, ni)i∈G + δ(j,A) − δ(j,D), at rate nje for j ∈ G.

(2.33)

The process (Z(t))t≥0 defined in (2.4)–(2.5) is dual to the block-counting process

(L(t))t≥0. The duality function H : E × E′ → R is defined by

H
(
(xi, yi)i∈G, (mi, ni)i∈G

)
=
∏
i∈G

xmi
i yni

i . (2.34)

The duality relation reads as follows.

Theorem 2.2.5 (Duality relation: model 1). Let H be defined as in (2.34). Then

for all (xi, yi)i∈G ∈ E and (mi, ni)i∈G ∈ E′,

E(xi,yi)i∈G

[
H
(
(xi(t), yi(t))i∈G, (mi, ni)i∈G

)]
= E(mi,ni)i∈G

[
H
(
(xi, yi)i∈G, (L(i,A)(t), L(i,D)(t))i∈G

)] (2.35)

with E the generic symbol for expectation (on the left over the original process, on the

right over the dual process).

Since the duality function H gives all the mixed moments of (Z(t))t≥0, the duality

relation in Theorem 2.2.5 is called a moment dual.

Remark 2.2.6 (Effective geographic space). Interpreting (Z(t))t≥0 as a process

on the effective geographic space S, recall Remark 2.2.2, we can rewrite the duality

relation. Let the block-counting process (L(t))t≥0 = (L(C(t))t≥0 count at each site

u ∈ S the number of partition elements of C(t), i.e.,

L(t) = (Lu(t))u∈S,

Lu(t) = Lu(C(t)) =
n̄∑
ℓ=1

1{ηℓ(t)=u},
(2.36)

and rewrite the duality function H in (2.34) as

H((zu, lu)u∈S) =
∏
u∈S

zluu . (2.37)

Then, for z ∈ E and l ∈ E′, the duality relation reads

E
[
H(zu(t), lu)

]
= E

[
H(zu, Lu(t))

]
. (2.38)
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Interpreting the duality relation in terms of the effective geographic space S, we see

that each ancestral lineage in the dual is a Markov chain that moves according to the

transition kernel b(1)(·, ·). Interpreting the duality relation in terms of the geographic

space G, we see that an ancestral lineage is a random walk moving on G, with internal

states A and D. Both interpretations turn out to be useful in analysing the long-time

behaviour of the system. ■

Remark 2.2.7 (Wake-up times). Define (see Fig. 2.3)

σ = typical time spent by an ancestral lineage in state A

before switching to state D,

τ = typical time spent by an ancestral lineage in state D

before switching to state A.

(2.39)

(Here, the word typical refers to what happens to an ancestral lineage each time it

switches state at some geographic location. For a more precise definition we refer to

Section 3.2.2 and Fig. 3.1.) It follows from (2.31) that

P(σ > t) = e−Ket,

P(τ > t) = e−et.
(2.40)

An ancestral lineage in the dual of the spatial seed-bank process behaves as an an-

cestral lineage in the dual of a spatial Fisher-Wright diffusion without seed-bank (see

e.g. [36]), but becomes dormant every once in a while. On the long run we expect an

ancestral lineage to be active only a fraction 1
1+K of the time. We will see in Section

3.2 that the effect of the seed-bank on the long-time behaviour of the ancestral lin-

eages in the dual is a slow down by a factor 1
1+K compared to the long-time behaviour

of the ancestral lineages in the dual of interacting Fisher-Wright diffusions without

seed-bank. ■

Model 2. The dual for model 2 arises naturally from the dual for model 1 by

adding internal states to the seed-bank and adapting the rates of becoming active

and dormant accordingly. Recall that for model 2 the effective geographic space is

S = G × {A, (Dm)m∈N0
}. Migration and coalescence are as before, but at every

colony switches between an active copy A and a dormant copy Dm now occur at rates

em, respectively, Km em. The spatial coalescent (C(t))t≥0 in (2.29) starts from an

initial configuration like (2.30) and evolves according to the same two rules, but the

transition kernel b(·, ·) must be replaced by

b(2)((i, Ri), (j, Rj)) =


a(i, j), Ri = Rj = A,
Kmem, i = j, Ri = A, Rj = Dm,m ∈ N0,
em, i = j, Ri = Dm, m ∈ N0, Rj = A,
0, otherwise.

(2.41)
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The corresponding block-counting process becomes

L(t) =
(
L(i,A)(t),

(
L(i,Dm)(t)

)
m∈N0

)
i∈G

,

L(i,A)(t) = L(i,A)(C(t)) =
n̄∑
ℓ=1

1{ηℓ(t)=(i,A)},

L(i,Dm)(t) = L(i,Dm)(C(t)) =
n̄∑
ℓ=1

1{ηℓ(t)=(i,Dm)}, m ∈ N0.

(2.42)

The state space is now given by E′ =
(
N0 × NN0

0

)G
, and the transition kernel becomes

(mi, (ni,m)m∈N0)i∈G

→


(mi, (ni,m)m∈N0)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, (ni,m)m∈N0)i∈G − δ(j,A), at rate d

(
mj

2

)
for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G − δ(j,A) + δ(j,Dm), at rate mjKmem for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G + δ(j,A) − δ(j,Dm), at rate nj,mem for j ∈ G.

(2.43)

The duality function H : E × E′ → R is defined by

H
(
(xi, yi,m)i∈G,m∈N0

, (mi, ni,m)i∈G,m∈N0

)
=
∏
i∈G

∏
m∈N0

xmi
i y

ni,m

i,m . (2.44)

Theorem 2.2.8 (Duality relation: model 2). For (xi, yi,m)i∈G,m∈N0 ∈ E and

(mi, ni,m)i∈G,m∈N0 ∈ E′,

E(xi,yi,m)i∈G,m∈N0

[
H
(
(xi(t), yi,m(t))i∈G,m∈N0

, (mi, ni,m)i∈G,m∈N0

)]
= E(mi,ni,m)i∈G,m∈N0

[
H
(
(xi, yi,m)i∈G,m∈N0

, (L(i,A)(t), L(i,Dm)(t))i∈G,m∈N0

)]
.

(2.45)

By rewriting the block-counting process as in Remark 2.2.6, the duality function can

be rewritten as

H((zu, lu)u∈S) =
∏
u∈S

zluu (2.46)

and the duality relation reads

E
[
H
(
(zu(t))u∈S, (lu)u∈S

)]
= E

[
H
(
(zu)u∈S, (Lu(t))u∈S)

)]
. (2.47)

Remark 2.2.9 (Fat-tailed wake-up times.). Recall the definition of χ in (2.20)

and the definition of ρ in (2.21). Define

σ = typical time spent by an ancestral lineage in the active state A

before switching to a dormant state ∪m∈N0 Dm,

τ = typical time spent by an ancestral lineage in the dormant state ∪m∈N0 Dm

before switching to the active state A.
(2.48)
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Note that τ does not look at the colour of the dormant state. It follows from (2.41)

that
P(σ > t) = e−χt,

P(τ > t) =
∑
m∈N0

Kmem
χ

e−emt,
(2.49)

independently of the colony i ∈ G. Hence

E [τ ] =
ρ

χ
. (2.50)

If ρ < ∞, then we invoke the seed-bank colours and use the balance equations for

recurrent Markov chains to see that each ancestral lineage in the dual in the long run

spends a fraction ρ
1+ρ of the time in the dormant state. Like in model 1, an ancestral

lineage in the dual behaves like an ancestral lineage in the dual of interacting Fisher-

Wright diffusions, but is slowed down by a factor ρ
1+ρ . However, if ρ = ∞, then (2.41)

together with (2.50) imply that each ancestral lineage in the dual behaves like a null-

recurrent Markov chain on {A, (Dm)m∈N0
}, and consequently the probability to be

active tends to 0 as t → ∞. Therefore we may expect that the long-time behaviour

of the system is affected by the seed-bank. In particular, choosing

Km ∼ Am−α, em ∼ Bm−β , m→ ∞,

A,B ∈ (0,∞), α, β ∈ R : α ≤ 1 < α+ β,
(2.51)

we see that (2.49) implies

P(τ > t) ∼ Ct−γ , t→ ∞, (2.52)

with γ = α+β−1
β and C = A

χβ B
1−γ Γ(γ), where Γ is the Gamma-function. The

conditions on α, β guarantee that ρ = ∞, χ <∞ (recall (2.20) and (2.21)). Examples

are: α = 0, β > 1 and α ∈ (0, 1), β > 1−α. Thus, for ρ = ∞ we can model individuals

with a fat-tailed wake-up time simply by not taking their colours into account. The

internal structure of the seed-bank captured by the colours allows us to model fat-tailed

wake-up times without loosing the Markov property for the evolution. ■

Model 3. The effective geographic space is again S = G×{A, (Dm)m∈N0
}. On top of

migration and coalescence, each switch from A to Dm and vice versa is accompanied

by a displacement according to the displacement kernel am(·, ·) defined in (2.17).

Therefore each lineage in the dual evolves according to

b(3)((i, Ri), (j, Rj)) =

 a(i, j), Ri = Rj = A,
Kmemam(j, i), Ri = A, Rj = Dm,m ∈ N0,
emam(i, j), Ri = Dm, m ∈ N0Rj = A.

(2.53)

Again, when two ancestral lineages are active at the same site they coalesce at rate

1 and the corresponding block-counting process evolves according to the transition
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kernel

(mi, (ni,m)m∈N0
)i∈G

→


(mi, (ni,m)m∈N0

)i∈G − δ(j,A) + δ(k,A), at rate mja(j, k) for j, k ∈ G,
(mi, (ni,m)m∈N0

)i∈G − δ(j,A), at rate d
(
mj

2

)
for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G − δ(j,A) + δ(k,Dm), at rate mjKmemam(k, j) for j ∈ G,

(mi, (ni,m)m∈N0
)i∈G + δ(k,A) − δ(j,Dm), at rate nj,memam(j, k) for j ∈ G.

(2.54)

Theorem 2.2.10 (Duality relation: model 3). The same duality relation holds

as in (2.45), where now the dual dynamics includes not only the exchange between

active and dormant but also the accompanying displacement in space.

§2.2.5 Dichotomy criterion

For g = dgFW the duality relations in Theorems 2.2.5, 2.2.8 and 2.2.10 provide us

with the following criterion to characterise the long-term behaviour. If, in the limit

as t → ∞, locally only one type survives in the population, then we say that the

system exhibits clustering. If, in the limit as t → ∞, locally both types survive in

the population, then we say that the system exhibits coexistence. For model 1 the

criterion reads as follows.

Theorem 2.2.11 (Dichotomy criterion: model 1). Suppose that µ(0) is invari-

ant and ergodic under translations. Let d ∈ (0,∞). Then the system with g = dgFW
clusters if and only if in the dual two partition elements coalesce with probability 1.

The idea behind Theorem 2.2.11 is as follows. If in the dual two partition elements

coalesce with probability 1, then a random sample of n individuals drawn from the

current population has a common ancestor some finite time backwards in time. Since

individuals inherit their type from their parent individuals, this means that all n

individuals have the same type. A formal proof will be given in Section 3.1.3.

For model 2–3 we need an extra assumption on µ(0) when ρ = ∞.

Definition 2.2.12 (Colour regular initial measures). We say that µ(0) is colour

regular when

lim
N→∞

Eµ(0)[y0,N ] exists, (2.55)

i.e., µ(0) has asymptotically converging colour means. □

Thus, colour regularity is a condition on the deep seed-banks (where deep means

m → ∞). This condition is needed because as time proceeds lineages starting from

deeper and deeper seed-banks become active for the first time, and bring new types

into the active population. Without control on the initial states of the deep seed-

banks, there may be no convergence to equilibrium.

Theorem 2.2.13 (Dichotomy criterion: models 2–3). The same as in

Theorem 2.2.11 is true for ρ < ∞, but for ρ = ∞ additionally requires that µ(0) is

colour regular.
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Remark 2.2.14 (Clustering criterion general g ∈ G). In Section 2.3 we will see

that the dichotomy criterion in Theorems 2.2.11 and 2.2.13 for g = dgFW does not

depend on d, the rate of resampling. We will use duality comparison arguments to

carry over the dichotomy criterion in Theorems 2.2.11 and 2.2.13 to g ∈ G. We will

see later that for all three models the system with g exhibits clustering if and only if

the system with gFW exhibits clustering. ■

Remark 2.2.15 (Liggett conditions). We will see in Section 3.3.3 that, for model

2 with ρ = ∞, if an initial measure µ is invariant and ergodic under translations and

is colour regular, then the Markov chain evolving according to b(2)(·, ·) satisfies the

following two conditions:

(1)

lim
t→∞

∑
(k,Rk)∈G×{A,(Dm)m∈N0}

b
(2)
t

(
(i, Ri), (k,Rk)

)
Eµ[z(k,Rk)] = θ, (2.56)

(2)

lim
t→∞

∑
(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
× Eµ[z(k,Rk)z(l,Rl)] = θ2.

(2.57)

These are precisely the conditions in [56, Chapter V.1] necessary to determine the

dichotomy in the long-time behaviour of the voter model. We show that (1) and

(2) imply convergence to a unique equilibrium that is invariant and ergodic under

translations. It is difficult to identify exactly which initial measures µ satisfy (1) and

(2). This is the reason why we work with sufficient conditions and need the notion of

colour regularity.

For model 2 with ρ <∞, conditions (1) and (2) are satisfied when µ(0) is invariant

and ergodic under translations, and colour regularity is not needed. The same holds

for model 1, once the state space is replaced by G × {A,D} and b(2)(·, ·) is replaced

by b(1)(·, ·). Also for model 3 conditions (1) and (2) hold after replacing b(2)(·, ·) by

b(3)(·, ·). If ρ = ∞ in model 3 we need to assume colour regularity, if ρ < ∞, this is

not needed. ■

§2.3 Long-time behaviour

In this section we study the long-time behaviour of models 1–3. In Sections 2.3.1–

2.3.3 we prove convergence to a unique equilibrium measure, establish the dichotomy

between clustering and coexistence, and identify which of the two occurs in terms

of the migration kernel and the rates governing the exchange with the seed-bank

(Theorems 2.3.1–2.3.6).

Throughout the sequel, g is a general diffusion function from the class G defined

in (2.23). Special cases are the multiples of the standard Fisher-Wright diffusion
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function: g = dgFW, d ∈ (0,∞), with gFW(x) = x(1 − x), x ∈ [0, 1]. We use the

following notation (with P(E) denotes the set of probability measures on E):

T =
{
µ ∈ P(E) : µ is invariant under translations in G

}
,

T erg =
{
µ ∈ T : µ is ergodic under translations in G

}
,

I =
{
µ ∈ T : µ is invariant under the evolution

}
.

(2.58)

§2.3.1 Long-time behaviour of Model 1

Let a(·, ·) be as in (2.1). Define the symmetrized migration kernel

â(i, j) = 1
2 [a(i, j) + a(j, i)], i, j ∈ G, (2.59)

which describes the difference of two independent copies of the migration each driven

by a(·, ·). Let ât(0, 0) denote the time-t transition kernel of the random walk with

migration kernel â(·, ·), and suppose that

t 7→ ât(0, 0) is regularly varying at infinity. (2.60)

(Examples can be found in [47, Chapter 3].) Define

Iâ =

∫ ∞

1

dt ât(0, 0). (2.61)

Note that Iâ = ∞ if and only if â(·, ·) is recurrent (see e.g. [69, Chapter 1]). Define

θ = Eµ(0)
[
x0 +Ky0
1 +K

]
. (2.62)

If µ(0) is invariant and ergodic under translations, then θ is the initial density of ♡
in the population.

From the SSDE in (2.4)–(2.5) we see that(
x0(t) +Ky0(t)

1 +K

)
t≥0

(2.63)

is a martingale. In particular,

θ = Eµ(t)
[
x0 +Ky0
1 +K

]
∀ t ≥ 0. (2.64)

For θ ∈ [0, 1], we define

T erg
θ =

{
µ ∈ T erg : Eµ(0)

[
x0 +Ky0
1 +K

]
= θ

}
. (2.65)

Write µ(t) to denote the law of (Z(t))t≥0, defined in (2.2). Recall that associated

means that increasing functions of the configuration are positively correlated, i.e.,

if f : E → R and g : E → R depend on only finitely many coordinates and are

coordinate-wise increasing, then

Eνθ [f(x)g(x)] ≥ Eνθ [f(x)]Eνθ [g(x)]. (2.66)
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Theorem 2.3.1 (Long-time behaviour: model 1). Suppose that µ(0) ∈ T erg
θ .

(a) (Coexistence regime) If â(·, ·) is transient, i.e., Iâ <∞, then

lim
t→∞

µ(t) = νθ, (2.67)

where

νθ is an equilibrium measure for the process on E, (2.68)

νθ is invariant, ergodic and mixing under translations, (2.69)

νθ is associated, (2.70)

Eνθ [x0] = Eνθ [y0] = θ, (2.71)

with Eνθ denoting expectation over νθ.

(b) (Clustering regime) If â(·, ·) is recurrent, i.e., Iâ = ∞, then

lim
t→∞

µ(t) = θ [δ(1,1)]
⊗G + (1− θ) [δ(0,0)]

⊗G. (2.72)

The results in (2.67)–(2.72) say that the system converges to an equilibrium whose

density of type ♡ equals θ in (2.62), a parameter that is controlled by the initial state

µ(0) and the asymmetry parameter K. The equilibrium can be either locally mono-

type or locally multi-type, depending on whether the symmetrised migration kernel is

recurrent or transient. If the equilibrium is mono-type, then the system grows large

mono-type clusters (= clustering). If the equilibrium is multi-type, then the system

allows ♡ and ♢ to mix (= coexistence). In the case of coexistence, the equilibrium

measure νθ also depends on the migration kernel a(·, ·), the values of the parameters

e,K, and the diffusion function g ∈ G (recall (2.23)). The dichotomy itself, however, is

controlled by Iâ only. In particular, g ∈ G plays no role, a fact that will be shown with

the help of a duality comparison argument. In view of Theorem 2.2.11, if g = dgFW,

then Iâ = ∞ implies that with probability 1 two ancestral lineages in the dual coalesce.

Therefore Iâ = ∞ is said to be the total hazard of coalescence. Remarkably, this

dichotomy is the same as the dichotomy observed for systems without seed-bank (see

[14]): clustering prevails for recurrent migration; coexistence prevails for transient

migration; for G = Zd the critical dimension is d = 2. From the proof in Section

3.2.2 it will become clear that in the dual the ancestral lineages in the long run

behave like the ancestral lineages without seed-bank, but are slowed down by a factor
1

1+K . Consequently, the dormant periods of the ancestral lineages do not affect the

dichotomy of the system. In particular, it does not affect the critical dimension

separating clustering from coexistence.

Remark 2.3.2 (Ergodic decomposition). Because T is a Choquet simplex, The-

orem 2.3.1 carries over from µ(0) ∈ T erg to µ(0) ∈ T , after decomposition into ergodic

components. ■
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§2.3.2 Long-time behaviour of Model 2

For model 2 we need the extra condition that a(·, ·) is symmetric, i.e.,

a(i, j) = a(j, i) ∀ i, j ∈ G. (2.73)

Note that ât(0, 0) = at(0, 0) because of (2.73). Below we comment on what happens

when we drop this assumption. Recall (2.20)–(2.21). It turns out that the long-time

behaviour of model 2 is different for ρ <∞ and ρ = ∞.

Case ρ <∞. For a finite seed-bank, we define the initial density as

θ = Eµ(0)
[
x0 +

∑
m∈N0

Km y0,m

1 + ρ

]
, (2.74)

which is the counter part of (2.62) in model 1. Like in model 1, it follows from the

SSDE in (2.12)–(2.13) that(
x0(t) +

∑
m∈N0

Km y0,m(t)

1 + ρ

)
t≥0

(2.75)

is a martingale. Hence also here the density is a preserved quantity under the evolution

of the system. The dichotomy is controlled by the same integral Iâ as defined in (2.61)

for model 1.

Case ρ = ∞. For an infinite seed-bank, we assume that (recall Remark 2.2.9)

Km ∼ Am−α, em ∼ Bm−β , m→ ∞,

A,B ∈ (0,∞), α, β ∈ R : α ≤ 1 < α+ β,
(2.76)

for which

P (τ > t) ∼ C t−γ , t→ ∞, (2.77)

with γ = α+β−1
β ∈ (0, 1) and C = A

β B
1−γ γΓ(γ) ∈ (0,∞), where Γ is the Gamma-

function. In addition, we assume that the initial measure µ(0) is colour regular (recall

Definition 2.2.12), and define

θ = lim
m→∞

E[y0,m]. (2.78)

This ensures the existence of the initial density

θ = lim
M→∞

Eµ(0)

[
x0 +

∑M
m=0Km y0,m

1 +
∑M
m=0Km

]
. (2.79)

It turns out that the dichotomy is controlled by the integral

Iâ,γ =

∫ ∞

1

dt t−(1−γ)/γ ât(0, 0) (2.80)
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instead of the integral Iâ for ρ <∞.

For θ ∈ (0, 1), define (both for ρ <∞ and ρ = ∞)

T erg
θ =

{
µ ∈ T erg : lim

M→∞
Eµ(0)

[
x0 +

∑M
m=0Kmy0,m

1 +
∑M
m=0Km

]
= θ

}
. (2.81)

Theorem 2.3.3 (Long-time behaviour: model 2). (I) Let ρ < ∞. Assume

(2.60) and (2.73). Suppose that µ(0) ∈ T erg
θ .

(a) (Coexistence regime) If Iâ <∞, then

lim
t→∞

µ(t) = νθ, (2.82)

where

νθ is an equilibrium measure for the process on E, (2.83)

νθ is invariant, ergodic and mixing under translations, (2.84)

νθ is associated, (2.85)

Eνθ [x0] = Eνθ [y0,m] = θ ∀m ∈ N0, (2.86)

with Eνθ denoting expectation over νθ. Moreover,

lim inf
m→∞

em > 0: lim inf
m→∞

Varνθ (y0,m) > 0,

lim sup
m→∞

em = 0: lim sup
m→∞

Varνθ (y0,m) = 0.
(2.87)

(b) (Clustering regime) If Iâ = ∞, then

lim
t→∞

µ(t) = θ [δ(1,1N0 )]
⊗G + (1− θ) [δ(0,0N0 )]

⊗G. (2.88)

(II) Let ρ = ∞. Assume (2.60), (2.73) and (2.76). Suppose that µ(0) ∈ T erg and, in

addition, is colour regular with initial density θ given by (2.79). Then the same

results as in (I) hold after Iâ in (2.61) is replaced by Iâ,γ in (2.80). Moreover,

lim
M→∞

Eνθ

[
x0 +

∑M
m=0Km y0,m

1 +
∑M
m=0Km

]
= θ, (2.89)

and νθ is colour regular.

The result in part (I) shows that for ρ < ∞ the long-time behaviour is similar

to that of model 1. Like in model 1, the results in (2.82)–(2.88) say that the system

converges to an equilibrium whose density of type ♡ equals θ in (2.62), the density

of ♡ under the initial measure µ(0). Again, the equilibrium can be either mono-type

or multi-type, depending on whether the symmetrised migration kernel is recurrent

or transient. Like in model 1, in both cases the equilibrium measure depends on θ.

In the case of coexistence, the equilibrium measure νθ also depends on the migration
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kernel a(·, ·), the sequences of parameters (em)m∈N0
and (Km)m∈N0

, and the diffusion

function g ∈ G (recall (2.23)). Again, the dichotomy itself is controlled by Iâ only,

and the resampling rate given by g ∈ G plays no role. Therefore if g = dgFW , in

view of Theorem 2.2.11, whether or not two ancestral lineages in the dual coalesce

with probability 1 is still only determined by the migration kernel a(·, ·). The same

dichotomy holds as for systems without seed-bank (see [14]). Therefore part (I) of

Theorem 2.3.3 indicates that, as long as the dormant periods of the ancestral lineages

in the dual have a finite mean ( ρ
1+ρ ; recall Remark 2.2.9), the seed-bank does not

affect the dichotomy of the system.

Even so, (2.87) indicates that there is interesting behaviour in the deep seed-banks.

Indeed, when the exchange rate em between the m-dormant and the active popula-

tion is bounded away from zero as m → ∞ the deep seed-banks are asymptotically

random, while when em tend to zero as m → ∞ the deep seed-banks are asymptot-

ically deterministic. The latter means that the deep seed-banks serve as a reservoir,

containing a fixed mixture of types. For ρ <∞ this reservoir is too small to influence

the dichotomy of the system, but not for ρ = ∞.

For ρ = ∞ the system again converges to an equilibrium whose density of type ♡
equals θ in (2.79), the density of ♡ under the initial measure µ(0). The equilibrium

can be mono-type or multi-type, but the dichotomy criterion has changed. Instead

of Iâ, the dichotomy is now controlled by the integral Iâ,γ (recall (2.80)), where γ is

the parameter determined by relative sizes Km of the colour m-dormant populations

with respect to the active population and the exchanges rates (em)m∈N0
with the seed-

bank, recall (2.76)–(2.77). If g = dgFW , γ is the parameter of the tail of the wake-up

time of an ancestral lineages in the dual (recall (2.2.9)). Therefore if g = dgFw, in

view of Theorem 2.2.13, we see that the dormant periods of the ancestral lineages

in the dual do affect whether or not two ancestral lineages in the dual coalesce with

probability 1. For general g ∈ G, the integral Iâ,γ in (2.80) shows a competition

between migration and exchange. The smaller γ is, the longer the individuals remain

dormant in the seed-bank, the smaller Iâ,γ is, and the more coexistence becomes

likely. As a consequence clustering requires more stringent conditions than recurrent

migration; for G = Zd the critical dimension is 1 < d < 2 for γ ∈ [ 12 , 1] and d = 1 for

γ ∈ (0, 12 ). The seed-bank enhances genetic diversity. Note that γ ↑ 1 links up with

the case ρ < ∞, where coexistence occurs if and only if the migration is transient.

Also note that for γ ∈ (0, 12 ) there is always coexistence irrespective of the migration.

In the case of clustering the equilibrium measure only depends on θ, while in

the case of coexistence, like for ρ < ∞, νθ depends on the migration kernel a(·, ·),
the sequences of parameters (em)m∈N0

, (Km)m∈N0
, and the diffusion function g ∈ G.

Since we assumed (2.76), we have lim supm→∞ em = 0 , and so we are automatically in

the second case of (2.87). Hence the deep seed-banks are asymptotically deterministic,

i.e., the m-dormant population converges in law to a deterministic state θ as m→ ∞.

Roughly speaking, in case g = dgFW , in equilibrium the volatility of a colour is

inversely proportional to its average wake-up time in the dual. Since ρ = ∞, for

each M ∈ N0 we have
∑∞
m=M Km = ∞, and in the coexistence regime the effect of

the seed-bank can be interpreted as a migration towards an infinite reservoir with

deterministic density θ.
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Like for model 1, also here T is a Choquet simplex, and Theorem 2.3.3 carries

over from T erg to T , after decomposition into ergodic components.

Example of effect of infinite seed-bank. For a symmetric migration kernel with

finite second moment the following holds:

� For G = Z2, ât(0, 0) ≍ t−1, t→ ∞, and so coexistence occurs for all γ ∈ (0, 1).

� For G = Z, ât(0, 0) ≍ t−1/2, t → ∞, and so coexistence occurs if and only if

γ ∈ (0, 23 ).

In both cases the migration is recurrent, so that clustering prevails in model 1.

Corollary 2.3.4 (Three regimes). Under the conditions of Theorem 2.3.3, the sys-

tem in (2.12)–(2.13) has three different parameter regimes:

(1) γ ∈ (1,∞): migration determines the dichotomy.

(2) γ ∈ [ 12 , 1]: interplay between migration and seed-bank determines the dichotomy.

(3) γ ∈ (0, 12 ): seed-bank determines the dichotomy.

Role of symmetry in migration. Unlike in model 1, it is not possible to remove

the symmetry assumption in (2.73), as the following counterexample shows. We

consider model 2 with ρ <∞ under assumption (2.60), but we do not assume (2.73).

� Counterexample: Let G = Z2, and for η ∈ (0, 1) pick

a(i, j) =

{
1
4 (1 + η), j = i+ (1, 0) or i+ (0, 1),

1
4 (1− η), j = i− (1, 0) or i− (0, 1),

(2.90)

i.e., two-dimensional nearest-neighbour random walk with drift upward and

rightward. Suppose that τ in (2.77) has a one-sided stable distribution with

parameter γ ∈ (1, 2) (obtained from (2.76) but with α, β ∈ R: 1 < α < 1 + β).

Then coexistence occurs while Iâ = ∞.

Recall that for the two-dimensional nearest-neighbour random walk without drift we

get clustering according to Theorem 2.3.3, independently of the distribution of τ . The

key feature of the counterexample is that it corresponds to E(τ) <∞ and E(τ2) = ∞.

Hence the central limit theorem fails for τ . We will see in Section 3.3.5 that the failure

of the central limit theorem for τ is responsible for turning clustering into coexistence.

The above raises the question to what extent the equilibrium behaviour depends

on the nature of the geographic space. To answer this question, we need a key concept

for random walks on countable Abelian groups, which we describe next.

Remark 2.3.5 (Dichotomy criterion and degrees of random walk). We can

read the condition Iâ,γ < ∞ for coexistence versus Ia,γ = ∞ for clustering in terms

of the degree of the random walk. Namely, let â(·, ·) be the transition kernel of an
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irreducible random walk on a countable Abelian group. Then the degree δ of â(·, ·) is
defined as

δ = sup

{
ζ > −1:

∫ ∞

1

dt tζ ât(0, 0) <∞
}
. (2.91)

The degree is defined to be δ+ when the integral is finite at the degree and δ− when

the integral is infinite at the degree. Hence we can rephrase the dichotomy criterion

in Theorem 2.3.3 as

clustering ⇐⇒ either − 1− γ

γ
≥ δ− or − 1− γ

γ
> δ+. (2.92)

For further details we refer to [18], [19], which relate the degree of the random walk

to the tail of its return time to the origin. ■

Modulation of wake-up time with slowly varying function. Under weak

conditions it is possible to modulate (2.77) by a slowly varying function. Assume

that
P(τ ∈ dt)

dt
∼ φ(t) t−(1+γ), t→ ∞, (2.93)

with φ slowly varying at infinity. Define

φ̂(t) =

{
φ(t), γ ∈ (0, 1),∫ t
1
dsφ(s)s−1, γ = 1.

(2.94)

As shown in [8, Section 1.3], without loss of generality we may take φ̂ to be infinitely

differentiable and to be represented by the integral

φ̂(t) = exp

[∫ t

(·)

du

u
ψ(u)

]
(2.95)

for some ψ : [0,∞) → R such that limu→∞ |ψ(u)| = 0. If we assume that ψ eventually

has a sign and satisfies |ψ(u)| ≤ C/ log u for some C < ∞, then (2.80) needs to be

replaced by

Iâ,γ,φ =

∫ ∞

1

dt φ̂(t)−1/γ t−(1−γ)/γ ât(0, 0). (2.96)

A proof is given in Section 3.3.6. The modulation of the wake-up time by a slowly

varying function appears naturally for the model on the hierarchical group, analysed

in [45]. There the integral criterion for the dichotomy in (2.96) is needed to apply

Theorem 2.3.3.

§2.3.3 Long-time behaviour of Model 3

It remains to see how the switch of colony during the exchange affects the dichotomy.

We will focus on the special case where the displacement kernels do not depend on

m, i.e.,

am(·, ·) = a†(·, ·) ∀m ∈ N0, (2.97)
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with a†(·, ·) an irreducible symmetric random walk kernel on G×G. Let â†t(·, ·) denote
the time-t transition kernel of the random walk with symmetrised displacement kernel

â†(·, ·) (= a†(·, ·)) and jump rate 1. Assume that (compare with (2.60))

t 7→ (ât ∗ â†t)(0, 0) is regularly varying at infinity,

(âCt ∗ â†t)(0, 0) ≍ (ât ∗ â†t)(0, 0) as t→ ∞ for every C ∈ (0,∞),
(2.98)

where ∗ stands for convolution. Let

Iâ∗â† =

∫ ∞

1

dt (ât ∗ â†t)(0, 0) (2.99)

and

Iâ∗â†,γ =

∫ ∞

1

dt t−(1−γ)/γ (ât ∗ â†t)(0, 0). (2.100)

Theorem 2.3.6 (Long-time behaviour: model 3). Suppose that, in addition to

the assumptions of Theorem 2.3.3, both (2.97) and (2.98) hold. Then the same results

as for model 2 hold: (I) for ρ < ∞ after Iâ in (2.61) is replaced by Iâ∗â† in (2.99);

(II) for ρ = ∞ after Iâ,γ in (2.80) is replaced by Iâ∗â†,γ in (2.100).

In the case of coexistence the equilibrium measure νθ depends on a(·, ·), a†(·, ·),
(em)m∈N0

, (Km)m∈N0
and g ∈ G. The dichotomy itself, however, is controlled by

Iâ∗â† , respectively, Iâ∗â†,γ alone.

An interesting observation is the following. Since ât(·, ·) and â†t(·, ·) are symmetric,

we have (by a standard Fourier argument)

ât(i, j) ≤ ât(0, 0), â†t(i, j) ≤ â†t(0, 0) ∀ i, j ∈ G ∀ t ≥ 0. (2.101)

Hence, Iâ∗â†,γ ≤ Iâ,γ ∧ Iâ†,γ . Consequently, the extra displacement in model 3 can

only make coexistence more likely compared to model 2, which is intuitively plausible.

If a(·, ·) = a†(·, ·), then (at∗a†t)(0, 0) = a2t(0, 0) and therefore the dichotomy is the

same as for model 2. Hence the extra displacement has in this case no effect on the

dichotomy. However, if the displacement is transient while the migration is recurrent,

then there is a difference. For instance, if ρ < ∞, the migration is a simple random

walk on Z, and the displacement is a symmetric random walk on Z with infinite mean,

e.g. a†(0, x) = a†(0,−x) ∼ D|x|−δ, D ∈ (0,∞), δ ∈ (1, 2), then Iâ = ∞, Iâ† <∞ and

Iâ∗â† < ∞ [69, Section 8]. Therefore there is clustering in model 2, but coexistence

in model 3.
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CHAPTER 3
Spatial populations with seed-bank,

proofs

§3.1 Proofs: Well-posedness and duality

In Section 3.1.1 we prove Theorem 2.2.4, in Section 3.1.2 Theorems 2.2.5, 2.2.8 and

2.2.10, and in Section 3.1.3 Theorems 2.2.11 and 2.2.13.

§3.1.1 Well-posedness

In this section we prove Theorem 2.2.4.

Proof. (a) We first prove Theorem 2.2.4(a): existence and uniqueness of solutions to

the SSDE. We do this for each of the three models separately.

Model 1. Existence of the process defined in (2.4)–(2.5) for model 1 is a consequence

of the assumptions in (2.1), (2.17) and (2.20), in combination with [67, Theorem 3.2],

which reads as follows:

Theorem 3.1.1 (Unique strong solution). Let S be a countable set, and let

Z = {zu}u∈S ∈ [0, 1]S. Consider the stochastic differential equation

dzu(t) = αu(zu(t)) dBu(t) + fu(Z(t)) dt, u ∈ S, (3.1)

where αu : [0, 1] → R for all u ∈ S, fu : [0, 1]S → [0, 1] for all u ∈ S, and B = {Bu}u∈S
is a collection of independent standard Brownian motions. Suppose that:

(1) The functions αu, u ∈ S, are real-valued, 1
2 -Hölder continuous (i.e., there are

Cu ∈ (0,∞) such that |αu(x) − αu(y)| ≤ Cu|x − y| 12 for all x, y ∈ [0, 1]) and

uniformly bounded, with αu(0) = αu(1) = 0, u ∈ S.
(2) The functions fu, u ∈ S, are continuous and satisfy:

• There exists a matrix Q = {Qu,v}u,v∈S such that Qu,v ≥ 0 for all u, v ∈ S,
supu∈S

∑
v∈S Qu,v <∞, and

|fu(Z1)− fu(Z
2)| ≤

∑
v∈S

Qu,v|z1v − z2v |,

for Z1 = {z1v}v∈S ∈ [0, 1]S, Z2 = {z2v}v∈S ∈ [0, 1]S.

(3.2)
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• For Z ∈ [0, 1]S and zu = 0,

fu(Z) ≥ 0. (3.3)

• For Z ∈ [0, 1]S and zu = 1,

fu(Z) ≤ 0. (3.4)

Then (3.1) has a unique [0, 1]S-valued strong solution with a continuous path.

To apply Theorem 3.1.1 to model 1, recall that

S = G× {A,D}, (3.5)

where A denotes the active part of a colony and D the dormant part of a colony. Since

G is countable and {A,D} is finite, S is countable. As before, we denote the fraction

of active individuals of type ♡ at colony i ∈ G by xi and the fraction of dormant

individuals of type ♡ at colony i ∈ G by yi. Note that for every u ∈ S we have either

u = (i, A) or u = (i,D) for some i ∈ G. Therefore

Z = {zu}u∈S = {xi : i ∈ G} ∪ {yi : i ∈ G}, (3.6)

and zu = xi when u = (i, A) and zu = yi when u = (i,D). We can rewrite (2.4)–(2.5)

in the form of (3.1) by picking

αu(zu) =

{√
g(xi), u = (i, A),

0, u = (i,D),
(3.7)

and

fu(Z) =

{∑
j∈G a(i, j) (xj − xi) +Ke (yi − xi), u = (i, A),

e (xi − yi), u = (i,D).
(3.8)

Since g ∈ G (recall (2.23)), the conditions in (1) are satisfied. To check the conditions

in (2), define the matrix Q = {Qu,v}u,v∈S by

Qu,v =



∑
j∈G a(i, j) +Ke, u = (i, A), v = (i, A),

a(i, j), u = (i, A), v = (j, A),

Ke, u = (i, A), v = (i,D),

e, u = (i,D), v = (i,D) or u = (i,D), v = (i, A),

0, otherwise.

(3.9)

Then ∑
v∈S

Qu,v =

{
2
∑
j∈G a(i, j) + 2Ke, u = (i, A),

2e, u = (i,D).
(3.10)

Since we have assumed that
∑
j∈G a(i, j) =

∑
j∈G a(0, j − i) < ∞, it follows that

supu∈S
∑
v∈SQu,v < ∞. Since xi ∈ [0, 1] and yi ∈ [0, 1], the requirements on fu are

immediate. Hence we have a unique strong solution with a continuous path.

By Itô’s formula, the law of the strong solution solves the martingale problem.

Uniqueness of that solution follows from [62, Theorem IX 1.7(i)]. This in turn implies

the Markov property.
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Model 2. To apply Theorem 3.1.1 to model 2, recall that

S = G× {A, (Dm)m∈N0}. (3.11)

Pick

αu(zu) =

{√
g(xi), u = (i, A),

0, u = (i,Dm), m ∈ N0,
(3.12)

and

fu(Z) =

{∑
j∈G a(i, j) (xj − xi) +

∑
m∈N0

Kmem (yi,m − xi), u = (i, A),

em (xi − yi,m), u = (i,Dm).
(3.13)

Set

Qu,v =



∑
j∈G a(i, j) +

∑
m∈N0

Kmem, u = (i, A), v = (i, A),

a(i, j), u = (i, A), v = (j, A), j ̸= i,

Kmem, u = (i, A), v = (i,Dm),

em, u = (i,Dm), v = (i,Dm)

or u = (i,Dm), v = (i, A),

0, otherwise.

(3.14)

Then, by assumptions (2.1) and (2.20), Q, f and α satisfy the conditions of The-

orem 3.1.1.

Model 3. The state space S and the function α are the same as in model 2. When

u ∈ S is of the form (i, A), we must adapt the function fu such that it takes the

displacement of seeds into account. The matrix Q must be adapted accordingly and,

by assumption (2.17), the conditions of Theorem 3.1.1 are again satisfied.

(b) The proof of Theorem 2.2.4(b) is the same for models 1–3. The Feller property

can be proved by using duality if g = dgFW, d ∈ (0,∞). For general g we use [67,

Remark 3.2] (see also [56, Theorem 5.8]). The Feller property in turn implies the

strong Markov property. □

§3.1.2 Duality

In this section we prove Theorems 2.2.5, 2.2.8 and 2.2.10.

Model 1: Proof of Theorem 2.2.5.

Proof. We use the generator criterion (see [32, p.190–193] or [48, Proposition 1.2]) to

prove the duality relation given in (2.35). Let F be the generator of the spatial block-

counting process defined in (2.33), and let H((mj , nj)j∈G) be defined as in (2.34), but
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read as a function of the second sequence only. Then

(FH)
(
(mj , nj)j∈G

)
=
∑
i∈G

[∑
k∈G

mia(i, k)
[
H
(
(mj , nj)j∈G − δ(i,A) + δ(k,A)

)
−H

(
(mj , nj)j∈G

)]
+ d

(
mi

2

)[
H
(
(mj , nj)j∈G − δ(i,A)

)
−H

(
(mj , nj)j∈G

)]
+ miKe

[
H
(
(mj , nj)j∈G − δ(i,A) + δ(i,D)

)
−H

(
(mj , nj)j∈G

)]
+ nie

[
H
(
(mj , nj)j∈G + δ(i,A) − δ(i,D)

)
−H

(
(mj , nj)j∈G

)]]
.

(3.15)

Recall that G is the generator of the SSDE (recall (2.24)–(2.25)). Let DG denote

the domain of G and DF the domain of F . Let (St)t≥0 denote the semigroup of

the process (Z(t))t≥0 in (2.2) and (Rt)t≥0 the semigroup of the process (L(t))t≥0 in

(2.32). Since

d2

dt2
(RtH)((xj , yj , nj ,mj)j∈G) = (F 2RtH)((xj , yj , nj ,mj)j∈G), (3.16)

we see that H((xj , yj , nj ,mj)j∈G) ∈ DG and (RtH)((xj , yj , nj ,mj)j∈G) ∈ DG. It is

also immediate that H((xj , yj , nj ,mj)j∈G) ∈ DF and

(StH)((xj , yj , nj ,mj)j∈G) ∈ DF . Applying the generator G in (2.25) with g = d
2gFW
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to (2.34), we find

(GH)
(
(xj , yj)j∈G

)
=
∑
i∈G

{[∑
k∈G

a(i, k) (xk − xi)

]
∂

∂xi

(∏
j∈G

x
mj

j y
nj

j

)
+ d

2 xi(1− xi)
∂2

∂x2i

(∏
j∈G

x
mj

j y
nj

j

)
+Ke (yi − xi)

∂

∂xi

(∏
j∈G

x
mj

j y
nj

j

)

+ e (xi − yi)
∂

∂yi

(∏
j∈G

x
mj

j y
nj

j

)}

=
∑
i∈G

{[∑
k∈G

mia(i, k)
∏
j∈G
j ̸=i
j ̸=k

x
mj

j y
nj

j

(
xmi−1
i yni

i x
mk+1
k ynk

k − xmi
i yni

i x
ml

k ynk

k

) ]

+
∏
j∈G
j ̸=i

x
mj

j y
nj

j
d
2 mi(mi − 1)

(
xmi−1
i yni

i − xmi
i yni

i

)
1{mi≥2}

+miKe
∏
j∈G
j ̸=i

x
mj

j y
nj

j

(
xmi−1
i yni+1

i − xmi
i yni

i

)

+ nie
∏
j∈G
j ̸=i

x
mj

j y
nj

j

(
xmi+1
i yni−1

i − xmi
i yni

i

)}

= (FH)
(
(mj , nj)j∈G

)
.

(3.17)

Consequently, it follows from the generator criterion that

E
[
H
(
(Xi(t), Yi(t),mi, ni)i∈G

)]
= E

[
H
(
(xi, yi,Mi(t), Ni(t))i∈G

)]
. (3.18)

This settles Theorem 2.2.5. □

Model 2: Proof of Theorem 2.2.8.

Proof. Theorem 2.2.8 follows after replacing in the above proof the block-counting

process in (2.33) by the one in (2.43), the duality function by the one in (2.44), and

checking the generator criterion. □

Model 3: Proof of Theorem 2.2.10.

Proof. Theorem 2.2.10 follows after replacing the block-counting process in (2.33)

by the one in (2.54), the duality function is by the one in (2.44), and checking the

generator criterion. □

§3.1.3 Dichotomy criterion

In this section we prove Theorems 2.2.11 and 2.2.13.
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Model 1: Proof of Theorem 2.2.11.

Proof.

“⇐=” The proof uses the duality relation in Theorem 2.2.5. Define θx = Eµ(0)[x0]
and θy = Eµ(0)[y0]. Note that, since µ(0) is invariant under translations, we have

Eµ(0)[xi] = θx and Eµ(0)[yi] = θy for all i ∈ G. We proceed as in [12, Proposition 2.9].

Let (mi, ni)i∈G ∈ E′ be such that
∑
i∈G[mi(0) + ni(0)] <∞, and put

T = inf

{
t ≥ 0:

∑
i∈G

[mi(t) + ni(t)] = 1

}
. (3.19)

By assumption, each pair of partition elements coalesces with probability 1, and hence

P(T <∞) = 1. By duality

lim
t→∞

E

[∏
i∈G

xi(t)
miyi(t)

ni

]

= lim
t→∞

E

[∏
i∈G

x
mi(t)
i y

ni(t)
i

]

= lim
t→∞

E

[∏
i∈G

x
mi(t)
i y

ni(t)
i

∣∣∣ T <∞

]
P(T <∞)

+ E

[∏
i∈G

x
mi(t)
i y

ni(t)
i

∣∣∣ T = ∞

]
P(T = ∞)

= lim
t→∞

E

[∏
i∈G

x
mi(t)
i y

ni(t)
i

∣∣∣ T <∞, m(t) = 1, n(t) = 0

]
P(m(t) = 1, n(t) = 0)

+ lim
t→∞

E

[∏
i∈G

x
mi(t)
i y

ni(t)
i

∣∣∣ T <∞, m(t) = 0, n(t) = 1

]
P(m(t) = 0, n(t) = 1)

= θx
1

1 +K
+ θy

K

1 +K
,

(3.20)

where in the last step we use that a single lineage in the dual behaves like the Markov

chain with transition kernel b(1)(·, ·) defined in (2.31). It follows from (3.20) that, for

all i, j ∈ G,

lim
t→∞

E
[
xi(t) +Kyi(t)

1 +K

(
1− xj(t) +Kyj(t)

1 +K

)]
= 0. (3.21)

Hence, either limt→∞(x(t), y(t)) = (0, 0)G or limt→∞(x(t), y(t)) = (1, 1)G. Computing

limt→∞ E[xi(t)] with the help of (3.20), we find

lim
t→∞

µ(t) = (1− θ) [δ(0,0)]
⊗

G + θ [δ(1,1)]
⊗

G (3.22)

with θ = Eµ(0)
[
x0+Ky0
1+K

]
=

θx+Kθy
1+K , which means that the system clusters.
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“=⇒” Suppose that the systems clusters. Then (3.21) holds for all i, j ∈ G, which

means that

lim
t→∞

E [zu(t) (1− zv(t))] = 0 ∀u, v ∈ S. (3.23)

Let

|L(t)| =
∑
u∈S

Lu(t), (3.24)

be the total number of lineages left at time t. Applying the duality relation in (2.38)

to (3.23), we find

0 = lim
t→∞

E [zu(t)(1− zv(t))]

= lim
t→∞

Eµ(0)

[
Eδu

[∏
u∈S

zLu(t)
u

]]
− Eµ(0)

[
Eδu+δv

[∏
u∈S

zLu(t)
u

]]

= lim
t→∞

[
θx +Kθy
1 +K

[1− Pδu+δv (|L(t)| = 1)]

− Eµ(0)

[
Eδu+δv

[∏
u∈S

zLu(t)
u

∣∣∣ |L(t)| = 2

]]
Pδu+δv (|L(t)| = 2)

]
.

(3.25)

As to the last term in the right-hand side of (3.25), we note that

lim sup
t→∞

Eµ(0)

[
Eδu+δv

[∏
u∈S

zLu(t)
u

∣∣∣ |L(t)| = 2

]]

= lim sup
t→∞

1

(1 +K)2
E

[∏
u∈S

zLu(t)
u

∣∣∣ L(t) = δ(i,A) + δ(j,A), i, j ∈ G

]

+ lim sup
t→∞

2K

(1 +K)2
E

[∏
u∈S

zLu(t)
u

∣∣∣ L(t) = δ(i,A) + δ(j,D), i, j ∈ G

]

+ lim sup
t→∞

K2

(1 +K)2
E

[∏
u∈S

zLu(t)
u

∣∣∣ L(t) = δ(i,D) + δ(j,D), i, j ∈ G

]

<
θx

(1 +K)2
+
Kθx +Kθy
(1 +K)2

+
K2θy

(1 +K)2
=
θx +Kθy
1 +K

= θ.

(3.26)

Here, the strict inequality follows from the non-trivial invariant initial distribution

(ruling out z ≡ 0 and z ≡ 1), together with the fact that the swapping between active

and dormant is driven by a positive recurrent Markov chain on {A,D}. Hence (3.23)

holds if and only if limt→∞ Pδu+δv (|L(t)| = 2| |L(0)| = 2) = 0 for every u, v ∈ S.
Therefore every pair of lineages coalesces with probability 1. Thus, we have proved

Theorem 2.2.11.

Model 2: Proof of Theorem 2.2.13.
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Case ρ <∞. Like for model 1, we define

θx = Eµ(0)[x0], θy,m = Eµ(0)[y0,m], θ =
θx +

∑∞
m=0Kmθy,m
1 + ρ

. (3.27)

For ρ < ∞, a lineage in the dual moves as a positive recurrent Markov chain on

{A, (Dm)m∈N0}. Therefore the argument for “⇐=” given for model 1 goes through

via the duality relation, which gives

lim
t→∞

E

[∏
u∈S

zu(t)
lu

]
= lim
t→∞

E

[∏
u∈S

zLu(t)
u

]
=
θx +

∑
m∈N0

Kmθy,m

1 +
∑
m∈N0

Km
. (3.28)

With the duality relation in (2.47), the argument for “=⇒” given for model 1 also

goes through directly.

Case ρ = ∞. For ρ = ∞, a lineage in the dual moves as a null-recurrent Markov

chain, which has no stationary distribution, and so (3.28) does not carry over. How-

ever, from [58, Section 3] it follows that, for all u1, u2 ∈ S,

lim
t→∞

∥∥Pu1
(L(t) = δ(·) | L(t) = 1)− Pu2

(L(t) = δ(·) | L(t) = 1)
∥∥
tv

= 0. (3.29)

Moreover, by null-recurrence,

lim
t→∞

P(L(t) = δ(·,A)) = 0,

lim
t→∞

P(L(t) = δ(·,Dm)) = 0 ∀m ∈ N0,

lim
t→∞

∞∑
m=M

P(L(t) = δ(·,Dm)) = 1 ∀M ∈ N0.

(3.30)

“⇐=” By duality, we have

lim
t→∞

E

[∏
u∈S

zu(t)
lu

]
= lim
t→∞

E

[∏
u∈S

zLu(t)
u

]

= lim
t→∞

[
θxP(L(t) = δ(·,A)) +

∑
m∈N0

θy,mP(L(t) = δ(·,Dm))

]
,

(3.31)

where we follow an argument similar as in (3.20) and use that P(T < ∞) = 1.

Because the initial measure is colour regular, we know that limm→∞ θy,m = θ (recall

Definition 2.2.12). But (3.30)–(3.31) imply that all moments tend to θ. In particular,

lim
t→∞

E[xi(t)] = θ = lim
t→∞

E[yi,m(t)], i ∈ G, m ∈ N0. (3.32)

“=⇒” By the duality relation in (2.47) and the assumption of clustering, we find

lim
t→∞

E [zu(t)(1− zv(t))] = 0 ∀u, v ∈ S. (3.33)
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Therefore

lim
t→∞

E [zu(t)(1− zv(t))]

= lim
t→∞

Eµ(0)

[
Eδu

[∏
u∈S

zLu(t)
u

]]
− Eµ(0)

[
Eδu+δv

[∏
u∈S

zLu(t)
u

]]

= θ lim
t→∞

[
[1− Pδu+δv (|L(t)| = 1)]

− Eµ(0)

[
Eδu+δv

[∏
u∈S

zLu(t)
u

∣∣∣ |L(t)| = 2

]]
Pδu+δv (|L(t)| = 2)

]
= 0.

(3.34)

Suppose that limt→∞ Pδu+δv (|L(t)| = 2) ̸= 0. Then

lim
t→∞

Eδu+δv

[∏
u∈S

zLu(t)
u | |L(t)| = 2

]
= θ. (3.35)

However,

lim sup
t→∞

Eµ(0)

[
Eδu+δv

[∏
u∈S

zLu(t)
u

∣∣∣ |L(t)| = 2

]]
(3.36)

< Eµ(0)

[
Eδu+δv

[∏
u∈S

zLu(t)
u

∣∣∣ |L(t)| = 1

]]
= θ, (3.37)

because we start from a nontrivial stationary distribution. Thus, we have proved

Theorem 2.2.13.

Model 3: Proof of Theorem 2.2.13. Since the duality relation for model 3 is

exactly the same as for model 2, the same results hold by translation invariance and

the extra displacement does not affect the dichotomy criterion. □

§3.1.4 Outline remainder of paper

In Sections 3.2–3.4 we prove Theorems 2.3.1, 2.3.3 and 2.3.6, respectively. For each

of the three models we split the proof into four parts:

(a) Moment relations.

(b) The clustering case.

(c) The coexistence case.

(d) Proof of the dichotomy.

§3.2 Proofs: Long-time behaviour for Model 1

In Section 3.2.1 we relate the first and second moments of the process (Z(t))t≥0 in

(2.4)–(2.5) to the random walk with internal states {A,D} that evolves according to
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the transition kernel b(1)(·, ·) given in (2.31) (Lemma 3.2.1 below). These moment

relations hold for all g ∈ G. In Section 3.2.2 we deal with the clustering case (Lem-

mas 3.2.4–3.2.5 below), in Section 3.2.3 with the coexistence case (Lemmas 3.2.7–

3.2.13 below). In Section 3.2.4 we prove Theorem 2.3.1. In Sections 3.2.2 and 3.2.3

we will see that the moment relations are crucial when no duality is available.

Below we write Ez for Eδz , the expectation when the process starts from the initial

distribution δz, z ∈ E.

§3.2.1 Moment relations

Lemma 3.2.1 (First and second moment). For z ∈ E, t ≥ 0 and (i, Ri), (j, Rj) ∈
G× {A,D},

Ez[z(i,Ri)(t)] =
∑

(k,Rk)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
z(k,Rk) (3.38)

and

Ez[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
b
(1)
t

(
(j, Rj), (l, Rl)

)
z(k,Rk)z(l,Rl)

+

∫ t

0

ds
∑
k∈G

b
(1)
(t−s)((i, Ri), (k,A)) b

(1)
(t−s)((j, Rj), (k,A))Ez[g(xk(s))].

(3.39)

Proof. We derive systems of differential equations for the moments and solve these in

terms of the random walk. Let (RWt)t≥0 denote the semigroup of the random walk

with transition kernel b(1)(·, ·), and recall that the corresponding generator is given

by

(GRW f)(i, Ri) =
∑

(j,Rj)∈G×{A,D}

b(1)
(
(i, Ri), (j, Rj)

)
[f(j, Rj)− f(i, Ri)] . (3.40)

Applying the generator (2.25) of the system in (2.4)–(2.5) to the function

f(i,Ri) : E → R, f(i,Ri)(z) = z(i,Ri), (3.41)

we obtain by standard stochastic calculus

dEz[z(i,Ri)(t)]

dt

=

∑
j∈G

a(i, j)
(
Ez[xj(t)]− Ez[xi(t)]) +Ke (Ez[yi(t)]− Ez[xi(t)]

) 1(Ri=A)

+ e
(
Ez[xi(t)]− Ez[yi(t)]

)
1(Ri=D).

(3.42)

Hence, denoting by (St)t≥0 the semigroup of the system in (2.4)–(2.5), we see from

(3.42) and the definition of b(1)(·, ·) in (2.31) that (Stf(i,Ri)) solves the differential

equation

F ′(t) = (GRWF )(t). (3.43)
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On the other hand, for each f ∈ Cb(G × {A,D}), RWtf also solves (3.43). In par-

ticular, for z ∈ E define fz : G × {A,D} → R by fz(i, Ri) = z(i, Ri) for z ∈ E, then

RWtfz is a solution to (3.43). Since

(RW0fz)(i, Ri) = z(i, Ri) = (S0f(i,Ri))(z), (3.44)

we see that (3.38) holds. To prove (3.39), we derive a similar system of differential

equations and again solve this in terms of the random walk moving according to the

kernel b(·, ·). Let f : E → R be given by f(z) = z(i,Ri)z(j,Rj). Using the generator

(2.25), we obtain via Itô-calculus that

d

dt
Ez[z(i,Ri)(t)z(j,Rj)(t)]

=
∑
k∈G

a(i, k)
(
Ez[xk(t)z(j,Rj)(t)]− Ez[xi(t)z(j,Rj)(t)]

)
1{Ri=A}

+Ke
(
Ez[yi(t)z(j,Rj)(t)]− Ez[xi(t)z(j,Rj)(t)]

)
1{Ri=A}

+ e
(
Ez[xi(t)z(j,Rj)(t)]− Ez[yi(t)z(j,Rj)(t)]

)
1{Ri=D}

+
∑
l∈G

a(j, l)
(
Ez[xl(t)z(i,Ri)(t)]− Ez[xj(t)z(i,Ri)(t)]

)
1{Rj=A}

+Ke
(
Ez[yj(t)z(i,Ri)(t)]− Ez[xj(t)z(i,Ri)(t)]

)
1{Rj=A}

+ e
(
Ez[xj(t)z(i,Ri)(t)]− Ez[yj(t)z(i,Ri)(t)]

)
1{Rj=D}

+ Ez[g(xi(t))] 1{i=j} 1{Ri=Rj=A}.

(3.45)

Let U be the generator of two independent random walks each moving with transition

kernel b(1)(·, ·), i.e., for all h ∈ Cb((G× {A,D})2),

(Uh)((i, Ri), (j, Rj))

=
∑
k∈G

a(i, k)
[
h((k,A), (j, Rj))− h((i, Ri), (j, Rj))

]
1{i,Ri=A}

+Ke
[
h((i,D), (j, Rj))− h((i, Ri), (j, Rj))

]
1{i,Ri=A}

+ e
[
h((i, A), (j, Rj))− h((i, Ri), (j, Rj))

]
1{i,Ri=D}

+
∑
l∈G

a(j, l)
[
h((i, Ri), (l, A))− h((i, Ri), (j, Rj))

]
1{Rj=A}

+Ke
[
h((i, Ri), (j,D))− h((i, Ri), (j, Rj))

]
1{Rj=A}

+ e
[
h((i, Ri), (j, A))− h((i, Ri), (j,D))

]
1{Rj=D}.

(3.46)

Let F (t) = Ez[z(i,Ri)(t)z(j,Rj)(t)] and H(t) = 2Ez[g(xi(t))]1{i=j}1{Ri=Rj=A}. Then

we can rewrite (3.45) as

d

dt
F (t) = (UF )(t) +H(t). (3.47)

Denote by (RW
(2)
t )t≥0 the semigroup corresponding to U . Applying [56, Theorem

I.2.15], we obtain

F (t) = RW
(2)
t F (0) +

∫ t

0

dsRW
(2)
t−sH(s). (3.48)
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Hence

Ez[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
b
(1)
t

(
(j, Rj), (l, Rl)

)
Ez[z(k,Rk)z(l,Rl)]

+

∫ t

0

ds
∑
k∈G

b
(1)
t−s
(
(i, Ri), (k,A)

)
b
(1)
t−s
(
(j, Rj), (k,A)

)
Ez[g(xk(s))].

(3.49)

□

Remark 3.2.2 (Density). From Lemma 3.2.1 we obtain that if µ is a translation

invariant measure such that Eµ[x0(0)] = θx and Eµ[y0(0)] = θy, then

Eµ[z(i,Ri)(t)] = θx
∑

(k,Rk)∈G×{A}

b
(1)
t

(
(i, Ri), (k,Rk)

)
+ θy

∑
(k,Rk)∈G×{D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
,

(3.50)

in particular, limt→∞ Eµ[z(i,Ri)(t)] =
θx+Kθy
1+K = θ, recall (2.62), and

Eµ[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
b
(1)
t

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]

+ 2

∫ t

0

ds
∑
k∈G

b
(1)
t−s
(
(i, Ri), (k,A)

)
b
(1)
t−s
(
(j, Rj), (k,A)

)
Eµ[g(xi(s))].

(3.51)

□

Remark 3.2.3 (First moment duality). Note that (3.38) shows that even for gen-

eral g ∈ G there is a first moment duality between the process Z(t) and the random

walk RW (t), that moves according to the kernel b(1)(·, ·). The duality function is

given by

H : E ×G× {A,D} → R, H(z, (i, Ri)) = z(i,Ri). (3.52)

Equation (3.38) in Lemma 3.2.1 tells us that E[H(Z(t), RW (0))] = E[H(Z(0), RW (t))].

§3.2.2 The clustering case

The proof that the system in (2.4)–(2.5) converges to a unique trivial equilibrium

when â(·, ·) is recurrent goes as follows. We first consider the case where g = dgFW,

for which duality is available (Lemma 3.2.4). Afterwards we use a duality comparison

argument to show that the dichotomy between coexistence and clustering does not

depend on the choice of g ∈ G (Lemma 3.2.5).
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• Case g = dgFW.

Lemma 3.2.4 (Clustering). Suppose that µ(0) ∈ T erg
θ and g = dgFW. Moreover,

suppose that â(·, ·) defined in (2.59) is recurrent, i.e., Iâ = ∞. Let µ(t) be the law at

time t of the system defined in (2.4)–(2.5). Then

lim
t→∞

µ(t) = θ [δ(1,1)]
⊗G + (1− θ) [δ(0,0)]

⊗G. (3.53)

Proof. Since g = dgFW, we can use duality. By the dichotomy criterion in Theorem

2.2.11, it is enough to show that in the dual two partition elements coalesce with

probability 1. Recall from Section 2.2.4 that each of the partition elements in the

dual moves according to the transition kernel b(1)(·, ·) on G × {A,D} defined by

(2.31) (see Fig. 2.3). Recall from Section (2.2.4) that b(1)(·, ·) describes a random

walk on G with migration rate kernel a(·, ·) that becomes dormant (state D) at rate

Ke (after which it stops moving), and becomes active (state A) at rate e (after which

it can move again). When two partition elements in the dual are active and are at the

same site, they coalesce at rate d, i.e., each time they are active and meet at the same

site they coalesce with probability d/[
∑
j∈Zd a(i, j) +Ke+ d] > 0. Hence, in order to

show that two partition elements coalesce with probability 1, we have to show that

with probability 1 two partition elements meet infinitely often while being active. The

latter holds if and only if the expected total time the random walks spend together

at the same colony while being active is infinite. We will show that this occurs if and

only the random walk with symmetrised transition rate kernel â(·, ·) is recurrent. The
proof comes in 4 Steps.

1. Active and dormant time lapses. Consider two copies of the random walk with

kernel b(1)(·, ·), both starting at 0 and in the active state. Let

(σk)k∈N, (σ′
k)k∈N, (3.54)

denote the successive time lapses during which they are active and let

(τk)k∈N, (τ ′k)k∈N, (3.55)

denote the successive time lapses during which they are dormant (see Fig. 3.1). These

are mutually independent sequences of i.i.d. random variables with marginal laws

P(σ1 > t) = P(σ′
1 > t) = e−Ke t, t ≥ 0,

P(τ1 > t) = P(τ ′1 > t) = e−e t t ≥ 0,
(3.56)

where we use the symbol P to denote the joint law of the two sequences.

Let at(·, ·) denote the time-t transition kernel of the random walk with migration

kernel a(·, ·). Let

E(k, t) =

{
k∑
ℓ=1

(σℓ + τℓ) ≤ t <

k∑
ℓ=1

(σℓ + τℓ) + σk+1

}
,

E ′(k′, t) =


k′∑
ℓ=1

(σ′
ℓ + τ ′ℓ) ≤ t <

k′∑
ℓ=1

(σ′
ℓ + τ ′ℓ) + σ′

k+1

 ,

(3.57)
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s s s s s s s
s s s s s s s
σ1 τ1 σ2 τ2 σ3 τ3

σ′
1 τ ′1 σ′

2 τ ′2 σ′
3 τ ′3

Figure 3.1: Successive periods during which the two random walks are active and dormant.
The time lapses between the dotted lines represent periods of joint activity.

be the events that the random walks are active at time t after having become dormant

and active exactly k, k′ times, and let

T (k, t) =

k∑
ℓ=1

σℓ +

((
t−

k∑
ℓ=1

(σℓ + τℓ)

)
∧ σk+1

)
,

T ′(k′, t) =

k′∑
ℓ=1

σ′
ℓ +

t− k′∑
ℓ=1

(σ′
ℓ + τ ′ℓ)

 ∧ σk+1

 ,

(3.58)

be the total accumulated activity times of the random walks on the events in (3.57).

Note that the terms between brackets in (3.58) are at most σk+1, respectively, σ
′
k′+1,

and therefore are negligible as k, k′ → ∞.

Given the outcome of the sequences in (3.54)–(3.55), the probability that at time

t both random walks are active and are at the same colony equals∑
k,k′∈N

(∑
i∈G

aT (k,t)(0, i) aT ′(k′,t)(0, i)

)
1E(k,t) 1E(k′,t), (3.59)

Therefore the expected total time the random walks are active and are at the same

colony equals

I =

∫ ∞

0

dt
∑
k,k′∈N

E(0,A),(0,A)

[(∑
i∈G

aT (k,t)(0, i) aT ′(k′,t)(0, i)

)
1E(k,t) 1E′(k′,t)

]
,

(3.60)

where E is the expectation over the sequences in (3.54). Let

N(t) = max

{
k ∈ N :

k∑
ℓ=1

(σℓ + τℓ) ≤ t

}
,

N ′(t) = max

k′ ∈ N :

k′∑
ℓ=1

(σℓ + τℓ) ≤ t

 ,

(3.61)

be the number of times the random walks have become dormant and active up to

time t. Let

T (t) = T (N(t), t), T ′(t) = T ′(N ′(t), t), E(t) = E(N(t), t), E ′(t) = E ′(N ′(t), t),

(3.62)
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be the total accumulated activity times of the random walks up to time t, respectively,

the events that the random walks are active at time t. Then we may write

I =

∫ ∞

0

dt E(0,A),(0,A)

[(∑
i∈G

aT (t)(0, i) aT ′(t)(0, i)

)
1E(t) 1E′(t)

]
. (3.63)

We know that coalescence occurs with probability 1 if and only if I = ∞.

2. Fourier analysis. Define

M(t) = T (t) ∧ T ′(t), ∆(t) = [T (t) ∨ T ′(t)]− [T (t) ∧ T ′(t)]. (3.64)

Then ∑
i∈G

aT (t)(0, i) aT ′(t)(0, i) =
∑
j∈G

â2M(t)(0, j) a∆(t)(j, 0). (3.65)

Indeed, the difference of the two random walks at time M(t) has distribution

â2M(t)(0, ·), and in order for the random walk with the largest activity time to meet

the random walk with the smallest activity time at time 2M(t)+∆(t), it must bridge

this difference in time ∆(t). To work out (3.65), we assume without loss of generality

that
∑
j∈G a(0, j) = 1, and use Fourier analysis. For ease of exposition we focus on

the special case where G = Zd, but the argument below extends to any countable

Abelian group endowed with the discrete topology, because these properties ensure

that there is a version of Fourier analysis on G [64, Section 1.2]. For ϕ ∈ [−π, π]d,
define

a(ϕ) =
∑
j∈Zd

ei(ϕ,j)a(0, j), â(ϕ) = Re a(ϕ), ã(ϕ) = Im a(ϕ). (3.66)

Then

ât(0, j) =
1

(2π)d

∫
[−π,π]d

dϕ e−i(ϕ,j) e−t[1−â(ϕ)],

at(j, 0) =
1

(2π)d

∫
[−π,π]d

dϕ′ ei(ϕ
′,j) e−t[1−â(ϕ

′)−iã(ϕ′)],

(3.67)

where we use that a(ϕ) = â(ϕ) + iã(ϕ). Inserting these representations into (3.65),

we get∑
i∈Zd

aT (t)(0, i) aT ′(t)(0, i) =
1

(2π)d

∫
[−π,π]d

dϕ e−[2M(t)+∆(t)] [1−â(ϕ)] cos(∆(t)ã(ϕ)),

(3.68)

where we use that
∑
j∈Zd ei(ϕ

′−ϕ,j) = (2π)dδ(ϕ′ − ϕ), with δ(·) the Dirac distribution

(Folland [37, Chapter 7]).

3. Limit theorems. By the strong law of large numbers, we have

lim
k→∞

1

k

k∑
ℓ=1

σℓ =
1

Ke
P-a.s., lim

k→∞

1

k

k∑
ℓ=1

τℓ =
1

e
P-a.s. (3.69)
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Therefore, by the standard renewal theorem (Asmussen [3, Chapter I, Theorem 2.2]),

lim
t→∞

1

t
N(t) = lim

t→∞

1

t
N ′(t) = A P-a.s.,

lim
t→∞

1

t
T (t) = lim

t→∞

1

t
T ′(t) = B P-a.s.,

lim
t→∞

P
(
E(t)

)
= lim
t→∞

P
(
E ′(t)

)
= B,

(3.70)

with

A =
1

1
Ke +

1
e

=
K

1 +K
e, B =

1
Ke

1
Ke +

1
e

=
1

1 +K
. (3.71)

Moreover, by the central limit theorem, we have(
T (t)−Bt

c
√
t

,
T ′(t)−Bt

c
√
t

)
=⇒ (Z,Z ′) in P-distribution as t→ ∞ (3.72)

with (Z,Z ′) independent standard normal random variables and

c2 = A
[
(1−B)2 Var(σ1) +B2 Var(τ1)

]
(3.73)

(see [68] or [3, Theorem VI.3.2]). Since T (t), E(t) and T ′(t), E ′(t) are independent,

and each pair is asymptotically independent as well, we find that

E(0,A),(0,A)

∑
i∈Zd

aT (t)(0, i) aT ′(t)(0, i)

 1E(t) 1E′(t)

 ∼ B2f(t), t→ ∞, (3.74)

with

f(t) =
1

(2π)d

∫
[−π,π]d

dϕ e−[1+o(1)] 2Bt [1−â(ϕ)] E
[
cos
(
[1 + o(1)] c(Z − Z ′)

√
t ã(ϕ)

)]
=

1

(2π)d

∫
[−π,π]d

dϕ e−[1+o(1)] 2Bt [1−â(ϕ)] e−[1+o(1)] c2t ã(ϕ)2 ,

(3.75)

where we use that cos is symmetric, Z − Z ′ =
√
2Z ′′ in P-distribution with Z ′′

standard normal, and E(eiµZ′′
) = e−µ

2/2, µ ∈ R. From (3.63) and (3.74) we have

that I <∞ if and only if t 7→ f(t) is integrable. By Cramér’s theorem, deviations of

T (t)/t and T ′(t)/t away from B are exponentially costly in t. Hence the error terms

in (3.75), arising from (3.70) and (3.72), do not affect the integrability of t 7→ f(t).

Note that, because a(·, ·) is assumed to be irreducible (recall (2.1)), â(ϕ) = 1 if and

only if ϕ = 0. Hence the integrability of t 7→ f(t) is determined by the behaviour of

â(ϕ) and ã(ϕ) as ϕ→ 0.

4. Irrelevance of asymmetric part of migration. We next observe that

ã(ϕ)2 ≤ 1− â(ϕ)2 ≤ 2[1− â(ϕ)]. (3.76)

Hence, t ã(ϕ)2 ≤ 2t [1− â(ϕ)]. Therefore we see from (3.75) that for sufficiently large

T ∈ R we can bound t 7→ f(t) on [T,∞) from above and below by functions of the
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form t 7→ gC(t) with

gC(t) =
1

(2π)d

∫
[−π,π]d

dϕ e−Ct [1−â(ϕ)], C ∈ (0,∞). (3.77)

From (3.67) we have

gC(t) = âCt(0, 0) ≍ ât(0, 0), (3.78)

where the last asymptotics uses that t 7→ ât(0, 0) is regularly varying at infinity (recall

(2.60)). Combining (3.63), (3.74) and (3.77)–(3.78), we get

I = ∞ ⇐⇒ Iâ = ∞ (3.79)

with Iâ =
∫∞
1

dt ât(0, 0). Thus, if â(·, ·) is recurrent, then I = ∞ and the system

clusters. Moreover, we see from the bounds on f(t) (recall (3.75)) that the asymmetric

part of the migration kernel has no effect on the integrability.

This settles the dichotomy between clustering and coexistence when g = gFW. □

• Case g ̸= dgFW. For g ̸= dgFW the proof of Lemma 3.2.4 does not go through.

However, the moments relations in Lemma 3.2.1 hold for general g ∈ G. Using

these moment relations and a technique called duality comparison (see [14]), we prove

Lemma 3.2.4 for general g ∈ G.

Lemma 3.2.5 (Duality comparison). Suppose that µ(0) ∈ T erg
θ and g ∈ G.

Moreover, suppose that â(·, ·) defined in (2.59) is recurrent, i.e., Iâ = ∞. Let µ(t) be

the law at time t of the system defined in (2.4)–(2.5). Then

lim
t→∞

µ(t) = θ [δ(1,1)]
⊗G + (1− θ) [δ(0,0)]

⊗G. (3.80)

Proof. We proceed as in the proof of [14, Theorem]. First assume that µ(0) = δz for

some z ∈ E, that satisfies

lim
t→∞

∑
(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk)) z(k,Rk) = θ. (3.81)

By Lemma 3.2.1, we have

Ez
[
z(i,Ri)(t)

]
=

∑
(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk)) z(k,Rk). (3.82)

Hence, by assumption, for all (i, Ri) ∈ G× {A,D} we have

lim
t→∞

Ez
[
z(i,Ri)(t)

]
= θ. (3.83)

Since we have clustering if, for all (i, Ri), (j, Rj) ∈ G× {A,D},

lim
t→∞

Ez
[
z(i,Ri)(t)(1− z(j,Rj)(t))

]
= 0, (3.84)

we are left to prove that

lim
t→∞

Ez
[
z(i,Ri)z(j,Rj)

]
= θ. (3.85)

71



3. Spatial populations with seed-bank, proofs

C
h
a
p
t
e
r
3

Since (3.83) implies that lim supt→∞ Ez[z(i,Ri)z(j,Rj)] ≤ θ, we are left to prove that

lim inf
t→∞

Ez[z(i,Ri)z(j,Rj)] ≥ θ. (3.86)

Like in [14], we will prove (3.86) by comparison duality.

Fix ϵ > 0. Since g ∈ G we can choose a c = c(ϵ) > 0 such that

g(x) ≥ g̃(x) = c(x− ϵ)(1− (x+ ϵ)), x ∈ [0, 1]. (3.87)

Note that g̃(x) < 0 for x ∈ [0, ϵ)∪ (1− ϵ, 1], so we cannot replace g by g̃ in the SSDE.

Instead we use g̃ as an auxiliary function.

Consider the Markov chain (B(t))t≥0, with state space

{1, 2} × (G× {A,D})× (G× {A,D}) (3.88)

and B(t) = (B0(t), B1(t), B2(t)), evolving according to

(1, (i, Ri), (i, Ri)) → (1, (k,Rk), (k,Rk)), at rate b(1)((i, Ri), (k,Rk)),

(2, (i, Ri), (j, Rj)) →


(2, (k,Rk), (j, Rj)), at rate b(1)((i, Ri), (k,Rk)),

(2, (i, Ri), (l, Rl)), at rate b(1)((j, Rj), (l, Rl)),

(1, (i, Ri), (i, Ri)), at rate c1{i=j}1{Ri=Rj=A}.

(3.89)

This describes two random walks, evolving independently according to the transition

kernel b(1)(·, ·), that coalesce at rate c > 0 when they are at the same site and are

active. We put B0(t) = 1 when the two random walks have already coalesced by time

t, and B0(t) = 2 otherwise. Let P(2,(i,Ri),(j,Rj)) denote the law of the Markov Chain

B(t) that starts in (2, (i, Ri), (j, Rj)). Note that

P(2,(i,Ri),(j,Rj)) (B1(t) = (k,Rk)) = b
(1)
t ((i, Ri), (k,Rk)), (3.90)

and similarly

P(2,(i,Ri),(j,Rj)) (B2(t) = (l, Rl)) = b
(1)
t ((j, Rj), (l, Rl)). (3.91)

Since we have assumed that â(·, ·) is recurrent, i.e., Iâ = ∞, the two random walks

meet infinitely often at the same site while being active and hence coalesce with

probability 1. Therefore

lim
t→∞

P(2,(i,Ri),(j,Rj)) (B0(t) = 2) = 0. (3.92)

We can rewrite the SSDE in (2.4)–(2.5) in terms of b(1)(·, ·), namely, for all (i, Ri) ∈
G× {A,D},

dz(i,Ri)(t) =
∑

(k,Rk)∈G×{A,D}

b(1)((i, Ri), (j, Rj))[z(j,Rj)(t)− z(i,Ri)(t)] dt

+
√
g(zi,Ri

(t)) 1{Ri=A} dwi(t).

(3.93)
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Using (3.93) and Itô-calculus, we obtain

dEz[z(i,Ri)(t)− ϵ]

dt

=
∑

(k,Rk)∈G×{A,D}

b(1)((i, Ri), (k,Rk))E
[
(z(k,Rk)(t)− ϵ)− (z(i,Ri)(t)− ϵ)

] (3.94)

and

dEz[(z(i,Ri)(t)− ϵ)(z(j,Rj)(t) + ϵ)]

dt

=
∑

(k,Rk)∈G×{A,D}

b(1)((i, Ri), (k,Rk))

× Ez
[
(z(j,Rj)(t) + ϵ)(z(k,Rk)(t)− ϵ)− (z(j,Rj)(t) + ϵ)(z(i,Ri)(t)− ϵ)

]
+

∑
(l,Rl)∈G×{A,D}

b(1)((j, Rj), (k,Rk))

× Ez
[
(z(i,Ri)(t)− ϵ)(z(l,Rl)(t) + ϵ)− (z(i,Ri)(t)− ϵ)(z(j,Rj)(t) + ϵ)

]
+ Ez

[
c(z(i,Ri)(t)− ϵ)(1− (z(j,Rj)(t) + ϵ))1{i=j}1{Ri=Rj=A}

]
+ Ez

[(
g(z(i,Ri)(t))− g̃(z(i,Ri)(t))

)
1{i=j}1{Ri=Rj=A}

]
.

(3.95)

For t ≥ 0, define Ft : {0, 1} × (G× {A,D})× (G× {A,D}) → R by

Ft(1, (i, Ri), (i, Ri)) = Ez
[
z(i,Ri)(t)− ϵ

]
Ft(2, (i, Ri), (j, Rj)), = Ez

[
(z(i,Ri)(t)− ϵ)(z(j,Rj)(t) + ϵ)

]
,

(3.96)

and Ht : {0, 1} × (G× {A,D})× (G× {A,D}) → R by

Ht(1, (i, Ri), (i, Ri)) = 0,

Ht(2, (i, Ri), (j, Rj)) = Ez
[(
g(z(i,Ri)(t))− g̃(z(i,Ri)(t))

)
1{i=j} 1{Ri=Rj=A}

]
.

(3.97)

Let B denote the generator of (B(t))t≥0, and let (Vt)t≥0 the associated semigroup.

Then

dFt
dt

= BFt +Ht. (3.98)

Hence, by [56, Theorem I.2.15], it follows that

Ft = VtF0 +

∫ t

0

ds V(t−s)Hs. (3.99)
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Since Ht > 0 for all t ≥ 0, we obtain

Ft(2, (i, Ri), (j, Rj)) ≥ VtF0(2, (i, Ri), (j, Rj))

= E(2,(i,Ri),(j,Rj)) [F0(B(t))]

= E(2,(i,Ri),(j,Rj))

[
F0(B(t))1{B0(t)=1} + F0(B(t))1{B0(t)=2}

]
=

∑
(k,Rk),(l,Rl)∈G×{A,D}

P(2,(i,Ri),(j,Rj)) [B0(t) = 1, B1(t) = (k,Rk)] (z(k,Rk) − ϵ)

+ E(2,(i,Ri),(j,Rj))

[
F0(B(t))1{B0(t)=2}

]
=

∑
(k,Rk),(l,Rl)∈G×{A,D}

P(2,(i,Ri),(j,Rj)) [B1(t) = (k,Rk)] (z(k,Rk) − ϵ)

−
∑

(k,Rk),(l,Rl)∈G×{A,D}

P(2,(i,Ri),(j,Rj)) [B0(t) = 2, B1(t) = (k,Rk)] (z(k,Rk) − ϵ)

+ E(2,(i,Ri),(j,Rj))

[
F0(B(t))1{B0(t)=2}

]
≥

∑
(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk)) (z(k,Rk) − ϵ)

− (1 + ϵ2)P(2,(i,Ri),(j,Rj)) [B1(t) = 2] .
(3.100)

Hence, by (3.92), we obtain

lim inf
t→∞

Ft(2, (i, Ri), (j, Rj)) ≥ lim inf
t→∞

Ez
[
(z(i,Ri)(t)− ϵ)(z(j,Rj)(t) + ϵ)

]
≥ θ − ϵ2.

(3.101)

Letting ϵ ↓ 0, we get (3.85).

To get rid of the assumption µ(0) = δz, note that for µ(0) ∈ T erg
θ we have (recall

Remark 3.2.2)

lim
t→∞

∑
(k,Rk)∈G×{A,D}

bt((i, Ri), (k,Rk))Eµ[z(k,Rk)] = θ. (3.102)

Hence, by the above argument,

Eµ
[
(z(i,Ri)(t)− ϵ)(zj,Rj

(t) + ϵ)
]

=

∫
Ez
[
(z(i,Ri)(t)− ϵ)(zj,Rj

(t) + ϵ)
]
dµ(z)

≥
∫ ∑

(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk))(z(k,Rk) − ϵ)

− (1 + ϵ2)P(2,(i,Ri),(j,Rj)) [B1(t) = 2] dµ(z)

(3.103)

Letting first t→ ∞ and then ϵ ↓ 0, we find that

lim
t→∞

Eµ
[
(z(i,Ri)(t)− ϵ)(zj,Rj

(t) + ϵ)
]
= θ, (3.104)

and, for all (i, Ri), (j, Rj) ∈ G× {A,D},

lim
t→∞

Eµ
[
z(i,Ri)(t)(1− zj,Rj

(t))
]
= 0. (3.105)

□
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§3.2.3 The coexistence case

For the coexistence case we proceed as in [14] with small adaptations. For the conveni-

ence of the reader we have written out the full proof. The proof relies on the moment

relations in Lemma 3.2.1 and no distinction between g = dgFW and general g ∈ G is

needed. The proof consist of several lemmas (Lemmas 3.2.7–3.2.13 below), organised

into 4 Steps. In Step 1 we use the moment relations in Lemma 3.2.1 to define a set of

measures that are preserved under the evolution. In Step 2 we use coupling to prove

that, for each given θ, the system converges to a unique equilibrium. In Step 3 we

show that, for each given θ, each initial measure under the evolution converges to an

invariant measure. In Step 4 we show that the limiting measure is invariant, ergodic

and mixing under translations, and is associated.

1. Properties of measures preserved under the evolution. Let θ be defined

as in (2.62) such that θ = Eµ(0)
[
x0+Ky0
1+K

]
=

θx+Kθy
1+K .

Definition 3.2.6 (Preserved class of measure). LetR(1)
θ denote the set of meas-

ures µ ∈ T satisfying:

(1) For all (i, Ri) ∈ G× {A,D},

lim
t→∞

Eµ[z(i,Ri)(t)] = θ. (3.106)

(2) for all (i, Ri), (j, Rj) ∈ G× {A,D},

lim
t→∞

∑
(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
t

(
(i, Ri), (k,Rk)

)
b
(1)
t

(
(j, Rj), (l, Rl)

)
× Eµ[z(k,Rk)z(l,Rl)] = θ2.

(3.107)

□

Clearly, if µ ∈ R(1)
θ , then (1) and (2) together with Lemma 3.2.1 imply

lim
t→∞

Eµ


 ∑

(k,Rk)∈G×{A,D}

b
(1)
t ((i, Ri), (k,Rk)) z(k,Rk) − θ

2
 = 0, (3.108)

and so limt→∞ zi,Ri(t) = θ in L2(µ).

On the other hand, suppose that (3.108) holds for some (i, Ri) ∈ G × {A,D}.
Then, by Lemma (3.2.1), we can rewrite (3.108) as

lim
t→∞

Eµ
[(
Ez[z(i,Ri)(t)]− θ

)2]
= 0. (3.109)

This implies

lim
t→∞

Eµ[z(i,Ri)(t)] = θ, (3.110)
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and hence, by translation invariance,

lim
t→∞

Eµ[z(k,Ri)(t)] = θ ∀ k ∈ G. (3.111)

Using that switches between the active state at the dormant state occur at a positive

rate, we can use the strong Markov property to obtain that (3.111) holds both for

Ri = A and for Ri = D. Hence (3.106) holds. Combining (3.106) and (3.108), we see

that also (3.107) holds.

Lemma 3.2.7. µ ∈ R(1)
θ for all µ ∈ T erg

θ .

Proof. The proof relies on Fourier analysis and the existence of spectral measures.

As in Section 3.2.2, for ease of exposition we focus on the special case where G = Zd,
but the argument below extends to any countable Abelian group endowed with the

discrete topology.

By translation invariance and the Herglotz theorem, there exist spectral measures

λA and λD such that, for all j, k ∈ Zd,

Eµ [(xj − θx)(xk − θx)] =

∫
(−π,π]d

ei(j−k,ϕ)dλA(ϕ),

Eµ [(yj − θy)(yk − θy)] =

∫
(−π,π]d

ei(j−k,ϕ)dλD(ϕ).

(3.112)

Let a(ϕ) =
∑
k∈Zd ei(ϕ,j)a(0, k) be the characteristic function of the kernel a(·, ·) (recall

(3.66)), and T (t) the activity time of the random walk up to time t (recall (3.58)).

Then

∑
k∈Zd

aT (t)(0, k) e
i(k,ϕ) =

∑
n∈N0

e−T (t)[T (t)]n

n!

∑
k∈Zd

an(0, k) ei(k,ϕ)

=
∑
n∈N0

e−T (t)[T (t) a(ϕ)]n

n!

= e−T (t)(1−a(ϕ)).

(3.113)

Let E(t) be defined as in (3.62). Then, for fixed t > 0,

P(0,A)(E(t)) =
∑
k∈Zd

b
(1)
t ((0, A), (k,A)) > 0. (3.114)
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and hence

Eµ

 1

P(0,A)(E(t))
∑
k∈Zd

b
(1)
t ((0, A), (k,A))xk − θx

2
=

1

P(0,A)(E(t))2
∑

k,l∈Zd

b
(1)
t ((0, A), (k,A)) b

(1)
t ((0, A), (l, A))Eµ [(xk − θx)(xl − θx)]

=
1

P(0,A)(E(t))2
∑

k,l∈Zd

b
(1)
t ((0, A), (k,A)) b

(1)
t ((0, A), (l, A))

×
∫
(−π,π]d

ei(k−l,ϕ)dλA(ϕ)

=
1

P(0,A)(E(t))2
∑

k,l∈Zd

E(0,A),(0,A)

[
aT (t)(0, k) aT ′(t)(0, l) 1E(t) 1E′(t)

]
×
∫
(−π,π]d

ei(k−l,ϕ)dλA(ϕ)

=
1

P(0,A)(E(t))2

×
∫
(−π,π]d

E(0,A),(0,A)

∑
k∈Zd

aT (t) e
i(k,ϕ)(0, k)1E(t)

∑
l∈Zd

aT ′(t) e
−i(l,ϕ)(0, l)1E′(t)

 dλA(ϕ)

=
1

P(0,A)(E(t))2

∫
(−π,π]d

E(0,A),(0,A)

[
e−T (t)(1−a(ϕ))1E(t) e

−T ′(t)(1−ā(ϕ))1E′(t)

]
dλA(ϕ).

(3.115)

Since a(·, ·) is irreducible, a(ϕ) ̸= 1 for all ϕ ∈ (−π, π]d\{0}. Taking the limit t→ ∞,
we find

lim
t→∞

Eµ


 1

P(0,A)(E(t))
∑
k∈Zd

b
(1)
t ((0, A), (k,A))xk − θx

2
 = λA({0}). (3.116)

Similarly,

lim
t→∞

Eµ


 1

P(0,A)(Ec(t))
∑
k∈Zd

b
(1)
t ((0, A), (k,D))yk − θy

2
 = λD({0}). (3.117)
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Hence

lim
t→∞

Eµ


 ∑

(k,Rk)∈Zd×{A,D}

b
(1)
t ((0, A), (k,Rk) z(k,Rk) − θ

2


= lim
t→∞

Eµ

[(
P(0,A)(E(t))

∑
k∈Zd

b
(1)
t ((0, A), (k,A))

P(0,A)(E(t))
xk −

θx
1 +K

+ P(0,A)(Ec(t))
∑
k∈Zd

b
(1)
t ((0, A), (k,D))

P(0,A)(Ec(t))
yk −

Kθy
1 +K

)2]

≤ lim
t→∞

P(0,A)(E(t))Eµ


∑
k∈Zd

b
(1)
t ((0, A), (k,A))

P(0,A)(E(t))
xk −

θx
(1 +K)

1

P(0,A)(E(t))

2


+ P(0,A)(Ec(t))Eµ


∑
k∈Zd

b
(1)
t ((0, A), (k,D))

P(0,A)(Ec(t))
yk −

Kθy
1 +K

1

P(0,A)(Ec(t))

2


=
1

1 +K
λA({0}) +

K

1 +K
λD({0}).

(3.118)

Hence, if λA({0}) = 0 and λD({0}) = 0, then µ ∈ R(1)
θ . We will show that

λA({0}) = 0 and λD({0}) = 0 for µ ∈ T erg
θ .

Let ΛN = [0, N)d ∩ Zd. By the L1-ergodic theorem, we have, for µ ∈ T erg
θ ,

lim
N→∞

Eµ


 1

ΛN

∑
j∈ΛN

xj − θx

2
 = 0. (3.119)

(For general G not that countable groups endowed with the discrete topology are
amenable. For amenable groups G, (ΛN )N∈N must be replaced by a so-called Følner
sequence, i.e., a sequence of finite subsets of G that exhaust G and satisfy

lim
N→∞

|gΛN△ΛN |/|ΛN | = 0 (3.120)

for any g ∈ G [57]. ) Using the spectral measure, we can write

lim
N→∞

Eµ


 1

ΛN

∑
j∈ΛN

xj − θx

2


= lim
N→∞

1

Λ2
N

∑
j,k∈ΛN

∫
(−π,π]d

ei(j−k,ϕ)dλA

= lim
N→∞

∫
(−π,π]d

 1

ΛN

∑
j∈ΛN

ei(j,ϕ)

( 1

ΛN

∑
k∈ΛN

e−i(k,ϕ)

)
dλA

= λA{0}.

(3.121)
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In the last equality we use dominated convergence and

(a) For all ϕ ∈ (−π, π]d,

lim
N→∞

1

ΛN

∑
j,k∈ΛN

e−i(k,ϕ) = 1{0}(ϕ). (3.122)

(b) For all δ > 0 there exist ϵ(N, δ) > 0 such that if Jδ = (−δ, δ), then

∣∣∣∣∣∣ 1

ΛN

∑
j,k∈ΛN

e−i(k,ϕ) − 1{0}(ϕ)

∣∣∣∣∣∣ ≤ 1Jδ(ϕ) + ϵ(N, δ), (3.123)

where ϵ(N, δ) ↓ 0 as N → ∞.

We conclude that λA({0}) = 0. Similarly we can show that λD({0}) = 0, and hence

µ ∈ R(1)
θ . □

Recall that (St)t≥0 is the semigroup associated with (2.4)–(2.5).

Lemma 3.2.8 (Preservation). If b(·, ·) is transient and µ ∈ R(1)
θ , then the follow-

ing hold:

(a) µSt ∈ R(1)
θ for each t ≥ 0.

(b) If tn → ∞ and µStn → µ(∞), then µ(∞) ∈ R(1)
θ .

Proof. Our dynamics preserve translation invariance. To check property (1) of R(1)
θ

(see (3.106)), set f(z) = z(i,Ri). Since µ ∈ R(1)
θ , applying Lemma 3.2.1 multiple times,

we obtain

lim
s→∞

EµSt
[z(i,Ri)(s)] = lim

s→∞

∑
(k,Rk)∈G×{A,D}

b(1)s
(
(i, Ri), (k,Rk)

)
EµSt

[z(k,Rk)]

= lim
s→∞

∑
(k,Rk)∈G×{A,D}

b(1)s
(
(i, Ri), (k,Rk)

)
Eµ[z(k,Rk)(t)]

= lim
s→∞

∑
(k′,R′

k′ )∈G×{A,D}

b
(1)
s+t

(
(i, Ri), (k

′, Rk′)
)
Eµ[z(k′,Rk′ )]

= lim
s→∞

Eµ[z(i,Ri)(t+ s)] = θ.

(3.124)

To check property (2) of R(1)
θ (see (3.107)), we set f(z) = z(i,Ri)z(j,Rj). Then, again

by applying Lemma 3.2.1, we find
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lim
s→∞

∑
(k,Rk),(l,Rl)
∈G×{A,D}

b(1)s
(
(i, Ri), (k,Rk)

)
b(1)s
(
(j, Rj), (l, Rl)

)
EµSt [z(k,Rk)z(l,Rl)]

= lim
s→∞

∑
(k,Rk),(l,Rl)
∈G×{A,D}

b(1)s
(
(i, Ri), (k,Rk)

)
b(1)s
(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)(t)z(l,Rl)(t)]

= lim
s→∞

[ ∑
(k′,Rk′ ),(l′,Rl′ )

∈G×{A,D}

b
(1)
t+s

(
(i, Ri), (k

′, Rk′)
)
b
(1)
t+s

(
(j, Rj), (l

′, Rl′)
)

× Eµ[z(k′,Rk′ )z(l′,Rl′ )
]

+

∫ t

0

dr
∑
k′∈G

b
(1)
t−r+s

(
(i, Ri), (k

′, A)
)
b
(1)
t−r+s

(
(j, Rj), (k

′, A)
)
Eµ[g(xk′(r))]

]
.

(3.125)

Since µ ∈ R(1)
θ , we are left to show that

lim
s→∞

∫ t+s

s

du
∑
k′∈G

b(1)u
(
(i, Ri), (k

′, A)
)
b(1)u
(
(j, Rj), (k

′, A)
)
Eµ[g(xk′(t+ s− u))] = 0.

(3.126)

Using the notation of Section 3.2.2, we get

lim
s→∞

∫ t+s

s

du
∑
k′∈G

b(1)u
(
(i, Ri), (k

′, A)
)
b(1)u
(
(j, Rj), (k

′, A)
)
Eµ[g(xk′(t+ s− u))]

≤ ∥g∥ lim
s→∞

∫ t+s

s

du
∑
k′∈G

b(1)u
(
(i, Ri), (k

′, A)
)
b(1)u
(
(j, Rj), (k

′, A)
)

= ∥g∥ lim
s→∞

∫ t+s

s

du E(i,Ri),(j,Rj)

[∑
k′∈G

aT (u)(i, k
′) 1E(u) aT ′(u)(j, k

′) 1E′(u)

]

≤ ∥g∥ lim
s→∞

∫ t+s

s

du E(0,A),(0,A)

[∑
k′∈G

aT (u)(i, k
′) 1E(u) aT ′(u)(j, k

′) 1E′(u)

]
= 0,

(3.127)

where the last equality follows from the assumption Iâ <∞ in Theorem 2.3.1, (3.60)

and (3.79). The last inequality follows from the Markov property and the observation

that, in order to get a contribution to the integral, the two random walks first have to

meet at the same site and both be active. We conclude that µSt ∈ R(1)
θ for all t ≥ 0.

To show that µ(∞) ∈ R(1)
θ , we proceed like in (3.124), to obtain

lim
s→∞

Eµ(∞)[z(i,Ri)(s)] = lim
s→∞

lim
n→∞

EµStn
[z(i,Ri)(s)] = lim

s→∞
lim
n→∞

Eµ[z(i,Ri)(tn+s)] = θ,

(3.128)
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and so (3.106) is satisfied. To get (3.107), we note that, by Lemma 3.2.1,∑
(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
tn

(
(i, Ri), (k,Rk)

)
b
(1)
tn

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]

≤ Eµ[z(i,Ri)(tn)z(j,Rj)(tn)]

≤
∑

(k,Rk),(l,Rl)∈G×{A,D}

b
(1)
tn

(
(i, Ri), (k,Rk)

)
b
(1)
tn

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]

+ ∥g∥
∫ tn

0

ds
∑
k∈G

b
(1)
tn−s

(
(i, Ri), (k,A)

)
b
(1)
tn−s

(
(j, Rj), (k,A)

)
.

(3.129)

Letting n→ ∞, we see that, since µ ∈ R(1)
θ ,

θ2 ≤ Eµ(∞)[z(i,Ri)z(j,Rj)]

≤ θ2 + ∥g∥
∫ ∞

0

ds
∑
k∈G

b(1)r
(
(i, Ri), (k,A)

)
b(1)r
(
(j, Rj), (k,A)

)
.

(3.130)

Inserting (3.130) into (3.107), we see that it is enough to show that

lim
s→∞

∑
(k,Rk),(l,Rl)∈G×{A,D}

b(1)s
(
(i, Ri), (k,Rk)

)
b(1)s
(
(j, Rj), (l, Rl)

)
× ∥g∥

∫ ∞

0

dr
∑
k′∈G

b(1)r ((k,Rk), (k
′, A)) b(1)r ((l, Rl), (k

′, A))

= lim
s→∞

∥g∥
∫ ∞

0

dr
∑
k′∈G

b
(1)
r+s

(
(i, Ri), (k

′, A)
)
b
(1)
r+s

(
(j, Rj), (k

′, A)
)
= 0.

(3.131)

However, from the assumption Iâ <∞ in Theorem 2.3.1, (3.60) and (3.79), we have

lim
s→∞

∥g∥
∫ ∞

0

dr
∑
k′∈G

b
(1)
r+s

(
(i, Ri), (k

′, A)
)
b
(1)
r+s

(
(j, Rj), (k

′, A)
)

= lim
s→∞

∥g∥
∫ ∞

s

dr E(i,Ri),(j,Rj)

[∑
k′∈G

aT (r)(i, k
′)1E(r)aT ′(r)(j, k

′)1E′(r)

]
= 0.

(3.132)

□

2. Uniqueness of the equilibrium. In this section we show that, for given θ, the

equilibrium when it exists is unique. To prove this we extend the coupling argument

in [14]. Consider two copies of the system (2.4)–(2.5) coupled via their Brownian

motions:

dxki (t) =
∑
j∈G

a(i, j) [xkj (t)− xki (t)] dt+
√
g(xki (t)) dwi(t) + Ke [yki (t)− xki (t)] dt,

dyki (t) = e [xki (t)− yki (t)] dt, k ∈ {1, 2}.
(3.133)
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Here, k labels the copy, and the two copies are driven by the same set of Brownian

motions (wi(t))t≥0, i ∈ G. As initial probability distributions we choose µ1(0) and

µ2(0) that are both invariant and ergodic under translations.

Let

z̄i(t) = (z1i (t), z
2
i (t)), zki (t) = (xki (t), y

k
i (t)), k ∈ {1, 2}. (3.134)

The coupled system (z̄i(t))i∈G has a unique strong solution [67, Theorem 3.2] whose

marginals are the single-component systems. Write P̂ to denote the law of the coupled

system, and let ∆i(t) = x1i (t)− x2i (t) and δi(t) = y1i (t)− y2i (t).

Lemma 3.2.9 (Coupling dynamics). For every t ≥ 0,

d

dt
Ê
[
|∆i(t)|+K|δi(t)|

]
= −2

∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]
− 2Ke Ê

[(
|∆i(t)|+ |δi(t)|

)
1{sgn∆i(t) ̸=sgn δi(t)}

]
.

(3.135)

Proof. Let f(x) = |x|, x ∈ R. Then f ′(x) = sgnx and f ′′(x) = 0 for x ̸= 0, but f is

not differentiable at x = 0, a point the path hits. Therefore, by a generalization of

Itô’s formula, we have

d|∆i(t)| = sgn∆i(t) d∆i(t) + dL0
t ,

d∆i(t) =
∑
j∈G

a(i, j)[∆j(t)−∆i(t)] dt+

[√
g(x1i (t))−

√
g(x2i (t))

]
dwi(t)

+Ke
[
δi(t)−∆i(t)

]
dt,

(3.136)

where L0
t is the local time of ∆i(t) at 0 (see [63, Section IV.43]). Next, we use that

∆i(t) has zero local time at x = 0 because g is Lipschitz (see [63, Proposition V.39.3]).

Taking expectation, we get

d

dt
Ê
[
|∆i(t)|

]
=
∑
j∈G

a(i, j) Ê
[
sgn∆i(t) [∆j(t)−∆i(t)]

]
+Ke Ê

[
sgn∆i(t) [δi(t)−∆i(t)]

]
.

(3.137)

Similarly, we have
d|δi(t)| = sgn δi(t) dδi(t),

dδi(t) = e
[
∆i(t)− δi(t)

]
dt.

(3.138)

Taking expectation, we get

d

dt
Ê
[
|δi(t)|

]
= e Ê

[
sgn δi(t) [∆i(t)− δi(t)]

]
. (3.139)

Combining (3.137) and (3.139), we get

d

dt
Ê
[
|∆i(t)|+K|δi(t)|

]
=
∑
j∈G

a(i, j) Ê
[
sgn∆i(t) [∆j(t)−∆i(t)]

]
+K e Ê

[
[sgn∆i(t)− sgn δi(t)] [δi(t)−∆i(t)]

]
.

(3.140)

82



§3.2. Proofs: Long-time behaviour for Model 1

C
h
a
p
t
e
r
3

Note that

sgn∆i(t) [∆j(t)−∆i(t)] = |∆j(t)| − |∆i(t)| − 2 |∆j(t)| 1{sgn∆i(t)̸=sgn∆j(t)}. (3.141)

By translation invariance, E[|∆i(t)|] is independent of i. Hence the first sum in the

right-hand side can be rewritten as

−2
∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn∆i(t)̸=sgn∆j(t)}

]
. (3.142)

Similarly, the second sum in the right-hand side can be rewritten as

−2Ke Ê
[(
|∆i(t)|+ |δi(t)|

)
1{sgn∆i(t) ̸=sgn δi(t)}

]
. (3.143)

Combining (3.140) and (3.142)–(3.143), we get the claim. □

Lemma 3.2.9 tells us that t 7→ Ê[|∆i(t)| +K|δi(t)|] is a non-increasing Lyapunov

function. Therefore limt→∞ Ê[|∆i(t)| + K|δi(t)|] = ci ∈ [0, 1 + K] exists. To show

that the coupling is successful we need the following lemma.

Lemma 3.2.10 (Uniqueness of equilibrium). If a(·, ·) is transient, then ci = 0

for all i ∈ G, and so the coupling is successful, i.e.,

lim
t→∞

Ê
[
|∆i(t)|+K|δi(t)|

]
= 0. (3.144)

Proof. Write −hi(t) to denote the right-hand side of (3.135). We begin with the

observation that t 7→ hi(t) has the following properties:

(a) hi ≥ 0.
(b) 0 ≤

∫∞
0

dt hi(t) ≤ 1 +K.
(c) hi is differentiable with h′i bounded.

Property (a) is evident. Property (b) follows from integration of (3.135):∫ t

0

ds hi(s) = Ê
[
|∆i(0)|+K|δi(0)|

]
− Ê

[
|∆i(t)|+K|δi(t)|

]
. (3.145)

The proof of Property (c) is given in Appendix A.4. It follows from (a)–(c) that

limt→∞ h(t) = 0. Hence, for every ϵ > 0,

∀ i, j ∈ G with a(i, j) > 0:

lim
t→∞

P̂
(
{∆i(t) < −ϵ, ∆j(t) > ϵ} ∪ {∆i(t) > ϵ, ∆j(t) < −ϵ}

)
= 0,

∀ i ∈ G :

lim
t→∞

P̂
(
{∆i(t) < −ϵ, δi(t) > ϵ} ∪ {∆i(t) > ϵ, δi(t) < −ϵ}

)
= 0.

(3.146)

In Appendix A.3 we will prove the following lemma:

Lemma 3.2.11 (Successful coupling ). For all i, j ∈ G and ϵ > 0,

lim
t→∞

P̂
(
{∆i(t) < −ϵ, ∆j(t) > ϵ} ∪ {∆i(t) > ϵ, ∆j(t) < −ϵ}

)
= 0. (3.147)
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The proof of this lemma relies on the fact that â(·, ·) is irreducible. Let

E0 × E0 =
{
z̄ ∈ E × E : z1(i,Ri)

(t) ≥ z2(i,Ri)
(t) ∀(i, Ri) ∈ G× {A,D}

}
∪
{
z̄ ∈ E × E : z2(i,Ri)

(t) ≥ z1(i,Ri)
(t) ∀(i, Ri) ∈ G× {A,D}

}
.

(3.148)

Then Lemma 3.2.11 together with (3.146) imply that limt→∞ P̂ (E0 × E0) = 1, which

we express by saying that “one diffusion lies on top of the other”.

Using Lemma 3.2.11 we can complete the proof of the successful coupling. Let

tn → ∞ as n → ∞ and suppose, by possibly going to further subsequences, that

limn→∞ µ1(tn) = ν1θ and limn→∞ µ2(tn) = ν2θ . Let ν̄θ be the measure on E × E

given by ν̄θ = ν1θ × ν2θ . Using dominated convergence, invoking the preservation of

translation invariance, and using the limiting distribution of b
(1)
t (·, ·) on {A,D}, we

find∫
E×E

dν̄θ |∆i|+K|δi|

= (1 +K)

∫
E0×E0

dν̄θ lim
n→∞

∑
j∈G

[
b
(1)
tn

(
(i, Ri), (j, A)

)
|x1i − x2i |

+ b
(1)
tn

(
(i, Ri), (j,D)

)
|y1i − y2i |

]
= lim
n→∞

(1 +K)

∫
E0×E0

dν̄θ

∣∣∣∣∣∣
∑

j∈G×{A,D}

b
(1)
tn

(
(i, Ri), (j, Rj)

)
(z1(j,Rj)

− z2(j,Rj)
)

∣∣∣∣∣∣
≤ lim
n→∞

(1 +K)

∫
E

dν1θ

∣∣∣∣∣∣
∑

j∈G×{A,D}

b
(1)
tn

(
(i, Ri), (j, Rj)

)
z1(j,Rj)

− θ

∣∣∣∣∣∣
+ lim
n→∞

(1 +K)

∫
E

dν2θ

∣∣∣∣∣∣
∑

i∈G×{A,D}

b
(1)
tn

(
(i, Ri), (j, Rj)

)
z2(j,Rj)

− θ

∣∣∣∣∣∣ = 0.

(3.149)

Here, the last equality follows because both ν1θ and ν2θ are in R(1)
θ by Lemma 3.2.8.

Thus, we see that ν̄θ concentrates on the diagonal. Suppose now that there ex-

ists a sequence (tn)n∈N such that limn→∞ E[|∆i(tn)| + K|δi(tn)|] = δ > 0. Since

{L(Z̄(tn))}n∈N is tight (recall (3.134)), by Prokhorov’s theorem there exists a con-

verging subsequence {L(Z̄(tnk
))}k∈N. Let ν̄θ denote the limiting measure. Then, by

Lemma 3.2.8 and (3.149),

δ = lim
k→∞

E[|∆i(tnk
)|+K|δi(tnk

)|] =
∫
E×E

dν̄θ [|∆i|+K|δi|] = 0. (3.150)

Thus, limt→∞ E[|∆i(t)|+K|δi(t)|] = 0, and we conclude that the coupling is successful.

Hence, given the initial average density θ in (2.62), the equilibrium measure is unique

if it exists. □

3. Stationarity of νθ and convergence to νθ.
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Lemma 3.2.12 (Existence of equilibrium). Let µ(0) ∈ T erg
θ . Then

limt→∞ µ(t) = νθ for some invariant measure νθ.

Proof. To prove that the limit is an invariant measure, suppose that µ(0) = µ =

δθ. Since the state space of (Z(t))t≥0 is compact, each sequence {L(Z(tn))}n∈N is

tight. Hence, by Prokhorov’s theorem, there exists a converging subsequence such that

limn→∞ δθStn = νθ. Since δθ ∈ R(1)
θ , Lemma 3.2.8 tells us that limn→∞ δθStn ∈ R(1)

θ .

To prove that νθ is invariant, fix any s0 ≥ 0. Let µ = δθSs0 . Then, by Lemma

3.2.8, µ ∈ R(1)
θ and, by Lemma 3.2.11, we can find a further subsequence such that

limk→∞ µ(tnk
) = νθ. By the Feller property of the SSDE in (2.4)–(2.5), we obtain

νθSs0 = lim
n→∞

δθStnSs0 = lim
k→∞

δθSs0Stnk
= lim
k→∞

µStnk
= νθ. (3.151)

Hence, νθ is indeed an invariant measure.

To prove the convergence of µ(t) to νθ, note that νθ ∈ R(1)
θ by Lemma 3.2.8. Let

ν = νθ. Then, by the invariance of νθ, we have limt→∞ νSt = νθ. By Lemma 3.2.10,

we have limt→∞ µSt = limt→∞ νSt = νθ for all µ ∈ R(1)
θ . □

4. Ergodicity, mixing and associatedness.

Lemma 3.2.13 (Properties of equilibrium). Let µ(0) ∈ R(1)
θ be ergodic under

translations. Then νθ = limt→∞ µ(t) is ergodic and mixing under translations, and is

associated.

Proof. After a standard approximation argument, [46, Corollary 1.5 and subsequent

discussion] implies that associatedness is preserved over time. Note that δθ is an

associated measure and lies in R(1)
θ . Hence, by Lemma 3.2.12, νθ = limt→∞ δθSt and

therefore νθ is associated.

We prove the ergodicity of νθ by showing that the random field of components is

mixing. To prove that νθ is mixing, we use associatedness and decay of correlations.

Let B,B′ ⊂ G be finite, and let cj , di be positive constants for j ∈ B, i ∈ B′. For

k ∈ G, define the random variables

Y0 =
∑
j∈B

cjz(j,Rj), Yk =
∑
i∈B′

diz(i+k,Ri+k). (3.152)

Note that Y0 and Yk are associated under νθ because (z(i,Ri))(i,Ri)∈G×{A,D} are asso-

ciated. Therefore, by [61, Eq.(2.2)], it follows that for s, t ∈ R,

∣∣∣Eνθ [ei(sY0+tYn)]− Eνθ [eisY0 ]Eνθ [eitYn ]
∣∣∣ ≤ |st|Covνθ (Y0, Yn). (3.153)
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Since µ ∈ R(1)
θ by Lemma 3.2.1,

Covνθ (Y0, Yk) =
∑
j∈B

∑
i∈B′

cjdi lim
t→∞

Covµ(z(j,Rj)(t), z(i+k,Ri+k)(t))

≤∥g∥
∑
j∈B

∑
i∈B′

cjdi

×
∫ ∞

0

dr
∑

(l,Rl)∈G×{A}

b(1)r
(
(j, Rj), (l, A)

)
b(1)r
(
(i+ k,Ri+k), (l, A)

)
.

(3.154)

The last integral gives the expected total time for two partition elements in the dual,

starting in (j, Rj) and (i+ k,Ri+k), to be active at the same site. To show that this

integral converges to 0 as ∥k∥ → ∞, we rewrite the sum as (recall (3.64)–(3.65))

E(i+k,Ri+k),(j,Rj)

[(∑
l∈G

aT (r)(j, l) aT ′(r)(i+ k, l)

)
1E(r) 1E′(r)

]

= E(i+k,Ri+k),(j,Rj)

[(∑
l′∈G

â2M(r)(i+ k − j, l′) a∆(r)(l
′, 0)

)
1E(r) 1E′(r)

]

≤ E(i+k,Ri+k),(j,Rj)

[(∑
l′∈G

â2M(r)(i+ k − j, l′)
[
a∆(r)(l

′, 0) + a∆(r)(0, l
′)
])

1E(r) 1E′(r)

]
= E(i+k,Ri+k),(j,Rj)

[
â2M(r)+2∆(r)(i+ k − j, 0)1E(r) 1E′(r)

]
.

(3.155)

Because â(·, ·) is symmetric, we have â2M(r)+2∆(r)(i + k − j, 0) ≤ â2M(r)+2∆(r)(0, 0).

Since

T (t) + T ′(t) ≤ 2M(r) + 2∆(r) ≤ 2 (T (t) + T ′(t)) , (3.156)

and the Fourier transform in (3.74)–(3.75) implies that∫ ∞

0

drE(i+k,Ri+k),(j,Rj)

[
â2M(r)+2∆(r)(0, 0)1E(r) 1E′(r)

]
<∞. (3.157)

if and only if Iâ < ∞. Since we are in the transient regime, i.e., Iâ < ∞, we can use

dominated convergence, in combination with the fact that lim∥k∥→∞ ât(i+k−j, 0) = 0

for all i, j, t, to conclude that lim∥k∥→∞ Covνθ (Y0, Yk) = 0. □

§3.2.4 Proof of the dichotomy

Theorem 2.3.1(a) follows from Lemmas 3.2.7, 3.2.12 and 3.2.13. The equality Eνθ [x0] =
Eνθ [y0] = θ follows from the evolution equations in (2.4)–(2.5), the fact that νθ is an

equilibrium measure, and the preservation of θ (see (2.63)). Theorem 2.3.1(b) follows

from Lemma 3.2.5.

§3.3 Proofs: Long-time behaviour for Model 2

In Sections 3.3.1–3.3.4 we show that the results proved in Sections 3.2.1–3.2.4 carry

over from model 1 to model 2. In Section 3.3.5 we show that symmetry of a(·, ·)
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is needed. In Section 3.3.6 we show what happens when for infinite seed-bank the

fat-tailed wake-up time is modulated by a slowly varying function.

§3.3.1 Moment relations

Like in model 1, we start by relating the first and second moments of the system

in (2.12)–(2.13) to the random walk that evolves according to the transition kernel

b(2)(·, ·) on G × {A, (Dm)m∈N0
} given by (2.41). Also here these moment relations

hold for all g ∈ G. Moreover these moment relations holds for ρ < ∞ as well as for

ρ = ∞. Below we write Ez for Eδz , the expectation when the process starts from the

initial measure δz, z ∈ E.

Lemma 3.3.1 (First and second moment). For z ∈ E, t ≥ 0 and (i, Ri), (j, Rj) ∈
G× {A, (Dm)m∈N0

},

Ez[z(i,Ri)(t)] =
∑

(k,Rk)
∈G×{A,(Dm)m∈N0}

b
(2)
t

(
(i, Ri), (k,Rk)

)
z(k,Rk) (3.158)

and

Ez[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)
∈G×{A,(Dm)m∈N0}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
z(k,Rk)z(l,Rl)

+

∫ t

0

ds
∑
k∈G

b
(2)
(t−s)((i, Ri), (k,A)) b

(2)
(t−s)((j, Rj), (k,A))Ez[g(xk(s))].

(3.159)

Proof. The proof follows from that of Lemma 3.2.1 after we replace b(1)(·, ·) by b(2)(·, ·)
and use (2.12)–(2.13) instead of (2.4)–(2.5). □

Remark 3.3.2 (Density). From Lemma 3.3.1 we obtain that if µ is invariant under

translations with Eµ[x0(0)] = θx and Eµ[y0,m(0)] = θy,m for all m ∈ N0, then

Eµ[z(i,Ri)(t)] = θx
∑

(k,Rk)∈G×{A}

b
(2)
t

(
(i, Ri), (k,Rk)

)
+
∑
m∈N0

θy,m
∑

(k,Rk)∈G×{Dm}

b
(2)
t

(
(i, Ri), (k,Rk)

) (3.160)

and

Eµ[z(i,Ri)(t)z(j,Rj)(t)]

=
∑

(k,Rk),(l,Rl)
∈G×{A,(Dm)m∈N0}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
Eµ[z(k,Rk)z(l,Rl)]

+

∫ t

0

ds
∑
k∈G

b
(2)
t−s
(
(i, Ri), (k,A)

)
b
(2)
t−s
(
(j, Rj), (k,A)

)
Eµ[g(xi(s))].

(3.161)
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� For ρ < ∞, the kernel b(2)(·, ·) projected on the second component (= the

seed-bank) corresponds to recurrent Markov chain. Therefore, by translation

invariance in the first component, we have

lim
t→∞

Eµ[z(i,Ri)(t)] =
θx +

∑
m∈N0

Kmθy,m

1 +
∑
m∈N0

Km
= θ. (3.162)

� For ρ = ∞, the kernel b(2)(·, ·) viewed as a kernel on {A, (Dm)m∈N0} corresponds
to a null-recurrent Markov chain. Hence, for all (i, Ri) and all Dm, m ∈ N0,

lim
t→∞

∑
k∈G

b
(2)
t ((i, Ri), (k,Dm)) = 0. (3.163)

Since for ρ = ∞ we assume not only that µ ∈ T erg
θ but also that µ is colour

regular, it follows that, for all M ∈ N0,

lim
t→∞

Eµ[z(i,Ri)(t)] = lim
t→∞

θx
∑
k∈G

b
(2)
t

(
(i, Ri), (k,Rk)

)
+
∑
m∈N0

θy,m
∑

(k,Rk)∈G×{Dm}

b
(2)
t

(
(i, Ri), (k,Rk)

)
= lim
t→∞

∞∑
m=M

θy,m
∑

(k,Rk)∈G×{Dm}

b
(2)
t

(
(i, Ri), (k,Rk)

)
.

(3.164)

Therefore

lim
t→∞

Eµ[z(i,Ri)(t)] = θ. (3.165)

□

§3.3.2 The clustering case

In this section we prove convergence to a trivial equilibrium when ρ <∞ and Iâ = ∞
and when ρ = ∞ and Iâ,γ = ∞. The proof follows along the same lines as in Section

3.2.2. Therefore we again first consider g = dgFW, and subsequently use a duality

comparison argument to show that the results hold for g ̸= dgFW as well.

Case g = dgFW. We start by proving the equivalent of Lemma 3.2.4, which is

Lemma 3.3.3 below.

Lemma 3.3.3 (Clustering). Suppose that µ(0) ∈ T erg
θ and g = dgFW. Let µ(t)

be the law at time t of the system defined in (2.12)–(2.13). Then the following two

statements hold:

� If ρ <∞ and Iâ = ∞, i.e., â(·, ·) is recurrent, then

lim
t→∞

µ(t) = θ [δ(1,1N0 )]
⊗G + (1− θ) [δ(0,0N0 )]

⊗G. (3.166)
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� If ρ = ∞ and Iâ,γ = ∞ then

lim
t→∞

µ(t) = θ [δ(1,1N0 )]
⊗G + (1− θ) [δ(0,0N0 )]

⊗G. (3.167)

Proof. We distinguish between ρ <∞ and ρ = ∞, which exhibit different behaviour.

Case ρ <∞. The same dichotomy as for model 1 holds when the average wake-up

time is finite (recall (2.20)–(2.21), (2.50)). Indeed, the argument in (3.69)–(3.79) can

be copied with Ke, e replaced by χ, χ/ρ and A,B by χ/(1 + ρ), 1/(1 + ρ). Under

the symmetry assumption in (2.73) we have ã(ϕ) = 0. Hence only the law of large

numbers in (3.70) is needed, not the central limit theorem in (3.72), which may fail

(see Section 3.3.5).

Case ρ = ∞. When the average wake-up time is infinite, we need the assumptions

in (2.60) and (2.76). By the standard law of large numbers for stable random variables

(see e.g. [34, Section XIII.6]), we have

lim
k→∞

1

k

k∑
ℓ=1

σℓ =
1

χ
P-a.s., lim

k→∞

1

k1/γ

k∑
ℓ=1

τℓ =W in P-probability, (3.168)

with W a stable law random variable on (0,∞) with exponent γ. Therefore

lim
t→∞

1

tγ
N(t) = lim

t→∞

1

tγ
N ′(t) =W−γ in P-probability,

lim
t→∞

1

tγ
T (t) = lim

t→∞

1

tγ
T ′(t) =

1

χ
W−γ in P-probability,

lim
t→∞

t1−γ P
(
E(t)

)
= lim
t→∞

t1−γ P
(
E ′(t)

)
=

1

χ
E[W−γ ], t→ ∞.

(3.169)

For the last statement to make sense, we must check the following.

Lemma 3.3.4 (Finite limits). E[W−γ ] <∞.

Proof. Let Wk = k−1/γ
∑k
l=1 τl. Then W−γ

k ≤ k(max1≤i≤k τ
γ
i )

−1 and, since τi are

i.i.d. random variables,

E[W−γ
k ] ≤

∫ ∞

0

dxP

(
k

(
max
1≤i≤k

τγi

)−1

> x

)
=

∫ ∞

0

dxP
(
τγ1 < k

x

)k
. (3.170)

To estimate the integral in the right-hand side of (3.170), we introduce three constants,

T , C1, C2. Let ϵ ∈ (0, 1) and choose T ∈ R+ such that, for all t > T ,

|[P(τ > t)/(Ct−γ)]− 1| < ϵ (3.171)

Since P(τ ≤ t) = 1 − χ−1
∑
m∈N0

Kmem e−emt, we note that, under assumption

(2.76), τ admits a continuous bounded density. Hence there exists a C1 ∈ R+ such
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that P(τ ≤ t) < C1t. Finally, choose C2 ∈ R+ such that C2 > max(1, Cγ1 ). Split∫ ∞

0

dxP
(
τγ1 < k

x

)k
=

∫ k/T

0

dxP
(
τγ1 < k

x

)k
+

∫ kC2

k/T

dxP
(
τγ1 < k

x

)k
+

∫ ∞

kC2

dxP
(
τγ1 < k

x

)k
.

(3.172)

We estimate each of the three integrals separately. For the first integral, we use the

estimate (1− P(τγ1 ≥ k
x ))

k ≤ exp[−kP(τγ1 ≥ k
x )] to obtain∫ k/T

0

dxP
(
τγ1 < k

x

)k
=

∫ k/T

0

dx exp
[
−k P

(
τ1 ≥

(
k
x

)1/γ)]
≤
∫ k/T

0

dx e−(1−ϵ)Cx

≤ 1

(1− ϵ)C
.

(3.173)

For the second integral, we note that t 7→ tP(τγ1 > t) is a continuous function on

[ 1
C2
, T ], and hence attains a minimum value C3 ∈ R+ on [ 1

C2
, T ]. Therefore∫ kC2

k/T

dxP
(
τγ1 < k

x

)k
=

∫ kC2

k/T

dx
[
1− P

(
τγ1 ≥ k

x

)]k
≤
∫ kC2

k/T

dx exp

[
−x
(
k

x
P(τγ1 ≥ k

x )

)]
≤ 1

C3
.

(3.174)

For the third integral, we compute∫ ∞

kC2

dxP
(
τγ1 < k

x

)k ≤
∫ ∞

kC2

dx
(
Cγ1

k
x

) k
γ =

∫ 1/C2

0

dv k
v2 (C

γ
1 v)

k
γ =

Cγ1 k
k
γ − 1

(
Cγ1
C2

) k
γ −1

,

(3.175)

where in the first equality we substitute v = k
x . Since C2 > Cγ1 , we see that the

right-hand side tends to zero as k → ∞. Hence

E[W−γ
k ] ≤ 1

(1− ϵ)(C/γ)
+

1

C3
+

Cγ1 k
k
γ − 1

(
Cγ1
C2

)k−1

, (3.176)

and by dominated convergence it follows that E[W−γ ] = limk→∞ E[W−γ
k ] <∞. □

By (2.73), we have â(ϕ) = a(ϕ) and ã(ϕ) = 0 in (3.66), and so (3.74) becomes,

with the help of (3.169),

E(0,A),(0,A)

[(∑
i∈G

aT (t)(0, i) aT ′(t)(0, i)

)
1E(t) 1E′(t)

]
≍ t−2(1−γ)f(t), t→ ∞,

(3.177)
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with (recall (3.68))

f(t) = âctγ (0, 0) (3.178)

for some c ∈ (0,∞). Here we use that deviations of T (t)/tγ and T ′(t)/tγ away from

order 1 are stretched exponentially costly in t [31], and therefore are negligible. Since

t 7→ ât(0, 0) is regularly varying at infinity (recall (2.60)), it follows that

âctγ (0, 0) ≍ âtγ (0, 0), t→ ∞. (3.179)

Combining (3.63) and (3.177)–(3.179), we get

I = ∞ ⇐⇒ Iâ,γ = ∞ (3.180)

with Iâ,γ =
∫∞
1

dt t−2(1−γ) âtγ (0, 0). Putting s = tγ , we have

Iâ,γ =

∫ ∞

1

ds s−(1−γ)/γ âs(0, 0), (3.181)

which is precisely the integral defined in (2.80). □

Case g ̸= dgFW. To prove that the dichotomy criterion of Lemma 3.3.3 holds for

general g ∈ G we need the equivalent of Lemma 3.2.5. Replacing (2.4)–(2.5) by (2.12)–

(2.13), replacing b(1) by b(2) in the proof of Lemma 3.2.5, and using the moment

relations in Lemma 3.3.1 instead of the moment relations in Lemma 3.2.1, we see that

Lemma 3.3.3 also holds for g ∈ G.

§3.3.3 The coexistence case

In this section we prove the coexistence results stated in Theorem 2.3.3. Like for

model 1 the proofs hold for general g ∈ G and we need not distinguish between

g = dgFW and g ̸= dgFW. For ρ < ∞, the argument is given in Section 3.3.3 and

proceeds as in Section 3.2.3. It is organised along the same 4 Steps as the argument

for model 1, plus an extra Step 5 that settles the statement in (2.87). For ρ = ∞, the

argument is given in Section 3.3.3 and is also organised along 5 Steps, but structured

differently. In Step 1 we define a set of measures that is preserved under the evolution.

In Step 2 we use a coupling argument to show the existence of invariant measures. In

Step 3 we show that these invariant measures have vanishing covariances in the seed-

bank direction. In Step 4 we use the vanishing covariances to show uniqueness of the

invariant measure by coupling. Finally, in Step 5 we show that the unique equilibrium

measure is invariant, ergodic and mixing under translations, and is associated.

• Proof of coexistence for finite seed-bank

1. Properties of measures preserved under the evolution. For model 2 with

ρ < ∞, the class of preserved measures is equivalent to R(1)
θ for model 1 and is now

defined as follows.

Definition 3.3.5 (Preserved class of measures). LetR(2)
θ denote the set of meas-

ures µ ∈ T satisfying, for all (i, Ri), (j, Rj) ∈ G× {A, (Dm)m∈N0},
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(1)

lim
t→∞

Eµ[z(i,Ri)(t)] = θ, (3.182)

(2)

lim
t→∞

∑
(k,Rk),(l,Rl)

∈G×{A,(Dm)m∈N0}

b
(2)
t

(
(i, Ri), (k,Rk)

)
b
(2)
t

(
(j, Rj), (l, Rl)

)
× Eµ[z(k,Rk)z(l,Rl)] = θ2.

(3.183)

□

Like for model 1, properties (1) and (2) of Definition 3.3.5 hold if and only if

lim
t→∞

Eµ


 ∑

(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0}

b
(2)
t ((0, A), (k,Rk)) z(k,Rk) − θ

2
 = 0

for some (i, Ri) ∈ G× {A, (Dm)m∈N0}.
(3.184)

Also for model 2 with ρ <∞ we have T erg
θ ⊂ R(1)

θ . To see why, note for all t > 0 and

m ∈ N0, (xi(t))i∈G and (yi,m(t))i∈G still are stationary time series. Hence with the

help of the Herglotz theorem we can define spectral measures λA, λDm for m ∈ N0

as in (3.112). Let (RWt)t≥0 be the random walk evolving according to b(2)(·, ·).
Introduce the sets

E(t) =
{
at time t the random walk is active

}
,

Em(t) =
{
at time t the random walk is dormant with colour m

}
.

(3.185)

Note that

lim
t→∞

Eµ

 ∑
(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0}

b
(2)
t ((0, A), (k,Rk)) z(k,Rk) − θ

2
≤ lim

t→∞
P(0,A)(E(t))Eµ

∑
k∈Zd

b
(2)
t ((0, A), (k,A))

P(0,A)(E(t))
xk − 1

P(0,A)(E(t))
θx

1 + ρ

2
+
∑

m∈N0

P(0,A)(Em(t))Eµ

∑
k∈Zd

b
(2)
t ((0, A), (k, (Dm))

P(0,A)(Em(t))
yk,m − 1

P(0,A)(Em(t))

Kmθy,m
1 + ρ

2 .

(3.186)

Hence we can use the same argument as in the proof of Lemma 3.2.7 to show that

T erg
θ ⊂ R(2)

θ .

Also Lemma 3.2.8 carries over after we replace b(1)(·, ·) by b(2)(·, ·) and R(1)
θ by

R(2)
θ , as defined in (3.3.5).
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2. Uniqueness of the equilibrium. To prove uniqueness of the equilibrium for
given θ, we use a similar coupling as for model 1 in Section 3.2.3 in Step 3. Consider
two copies of the system in (2.12)–(2.13) coupled via their Brownian motions:

dxki (t) =
∑
j∈G

a(i, j)
[
xkj (t)− xki (t)

]
dt+

√
g(xki (t)) dwi(t) (3.187)

+
∑
m∈N0

Kmem
[
yki,m(t)− xki (t)

]
dt, (3.188)

dyki,m(t) = em
[
xki (t)− yki,m(t)

]
dt, m ∈ N0, k ∈ {1, 2}. (3.189)

Here, k labels the copy, and the two copies are driven by the same Brownian motions
(wi(t))t≥0, i ∈ G. As initial measures we choose µ1(0), µ2(0) ∈ T erg

θ .
Let

z̄i(t) =
(
z1i (t), z

2
i (t)

)
, zki (t) =

(
xki (t), (y

k
i,m(t))m∈N0

)
, k ∈ {1, 2}. (3.190)

By [67, Theorem 3.2], the coupled system (z̄i(t))i∈G has a unique strong solution

whose marginals are the single-component systems. Write P̂ to denote the law of the
coupled system, and let ∆i(t) = x1i (t)−x2i (t) and δi,m(t) = y1i,m(t)− y2i,m(t), m ∈ N0.
The analogue of Lemma 3.2.9 reads:

Lemma 3.3.6 (Coupling dynamics ρ <∞). For every t ≥ 0,

d

dt
Ê

[
|∆i(t)|+

∑
m∈N0

Km|δi(t)|

]
= −2

∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]
− 2

∑
m∈N0

Kmem Ê
[(
|∆i(t)|+ |δi,m(t)|

)
1{sgn∆i(t) ̸=sgn δi,m(t)}

]
.

(3.191)

Proof. Note that the left-hand side of (3.191) is well defined because ρ < ∞. The
proof of Lemma 3.3.6 carries over from that of Lemma 3.2.9 after replacing (2.4)–(2.5)
by (2.12)–(2.13). □

The analogue of Lemma 3.2.10 reads as follows.

Lemma 3.3.7 (Successful coupling ρ <∞). If a(·, ·) is transient, then the coup-
ling is successful, i.e.,

lim
t→∞

Ê
[
|∆i(t)|+

∑
m∈N0

Km|δi,m(t)|
]
= 0, ∀i ∈ G. (3.192)

Proof. This follows in the same way as in the proof of Lemma 3.2.10, by defining
−hi(t) as in the right-hand side of (3.191). Using that the second line of (3.146) now

holds for δi,m(t) and all m ∈ N0, we can finish the proof after replacing b
(1)
t (·, ·) in

(3.149) by b
(2)
t (·, ·) and summing over the seed-banks Dm, m ∈ N0. □
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3. Stationarity of the equilibrium νθ and convergence to νθ. Lemma 3.2.12

holds also for µ ∈ R(2)
θ . This follows after replacing µ ∈ R(1)

θ by µ ∈ R(2)
θ in the proof

of Lemma 3.2.12, using the equivalent of Lemma 3.2.8 and invoking Lemma 3.3.7
instead of Lemma 3.2.10.

4. Ergodicity, mixing and associatedness. Also Lemma 3.2.13 holds, after
replacing b(1)(·, ·) by b(2)(·, ·). The proof even simplifies, since we can invoke the
symmetry of a(·, ·) in (3.155).

5. Variances under the equilibrium measure νθ. If lim supm→∞ em = 0, then
the claim in (2.87) is a direct consequence of the proof of Lemma 3.3.10 for ρ = ∞.

If lim infm→∞ em > 0, then the claim follows from the fact that µ ∈ R(2)
θ and

Varνθ (y0,m) =

∫ t

0

ds
∑
k∈G

b
(2)
t−s
(
(0, Dm), (k,A)

)
b
(2)
t−s
(
(0, Dm), (k,A)

)
Eµ[g(xi(s))].

(3.193)
Since em > 0 for all m ∈ N0 and lim infm→∞ em > 0, there is a positive probability
that after the first steps the two random walks are both active at 0, i.e., are both in
state (0, A). Hence, for all m ∈ N0 there exists a constant c > 0 such that

Varνθ (y0,m) ≥ cVarνθ (x0). (3.194)

Since νθ is a non-trivial equilibrium, we have Varνθ (x0) > 0.

• Proof of coexistence for infinite seed-bank

1. Properties of measures preserved under the evolution. For ρ = ∞, the

class of preserved measures is also given by R(2)
θ (recall Definition 3.3.5). We show

that if µ ∈ T erg
θ is colour regular, then µ ∈ R(2)

θ . Let the sets Em(t), t > 0, m ∈ N0, be
defined as in (3.185), and define λA and λDm

analogously to (3.112), like for ρ <∞.
The equivalent of (3.115) is

Eµ

( 1

P(0,A)(E(t))
∑
k∈G

b
(2)
t ((0, A), (k,A))xk − θx

)2


=
1

P(0,A)(E(t))2

∫
[−π,π]d

E(0,A),(0,A)

[
e−T (t)(1−a(ϕ))1E(t)e

−T ′(t)(1−ā(ϕ))1E′(t)

]
dλA.

(3.195)

Using that T (t), T ′(t) → ∞ as t → ∞ (see (3.169)), that T (t), T ′(t), E(t), E ′(t)
are asymptotically independent and that a(·, ·) is irreducible, we still find

lim
t→∞

Eµ

( 1

P(0,A)(E(t))
∑
k∈G

b
(2)
t ((0, A), (k,A))xk − θx

)2
 = λA({0}) (3.196)
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and, similarly,

lim
t→∞

Eµ

( 1

P(0,A)(Em(t))

∑
k∈G

b
(2)
t ((0, A), (k,A))yk,m − θy,m

)2
 = λDm

({0}).

(3.197)
Since µ is ergodic, we have λA({0}) = 0 and λDm({0}) = 0 for all m ∈ N0 (recall
(3.121)). By the colour regularity,

lim
t→∞

θxP(0,A)(E(t)) +
∑
m∈N0

θy,mP(0,A)(Em(t)) = θ. (3.198)

Therefore we can rewrite (3.186) as

lim
t→∞

Eµ

 ∑
(k,Rk),(l,Rl)∈G×{A,(Dm)m∈N0}

b
(2)
t ((0, A), (k,Rk)) z(k,Rk) − θ

2
≤ lim

t→∞
P(0,A)(E(t))Eµ

∑
k∈Zd

b
(2)
t ((0, A), (k,A))

P(0,A)(E(t))
(xk − θx)

2
+
∑

m∈N0

P(0,A)(Em(t))Eµ

∑
k∈Zd

b
(2)
t ((0, A), (k, (Dm))

P(0,A)(Em(t))
(yk,m − θy,m)

2
= lim

t→∞
P(0,A)(E(t))λA({0}) +

∑
m∈N0

P(0,A)(Em(t))λDm({0}) = 0.

(3.199)

We conclude that indeed µ ∈ R(2)
θ .

Like for ρ <∞, Lemma 3.2.8 carries over after we replace b(1)(·, ·) by b(2)(·, ·) and
R(1)
θ by R(2)

θ .

2. Existence of invariant measures νθ for ρ = ∞. Since the dynamics for
ρ = ∞ and ρ < ∞ are the same, we can still use the coupling in (3.187)–(3.189).
Also Lemma 3.3.6 holds for ρ = ∞, but if ρ = ∞, then the left-hand side of (3.191)
can become infinite. Therefore we cannot use the line of argument used for model 1
to show that the coupling is successful for arbitrary colour regular initial measures
µ1, µ2 ∈ T erg

θ . However, we can prove the following lemma.

Lemma 3.3.8 (Successful coupling). If µ1, µ2 ∈ T erg
θ are both colour regular and

satisfy

Ê

[
|∆i(0)|+

∑
m∈N0

Km|δi(0)|

]
<∞, (3.200)

then the coupling in (3.187)–(3.189) is successful.

Proof. We proceed similarly as in Step 3 for ρ < ∞. Note, in particular, that hi(t)

(recall (3.191)) is bounded from above by Ê
[
|∆i(0)|+

∑
m∈N0

Km|δi(0)|
]
(compare
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with (3.145)). Also for ρ = ∞ we obtain Lemma 3.2.11. Like for model 1, if we define

E0 × E0 =
{
z̄ ∈ E × E : z1(i,Ri)

(t) ≥ z2(i,Ri)
(t) ∀(i, Ri) ∈ G× {A, (Dm)m∈N0

}
}

∪
{
z̄ ∈ E × E : z2(i,Ri)

(t) ≥ z1(i,Ri)
(t) ∀(i, Ri) ∈ G× {A, (Dm)m∈N0

}
}
,

(3.201)
then we find limt→∞ P(E0 ×E0) = 1 and hence the coupled diffusions (Z1(t))t≥0 and
(Z2(t))t≥0 lay on top of each other as t→ ∞. However, in (3.149) the limiting distri-

bution of b
(1)
tn (·, ·) was used “to compensate” the factorsKm in |∆i|+

∑
m∈N0

Km|δi,m|.
Since, for ρ = ∞, b

(1)
tn (·, ·) does not have a well-defined limiting distribution for the

projection on the colour components, we need a different strategy.

To obtain a successful coupling, as before, let (tn)n∈N be a subsequence such
that ν1θ = limn→∞ L(Z1(tn)) with L(Z1(0)) = µ1 and ν2θ = limn→∞ L(Z2(tn)) with
L(Z2(0)) = µ2. For G = Zd, let ΛN = [0, N)d ∩ Zd, N ∈ N. (As noted before, for
amenable groups G, (ΛN )N∈N must be replaced by a so-called Fϕlner sequence.) Note
that

Eν1
θ


 1

|ΛN |
∑
j∈ΛN

xj − θ

2
 =

1

|ΛN |2
∑

i,j∈ΛN

Covν1
θ
(xi, xj). (3.202)

Since µ1 is colour regular and µ1 ∈ T erg
θ , we have µ1 ∈ R(2)

θ . Hence, by Lemma 3.3.1,

Covν1
θ
(xi, xj) = lim

n→∞
Covµ1(xi(tn), xj(tn))

≤ lim
n→∞

∥g∥
∫ tn

0

ds
∑
k∈G

b
(2)
(tn−s)((i, A), (k,A)) b

(2)
(t−s)((j, A), (k,A))

≤ ∥g∥
∫ ∞

0

ds
∑
k∈G

E(i,A),(j,A)

[
aT (s)(i, k) 1E(s) aT ′(s)(j, k) 1E′(s)

]
≤ ∥g∥

∫ ∞

0

ds E(i,A),(j,A)

[
âT (s)+T ′(s)(i− j, 0) 1E(s) 1E′(s)

]
.

(3.203)
Since Iα,γ < ∞, we see that the last integral is finite. Since lim||i−j||→∞ ât(i −
j, 0) = 0 for all t > 0, it follows by transience and dominated convergence that
lim||i−j||→∞ Covν1

θ
(xi, xj) = 0. Since Covν1

θ
(xi, xj) ≤ 1 for all i, j ∈ G, for all ϵ > 0
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there exists an L ∈ N such that

lim
N→∞

Eν1
θ


 1

|ΛN |
∑
j∈ΛN

xj − θ

2
 = lim

N→∞

1

|ΛN |2
∑

i,j∈ΛN

Covν1
θ
(xi, xj)

= lim
N→∞

1

|ΛN |2
∑

i,j∈ΛN

∥i−j∥≤L

Covν1
θ
(xi, xj) +

1

|ΛN |2
∑

i,j∈ΛN

∥i−j∥>L

Covν1
θ
(xi, xj)

≤ lim
N→∞

|{i, j ∈ ΛN : ∥i− j∥ ≤ L}|
|ΛN |2

+ ϵ lim
N→∞

|{i, j ∈ ΛN : ∥i− j∥ > L}|
|ΛN |2

< ϵ.

(3.204)
We conclude that

lim
N→∞

Eν1
θ


 1

ΛN

∑
j∈ΛN

xj − θ

2
 = 0, (3.205)

and the same holds for νθ2 . Let limn→∞ L(Z̄(tn)) = ν̄θ such that limn→∞ L(Z1(tn)) =
ν1θ and limn→∞ L(Z2(tn)) = ν2θ . Then by translation invariance of ν̄θ and the fact
that ν̄θ(E0 × E0) = 1, we find∫

E×E
dν̄θ|∆i| =

∫
E0×E0

dν̄θ
1

|ΛN |
∑
j∈ΛN

|x1j − x2j |

≤
∫
E0

dν1θ

∣∣∣∣∣∣ 1

|ΛN |
∑
j∈ΛN

x1j − θ

∣∣∣∣∣∣+
∫
E0

dν2θ

∣∣∣∣∣∣ 1

|ΛN |
∑
j∈ΛN

x2j − θ

∣∣∣∣∣∣ .
(3.206)

Letting N → ∞, we see by translation invariance of ν̄θ that Eν̄θ [|∆i|] = 0 for all
i ∈ G.

The result in (3.205) holds also for xi replaced by yi,m, m ∈ N0, since the integral
in (3.203) can only become smaller when we start from a dormant site. Replacing
|∆i| in (3.206) by |δi,m|, we obtain, for all m ∈ N0,

Eν̄θ [|δi,m|] = 0, ∀m ∈ N0. (3.207)

We conclude that the coupling is successful. □

Let (St)t≥0 denote the semigroup associated with (2.12)–(2.13). To prove the
existence of an invariant measure, note that E × E is a compact space. Hence, if
tn → ∞, then the sequence µStn has a convergent subsequence. In Lemma 3.3.9
below we show that each weak limit point of the sequence µStn is invariant under the
evolution of (2.12)–(2.13).

Lemma 3.3.9 (Invariant measure). Suppose that µ ∈ R(2)
θ and that µ is colour

regular. If tn → ∞ and µStn → νθ, then νθ is an invariant measure under the
evolution in (2.12)–(2.13).
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Proof. Fix s > 0. Let µ1 = µ and µ2 = µSs. We couple µ1 and µ2 via their Brownian
motions (see (3.187)–(3.189)). Note that, by the SSDE in (2.12)–(2.13),

Ê

[
|∆i(0)|+

∑
m∈N0

Km|δi,m(0)|

]

= E

[
|xi(0)− xi(s)|+

∑
m∈N0

Km|yi,m(0)− yi,m(s)|

]

= E

[∣∣∣∣∣
∫ s

0

∑
j∈G

a(i, j) [xj(r)− xi(r)] dr +

∫ s

0

√
g(xi(r)) dwi(r)

+

∫ s

0

∑
m∈N0

Kmem [yi,m(r)− xi(r)] dr

∣∣∣∣∣
+
∑
m∈N0

Km

∫ s

0

|em[yi,m(r)− xi(r)]|dr

]
.

(3.208)

Using that all rates are finite and that, by Knight’s theorem (see [62, Theorem V.1.9
p.183]), we can write the Brownian integral as a time-transformed Brownian motion,

we see that Ê[|∆i(0)| +
∑
m∈N0

Km|δi,m(0)|] < ∞. Hence, by Lemma 3.200, we can

successfully couple µ1 and µ2, and limn→∞ µ2Stn = limn→∞ µSsStn = νθ. By the
Feller property of the SSDE in (2.12)–(2.13), it follows that

νθSs = lim
n→∞

µ(tn)Ss = lim
n→∞

µStnSs = lim
n→∞

µSsStn = νθ. (3.209)

We conclude that νθ is indeed an invariant measure for the SSDE in (2.12)–(2.13). □

3. Invariant measures have vanishing covariances in the seed-bank direc-
tion for ρ = ∞. In this step we prove that an invariant measure νθ has vanishing
variances in the seed-bank direction. In Step 5 we use this property to successfully
couple any two invariant measures.

Lemma 3.3.10 (Deterministic deep seed-banks). If νθ = limn→∞ µStn for some

colour regular µ ∈ R(2)
θ and tn → ∞, then

lim
m→∞

Varνθ [yi,m] = 0 ∀i ∈ G. (3.210)

Proof. Since νθ is translation invariant, it is enough to show that limm→∞ Varνθ [y0,m] =

0. Since µ(0) ∈ R(2)
θ , it follows from Lemma 3.3.1 that

lim
m→∞

Varνθ [y0,m]

= lim
m→∞

lim
n→∞

Eµ
[
(y0,m(tn)− Eµ[y0,m(tn)])

2
]

= lim
m→∞

lim
n→∞

∫ tn

0

ds
∑
k∈G

b
(2)
tn−s((0, Dm), (k,A)) b

(2)
tnk

−s((0, Dm), (k,A))Ez[g(xk(s))].

(3.211)
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Since g is positive and bounded, it is therefore enough to prove that

lim
m→∞

lim
n→∞

∫ tn

0

du
∑
k∈G

b(2)u ((0, Dm), (k,A)) b(2)u ((0, Dm), (k,A)) = 0. (3.212)

Recall (see e.g. (3.203)) that b
(2)
u ((0, Dm), (k,A)) b

(2)
u ((0, Dm), (k,A)) is the probab-

ility that two random walks, denoted by RW and RW ′ and moving according to
b(2)(·, ·), are at time u at the same site k and both active. Define

τ =
{
t ≥ 0 : RW (t) = RW ′(t) = (i, A) for some i ∈ G

}
. (3.213)

Then we can rewrite the left-hand side of (3.212) as

lim
m→∞

lim
n→∞

∫ tn

0

du
∑
k∈G

b(2)u ((0, Dm), (k,A)) b(2)u ((0, Dm), (k,A))

= lim
m→∞

lim
n→∞

∫ tn

0

duE(0,Dm),(0,Dm)

[∑
k∈G

1{RW (u)=k} 1{RW ′(u)=k} 1E(u) 1E′(u)

]

= lim
m→∞

lim
n→∞

∫ tn

0

duE(0,Dm),(0,Dm)

[∑
k∈G

1{RW (u)=k} 1{RW ′(u)=k} 1E(t) 1E′(t)

×
(
1{τ<∞} + 1{τ=∞}

)]

= lim
m→∞

lim
n→∞

E(0,Dm),(0,Dm)

[
1{τ<∞}

× E(0,Dm),(0,Dm)

[∫ tn

0

du
∑
k∈G

1{RW (u)=k}1{RW ′(u)=k}1E(u)1E′(u) | Fτ

]]

= lim
m→∞

lim
n→∞

E(0,Dm),(0,Dm)

[
1{τ<∞}

×E(0,A),(0,A)

[∫ tn−τ

0

du
∑
k∈G

1{RW (u)=k}1{RW ′(u)=k}1E(u)1E′(u)

]]

≤ lim
m→∞

lim
n→∞

E(0,Dm),(0,Dm)

[
1{τ<∞}

×E(0,A),(0,A)

[∫ ∞

0

du
∑
k∈G

1{RW (u)=k}1{RW ′(u)=k}1E(u)1E′(u)

]]
= lim

m→∞
P(0,Dm),(0,Dm) (τ < ∞) Iâ,γ ,

(3.214)

where we use that Iâ,γ <∞, the strong Markov property, and the fact that for τ = ∞
the product of the indicators equals 0 for all u ∈ R≥0. Therefore (3.210) holds if

lim
m→∞

P(0,Dm),(0,Dm) (τ <∞) = 0. (3.215)

Define

τ∗ = inf
{
t ≥ 0 : both RW and RW ′ are active at time t

}
. (3.216)
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Note that τ∗ ≤ τ . Theorefore we can write (recall that in model 2 the random walk
kernel a(·, ·) is assumed to be symmetric),

lim
m→∞

P(0,Dm),(0,Dm) (τ <∞)

= lim
m→∞

E(0,Dm),(0,Dm)[1{τ<∞}]

= lim
m→∞

E(0,Dm),(0,Dm)

[
1{τ∗<∞} E(0,Dm)2

[
1{τ<∞} | Fτ∗

]]
= lim
m→∞

E(0,Dm),(0,Dm)

[
ERW (τ∗),RW ′(τ∗)

[
1{τ<∞}

]]
= lim
m→∞

∑
k,l∈G

P(0,Dm),(0,Dm) (RW (τ∗) = (k,A), RW ′(τ∗) = (l, A))

× E(k,A),(l,A)

[
1{τ<∞}

]
= lim
m→∞

∑
k,l∈G

E(0,Dm),(0,Dm)[âT (τ∗)(0, k) âT ′(τ∗)(0, l)]E(0,A),(l−k,A)

[
1{τ<∞}

]
= lim
m→∞

∑
k,l∈G

E(0,Dm),(0,Dm)[âT (τ∗)(0, k) âT ′(τ∗)(−k, l − k)]E(0,A),(l−k,A)

[
1{τ<∞}

]
= lim
m→∞

∑
k,j∈G

E(0,Dm),(0,Dm)[âT (τ∗)(0,−k) âT ′(τ∗)(−k, j)]E(0,A),(j,A)

[
1{τ<∞}

]
= lim
m→∞

∑
j∈G

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)

[
1{τ<∞}

]
= lim
m→∞

∑
j∈G

∥j∥≤L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)

[
1{τ<∞}

]
+ lim
m→∞

∑
j∈G

∥j∥>L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)

[
1{τ<∞}

]
.

(3.217)
To prove that the expression in the right-hand side tends to zero, we fix ϵ > 0 and
prove that there exists an L ∈ N such that both sums are smaller that ϵ

2 .

Claim 1: There exists an L such that

lim
m→∞

∑
j∈G,∥j∥>L

E(0,Dm)2 [âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)[1{τ<∞}] <
ϵ

2
. (3.218)
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Using the symmetry of the kernel a(·, ·) in model 2, we find

E(0,A),(j,A)

[
1{τ<∞}

]
= E(0,A),(j,A)

[∫ ∞

0

ds 1{τ∈ds}

]
≤ E(0,A),(j,A)

[∫ ∞

0

ds
∑
k∈G

1E(s)1E′(s)1{RW=k}1{RW ′=k}

]

≤ E(0,A),(j,A)

[∫ ∞

0

ds
∑
k∈G

âT (s)(0, k) âT ′(s)(j, k) 1E(s) 1E′(s)

]

≤ E(0,A),(j,A)

[∫ ∞

0

ds âT (s)+T ′(s)(j, 0)1E(s)1E′(s)

]
.

(3.219)
The last integral in the right-hand side is dominated by Iâ,γ (recall (2.100)). Since,
for all t ∈ R≥0,

lim
∥j∥→∞

ât(0, j) = 0, (3.220)

it follows by dominated convergence that for each ϵ > 0 we can find an L such that,
for all ∥j∥ > L,

E(0,A),(j,A)

[
1{τ<∞}

]
< ϵ

2 . (3.221)

Hence, for L sufficiently large, we find

lim
m→∞

∑
j∈G,|∥j∥|>L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]
[
E(0,A),(j,A)

[
1{τ<∞}

]]
≤ lim
m→∞

ϵ
2

∑
j∈G,∥j∥>L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)] ≤ ϵ
2 .

(3.222)

Claim 2: For L given as in Claim 1,

lim
m→∞

∑
j∈G,∥j∥≤L

E(0,Dm)2 [âT (τ∗)+T ′(τ∗)(0, j)]E(0,A),(j,A)[1{τ<∞}] <
ϵ

2
. (3.223)

For the first sum, note that

lim
m→∞

∑
j∈G

∥j∥≤L

E(0,Dm),(0,Dm)[â(T (τ∗)+T ′(τ∗))(0, j)]E(0,A),(j,A)

[
1{τ<∞}

]
≤ lim
m→∞

∑
j∈G

∥j∥≤L

E(0,Dm),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)]

= lim
m→∞

∑
j∈G

∥j∥≤L

E(0,A),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)],

(3.224)

where in the last equality we condition on the first time one of the two random walks
wakes up, and use the strong Markov property. We will show that the right-hand side
tends to zero as m → ∞. Recall that we assumed (2.76): em ∼ Bm−β for β > 0.
Note that, in order for the random walks to be both active at the same time, the
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random walk starting in (0, Dm) has to become active at least once. Hence, for all
t ≥ 0, we have

lim
m→∞

P(0,Dm),(0,A)(τ
∗ ≤ t) ≤ lim

m→∞
1− e−emt = 0. (3.225)

By (3.169) and [31], we also have for the random walk starting in (0, A) that

lim
t→∞

T (t) ∼ ctγ . (3.226)

Fix ϵ > 0. Since limt→∞ ât(0, j) = 0 for all j ∈ G, we can find a T ⋆ such that, for
all t > T ⋆, ∑

j∈G
∥j∥≤L

ât(0, j) <
ϵ
6 . (3.227)

By (3.226), we can find a t̃ ∈ R≥0 such that P(0,A)(T (t̃) > T ⋆) ≥ 1 − ϵ
6 . By (3.225),

we can find an M ∈ N0 such that for all m > M ,

lim
m→∞

P(0,Dm),(0,A)(τ
∗ ≤ t̃) < ϵ

6 , (3.228)

and hence

lim
m→∞

∑
j∈G

∥j∥≤L

E(0,A),(0,Dm)[âT (τ∗)+T ′(τ∗)(0, j)] <
ϵ
6 + ϵ

6 + ϵ
6 = ϵ

2 . (3.229)

□

4. Uniqueness of the invariant measure νθ when ρ = ∞.

Lemma 3.3.11 (Uniqueness of and convergence to νθ.). For all θ ∈ (0, 1) there
exists a unique invariant measure νθ such that limt→∞ µ(t) = νθ for all colour regular
µ(0) ∈ T erg

θ .

Proof. Suppose that ν1θ and ν2θ and are two different weak limit points of µ(tn) as

tn → ∞, and that µ ∈ R(2)
θ is colour regular. Let (Z̄(t))t≥0 = (Z1(t), Z2(t))t≥0 be the

coupled process from (3.133) with L(Z̄(0)) = ν̄θ, L(Z1(0)) = ν1θ and L(Z2(0)) = ν2θ .
Define the process Y 1 by

Y 1 =
(
Y 1(m)

)
m∈{−1}∪N0

,

Y 1(−1) = (x1i (0))i∈G, Y 1(m) = (y1i,m(0))i∈G for m ∈ N0.
(3.230)

Thus, Y 1 has state space [0, 1]G and L(Y 1) = L(Z1(0)) = ν1θ . We can interpret Y 1

as a process that describes the states of the population in the seed-bank direction.
Similarly, define the process Y 2 by

Y 2 =
(
Y 2(m)

)
m∈{−1}∪N0

,

Y 2(−1) = (x2i (0))i∈G, Y 2(m) = (y2i,m(0))i∈G for m ∈ N0.
(3.231)

Thus, Y 2 has state space [0, 1]G and L(Y 2) = L(Z2(0)) = ν2θ .
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Define the σ-algebra’s B1
M and B1, respectively, B2

M and B2 by

Bk = ∩M∈N0
BkM , BkM = σ

(
yki,m : i ∈ G, m ≥M

)
, k ∈ {1, 2}. (3.232)

Here, B1 and B2 are the tail-σ-algebras in the seed-bank direction. By Lemma 3.3.10,
we have

lim
m→∞

Lν1
θ
(yi,m) = lim

m→∞
Lν2

θ
(yi,m) = δθ. (3.233)

Hence, B1 = B2, both are trivial, and ν1θ and ν2θ agree on B. Therefore Gold-
stein’s Theorem [39] implies that there exists a successful coupling of Y 1 and Y 2.
Consequently, there exists a random variable T coup ∈ {−1} ∪ N0 such that, for all
m ≥ T coup, Y 1(m) = Y 2(m), i.e., |δi,m(0)| = 0 for all i ∈ G and P(T coup < ∞) = 1.
Hence

Ê

[
|∆i(0)|+

∑
m∈N0

Km|δi(0)|

]
= Ê

[
|∆i(0)|+

T coup∑
m=0

Km|δi(0)|

]
. (3.234)

However, we cannot conclude that the left-hand side of (3.234) is finite. Therefore, let
ν̄θ|{T coup<T} denote the restriction of the measure ν̄θ to the set {T coup < T}. Since
{T coup < T} is a translation-invariant event in the spatial direction, the measure
ν̄θ|{T coup<T} is translation invariant. Moreover,

Êν̄θ|{Tcoup<T}

[
|∆i(0)|+

∑
m∈N0

Km|δi(0)|

]

= Êν̄θ|{Tcoup<T}

[
|∆i(0)|+

T∑
m=0

Km|δi(0)|

]
<∞.

(3.235)

Therefore we can use the dynamics in (3.191) and conclude that, for all T ∈ N,
P̂ν̄θ|{Tcoup<T}(E0 × E0) = 1 (recall (3.201)). Since limT→∞ ν̄θ|{T coup<T} = ν̄θ, it
follows that

P̂ν̄θ (E0 × E0) = 1. (3.236)

By (3.206) and (3.207), we conclude that ν1θ = ν2θ and hence that all weak limit
points of (µ(t))t≥0 are the same. Suppose now that µ1(0) ∈ T erg

θ and µ2(0) ∈ T erg
θ are

two different colour regular initial measures. By the above argument, we know that
limt→∞ µ1(t) = ν1θ and limt→∞ µ2(t) = ν2θ . By Lemma 3.3.10, we know that ν1θ and
ν2θ have the same trivial tail-σ-algebras in the seed-bank direction. Hence, repeating
the above argument, we find that ν1θ = ν2θ . We conclude that for each colour regular
initial measure µ ∈ T erg

θ the SSDE in (2.12)–(2.13) converges to a unique non-trivial
equilibrium measure νθ. □

5. Ergodicity, mixing and associatedness. The equivalent of Lemma 3.2.13 for
ρ = ∞ follows in the same way as for ρ <∞.

103



3. Spatial populations with seed-bank, proofs

C
h
a
p
t
e
r
3

§3.3.4 Proof of the dichotomy

Theorem 2.3.3(I)(a) follows from Lemma (3.3.7) and Steps 3-5 in Section 3.3.3. The
equality Eνθ [x0] = Eνθ [y0,m] = θ, m ∈ N0, follows from (2.12)–(2.13), the fact that
νθ is an equilibrium measure, and the preservation of θ (see Section 2.3.2). The-
orem 2.3.3(I)(b) follows by combining Lemma 3.3.3 with the analogue of Lemma 3.2.5.
Theorem 2.3.3(II) follows from Lemmas 3.3.3, 3.3.10, 3.3.11, the analogue of
Lemma 3.2.5, and Step 6 in Section 3.3.3. The equality Eνθ [x0] = Eνθ [y0,m] = θ,
m ∈ N0, follows from (3.165) in Step 1 of Section 3.3.3.

Corollary 2.3.4(1) corresponds to γ ∈ (1,∞) and ρ <∞, and migration dominates.
Corollary 2.3.4(2) corresponds to γ ∈ [ 12 , 1] and ρ = ∞, and Iâ,γ shows in interplay
between migration and seed-bank. Corollary 2.3.4(3) corresponds to γ ∈ (0, 12 , 1) and
ρ = ∞, and the seed-bank dominates: Iâ,γ <∞ because ât(0, 0) ≤ 1.

§3.3.5 Different dichotomy for asymmetric migra-
tion

It remains to explain how the counterexample below Theorem 2.3.3 arises. We focus
on the case when ρ < ∞, which implies E(τ) < ∞, but we assume E(τ2) = ∞.
Therefore the central limit theorem does not hold for T (t), T ′(t), and ∆(t) ≫

√
M(t).

Hence (3.75) must be replaced by

f(t) =
1

(2π)d

∫
[−π,π]d

dϕ e−[1+o(1)] 2Bt [1−â(ϕ)] E
[
cos
(
∆(t)ã(ϕ)

)]
. (3.237)

The key observation is that if ã(ϕ) ̸= 0 (due to the asymmetry of a(·, ·); recall (3.66)),
then the expectation in (3.237) can change the integrability properties of f(t).

Under the assumption that τ has a one-sided stable distribution with parameter
γ ∈ (1, 2), we have (3.70) with A = χ/(1 + ρ) and B = 1/(1 + ρ), while there exists a
constant C ∈ (0,∞) such that (see [34, Chapter XVII])

E[cos(∆(t)ã(ϕ))] = e−[1+o(t)]At|Cã(ϕ)|γ . (3.238)

Substituting (3.238) into (3.237), we see that for large t the contribution to f(t) comes
from ϕ such that â(ϕ) → 1 and ã(ϕ) → 0. By our choice of the migration kernel in
(2.90), this holds as ϕ = (ϕ1, ϕ2) → (0, 0). Using that 1 − â(ϕ) ∼ 1

2 (ϕ
2
1 + ϕ22) and

ã(ϕ) ∼ 1
2η(ϕ1 + ϕ2) for (ϕ1, ϕ2) → (0, 0), we find that (3.237) equals

f(t) =
1

(2π)2

∫
[−π,π]2

dϕ e−[1+o(1)] {Bt(ϕ2
1+ϕ

2
2)+At[|

1
2Cη(ϕ1+ϕ2)|]γ}, t→ ∞. (3.239)

Hence the integral in (3.239) is determined by ϕ such that

B(ϕ21 + ϕ22) +A
[
| 12Cη(ϕ1 + ϕ2)|

]γ ≤ c

t
. (3.240)

for c a positive constant, and we find that f(t) ≍ t−(
1
γ + 1

2 ). Since γ ∈ (1, 2), f(t)
is much smaller than ât(0, 0) ≍ 1/t, valid for two-dimensional simple random walk.
Thus we see that t 7→ f(t) is integrable, while t 7→ ât(0, 0) is not.
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§3.3.6 Modulation of the law of the wake-up times
by a slowly varying function

The integral in (2.96) is the total hazard of coalescence of two dual lineages:

� If γ ∈ (0, 1), then the probability for each of the lineages to be active at time s
decays like ≍ φ(s)−1s−(1−γ) [1]. Hence the expected total time they are active
up to time s is≍ φ(s)−1sγ . Because the lineages only move when they are active,

the probability that the two lineages meet at time s is ≍ a
(N)
φ(s)−1sγ (0, 0). Hence

the total hazard is ≍
∫∞
1

dsφ(s)−2s−2(1−γ) a
(N)
φ(s)−1sγ (0, 0). After the trans-

formation t = t(s) = φ(s)−1sγ , we get the integral in (2.96), modulo a constant.
(When carrying out this transformation, we need that lims→∞ sφ′(s)/φ(s) = 0,
which is immediate from (2.95), and φ(t(s))/φ(s) ≍ 1 as s → ∞, which
is immediate from the bound we imposed on ψ together with the fact that
lims→∞ logφ(s)/ log s = 0.)

� If γ = 1, then the probability for each of the lineages to be active at time s
decays like φ̂(s)−1 [1]. Hence the expected total time they are active up to time

s is ≍ sφ̂(s)−1. Hence the total hazard is ≍
∫∞
1

ds φ̂(s)−2 a
(N)
φ̂(s)−1s(0, 0). After

the transformation t = t(s) = φ̂(s)−1s, we get the integral in (2.96), modulo a
constant.

§3.4 Proofs: Long-time behaviour for Model 3

The arguments for model 2 in Section 3.3 all carry over with minor adaptations. The
only difference is that for ρ = ∞ the clustering criterion changes. In this section we
prove the new clustering criterion and comment on the modifications needed in the
corresponding proofs for model 2 in Section 3.3.

§3.4.1 Moment relations

Like in model 1 and 2, we can relate the first and second moments of the system
in (2.18)–(2.19) to the random walk that evolves according to the transition kernel
b(3)(·, ·) on G×{A, (Dm)m∈N0

} given by (2.53). Replacing in Lemma 3.3.1 the kernel
b(2)(·, ·) by b(3)(·, ·), we find the moment relation for model 3. Also here these moment
relations hold for all g ∈ G. Moreover these moment relations holds for ρ <∞ as well
as for ρ = ∞.

§3.4.2 The clustering case

To obtain the equivalent of Lemma 3.3.3, we need to replace the kernel â(·, ·) by the
convoluted kernel (â ∗ â†)(·, ·). Each time one of the two copies of the random walk
with migration kernel a(·, ·) moves from the active state to the dormant state, it makes
a transition according to the displacement kernel a†(·, ·) (recall (2.97)). Therefore the
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expression in (3.60) needs to be replaced by

I =∫ ∞

0

dt
∑
k,k′∈N

∑
i,i′∈G

∑
j∈G

E(0,A)

[
âT (k,t)(0, i) âT ′(k′,t)(0, i

′) â†k(i, j) â
†
k′(i

′, j) 1E(k,t) 1E′(k′,t)

]
,

(3.241)

where â†k(·, ·) is the step-k transition kernel of the random walk with displacement
kernel â†(·, ·). Using the symmetry of both kernels, we can carry out the sum over
j, i′ and write

I =

∫ ∞

0

dt
∑
k,k′∈N

∑
j∈G

E(0,A)

[
âT (k,t)+T ′(k′,t)(0, j) â

†
k+k′(0, j) 1E(k,t) 1E′(k′,t)

]
=

∫ ∞

0

dt
∑
j∈G

E(0,A)

[
âT (t)+T ′(t)(0, j) â

†
N(t)+N ′(t)(0, j) 1E(t) 1E′(t)

]
=

∫ ∞

0

dtE(0,A)

[(
âT (t)+T ′(t) ∗ â†N(t)+N ′(t)

)
(0, 0) 1E(t) 1E′(t)

]
.

(3.242)

The last expression is the analogue of (3.63).
For ρ < ∞, following the same line of argument as for model 2, we find with the

help of (2.98) that

I ≍
∫ ∞

1

dt (ât ∗ â†t)(0, 0). (3.243)

For ρ = ∞, with the help of the Fourier transform we compute

E(0,A)

[(
aT (t)+T ′(t) ∗ a†N(t)+N ′(t)

)
(0, 0)

]
= E(0,A)

[
1

(2π)d

∫
(−π,π]d

dϕ e−(T (t)+T ′(t))[1−â(ϕ)] â†(ϕ)N(t)+N ′(t)

]

=
1

(2π)d

∫
(−π,π]d

dϕ e−[1+o(1)] 2ct−γ [1−â(ϕ)] e−[1+o(1)] 2t−γ [1−â†(ϕ)]

≍ (âct−γ ∗ â†t−γ )(0, 0) ≍ (ât−γ ∗ â†t−γ )(0, 0),

(3.244)

where we use (2.98), (3.169) and the fact that deviations of T (t)/tγ and T ′(t)/tγ away
from order 1 are stretched exponentially costly in t [31]. Hence

I ≍
∫ ∞

1

dt t−2(1−γ)(âtγ ∗ â†tγ )(0, 0). (3.245)

Putting s = tγ we obtain, instead of (3.180),

I = ∞ ⇐⇒ Iâ∗â†,γ = ∞ (3.246)

with

Iâ∗â†,γ =

∫ ∞

1

ds s−(1−γ)/γ (âs ∗ â†s)(0, 0), (3.247)

which is precisely the integral in (2.100).
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§3.4.3 The coexistence case

The coexistence results in Theorem 2.3.6 follow for both ρ < ∞ and ρ = ∞ by the
same type of argument as the one we used for model 2 in Section 3.3.3. We replace
(2.12)–(2.13) by (2.18)–(2.19), replace b(2)(·, ·) (see 2.41) by b(3)(·, ·) (see 2.53), and
use the Fourier transform of â ∗ â†(·, ·) instead of â(·, ·). The key of the argument is
that, in the coexistence case, for ρ <∞ we have Iâ∗â† <∞, while for ρ = ∞ we have
Iâ∗â†,γ <∞.

§3.4.4 Proof of the dichotomy

This follows in exactly the same way as for model 2.
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APPENDIX A
Appendix Part I

§A.1 Derivation of continuum frequency equations

Model 1. We give the derivation of (2.4)–(2.5) as the continuum limit of an individual-
based model when the size of the colonies tends to infinity. We start with the con-
tinuum limit of the Fisher-Wright model with (strong) seed-bank for a single-colony
model as defined in [12]. Subsequently we show how the limit extends to amulti-colony
model with seed-bank.

Single-colony model. The Fisher-Wright model with (strong) seed-bank defined
in [12] consists of a single colony with N ∈ N active individuals and M ∈ N dormant
individuals. Each individual can carry one of two types: ♡ or ♢. Let ϵ ∈ [0, 1] be
such that ϵN is integer and ϵN ≤M . Put δ = ϵN

M . The evolution of the population is
described by a discrete-time Markov chain that undergoes four transitions per step:

(1) From the N active individuals, (1 − ϵ)N are selected uniformly at random
without replacement. Each of these individuals resamples, i.e. it adopts the
type of an active individual selected uniformly at random with replacement,
and remains active.

(2) Each of the ϵN active individuals not selected first resamples, it adopts the
type of an active individual selected uniformly at random with replacement,
and subsequently becomes dormant.

(3) From the M dormant individuals, δM = ϵN are selected uniformly at random
without replacement, and each of these becomes active. Since these individuals
come from the dormant population they do not resample.

(4) Each of (1−δ)M dormant individuals not selected remains dormant and retains
its type.

Note that the total sizes of the active and the dormant population remain fixed.
During the evolution the dormant and active population exchange individuals. We
are interested in the fractions of individuals of type ♡ in the active and the dormant
population. For an example of the evolution see Fig. 1.3.

Let c = ϵN = δM , i.e., c is the number of pairs of individuals that change state.
Label the N active individuals from 1 to N and the M dormant individuals from 1
up to M . We denote by [N ] = {1, . . . , N} and by [M ] = {1, . . . ,M}. Let
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A

ξ(k) = (ξj(k))j∈[N ] ∈ {0, 1}[N ] be the random vector where ξj(k) = 1 if the j’th
individual is of type ♡ at time k and ξj(k) = 0 if the j’th individual is of type ♢
at time k. Similarly, we let η(k) = (ηj(k))j∈[M ] ∈ {0, 1}[M ] be the random vector
where ηj(k) = 1 if the j’th individual is of type ♡ at time k and ηj(k) = 0 if the j’th
individual is of type ♢ at time k. Let IN = {0, 1

N ,
2
N ,

3
N . . . , 1} and

IM = {0, 1
M , 2

M , 3
M . . . , 1}. Define the variables

XN (k) =
1

N

∑
j∈[N ]

1{ξj(k)=♡} on IN ,

Y N (k) =
1

N

∑
j∈[N ]

1{ηj(k)=♡} on IM .

(A.1)

Let Px,y denote the law of

(XN , Y N ) = (XN (k), Y N (k))k∈N0 (A.2)

given that (XN (0), Y N (0)) = (x, y) ∈ IN × IM . Then, as shown in [12],

px,y(x̄, ȳ) = Px,y(XN
1 = x̄, Y N1 = ȳ)

=

c∑
c′=0

Px,y(Z = c′)Px,y(U = x̄N − c′)Px,y(V = ȳM − yM + c′).
(A.3)

Here, Z denotes the number of dormant ♡-individuals in generation 0 that become
active in generation 1 (Lx,y(Z) = HypM,c,yM ), U denotes the number of active in-
dividuals in generation 1 that are offspring of active ♡-individuals in generation 0
(Lx,y(U) = BinN−c,x), and V denotes the number of active individuals in generation
0 that become dormant ♡-individuals in generation 1 (Lx,y(V ) = Binc,x).

Speed up time by a factor N . The generator GN for the process

((XN (⌊Nk⌋), Y N (⌊Nk⌋))k∈N0 (A.4)

equals

(GNf)(x, y) = N Ex,y
[
f(XN (1), Y N (1))− f(x, y)

]
,

(x, y) ∈ IN × IM ,
(A.5)

where the prefactor N appears because one step of the Markov chain takes time 1
N .

Inserting the Taylor expansion for f (which we assume to be smooth), using that
XN (1) = U+Z

N and Y N (1) = yM+V−U
M and letting N → ∞, we end up with the

limiting generator G given by

(Gf)(x, y) = c(y − x)
∂f

∂x
(x, y) +

c

K
(x− y)

∂f

∂y
(x, y) + 1

2x(1− x)
∂2f

∂x2
(x, y),

(x, y) ∈ [0, 1]× [0, 1],

(A.6)

where K = M
N is the relative size of the dormant population compared to the active

population. This is the generator of the Markov process in the continuum limit [32,
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Section 7.8]. It follows from the form of G that this limit is described by the system
of coupled stochastic differential equations

dx(t) = c [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) =
c

K
[x(t)− y(t)] dt.

(A.7)

This is the version of (2.4)–(2.5) for a single colony (no migration) and exchange rate

e =
c

K
. (A.8)

Multi-colony model. First fix a number L ∈ N and consider |G| = L colonies.
The multi-colony version with migration is obtained by allowing the (1−ϵ)N selected
active individuals to undergo a migration in step (1):

(1) Each active individual at colony i ∈ G chooses colony j ∈ G with probability
1
N a(i, j) and adopts the type of a parent chosen from colony j. If an active
individual does not migrate, it adopts the type of a parent chosen from its own
population.

Using the same strategy as in the single-colony model, this results in (2.4)–(2.5), for
|G| = L. Subsequently we can let L→ ∞ and use convergence of generators to obtain
(2.4)–(2.5) for countable G.

Model 2. The same argument works for (2.12)–(2.13). Steps (1)-(4) are extended by
considering a seed-bank with colours labelled by N0. First we consider the truncation
where only finitely many colours are allowed, for which the argument carries through
with minor adaptations. Afterwards, we pass to the limit of infinitely many colours,
which is straightforward for a finite time horizon because large colours are only seen
after large times. See also [60].

Model 3. To get (2.18)–(2.19), also extend Step (3) by adding a displacement via
the kernel a†(·, ·) for each transition into the seed-bank.

§A.2 Alternative models

In this appendix we consider the Moran versions of models 1 and 2. What is written
below is based on [60]. In the Moran version each active individual resamples at rate
1 and becomes dormant at a certain rate, while each dormant individual does not
resample and becomes active at a certain rate. Since switches between active and
dormant are done independently, the sizes of the active and the dormant population
are no longer fixed and individuals change state without the necessity to exchange
state. In model 1 there are two Poisson clocks, in model 2 there are two sequences of
Poisson clocks, namely, two for each colour. In Appendices A.2.1–A.2.2 we compute
the scaling limit for the case where the number of colours is m = 1 and m = 2,
respectively. The extension to m ≥ 3 is given in Appendix A.2.3. Migration can be
added in the same way as is done in Appendix A.1.
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§A.2.1 Alternative for Model 1

To describe the Moran version of Model 1 we need the following variables.

� Total number of individuals: N ∈ N.

� Two types: ♡ and ♢.

� X(t) is the number of ♡-individuals in the active population at time t.

� Y (t) is the number of ♡-individuals in the dormant population at time t.

� Z(t) is the number of individuals in the active population at time t (either ♡
or ♢).

In the Moran model with seed-bank each active individual resamples at rate 1, each
active individual becomes dormant at rate ϵ and each dormant individual becomes
active at rate δ. Hence the transition rates for (X(t), Y (t), Z(t)) are:

� (i, j, k) → (i+ 1, j, k) at rate (k − i) ik .

� (i, j, k) → (i− 1, j, k) at rate i (k−i)k .

� (i, j, k) → (i− 1, j + 1, k − 1) at rate ϵi.

� (i, j, k) → (i+ 1, j − 1, k + 1) at rate δj.

� (i, j, k) → (i, j, k − 1) at rate ϵk−iN .

� (i, j, k) → (i, j, k + 1) at rate δN−k−j
N .

For the scaling limit we consider the variables

X̄(t) =
1

N
X(Nt), Ȳ (t) =

1

N
Y (Nt), Z̄(t) =

1

N
Z(Nt). (A.9)

Hence

(X̄(t), Ȳ (t), Z̄(t)) ∈ IN × IN × IN , IN =
{
0, 1

N ,
2
N , . . . ,

N−1
N , 1

}
. (A.10)

Since in (A.9) we speed up time by a factor N , we must also speed up the transition
rates by a factor N . To get a meaningful scaling limit, we assume that there exist
cA, cD ∈ (0,∞) such that (see [12, p. 8])

Nϵ = cA, Nδ = cD, N ∈ N. (A.11)
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We can then write down the generator GN :

(GNf)

(
i

N
,
j

N
,
k

N

)
= N(k − i)

i

k

[
f

(
i+ 1

N
,
j

N
,
k

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+Ni

k − i

k

[
f

(
i− 1

N
,
j

N
,
k

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cAi

[
f

(
i− 1

N
,
j + 1

N
,
k − 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cDj

[
f

(
i+ 1

N
,
j − 1

N
,
k + 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cA(k − i)

[
f

(
i

N
,
j

N
,
k − 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]
+ cD(N − k − j)

[
f

(
i

N
,
j

N
,
k + 1

N

)
− f

(
i

N
,
j

N
,
k

N

)]

(A.12)

Assuming that f is smooth and Taylor expanding f around
(
i
N ,

j
N ,

k
N

)
, we get

(GNf)

(
i

N
,
j

N
,
k

N

)
=

i(k − i)

k

[(
1

N

)
∂2f

∂x2
+O

((
1

N

)2
)]

+ cAi

[(
−1

N

)
∂f

∂x
+

(
1

N

)
∂f

∂y
+

(
−1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cDj

[(
1

N

)
∂f

∂x
+

(
−1

N

)
∂f

∂y
+

(
1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cA(k − i)

[(
−1

N

)
∂f

∂z
+O

((
1

N

)2
)]

+ cD(N − k − j)

[(
1

N

)
∂f

∂z
+O

((
1

N

)2
)]

.

(A.13)

Next, suppose that

lim
N→∞

i

N
= x, lim

N→∞

j

N
= y, lim

N→∞

k

N
= z. (A.14)

Letting N → ∞ in (A.13), we obtain the limiting generator G:

(Gf)(x, y, z) = z
x

z

(
1− x

z

)(∂2f
∂x2

)
+ [cD y − cA x]

∂f

∂x

+ [cA x− cD y]
∂f

∂y
+
[
cD (1− z)− cA z

]∂f
∂z
.

(A.15)

Therefore the continuum limit equals

dx(t) =

√
z(t)

x(t)

z(t)

(
1− x(t)

z(t)

)
dw(t) +

[
cD y(t)− cA x(t)

]
dt,

dy(t) =
[
cA x(t)− cD y(t)

]
dt,

dz(t) =
[
cD (1− z(t))− cA z(t)

]
dt.

(A.16)
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Since z(t) is the fraction of active individuals in the population, 1−z(t) is the fraction
of dormant individuals in the population. Therefore the equivalent of the parameter
K in Appendix A.1 is K(t) = (1 − z(t))/z(t). Moreover, x(t)/z(t) is the fraction of
♡-individuals in the active population at time t and y(t)/(1 − z(t)) is the fraction
of ♡-individuals in the dormant population at time t. The last line of (A.16) is an
autonomous differential equation whose solution converges to

z∗ =
1

1 + cA

cD

(A.17)

exponentially fast. After this transition period we can replace z(t) by z∗, and we see
that K∗ = cA/cD.

Time is to be scaled by the total number of active and dormant individuals, instead
of the total number of active individuals only:

x(t) =
number of active individuals of type ♡

total number of individuals
,

y(t) =
number of dormant individuals of type ♡

total number of individuals
.

(A.18)

To compare the Moran model with a 1-colour seed-bank with the Fisher-Wright model
with a 1-colour seed-bank, we look at the variables

x̄(t) =

(
1 +

cA

cD

)
x

(
t

1 + cA

cD

)
, ȳ(t) =

(
1 +

cA

cD

)(
cD

cA

)
y

(
t

1 + cA

cD

)
. (A.19)

After a short transition period in which z(t) tends to z∗, we see that by setting

K = K∗ =
cA

cD
, e =

cD

cA
cAcD

cA + cD
, (A.20)

we obtain
dx̄(t) =

√
x̄(t)(1− x̄(t)) dw(t) +Ke [ȳ(t)− x̄(t)] dt,

dȳ(t) = e [x̄(t)− ȳ(t)] dt,
(A.21)

which is the single-colony version of (2.4)–(2.5) but without migration. Migration
can be added in the same way as was done in Appendix A.1.

§A.2.2 Alternative for Model 2: Two colours

We consider the following system:

� Total number of individuals: N ∈ N.

� Two types: ♡ and ♢.

� X(t) is the number of ♡-individuals in the active population at time t.

� Y1(t) is the number of ♡-individuals of colour 1 in the dormant population at
time t.
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� Y2(t) is the number of ♡-individuals of colour 2 in the dormant population at
time t.

� ZD1(t) is the number of dormant individuals of colour 1 at time t (either ♡ or
♢).

� ZD2
(t) is the number of dormant individuals of colour 2 at time t. (either ♡ or

♢).

Note that the number of active individuals at time t (either ♡ or ♢) is given by
ZA(t) = N − ZD1

(t)− ZD2
(t). Since the number of individuals N is constant during

the evolution, ZA(t) can be derived from ZD1
(t) and ZD2

(t). Each active individual
resamples at rate 1, and becomes dormant at rate ϵ. When an individual becomes
dormant, it gets either colour 1 with probability p1 or colour 2 with probability p2,
where p1, p2 ∈ (0, 1) and p1 + p2 = 1. For ease of notation, we denote the rate to
become dormant with colour 1 by ϵ1 = ϵ · p1 and the rate to become dormant with
colour 2 by ϵ2 = ϵ · p2. A dormant individual with colour 1 becomes active at rate δ1,
a dormant individual with colour 2 becomes active at rate δ2. Thus, the transition
rates for (X(t), Y1(t), Y2(t), ZD1

(t), ZD2
(t)) are:

� (i, j, k, l,m) → (i+ 1, j, k, l,m) at rate (N − l −m− i) i
N−l−m .

� (i, j, k, l,m) → (i− 1, j, k, l,m) at rate i (N−l−m−i)
N−l−m .

� (i, j, k, l,m) → (i− 1, j + 1, k, l + 1,m) at rate ϵ1i.

� (i, j, k, l,m) → (i+ 1, j − 1, k, l − 1,m) at rate δ1j.

� (i, j, k, l,m) → (i− 1, j, k + 1, l,m+ 1) at rate ϵ2i.

� (i, j, k, l,m) → (i+ 1, j, k − 1, l,m− 1) at rate δ2k.

� (i, j, k, l,m) → (i, j, k, l + 1,m) at rate ϵ1(N − l −m− i).

� (i, j, k, l,m) → (i, j, k, l,m+ 1) at rate ϵ2(N − l −m− i).

� (i, j, k, l,m) → (i, j, k, l − 1,m) at rate δ1(l − j).

� (i, j, k, l,m) → (i, j, k, l,m− 1) at rate δ2(m− k).

Proceeding in the same way as for the 1-colour seed-bank, we define the scaled vari-
ables

X̄(t) =
1

N
X(Nt), Ȳ1(t) =

1

N
Y1(Nt), Ȳ2(t) =

1

N
Y2(Nt),

Z̄D1(t) =
1

N
ZD1(Nt), Z̄D2(t) =

1

N
ZD1(Nt).

(A.22)

We assume that there exist cA1 , c
A
2 , c

D
1 , c

D
2 ∈ (0,∞) such that

Nϵ1 = cA1 , Nϵ2 = cA2 , Nδ1 = cD1 , Nδ2 = cD2 , N ∈ N, (A.23)
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and further assume that

lim
N→∞

i

N
= x, lim

N→∞

j

N
= y1, lim

N→∞

k

N
= y2,

lim
N→∞

N − l −m

N
= zA lim

N→∞

N − l −m

N
= zD2

, lim
N→∞

N − l −m

N
= zD1

.

(A.24)

Using the same method of converging generators as for model 1, we obtain the fol-
lowing continuum limit:

dx(t) =

√
zA(t)

zA − x(t)

zA(t)

x(t)

zA(t)
dw(t)

+
[
cD1 y1(t)− cA1 x(t)

]
dt+

[
cD2 y2(t)− cA2 x(t)

]
dt,

dy1(t) =
[
cA1 x(t)− cD1 y1(t)

]
dt,

dy2(t) =
[
cA2 x(t)− cD2 y2(t)

]
dt,

dzA(t) =
[
cD1 zD1(t)− cA1 zA(t) + cD2 zD2(t)− cA2 zA(t)

]
dt,

dzD1
(t) =

[
cA1 zA(t)− cD1 zD1

(t)
]
dt,

dzD2
(t) =

[
cA2 zA(t)− cD2 zD2

(t)
]
dt.

(A.25)

Note that the equation for zA(t) = 1 − zD1(t) − zD2(t) follows directly from the
equations from zD1

(t) and zD2
(t). It is therefore redundant, but we use it for nota-

tional reasons. Again, we see that z(t) = (zA(t), zD1
(t), zD2

(t)) is governed by an
autonomous system of differential equations. Solving this system, we see that

lim
t→∞

zA(t) =
1

1 +
cA1
cD1

+
cA2
cD2

, lim
t→∞

zD1
(t) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

, lim
t→∞

zD2
(t)) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

.

(A.26)

To compare the Moran model with a 2-colour seed-bank with the Fisher-Wright
model with a 2-colour seed-bank, we look at the variables

x̄(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)
x

 t

1 +
cA1
cD1

+
cA2
cD2

 ,

ȳ1(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD1
cA1

)
y1

 t

1 +
cA1
cD1

+
cA2
cD2

 ,

ȳ2(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD2
cA2

)
y2

 t

1 +
cA1
cD1

+
cA2
cD2

 .

(A.27)

Defining

Km =
cAm
cDm

, em =
cDm

1 +
cA1
cD1

+
cA2
cD2

, m ∈ {1, 2}, (A.28)
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we see that, after a short transition period, the system becomes

dx̄(t) =
√
x̄(t)(1− x̄(t)) dw(t) +K1e1 [ȳ2(t)− x̄(t)] dt+K2e2 [ȳ1(t)− x̄(t)] dt,

dȳ1(t) = e1 [x̄(t)− ȳ1(t)] dt,

dȳ2(t) = e2 [x̄(t)− ȳ2(t)] dt,
(A.29)

which is the single-colony version of (2.12)–(2.13) with 2 colours and without migra-
tion. Note, in particular, that after z(t) reaches the equilibrium point in (A.26), we
have

Km =
number of dormant individuals with colour m

number of active individuals
, m ∈ {1, 2}. (A.30)

It is instructive to show how the above result can also be derived with the help of
duality. The argument that follows easily extends to an n-coloured seed-bank for any
n ∈ N finite, to be considered in Appendix A.2.3. Recall from (A.25) that

dzA(t) =
[
cD1 zD1

(t)− cA1 zA(t) + cD2 zD2
(t)− cA2 zA(t)

]
dt,

dzD1(t) =
[
cA1 zA(t)− cD1 zD1(t)

]
dt,

dzD2
(t) =

[
cA2 zA(t)− cD2 zD2

(t)
]
dt.

(A.31)

Let

z̄A(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)
zA(t),

z̄D1(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD1
cA1

)
zD1(t),

z̄D2
(t) =

(
1 +

cA1
cD1

+
cA2
cD2

)(
cD2
cA2

)
zD2

(t).

(A.32)

Substitute (A.32) into (A.31), to obtain

dz̄A(t) = cA1 [z̄D1(t)− z̄A(t)] + cA2 [z̄D2(t)− z̄A(t)] dt,

dz̄D1
(t) = cD1 [z̄A(t)− z̄D1

(t)] dt,

dz̄D2
(t) = cD2 [z̄A(t)− z̄D2

(t)] dt.

(A.33)

To define a dual for the process (z̄A(t), z̄D1(t), z̄D2(t)))t≥0, let (M(t))t≥0 be the
continuous-time Markov chain on {A,D1, D2} with transition rates

A→ Dm at rate cAm, m ∈ {1, 2},
Dm → A at rate cDm, m ∈ {1, 2}.

(A.34)

Consider l independent copies of (M(t))t≥0, evolving on the same state space {A,D1, D2}.
Let (L(t))t≥0 = (LA(t), LD1(t), LD2(t))t≥0 be the process that counts how many cop-
ies of M(t) are on site {A}, {D1} and {D2} at time t. Let l = m + n1 + n2. Then
(L(t))t≥0 is the Markov process on N3

0 with transition rates

(m,n1, n2) →


(m− 1, n1 + 1, n2) at rate mcA1 ,

(m− 1, n1, n2 + 1) at rate mcA2 ,

(m+ 1, n1 − 1, n2) at rate n1c
D
1 ,

(m+ 1, n1, n2 − 1) at rate n2c
D
2 .

. (A.35)
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Note that LA(t) + LD1
(t) + LD2

(t) = LA(0) + LD1
(0) + LD2

(0) = m + n1 + n2 = l.
Define H : R3 × N3

0 → R by

H((z̄A, z̄D1 , z̄D2), (m,n1, n2)) := z̄mA z̄
n1

D1
z̄n2

D2
(A.36)

Using the generator criterion [48, Proposition 1.2], we see that, for all t ≥ 0,

E [H((z̄A(t), z̄D1
(t), z̄D2

(t)), (m(0), n1(0), n2(0)))]

= E [H((z̄A(0), z̄D1
(0), z̄D2

(0)), (m(t), n1(t), n2(t)))] .
(A.37)

Therefore (L(t))t≥0 and (z̄(t))t≥0 are dual to each other with duality function H.
Since (M(t))t≥0 is a irreducible and recurrent, we can define

πA = lim
t→∞

P(M(t) = A) =
1

1 +
cA1
cD1

+
cA2
cD2

,

πD1
= lim
t→∞

P(M(t) = D1) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

,

πD2
= lim
t→∞

P(M(t) = D2) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

.

(A.38)

Using the duality relation in (A.37) together with (A.38) and (A.32), we find

lim
t→∞

E[z̄A(t)] = πAz̄A(0) + πD1 z̄D1(0) + πD2 z̄D2(0)

=
1

1 +
cA1
cD1

+
cA2
cD2

z̄A(0) +

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

z̄D1
(0) +

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

z̄D2
(0)

= zA(0) + zD1
(0) + zD2

(0) = 1.
(A.39)

Using the duality relation in(A.37) once more, we get

lim
t→∞

E[z̄A(t)] = lim
t→∞

E[z̄D1
(t)] = lim

t→∞
E[z̄D2

(t)] = 1. (A.40)

Computing the limiting second moment limt→∞ E[z̄A(t)2] by duality, we obtain

lim
t→∞

E[z̄A(t)2] = lim
t→∞

∑
i,j∈

{A,D1,D2}

P(M1
t = i) z̄i(0)P(M2

t = j) z̄j(0)

=
∑

i∈{A,D1,D2}

πiz̄i(0)
∑

j∈{A,D1,D2}

πj z̄j(0) = 1.

(A.41)

Similarly, we find limt→∞ E[z̄D1
(t)2] = 1 and limt→∞ E[z̄D2

(t)2] = 1. Combining
(A.40) and (A.41), we find

lim
t→∞

z̄A(t) = lim
t→∞

z̄D1
(t) = lim

t→∞
z̄D2

(t) = 1. (A.42)
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Hence we conclude that

lim
t→∞

zA(t) =
1

1 +
cA1
cD1

+
cA2
cD2

, lim
t→∞

zD1
(t) =

cA1
cD1

1 +
cA1
cD1

+
cA2
cD2

, lim
t→∞

zD2
(t) =

cA2
cD2

1 +
cA1
cD1

+
cA2
cD2

.

(A.43)
Continuing as in (A.27), we again find the single-colony version of (2.12)-(2.13) with
2 colours and no migration.

§A.2.3 Alternative for Model 2: Three or more col-
ours

The argument in Appendix A.2.2 can be extended to an m ∈ N-colour seed-bank, by
introducing sequences of variables (Ym(t))mm=0 and (Zm(t))mm=0 that count the number
of ♡-individuals in the colour-m seed-bank at time t, respectively, the total number of
individuals in the colour-m seed-bank at time t. Let ϵ > 0 be the total rate at which
an active individual becomes dormant, and define a probability vector (pm)mm=0 such
that ϵm = ϵpm is the rate at which an active individual becomes dormant with colour
m. Let δm be the rate at which m-dormant individuals become active. Via the same
line of argument as in Appendix A.2.2, we see that the equivalent of (A.25) reads

dx(t) =

√
zA(t)

zA − x(t)

zA(t)

x(t)

zA(t)
dw(t) +

m∑
m=0

[
cDmym(t)− cAmx(t)

]
dt,

dym(t) =
[
cAmx(t)− cDmym(t)

]
dt,

dzA(t) =

m∑
m=0

[
cDmzDm

(t)− cAmzA(t)
]
dt,

dzDm(t) =
[
cAmzA(t)− cDmzDm(t)

]
dt, 0 ≤ m ≤ N.

(A.44)

Solving the autonomous system describing z(t) = (zA(t), (zDm
(t))Nm=0) via duality,

and subsequently substituting into (A.44) the variables

x̄(t) =

(
1 +

m∑
n=0

cAn
cDn

)
x

 t

1 +
∑m
n=0

cAn
cDn

 ,

ȳm(t) =

(
1 +

m∑
n=0

cAn
cDn

)(
cDm
cAm

)
ym

 t

1 +
∑m
n=0

cAn
cDn

 , 0 ≤ m ≤ N,

(A.45)

we find the single-colony version of (2.12)–(2.13) with N -colours and no migration.
Migration can be added as in Appendix A.1.

It is straightforward to derive the version (2.12)–(2.13) with N -colours and M
colonies. Afterwards we can let N,M → ∞ and use convergence of generators, to
find (2.12)–(2.13). The limit is unproblematic because we are interested in finite time
horizons only.
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§A.3 Successful coupling

To prove Lemma 3.2.11 we proceed as in [14], with minor adaptations. The notation
used in this appendix is the same as in Section 3.2.3. For model 1 we write down the
full proof. The proof holds works for model 2 and 3 by invoking the colours m ∈ N0

and the SSDE in (2.12)–(2.13), respectively, (2.18)–(2.19).

Proof of Lemma 3.2.11. The proof consists of 5 steps.

Step 1. If z ∈ E with xi = 0 and xk > 0 for some k ̸= i, then

Pz (∃ t∗ > 0 such that xi(t) = 0 ∀ t ∈ [0, t∗]) = 0. (A.46)

Proof. Suppose that z is such that xi = 0, but xk > 0 for some i, k ∈ G. By (2.4),

xi(t) =

∫ t

0

∑
j∈G

a(i, j)[xj(s)−xi(s)] ds+
∫ t

0

Ke[yi(s)−xi(s)] ds+
∫ t

0

√
g(xi(s)) dwi(s).

(A.47)
Suppose that there exists a T > 0 such that xi(t) = 0 for all t ∈ [0, T ], and therefore
g(xi(t)) = 0. Then we obtain for all t ∈ [0, T ] that∫ t

0

∑
j∈G

a(i, j)xj(s) ds+

∫ t

0

Keyi(s) ds = 0. (A.48)

Hence, by path continuity of (Z(t))t≥0, we see that yi(t) = 0 for all t ∈ [0, T ], as
well as xj(t) = 0 for all j ∈ G such that a(i, j) > 0. Repeating this argument, we
obtain by irreducibility of a(·, ·) that xk(t) = 0 for all k ∈ G and hence yk(t) = 0 for
all k ∈ G. By path continuity, this contradicts the assumption that xk(0) > 0. We
conclude that (A.46) holds. □

Step 2. If z̄ ∈ E × E and g(x1i ) ̸= g(x2i ), then for all j,

P̂z̄ (∃ t∗ > 0 such that ∆j(t) = 0 ∀ t ∈ [0, t∗]) = 0. (A.49)

Proof. Note that the SSDE in (2.4)–(2.5) can be rewritten as

dz(i,Ri)(t) =
∑

(j,Rj)∈G×{A,D}

b(1)((i, Ri), (j, Rj))[z(j,Rj)(t)− z(i,Ri)(t)] dt

+
√
g(z(i,Ri)(t)) 1{Ri=A} dwi(t),

∀ (i, Ri) ∈ G× {A,D},

(A.50)

with b(1)(·, ·) defined as in (2.31).
Suppose that z̄ is such that g(x1i ) ̸= g(x2i ). Suppose there exist a T > 0 such that

∆j(t) = 0 for all t ∈ [0, T ]. Then also
√
g(x1j (t)) −

√
g(x2j (t)) = 0 for all t ∈ [0, T ].
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Using (A.50) on ∆j(t) = z1(j,A)(t)− z2(j,A)(t), we obtain

0 =

∫ t

0

∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))

×
[(
z1(k,Rk)

(s)− z2(k,Rk)
(s)
)
−
(
z1(j,Rj)

(s)− z2(j,Rj)
(s)
)]

ds.

(A.51)

Hence∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
[(
z1(k,Rk)

(t)− z2(k,Rk)
(t)
)
−
(
z1(j,Rj)

(t)− z2(j,Rj)
(t)
)]

= 0 ∀ t ∈ [0, T ].
(A.52)

Using (A.50), we can write the SDE for∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
[(
z1(j,Rj)

(t)− z2(j,Rj)
(t)
)
−
(
z1(i,Ri)

(t)− z2(i,Ri)
(t)
)]
,

(A.53)
which yields that, for all t ∈ [0, T ],

−
∫ t

0

∑
(k,Rk)∈G×{A,D}

b(1)((j, A), (k,Rk))
(√

g(z1k,Rk
(s))−

√
g(z2k,Rk

(s))
)
1{Rk=A} dwk(s)

=

∫ t

0

∑
(k,Rk)∈G×{A,D}

b(1),2((j, A), (l, Rl))

×
[(
z1(j,Rj)

(s)− z2(j,Rj)
(s)
)
−
(
z1(i,Ri)

(s)− z2(i,Ri)
(s)
)]

ds,

(A.54)
where b(1),2(·, ·) is the 2-step kernel of b(1)(·, ·).

The two process in the right-hand side form a process of bounded variation, while
the process in the left-hand side is a continuous square-integrable martingale, whose
quadratic variation is given by∫ t

0

∑
k∈G

a(j, k)2
(√

g(x1k(s))−
√
g(x2k(s))

)2

ds. (A.55)

Since a square-integrable martingale of bounded variation is constant, it follows that
(A.55) equals 0. Hence, for all k such that a(j, k) > 0, it follows that g(x1k(t)) =
g(x2k(t)) for all t ∈ [0, T ]. Moreover, the right-hand side of (A.54) is equal to 0.
Iterating the right-hand side of (A.54) further, we find by the irreducibility of a(·, ·)
that g(x1i (t)) = g(x2i (t)) for all t ∈ [0, T ], which contradicts the assumption on z̄ that
g(x1i (0)) ̸= g(x2i (0)). Hence we find that there does not exist a T > 0 such that
∆j(t) = 0 for all t ∈ [0, T ]. □

Step 3. If z̄ ∈ E×E, i, k ∈ G and g(x1i ) = g(x2i ) with ∆i < 0 and ∆k > 0 for some
k ̸= i, then

P̂z̄
(
∃ t∗ ∈ [0, 12 ] : ∆i(t

∗) < 0, ∆k(t
∗) > 0, g(x1i (t

∗)) ̸= g(x2i (t
∗))
)
> 0. (A.56)
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Proof. Note that by assumption we have x1i < 1 and x1k > 0. Let t0 ∈ [0, 14 ]. If x
1
i > 0,

then set t0 = 0. Otherwise, by Step 1 and path continuity, we find with probability 1
a t0 ∈ [0, 14 ] such that x1i (t0) > 0, ∆i(t0) < 0 and ∆k(t0) > 0. Let z̃ = z̄(t0). By the
existence of t0 and the Markov property, it is enough to prove that

P̂z̃
(
∃ t∗ ∈ [0, 14 ] : ∆i(t

∗) < 0, ∆k(t
∗) > 0, g(x1i (t

∗)) ̸= g(x2i (t
∗))
)
> 0 (A.57)

in order to prove (A.56). Define the following two martingales:

Mi(t) =

∫ t

0

√
g(x1i (s)) dwi(s), (A.58)

Mk(t) =

∫ t

0

(√
g(x1k(s))−

√
2g(x2k(s))

)
dwk(s). (A.59)

Their corresponding quadratic variation processes are given by

⟨Mi(t)⟩ =

∫ t

0

g(xi(s)) ds, (A.60)

⟨Mk(t)⟩ =

∫ t

0

(√
g(x1k(s))−

√
2g(x2k(s))

)2

ds. (A.61)

By Knight’s theorem (see [62, Theorem V.1.9 p.183]), we can write Mi(t) and Mk(t)
as time-transformed Brownian motions:

Mi(t) = wi (⟨Mi(t)⟩) , (A.62)

Mk(t) = wk (⟨Mk(t)⟩) . (A.63)

We may assume that g(x̃1i ) = g(x̃2i ), otherwise we can set t∗ = 0. Recall that 0 <
x̃1i < 1, ∆̃i < 0 and ∆̃k > 0, and, since 0 < g(x̃1i ) = g(x̃2i ), also x̃

2
i < 1. Choose an

ϵ ∈ (0, 1
15 ) such that x̃1i , x̃

2
i ∈ [5ϵ, 1 − 5ϵ], −∆̃i > 5ϵ and ∆̃k > 5ϵ. Let ξ ∈ (0, ϵ) be

such that g(ξ) < min{g(u) : ϵ ≤ u ≤ 1 − ϵ}, and set c1 = min{g(u) : ξ ≤ u ≤ 1 − ξ}
and c2 = ∥g∥. Then we can make the following estimates:

⟨Mi(t)⟩ ≤ c2t ⟨Mk(t)⟩ ≤ c2t, t ≥ 0, (A.64)

⟨Mi(t)⟩ ≥ c1t for t ≥ 0 such that xi(s) ∈ [ξ, 1− ξ] ∀ s ∈ [0, t]. (A.65)

Define c3 = min{ ξ
2Ke ,

ξ
2}. Fix T ∈ [0, c3] and define

Ω0 =

{
min

t∈[0,c1T ]
wi(t) < −1, max

t∈[0,c2T ]
wi(t) < ϵ, max

t∈[0,c2T ]
|wk(t)| < ϵ

}
,

Ω1 =
{
∃t∗ ∈ [0, 1] such that ∆i(t

∗) < 0, ∆k(t
∗) > 0, g(x1i (t

∗)) = g(x2i (t
∗))
}
.

(A.66)
Note that P(Ω0) > 0. Therefore it suffices that Ω0 ⊂ Ω1.

We start by checking the conditions ∆k. Using (2.4), we can write

∆k(t) = ∆k(0) +

∫ t

0

∑
l∈G

a(k, l)(∆l(s)−∆k(s)) ds+

∫ t

0

Ke [δk(s)−∆k(s) ds]

+

∫ t

0

(√
g(x1k(s))−

√
2g(x2k(s))

)2

dwk(s).

(A.67)

122



§A.3. Successful coupling

A
p
p
e
n
d
ix

A

Since |∆l(t)| ≤ 1, |δk(t)| ≤ 1 for all t ≥ 0, and Mk(t) = wk(⟨Mk(t)⟩) for t ∈ [0, T ], we
may estimate

∆k(t) > 5ϵ− 2c3 − 2Kec3 − ϵ = 2ϵ. (A.68)

So, on Ω0, ∆k(t) > 0 for all t ∈ [0, T ]. By expanding x1i (t), we find

x1i (t) = x1i (0) +

∫ t

0

∑
l∈G

a(i, l)(x1l (s)− x1i (s)) ds+

∫ t

0

Ke(y1i (s)− x1i (s)) ds+Mi(t),

(A.69)
so that on Ω0 we have, for t ∈ [0, T ],

x1i (t) < 1− 10ϵ+ c3 +Kec3 + ϵ = 1− 8ϵ. (A.70)

To check the conditions on x1i (t) and ∆i(t), we define the following random times:

σ = inf{t ≥ 0 : x1i (t) = ξ},
τ = inf

{
t > 0: g(x1i (t)) ̸= g(x2i (t))

}
.

(A.71)

We will prove that, on Ω0, we have σ < τ and x2i (τ) ≥ x1i (τ) + 3ϵ. To do so, we
first prove that σ < T . Assume the contrary σ ≥ T . Then by (A.70) we have
x1i (t) ∈ [ξ, 1 − ξ] for all t ∈ [0, T ], which implies that min[0,T ]Mi(t) < −1. Hence
there exists a κ such that, by (A.69),

x1i (κ) < 1− 10ϵ+ ϵ− 1 < 0. (A.72)

However, this contradicts the fact that x1i > 0 for all t ≥ 0. We conclude that σ < T .
Now suppose that τ > σ. Expanding ∆i, we get, for t < τ ,

∆i(t) = ∆i(0) +

∫ t

0

∑
l∈G

a(i, l)(∆l(s)−∆i(s)) ds+

∫ t

0

Ke[δi(s)−∆i(s)] ds, (A.73)

which can be rewritten as

x2i (t) = x1i (t)−x1i (0)+x2i (0)−
∫ t

0

∑
l∈G

a(i, l)[∆l(s)−∆i(s)] ds−
∫ t

0

Ke[δi(s)−∆i(s)] ds.

(A.74)
By (A.74), we obtain, for t ∈ [0, σ],

x2i (t) ≤ 1− 5ϵ+ 2ϵ+ 2ϵ = 1− ϵ,

x2i (t) ≥ x1i (t) + 5ϵ− 2ϵ ≥ 3ϵ,
(A.75)

so x2i (t) ∈ [ϵ, 1 − ϵ] for t ∈ [0, σ]. But then g(x1i (σ)) = g(ξ) < g(x2i (t)) by the
definition of ξ. Hence we obtain a contradiction and conclude that τ ≤ σ. From
(A.75) we obtain that ∆i(t) < 0 for all t ∈ [0, τ ], which concludes the proof that
Ω0 ⊂ Ω1. □
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Step 4. If z̄ ∈ E × E and ∆i < 0,∆j = 0, ∆k > 0 for some i, j, k, then

P̂z̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) ̸= 0,∆k(t
∗) > 0) > 0. (A.76)

Proof. Suppose that z̄ satisfies ∆i < 0, ∆j = 0, ∆k > 0. Define

Γ0 = {z̄ ∈ E × E : ∆i < 0,∆j ̸= 0,∆k > 0},
Γ1 = {z̄ ∈ E × E : ∆i < 0, g(x1i ) ̸= g(x2i ), ∆k > 0}.

(A.77)

By Step 3 and path continuity, there exists a T ∈ [0, 12 ] such that Pz̄ (z̄(T ) ∈ Γ1) > 0.
By the Markov property,

P̂z̃
(
∃ t∗ ∈ [0, 1] : z̄(t∗) ∈ Γ0

)
≥
∫
Γ1

P̂z̄(z̄(T ) ∈ dz̃) P̂z̃
(
∃t∗ ∈ [0, 12 ] : z̄(t

∗) ∈ Γ0

)
.(A.78)

By path continuity, we can find for z̄ ∈ Γ1 a t′ such that, for all t ≤ t′, ∆i(t) < 0,
∆k(t) > 0 and g(x1i (t)) ̸= g(x2i (t)). By Step 2 there exists a t∗ < t′ such that
z̄(t∗) ∈ Γ0. Hence both probabilities in the integral on the right-hand side of (A.78)
are positive. □

Step 5. Proof of Lemma 3.2.11.

Proof. Suppose that (3.147) holds for the pair i, j, and a(j, k) > 0, but (3.147) fails
for the pair i, k. This implies that there exist ϵ0 > 0, δ0 > 0 and a positive increasing
sequence (tn)n∈N of times with tn → ∞, such that

lim
t→∞

P̂z̄ ({∆i(t) < ϵ0,∆k(t) > ϵ0} ∪ {∆i(t) > ϵ0,∆k(t) < ϵ0}) > δ0. (A.79)

By compactness of E×E, there exists a subsequence tnk
such that L(z̄(tnk

)) converges
and (A.79) holds. Let ν̄ = limk→∞ L(z̄(tnk

)). Then

ν̄ ({∆i < ϵ0,∆j > ϵ0} ∪ {∆i > ϵ0,∆j < ϵ0}) = 0,

ν̄ ({∆j < ϵ0,∆k > ϵ0} ∪ {∆j > ϵ0,∆k < ϵ0}) = 0,

ν̄ ({∆i < ϵ0,∆k > ϵ0} ∪ {∆i > ϵ0,∆k < ϵ0}) > δ0.

(A.80)

Assume without loss of generality that ν̄ ({∆i < ϵ0,∆k > ϵ0}) > 0. Hence, by (A.80),

ν̄ ({∆i < ϵ0,∆k > ϵ0}) = ν̄ ({∆i < ϵ0,∆j ∈ (−ϵ0, ϵ0),∆k > ϵ0}) > 0. (A.81)

For each z̄ ∈ {∆i < ϵ0,∆j ∈ (−ϵ0, ϵ0),∆k > ϵ0}, Step 4 implies that

P̂z̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) ̸= 0,∆k(t
∗) > 0) > 0, (A.82)

and therefore, by (A.81),

P̂ν̄ (∃ t∗ ∈ [0, 1] : ∆i(t
∗) < 0,∆j(t

∗) ̸= 0,∆k(t
∗) > 0) > 0. (A.83)

By path continuity, we can find T ∈ [0, 1] and ϵ > 0 such that

P̂ν̄ (∆i(T ) < −ϵ, |∆j(T )| , ∆k(T ) > ϵ) > 0. (A.84)
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Let µ̄(tn) = L(z̄(tn)). Then, by the Markov property and (A.84),

lim inf
n→∞

P̂µ̄(tn) (∆i(T ) < −ϵ, |∆j(T )| > ϵ, ∆k(T ) > ϵ)

= lim inf
n→∞

P̂µ̄(0) (∆i(T + tn) < −ϵ, |∆j(T + tn)| > ϵ, ∆k(T + tn) > ϵ) > 0.
(A.85)

However, this violates (3.147) for either i, j or j, k. We conclude that (A.79) fails and
that (A.79) holds for i, k. By irreducibility, (A.79) holds for all i, k ∈ G. □

§A.4 Bounded derivative of Lyapunov function

Recall from Section 3.2.3 that

h(t) = 2
∑
j∈G

a(i, j) Ê
[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]
+ 2Ke Ê

[(
|∆i(t)|+ |δi(t)|

)
1{sgn∆i(t) ̸=sgn δi(t)}

]
.

(A.86)

In this section we show that h′(t) exists for all t > 0 and is bounded. To do so, we
need to get rid of the indicator in the expectations.

Let
h1,j(t) = Ê

[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]
(A.87)

and
h2(t) = 2Ke Ê

[(
|∆i(t)|+ |δi(t)|

)
1{sgn∆i(t) ̸=sgn δi(t)}

]
. (A.88)

Then h(t) = 2
∑
j∈G a(i, j)h1,j(t) + h2(t). We show that h1,j(t) is differentiable with

bounded derivative for j ∈ G. The proof of the differentiability of h2(t) is similar.
Fix t ≥ 0. Note that

Ê
[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]
= Ê

[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)} | |∆i(t)| ≠ 0, |∆i(t)| ≠ 0

]
P (|∆i(t)| ≠ 0, |∆j(t)| ≠ 0)

+ Ê
[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)} | |∆i(t)| = 0 or |∆j(t)| = 0

]
× P (|∆i(t)| = 0 or |∆j(t)| = 0) .

(A.89)
Since ∆i(t) and ∆j(t) have zero local time, the second term vanishes and
P(|∆i(t)| ≠ 0, |∆j(t)| ≠ 0) = 1. By continuity of ∆i(t) and ∆j(t), we can define sets

Bn =
{
|∆i(r)| > 0 and |∆j(r)| > 0,∀r ∈ B(t, 1

n )
}
. (A.90)

Then
· · · ⊂ Bn ⊂ Bn+1 ⊂ Bn+2 ⊂ · · · , (A.91)

so

Bn =

n⋃
i=0

Bi (A.92)

and we define

B :=

∞⋃
i=0

Bn = lim
n→∞

Bn. (A.93)
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Since P(|∆i(t)| ≠ 0, |∆j(t)| ≠ 0) = 1, it follows that P(B) = 1.
For each Bn, we have

Bn = Cn ∪ Ccn, Cn =
{
ω ∈ Bn : 1{sgn∆i(r) ̸=sgn∆j(r)} = 1, ∀r ∈ B(t, 1

n )
}
,

(A.94)
and, by the definition of Bn,

· · · ⊂ Cn ⊂ Cn+1 ⊂ Cn+2 ⊂ · · · · · · ⊂ Ccn ⊂ Ccn+1 ⊂ Ccn+2 ⊂ · · · (A.95)

Let C =
⋃∞
i=0 Ci and Cc =

⋃∞
i=0 C

c
i be such that B = C ∪ Cc. Using (3.136), we

obtain

1

s
(h1,j(t+ s)− h1,j(t))

=
1

s

[
Ê
[
|∆j(t)| 1{sgn∆i(t+s) ̸=sgn∆j(t+s)}

]
− Ê

[
|∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

]]
=

1

s

[
Ê

[
|∆j(t+ s)| 1{sgn∆i(t+s) ̸=sgn∆j(t+s)} − |∆j(t)| 1{sgn∆i(t) ̸=sgn∆j(t)}

∣∣∣∣∣B
]]

=
1

s

[
Ê

[
|∆j(t+ s)| − |∆j(t)|

∣∣∣∣∣C
]]

P(C)

=
1

s
Ê

∑
j∈G

a(i, j)

∫ t+s

t

sgn (∆i(r))[∆j(r)−∆i(r)] dr

∣∣∣∣∣C
 P(C)

+
1

s
Ê

[∫ t+s

t

sgn (∆i(r))

[√
g(x1i (r))−

√
g(x2i (r))

]
dwi(r)

∣∣∣∣∣C
]
P(C)

+
1

s
Ê

[
Ke

∫ t+s

t

sgn (∆i(r))
[
δi(r)−∆i(r)

]
dr

∣∣∣∣∣C
]
P(C)

=
∑
j∈G

a(i, j)Ê

[
1

s

∫ t+s

t

sgn (∆i(r))[∆j(r)−∆i(r)] dr

∣∣∣∣∣C
]
P(C)

+
1

s
Ê

[∫ t+s

t

sgn (∆i(r))

[√
g(x1i (r))−

√
g(x2i (r))

]
dwi(r)

∣∣∣∣∣C
]
P(C)

+ Ê

[
Ke

1

s

∫ t+s

t

sgn (∆i(r))
[
δi(r)−∆i(r)

]
dr

∣∣∣∣∣C
]
P(C).

(A.96)
In the last equality, the first and third term are bounded, because ∆i(t), δi(t) and
∆j(t) are continuous functions of t, and sgn (∆i) is constant since we conditioned
on the set C. Therefore, letting s → 0, it follows from the fundamental theorem of
calculus that these terms are bounded. The second term is more involved. Since, on
the set C,

sgn (∆i(r))

[√
g(x1i (r))−

√
g(x2i (r))

]
(A.97)

is a continuous function, we can rewrite the stochastic integral as a time-transformed
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Brownian motion:

1

s
Ê

[∫ t+s

t

sgn (∆i(r))

[√
g(x1i (r))−

√
g(x2i (r))

]
dwi(r)

∣∣∣∣∣C
]

=
1

s
Ê

[
W

(∫ t+s

0

[√
g(x1i (r))−

√
g(x2i (r))

]2
dr

)

−W

(∫ t

0

[√
g(x1i (r))−

√
g(x2i (r))

]2
dr

)∣∣∣∣∣C
]
.

(A.98)

Since the normal distribution is differentiable with respect to its variance, we are
done.
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PART II

SPATIAL POPULATIONS WITH
SEED-BANK ON THE

HIERARCHICAL GROUP

This part is based on:
A. Greven, F. den Hollander, and M. Oomen. Spatial populations with seed-bank:
renormalisation on the hierarchical group. Preprint, 2021
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CHAPTER 4
Models and main results

§4.1 Background, goals and outline

§4.1.1 Background

Single colony with seed-bank. In populations with a seed-bank, individuals can
temporarily become dormant and refrain from reproduction, until they can become
active again. In [10] and [12] the evolution of a population evolving according to
the two-type Fisher-Wright model with seed-bank was studied. Individuals move in
and out of the seed-bank at prescribed rates. Outside the seed-bank individuals are
subject to resampling, while inside the seed-bank their resampling is suspended. Both
the long-time behaviour and the genealogy of the population were analysed in detail.

Seed-banks are observed in many taxa, including plants, bacteria and other micro-
organisms. Typically, they arise as a response to unfavourable environmental condi-
tions. The dormant state of an individual is characterised by low metabolic activ-
ity and interruption of phenotypic development (see e.g. [55]). After a varying and
possibly large number of generations, a dormant individual can be resuscitated un-
der more favourable conditions and reprise reproduction after having become active
again. This strategy is known to have important implications for population per-
sistence, maintenance of genetic variability and stability of ecosystems. It acts as a
buffer against evolutionary forces such as genetic drift, selection and environmental
variability.

Multiple colonies with seed-bank. In [43] we considered a spatial version of
the two-type Fisher-Wright model with seed-bank in which individuals can migrate
between colonies, organised into a geographic space, each having a seed-bank consisting
of multiple layers, each with their own rate of moving in (becoming dormant) and
moving out (waking up). We found that the presence of the seed-bank enhances
genetic diversity compared to the spatial model without seed-bank. Interestingly,
we found that the seed-bank can affect the longtime behaviour of the system both
qualitatively and quantitatively.

In [43] we settled existence and uniqueness of the spatial model when the geo-
graphic space is Zd, d ∈ N. We proved convergence to equilibrium, showed that there
is a dichotomy between coexistence (= locally multi-type equilibria) and clustering
(= locally mono-type equilibria), and identified the parameter regime for both. We
found a change of the dichotomy due to the presence of the seed-bank. Without seed-
bank, for migration in the domain of attraction of Brownian motion, clustering occurs
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in d = 1, 2 and coexistence in d ≥ 3, i.e., the critical dimension for the dichotomy
is d = 2. With seed-bank, however, clustering becomes more difficult and occurs in
d = 2 only when the wake-up time of a typical individual in the seed-bank has finite
mean, and in d = 1 only when the wake-up time has a sufficiently thin tail. In other
words, the seed-bank has a tendency to lower the critical dimension.

In fact, in [43] we found that our technique of proof works for geographic spaces
that are arbitrary countable Abelian groups endowed with the discrete topology. The
reason is that the dichotomy can be formulated in terms of how the degree of the
random walk that underlies the migration balances with the exponent of the tail of
the typical wake-up time. This raises the question how we can better understand the
behaviour of spatial models with seed-bank close to criticality.

In [44] we established the so-called finite-systems scheme, i.e., we identified how a
finite truncation of the system (both in the geographic space and in the seed-bank)
behaves as both the time and the truncation level tend to infinity, properly tuned
together. We found that if the wake-up time has finite mean, then the scaling time is
proportional to the volume of the system and there is a single universality class for
the scaling limit, namely, the system moves through a succession of equilibria of the
infinite system with a density that evolves according to a Fisher-Wright diffusion. On
the other hand, we found that if the wake-up time has infinite mean, then the scaling
time grows faster than the volume of the system, and there are two universality classes
depending on how fast the truncation level of the seed-bank grows compared to the
truncation level of the geographic space.

§4.1.2 Goals

In the present paper we take as geographic space the hierarchical group ΩN of order
N . The reason for this choice is that ΩN allows for more detailed computations. At
the same time, migration on ΩN can be used to approximate migration on Zd in the
hierarchical mean-field limit N → ∞. In particular, by playing with the migration
kernel we can approximate two-dimensional migration in the sense of potential theory.
We consider migration kernels that in the limit as N → ∞ are critically recurrent,
i.e., the degree of the class of hierarchical migrations that we consider in the present
paper converges to 0, either from above or from below.

The present paper has three goals:

(1) We apply the results obtained in [43] to ΩN with N < ∞ fixed. We again find
that part of the coexistence regime without seed-bank shifts into the clustering
regime with seed-bank when the average wake-up time of a typical individual is
infinite.

(2) We analyse a space-time renormalised system in the limit as N → ∞. Namely,
we show that the block averages on successive space-time scales each perform
a diffusion with a renormalised diffusion function. In other words, we establish
a multi-scale version of the finite-systems scheme. Also, we compare the beha-
viour of the space-time renormalised system with seed-bank to the one analysed
in [21] and [20] without seed-bank.

(3) We exhibit universal behaviour in the clustering regime close to criticality. To
do so, we analyse the attracting orbits of the renormalisation transformation,
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acting on the space of diffusion functions, that connects successive hierarchical
levels. We show that, in the clustering regime and after appropriate scaling, the
renormalised diffusion function converges to the Fisher-Wright diffusion function
as we move up in the hierarchy, irrespective of the diffusion function controlling
the resampling. This convergence shows that the hierarchical system exhibits
universality on large space-time scales in terms of the scaling limit. For several
subclasses of parameters we identify the scaling of the renormalised diffusion
function, which reveals a delicate interplay between the parameters controlling
the migration and the seed-bank. This rate in turn determines the speed at
which mono-type clusters grow in space and time.

In the coexistence regime, universality does not hold and the equilibrium depends
on the diffusion function. Since the seed-bank enhances genetic diversity, it may be
expected that equilibrium correlations between far away colonies decay faster with
seed-bank than without seed-bank, an issue that will not be addressed.

Remark 4.1.1 (More general types). Throughout the paper we consider the two-
type Fisher-Wright model with seed-bank, in the continuum limit where the number of
individuals per colony tends to infinity. The extension to a general type space, called
the Fleming-Viot model (see [25]), requires only standard adaptations and will not be
considered here. In what follows, we only work with continuum models. However, we
motivate these models by viewing them as the large-colony-size limit of individual-
based models. For earlier work on hierarchically interacting Fisher-Wright diffusions
without seed-bank we refer the reader to [20, 21, 25, 22] and [5, 6, 26]. ■

§4.1.3 Outline

The present paper consist of two parts:

� Part I: Model and main results. Sections 4.2–4.5 collect the main propos-
itions and theorems. In Section 4.2 we define the hierarchical model and state
some basic properties: the well-posedness of the associated martingale problem
(Proposition 4.2.6), the duality relation (Proposition 4.2.7), and the clustering
criterion via duality (Proposition 4.2.12). These properties were all derived in
[43]. In Section 4.3 we state our main results for N <∞. In particular, we com-
pute the scaling of the wake-up time and the migration kernel (Theorem 4.3.2)
and identify the clustering regime in terms of the coefficients controlling the mi-
gration and the seed-bank under the assumption that these are asymptotically
polynomial or pure exponential (Theorem 4.3.3)). In Section 4.4 we state our
main results for N → ∞, the hierarchical mean-field limit. In particular, we in-
troduce block averages on successive hierarchical space-time scales, analyse their
limiting dynamics (Theorems 4.4.2 and 4.4.4), offer a heuristic explanation how
this limiting dynamics arises, introduce a path topology called the Meyer-Zheng
topology that is needed for a proper formulation, and introduce an object called
the interaction chain, which describes how the diffent hierarchical levels inter-
act with each other. In Section 4.5 we identify the orbit of the renormalisation
transformation in the clustering regime (Theorem 4.5.1), identify the rate of
scaling for the renormalised diffusion function (Theorem 4.5.3), and link this
scaling to the rate of growth of mono-type clusters.
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� Part II: Preparations and proofs. Chapters 5–10 provide the proofs of the
theorems stated in Part I. These proofs consist of a long series of propositions
and lemmas needed to build up the argument. In Chapter 5 we prove our main
results for N < ∞. In Chapter 6 we focus on the mean-field model (consisting
of a single hierarchy) and, respectively, state and prove a number of results that
serve as preparation. In Chapters 7–8 we consider extensions of the mean-field
model (consisting of finitely hierarchies), which serve as further preparation. In
Chapter 9 we use the results in Sections 6–8 to deal with the full hierarchical
model (consisting of infinitely many hierarchies), and prove our main results
for N → ∞. In Chapter 10 we analyse the orbit of the renormalisation trans-
formation controlling the multi-scaling. Appendix B.1 contains a technical com-
putation needed for the identification of the clustering regime. Appendix B.2
contains a basic introduction to convergence of paths in the Meyer-Zheng topo-
logy, which is needed for the main theorems.

Part I contains all the main results and their interpretations, and can be read without
reference to Part II.

§4.2 Introduction of model and basic properties

Section 4.2.1 introduces the model ingredients, Section 4.2.2 gives the evolution equa-
tions, Section 4.2.3 states the well-posedness, Section 4.2.4 introduces the dual and
states the duality relation, while Section 4.2.5 formulates the dichotomy between
clustering versus coexistence in terms of the dual.

§4.2.1 Model: geographic space ΩN , hierachical group
of order N

Single colony. Our building block is the single-colony Fisher-Wright model with
seed-bank defined in [12]. In that model, each individual in the population carries
one of two types, ♡ or ♢, and each individual can be either active or dormant. Active
individuals resample until they become dormant. Dormant individuals suspend res-
ampling until they become actieve again. The repository for the dormant individuals
is called the seed-bank. When an active individual resamples, it randomly chooses
another active individual and adopts its type. When an active individual becomes
dormant, it randomly chooses a dormant individual and forces it to becomes active,
i.e., the active and the dormant population exchange individuals (see Fig. 4.1). This
exchange guarantees that the sizes of the active and the dormant population stay
fixed over time. During the swap both the active and the dormant individual retain
their type.

The types of the active population evolve through resampling and through ex-
change with the dormant population. The types of the the dormant population evolve
only through exchange with the active population. It was shown in [12] that in the
large-colony-size limit, i.e., as the number of individuals per colony tends to infinity
and time is speeded up by the size of the colony, the two quantities

� x(t) = the fraction of active individuals of type ♡ at time t,
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� y(t) = the fraction of dormant individuals of type ♡ at time t,

satisfy the following system of coupled SDEs:

dx(t) = Ke [y(t)− x(t)] dt+
√
x(t)(1− x(t)) dw(t),

dy(t) = e [x(t)− y(t)] dt.
(4.1)

Here, e denotes the rate at which an active individual exchanges with a dormant
individual from the seed-bank, K denotes the relative size of the dormant population
with respect to the active population, and (w(t))t≥0 is a Brownian motion. The first
term in the first equation describes the flow from the dormant population to the
active population, the term in the second equation describes the flow from the active
population to the dormant population, while the second term in the first equation
describes the effect of resampling on the active population (see Fig. 4.1). Active
individuals resample at rate 1. Since dormant individuals do not resample, we do
not see such a term in the second equation. The formal derivation of the continuum
equations can be found in [12] and in [43, Appendix A].

A D

exchange

resampling

Ke

e

1

Figure 4.1: Active individuals resample at rate 1. Active and dormant individuals exchange
at rate e. The extra factor K arises from the fact that the dormant population is K times
as large as the active population. Dormant individuals suspend resampling.

Multi-colony. The present paper focuses on a multi-colony setting of the model
described above, where the underlying geographic space is the hierarchical lattice of
order N , given by (N0 = N ∪ {0})

ΩN =

{
ξ = (ξk)k∈N0

: ξk ∈ {0, 1, . . . , N − 1},
∑
k∈N0

ξk <∞

}
, (4.2)

which with addition modulo N becomes the hierarchical group of order N (see
Fig. 4.2). The hierarchical distance on ΩN is defined by

dΩN
(ξ, η) = dΩN

(0, ξ − η) = min {k ∈ N0 : ξl = ηl ∀ l ≥ k} , ξ, η ∈ ΩN , (4.3)
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and is an ultra-metric, i.e.,

dΩN
(ξ, η) ≤ max

{
dΩN

(ξ, ζ), dΩN
(η, ζ)

}
∀ ξ, η, ζ ∈ ΩN . (4.4)

The choice of ΩN as geographic space plays an important role for population
models, and was first exploited in [65] in an attempt to formalise ideas coming from
ecology. One interpretation is that the sequence (ξk)k∈N0 encodes the ‘address’ of
colony ξ: ξ0 is the ‘house’, ξ1 is the ‘street’, ξ2 is the ‘village’, ξ3 is the ‘province’, ξ4
is the ‘country’, and so on. To describe the system on the hierarchical group we need
three ingredients:

� Hierarchical migration.

� Layered seed-bank.

� Resampling rate.

Figure 4.2: Close-ups of a 1-block, a 2-block and a 3-block in the hierarchical group of
order N = 3. The elements of the group are the leaves of the tree (indicated by □’s). The
hierarchical distance between two elements in the group is the graph distance to the most
recent common ancestor in the tree: dΩ3(η, ζ) = 2 for η and ζ in the picture.

• Hierarchical migration

We construct a migration kernel aΩN (·, ·) on the hierarchical group ΩN built from a
sequence of migration rates

c = (ck)k∈N0
∈ (0,∞)N0 (4.5)

that do not depend on N . Individuals migrate as follows:

� For all k ∈ N, each individual chooses at rate ck−1/N
k−1 the block of radius k

around its present location and selects a colony uniformly at random from that
block. Subsequently it selects an individual in this colony uniformly at random
and adopts its type.

Note that the block of radius k contains Nk colonies, and that the migration kernel
is therefore given by

aΩN (η, ξ) =
∑

k≥dΩN
(η,ξ)

ck−1

Nk−1

1

Nk
, η, ξ ∈ ΩN , η ̸= ξ, aΩN (η, η) = 0, η ∈ ΩN .

(4.6)
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Throughout the paper, we assume that

lim sup
k→∞

1

k
log ck < logN. (4.7)

This guarantees that the total migration rate per individual is finite. Indeed, note
that for every η ∈ ΩN ,∑

ξ∈ΩN

aΩN (η, ξ) =
∑
ξ∈ΩN

∑
k≥dΩN

(η,ξ)

ck−1

N2k−1

=
∑
k∈N

 ∑
ξ∈ΩN

1{dΩN
(η,ξ)≤k}

 ck−1

N2k−1

=
∑
k∈N

ck−1

Nk−1
,

(4.8)

which is finite because of (4.7).

Remark 4.2.1 (Degree of random walk). For a random walk on an Abelian group
with time-t transition kernel aΩN

t (·, ·), the degree is defined as (see [19])

δ = sup

{
ζ ∈ (−1,∞) :

∫ ∞

0

dt tζaΩN
t (0, 0) <∞

}
. (4.9)

The degree is said to be δ+, respectively, δ− when the integral is finite, respectively,
infinite at the degree. If δ > 0, then δ is called the degree of transience. If δ ∈ (−1, 0),
then −δ is called the degree of recurrence. If the degree is 0−, then the random walk
is called critically recurrent. (It would be interesting to have a version of (4.9) that
includes a slowly varying function in front of the power tζ . However, such an extension
appears not to have been explored in the literature.) ■

By playing with c and letting N → ∞, we can approximate migration for which
the corresponding random walk is critically recurrent, i.e., δ− = 0. In that case both
the potential theory and the Green function for the hierarchical random walk have
the same asymptotics as the potential theory and the Green function for a critically
recurrent random walk on Z2 in the domain of attraction of Brownian motion. There-
fore, by tuning c properly, we can mimic migration on the geographic space Z2 (for
which δ− = 0), an idea that was exploited in [25], [22], [23], [41], [42].

• Layered seed-bank

To create a layered seed-bank, dormant individuals are labeled with a colour m ∈ N0.
An active individual that becomes dormant is assigned a colour m ∈ N0. When
an active individual becomes dormant with colour m, it exchanges with a dormant
individual of colour m. This dormant individual becomes active, loses its colour, but
retains its type. To describe the layered seed-bank we need two sequences

K = (Km)m∈N0
∈ (0,∞)N0 ,

e = (em)m∈N0 ∈ (0,∞)N0 ,
(4.10)

both not depending on N , which we interpret as follows:
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� Km is the relative size of the dormant population of colour m with respect to
the active population, i.e.,

Km =
size m-dormant population

size active population
. (4.11)

� At rate Km
em
Nm an active individual becomes dormant, is assigned colourm, and

retains its type. At the same time a dormant individual with colour m becomes
active, loses its colour, and retains its type. By defining the rates in this way,
the layered structure of the seed-bank is tuned to the hierarchical structure of
the geographic space.

By giving the seed-bank a layered structure, we are able to tune the distribution of
the wake-up time, i.e., the time an individual spends in the seed-bank before waking
up. In particular, we will see that a layered seed-bank enables us to model wake up
times with a fat tail, while at the same time preserving the Markov property of the
evolution.

Since active and dormant individuals exchange, Km remains constant over time
for all m ∈ N0. Throughout the paper we assume that

lim sup
m→∞

1

m
log(Kmem) < logN. (4.12)

This guarantees that the total rate of exchange per individual, given by

χ =
∑
m∈N0

Km
em
Nm

, (4.13)

is finite. On the other hand, the relative size of the dormant population with respect
to the active population

ρ =
∑
m∈N0

Km (4.14)

can be either finite or infinite. We will see that ρ < ∞ and ρ = ∞ represent two
different regimes.

• Resampling rate

To describe the resampling we use a diffusion function g that is taken from the set

G =
{
g(x) : [0, 1] → [0,∞) : g(0) = g(1) = 0, g(x) > 0 ∀x ∈ (0, 1), g Lipschitz

}
,

(4.15)
and think of h(x) = g(x)/x(1 − x) as the rate of resampling at type frequency x.
The choice g = dgFW, d ∈ (0,∞), with gFW(x) = x(1 − x), x ∈ [0, 1], corresponds
to Fisher-Wright resampling at rate d. We use a collection of independent Brownian
motions

W =
(
(wξ(t))t≥0

)
ξ∈ΩN

(4.16)

to describe the fluctuations of the type frequencies caused by the resampling in each
colony.
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§4.2.2 Evolution equations

• Evolution of single colonies

With the above three ingredients, we can now describe the evolution of the system.
For ξ ∈ ΩN , define

xξ(t) = the fraction of active individuals of type ♡ at colony ξ at time t,

yξ,m(t) = the fraction of m-dormant individuals of type ♡ at colony ξ and time t.
(4.17)

Note that xξ(t) ∈ [0, 1] and yξ,m(t) ∈ [0, 1] for all ξ ∈ ΩN , m ∈ N0, t ≥ 0. Therefore
the state space of a single colony is s = [0, 1] × [0, 1]N0 , and the state space of the
system is

S = sΩN . (4.18)

Our object of interest is the random process taking values in S, written

(XΩN (t), Y ΩN (t))t≥0, (XΩN (t), Y ΩN (t)) =
(
xξ(t), (yξ,m(t))m∈N0

)
ξ∈ΩN

, (4.19)

whose components evolve according to the following SSDE (= system of stochastic
differential equations):

dxξ(t) =
∑
η∈ΩN

aΩN (ξ, η)[xη(t)− xξ(t)] dt+
√
g(xξ(t)) dwξ(t)

+
∑
m∈N0

Kmem
Nm

[yξ,m(t)− xξ(t)] dt,

dyξ,m(t) =
em
Nm

[xξ(t)− yξ,m(t)] dt, m ∈ N0, ξ ∈ ΩN .

(4.20)

The first term in the first equation describes the evolution of the active population at
colony ξ due to migration, the second term due to the resampling. The third term in
the first equation and the term in the second equation describe the exchange between
the active and the dormant population at colony ξ (see Fig. 4.3). Since dormant
individuals are not subject to resampling or migration, the dynamics of the dormant
population is completely determined by the exchange with the active population. For
the initial state we assume that

L(XΩN (0), Y ΩN (0)) = µ⊗ΩN

with Eµ[xξ(0)] = θx, Eµ[yξ,m(0)] = θym with lim
m→∞

θym = θ for some θ ∈ [0, 1].

(4.21)
The last assumption in (4.21), which in [43] was referred to as µ being colour regular,
guarantees that for finite N the system in (4.20) converges to an ergodic equilibrium.

Remark 4.2.2. [Notation] Throughout the sequel we use lower case letters for single
components and upper case letters for systems of single components. We exhibit the
geographic space for the system, but suppress it from the components. ■
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A

D0

D1

Dm

exchangeresampling

migration

K0e0

e0
K1e1/N

e1/N

Kmem/N
m

em/N
m

h(x)

Figure 4.3: Active individuals (A) are subject to migration, resampling and exchange with
dormant individuals (D). When active individuals become dormant they are assigned a colour
(Dm, m ∈ N0), which they lose when they become active again. The resampling rate in the
active state at type-♡ frequency x equals h(x) = g(x)/x(1 − x) with g ∈ G (e.g. for the
standard Fisher-Wright diffusion the resampling rate is 1).

• Evolution of block averages

The choice of the migration kernel in (4.6) implies that, for every k ∈ N, at rate ≍ 1
Nk

individuals choose a space horizon of distance k+1 and subsequently choose a random
colony from that space horizon. Therefore, in order to see interactions over a distance
k+ 1, we need to speed up time by a factor Nk. A similar observation applies to the
interaction with the seed-bank. Dormant individuals with colour k become active at
rate ≍ 1

Nk . Therefore, in order to see interactions with the k-dormant population, we

need to speed up time by a factor Nk. To analyse the effective interaction on time
scale Nk, we introduce successive block averages labelled by k ∈ N0.

Definition 4.2.3 (Block averages). For k ∈ N0, let
Bk(0) = {η ∈ ΩN : dΩN

(0, η ≤ k} denote the k-block around 0. Define the k-block
average around 0 at time Nkt by

xΩN

k (t) =
1

Nk

∑
η∈Bk(0)

xη(N
kt),

yΩN

m,k(t) =
1

Nk

∑
η∈Bk(0)

yη,m(Nkt), m ∈ N0.

(4.22)

The k-block average represents the dynamics of the system on space-time scale k. ■

By translation invariance of the SSDE in (4.20), each ξ ∈ ΩN can serve as the origin.
In the remainder of the paper we consider without loss of generality the k-block
average around ξ = 0, and suppress the center 0 from the notation.
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Remark 4.2.4 (Notation). We use lower case letters for the block averages because
they live in the space of components s = [0, 1]× [0, 1]N0 . At the same time we exhibit
the geographic space ΩN for the block averages because they are functionals of the
system of components (recall Remark 4.2.2). ■

Using Definition 4.2.3 and inserting the specific choice of the migration kernel
defined in (4.6), we can rewrite (4.20) for ξ = 0 as follows (0-blocks are single com-
ponents):

dxΩN
0 (t) =

∑
l∈N

cl−1

N l−1

[
xΩN

l (N−lt)− xΩN
0 (t)

]
dt+

√
g
(
xΩN
0 (t)

)
dw(t)

+
∑
m∈N0

Kmem
Nm

[
yΩN
m,0(t)− xΩN

0 (t)
]
dt,

dyΩN
m,0(t) =

em
Nm

[
xΩN
0 (t)− yΩN

m,0(t)
]
dt, m ∈ N0.

(4.23)

From (4.23) we see that migration between colonies can be expressed as a drift towards
block averages at a higher hierarchical level.

The SSDE for the k-block average on time scale Nk reads as follows (recall (4.22)):

dxΩN

k (t) =
∑
l∈N

ck+l−1

N l−1

[
xΩN

k+l(N
−lt)− xΩN

k (t)
]
dt+

√√√√ 1

Nk

∑
i∈Bk(0)

g
(
xi(Nkt)

)
dwk(t)

+
∑
m∈N0

NkKmem
Nm

[
yΩN

m,k(t)− xΩN

k (t)
]
dt,

dyΩN

m,k(t) = Nk em
Nm

[
xΩN

k (t)− yΩN

m,k(t)
]
dt, m ∈ N0.

(4.24)
To deduce these equations from (4.20), we sum over ξ ∈ Bk, speed up time by a factor
Nk, insert the specific choice of the migration kernel in (4.6), and use the standard
scaling properties of Brownian motion: w(ct) =d

√
cw(t) and

√
aw(t) +

√
bw′(t) =d√

a+ bw′′(t), with w(t) and w′(t) independent Brownian motions, and with =d de-
noting equality in distribution. This computation is spelled out in Section 9.

Remark 4.2.5 (Separation space-time scales). The block averages and their evol-
ution equations in (4.24) will be key objects in the analysis of the hierarchical mean-
field limit N → ∞. We will see that the limit N → ∞ brings about considerable
simplifications. In Section 4.4 we discuss these simplifications in detail. In partic-
ular, a complete separation of space-time scales takes places, in which each block
average lives on its own time scale, effectively interacts with only one seed-bank, and
effectively feels a drift towards the block average one hierarchical level up. ■
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§4.2.3 Well-posedness

The generator of the system in (4.20) is given by

G =
∑
ξ∈ΩN

( ∑
η∈ΩN

aΩN (ξ, η)[xη(t)− xξ(t)]
∂

∂xξ
+

1

2
g(xξ(t))

∂2

∂x2ξ
(4.25)

+
∑
m∈N0

[
Kmem
Nm

[yξ,m(t)− xξ(t)]
∂

∂xξ
+

em
Nm

[xξ(t)− yξ,m(t)]
∂

∂yξ,m

])
.

Let

F =
{
f ∈ Cb([0,∞), S) : f depends on finitely many components

and is twice continuously differentiable in each component
}
.

(4.26)

Proposition 4.2.6 (Well-posedness). (a) The SSDE in (4.20) has a unique strong
solution in C([0,∞), S), whose law is the unique solution of the (G,F , δu)-
martingale problem for all u ∈ S.

(b) The process starting from u ∈ S is Feller and strong Markov. Consequently, the
SSDE in (4.20) defines a unique Borel Markov process starting from any initial
law on S.

Proof. Comparing with what is called model 2 in [43], we see that the Abelian group
is chosen as in (4.2), the transition kernel is chosen as in (4.6), and the rates in and
out of the seed-bank are em

Nm and Kmem
Nm for colour m. Hence the claim follows from

[67], in the same way as shown in the proof of [43, Theorem 2.1]. □

Henceforth we write P and E to denote probability and expectation with respect
to the random process in (4.19).

§4.2.4 Duality

If g = dgFW, then our model has a tractable dual, which turns out to play a crucial
role in the analysis of the long-time behaviour. In this section we introduce the dual
process following the same line of argument as in [43, Section 2.4]. There it was
shown that the spatial Fisher-Wright diffusion with seed-bank is dual to a so-called
block-counting process of a seed-bank coalescent. The latter describes the ancestral
lines of n ∈ N individuals sampled from the current population backwards in time
in terms of partition elements. At time zero the ancestral line of each individual
is represented by a partition element. Traveling backwards in time, two partition
elements merge as soon as their ancestral lines coalesce, i.e., two individuals have
the same ancestor from that time onwards. Hence the seed-bank coalescent divides
the ancestral lines of the n ∈ N individuals into subgroups of individuals with the
same ancestor (i.e., individuals that are identical by descent). Therefore the seed-
bank coalescent generates the ancestral lineages of the individuals evolving according
to a Fisher-Wright diffusion with seed-bank, i.e., generates their full genealogy. The
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coalescence
migration

emKm/N
m em/N

m

m-dormant

active

Figure 4.4: Transition scheme for an ancestral lineage in the dual, which moves according
to the transition kernel b(·, ·) defined in (4.31). Two active ancestral lineages that are at the
same colony coalesce at rate d.

corresponding block-counting process counts the number of partition elements that
are left when we travel backwards in time.

Formally, the spatial seed-bank coalescent is described as follows. Let

S = ΩN × {A, (Dm)m∈N0} (4.27)

be the effective geographic space. For n ∈ N the state space of the n-spatial seed-
bank coalescent is the set of partitions of {1, . . . , n}, where the partition elements are
marked with a position vector giving their locations. A state is written as π, where

π = ((π1, η1), . . . , (πn̄, ηn̄)), n̄ = |π|,
πℓ ⊂ {1, . . . , n}, {π1, · · ·πn̄} is a partition of {1, . . . , n},
ηℓ ∈ S, ℓ ∈ {1, . . . , n̄}, 1 ≤ n̄ ≤ n.

(4.28)

A marked partition element (πℓ, ηℓ) is called active if ηℓ = (ξ, A) and m-dormant if
ηℓ = (ξ,Dm) for some ξ ∈ ΩN . The n-spatial seed-bank coalescent is denoted by

(C(n)(t))t⩾0, (4.29)

and starts from

C(n)(0) = π(0), π(0) = {({1}, ηℓ1), . . . , ({n}, ηℓn)}, ηℓ1 , . . . , ηℓn ∈ S. (4.30)

The n-spatial seed-bank coalescent is the Markov process that evolves according
to the following two rules (see Figs. 4.4–4.5).

(a) Each partition element moves independently of all other partition elements ac-
cording to the transition kernel

bΩN ((ξ,Rξ), (η,Rη)) =


aΩN (ξ, η), if Rξ = Rη = A,
Km

em
Nm , if ξ = η, Rξ = A, Rη = Dm, for m ∈ N0,

em
Nm , if ξ = η, Rξ = Dm, Rη = A, for m ∈ N0,
0, otherwise,

(4.31)
where aΩN (·, ·) is the migration kernel defined in (4.6), Km, m ∈ N0 are the
relative sizes of the m-dormant population and the active population defined in
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Figure 4.5: Picture of the evolution of lineages in the spatial coalescent. The purple blocks
depict the colonies, the black lines the active lineages, and the coloured lines the dormant
lineages. Blue lineages can migrate. Two black lineages can coalesce when they are at the
same colony. Red dormant lineages first have to become black and active before they can
migrate or coalesce with other black and active lineages. Note that the dual runs backwards
in time.

(4.11), and em, m ∈ N0 are the coefficients controlling the exchange between the
active and the dormant population defined in (4.10). Thus, an active partition
element migrates according to the transition kernel aΩN (·, ·) and becomes m-
dormant at rateKm

em
Nm , while anm-dormant partition element can only become

active and does so at rate em
Nm .

(b) Independently of all other partition elements, two partition elements that are at
the same colony and are both active coalesce with rate d, i.e., the two partition
elements merge into one partition element.

Fig. 4.4 gives a schematic overview of the possible transitions of a single lineage,
while Fig. 4.5 gives an example of the evolution in the dual. The spatial seed-bank
coalescent (C(t))t≥0 is defined as the projective limit of the n-spatial seed-bank coales-
cents (C(n)(t))t≥0 as n → ∞. This object is well-defined by Kolmogorov’s extension
theorem (see [12, Section 3]).

For n ∈ N we define the block-counting process (L(t))t≥0 corresponding to the
n-spatial seed-bank coalescent as the process that counts at each site (ξ,Rξ) ∈ ΩN ×
{A, (Dm)m∈N0

} the number of partition elements of C(n)(t), i.e.,

L(t) =
(
L(ξ,A)(t),

(
L(ξ,Dm)(t)

)
m∈N0

)
ξ∈ΩN

,

L(ξ,A)(t) = L(ξ,A)(C(n)(t)) =

n̄∑
ℓ=1

1{ηℓ(t)=(ξ,A)},

L(ξ,Dm)(t) = L(ξ,Dm)(C(n)(t)) =

n̄∑
ℓ=1

1{ηℓ(t)=(ξ,Dm)}, m ∈ N0.

(4.32)

The state space of (L(t))t≥0 is S′ = (N0 × NN0
0 )ΩN . We denote the elements of S′

by sequences (mξ, (nξ,Dm)m∈N0)ξ∈ΩN
, and define δ(η,Rη) ∈ S′ to be the element of S′

that is 0 at all sites (ξ,Rξ) ∈ ΩN ×{A, (Dm)m∈N0}\(η,Rη), and 1 at the site (η,Rη).
From the evolution of C(n)(t) described below (4.29) we see that the block-counting
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process has the following transition kernel:

(mξ, (nξ,Dm
)m∈N0

)ξ∈ΩN
→

(mξ, (nξ,Dm
)m∈N0

)ξ∈ΩN
− δ(η,A) + δ(ζ,A), at rate mηa(η, ζ) for η, ζ ∈ ΩN ,

(mξ, (nξ,Dm
)m∈N0

)ξ∈ΩN
− δ(η,A), at rate d

(
mη

2

)
for η ∈ ΩN ,

(mξ, (nξ,Dm)m∈N0)ξ∈ΩN
− δ(η,A) + δ(η,Dm), at rate mηKm

em
Nm for η ∈ ΩN ,

(mξ, (nξ,Dm)m∈N0)ξ∈ΩN
+ δ(η,A) − δ(η,Dm), at rate nη,m

em
Nm for η ∈ ΩN .

(4.33)
The process (Z(t))t≥0 defined in (4.20) is dual to the block-counting process

(L(t))t≥0 with duality function H : S × S′ → R defined by

H
((
xξ, (yξ,m)m∈N0

)
ξ∈ΩN

,
(
mξ, (nξ,Dm

)m∈N0

)
ξ∈ΩN

)
=
∏
ξ∈ΩN

x
mξ

ξ

∏
m∈N0

y
nξ,Dm

ξ,m . (4.34)

Proposition 4.2.7 (Duality relation). Let H be as in (4.34). Then, for all
(xξ, (yξ,m)m∈N0

)ξ∈ΩN
∈ S and (mξ, (nξ,Dm

)m∈N0
)ξ∈ΩN

∈ S′,

E(
xξ,(yξ,m)m∈N0

)
ξ∈ΩN

[
H
((

xξ(t), (yξ,m(t))m∈N0

)
ξ∈ΩN

, (mξ, nξ)ξ∈ΩN

)]
= E(

mξ,(nξ,Dm )m∈N0

)
ξ∈ΩN

[
H
((

xξ, (yξ,m)m∈N0

)
ξ∈ΩN

,
(
L(ξ,A)(t), (L(ξ,Dm)(t))m∈N0

)
ξ∈ΩN

)]
(4.35)

with E the generic symbol for expectation (on the left over the original process, on the
right over the dual process).

Proposition 4.2.7 was proved in [43, Section 2.4]. Since the duality function H cap-
tures all the mixed moments of (Z(t))t≥0, the duality relation is that of a moment
dual.

Remark 4.2.8 (Duality relation in terms of the effective geographic space).
Interpreting (Z(t))t≥0 as a process on the effective geographic space
S = ΩN × {A, (Dm)m∈N0

}, we can rewrite (4.20) as

dz(ξ,Rξ)(t) =
∑

(ξ,Rξ)∈S

bΩN ((ξ,Rξ), (η,Rη))[z(η,Rη)(t)− z(ξ,Rξ)(t)] dt

+ 1{Rξ=A}

√
g(z(ξ,Rξ)(t)) dwξ(t), (ξ,Rξ) ∈ S,

(4.36)

where bΩN (·, ·) is the transition kernel defined in (4.31). If g = dgFW, then we can
write its dual process as follows. Let (L(t))t≥0 = (L(C(t))t≥0 be the block-counting
process that at each site (ξ,Rξ) ∈ S counts the number of partition elements of C(t),
i.e.,

L(t) = (L(ξ,Rξ)(t))(ξ,Rξ)∈S,

L(ξ,Rξ)(t) = L(ξ,Rξ)(C(t)) =
n̄∑
ℓ=1

1{ηℓ(t)=(ξ,Rξ)}.
(4.37)

Rewrite the duality function H in (4.34) as

H
(
(z(ξ,Rξ), l(ξ,Rξ))(ξ,Rξ)∈S

)
=

∏
(ξ,Rξ)∈S

z
l(ξ,Rξ)

(ξ,Rξ)
. (4.38)
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Then, for z ∈ S and l ∈ S′, the duality relation in (4.35) reads

Ez(ξ,Rξ)

[
H(z(ξ,Rξ)(t), l(ξ,Rξ))

]
= El(ξ,Rξ)

[
H(z(ξ,Rξ), L(ξ,Rξ)(t))

]
. (4.39)

Interpreting the duality relation in terms of the effective geographic space S, we see
that each ancestral lineage in the dual is a Markov process moving according to the
transition kernel b(·, ·) defined in (4.31). Interpreting the duality relation in terms
of the geographic space ΩN , we see that an ancestral lineage is a random walk on
ΩN , with internal states A and (Dm)m∈N0

. Both interpretations turn out to be useful
when we analyse the long-time behaviour of the system. ■

s s s s s s sσ1 τ1 σ2 τ2 σ3 τ3

Figure 4.6: Renewal process induced by a lineage in the dual moving according to the trans-
ition kernel b(·, ·). For k ∈ N, σk denotes the kth active period and τk the kth dormant
period.

Remark 4.2.9 (The renewal process induced by the dual process). The par-
tition elements describing the dual process give rise to a renewal process on the active
state A and the dormant state D =

⋃
m∈N0

Dm. Since the only transition a dormant
lineage can make is to become active, irrespectively of its colour, each dual lineage in-
duces a sequence of active and dormant time lapses. Let (σk)k∈N denote the successive
active time periods and (τk)k∈N the successive dormant time periods (see Fig. 4.6).
Then (σk)k∈N and (τk)k∈N are sequences of i.i.d. random variables with marginal laws
(recall (4.13))

P(σ1 > t) = e−χt, P(τ1 > t) =
∑
m∈N0

Km
em
Nm

χ
e−

em
Nm t, t ≥ 0. (4.40)

Remark 4.2.10 (Wake up times). The renewal process in Fig. 4.6 is key to un-
derstanding the long-time behaviour of the model (as we will see in Section 4.3). Note
that

τ = τ1 (4.41)

represents the typical wake-up time of a lineage in the dual. By choosing specific se-
quences (Km)m∈N0

and (em)m∈N0
we can mimic different wake-up time distributions.

In particular, if we allow ρ =
∑
m∈N0

Km = ∞ (recall (4.14)), then τ may have a
fat-tail (examples are given in Section 4.3). In other words, the internal structure of
the seed-bank allows us to model fat-tailed wake-up times without loosing the Markov
property of the evolution. ■

Note that even when there is no dual, i.e., g ∈ G with g ̸= dgFW, we can still define
τ by (4.41), since τ1 in (4.40) is a random variable that depends only on the sequences
(Km)m∈N0 and (em)m∈N0 , and we can still interpret τ as the typical wake-up time of
an individual in the population. ■
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§4.2.5 Clustering criterion

• Clustering criterion for Fisher-Wright diffusion function

In [43] we showed that the system exhibits a dichotomy between coexistence (= locally
multi-type equilibria) and clustering (= locally mono-type equilibria). The clustering
criterion is based on the dual and requires the notion of colour regularity. We call a
law translation invariant when it is invariant under the group action.

Definition 4.2.11 (Colour regular initial measures). We say that a translation
invariant initial measure µ(0) is colour regular when

lim
m→∞

Eµ(0)[y0,m] exists. (4.42)

This condition is needed because, as time progresses, lineages starting from slower
and slower seed-banks become active and bring new types into the active popula-
tion. Without control on the initial states of the slow seed-banks, there may be no
convergence to equilibrium. ■

The key clustering criterion is the following.

Proposition 4.2.12 (Clustering criterion). Suppose that µ(0) is translation in-
variant. If ρ = ∞ (recall (4.14)), then additionally suppose that µ(0) is colour reg-
ular. Let d ∈ (0,∞). Then the system with g = dgFW clusters if and only if in the
dual two partition elements coalesce with probability 1.

The idea behind Theorem 4.2.12 is as follows. If in the dual two partition elements
coalesce with probability 1, then a random sample of n individuals drawn from the
current population has a common ancestor some finite time backwards in time. Since
individuals inherit their type from their parent individuals, this means that all n
individuals have the same type. A formal proof was given in [43, Section 4.3]. The
proof is valid for any geographic space given by a countable Abelian group endowed
with the discrete topology, of which ΩN is an example.

• Clustering criterion for general diffusion function

For g ∈ G with g ̸= dgFW no dual is available and hence we cannot use the clustering
criterion in Proposition 4.2.12. However, as shown in [43], we can argue by duality
comparison arguments (see [43, Lemma 5.5 and Lemma 6.3]) that the system evolving
according to (4.20) with g ∈ G clusters if and only if the system with g = dgFW for
some d ∈ (0,∞) clusters. In particular, for g = dgFW, d ∈ (0,∞), whether or not the
system clusters does not depend on the resampling rate d.

§4.3 Main results: N < ∞, identification of cluster-
ing regime

In this section we identify the clustering regime, i.e., the range of parameters for which
the clustering criterion in Proposition 4.2.12 is met. In [43, Section 3.2, Theorem
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3.3] we derived a necessary and sufficient condition for when clustering prevails, for
any geometric space given by a countable Abelian group endowed with the discrete
topology. Recall χ in (4.13), ρ in (4.14) and τ in (4.41),. From (4.40) it follows that

E[τ ] =
∑
m∈N0

Km

χ
=
ρ

χ
, (4.43)

and hence the mean wake-up time is finite if ρ < ∞ and infinite if ρ = ∞. In
Section 4.3.1 we look at ρ < ∞ and in Section 4.3.2 at ρ = ∞. In Section 4.3.3 we
summarise our findings and identify the clustering regime.

§4.3.1 Finite mean wake-up time

Suppose that the system evolving according to (4.20) has a translation invariant initial
measure µ(0) with density θ ∈ (0, 1). Then [43, Theorem 3.3] says that for ρ < ∞
clustering occurs if and only if ∫ ∞

1

dt aΩN
t (0, 0) = ∞. (4.44)

It is known that (4.44) holds for the hierarchical migration defined in (4.6) if and only
if [19, Section 3] ∑

k∈N0

1

ck
= ∞. (4.45)

Hence, for ρ < ∞, the clustering criterion depends on the migration kernel only and
the seed-bank has no effect.

s s s s s s s
s s s s s s s
σ1 τ1 σ2 τ2 σ3 τ3

σ′
1 τ ′1 σ′

2 τ ′2 σ′
3 τ ′3

. . .

Figure 4.7: Successive periods during which the two random walks are active and dormant
(recall (4.40) and Fig. 4.6). The time lapses between successive pairs of dotted lines represent
periods of joint activity.

In view of Proposition 4.2.12, if g = dgFW, then clustering prevails if and only if
two lineages in the dual coalesce with probability 1. Recall that two lineages in the
dual can only coalesce when they are at the same site and are both active. Since
the rate of coalescence is d ∈ (0,∞), each time this happens the two lineages have
a positive probability to coalesce before moving or becoming dormant. Therefore,
clustering prevails if and only if two lineages meet infinitely often while being active.
This happens exactly when (4.44) holds. The fact that the seed-bank plays no role
can be seen from the dual. Each lineage in the dual moves according to the transition
kernel b(·, ·) (recall (4.31)). Looking at the renewal process induced by the dual
process (recall Remark 4.2.9 and Fig. 4.7), we see that for ρ < ∞ the probability
that a lineage in the dual is active at time t is approximately 1

1+ρ for large t. The
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total activity time of a lineage up to time t is therefore approximately 1
1+ρ t for large

t. Hence the total time the two lineages in the dual are at the same site and are both
active is approximately ∫ ∞

1

dt

(
1

1 + ρ

)2

a2 1
1+ρ t

(0, 0), (4.46)

By Polya’s argument, if the integral in (4.46) is infinite, then two lineages in the
dual meet infinitely often while being active. After a variable transformation, (4.46)
becomes the integral in (4.44) up to a constant. (For a formal proof of the criterion in
(4.44), we refer to [43].) By the above argument, we can think of the integral in (4.44)
as the total hazard of coalescence of two dual lineages. To get the result for general
g ∈ G we must invoke the duality comparison arguments mentioned in Section 4.2.5.

In terms of the degree of the random walk (recall Remark 4.2.1), (4.44) corresponds
to hierarchical migration with degree 0−. The same criterion as in (4.44) was found in
[36] for interacting Fisher-Wright diffusions on the hierarchical lattice without seed-
bank (ρ = 0). Hence we conclude that for ρ < ∞ the seed-bank does not affect the
dichotomy.

§4.3.2 Infinite mean wake-up time

If ρ = ∞, then the seed-bank does affect the dichotomy. To apply the criterion
in [43, Theorem 3.3], we assume that the system evolving according to (4.20) has a
translation-invariant initial measure µ(0) with density θ ∈ (0, 1) that is colour regular.

The criterion for clustering that was derived in [43] for ρ = ∞ applies to wake-up
times τ (recall (4.41)) of the form

P(τ ∈ dt)

dt
∼ φ(t) t−(1+γ), t→ ∞, γ ∈ (0, 1], (4.47)

with φ slowly varying at infinity. Define

φ̂(t) =

{
φ(t), γ ∈ (0, 1),

E [τ ∧ t] γ = 1.
(4.48)

As shown in [8, Section 1.3], every slowly varying function φ may be assumed to be
infinitely differentiable and to be represented by the integral

φ(t) = exp

[∫ t

(·)

du

u
ψ(u)

]
(4.49)

for some ψ : [0,∞) → R such that limu→∞ |ψ(u)| = 0. From (4.47) we see that φ̂(t)
is also slowly varying. If we assume that |ψ(u)| ≤ C/ log u for some C <∞, then the
system clusters if and only if (see [43, Section 3.2])∫ ∞

(·)
dt φ̂(t)−1/γ t−(1−γ)/γ ât(0, 0) = ∞. (4.50)

Note that γ in (4.47) is the tail exponent of the typical wake-up time τ (recall Remark
4.2.9) and depends on the sequences e,K in (4.10) governing the exchange with the
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seed-bank. If g = dgFW, then in view of Theorem 4.2.12 the criterion in (4.50)
determines whether two lineages in the dual coalesce with probability 1.

In Section 5 we will use the renewal process induced by the dual (recall Re-
mark 4.2.9) to show that (4.50) indeed gives the total hazard of coalescence of two
dual lineages. Therefore the integral in (4.50) is the counterpart of (4.44). The rate
of coalescence again does not affect the dichotomy: in [43] a duality comparison ar-
gument was used to show that (4.50) gives the clustering criterion also for g ∈ G with
g ̸= dgFW. The effect of the seed-bank on the dichotomy is embodied by the term
φ̂(t)−1/γ t−(1−γ)/γ in (4.50). The criterion in (4.50) shows that there is a competition
between migration and exchange with the seed-bank.

For the special case where φ̂(t) ≍ 1, the criterion in (4.50) says that (recall Re-
mark 4.2.1)

clustering ⇐⇒ either δ− ≤ −1− γ

γ
or δ+ < −1− γ

γ
. (4.51)

Condition (4.50) implies that for γ ∈ (0, 12 ) no clustering is possible: the typical wake-
up time has such a heavy tail that with a positive probability two dual lineages do
not meet, irrespective of the migration.

Definition 4.3.1. In what follows we will focus on the following two specific para-
meter regimes:

• Asymptotically polynomial, i.e.,

Kk ∼ Ak−α, ek ∼ Bk−β , ck ∼ Fk−ϕ, k → ∞,

A,B, F ∈ (0,∞), α, β, ϕ ∈ R.
(4.52)

• Pure exponential, i.e.,

Kk = Kk, ek = ek, ck = ck, k ∈ N0, K, e, c ∈ (0,∞). (4.53)

Note that both (4.7) and (4.12) are satisfied for N → ∞. Also note that an infinite
seed-bank corresponds to α ∈ (−∞, 1], respectively, K ∈ [1,∞). □

The scaling of the wake-up time and the migration kernel in these parameter
regimes are as follows.

Theorem 4.3.2 (Scaling of wake-up time and migration kernel). Suppose that
ρ = ∞. Then

(a) Subject to (4.52),

γ = 1, φ(t) ≍ (log t)−α, φ̂(t) ≍

{
(log t)1−α, α ∈ (−∞, 1),

log log t, α = 1,

aΩN
t (0, 0) ≍ t−1 logϕ t.

(4.54)

(b) Subject to (4.53),

γ = γN,K,e =
log(N/Ke)

log(N/e)
, φ(t) ≍ 1, φ̂(t) ≍

{
1, K ∈ (1,∞),

log t, K = 1,

aΩN
t (0, 0) ≍ t−1−δN,c ,

(4.55)
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where

δN,c =
log c

log(N/c)
. (4.56)

Theorem 4.3.2 will be proved in Section 5.
Note that, by (4.55), γN,K,e = 1 for all N when K = 1, while γN,K,e < 1 for all

N when K > 1, but with γN,K,e ↑ 1 as N → ∞. Also note that, subject to (4.52),
(4.54) says that the degree of the random walk is 0− for ϕ ≥ −1 and 0+ for ϕ < −1,
while subject to (4.53), by (4.55), the degree of the random walk is δ−N,c, which is 0
for all N when c = 1, and tends to 0 as N → ∞ from above when c > 1 and from
below as c < 1. Thus, both (4.52) and (4.53) with N → ∞ correspond to a critically
recurrent migration and a critically infinite seed-bank.

§4.3.3 Clustering regime

Summarising the above discussion, we can now identify the clustering regime for both
finite and infinite seed-banks.

Theorem 4.3.3 (Clustering regime). (1) If ρ < ∞, then clustering prevails if
and only if ∑

k∈N0

1

ck
= ∞. (4.57)

(2) If ρ = ∞, then clustering prevails for N large enough

(a) Subject to (4.52) if and only if

−ϕ ≤ α ≤ 1. (4.58)

(b) Subject to (4.53) if and only if

Kc ≤ 1 ≤ K. (4.59)

Also Theorem 4.3.3 will be proved in Section 5.
Note that for ρ <∞ the clustering regime follows by combining (4.44) and (4.45),

while for ρ = ∞ the clustering regime follows by substituting into (4.50) the scaling
of the wake-up times and the migration kernel stated in Theorem 4.3.2.

Remark 4.3.4. Note that subject to (4.52), respectively, (4.53), ρ <∞ implies that
α > 1, respectively, K < 1, and so the clustering regime is −ϕ ≤ 1, respectively, c ≤ 1
(recall (4.57)), which are less stringent than (4.58), respectively, (4.59). ■

§4.4 Main results: N → ∞, renormalisation and
multi-scale limit

This section contains our multi-scale hierarchical limit theorems. The multi-scale hier-
archical limit theorems analyse the evolution of the block averages defined in Defini-
tion 4.2.3. In Section 4.4.1 we recall a path topology referred to as the Meyer-Zheng
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topology, which we will need in part of our multi-scale hierarchical limit theorems. In
Section 4.4.2 we present the conceptual ingredients needed for our theorems. In Sec-
tion 4.4.3 we state two versions of the hierarchical multi-scale limit (Theorems 4.4.2
and 4.4.4), and comment on how they are related to each other. In Section 4.4.4 we
explain how they arise from a heuristic analysis of the SSDE in (4.20).

§4.4.1 Intermezzo: Meyer-Zheng topology

Recall the block averages defined in (4.2.3) and their evolution equations in (4.24).
In the limit as N → ∞, some of the pre-factors in (4.24) diverge as a result of
the speeding up of time. This makes the processes increasingly more volatile: paths
becomes rougher and rougher during rarer and rarer times. Therefore we cannot work
with weak convergence on path space C([0,∞), E) w.r.t. the topology generated by
the sup-norm on compacts, or on path space D([0,∞), E) w.r.t. the Skorohod metric
on compacts. Rather we must follow the methodology used in [23, pp. 792–794]
and employ the so-called Meyer-Zheng topology on pseudopaths, (see [59]), which is
based on the following idea. Consider functions f : [0,∞) → E, with (E, d) a Polish
space, and sequences of functions (fn)n∈N that are càdlàg paths, i.e., functions in
the Skorohod space D([0,∞), E). Then (fn)n∈N converges to f in the Meyer-Zheng
topology if and only if

lim
n→∞

∫ b

a

dt
[
1 ∧ d(f(t), fn(t))

]
= 0 ∀ 0 ≤ a < b <∞. (4.60)

However, the topology induced by the metric in (4.60) does not turn D([0,∞), E)
into a closed space (while in order to apply the classical theory of weak convergence
of probability laws on path space we need the path space to be Polish).

To turn the idea from (4.60) into a manageable topology, we proceed by defining
a space of pseudopaths equipped with the Meyer-Zheng topology. If (E, d) is a Polish
space and s 7→ v(s) is a measurable map from [0,∞) to E, then the pseudopath ψv
is the probability measure ρ on [0,∞)× E, defined by

ρ((a, b)×B) =

∫ b

a

ds e−s 1B(v(s)), B ∈ B(E), (4.61)

Hence ψv is the image measure of e−tdt under the mapping t → (t, v(t)). In other
words, we consider the weighted occupation measure of the path in E in order to
describe paths that are regular representatives in the space of functions once we
take into account (4.60). Note that a piece-wise constant càdlàg path is uniquely
determined by its occupation measure. So is a continuous path with continuous local
times. The space of all pseudopaths is denoted by Ψ.

Since pseudopaths are measures on [0,∞] × E, convergence of pseudopaths is
defined as weak convergence of probability measures on [0,∞]×E. A sequence (vn)n∈N
of measurable maps from [0,∞)×E is said to converge in the Meyer-Zheng topology to
a measurable map v if limn→∞ ψvn = ψv, i.e., limn→∞ ψvnf = ψvf for all continuous
bounded functions f on [0,∞]× E.
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Remark 4.4.1 (Pseudopaths). The space Ψ of pseudopaths endowed with the
Meyer-Zheng topology is Polish, but the space D([0,∞), E) endowed with the Meyer-
Zheng topology is not Polish (see [59, p. 372]). ■

In what follows, each time convergence holds in the Meyer-Zheng topology we
will say so explicitly. If no topology is mentioned, then we mean convergence in
Cb([0,∞), [0, 1]). In Appendix B.2 we collect some basic facts about the Meyer-Zheng
topology taken from [59] and [53].

§4.4.2 Main ingredients for the hierarchical multi-
scale limit

Recall the definition of θx and θym in (4.21). Define

ϑk =
θx +

∑k
m=0Kmθym

1 +
∑k
m=0Km

, k ∈ N0. (4.62)

For ρ <∞, and for ρ = ∞ under the additional assumption of colour regularity (recall
Proposition 4.2.12), we have

lim
k→∞

ϑk = θ for some θ ∈ [0, 1]. (4.63)

Define the slowing-down constants (E0 = 1)

Ek =
1

1 +
∑k−1
m=0Km

, k ∈ N0. (4.64)

For l ∈ N0, let (
θ, (ym,l)m∈N0

)
(4.65)

be a sequence of random variables taking values in [0, 1], and let(
zl,(θ,(ym,l)m∈N0 )

(t)
)
t≥0

=
(
xl(t), (ym,l(t))m∈N0

)
t≥0

(4.66)

be the full process evolving according to

dxl(t) = El

[
cl[θ − xl(t)] dt+

√
(F (l)g)(xl(t)) dw(t) +Klel [yl,l(t)− xl(t)] dt

]
,

ym,l(t) = xl(t), 0 ≤ m < l,
dyl,l(t) = el [xl(t)− yl,l(t)] dt, m = l,
ym,l(t) = ym,l, m > l.

(4.67)
where F (l)g is an element of G, (recall (4.15)), that will be defined in (4.76) below.
By [72] the above SSDE has a unique solution for every initial measure. For l ∈ N0,
let

(zeffl,θ(t))t≥0 =
(
xeffl (t), yeffl,l (t)

)
t≥0

(4.68)

153



4. Models and main results

C
h
a
p
t
e
r
4

be the effective process evolving according to

dxeffl (t) = El

[
cl [θ − xeffl (t)] dt+

√
(F (l)g)(xeffl (t)) dw(t) +Klel [y

eff
l,l (t)− xeffl (t)] dt

]
,

dyeffl,l (t) = el [x
eff
l (t)− yeffl,l (t)] dt.

(4.69)
Comparing (4.67) with (4.69), we see that the effective process looks at the non-trivial
components of the full process.

Apart from (4.66) and (4.68), we need the following list of ingredients to formally
state the multi-scale limit:

(a) For l ∈ N0 and t > 0, define the estimators for the finite system by

Θ̄(l),ΩN (t) =
1

N l

∑
ξ∈Bl

xΩN

ξ (t) +
∑l−1
m=0Kmy

ΩN

ξ,m(t)

1 +
∑l−1
m=0Km

,

Θ(l),ΩN
x (t) =

1

N l

∑
ξ∈Bl

xΩN

ξ (t),

Θ(l),ΩN
ym (t) =

1

N l

∑
ξ∈Bl

yΩN

ξ,m(t), m ∈ N0,

(4.70)

and put

Θ(l),ΩN (t) =
(
Θ(l),ΩN
x (t),

(
Θ(l),ΩN
ym (t)

)
m∈N0

)
,

Θeff,(l),ΩN (t) =
(
Θ̄(l),ΩN (t),Θ(l),ΩN

yl
(t)
)
.

(4.71)

We call (Θ(l),ΩN (t))t≥0 the full estimator process and (Θeff,(l),ΩN (t))t≥0 the

effective process. Note that Θ
(l),ΩN
x (t) is the empirical average of the active

components in the l-block, while Θ
(l),ΩN
ym (t), is the empirical average of the m-

dormant components in the l-block, both without scaling of time. Note that

Θ
(l),ΩN
x (N lt) = xΩN

l (t). The level-l estimator Θ̄(l),ΩN (t) will play an important
role in our analysis. Using (4.24), we can derive the evolution equations of
Θ̄(l),ΩN (N lt). We see that in the evolution of Θ̄(l),ΩN (N lt) no rates appear that

tend to infinity as N → ∞. However, in the evolution of Θ
(l),ΩN
x (N lt) and

Θ
(l),ΩN
ym (N lt) for m < l the rates describing the interaction between the active

and the dormant population tend to infinity as N → ∞.

(b) For l ∈ N0, consider time scales N ltl such that

L
[
Θ̄(l),ΩN (N ltl − L(N)N l−1)− Θ̄(l),ΩN (N ltl)

]
= δ0 (4.72)

for all L(N) satisfying limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, but not
for L(N) = N . In words, N ltl is the time scale on which (Θ̄(l),ΩN (N ltl))tl>0 is
no longer a fixed process.

(c) For l ∈ N0 the invariant measure for the limiting evolution of the l-block aver-
ages in (4.67) is denoted by

Γ
(l)
(θ,yl)

, yl = (ym,l)m∈N0 . (4.73)
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(The existence of and convergence to this equilibrium will be proved in Sec-

tion 9.2.) Note that Γ
(l)
(θ,yl)

depends on choice of the rates El, cl,Kl, el in (4.67).

The invariant measure of the limiting evolution for the effective l-block process
in (4.69) is denoted by

Γ
eff,(l)
θ . (4.74)

Also Γ
eff,(l)
θ depends on the choice of the rates El, cl,Kl, el.

(d) For l ∈ N0, let FEl,cl,Kl,el denote the renormalisation transformation acting on
G defined by

(FEl,cl,Kl,elg)(θ) =

∫
[0,1]2

g(x) Γ
eff,(l)
θ (dx), θ ∈ [0, 1]. (4.75)

(In Section 6.3 we show that Fg ∈ G.) For k ∈ N0, define the iterate of the
renormalisation transformation as the composition

F (k) = FEk−1,ck−1,Kk−1,ek−1 ◦ · · · ◦ FE0,c0,K0,e0 . (4.76)

(e) For k ∈ N0, define the interaction chain [25]

(Mk
−l)−l=−(k+1),−k,...,0 (4.77)

as the time-inhomogeneous Markov chain on [0, 1]× [0, 1]N0 with initial state

Mk
−(k+1) = (ϑk,

k+1 times︷ ︸︸ ︷
ϑk, · · · , ϑk, θyk+1

, θyk+2
, · · · ) (4.78)

that evolves from time −(l + 1) to time −l according to the transition kernel
Q[l] on [0, 1]× [0, 1]N0 given by

Q[l](u,dv) = Γ(l)
u (dv). (4.79)

(See Fig. 4.9.) For k ∈ N0, define the effective interaction chain

(M eff,k
−l )−l=−(k+1),−k,...,0 (4.80)

as the time-inhomogeneous Markov chain on [0, 1]× [0, 1] with initial state

M eff,k
−(k+1) = (ϑk, θyk+1

) (4.81)

that evolves from time −(l + 1) to time −l according to the transition kernel
Q[l] on [0, 1]× [0, 1] given by

Qeff,[l](u,dv) = Γeff,(l)
ux

(dv), (4.82)

where ux denotes the first component of u = (ux, uy).(See Fig. 4.8.) We denote

the components of
(
M eff,k

−l

)
by

M eff,k
−l =

(
M eff,k

−l,x ,M
eff,k
−l,y

)
. (4.83)
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Mk,eff
−(k+1) = (ϑk, θk+1)

Mk,eff
−k = (xk(tk), yk,k(tk))

Mk,eff
−(k−1) = (xk−1(tk−1), yk−1,k−1(tk−1))

Q[k]
(
Mk,eff

−(k+1), (du, dv)
)
= Γeff

ϑk
(du, dv)

Q[k−1]
(
Mk,eff

−k , (du, dv)
)
= Γeff

xk(tk)
(du, dv)

Q[k−2]
(
Mk,eff

−(k−1), (du, dv)
)
= Γeff

xk−1(tk−1)
(du, dv)

Q[0]
(
Mk,eff

−1 , (du, dv)
)
= Γeff

x1(t1)
(du, dv)

Mk,eff
−1 = (x1(t1), y1,1(t1))

Mk,eff
0 = (x0(t0), y0,0(t0))

Figure 4.8: Effective interaction chain.

§4.4.3 Hierarchical multi-scale limit theorems

First we present and discuss the scaling of the effective process. Afterwards we do
the same for the full process.

• Effective process

We present one of our main theorems, the hierarchical mean-field limit for the effective
process. We will use the process and notation introduced in Section 4.4.2.

Theorem 4.4.2 (Hierarchical mean-field: the effective process). Suppose that
the initial state of the hierarchical system is given by (4.21). Let L(N) be such that
limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. For k ∈ N and tk, . . . , t0 ∈ (0,∞),

set t̄ = NkL(N) +
∑k
n=0N

ntn.

(a) For k ∈ N,

lim
N→∞

L
[(
Θeff,(l),ΩN (t̄ )

)
l=k+1,k,...,0

]
= L

[
(M eff,k

−l )−l=−(k+1),−k,...,0

]
. (4.84)
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(b) For k ∈ N,

l > k : lim
N→∞

L
[(

Θeff,(l),ΩN (t̄+Nkt)
)
t>0

]
= δ(ϑl,θyl )

,

l = k : lim
N→∞

L
[(

Θeff,(l),ΩN (t̄+N lt)
)
t>0

]
= L

[(
zeff
k,Meff,k

−(k+1),x

(t)

)
t>0

]
,

l < k : lim
N→∞

L
[(

Θeff,(l),ΩN (t̄+N lt)
)
t>0

]
= L

[(
zeff
l,Meff,k

−(l+1),x

(t)

)
t>0

]
,

(4.85)
where the initial laws of the limiting processes are given by (see Fig. 4.8)

L
[
zeffk,Mk

−(k+1),x
(0)
]
= Γ

eff,(k)

Mk
−(k+1),x

,

L
[
zeffk,Mk

−(k+1),x
(0)
]
= Γ

eff,(k)

Mk
−(l+1),x

,

Γ
eff,(l)

Mk
−(l+1)

=

∫
[0,1]2

· · ·
∫
[0,1]2

Γ
eff,(k)

Mk
−(k+1)

(duk) · · ·Γeff,(l+1)
ul+2

(dul+1)Γ
eff,(l)
ul+1

(4.86)

Theorem 4.4.2 can be interpreted as follows. The statement in (a) shows that if
we look at the effective process on multiple space-time scales simultaneously, then
the joint distribution of the different block averages is the law of the two-dimensional
interaction chain defined in (4.80) and depicted in Fig. 4.8. Note that the process
(Θeff,(l),ΩN (t̄+N lt))t>0 has at each level a different colour seed-bank average as second
component, which is called the effective seed-bank. The statement in (b) describes the
law of the path on different time scales.

� On time scale t̄ + Nkt the l-block averages with l > k are not moving, i.e.,
(Θeff,(l),ΩN (t̄ + Nkt))t>0 converges to the constant process taking the value
(ϑl, θyl) = Θeff,(l),ΩN (0).

� On time scale t̄+Nkt the k-block averages have reached equilibrium. The full
k-block average feels a drift towards the full (k+1)-block average, which is still
in its initial state ϑk. Therefore migration between the k-blocks in the hierarch-
ical mean-field limit is replaced by a drift towards ϑk, and the k-blocks become
independent. This phenomenon is called decoupling (or ‘propagation of chaos’).
The resampling function for the full estimator converges to F (k)g (see (4.75)),
the average diffusion function of the k-blocks. Finally, the full k-block exchanges
individuals with the k-dormant population. Hence the k-dormant population is
the effective seed-bank on space-timescale k Both the migration and the renor-
malisation are qualitatively similar to that of the hierarchical system without
seed-bank [21]. However, the seed-bank still quantitatively affects the migration
and the resampling through the slowing-down factor Ek. (In Section 4.4.4 we
will see how the latter arises.)

� On time scale t̄+N lt the l-block averages with l < k are in a quasi-equilibrium.
The full l-block averages feel a drift towards the instantaneous value of the
(l + 1)-block average at time t̄. Therefore also the l-block averages decouple.
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The (l+1)-block average is not moving on time scale t̄+N lt, and so for t = L(N)
we see that the l-block averages equilibrate faster than the (l+1)-block averages
moves. The resampling function is given by F (l)g, which is to be interpreted as
the average diffusion function of the l-blocks. The full average interacts with
the l-blocks of the l-dormant population, which is the effective seed-bank on
level l. Again the full l-block average feels a slowing-down factor El.

Note that Theorem 4.4.2 only describes the limiting process of the combined block

average Θ̄(l),ΩN and the effective seed-bank Θ
(l),ΩN
yl . It does not provide a full de-

scription of the system, which is in Theorem 4.4.4 below. We will see later that
Theorem 4.4.2 does describe all the non-trivial components of the system.

Remark 4.4.3 (Quasi equilibria). Note that Theorem 4.4.2 does not depend on
the choice of tk, . . . , t0 ∈ (0,∞). Since at each level 0 ≤ l ≤ k we start from time t̄,
the l-block averages have already reached a quasi-equilibrium. ■

Mk
−(k+1) = (ϑk, ϑk, · · · , ϑk, θyk+1

, θyk+2
, · · · )

k + 1 times

Mk
−k = (xk(tk), xk(tk), · · · , xk(tk), yk,k(tk), θyk+1

, θyk+2
, · · · )

Mk
−(k−1) =

(
xk−1(tk−1), xk−1(tk−1), · · · , xk−1(tk−1), yk−1,k−1(tk−1), yk,k(tk), θyk+1

, θyk+2
, · · ·

)

Q[k]
(
Mk

−(k+1),du
)
= ΓMk

−(k+1)
(du)

k times

k − 1 times

Q[k−1]
(
Mk

−k,du
)
= ΓMk

−k
(du)

Q[k−2]
(
Mk

−(k−1),du
)
= ΓMk

−(k−1)
(du)

Q[0]
(
Mk

−1,du
)
= ΓMk

−1
(du)

Mk
−1 =

(
x1(t1), x1(t1), y1,1(t1), y2,2(t2), · · · , yk−1,k−1(tk−1), yk,k(tk), θyk+1

, θyk+2
, · · ·

)

Mk
0 =

(
x0(t0), y0,0(t0), y1,1(t1), y2,2(t2), · · · , yk−1,k−1(tk−1), yk,k(tk), θyk+1

, θyk+2
, · · ·

)
Figure 4.9: Full interaction chain.

• Full process

To state our second main theorem, we will again use the process and the notation as
defined in Section 4.4.2.

Theorem 4.4.4 (Hierarchical mean-field: full process). Suppose that the ini-
tial state is given by (4.21). Let L(N) be such that limN→∞ L(N) = ∞ and
limN→∞ L(N)/N = 0. For k ∈ N and tk, . . . , t0 ∈ (0,∞), set t̄ = NkL(N) +∑k
n=0N

ntn.
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(a) For k ∈ N,

lim
N→∞

L
[(

Θ(l),ΩN (t̄ )
)
l=k+1,k,...,0

]
= L

[
(Mk

−l)−l=−(k+1),−k,...,0
]
. (4.87)

(b) For k ∈ N,

l > k : lim
N→∞

L
[(

Θ(l),ΩN (t̄+Nkt)
)
t>0

]
= δ(Mk

−(k+1)
),

l = k : lim
N→∞

L
[(

Θ(l),ΩN (t̄+N lt)
)
t>0

]
= L

[(
zk,Mk

−(k+1)
(t)
)
t>0

]
,

l < k : lim
N→∞

L
[(

Θ(l),ΩN (t̄+N lt)
)
t>0

]
= L

[(
zl,Mk

−(l+1)
(t)
)
t>0

]
,

in the Meyer-Zheng topology,

(4.88)

where the initial laws of the limiting processes are given by (see Fig. 4.9)

L
[
zk,Mk

−(k+1),x
(0)
]
= Γ

(k)

Mk
−(k+1)

,

L
[
zk,Mk

−(k+1),x
(0)
]
= Γ

(l)

Mk
−(l+1)

,

Γ
(l)

Mk
−(l+1)

=

∫
s

· · ·
∫
s

∫
s

Γ
(k)

Mk
−(k+1)

(duk)Γ
(k−1)
uk

(duk−1) · · ·Γ(l+1)
l+2 (du1)Γ

(l)
ul+1

(4.89)

Remark 4.4.5 (Convergence in the Meyer-Zheng topology). Note that The-
orem 4.4.4(b) is stated in the Meyer-Zheng topology. This topology is needed because
at time-scalesN lt rates occur in(4.24) that tend to infinity asN → ∞. In Section 4.4.4
we define the Meyer-Zheng topology and explain why it is neeeded. ■

The statement in (a) shows that if we look at multiple space-time scales simul-
taneously, then the joint distribution of the different block averages behaves like the
infinite-dimensional interaction chain defined in (4.77). The statement in (b) describes
the law of the path on different times scales.

� On time scale Nkt, the l-block averages with l > k are not moving, i.e.,
(Θ(l),ΩN (t̄ + Nkt))t>0 is a constant process. However, there is a difference
between seed-banks with colour m > k and seed-banks with colour 0 ≤ m ≤ k
in the way they interact with the active population. For m > k, even the m-
dormant single colonies have not yet moved at time t̄ + Nkt, and hence are
still in their initial states, with expectations (θym)∞m=l+1. Therefore, also the
l-block averages of m-dormant populations are still in their initial states, with
expectations (θym)∞m=l+1. For l ≤ k the m-dormant single colonies with m ≤ k

at time t̄+Nkt have already interacted with the active population. Due to this
interaction, for l > k the l-block averages ofm-dormant populations withm ≤ k
are in state ϑk instead of their initial state θym . However, on time scale t̄+Nkt
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l-block averages of m-dormant populations are not moving. (In Section 4.4.4
we explain how the shift from θym to ϑk occurs.) Also the l-block averages of
the active population are in state ϑk.

� On time scale t̄ + Nkt, the k-block averages have reached equilibrium. We
see that the active k-block average and the k-dormant k-block average evolve
together like the effective k-block process in Theorem 4.4.2. Therefore the evol-
ution of the active k-block average is slowed down by a factor Ek, the active
k-block feels a drift towards ϑk (the value of the active (k+1)-block average at
time t̄), resamples with diffusion function F (k)g, and exchanges individuals with
the k-dormant k-block. The k-dormant k-block average evolves only via inter-
action with the active k-block. The m-dormant k-block averages with colour
0 ≤ m < k equal the active k-block average and hence follow their evolution.
The m-dormant k-blocks with colour m > k are still in their initial states, since
on time scale t̄+Nkt even single colony seed-banks with colour m > k have not
yet started to interact with the active population.

� On time scale t̄ + N lt, for 0 ≤ l < k, the l-block averages are in a quasi-
equilibrium. Again, the active l-block and the l-dormant l-block average, which
is the effective seed-bank, behave as the effective process in 4.4.2. Hence, the
active l-block average feels a drift towards the instantaneous value of the active
(l + 1)-block average, which is given by the first component of the interaction
chainMk

−(l+1), resamples according to the renormalised diffusion function F (l)g,
and exchanges with the l-block of the l-dormant population. The evolution of
the active l-block average is slowed down by a factor El. The l-block of the
l-dormant population exchanges individuals with the active population. The
l-blocks of the m-dormant population with colours 0 ≤ m < l follow the active
population. The states of them-dormant population with colourm > l are given
by the corresponding components in the interaction chain Mk

−(l+1). Hence the
l-block averages with colours m > k are still in their initial states θym , because
on time scale t̄+N lt even the single dormant colonies with colour m > k have
not yet interacted with the active population. However, something interesting
is happening with the colours l < m ≤ k: they are in a state obtained on the
time scale in which they where effective, i.e., for l < m ≤ k the m-dormant
l-block average is in state ym,m(t̄ ). This happens because at time t̄ the single
colonies have already interacted with the active population, but on time scale
N lt they do not interact anymore with the active population. (Also this effect
will be further explained in Section 4.4.4.)

Remark 4.4.6 (Comparison to system without seed-bank). Comparing The-
orem 4.4.4 with the multi-scale limit theorems derived for the hierarchical system
without seed-bank [21], [20], [25], we see that the seed-bank affects the system both
quantitatively and qualitatively. First, the active population is slowed down by the
total size of the seed-banks it has interacted with, represented by the slowing-down
factors (El)l∈N0 . Second, the interaction with the effective seed-bank on each space-
time scale is special to the system with seed-bank. Still, the decoupling of the active
component and the renormalisation transformation for the diffusion function are sim-
ilar as in the system without seed-bank.
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Remark 4.4.7 (k → ∞ limit of the interaction chain). The result in (4.85)
raises the question how the hierarchical multi-scale limit behaves for large k. We find
the following dichotomy:

lim
k→∞

L
[
(Mk

−(k+1),−k,··· ,0)
]
= L [(M∞

k )k∈Z− ] , (4.90)

where in the clustering regime

L [(M∞
k )k∈Z− ] = θδ(1,1N0 )Z− + (1− θ)δ(0,0N0 )Z− (4.91)

and in the coexistence regime M∞ = (M∞
k )k∈Z− is a realisation of the unique entrance

law of the interaction chain at time −∞ with

lim
l→∞

M∞
−l = (θ, θ). (4.92)

In the latter case,M∞ corresponds to the equilibrium vector of block averages around
site 0, whose law agrees with that of the equilibrium block averages for the mean-field
model after we take the limit N → ∞ (see [25, Proposition 6.2 and 6.3]). ■

Remark 4.4.8 (Interaction field). Theorem 4.4.4 looks at the tower of block av-
erages over a fixed site, namely, 0. In order to study the cluster formation in the
clustering regime or the equilibria in the coexistence regime, we must analyse the de-
pendence structure between the towers of block averages over different sites. We can
show that, in the limit as N → ∞, an interacting random field emerges, indexed by a
tree with countably many edges coming out of every site at every level. This random
field has the property that the averages over any two points η, η′ with d(η, η′) = l,
follow a single interaction chain in equilibrium from k + 1 until l (or from −∞ until
l in the entrance law) and, conditional on the state in l, evolve independently as the
interaction chain beyond l. This corresponds to what is called propagation of chaos of
the (l−1)-block averages given the l-block average. For the model without seed-bank
such results are described in [25, Section 0(e)]. Using our results for the model with
seed-bank above, we can in principle follow an analogous line of argument. We refrain
from spelling out the details. ■

§4.4.4 Heuristics behind the multi-scale limit

The proofs of Theorems 4.4.2 and 4.4.4 written out in Sections 6.1–9, are long and
technical. In order to help the reader appreciate these proofs, we provide the heuristics
in this section.

• Evolution of the block-averages

Recall the block averages introduced in Definition 4.2.3 and their evolution defined
in (4.24). In the limit as N → ∞, we heuristically obtain from the SSDE in (4.24)
the following results for the k-block process

(xΩN

k (t), (yΩN

m,k(t))m∈N0
)t≥0. (4.93)
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� Migration. Recall that the migration is captured by the first term of the first
equation in (4.24), i.e., the first term of the evolution of the active part of the
population. Letting N → ∞, we see that in the sum over l only the term l = 1
contributes. Hence we expect that the effective migration felt by the active
k-block average is towards xΩN

k+1(0), the initial state of the active (k + 1)-block
average. Note that the migration term in (4.24) can be written as

∑
l∈N

ck+l−1

N l−1

[
xΩN

k+l(N
−lt)− xΩN

k (t)
]
=
∑
l∈N

ck+l−1

N l−1

 1

N l

N l−1∑
k=0

xΩN

k (t)− xΩN

k (t)

 .
(4.94)

The drift towards the (k+1)-block average is therefore also a drift towards the
current average of the k-blocks in the (k+1)-block. In the limit as N → ∞, the
latter can be approximated by E[xk(t)]. Effectively, as N → ∞, the k-blocks
become independent given the the value of xΩN

k+1(0), i.e., there is decoupling.

� Resampling. Recall that the diffusion term in the evolution equation of the
active population represents the resampling. Therefore we see that the active
k-block resamples at a rate that is the average resampling rate over the k-
block. For k = 1, the resampling rate of the 1-block is the average of the
resampling ratse of the single colonies. Therefore, in the limit N → ∞, due to
the decoupling described above, we expect that the resampling rate for the 1
block is given by E[g], where the expectation is w.r.t. the quasi-equilibrium of the
single colonies. This expectation is exaclty the renormalised diffusion function
Fg (see (4.75)). For the k-block, we may interpret the diffusion function to
be the average of the diffusion function for the (k − 1)-blocks. By “induction”
we assume that the (k − 1) blocks resample at rate F (k−1)g. Hence, due to
the decoupling of the (k − 1)-blocks as N → ∞, we expect the resampling
rate for the k blocks to equal E[F (k−1)g], where the expectation is w.r.t. the
quasi-equlibrium of the (k − 1)-blocks. This yields another iteration of the
renormalisation transformation (see (4.76)). Hence, we expect the diffusion
function for the k-blocks to converge to F (k)g.

� Exchange with the seed-bank. Recall that the last term of the first equation
in (4.24) and the second equation in (4.24) together describe the exchange of the
active k-block with the m-dormant k-block. To describe the limiting behaviour
as N → ∞, we distinguish three cases: 0 ≤ m < k, m = k, m > k.

– If 0 ≤ m < k, then we see that the rate of exchange between the active
k-block and the m-dormant k-block tends to infinity as N → ∞. We
therefore expect them to equalise, i.e.,

lim
N→∞

L
[(
xΩN

k (t)− yΩN

m,k(t)
)
t>0

]
= δ0, (4.95)

where 0 should be interpreted as the process equal to 0, (0)t>0. Hence we
see that m-dormant k-block follows the active k-block immediately. (To
formalise this fact, we need the Meyer-Zheng topology [59].)

– If m = k, then there is a non-trivial exchange between the active k-block
and the k-dormant k-block.
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– If m > k, then the exchange rate between the active k-block and the m-
dormant k-block tends to zero as N → ∞.

Thus, only the k-dormant k-block has a non-trivial interaction with the active
k-block. We express this by saying that on space-time scale k the k-dormant
population plays the role of the effective seed-bank.

• Limiting evolution of the block-averages

To determine the limiting evolution of the full block-averages process, we first have a
look at the limiting evolution of the effective process.

The effective process. To determine the limit as N → ∞ of (4.24), we need
to get rid of the diverging rates. Instead of only looking at the k-block process
(xΩN

k (t), (yΩN

m,k(t))m∈N0
)t≥0, which evolves according to (4.24), we look at the effective

k-block process defined as (
x̄ΩN

k (t), yΩN

k,k (t)
)
t≥0

, (4.96)

where we abbreviate

x̄ΩN

k (t) =
xΩN

k (t) +
∑k−1
m=0Kmy

ΩN

m,k(t)

1 +
∑k−1
m=0Km

. (4.97)

By (4.95) and the heuristic discussion given above, the process in (4.96) equals
(xΩN

k (t), yΩN

k,k (t))t≥0 in the limit as N → ∞, i.e., it describes the joint distribution
of the active k-block and the effective dormant k-block, which is the k-dormant k-
block. Using (4.24), we see that the process in (4.96) evolves according to the SSDE

dx̄ΩN

k (t) = Ek
∑
l∈N

ck+l−1

N l−1

[
xΩN

k+l(N
−lt)− xΩN

k (t)
]
dt

+ Ek

√√√√ 1

Nk

∑
ξ∈Bk(0)

g(xξ(Nkt)) dwk(t)

+ Ek

∞∑
m=k

NkKmem
Nm

[
yΩN

m,k(t)− xΩN

k (t)
]
dt,

dyΩN

k,k (t) = ek
[
xΩN

k (t)− yΩN

k,k (t)
]
dt.

(4.98)

In (4.98) no infinite rates appear anymore. In the limit as N → ∞, by (4.95) we can
approximate

xΩN

k (t) ≈ yΩN

m,k(t), 0 ≤ m < k, (4.99)

such that

xΩN

k (t) ≈ x̄ΩN

k (t). (4.100)
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We can therefore approximate (4.98) by

dx̄ΩN

k (t) = Ek
∑
l∈N

ck+l−1

N l−1

[
x̄ΩN

k+l(N
−lt)− x̄ΩN

k (t)
]
dt

+ Ek

√√√√ 1

Nk

∑
ξ∈Bk(0)

g
(
x̄ξ(Nkt)

)
dwk(t)

+ Ek

∞∑
m=k

NkKmem
Nm

[
yΩN

m,k(t)− x̄ΩN

k (t)
]
dt,

dyΩN

k,k (t) = ek
[
x̄ΩN

k (t)− yΩN

k,k (t)
]
dt.

(4.101)

Hence, in the limit as N → ∞, the process in (4.96) becomes autonomous. Moreover,
assuming that limN→∞ x̄ΩN

l+1(0) = ϑl, we see that (4.101) approaches the effective
process defined in (4.69), with

θ = ϑl, E = Ek, c = ck, e = ek, K = Kk, g = F (k)g. (4.102)

In particular, we see that the slowing-down constant Ek arises because the active
population is the only part of the first component of (4.96). Note that therefore only
a part, the active part, from the first component migrates, resamples and exchanges
with the seed-bank. Due to the infinite rates, the active population “drags along all
the fast seed-banks with total size

∑k−1
m=0Km”. This causes the slowing down factors

Ek.

Since there are no infinite rates in the evolution of the effective process, we can use
the classical path space topology. This allows us in the proof in Sections 6.1–9 to build
on techniques developed for the hierarchical mean-field model without seed-bank in
[20], [25]. It turns out that the effective process is very useful in our analysis.

From the effective process to the full process. For large N , by (4.99) and
(4.100), the evolution of our original process (xΩN

k (t), (yΩN

m,k(t))m∈N0)t≥0 can be ap-
proximated by

dx̄ΩN

k (t) ≈ Ek
∑
l∈N

ck+l−1

N l−1

[
x̄ΩN

k+l(N
−lt)− x̄ΩN

k (t)
]
dt

+ Ek

√√√√ 1

Nk

∑
ξ∈Bk(0)

g(x̄ξ(Nkt)) dwk(t)

+ Ek

∞∑
m=k

NkKmem
Nm

[
yΩN

m,k(t)− x̄ΩN

k (t)
]
dt,

yΩN

k,k (t) = x̄ΩN

k (t),

dyΩN

k,k (t) = ek
[
x̄ΩN

k (t)− yΩN

k,k (t)
]
dt,

yΩN

k,k (t) = yΩN

m,k(0).

(4.103)
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By the ergodic theorem for exchangeable measures, we can assume that

lim
N→∞

x̄ΩN

k+1(0) = ϑk a.s. (4.104)

We expect that (4.103) approaches (4.67) with

θ = ϑk, E = Ek, c = ck, e = ek, K = Kk, g = F (k)g. (4.105)

To prove that

lim
N→∞

L[yΩN

m,k(t)] = lim
N→∞

L[x̄ΩN

k (t)], 0 ≤ m < k − 1, (4.106)

we need the Meyer-Zheng topology explained in Section 4.4.1. In the proof in Sec-
tions 6.2–9 we show how the above approximations can be made rigorous.

Conserved quantities. Note that, by (4.24) and (4.94), for each k ∈ N0

E

[
xΩN

k (t) +
∑
m∈N0

Kmy
ΩN

k (t)

1 +
∑
m∈N0

Km

]
= θ, t ≥ 0, (4.107)

is a conserved quantity. For each k ∈ N we obtain that for l ≥ k

lim
N→∞

E

[
xΩN

k (t) +
∑l
m=0Kmy

ΩN

k (t)

1 +
∑l
m=0Km

]
= ϑl, (4.108)

is a conserved quantity. For the effective process, (4.101) implies that

d

dt
E[x̄ΩN

k (t)] = EkKkek

(
E[yΩN

k,k (t)]− E[x̄ΩN

k (t)]
)
,

d

dt
E[yΩN

k,k (t)] = ek

(
E[x̄ΩN

k (t)]− E[yΩN

k,k (t)]
)
.

(4.109)

Recall that

E[x̄ΩN

k (0)] = E

[
xΩN

k (0) +
∑k−1
m=0Kmy

ΩN

m,k(0)

1 +
∑k−1
m=0Km

]
= ϑk−1, E[yΩN

k,k (0)] = θyk . (4.110)

Therefore we can solve (4.109) explicitly as

E[x̄ΩN

k (t)] = ϑk +
EkKk

1 + EkKk
(ϑk−1 − θyk) e

−(EkKk+1)ekt,

E[yΩN

k,k (t)] = ϑk −
1

1 + EkKk
(ϑk−1 − θyk) e

−(EkKk+1)ekt.

(4.111)

The above computation shows what happens to E[x̄ΩN

k (t)] if we move one space-
time scale up in the hierarchy, namely, a new seed-bank starts interacting with the
active population. This causes that ϑk−1 is pulled a bit towards θyk , so that also

E[x̄ΩN

k (t)] changes a bit. Each new seed-bank that opens up changes the expectation
of the active population, which results in the sequence (θx, ϑ0, ϑ1, ϑ2, . . .) for the
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expectation of the active population on space-time scales {0, 1, 2, 3, · · · }. From (4.94)
we see that the drift of x̄ΩN

k (t) is towards

x̄ΩN

k+1(N
−1t) =

1

Nk

Nk−1∑
k=0

xΩN

k (t) ≈ E[x̄ΩN

k (t)], (4.112)

where the last approximation can be made because the k-blocks decouple. Hence, in
the limit as N → ∞, once the k-blocks are in a quasi-equilibrium we can replace the
drift towards x̄ΩN

k+1(N
−1t) by a drift towards E[x̄ΩN

k (t)] = ϑk.

Shifting averages. Recall the full estimator process (Θ(l),ΩN (t))t>0 defined in
(4.71). Equation 4.23 implies that the evolution of the estimator process is given
by

dΘ(l),ΩN
x (t) =

∞∑
n=l+1

cn−1

Nn−1
[Θ(n),ΩN
x (t)−Θ(l)

x (t)] dt

+

√
1

N2l

∑
ξ∈Bl

g
(
xξ(t)

)
dw(t)

+
∑
m∈N0

Kmem
Nm

[Θ(l),ΩN
ym (t)−Θ(1),ΩN

x (t)] dt,

dΘ(l),ΩN
ym (t) =

em
Nm

[Θ(l),ΩN
x (t)−Θ(l),ΩN

ym (t)] dt, m ∈ N0.

(4.113)

Looking at the estimator process (Θ(l),ΩN (t))t>0 on time scale Nkt, we see that

dΘ(l),ΩN
x (Nkt) =

∞∑
n=l+1

cn−1

Nn−1−k

[
Θ(n),ΩN
x (Nkt)−Θ(l),ΩN

x (Nkt)
]
dt

+

√√√√Nk

N2l

∑
ξ∈Bl

g
(
xξ(Nkt)

)
dw(t)

+
∑
m∈N0

Kmem
Nm−k

[
Θ(l),ΩN
ym (Nkt)−Θ(l),ΩN

x (Nkt)
]
dt,

dΘ(l),ΩN
ym (Nkt) =

em
Nm−k

[
Θ(l),ΩN
x (Nkt)−Θ(l),ΩN

ym (Nkt)
]
dt, m ∈ N0.

(4.114)

From (4.114) we get that, on time scale Nkt, for all l ≥ k + 1,

Θ(l),ΩN (Nkt) =
Θ

(l),ΩN
x (Nkt) +

∑l−1
m=0KmΘ

(l),ΩN
ym (Nkt)

1 +
∑l−1
m=0Km

, t ≥ 0, (4.115)

is a conserved quantity in the limit as N → ∞, and for t ≥ 0,

lim
N→∞

Θ(l),ΩN (Nkt) =
θx +

∑l−1
m=0Kmθym

1 +
∑l−1
m=0Km

= ϑl, in probability. (4.116)
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For m > k, also Θ
(l),ΩN
ym (Nkt) is a conserved quantity, and

lim
N→∞

Θ(l),ΩN
ym (Nkt) = θym , t ≥ 0. (4.117)

However, for l ≥ k+1, Θ
(l),ΩN
x (Nkt) and (Θ

(l),ΩN
ym (Nkt))km=0 are not conserved quant-

ities in the limit as N → ∞. Note that from 4.24 we heuristically see that the full
l-block estimator process (Θ(l),ΩN (Nkt))t≥0 with l > k converges to the process(

Θ(l)
x (t),

(
Θ(l)
ym(t)

)
m∈N0

)
t>0

, (4.118)

which evolves according to

dΘ(l)
x (t) = Ek−1Kkek[Θ

(l)
yk
(t)−Θ(l),ΩN

x (t)] dt,

Θ
(l)
ym(t) = Θ

(l)
x (t), m < k,

dΘ
(l)
yk (t) = ek[Θ

(l)
x (t)−Θ

(l)
yk (t)] dt, m = k,

Θ
(l)
ym(t) = θym , m > k.

(4.119)

This system can be explicitly solved as

Θ(l)
x (t) =

Θ
(l)
x (0) + Ek−1KkΘ

(l)
yk (0)

1 + Ek−1Kk

+
Ek−1Kk

1 + Ek−1Kk
[Θ(l),ΩN
x (0)−Θ(l)

yk
(0)] e−(Ek−1Kkek+ek)t,

Θ
(l)
ym(t) = Θ

(l)
x (t), m < k,

Θ
(l)
yk (t) =

Θ(l)
x (0)+Ek−1KkΘ

(l)
yk

(0)

1+Ek−1Kk

− 1
1+Ek−1Kk

[Θ
(l),ΩN
x (0)−Θ

(l)
yk (0)] e

−(Ek−1Kkek+ek)t, m = k,

Θ
(l)
ym(t) = θym , m > k.

(4.120)
The latter shows that, each time we enter a new space-time scale, all the large active
blocks interact with the large effective dormant blocks until they equalise. Thus, on
each space-time scale, all the active l-blocks and the dormant l-blocks of colour m ≤ l

move for a short period of time. As a consequence, the value of Θ
(l)
x (0) depends on

the scaling we choose. To illustrate this, we note that

lim
N→∞

Θ(l),ΩN
x (0) = θx,

lim
N→∞

Θ(l),ΩN
x (L(N) + t) = ϑ0,

lim
N→∞

Θ(l),ΩN
x ((L(N)Nn +Nnt)) = ϑn, 0 ≤ n ≤ k.

(4.121)

Hence under the scaling Nkt the limN→∞
L(N)Nn+Nnt

Nk = 0 and therefore for consist-
entcy one would like to have

lim
N→∞

Θ(l),ΩN
x (0) = lim

N→∞
Θ(l),ΩN
x

(
NkL(N) + t

Nk

)
= lim
N→∞

Θ(l),ΩN
x

(
NkL(N)Nn +Nnt

Nk

)
0 ≤ n ≤ k,

(4.122)
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but this contradicts with (4.121). Hence, if (t(N))N∈N is a sequence such that
limN→∞Nkt(N) = 0, then the value of the limit

lim
N→∞

Θ(l),ΩN
x (Nkt(N)) (4.123)

depends on (t(N))N∈N. Moreover, to obtain a limiting process for (Θ(l),ΩN (Nkt))t≥0

we need convergence also at time 0, while it is not clear what Nkt ↓ 0 means. To
circumvent these subtleties, we look at the process at times t > 0 and use as starting
time t̄ defined in Theorem 4.4.2.

From (4.120) it follows that, for l ≥ k,

lim
N→∞

Θ(l),ΩN
x (t̄ ) = ϑk, in probability,

lim
N→∞

Θ(l),ΩN
ym (t̄ ) = ϑk, m ≤ k, in probability,

lim
N→∞

Θ(l),ΩN
ym (t̄ ) = θym , m > k in probability.

(4.124)

Note that the shifting of averages mentioned earlier is closely related to the conserved
quantities discussed in Section 4.4.4 because, for large N ,

lim
N→∞

Θ(l),ΩN
x (t̄ ) ≈ E[xΩN

k ], (4.125)

where the expectation is taken in the quasi-equilibrium the k-blocks have attained
after scaling with time t̄.

• Formation of the interaction chain

In Section 4.4.4 we saw how subsequent space-time scales are connected via the mi-
gration term. In this section we show how the interaction chain arises from this
connection. We first show how the effective interaction chain arises for the effective
process. Then we show how the full interaction chain is formed, by studying the slow
seed-banks.

Connections between different space-time scales Let t̄ be as in Theorem 4.4.2.
From (4.113) it follows that the process (Θ(l),ΩN (t̄+N lt))t>0 evolves according to

dΘ(l),ΩN
x (t̄+N lt) =

∞∑
n=l+1

cn−1

Nn−1−l [Θ
(n),ΩN
x (t̄+N lt)−Θ(l)

x (t̄+N lt)] dt

+

√
1

N l

∑
ξ∈Bl

g
(
xξ(t̄+N lt)

)
dw(t)

+
∑
m∈N0

Kmem
Nm−l [Θ

(l),ΩN
ym (t̄+N lt)−Θ(1),ΩN

x (t̄+N lt)] dt,

dΘ(l),ΩN
ym (t̄+N lt) =

em
Nm−l [Θ

(l),ΩN
x (t̄+N lt)−Θ(l),ΩN

ym (t̄+N lt)] dt, m ∈ N0.

(4.126)

168



§4.4. Main results: N → ∞, renormalisation and multi-scale limit

C
h
a
p
t
e
r
4

Therefore, in the limit as N → ∞, the active population Θ
(l),ΩN
x (t̄+N lt) feels a drift

towards the (l + 1)-block average Θ
(l+1),ΩN
x (t̄+N l+1t). If l = k, then

lim
N→∞

L[Θ(k+1),ΩN (t̄+Nkt)] = lim
N→∞

L[Θ(k+1),ΩN (t̄)], (4.127)

since the (k + 1)-block has not yet started to move at time t̄+Nkt. From (4.124) it
follows that

lim
N→∞

Θ(k+1),ΩN
x (t̄+Nkt) = ϑk in probability. (4.128)

Therefore the drift of the active population Θ
(l),ΩN
x (t̄ + N lt) is towards ϑk. Since

t̄ > L(N)Nk, the process Θ(k),ΩN (t̄+Nkt) has, in the limit N → ∞, already reached
its equilibrium, which is denoted by Γϑ̄k

, where

ϑ̄k = (ϑk,

k+1 times︷ ︸︸ ︷
ϑk, · · · , ϑk, θyk+1

, θyk+2
, · · · ), (4.129)

so that we recognise (ϑ̄k) = Mk
−(k+1). From (4.124) with l = k + 1 we see that

(ϑ̄k) =Mk
−(k+1) represents the state of Θ(k+1),ΩN (t̄).

If we look on time scale t̄ + Nk−1t, then we see that the active (k − 1)-block
averages feels a drift towards the active k-block average. The active k-block does not
move on time scale Nk−1, but it has already moved at time t̄. At time t̄ the active

k-block has even reached its quasi-equilibrium, given by Γ
(k)
ϑk

. Thus, the drift of the
active (k − 1)-block average is towards the instantaneous state of the active k-block

average, which has distribution Γ
(k)

ϑ̄k
. This explains the first step in the interaction

chain.
For 0 ≤ l < k, the active l-block average feels a drift towards the (l + 1)-block

average. The latter does not evolve on time scaleN lt, but it has already moved at time

t̄. Therefore it is no longer in its initial state, but in a quasi-equilibrium Γ
(l+2)
u , where

u is the value of the active (l+1)-block averages determined via the interaction chain,
recall Figure 4.9. This explains how the different space-time scales are connected via
the active block averages. The states of the different seed-bank averages is a little bit
more complicated. Below we give a very short heuristic explanation of the different
seed-banks in the interaction chain.

For the effective process (Θeff,(l),ΩN (t))t>0 instead of the full process (Θ(l),ΩN (t))t>0,
we can consider in (4.113) only the active block average and the effective seed-bank
average with m = l (recall that the full block average equals the active block average).

According to the above explanation, we have to replace Γ
(k)

ϑ̄k
by Γ

eff,(k)
ϑk

and Γ
(l)
u by

Γ
eff,(l)
u . Hence we find the effective interaction chain defined in (4.80) and depicted in

Figure 4.8.

Slow seed-banks. From (4.124) we see that if l ≥ k and we use the scaling t̄,
then all l-blocks of seed-banks with colour 0 ≤ m ≤ k equal ϑk, and all l-blocks of
seed-banks with colour m > k equal their initial values θym . Something interesting
happens when we choose 0 ≤ l < k and use the scaling t̄+N lt. The single colonies of
seed-banks with colour 0 ≤ m < l on time scale t̄+N lt follow the active population,
and hence their l-block averages equal the l-block average of the active population.
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The l-block average of the seed-bank with colour l has a non-trivial interaction with
the active l-block. The l-blocks of seed-banks with colour m > k have not yet moved
and hence are still in their initial states (θym)∞m=k+1. However, (4.126) implies that
the single colonies of the seed-banks with colour k ≥ m > l are not moving on time
scale t̄+N lt, even though they had already moved at time t̄. Therefore the l-blocks
averages of seed-banks with colour l < m ≤ k are no longer in their initial state at
time t̄. Note that they are also not in the state ϑk, since this is the state of their
k-block averages and not of their l-block averages. The single colony seed-banks with
colour l < m ≤ k are in the state given by

ym,0(t̄ ) =

∫ t̄

0

ds
em
Nm

[x0(s)− ym,0(s)]. (4.130)

Hence, for large N ,

ym,0(t̄) ≈
∫ L(N)Nk+Nktk+···+Nmtm

0

ds
em
Nm

[x0(s)− ym,0(s)]. (4.131)

Similarly, for the l-block average with colour m we have

Θ(l),ΩN
ym (t̄ ) =

∫ t̄

0

ds
em
Nm

[Θ(l),ΩN
x (s)−Θ(l),ΩN

ym (s)]

≈
∫ L(N)Nk+Nktk+···+Nmtm

0

ds
em
Nm

[Θ(l),ΩN
x (s)−Θ(l),ΩN

ym (s)].

(4.132)

Thus, we see that the state of Θ
(l),ΩN
ym (t̄) is completely determined at time L(N)Nk+

Nktk+ · · ·+Nmtm, i.e., the last time before t̄+N lt that the single colony seed-banks
of colour m had an opportunity to move. Up to time L(N)Nk +Nktk + · · ·+Nmtm,
the single colony seed-banks with colour m interact at a very slow rate with the active
single colonies, and similarly for the l-blocks. Therefore effectively the colour-m seed-
bank interacts with a “time-average on scale Nmtm” of the active population. On
time scale Nmtm, a single active colony migrates very fast in its (m− 1)-block. As a
consequence at time t̄+Nmtm individuals that start from a particular colony, e.g. site
0, are spread uniformly over the m-block containing this site. Hence the interaction of
a single m-dormant colony with the active population can be intuitively interpreted
as an interaction with the active m-block, and similarly for an m-dormant l-block.
Once we move to lower time scales, the m-dormant single colonies do not interact
with the active colony anymore. In the detailed proofs we show that one consequence
of this is that, for l < m,

Θ(l),ΩN
ym (t̄+N lt) ≈ Θ(l),ΩN

ym (L(N)Nk +Nktk + · · ·+Nmtm)

≈ Θ(m),ΩN
ym (L(N)Nk +Nktk + · · ·+Nmtm).

(4.133)

Thus, the l-block averages of colours l ≤ m ≤ k equal the state of the corresponding
m-block. This is the (m+ 2)-th component of the interaction chain at level l.

Conclusion. Combining the intuitive descriptions in Sections 4.4.4-4.4.4, we see
how Theorems 4.4.2 and Theorems 4.4.4 come about. Their proofs will rely on coup-
ling techniques and a detailed analysis of the SSDEs. This analysis will be done in
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several steps. In Sections 6.1–6.3 we first deal with a simplified system, the mean-field
model, for which we derive the McKean-Vlasov limit and the mean-field finite-systems
scheme. In Sections 7–9 we extend our analysis to finitely many hierarchical levels.
In particular, we go through the following list of systems of increasing complexity,
each being a simplified version of the system defined by (4.19) and each capturing a
key feature:

(a) Two-colour mean-field finite-systems scheme (Section 7.1).

(b) Two-level hierarchical mean-field system (Section 8.1).

(c) Finite-level mean-field system (Section 9.1).

In Section 9 we put the pieces together to prove the multi-scaling for the infinite-level
system given in Theorems 4.4.2 and 4.4.4.

§4.5 Main results N → ∞: Orbit and cluster forma-
tion

In the hierarchical mean-field limit we say that the system clusters when the colonies
gradually form larger and larger mono-type blocks. In Section 4.5.1 we determine
whether, in the hierarchical mean-field limit, the system clusters along successive
space-time scales. How this happens is captured by the interaction chain. We intro-
duce a sequence of scaling factors (Ak)k∈N0 , where Ak is defined in terms of the rates
(ck)k∈N0 , (ek)k∈N0 , (Kk)k∈N0 and the factors (Ek)k∈N0 . Using these scaling factors,
we analyse the orbit of the renormalisation transformation and establish universality :
AkF (k)g converges as k → ∞ to the Fisher-Wright diffusion function, irrespective of
the choice of g. In Section 4.5.2 we show how the scaling factors Ak are connected to
the growth of mono-type clusters. In Section 4.5.3 we identify the asymptotics of Ak
as k → ∞ in terms of the model parameters.

§4.5.1 Orbit of renormalisation transformations

To determine whether clustering occurs, we start from larger and larger time scales
and use the interaction chain to see whether mono-type clusters are formed in the
single colonies. Recall the kernels introduced in (4.79) that describe the connection
between subsequent hierarchical levels in the interaction chain. Define the following
composition of kernels (see Fig. 4.10):

Q(n) = Q[n] ◦ · · · ◦Q[0], n ∈ N. (4.134)

In words, Q(n)(zn,dz0) is the probability density to see the population of a single
colony in state z0 given that the (n+ 1)-block average equals zn.

In Section 4.3 we identified the clustering regime for fixed N <∞. In this section
we identify the clustering regime in the hierarchical mean-field limit. In the clustering
regime, in the hierarchical mean-field limit, an interesting question is to determine
how F (n)g (recall (4.76)) scales with n. We identify the scaling and show that it does
not depend on g (see Fig. 4.11).
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n− 1

n

n+ 1

0

1

Q(n) (zn+1, dz0)

Q[n] (zn+1, dzn)

Q[n−1] (zn, dzn−1)

Q[0] (z1, dz0)

k − 1

k

k + 1

Dk−1

Dk

Dk+1

0

1

0

1 1

0

F (k−1)g

F (k)g

F (k+1)g

Fg

g

Figure 4.10: Left: The interaction chain that connects successive hierarchical levels down-
wards. The arrows on the right correspond to (4.79), the arrow on the left corresponds to
(4.134). Right: The renormalisation transformation that connects successive hierarchical
levels upwards. The vertical arrows correspond to (4.76). The horizontal arrows represent
the interaction with the effective seed-bank. The arrows on the left represent the resampling
driven by the renormalised diffusion function.

To state the clustering result, abbreviate

ϑ̄(n) = (ϑn,

n+1 times︷ ︸︸ ︷
ϑn, · · · , ϑn, θyn+1

, θyn+2
, · · · ). (4.135)

Theorem 4.5.1 (Renormalised scaling). Let ck be as in (4.5), ek and Kk as in
(4.10) and Ek as in (4.64). Define

An =
1

2

n−1∑
k=0

Ek
ck

(Ekck + ek)

(Ekck + ek) + EkKkek
, n ∈ N. (4.136)

Then
lim
n→∞

Q(n)
(
ϑ̄(n), ·

)
= (1− θ) δ(0,0N0 ) + θ δ(1,1N0 ) (4.137)

if and only if
lim
n→∞

An = ∞. (4.138)

Moreover, if (4.138) holds, then for all g ∈ G,

lim
n→∞

AnF (n)g = gFW pointwise, (4.139)

with gFW(x) = x(1− x), x ∈ [0, 1].

The proof of Theorem 4.5.1 is given in Section 10. The scaling factors An can be
interpreted as clustering coefficients: in Section 4.5.2 we will show that the faster the
An grow to infinity, the faster we expect to see clusters grow. The property in (4.137)
corresponds to the clustering regime. According to (4.139), even though An depends
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on the choice of the sequences K, e, c in (4.5) and (4.10), the limit AnF (n)g as n→ ∞
is universal : irrespective of the choice of g ∈ G, the limit is the standard Fisher-Wright
diffusion function gFW. Thus, gFW is the global attractor of the renormalisation
transformation (see Fig. 4.11).

s

s
s s

s

s
g

A1F (1)g

A2F (2)g A3F (3)g

A4F (4)g

gFW

Figure 4.11: Flow of the iterates F (n)g, n ∈ N0, of the renormalisation transformation acting
on the class G. After multiplication by An, the flow is globally attracted by gFW.

§4.5.2 Growth of mono-type clusters

In the clustering regime we are interested in how fast mono-type clusters grow in
space over time. For the system on Zd and ΩN without seed-bank the growth rate
has been studied in detail. Different growth rates were found for strongly recurrent
and critically recurrent migration. Typical examples on ΩN are migrations with
coefficients ck = ck with c ∈ (0, 1), respectively, ck = C with C ∈ (0,∞). Typical
examples on Z, respectively, Z2 are migrations with zero mean and finite variance.
For these models the following behaviour occurs.

� In the strongly recurrent case, mono-type clusters grow fast and cover a volume
that increases at time t at a rate that is given by the Green function up to
time t of the underlying random walk, times a certain random constant that
can be determined explicitly and that is independent of the diffusion function
g ∈ G [33], [51]. The cluster growth is monitored by considering families of balls
growing in time at such a speed that, starting from a translation invariant and
ergodic initial state, the mean of the configuration in the ball is still close to
the starting mean but begins to move. Fast clustering means that the cluster
covers multiples of a scale that eventually lies in every finite family of balls with
the above property.

� In the critically recurrent case, the volume grows only moderately fast, like
N (1−U)t as t → ∞, with U ∈ [0, 1] a random variable. In other words, the
cluster sizes have random orders of magnitude, an effect known as diffusive
clustering. For ck = C ∈ (0,∞), k ∈ N0, the distribution of U can be identified
by studying the fraction of active individuals of type 1 in a ball of size N (1−u)t,
which can be shown to converge to V (log 1

1−u ) as t → ∞ with (V (s))s≥0 the
standard Fisher-Wright diffusion, irrespective of the choice of g ∈ G [35], [36].
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� For more general migration it is possible that mono-type clusters grow slower
than any positive power of t as t → ∞. This occurs for recurrent migration in
which the Green function up to time t grows like o(log t). For this regime only
few results are available [25].

From the perspective of explaining universality in g ∈ G in the hierarchical mean-
field limit N → ∞, the above type of behaviour has been studied in detail in [25] and
[41] for the Fleming-Viot model, respectively, the Cannings model without seed-bank.
The renormalisation analysis for the model with seed-bank allows us to study how
the seed-bank affects the cluster growth. In what follows we give a sketch of three
regimes of cluster growth.

Types of clustering. If a ball in ΩN lies in a mono-type cluster, then the block
average of the active and the dormant components in this ball are all close to either 0
or 1. We can therefore analyse the growth rate of mono-type clusters by analysing at
which hierarchical level block averages hit 0 or 1 in the limit as N → ∞. To that end,
we look at the interaction chain Mk

−l(k) for k → ∞, where the level scaling function

l : N0 → N0 is non-decreasing with limk→∞ l(k) = ∞ and is suitably chosen such that
we obtain a non-trivial clustering limiting law, i.e.,

lim
k→∞

L
[
Mk

−l(k)
]
= L

[
θ̂
]
, (4.140)

where the limiting sequence of random frequencies θ̂ satisfies

0 < P
(
θ̂ ∈ {0N0 , 1N0}

)
< 1. (4.141)

In line with [25] and [22], in order to analyse the growth of mono-type clusters on
multiple space-time scales in the hierarchical mean-field limit, it is natural to consider
a family of non-decreasing functions lχ : N0 → N0, χ ∈ I ⊆ [0,∞), called the cluster
scales, satisfying (4.140)–(4.141):

(1) Fast clustering: limk→∞ lχ(k)/k = 1 for all χ ∈ I.

(2) Diffusive clustering: limk→∞ lχ(k)/k = κ(χ) for all χ ∈ [0, 1], where χ 7→ κ(χ)
is continuous and non-increasing with κ(0) = 1 and κ(1) = 0.

(3) Slow clustering: limk→∞ lχ(k)/k = 0 for all χ ∈ I. (This regime borders with
the regime of coexistence.)

We write (M∞
χ )χ∈I with M∞

χ = limk→∞Mk
−lχ(k) to denote the cluster process.

Remark 4.5.2. Examples are:

(1) I = N0, lχ(k) = k − χ.

(2) I = [0, 1], lχ(k) = ⌊(1− χ)k⌋.

(3) I = [0, 1], lχ(k) = ⌊L(k1−χ)⌋ with L(0) = 0, L non-decreasing and sublinear.
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In words, the clusters cover blocks of level: (1) k−χ; (2) ⌊(1−χ)k⌋; (3) L(k1−χ). For
the model without seed-bank and with migration coefficients ck = ck with c ∈ (0, 1),
case (1) is realised with a Markov chain (M∞

l )l∈N0 as scaling limit, while for ck = C,
case (2) is realised with a time-transformed Fisher-Wright diffusion in χ as scaling
limit. (For finite N , this corresponds to the first and the second example given in the
first paragraph of this section.) For the model without seed-bank, these scales have
been shown to satisfy the required conditions. Case (3) also appears for the model
without seed-bank, but detailed information on scales and scaling limits is lacking. As
we will see below, seed-banks can slow down cluster growth, so case (3) is worthwhile
to be studied in more detail. ■

Recall (4.136). Fast clustering corresponds to Ak ≫ k, diffusive clustering to
Ak ≍ k, and slow clustering to Ak ≪ k for large k. Theorem 4.5.3 below shows that,
subject to (4.52) and (4.53), all three regimes are possible for the model with seed-
bank. The regimes are the same as for the model without seed-bank when ρ < ∞,
but different when ρ = ∞.

For systems without seed-bank, examples of the three types of clustering can be
found in the literature: diffusive clustering in [2], [16] (voter model on Z, respectively,
Z2) and in [20], [35], [25], [51] (interacting Fleming-Viot processes on ΩN withN <∞,
respectively, N → ∞), all types of clustering in [22], [52] , [71] (interacting Feller
diffusions on ΩN with N → ∞) and in [41], [42] (interacting Cannings processes on
ΩN in non-random and random environment with N → ∞).

For the model with seed-bank we have to use the asymptotics of (Ak)k∈N to identify
the set I and the family (lχ(·))χ∈I , and show that (Mk

−lχ(k))χ∈I converges as k → ∞
to a Markov process, which we want to identify.

Computations. In the following we demonstrate how we can carry out the above
task. The key idea is to study first and second moments of the interaction chain, as
well as sums of variances in order to get a handle on the quadratic variation process.
To that end we calculate

V k−l = the conditional variance of the active part of Mk
−l given M

k
−(l+1) (4.142)

and consider the sum of random variables Ak,n =
∑

−(k+1)≤−l≤−n V
k
−l, n ∈ N0. In

order for the system to cluster, we must have limk→∞Ak,n = 0 for every n ∈ N0. The
volatility profile is given by

(pχ(k))χ∈[0,1], pχ(k) = Ak,lχ(k)/Ak,0. (4.143)

This profile is a random variable that depends on the interaction chain up toMk
−lχ(k).

Since Ak,lχ(k) = Ak,0 − Alχ(k)−1,0, we have pχ(k) = (Ak,0 − Alχ(k)−1,0)/Ak,0. For
diffusive clustering, for instance, we want to show that

lim
k→∞

pχ(k) = 1− κ(χ), χ ∈ [0, 1], (4.144)

while for fast clustering the limit is 0 and for slow clustering the limit is 1. From
(4.139) we know that the scaled renormalised diffusion function AnF (n)(g) tends to
the standard Fisher-Wright diffusion function as n → ∞. Since the latter hits the
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boundary {0, 1} after some finite time, the coefficients An describe the speed at which
the interaction chain hits this boundary. We next make this idea precise and show
how it can be used to obtain information about the growth of mono-type clusters.

The kernels defined in Section 4.5.1 allow us to compute the first and second
moments of all the block averages, which will be done in Section 10.1 (Propositions
10.1.1–10.2.2). In particular, using the interaction chain starting between at −n and
running until −m with −n < −m ≤ 0, and considering the m-block averages on time
scale Nmt in the limit N → ∞, we find that the variance of the active component xnm
of Mn

−m equals

Var(xnm) = E
[
(xnm − ϑn)

2
]
= Anm(F (n+1)g)(ϑn), (4.145)

where

Anm =
1

2

n∑
k=m

Ek
ck

(Ekck + ek)

(Ekck + ek) + EkKkek
. (4.146)

(Note that An = An−1
0 .) On the other hand, since xnm ∈ (0, 1) we have Var(xnm) ∈

(0, 1) and Anm(F (n+1))(ϑn) ∈ (0, 1). Taking m = 0, we get (F (n+1)g)(ϑn) ∈ (0, 1
An

0
).

This implies that

(F (n+1)g)(ϑn) =

∫
[0,1]2

(Fmg)(xm)Q(n)
m ((ϑn, θy,n),dzm) ∈

(
0, 1

An
0

)
. (4.147)

Since limn→∞An(F (n+1)g) = gFW, for large enoughm,n we can approximate F (m)g ≈
gFW/A

m
0 . Therefore∫

gFW
Am0

(xm)Q(n)
m ((ϑn, θy,n),dzm) ∈

(
0, 1

An
0

)
, (4.148)

or, equivalently, ∫
[0,1]2

xm(1− xm)Q(n)
m ((ϑn, θy,n),dzm) ∈

(
0,

Am
0

An
0

)
. (4.149)

Hence, if Am0 /A
n
0 < ϵ with ϵ > 0 small, then we know that with high probability

the system on time scale n has clusters with a radius of size m. (Note that for the
interaction chain this means that the variance is almost entirely centred between n
and m.) Therefore the speed at which Am0 /A

n
0 converges to zero as m,n → ∞ says

something about the speed at which monotype clusters form.
To capture the cluster growth, we must decide how we let m,n→ ∞. For this we

look for clusters of radius lχ(n) with χ ∈ I. Put

fn(lχ(n)) =
A
lχ(n)
0

An0
, (4.150)

and define, for ϵ > 0,

Xn
ϵ = inf{χ ∈ I : fn(lχ(n)) < ϵ}. (4.151)

Then the three types of clustering correspond to:
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(1) Fast clustering: limn→∞ lXn
ϵ
(n)/n = 1.

(2) Diffusive clustering: limn→∞ lXn
ϵ
(n)/n = R for some random variable R taking

values in (0, 1).

(3) Slow clustering: limn→∞ lXn
ϵ
(n)/n = 0.

In terms of the interaction chain starting from −k with k → ∞, in view of (4.145)
this corresponds to the variance in the interaction chain being concentrated near the
beginning, being spread out or being concentrated near the end.

§4.5.3 Rates of scaling for renormalised diffusion func-
tion

For the system without seed-bank, we have Kk = ek = 0 and Ek = 1 for all k ∈ N0.
Hence

An =
1

2

n−1∑
k=0

1

ck
(4.152)

and (4.137) holds if and only if ∑
k∈N0

1

ck
= ∞. (4.153)

Various subcases were analysed in [5]. For the system with seed-bank because E0 = 1
and Ek < 1 (see (4.64)), it follows from (4.136) that

An <
1

2

n−1∑
k=0

1

ck
. (4.154)

Thus we see that the seed-bank weakens clustering, i.e., enhances genetic diversity,
even in the hierarchical mean-field limit.

We identify the clustering regime in the setting where the coefficients are asymp-
totically polynomial, as in (4.52), or are pure exponential, as in (4.53). It turns out
that there is a delicate interplay between the migration and the seed-bank, result-
ing in 4 different scalings for asymptotically polynomial coefficients and 8 different
scalings for pure exponential coefficients.

Theorem 4.5.3 (Rates of scaling for diffusion function). Let ρ be as defined
in (4.14).

(I) If ρ <∞, then (4.138) holds if and only (4.153) hold, and

An ∼ 1

2(1 + ρ)

k−1∑
m=0

1

ck
. (4.155)

(II) If ρ = ∞, then (4.138) holds in the following cases:
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• Subject to (4.52) if and only if −ϕ ≤ α ≤ 1, with

− ϕ < α < 1: An ∼ C1 n
α+ϕ,

− ϕ = α < 1: An ∼ C2 log n,

− ϕ < α = 1: An ∼ C3
n1+ϕ

log n
,

− ϕ = α = 1: An ∼ C4 log log n,

(4.156)

where

C1 = 1
2AF

1−α
α+ϕ , C2 = 1

2AF (1− α), C3 = 1
2AF

1
1+ϕ , C4 = 1

2AF .

(4.157)
The values of B, β play no role for the clustering, nor for the asymptotics.

• Subject to (4.53) if and only if Kc ≤ 1 ≤ K, with

c < Ke, Kc < 1: An ∼ Ĉ1 (Kc)
−(n−1),

c < Ke, Kc = 1: An ∼ C̄1 n,

c = Ke, Kc < 1: An ∼ Ĉ2 (Kc)
−(n−1),

c = Ke, Kc = 1: An ∼ C̄2 n,

c > Ke, Kc < 1: An ∼ Ĉ3 (Kc)
−(n−1),

c > Ke, Kc = 1: An ∼ C̄3 n,

c < 1 = K : An ∼ C̃1 n
−1 c−(n−1),

c = 1 = K : An ∼ C̃2 log n,

(4.158)

where

Ĉ1 = K−1
2K(1−Kc) , Ĉ2 = (K−1)2

2(2K−1)(1−Kc) , Ĉ3 = K−1
2(1−Kc) ,

C̄1 = K−1
2K , C̄2 = (K−1)2

2(2K−1) , C̄3 = K−1
2 ,

C̃1 = 1
2(1−c) , C̃2 = 1

2 .

(4.159)

The value of e plays no role for the clustering, but does for the asymptotics.

The proof of Theorem 4.5.3 is given in Section 10. Part (I) shows that for ρ < ∞
the clustering regime is the same as for the system without seed-bank. The scaling
of An is controlled by the migration and is reduced by a factor 1/(1+ ρ) with respect
to the seed-bank. Part (II) shows that for ρ = ∞ the clustering regime is different
from that for the system without seed-bank. Clustering is harder to achieve: since
limk→∞Ek = 0 the growth rate of An is strictly smaller than without seed-bank.

Furthermore, subject to (4.52), if −ϕ < α < 1, then the growth rate of An
drops down from ≍ n1+ϕ without seed-bank to ≍ nα+ϕ with seed-bank, while if
−ϕ = α = 1, then it drops down from ≍ log n to ≍ log log n. Similarly, subject
to (4.53), if Kc < 1 < K, then the growth rate of An drops down from ≍ c−n to
≍ (Kc)−n, while if c = K = 1, then it drops down from ≍ n to ≍ log n.
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Returning to the observations made in Section 4.5.2, we see that the three clus-
tering regimes also appear in the model with seed-bank, both for ρ <∞ and ρ = ∞,
and in the latter case are accompanied by different migration coefficients. The scaling
results mentioned in Section 4.5.2 can in principle be deduced from the asymptotics
of An as n → ∞ in Theorem 4.5.3. It would be interesting to work out the details
and to identify the limiting processes that control the cluster growth.
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CHAPTER 5
Proofs long-time behaviour N < ∞

In this chapter we prove Theorems 4.3.2–4.3.3. The integral criterion for ρ = ∞
in (4.50) is explained in Section 5.1. Theorem 4.3.2 is proved in Section 5.2 and
Theorem 4.3.3 in Section 5.3.

§5.1 Explanation of clustering criterion for infinite
seed-bank

Recall Fig. 4.6. Suppose that g = dgFW, so that we have a dual. We will show that
the integral criterion in (4.50) determines whether or not two dual lineages coalesce
with probability 1. Since two lineages in the dual can only coalesce when they are
active at the same site, we need to keep track of the probabilities that the lineages are
active at a given time. Because the lineages can only migrate when they are active,
we also need to keep track of the total time they are active up to a given time.

Recall the renewal interpretation of the dual process (see Remark 4.2.9). We argue
heuristically as follows. If ρ = ∞, then the activity times σk are much smaller than
the sleeping times τk, and we may assume that τk + σk ≍ τk, k → ∞. Discretising
time, we can use the results from [1] for the intersection of two independent renewal
processes. Then the integral criterion in (4.50) can be interpreted as follows:

� If γ ∈ (0, 1), then the probability for each of the lineages to be active at time s
decays like ≍ φ(s)−1s−(1−γ) [1]. Hence the total time they are active up to time
s is ≍ φ(s)−1sγ . Because the lineages only move when they are active, the prob-

ability that the two lineages meet at time s is ≍ a
(N)
φ(s)−1sγ (0, 0). Hence the total

hazard is ≍
∫∞
1

ds [φ(s)−1s−(1−γ)]2 a
(N)
φ(s)−1sγ (0, 0). After the transformation

t = t(s) = φ(s)−1sγ , the latter turns into the integral in (4.50), modulo a con-
stant. When carrying out this transformation, we need that sφ′(s)/φ(s) → 0,
which follows from (4.49), and φ(t(s))/φ(s) ≍ 1, which follows from the bound
we imposed on ψ in (4.49) together with the fact that logφ(s)/ log s→ 0. This
computation is spelled out in Appendix B.1.

� If γ = 1, then the probability for each of the lineages to be active at time
s decays like φ̂(s)−1 [1], and so the total time they are active up to time s is
≍ sφ̂(s)−1. Recall from (4.48) that φ̂(t) = E[τ∧t] is also slowly varying.) Hence

the total hazard is ≍
∫∞
1

ds [φ̂(s)−1]2 a
(N)
φ̂(s)−1s(0, 0). After the transformation
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t = t(s) = φ̂(s)−1s (for which we can use the same type of computation as in
Appendix B.1), the latter turns into the integral in (4.50), modulo a constant.

§5.2 Scaling of wake-up time and migration kernel
for infinite seed-bank

We can prove Theorem 4.3.2 by direct computation via assumptions (4.52)–(4.53).
We start by computing γ. Afterwards we compute φ̂(t) and aΩN

t (0, 0).

Computation of γ. Recall (4.40), which reads

P(τ > t) =
1

χ

∑
m∈N0

Km
em
Nm

e−(em/N
m)t. (5.1)

Since we are interested in the asymptotic behaviour of P(τ > t) as t → ∞, we need
to consider only large values of t. For large values of t, only large values of m (for
which em

Nm is small) contribute to the sum in (5.1). Hence we can estimate the latter
by an integral and insert the assumptions made in (4.52)–(4.53). Subsequently, using
the change of variable s = em

Nm and taking the logarithm to express m in terms of s,
we obtain the following values of γ after extracting the t-dependence:

(4.52) =⇒ γ = 1, φ(t) ≍ (log t)−α,

(4.53) =⇒ γ = γN,K,e =
log(N/Ke)

log(N/e)
, φ(t) ≍ 1.

(5.2)

In order to guarantee that ρ = ∞, we must require that α ∈ (−∞, 1], respectively,
K ∈ [1,∞) (while β, respectively, e play no role). Subject to (4.52),

φ̂(t) ≍

{
(log t)1−α, α ∈ (−∞, 1),

log log t, α = 1,
(5.3)

while subject to (4.53),

φ̂(t) ≍

{
1, K ∈ (1,∞),

log t, K = 1.
(5.4)

Computation of aΩN
t (0, 0). To compute aΩN

t (0, 0), we first rewrite the migration
kernel aΩN (·, ·) in (4.6) as

aΩN (0, η) =
r∥η∥

N∥η∥−1(N − 1)
(5.5)

with

r∥η∥ =
1

D(N)

N − 1

N

∑
l≥∥η∥

cl−1

N l−1

1

N l−∥η∥ , (5.6)
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where D(N) is a renormalisation constant such that
∑
j∈N rj = 1. For transition

kernels of the form (5.5), the time-t transition kernel aΩN
t (·, ·) was computed in [35]

with the help of Fourier analysis, see also [19]. Namely,

aΩN
t (0, η) =

∑
j≥k

Kjk(N)
exp[−hj(N)t]

N j
, t ≥ 0, η ∈ ΩN : dΩN

(0, η) = k ∈ N0,

(5.7)
where

Kjk(N) =

 0, j = k = 0,
−1, j = k > 0,
N − 1, otherwise,

j, k ∈ N0, (5.8)

and

hj(N) =
N

N − 1
rj(N) +

∑
i>j

ri(N), j ∈ N. (5.9)

The expressions in (5.6)–(5.9) simplify considerably in the limit as N → ∞,
namely, the term with i = j dominates and

hj(N) ∼ rj(N) ∼ cj−1

D(N)N j−1
, j ∈ N, D(N) ∼ c0. (5.10)

We show why this is true for hj(N) (the argument for rj(N) and D(N) is similar).
Write

hj(N) =
N

N − 1
rj(N) +

∑
i>j

ri(N)

=
1

D(N)

∑
l≥j

cl−1

N l−1

1

N l−j +
N − 1

N

∑
l>j

cl−1

N l−1

∑
i<j≤l

1

N l−i


=

1

D(N)

cj−1

N j−1

1 +

[
1 +O

(
1

N

)] ( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1

 .

(5.11)

Hence it suffices to show that

lim sup
N→∞

( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1
= 0, j ∈ N. (5.12)

To do so, note that, since lim supk→∞
1
k log ck < logN by (4.7), for N large enough

we have
sup
k∈N0

c
1/k
k < N. (5.13)

Let N̄ = inf{N ∈ N : supk∈N0
c
1/k
k < N}. Then

lim sup
N→∞

( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1
≤ lim sup

N→∞

1

cj−1

∑
l>j

N̄ l−1

N l−1
N j−1

=
N̄ j−1

cj−1
lim sup
N→∞

N̄
N

1− N̄
N

= 0, j ∈ N,

(5.14)
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which settles (5.12).
To understand what (5.9) gives for finite N , note that for asymptotically polyno-

mial coefficients (recall (4.52))( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1
= [1 + o(1)]

N j−1

F (j − 1)−ϕ

∑
l>j

F (l − 1)−ϕ

N l−1

= [1 + o(1)]
∑
l>j

(l − 1)−ϕ

(j − 1)−ϕ
N−(l−j)

= [1 + o(1)]
∑
k≥1

(
1 +

k

j − 1

)−ϕ

N−k, j ∈ N.

(5.15)

For ϕ ≥ 0 the right-hand side is bounded from above by
∑
k≥1N

−k = 1
N−1 and

for ϕ < 0 by N−1
∑
k≥1(1 + k)−ϕN−(k−1) ≤ N−1Cϕ. On the other hand, for pure

exponential coefficients (recall (4.53)),( cj−1

N j−1

)−1∑
l>j

cl−1

N l−1
=
∑
k≥1

( c
N

)−k
=

c

N − c
. (5.16)

Hence, for both choices of coefficients we have the following:

For N → ∞ the quantities hj(N), rj(N) are bounded from above
and below by positive finite constants times the right-hand side of
(5.10) uniformly in j ∈ N.

(5.17)

Picking η = 0 (k = 0) in (5.7), we obtain

aΩN
t (0, 0) =

∑
j∈N

(N − 1)
exp[−hj(N)t]

N j
. (5.18)

Since we are interested in the asymptotic behaviour of aΩN
t (0, 0), only large values

of j are relevant and we can estimate the sum in (5.18) by an integral. To do so,
we change variables by putting s = hj(N) and exploit (5.17). Take the logarithm to
express j in terms of s, compute ds/dj, and extract the t-dependence. This gives

(4.52) =⇒ aΩN
t (0, 0) ≍ t−1 logϕ t,

(4.53) =⇒ aΩN
t (0, 0) ≍ t−1−δN,c ,

(5.19)

where

δN,c =
log c

log(N/c)
. (5.20)

§5.3 Hierarchical clustering

In this section we prove Theorem 4.3.3 by substituting the results of Theorem 4.3.2
into the clustering criterion in (4.50).

Combining (4.51), (5.2)–(5.4) and (5.19)–(5.20), we find the following clustering
criterion for fixed N and infinite seed-bank:
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� Subject to (4.52), clustering prevails if and only if

−ϕ ≤ α ≤ 1. (5.21)

� Subject to (4.53), clustering prevails if and only

δN,c ≤ −1− γN,K,e
γN,K,e

. (5.22)

In view of (5.2) and (4.56), the condition in (5.22) amounts to

logN × log(Kc) ≤ log c× log(K2e), (5.23)

where we use that c < N and Ke < N (recall (4.7) and (4.12)). The condition in
(5.23) holds for all N when

Kc = 1 with

 c = 1, K2e ∈ (0,∞),
c > 1, K2e ≥ 1,
c < 1, K2e ≤ 1.

(5.24)

It also holds for N large enough when Kc < 1 and fails for N large enough when
Kc > 1. Thus, for infinite seed-bank, clustering prevails for N large enough if and
only if

Kc ≤ 1 ≤ K, (5.25)

which is the analogue of (5.21).
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CHAPTER 6
Mean-field system

§6.1 Preparation: N → ∞, McKean-Vlasov process
and mean-field system

To analyse the scaling of our hierarchical system in the hierarchichal mean-field limit
N → ∞, we first need to understand simpler systems. In this section we consider the
mean-field system consisting of a single hierarchy, and introduce the following:

(a) McKean-Vlasov process (Section 6.1.1).

(b) Mean-field system and McKean-Vlasov limit (Section 6.1.2).

For each we derive a key proposition that will play a crucial role in our analysis of the
truncated system with finitely many hierarchies in Sections 7–9 and the full system
with infinitely many hierarchies in Section 9. The proofs of the propositions stated
in this section will be given in Sections 6.1.3 and 6.1.4.

§6.1.1 McKean-Vlasov process

In this section we introduce the McKean-Vlasov process, which will play an important
role in our analysis of the mean-field system to be introduced in Sections 6.1.2–6.2.1.
(In the full system the effective process introduced in (4.68) will be seen to be an
example of a McKean-Vlasov process.)

For g ∈ G and c,K, e ∈ (0,∞), consider the single-colony process

z(t) = (x(t), y(t))t≥0, (6.1)

taking values in [0, 1]2, with initial law L[(x(0), y(0))] = µ and with components
evolving according to

dx(t) = c [E[x(t)]− x(t)] dt+
√
g(x(t)) dw(t) +Ke [y(t)− x(t)] dt, (6.2)

dy(t) = e [x(t)− y(t)] dt,

where E denotes expectation with respect to µ. With the help of Itô-calculus we can
compute the expectation E[x(t)]. Indeed, from (6.2) we get

d

dt
E[x(t)] = Ke

[
E[y(t)]− E[x(t)]

]
,

d

dt
E[y(t)] = e

[
E[x(t)]− E[y(t)]

]
.

(6.3)
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Define

θx = Eµ[x(0)], θy = Eµ[y(0)], θ = Eµ
[
x(0) +Ky(0)

1 +K

]
. (6.4)

Note that (6.3) implies that θ is a preserved quantity, i.e.,

Eµ
[
x(0) +Ky(0)

1 +K

]
= Eµ

[
x(t) +Ky(t)

1 +K

]
= θ, t ≥ 0. (6.5)

Solving (6.3), we find

E[x(t)] = θ +
K

1 +K
(θx − θy) e

−(K+1)et,

E[y(t)] = θ − 1

1 +K
(θx − θy) e

−(K+1)et.

(6.6)

In particular, from (4.111) we see that

lim
t→∞

(E[x(t)],E[y(t)]) = (θ, θ). (6.7)

Hence, in equilibrium we can replace E[x(t)] in (6.2) by θ. After inserting (6.6)
into (6.2), we can use [72, Theorem 1, Remark on p.156] to show that for every
deterministic initial state (x(0), y(0)) ∈ [0, 1]2 the SSDE in (6.2) has a unique strong
solution. We will refer to this solution as the McKean-Vlasov process.

Remark 6.1.1 (Self-consistency). To prove uniqueness of the solution to (6.2) we
can also use [38], where self-consistent mean-field dynamics are treated in detail. The
solution has the Feller property. ■

Proposition 6.1.2 (McKean-Vlasov process: equilibrium). For every initial
law µ ∈ P([0, 1]2) satisfying

Eµ
[
x(0) +Ky(0)

1 +K

]
= θ, θ ∈ [0, 1], (6.8)

the process in (6.1) converges to a unique equilibrium,

lim
t→∞

L[(x(t), y(t))] = Γθ, (6.9)

and
Γθ ∈ P([0, 1]2), (6.10)

satisfies

θ =

∫
[0,1]2

xΓθ(dx, dy) =

∫
[0,1]2

y Γθ(dx, dy). (6.11)

The proof of Proposition 6.1.2 is given in Section 6.1.3. Note that Γθ = Γg,c,K,eθ

depends on all the parameters appearing in (6.2). In Section 6.2 we will see that Γθ
is continuous as a function of θ.
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Remark 6.1.3 (Non-linear Markov process). Note that (6.1) is a non-linear
Markov process: the evolution not only depends on the current state z(t), but also on
the current law L[z(t)] via the expectation E[x(t)] appearing in the SSDE (6.2). This
is different from the model without seed-bank, where the non-linearity is replaced by
a drift towards θ that is constant in time. In equilibrium we can replace E[x(t)] by
θ in (6.2), but before equilibrium is reached we cannot, because t 7→ E[x(t)] is not
constant, as is clear from (4.111). Note that E[x(t)] is a linear functional of z(0). This
fact will play an important role in the renormalisation analysis in Section 10. ■

§6.1.2 Mean-field system and McKean-Vlasov limit

In this section we consider a simplified version of the SSDE in (4.20), namely, we
restrict to the finite geographic space

[N ] = {0, 1, . . . , N − 1}, N ∈ N. (6.12)

In this simplified version, the migration kernel aΩN (·, ·) is replaced by a[N ](ξ, η) =
cN−1 for all (ξ, η) ∈ [N ], where c ∈ (0,∞) is a constant. The seed-bank consists
of only one colour and the exchange rates between active and dormant are given by
Ke, e. The state space is

S = s[N ], s = [0, 1]2, (6.13)

the system is denoted by

Z [N ](t) =
(
X [N ](t), Y [N ](t)

)
t≥0

,
(
X [N ](t), Y [N ](t)

)
=
(
x
[N ]
i (t), y

[N ]
i (t)

)
i∈[N ]

,

(6.14)
and its components evolve according to the SSDE

dx
[N ]
i (t) =

c

N

∑
j∈[N ]

[
x
[N ]
j (t)− x

[N ]
i (t)

]
dt+

√
g
(
x
[N ]
i (t)

)
dwi(t)

+Ke
[
y
[N ]
i (t)− x

[N ]
i (t)

]
dt,

dy
[N ]
i (t) = e

[
x
[N ]
i (t)− y

[N ]
i (t)

]
dt, i ∈ [N ],

(6.15)

which is the special case of (4.20) obtained by setting aΩN (η, ξ) = 0 if d(η, ξ) > 1 and
Km = em = 0 for m ≥ 1. It is natural to take an exchangeable random initial state,
because the evolution preserves exchangeability. According to De Finetti’s theorem,
there is no loss of generality in taking an i.i.d. initial state, i.e.,

L
[
X [N ](0), Y [N ](0)

]
= µ⊗[N ], µ ∈ P

(
[0, 1]2

)
. (6.16)

By [67, Theorem 3.1], the SSDE in (6.15) is the unique weak solution of a well-
posed martingale problem. By [67, Theorem 3.2], for every deterministic initial state
(X [N ](0), Y [N ](0)), (6.15) has a unique strong solution. We are interested in the limit
N → ∞. For the limiting process we define

(Z(t))t≥0 = (X(t), Y (t))t≥0 =
(
(xi(t), yi(t))i∈N0

)
t≥0

(6.17)
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with components evolving according to (6.2), i.e.,

dxi(t) = c [E[xi(t)]− xi(t)] dt+
√
g(xi(t)) dw(t)

+Ke [yi(t)− xi(t)] dt,

dyi(t) = e [xi(t)− yi(t)] dt, i ∈ N0,

(6.18)

with L [(X(0), Y (0))] = µ for some exchangeable µ ∈ P(([0, 1]2)⊗[N0]. Note that (6.18)
consists of i.i.d. copies of the single-colony McKean-Vlasov process in (6.1), labelled
by i ∈ N0.

Proposition 6.1.4 (Infinite-system McKean-Vlasov limit: convergence).
Suppose that L[(X [N ](0), Y [N ](0))] = µ[N ] is exchangeable and

θ = Eµ
[N]

[
x(0) +Ky(0)

1 +K

]
. (6.19)

Then
lim
N→∞

L
[(
X [N ](t), Y [N ](t)

)
t≥0

]
= L

[
(X(t), Y (t))t≥0

]
(6.20)

with
L
[
(X(0), Y (0))t≥0

]
= µ, µ = lim

N→∞
µ[N ], (6.21)

where the limit is the McKean-Vlasov process in (6.1)–(6.2).

The proof of Proposition 6.1.4 is given in Section 6.1.4. For the system without seed-
bank the McKean-Vlasov limit was proved in [38]. The fact that the components
decouple is a property referred to as propagation of chaos.

§6.1.3 Proof of equilibrium and ergodicity

In this section we prove Proposition 6.1.2.

Proof. Note that, by (4.111), we can rewrite (6.2) as

dx(t) = c

[
θ +

K

1 +K
(θx − θy) e

−(K+1)et − x(t)

]
dt+

√
g(x(t)) dw(t)

+Ke [y(t)− x(t)] dt,

dy(t) = e [x(t)− y(t)] dt.

(6.22)

Existence and uniqueness of a strong solution is again standard (see e.g. [72, Theorem
1] and recall Remark 6.1.1). We start by proving existence and uniqueness of the
equilibrium. Afterwards we show that the solution converges to this equilibrium.

Consider two copies (x1, y1) and (x2, y2) of the system defined in (6.22), with
L[(x1(0), y1(0))] = µ1 and L[(x2(0), y2(0))] = µ2, where µ1 and µ2 satisfy

Eµ1

[
x1(0) +Ky1(0)

1 +K

]
= θ = Eµ2

[
x2(0) +Ky2(0)

1 +K

]
(6.23)

for some θ ∈ [0, 1]. Write

θx1 = Eµ1 [x1(0)], θy1 = Eµ1 [y1(0)], θx2 = Eµ2 [x2(0)], θy2 = Eµ2 [y2(0)]. (6.24)
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Couple the two systems by coupling their Brownian motions. Denote the coupled
process by

(z̄(t))t≥0 = (z1(t), z2(t))t≥0, z1(t) = (x1(t), y1(t)), z2(t) = (x2(t), y2(t)),

L(z̄(0)) = µ1 × µ2,
(6.25)

which has a unique strong solution. Put

∆(t) = x1(t)− x2(t), δ(t) = y1(t)− y2(t). (6.26)

To show that the equilibrium is unique, it is enough to show that

lim
t→∞

E [|∆(t)|+ EK|δ(t)|] = 0. (6.27)

Using a generalised form of Itô’s formula, we find

d|∆(t)| = (sgn ∆(t)) d∆(t) + dL0
t

= (sgn ∆(t)) c

[
K

1 +K

(
(θx1 − θx2)− (θy1 − θy2)

)
e−(K+1)et −∆(t)

]
dt

+ (sgn ∆(t))
(√

g(x1(t))−
√
g(x2(t))

)
dw(t)

+ (sgn ∆(t))Ke [δ(t)−∆(t)] dt,
(6.28)

where we use that the local time L0
t (see [63, Section IV.43]) of ∆(t) at 0 equals 0,

since g is Lipschitz (see [63, Proposition V.39.3]). Again using Itô’s formula, we also
find

d|δ(t)| = (sgn δ(t)) dδ(t) = (sgn δ(t)) e [∆(t)− δ(t)] dt. (6.29)

Taking expectations in (6.28)–(6.29), we get

d

dt
E[|∆(t)|+K|δ(t)|]

= E
[
c

[
(sgn ∆(t))

K

1 +K

(
(θx1 − θx2)− (θy1 − θy2)

)
e−(K+1)et − |∆(t)|

]]
+KeE

[
(sgn ∆(t)− sgn δ(t)) (δ(t)−∆(t))

]
= E

[
c (sgn ∆(t))

K

1 +K

(
(θx1

− θx2
)− (θy1 − θy2)

)
e−(K+1)et

]
− cE[|∆(t)|]
− 2KeE

[
1{sgn δ(t)̸=sgn∆(t)} (|δ(t)|+ |∆(t)|)

]
.

(6.30)

Define

h(t) = cE[|∆(t)|] + 2KeE
[
1{sgn δ(t)) ̸=sgn ∆(t)} (|δ(t)|+ |∆(t)|)

]
. (6.31)

Then h(t) satisfies

(a) h(t) > 0.

(b) 0 ≤
∫∞
0

dt h(t) ≤ 1+K+c |(θx1
− θx2

)− (θy1 − θy2)| K
K+1

1
e(K+1)

[
1− e−(K+1)et

]
.
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(c) h is differentiable with h′ bounded (see [43, Appendix D]).

Hence it follows that limt→∞ h(t) = 0, which implies that

lim
t→∞

E [|∆(t)|] = 0. (6.32)

We are left to prove that limt→∞ E[|δ(t)|] = 0. To do so, we define

f(t) = E[|δ(t)|], G(t) = eE[(sgn δ(t))∆(t)]. (6.33)

Note that G is bounded and continuous. Taking expectations in (6.29), we find

d

dt
f(t) = −ef(t) +G(t), (6.34)

Solving (6.34) explicitly, we find that

f(t) = f(r) e−e(t−r) +

∫ t

r

ds e−e(t−s)G(s), r, t ∈ R, t > r ≥ 0. (6.35)

By (6.32), for each ϵ > 0 we can find an r ∈ R such that E[|∆(s)|] < ϵ for all s > r,
and hence supt>r |G(t)| < ϵ. Therefore

f(t) ≤ f(r) e−e(t−r) + ϵ (6.36)

and, since |f | < 1, we find, for each ϵ > 0,

lim
t→∞

f(t) < ϵ. (6.37)

Therefore limt→∞ E[|δ(t)|] = 0, which completes the proof of uniqueness of the equi-
librium for given θ.

To prove existence of the equilibrium, let (tn)n∈N be any increasing sequenc eof
times such that limn→∞ tn = ∞. Let µ = L[(x(0), y(0))] be any initial measure of the

system in (6.22) with Eµ[x(0)+Ky(0)1+K ] = θ, and let µ(tn) = L[(x(tn), y(tn))]. Since the
state space is compact, the sequence (µ(tn))n∈N is tight, and by Prohorov’s theorem
we can find a converging subsequence (µ(tnk

))k∈N. Put ν = limk→∞ µ(tnk
). We will

show that ν is invariant. To that end, recall from Section 6.1.1 that

Eµ
[
x(t) +Ky(t)

1 +K

]
= θ, t ≥ 0. (6.38)

Hence we can use the coupling in (6.25) to show that the system starting in µ and the
system starting µ(t) converge to the same law as t → ∞, from which it follows that
limk→∞ µ(t+ tnk

) = ν. Let (St)t≥0 denote the semigroup of the system in (6.22). By
the Feller property for semigroups,

Stν = lim
k→∞

Stµ(tnk
) = lim

k→∞
Stnk

(Stµ) = ν, (6.39)

where in the last equality we use the uniqueness of the equilibrium given θ. Thus,
ν is an invariant measure. To exhibit its dependence on θ we write νθ. Using the
same coupling as in (6.25), and starting from µ×νθ with νθ the invariant measure just
obtained, we see that for every θ the system in (6.2) converges to a unique equilibrium
measure νθ, and so (6.11) is immediate from (6.38). □
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§6.1.4 Proof of McKean-Vlasov limit

In this section we give a sketch of the proof of Proposition 6.1.4. In Chapters 6.2-9 we
encounter more difficult versions of Proposition 6.1.4. There we will give the proofs
in full detail.

Proof. Since we start from a distribution µ(0) that is exchangeable, Aldous’s ergodic
theorem gives

lim
N→∞

1

N

∑
j∈[N ]

xj(0) = Eµ(0)[x0] P-a.s. (6.40)

By Ioffe’s theorem [25, Eqs. (1.1)–(1.2)], tightness of the associated sequence of pro-
cesses (uniformly on the state space) follows from boundedness of the generator as an
operator. To apply the generator criterion in [49] we must show propagation of chaos
and prove the weak law of large numbers

lim
N→∞

1

N

∑
j∈[N ]

xj(t) = E[x0(t)]. (6.41)

The propagation of chaos and the weak law of large numbers for t > 0 therefore
follows from [38, Section 4]. Since the martingale problem is well-posed [38, Section
2], the limiting process exists and is unique. □

§6.2 Proofs: N → ∞, mean-field finite-systems scheme

In Sections 6.2.1 we introduce the so called mean-field finite-systems scheme for the
mean-field system introduced in Section 6.1.2. In Section 6.2.2 we outline the abstract
scheme behind the proof behind the mean-field finite-systems scheme. The computa-
tions in the proof of the abstract scheme are long and technical, and are deferred to
Section 6.3.

§6.2.1 Mean-field finite-systems scheme

In this section we describe the limiting dynamics of the finite system in (6.14) from a
multiple space-time scale viewpoint. To do so, we need the following limiting SSDE for
the infinite system Z(t) = (zi(t))i∈N0

= (xi(t), yi(t))i∈N0
, with initial law L[Z(0)] =

µ⊗N0 , evolving according to

dxi(t) = c [θ − xi(t)] dt+
√
g(xi(t)) dwi(t) +Ke [yi(t)− xi(t)] dt, (6.42)

dyi(t) = e [xi(t)− yi(t)] dt, i ∈ N0,

where θ is defined in (6.11). Note that each component of (6.42) is an autonomous
copy of the McKean-Vlasov process in (6.2) in equilibrium.

For the multiscale analysis we will need the following ingredients:

(a) The estimator for the finite system is defined by

Θ̄[N ](t) = Θ̄[N ]
(
Z [N ](t)

)
=

1

N

∑
i∈[N ]

x
[N ]
i (t) +Ky

[N ]
i (t)

1 +K
(6.43)
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and its active and dormant counterparts

Θ̄[N ]
x (t) =

1

N

∑
i∈[N ]

x
[N ]
i (t),

Θ̄[N ]
y (t) =

1

N

∑
i∈[N ]

y
[N ]
i (t).

(6.44)

(b) The time scale N , on which limN→∞ L[Θ̄[N ](L(N)) − Θ̄[N ](0)] = δ0 for all
L(N) such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, but not for
L(N) = N . In words, N is the time scale on which Θ̄[N ](·) starts evolving,
i.e.,

(
Θ̄[N ](Ns)

)
s>0

is not a fixed process. When we scale time by N , putting
t = Ns, we view s as the “fast time scale” and t as the “slow time scale”.

(c) The invariant measure, i.e., the equilibrium measure of a single component in
(6.42) written

Γθ, (6.45)

and the invariant measure of the infinite system in (6.42), written νθ = Γ⊗N0

θ ,
with θ ∈ [0, 1] controlled by the initial measure (recall (6.4)–(4.111)).

(d) The renormalisation transformation F : G → G,

(Fg)(θ) =
∫
[0,1]2

g(x) νθ(dx, dy0), θ ∈ [0, 1], (6.46)

where νθ is the equilibrium measure of 6.42. Note that F is the same trans-
formation as defined in (4.75), but for the truncated system. Note that we can
also write

(Fg)(θ) =
∫
[0,1]2

g(x) Γθ(dx,dy0), θ ∈ [0, 1], (6.47)

where Γθ is as defined in (6.45).

(e) The macroscopic observable
(
Θ̄(s)

)
s>0

satisfying the SSDE

dΘ̄(s) =
1

1 +K

√
EΓΘ̄(s) [g(u)] dw(s) =

1

1 +K

√
(Fg)(Θ̄(s)) dw(s), (6.48)

To obtain the multi-scale limit dynamics for the system in (6.14), we speed up
time by a factor N and define the process(

x
[N ]
1 (s), y

[N ]
1 (s)

)
s>0

=
(
Θ[N ]
x (Ns),Θ[N ]

y (Ns)
)
s>0

, (6.49)

which is the analogue of the 1-block average in (4.22). We use the lower index 1 to
indicate that the average is taken over [N ] components. Using (6.15), we see that the
dynamics of (6.49) is given by the SSDE

dx
[N ]
1 (s) =

√√√√ 1

N

∑
i∈[N ]

g
(
xi(Ns)

)
dw(s) +NKe

[
y
[N ]
1 (s)− x

[N ]
1 (s)

]
ds,

dy
[N ]
1 (s) = Ne

[
x
[N ]
1 (s)− y

[N ]
1 (s)

]
ds.

(6.50)
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s s s s s s

s

. . .

0 1 N − 2 N − 1

block average

Figure 6.1: Given the value of the block average, the N ≫ 1 constituent components equi-
librate on a time scale that is fast with respect to the time scale on which the block average
fluctuates. Consequently, the volatility of the block average is the expectation of the volatility
of the constituent components under the conditional quasi-equilibrium.

In (6.50), in the limit as N → ∞ infinite rates appear in the exchange between
the active and the dormant population. However, looking at the process(

x
[N ]
1 (s) +Ky

[N ]
1 (s)

1 +K

)
s>0

=
(
Θ̄[N ](Ns)

)
s>0

(6.51)

we see that the terms carrying a factor N in front cancel out. Consequently, for the
process in (6.51) we can use ideas from [20] to prove tightness as N → ∞ in the
classical topology of continuum path processes. We will show in Section 6.3.3 that

lim
N→∞

L
[([

x
[N ]
1 (s)− y

[N ]
1 (s)

])
s≥0

]
= L [(0)s≥0]

in the Meyer-Zheng topology .

(6.52)

Combining (6.51) and (6.52), we obtain the multiple space-time scaling behaviour of
the system in (6.14).

Proposition 6.2.1 (Mean-field: finite-systems scheme). Suppose that the SSDE
in (6.15) has initial measure L[Z [N ](0)] = µ⊗[N ] for some µ ∈ P

(
[0, 1]2

)
. Let

θ = Eµ
[
x+Ky0
1 +K

]
. (6.53)

(a) For the averages in (6.49),

lim
N→∞

L
[(
x
[N ]
1 (s), y

[N ]
0,1 (s)

)
s>0

]
= L

[(
xN0
1 (s), yN0

0,1(s)
)
s>0

]
in the Meyer-Zheng topology,

(6.54)

where the limit process is the unique solution of the SSDE

dxN0
1 (s) =

1

1 +K

√
(Fg)

(
xN0
1 (s)

)
dw(s),

yN0
0,1(s) = xN0

1 (s),

(6.55)
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with initial state (
xN0
1 (0), yN0

0,1(0)
)
= (θ, θ) . (6.56)

(b) For the weighted sum of the averages in (6.51),

lim
N→∞

L
[(

Θ̄[N ](Ns)
)
s>0

]
= L

[(
Θ̄(s)

)
s>0

]
, (6.57)

where the limit is the macroscopic observable in (6.48) with initial state

Θ̄(0) = θ. (6.58)

(c) Define

νθ(s) =

∫
[0,1]

Qs
(
θ,dθ′

)
νθ′ ∈ P([0, 1]2), (6.59)

where Qs(θ, ·) is the time-s marginal law of the process (Θ̄(s))s>0 starting from
θ ∈ [0, 1] (note that νθ(0) = νθ). Then, for every s ∈ (0,∞),

lim
N→∞

L
[(
X [N ](Ns+ t), Y [N ](Ns+ t)

)
t>0

]
= L

[
(Zνθ(s)(t))t>0

]
(6.60)

where, conditional on Θ̄(s) = θ, (zνθ(s)(t))t≥0 is the random process in (6.42)
and zνθ(s)(0) is drawn according to νθ(s) (which is a mixture of random processes
in equilibrium).

The proof of Proposition 6.2.1 is given in Section 6.2.2.
The result in Part (a) shows that the limit dynamics of the averages follows a

similar type of diffusion as a single colony, but with four important changes:

� For the limit of the time-scaled average in (6.51) the diffusion function g is
replaced by a renormalised diffusion function Fg, defined by (6.46) (recall
Fig. 6.1). In section 6.2.2 we will show that FG ⊂ G, i.e., F preserves the
class of diffusion functions defined in (4.15).

� The average of the dormant population is the same as the average of the act-
ive population, and hence the term that accounts for the exchange between
the active and the dormant population vanishes. This happens because when
time is speeded up by a factor N also the rates of exchange between active
and dormant are speeded up by a factor N (see (6.50)). Hence the exchange
rates become infinitely large, which implies that the active and the dormant
population equilibrate instantly in the Meyer-Zheng topology.

� Since we take the average over all the components, the migration terms in (6.15)
cancel out against each other.

� Comparing the system in (6.14) with the system of interacting Fisher-Wright
diffusions in the mean-field limit studied in [21], we see from (6.55) that the
single-colour seed-bank slows down the average by a factor 1/(1+K), but does
not change the system qualitatively. This is a direct consequence of the fact
that the averages of the active and the dormant population equilibrate (due to
the infinite rates), while only individuals in the active part of the population
resample.
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The result in Part (b) shows that the limit dynamics of the averages in (6.51) follows an
autonomous SDE, with convergence in the classical topology, i.e., in Cb([0,∞), [0, 1]).
The Brownian motion in (6.1) is taken to be independent of the initial state. The
result in Part (c) says that, on time scale 1 and starting from time Ns with N →
∞, the system has a McKean-Vlasov limit, i.e., exhibits propagation of chaos, with
components that are versions of a McKean-Vlasov process with a random initial state
whose law depends on s. So, in particular, the components become independent, and
we see decoupling The proof of Part (c) will use Part (b). The proof of Part (a) will
follow from Part (b) after we use the Meyer-Zheng topology.

Remark 6.2.2 (Basic multi-scale). Note that Proposition 6.2.1 already reveals
several phenomena that we encountered in Theorems 4.4.2 and 4.4.4, capturing the
hierarchical multiscale behaviour. Even for the one-layer mean-field system we find
decoupling of components, the occurrence of a renormalisation transformation, equal-
isation of the seed-bank with the active population, and the need for the Meyer-Zheng
topology. Later we will see that the role of the macroscopic observable Θ̄ is the same
as that of the effective process. ■

Remark 6.2.3 (Interchange of limits). The notation xN0
1 , yN0

0,1 indicates that the
limit arises from taking averages over [N ] and letting N → ∞. Note that, for i.i.d.
initial states,

xN0
1 (0) = lim

N→∞
x
[N ]
1 (0) = lim

N→∞

1

N

∑
i∈[N ]

xi(0) = θx P-a.s. (6.61)

On the other hand, picking any sequence of times L(N) such that limN→∞ L(N) = ∞
and limN→∞ L(N)/N = 0, we get

xN0
1 (0+) = lim

N→∞
x
[N ]
1

(L(N)
N t

)
= lim
N→∞

1

N

∑
i∈[N ]

xi(L(N)t) = θ P-a.s. (6.62)

The mismatch between (6.61) and (6.62) indicates that we must be careful with
interchanging the limits N → ∞ and s ↓ 0. This is why (6.54), which lives on the
fast time scale, is restricted to s > 0. ■

§6.2.2 Abstract scheme behind finite-systems scheme

To prove Proposition 6.2.1, we follow the abstract scheme outlined in [25, p. 2314–
2315] and based on [21], [20]. Below we state the abstract scheme for our model. The
scheme consists of 4 steps, each of the steps consists of a series of propositions and
lemmas. The proofs of these are given in Section 6.3.

Step 1. Equilibrium of the single components. This step fixes the one-
dimensional distributions of the single components when t,N → ∞ in a combined
way, and is the equivalent of [21, Proposition 1]. Recall that Θ̄[N ] is defined in (6.43).
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Proposition 6.2.4 (Equilibrium for the infinite system). Let (Nk)k∈N be a se-
quence in N. Fix s > 0. Let L(N) be such that limN→∞ L(N) = ∞ and
limN→∞ L(N)/N = 0, and suppose that

lim
k→∞

L
[
Θ̄[Nk](Nks)

]
= Ps,

lim
k→∞

L

[
sup

0≤t≤L(Nk)

∣∣∣Θ̄[Nk](Nks)− Θ̄[Nk](Nks− t)
∣∣∣] = δ0,

lim
k→∞

L
(
X [Nk](Nks), Y

[Nk](Nks)
)
= ν(s).

(6.63)

Then ν(s) is of the form

ν(s) =

∫
[0,1]

Ps(dθ) νθ, (6.64)

where νθ is the equilibrium measure of the process defined in (6.42).

Proposition 6.2.4 follows from the following seven lemmas, which are the analogues
of the five lemmas used in [21, p. 477–478] for the system without seed-bank.

The first lemma establishes convergence of the infinite system in (6.42) to its
equilibrium.

Lemma 6.2.5 (Convergence for the infinite system). Let µ be an exchangeable
probability measure on ([0, 1]2)N0 . Then for the system (Z(t))t≥0 given by (6.42) with
L(Z(0)) = µ,

lim
t→∞

L[Z(t)] = νθ, (6.65)

where νθ is of the form
νθ = Γ⊗N0

θ , (6.66)

with Γθ the equilibrium of the single-colony process defined in (6.45). Moreover, νθ is
ergodic.

The second lemma establishes the continuity of the equilibrium with respect to its
center of drift θ.

Lemma 6.2.6 (Continuity of the equilibrium). Let P([0, 1]N0) denote the space
of probability measures on [0, 1]N0 . The mapping [0, 1] → P([0, 1]N0) given by

θ 7→ νθ (6.67)

is continuous. Furthermore, if h is a Lipschitz function on [0, 1], then also Fh defined
by

(Fh)(θ) = Eνθ [h(·)] =
∫
([0,1]2)N0

νθ(dz)h(x0) (6.68)

is a Lipschitz function on [0, 1].

The third lemma characterises the speed at which the estimators Θ
[N ]
x and Θ

[N ]
y

converge to each other.
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Lemma 6.2.7 (Comparison of empirical averages). Let (Θ
[N ]
x (t))t≥0

and (Θ̄
[N ]
y (t))t≥0 be defined as in (6.44), and define

∆
[N ]

Θ̄
(t) = Θ[N ]

x (t)−Θ[N ]
y (t). (6.69)

Then

E
[∣∣∣∆[N ]

Θ̄
(t)
∣∣∣] ≤√E

[(
∆

[N ]

Θ̄
(0)
)2]

e−(Ke+e)t +

√
∥g∥

N(Ke+ e)
. (6.70)

Remark 6.2.8 (Key estimate for Meyer-Zheng convergence). The estimate in
(6.70) in Lemma 6.2.7 will be the key estimate to show convergence of the active and
dormant 1-block in Meyer-Zheng topology. Note that if we look at times Ns for s > 0,

then (6.70) shows that E[|∆[N ]

Θ̄
(Ns)|] is O(

√
1/N). ■

The fourth lemma compares the finite system with an infinite system. To that end
we construct both the finite and the infinite system on the same state-space by con-
sidering the finite system (X [N ](t), Y [N ](t)) as an element of ([0, 1]2)N0 via periodic
continuation. Let L(N) be such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N =
0, and define the distribution µN by continuing the configuration of (X [N ](Ns −
L(N)), Y [N ](Ns− L(N))) periodically to ([0, 1]2)N0 . Define

Θ̄[N ] = Θ̄[N ](Ns− L(N)). (6.71)

Note that

Θ̄[N ] =

1
N

∑
j∈[N ] x

[N ]
j (Ns− L(N)) + K

N

∑
j∈[N ] y

[N ]
j (Ns− L(N))

1 +K

=
1

N

∑
j∈[N ]

xµN

j (0) +KyµN

j (0)

1 +K
.

(6.72)

Thus, Θ̄[N ] is a random variable whose law depends on
L
[
X [N ](Ns− L(N)), Y [N ](Ns− L(N))

]
= µN . The infinite system with initial law

µN is denoted by (
XµN (t), Y µN (t)

)
i∈N0, t≥0

=
(
xµN

i (t), yµN

i (t)
)
t≥0

(6.73)

and evolves according to

dxµN

i (t) = c
[
Θ̄[N ] − xµN

i (t)
]
dt+

√
g(xµN

i (t)) dwi(t) +Ke [yµN

i (t)− xµN

i (t)] dt,

dyµN

i (t) = e [xµN

i (t)− yµN

i (t)] dt, i ∈ N0,
(6.74)

where {wi}i∈N0 is a collection of independent Brownian motions.

Lemma 6.2.9. [Comparison of finite and infinite systems] Fix s > 0 and assume
that, for any L(N) satisfying limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0,

lim
N→∞

sup
0≤t≤L(N)

∣∣Θ̄[N ](Ns)− Θ̄[N ](Ns− t)
∣∣ = 0 in probability. (6.75)
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Let (
XµN (t), Y µN (t)

)
t≥0

(6.76)

be the infinite system defined in (6.74) starting in the distribution µN , where µN is
defined by continuing the configuration of (X [N ](Ns−L(N)), Y [N ](Ns−L(N))) peri-
odically to ([0, 1]2)N0 . Similarly, view (X [N ](t), Y [N ](t)) as an element of ([0, 1]2)N0

by periodic continuation. Then, for all t ≥ 0,

lim
N→∞

∣∣E[f(XµN (t), Y µN (t)
)
− f

(
X [N ](Ns− L(N) + t), Y [N ](Ns− L(N) + t)

)]∣∣ = 0

∀ f ∈ C
(
([0, 1]2)N0 ,R

)
.

(6.77)

Before we can prove that the infinite system (XµN (t), Y µN (t))t≥0 converges to
some limiting system as N → ∞, we need the following regularity property for the
estimator Θ̄[N ]. This is stated in our fifth lemma.

Lemma 6.2.10 (Stability of the estimator for the conserved quantity). Define
µN as in Lemma 6.2.9. Let (xi, yi)i∈[N ] be distributed according to the exchange-

able probability measure µN on ([0, 1]2)N0 restricted to ([0, 1]2)[N ]. Suppose that
limN→∞ µN = µ for some exchangeable probability measure µ on ([0, 1]2)N0 . Define
a random variable ϕ on (µ, ([0, 1]2)N0) by putting

ϕ = lim
n→∞

1

n

∑
i∈[n]

xi +Kyi
1 +K

, (6.78)

and a random variable ϕN on (µN , ([0, 1]
2)N0) by putting

ϕN =
1

N

∑
i∈[N ]

xi +Kyi
1 +K

. (6.79)

Then
lim
N→∞

L[ϕN ] = L[ϕ]. (6.80)

In the sixth lemma we state the convergence of the law L[(XµN (t), Y µN (t))] to
the law of a limiting system as N → ∞.

Lemma 6.2.11 (Uniformity of the ergodic theorem for the infinite system).
Let µN be defined as in Lemma 6.2.9. Since (µN )N∈N is tight, it has convergent sub-
sequences. Let (Nk)k∈N be a subsequence such that µ = limk→∞ µNk

. Define

Θ̄ = lim
N→∞

1

N

∑
i∈[N ]

xµi +Kyµi
1 +K

in L2(µ), (6.81)

and let (Xµ(t), Y µ(t))t≥0 be the infinite system evolving according to

dxµi (t) = c
[
Θ̄− xµi (t)

]
dt+

√
g(xµi (t)) dwi(t) +Ke [yµi (t)− xµi (t)] dt,

dyµi (t) = e [xµi (t)− yµi (t)] dt, i ∈ N0.
(6.82)

Then
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(a) For all t ≥ 0,

lim
k→∞

∣∣E[f(XµNk (t), Y µNk (t)
)]

− E
[
f
(
Xµ(t), Y µ(t)

)]∣∣ = 0,

∀ f ∈ C
(
([0, 1]2)N0 ,R

)
.

(6.83)

(b) There exists a sequence (L̄(N))N∈N satisfying limN→∞ L̄(N) = ∞ and
limN→∞ L̄(N)/N = 0 such that

lim
k→∞

∣∣E[f(X [Nk](Nks− L(Nk) + L̄(Nk)), Y
[Nk](Nks− L(Nk) + L̄(Nk))

)
− f

(
XµNk (L̄(Nk)), Y

µNk (L̄(Nk))
)∣∣]

+
∣∣E[f(XµNk (L̄(Nk)), Y

µNk (L̄(Nk))
)]

− E
[
f
(
Xµ(L̄(Nk)), Y

µ(L̄(Nk))
)]∣∣ = 0

∀ f ∈ C
(
([0, 1]2)N0 ,R

)
.

(6.84)

Remark 6.2.12 (Existence of Θ̄). Note that the limit in (6.81) is well-defined by
the ergodic theorem in L2, since µ is the limit of translation invariant measures and
hence is itself translation invariant. ■

In the seventh lemma we provide a coupling of two copies of the finite system
starting from different measures.

Lemma 6.2.13 (Coupling of finite systems). Let (X [N ],1, Y [N ],1) be a finite sys-
tem evolving according to (6.15) and starting from some exchangeable measure. Let
µ[N ],1 be the measure obtain by periodic continuation of the configuration of
(X [N ],1(0), Y [N ],1(0)). Similarly, let (X [N ],2, Y [N ],2) be a finite system evolving ac-
cording to (6.15) and starting from some exchangeable measure. Let µ[N ],2 be the
measure obtain by periodic continuation of the configuration of (X [N ],2(0), Y [N ],2(0)).
Let µ̃ be any weak limit point of the sequence of measures {µ[N ],1×µ[N ],2}N∈N. Define
random variables Θ̄[N ],1 on (µ[N ],1, ([0, 1]2)N0), Θ̄[N ],2 on (µ[N ],1, ([0, 1]2)N0) and Θ̄1

and Θ̄2 on (µ, ([0, 1]2)N0) by

Θ̄[N ],1 =
1

N

∑
i∈[N ]

x
[N ],1
i +Ky

[N ],1
i

1 +K
, Θ̄[N ],2 =

1

N

∑
i∈[N ]

x
[N ],2
i +Ky

[N ],2
i

1 +K
,

Θ̄1 = lim
n→∞

1

n

∑
i∈[n]

x1i +Ky1i
1 +K

, Θ̄2 = lim
n→∞

1

n

∑
i∈[n]

x2i +Ky2i
1 +K

,

(6.85)

and let (Θ̄[N ],1(t))t≥0 and (Θ̄[N ],2(t))t≥0 be defined according to (6.43) for (X
[N ]
1 , Y

[N ]
1 ),

respectively, (X
[N ]
2 , Y

[N ]
2 ). Assume that

lim
N→∞

sup
0≤t≤L(N)

∣∣Θ̄[N ],k(0)− Θ̄[N ],k(t)
∣∣ = 0 in probability, k ∈ {1, 2}, (6.86)

and suppose that µ̃({Θ̄1 = Θ̄2}) = 1. Then, for any sequence t(N) → ∞,

lim
N→∞

E
[∣∣x[N ],1

i (t(N))− x
[N ],2
i (t(N))

∣∣+K
∣∣y[N ],1
i (t(N))− y

[N ],2
i (t(N))

∣∣] = 0. (6.87)
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Step 2. Convergence of the estimator. This step is the equivalent of [21,
Proposition 2]. We first prove the tightness of the estimator Θ̄[N ] in path space.
After that we settle convergence of the finite-dimensional distributions and identify
the limit.

Proposition 6.2.14 (Convergence of average sum process).

lim
N→∞

L
[(

Θ̄[N ](Ns)
)
s>0

]
= L[(Θ̄(s))s>0], (6.88)

where (Θ̄(s))s>0 evolves according to

dΘ̄(s) =
1

(1 +K)

√
(Fg)(Θ̄(s)) dw(s). (6.89)

Proposition 6.2.14 follows from the following three lemmas, which are the equival-
ent of the three lemmas used in [21, p. 488–493] for the system without seed-bank.

Lemma 6.2.15 (Martingale property of average sum process).

(1) The process (Θ̄[N ](Ns))s>0 is a square-integrable martingale with continuous
paths and increasing process〈

Θ̄[N ](Ns)
〉
s>0

=
1

(1 +K)2

∫ s

0

dr
1

N

∑
i∈[N ]

g
(
x
[N ]
i (Nr)

)
. (6.90)

(2) Let L(N) be such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. Then

lim
N→∞

sup
0≤t≤L(N)

∣∣Θ̄[N ](Ns)− Θ̄[N ](Ns− t)
∣∣ = 0 in probability. (6.91)

(3)
(
L[(Θ̄[N ](Ns))s>0]

)
N∈N is tight as a sequence of probability measures on

C([0,∞), [0, 1]).

Lemma 6.2.16 (Martingale property of limit process). Let (Nk)k∈N be any sub-
sequence such that

lim
k→∞

L
[(
Θ̄[Nk](Nks)

)
s>0

]
= L

[
(Θ̄(s))s>0

]
. (6.92)

Then (Θ̄(s))s>0 is a square-integrable martingale with continuous paths, and(
Θ̄2(s)−

∫ s

0

dr
1

(1 +K)2
EνΘ̄(r) [g(x0)]

)
s>0

(6.93)

is a martingale.

Lemma 6.2.17 (Uniqueness). The following martingale problem has a unique solu-
tion:

(Θ̄s)s>0 is a continuous martingale with values in [0, 1],(
Θ̄2(s)− 1

(1 +K)2

∫ s

0

drEνΘ̄(r) [g(x0)]

)
s>0

is a martingale.
(6.94)

The solution of (6.94) is given by the diffusion generated by Eνu [g(·)] ∂
2

∂u2 .
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Step 3. Convergence of the averages in the Meyer-Zheng topology. Recall
the definition of the Meyer-Zheng topology in Section 4.4.1. We have to prove the
following proposition.

Proposition 6.2.18 (Convergence in Meyer-Zheng topology). If

lim
N→∞

L
[(
Θ̄(Ns)

)
s>0

]
= L

[(
Θ̄(s)

)
s>0

]
, (6.95)

then

lim
N→∞

L
[(
x
[N ]
1 (t), y

[N ]
1 (t)

)
t≥0

]
= L

[(
xN0
1 (t), yN0

1 (t)
)
t≥0

]
in the Meyer-Zheng topology,

(6.96)

where (xN0
1 (t), yN0

1 (t))t≥0) evolves according to (6.55).

To prove Proposition 6.2.18 we will use Lemma 6.2.7 in combination with the fol-
lowing three general lemmas about the Meyer-Zheng topology, which are proven in
Appendix B.2.3.

Lemma 6.2.19 (Convergence in probability in the Meyer-Zheng topology).
Let ((Zn(t))t≥0)n∈N and (Z(t))t≥0 be stochastic processes on the Polish space (E, d).
If, for all t ≥ 0,

lim
n→∞

E [d(Zn(t), Z(t))] = 0, (6.97)

then,

lim
n→∞

(Zn(t))t≥0 = (Z(t))t≥0 in probability in the Meyer-Zheng topology. (6.98)

Lemma 6.2.20 (Convergence of the joint law). Let ((Xn(t))t ≥ 0)n∈N,
((Yn(t))t≥0)n∈N, (X(t))[t ≥ 0] be stochastic processes on a metric space (E, d) and
let c ∈ E be a constant. If limn→∞ L[Xn] = L[X] in the Meyer-Zheng topology and
for all t ≥ 0, limn→∞ E[d(Yn(t), c)] = 0, then limn→∞ L[(Xn, Yn)] = L[(X, c)] in the
Meyer-Zheng topology.

Lemma 6.2.21 (Continuous mapping theorem). Let f : E → E be a continu-
ous function and x ∈ME [0,∞).

(a) The function
h : Ψ → Ψ, ψx → ψf(x), (6.99)

is continuous.

(b) If the stochastic processes (Xn)n∈N, X on state space (E, d) satisfy

lim
n→∞

L[Xn] = L[X] in the Meyer-Zheng topology, (6.100)

then

lim
n→∞

L[f(Xn)] = L[f(X)] in the Meyer-Zheng topology. (6.101)

Note that Lemma 6.2.21 allows us to use the continuous mapping theorem in the
Meyer-Zheng topology.
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Step 4. Mean-field finite-systems scheme. Use Steps 1– 4 to prove Proposition
6.2.1.

Having completed the abstract scheme of steps 1–4, we set out to prove the con-
stituent propositions and lemmas.

§6.3 Proofs: N → ∞, mean-field, proof of abstract
scheme

In Sections 6.3.1–6.3.4 we prove the propositions and the lemmas stated in Steps 1–4
in Section 6.2.2.

§6.3.1 Proof of step 1. Equilibrium of the single
components

We start by proving Proposition 6.2.4 with the help of the seven lemmas stated in
Step 1 of Section 6.2.2. Afterwards we prove each of the lemmas.

• Proof of Proposition 6.2.4

Proof. We use an argument similar to the one used in [21, Section 2 (i)]. Let
(L(N))N∈N be any sequence satisfying limN→∞ L(N) = ∞ and limN→∞ L(N)/N =
0. Let µN be the measure on ([0, 1]2)N0 obtained by periodic continuation of
L[X [N ](Ns − L(N)), Y [N ](Ns − L(N))]. Note that ([0, 1]2)N0 is compact. Hence,
letting (Nk)k∈N be the subsequence in Proposition 6.2.4, we can pass to a further
subsequence and obtain

lim
k→∞

µNk
= µ. (6.102)

Since we assumed that L[X [N ](0), Y [N ](0)] is exchangeable and the dynamics preserves
exchangeability, the measures µNk

are exchangeable and also the limiting law µ is
exchangeable. Define ϕ as in (6.78) in Lemma 6.2.10. Then we can condition on ϕ
and write

µ =

∫
[0,1]

µρ dΛ(ρ), (6.103)

where Λ(·) = L[ϕ]. By assumption we know that

lim
k→∞

L
[
Θ̄[Nk](Nks)

]
= Ps (6.104)

and

lim
k→∞

L

[
sup

0≤t≤L(Nk)

∣∣∣Θ̄[Nk](Nks)− Θ̄[Nk](Nks− t)
∣∣∣] = δ0. (6.105)

Hence

lim
k→∞

L
[
Θ̄[Nk](Nks− L(Nk))

]
= Ps. (6.106)
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Recall that

Λ = L[ϕ] = L

 lim
n→∞

1

n

∑
i∈[n]

xi +Kyi
1 +K

 on (µ, ([0, 1]2)N0). (6.107)

By Lemma 6.2.10, if ϕNk
= 1

Nk

∑
i∈[Nk]

xi+Kyi
1+K on (µNk

, ([0, 1]2)N0), then

limk→∞ L[ϕNk
] = L[ϕ]. Taking the subsequence (µNk

)k∈N, we get Λ(·) = Ps(·), and
hence

µ =

∫
[0,1]

µρ dPs(ρ). (6.108)

Let L̄(N) be the sequence constructed in Lemma 6.2.11[b]. We can require that
L̄(N) ≤ L(N) for all N ∈ N. Write

L
[
X [Nk](Nks− L(Nk) + L̄(Nk)), Y

[Nk](Nks− L(Nk) + L̄(Nk))
]

= L
[
X [Nk](Nks− L(Nk) + L̄(Nk)), Y

Nk(Nks− L(Nk) + L̄(Nk))
]

− L
[
XµNk (L̄(Nk)), Y

µNk (L̄(Nk))
]
,

+ L
[
XµNk (L̄(Nk)), Y

µNk (L̄(Nk))
]
− L

[
Xµ(L̄(Nk)), Y

µ(L̄(Nk))
]

+ L
[
Xµ(L̄(Nk)), Y

µ(L̄(Nk))
]
.

(6.109)

By Lemma 6.2.11, the first and the second term tend to zero as k → ∞. Hence

L
[
X [Nk](Nks− L(Nk) + L̄(Nk)), Y

[Nk](Nks− L(Nk) + L̄(Nk))
]

(6.110)

tends to L
[
Xµ(L(Nk)), Y

µ(L(Nk))
]
as k → ∞. By (6.108),

L
[
Xµ(L̄(Nk)), Y

µ(L̄(Nk))
]
=

∫
[0,1]

L
[
Xµρ(L̄(Nk)), Y

µρ(L̄(Nk))
]
dPs(ρ). (6.111)

Since limk→∞ L̄(Nk) = ∞, by Lemma 6.2.5 we have

lim
k→∞

L
[
Xµρ(L̄(Nk)), Y

µρ(L̄(Nk))
]
= νρ. (6.112)

Therefore, by (6.109) and Lemma 6.2.6,

lim
k→∞

L
[
X [Nk](Nks− L(Nk) + L̄(Nk)), Y

[Nk](Nks− L(Nk) + L̄(Nk))
]

=

∫
[0,1]

νρ dPs(ρ).
(6.113)

To show that

lim
k→∞

L
[
X [Nk](Nks), Y

[Nk](Nks)
]
=

∫
[0,1]

νρ dPs(ρ). (6.114)

we invoke Lemma 6.2.13. Let (X [N ],1, Y [N ],1) be the finite system starting from

L
[
X [N ](Ns− L(N)), Y [N ](Ns− L(N))

]
, (6.115)
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and let (L̄(N))N∈N be the sequence such that (6.113) holds. Let (X [N ],2.Y [N ],2) be
the finite system starting from

L
[
X [N ](Ns− L̄(N)), Y [N ](Ns− L̄(N))

]
. (6.116)

Choose for the sequence t(N) in Lemma 6.2.13 the sequence L̄(N). Let µ[N ],1 be
defined by periodic continuation of (X [N ](Ns−L(N)), Y [N ](Ns−L(N))), and µ[N ],2

by periodic continuation of (X [N ](Ns− L̄(N)), Y [N ](Ns− L̄(N))). Defining Θ̄1 and
Θ̄2 according to (6.85), where for µ[N ],2 we replace L(N) by L̄(N), we get

lim
k→∞

|Θ̄Nk
1 −Θ̄Nk

2 | = lim
k→∞

∣∣Θ̄Nk(Nks−L(Nk))−Θ̄Nk(Nks−L̄(Nk))
∣∣ = 0 in probability

(6.117)
by the assumptions in (6.63). Hence, if µ is any weak limit point of the sequence
(µ[Nk],1 × µ[Nk],2)k∈N, then

µ(Θ̄1 = Θ̄2) = 1. (6.118)

By passing to a further subsequence, we can now apply Lemma 6.2.13, to obtain

lim
k→∞

E
[
|xNk
i,1 (L̄(Nk))− xNk

i,2 (L̄(Nk))|+K|yNk
i,1 (L̄(Nk))− yNk

i,2 (L̄(Nk))|
]
= 0. (6.119)

Note that

L
[
X1(L̄(Nk), Y1(L̄(Nk)))

]
= L

[
X [Nk](Nks− L(Nk) + L̄(Nk)), Y

[Nk](Nks− L(Nk) + L̄(Nk))
]
,

L
[
X2(L̄(Nk), Y2(L̄(Nk)))

]
= L

[
X [Nk](Nks), Y

[Nk](Nks)
]
.

(6.120)

Moreover, we know from (6.113) that

lim
k→∞

L
[
X [Nk](Nks− L(Nk) + L̄(Nk)), Y

[Nk](Nks− L(Nk) + L̄(Nk))
]

=

∫
[0,1]

νρPs(dρ).
(6.121)

Combining (6.119)–(6.121), we find that

L
[
X [Nk](Nks), Y

[Nk](Nks)
]
=

∫
[0,1]

νρPs(dρ). (6.122)

□

In the remainder of this section we prove Lemmas 6.2.5–6.2.11 and 6.2.13.

• Proof of Lemma 6.2.5

Proof. Since the components of the infinite system in (6.42) evolve independently, it is
enough to show that each component converges to Γθ. This convergence follows from
the proof of Proposition 6.1.2 (see Section 6.1.3). Hence the infinite system defined by
(6.18) converges to νθ = Γ⊗N0

θ . Ergodicity of νθ with respect to translations follows
from Kolmogorov’s zero-one law. □
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• Proof of Lemma 6.2.7

Proof. Using the definition of Θ
[N ]
x (t), Θ

[N ]
y (t) in (6.44) and the SSDE in (6.15), we

find the following evolution for the averages:

dΘ[N ]
x (t) =

1

N

∑
i∈[N ]

√
g(xi(t)) dwi(t) +Ke [Θ[N ]

y (t)−Θ[N ]
x (t)] dt,

dΘ[N ]
y (t) = e [Θ[N ]

x (t)−Θ[N ]
y (t)] dt.

(6.123)

Consequently,

d
(
∆

[N ]

Θ̄
(t)
)2

= 2∆
[N ]

Θ̄
(t) d∆

[N ]

Θ̄
(t) + 2d⟨∆[N ]

Θ̄
⟩(t)

= ∆
[N ]

Θ̄
(t)

1

N

∑
i∈[N ]

√
g(xi(t)) dwi(t)− (Ke+ e)

(
∆

[N ]

Θ̄
(t)
)2

dt

+ 2
1

N2

∑
i∈[N ]

g(xi(t)) dt,

(6.124)

and hence

d

dt
E
[(
∆

[N ]

Θ̄
(t)
)2]

= −2(Ke+ e)E
[(
∆

[N ]

Θ̄
(t)
)2]

+
2

N2

∑
i∈[N ]

g(xi(t)) (6.125)

and

E
[(
∆

[N ]

Θ̄
(t)
)2]

= E
[(
∆

[N ]

Θ̄
(0)
)2]

e−2(Ke+e)t +

∫ t

0

dr e−2(Ke+e)(t−r) 2

N2

∑
i∈[N ]

g(xi(r)).

(6.126)
Therefore we get the bound

E
[∣∣∆[N ]

Θ̄
(t)
∣∣] ≤√E

[(
∆

[N ]

Θ̄
(0)
)2]

e−(Ke+e)t +

√
2∥g∥

N(Ke+ e)
. (6.127)

□

• Proof of Lemma 6.2.9

Proof. To compare the systems in (6.15) and (6.74), we couple them via their Brownian
motions. Therefore for all i ∈ [N ] we assume that the evolution in (6.15) and
(6.74) is driven by the same Brownian motion, w̃i = wi. If i /∈ [N ], then we set
wi = wj for j = i mod N . We denote the coupled process by z̃(t) = (z̃i(t))i∈N0

=

(z̃
[N ]
i (t), z̃µN

i (t))i∈N0 , where z̃
[N ]
i (t) = (x̃

[N ]
i (t), ỹ

[N ]
i (t)) and z̃µN

i (t) = (x̃µN

i (t), ỹµN

i (t)).
The tilde indicates that we are considering the coupled process, and

L[z̃(0)] = L
[
X [N ](Ns− L(N)), Y [N ](Ns− L(N))

]
× µN

= L
[
X [N ](Ns− L(N)), Y [N ](Ns− L(N))

]2
.

(6.128)

Define
∆N
i (t) = x̃

[N ]
i (t)− x̃µN

i (t), δNi (t) = ỹ
[N ]
i (t)− ỹµN

i (t). (6.129)
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To prove that the coupling is successful, we show that, for all t ≥ 0,

lim
N→∞

E
[
|∆N

i (t)|+K|δNi (t)|
]
= 0 ∀ i ∈ N0. (6.130)

From now on we will only consider sites i ∈ [0, N ] for which both infinite systems
have the same Brownian motion.

From (6.15) and (6.74) it follows that

d
[
|∆N

i (t)|+K|δNi (t)|
]

= (sgn ∆N
i (t)) d∆N

i (t) + dL0
t +K sgn δNi (t) dδNi (t)

= −c (sgn ∆N
i (t)) ∆N

i (t) dt+ c (sgn ∆N
i (t))

[
Θ̄[N ](t)− Θ̄[N ]

]
dt

+ c (sgn ∆N
i (t))

[
Θ[N ]
x (t)− Θ̄[N ](t)

]
dt

+ (sgn ∆N
i (t))

(√
g(x

[N ]
i (t)) −

√
g(xµN

i (t))

)
dwi(t)

+ (sgn ∆N
i (t))Ke [δNi (t)−∆N

i (t)] dt

+ (sgn δNi (t))Ke [∆N
i (t)− δNi (t)] dt,

(6.131)

where we use that the local time L0
t is zero, since g is Lipschitz (see [63, Proposition

V.39.3]).

Taking expectations in (6.131), we find

d

dt
E[|∆N

i (t)|+K|δNi (t)|] = −cE
[
|∆N

i (t)|
]

+ c E
[
(sgn ∆N

i (t))
[
Θ̄[N ](t)− Θ̄[N ]

]]
+ cE

[
(sgn ∆N

i (t))
[
Θ[N ]
x (t)− Θ̄[N ](t)

]]
+KeE

[(
sgn ∆N

i (t)− sgn δNi (t)
)[
δNi (t)−∆N

i (t)
]]
.

(6.132)
Note that we can rewrite (6.132) as

d

dt
E[|∆N

i (t)|+K|δNi (t)|] = −cE
[
|∆N

i (t)|
]

− 2KeE
[
1sgn ∆N

i (t)̸=sgn δNi (t) [|δNi (t)|+ |∆N
i (t)|]

]
+ c E

[
(sgn ∆N

i (t))
[
Θ̄[N ](t)− Θ̄[N ]

]]
+ cE

[
(sgn ∆N

i (t))
[
Θ[N ]
x (t)− Θ̄[N ](t)

]]
.

(6.133)
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It therefore follows that

E[|∆N
i (t)|+K|δNi (t)|] = E[|∆N

i (0)|+K|δNi (0)|]

− c

∫ t

0

drE
[
|∆N

i (r)|
]

− 2Ke

∫ t

0

drE
[
1sgn ∆N

i (r) ̸=sgn δNi (r) [|δNi (r)|+ |∆N
i (r)|]

]
+

∫ t

0

dr cE
[
(sgn ∆N

i (r))
[
Θ̄[N ](r)− Θ̄[N ]

]]
+

∫ t

0

dr cE
[
(sgn ∆N

i (r))
[
Θ[N ]
x (r)− Θ̄[N ](r)

]]
.

(6.134)
Note that, by the choice of initial distribution for the coupling, we have

E[|∆N
i (0)|+K|δNi (0)|] = 0. (6.135)

Therefore we get

0 ≤ E[|∆N
i (t)|+K|δNi (t)|]

≤ −c
∫ t

0

drE
[
|∆N

i (r)|
]

− 2Ke

∫ t

0

drE
[
1sgn ∆N

i (r) ̸=sgn δNi (r) [|δNi (r)|+ |∆N
i (r)|]

]
+

∫ t

0

dr cE
[∣∣Θ̄[N ](r)− Θ̄[N ]

∣∣]
+

∫ t

0

dr cE
[∣∣Θ[N ]

x (r)− Θ̄[N ](r)
∣∣]

≤ t

(
sup

0≤r≤t
c E

[∣∣Θ̄[N ](r)− Θ̄[N ]
∣∣]+ cE

[∣∣Θ[N ]
x (r)− Θ̄[N ](r)

∣∣]) .

(6.136)

Hence, by the assumption in (6.75) and Lemma 6.2.7 (recall (6.128)) , we see that,
for all t > 0,

lim
N→∞

E[|∆N
i (t)|+K|δNi (t)|] = 0. (6.137)

Therefore, for every Lipschitz function f ∈ C
(
([0, 1]),R

)
of xi(t),

lim
n→∞

∣∣∣E[f(x[N ]
i (t))− f(xµN

i (t))]
∣∣∣ ≤ lim

n→∞
Lipf E[||∆N

i (L(N))||] = 0, (6.138)

and the same holds for Lipschitz functions of yi. Using that the Lipschitz func-
tions are dense in C

(
([0, 1]),R

)
, we obtain that the result actually holds for all

f ∈ C
(
([0, 1]2)N0 ,R

)
depending on finitely many components. This in turn implies

that the result holds for all f ∈ C
(
([0, 1]2)N0 ,R

)
. □

• Proof of Lemma 6.2.10
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Proof. Define

DN (Z) =
1

N

∑
j∈[N ]

xj +Kyj
1 +K

, D(Z) = lim
N→∞

DN (Z) in L2(µ). (6.139)

Since µ is translation invariant with
∫
[0,1]2

x0+Ky0
1+K dµ < 1, the L2(µ)-limit D(Z)

exists by the ergodic theorem. Since, by assumption, µN → µ as N → ∞ for all fixed
M ∈ N0, we have

lim
N→∞

LµN
[DM (Z)] = Lµ[DM (Z)]. (6.140)

Therefore, in order to prove Lemma 6.2.10, we are left to show

lim
M→∞

sup
N≥M

∥DM (Z)−DN (Z)∥L2(µN ) = 0. (6.141)

This can be done by using Fourier transforms and spectral densities, and to do so we
follow the same strategy as in [21, Lemma 2.5].

Define

θ̄N = EµN

[
x0 +Ky0
1 +K

]
. (6.142)

Since µN is translation invariant on N0, by Herglotz’s theorem there exists a unique
measure λN such that, for all j, k ∈ N0,

EµN

[(
xj +Kyj
1 +K

− θ̄N
)(

xk +Kyk
1 +K

− θ̄N
)]

=

∫
(−π,π]

λN (du) ei(j−k)u. (6.143)

For N ∈ N0, define

DN (u) =
1

N

∑
j∈[N ]

eiju. (6.144)

By (6.143), it follows that∥∥DM (Z)−DN (Z)
∥∥
L2(µN )

=
∥∥DM (u)−DN (u)

∥∥
L2(λN )

. (6.145)

Polynomials of the type DN (u) are called trigonometric polynomials and satisfy:

(a) limN→∞DN (u) = 1{0}(u).

(b) For δ > 0 and M <∞ there exists an ϵ(M, δ) such that, for all N ≥M ,

|DN (u)−1{0}(u)| ≤ 1(−δ,δ)\{0}+ϵ(M, δ) with ϵ(M, δ) → 0 as M → ∞. (6.146)

Hence it follows that∥∥DM (u)−DN (u)
∥∥2
L2(λN )

≤ 2λN ((−δ, δ)\{0}) + 2ϵ(M, δ). (6.147)

Now let M → ∞, to obtain

sup
N≥M

∥DM (u)−DN (u)∥L2(λN ) ≤ 2λN ((−δ, δ)\{0}). (6.148)

Subsequently let δ → 0, so that (−δ, δ)\{0} → ∅ and

lim
M→∞

sup
N≥M

∥DM (u)−DN (u)∥2L2(λN ) = 0. (6.149)

□
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• Proof of Lemma 6.2.11

Proof. We first prove Lemma 6.2.11[1]. Afterwards we construct (L̄(N))N∈N to prove
Lemma 6.2.11[2].

Since limk→∞ µNk
= µ, Lemma 6.2.10 implies that limk→∞ L[Θ̄[Nk]] = L[Θ̄]. For

ease of notation we drop the subsequence notation in the remainder of this proof.
By Skohorod’s theorem we can construct the random variables (zµN

i )N∈N and zµi
on one probability space such that limN→∞ zµN

i = zi a.s. Then, as in the proof of
Lemma 6.2.10, we obtain

lim
N→∞

E[|Θ̄[N ] − Θ̄|] = 0. (6.150)

To prove the claim we couple the two infinite systems, namely,

dxµN

i (t) = c
[
Θ̄[N ] − xµN

i (t)
]
dt+

√
g(xµN

i (t)) dwi(t) +Ke [yµN

i (t)− xµN

i (t)] dt,

dyµN

i (t) = e [xµN

i (t)− yµN

i (t)] dt, i ∈ N0,
(6.151)

and

dxµi (t) = c
[
Θ̄− xµi (t)

]
dt+

√
g(xµi (t)) dwi(t) +Ke [yµi (t)− xµi (t)] dt,

dyµi (t) = e [xµi (t)− yµi (t)] dt, i ∈ N0,
(6.152)

are coupled by using the same Brownian motions in (6.151) and (6.152). Like before,
define ∆µN

i = xµN

i − xµi and δµN

i = yµN

i − yµi . By the construction with Skohorod’s
theorem, we have that

lim
N→∞

E
[
|∆µN

i (0)|+K|δµN

i (0)|
]
= 0. (6.153)

To prove that, for all t ≥ 0,

lim
N→∞

E
[
|∆µN

i (t)|+K|δµN

i (t)|
]
= 0, (6.154)

we proceed as in the proof of Lemma 6.2.9. By Itô-calculus, we find that

E
[
|∆µN

i (t)|+K|δµN

i (t)|
]

= E
[
|∆µN

i (0)|+K|δµN

i (0)|
]

− c

∫ t

0

drE [|∆µN

i (r)|]

− 2Ke

∫ t

0

drE
[
1sgn ∆

µN
i (r)̸=sgn δ

µN
i (r) [|δ

µN

i (r)|+ |∆µN

i (r)|]
]

+

∫ t

0

dr c E
[∣∣Θ̄[N ] − Θ̄

∣∣]
≤ E

[
|∆µN

i (0)|+K|δµN

i (0)|
]
+ tcE

[∣∣Θ̄[N ] − Θ̄
∣∣].

(6.155)

From (6.155) it the follows that, for every t ≥ 0,

lim
N→∞

E
[
|∆µN

i (t)|+K|δµN

i (t)|
]
= 0. (6.156)
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We next construct the sequence (L̄(N))N∈N. From (6.137) and (6.156),we have

lim
N→∞

E
[
|∆N

i (t)|+K|δNi (t)|
]
+ E

[
|∆µN

i (t)|+K|δµN

i (t)|
]
= 0. (6.157)

Let (tk)k∈N be an increasing sequence such that limk→∞ tk = ∞ and limk→∞ tk/k = 0.
By (6.157), we can for each k find an Nk ∈ N such that, for all N ≥ Nk,

E
[
|∆N

i (tk)|+K|δNi (tk)|
]
+ E

[
|∆µN

i (tk)|+K|δµN

i (tk)|
]
<

1

k
. (6.158)

Requiring that Nk+1 > Nk, we obtain a strictly increasing sequence (Nk)k∈N that
partitions N. Set

L̄(N) =
∑
k∈N

tk1{Nk,··· ,Nk+1−1}(N). (6.159)

We show that L̄(N) satisfies the required properties:

� limN→∞ E[|∆N
i (L̄(N))|+K|δNi (L̄(N))|]+E[|∆µN

i (L̄(N))|+K|δµN

i (L̄(N))|] = 0.
To proof this, we fix ϵ > 0 and let K be such that 1

K < ϵ. Then, for all N ≥ NK ,

E
[
|∆N

i (L̄(N))|+K|δNi (L̄(N))|
]
+ E

[
|∆µN

i (L̄(N))|+K|δµN

i (L̄(N))|
]

=
∑
k∈N

E
[
|∆N

i (tk)|+K|δNi (tk)|
]
+ E

[
|∆µN

i (tk)|+K|δµN

i (tk)|
]
1{Nk,··· ,Nk−1}(N)

<
1

K
< ϵ.

(6.160)
We conclude that

lim
N→∞

E
[
|∆N

i (L̄(N))|+K|δNi (L̄(N))|
]
+E

[
|∆µN

i (L̄(N))|v+K|δµN

i (L̄(N))|
]
= 0.

(6.161)

� limN→∞ L̄(N) = ∞. By (6.159), for each k ∈ N there exists an Nk ∈ N
such that, for all N ≥ Nk, L̄(N) ≥ tk and tk → ∞. We conclude that
limN→∞ L̄(N) = ∞.

� limN→∞ L̄(N)/N = 0. Recall that limk→∞ tk/k = 0 and Nk ≥ k by construc-
tion. Hence limN→∞ L̄(N)/N ≤ limN→∞

∑
k∈N(tk/k)] 1{Nk,··· ,Nk−1}(N) = 0.

Choosing (tk)k∈N = (L(N))N∈N, we complete the proof of Lemma 6.2.11. □

• Proof of Lemma 6.2.6

Proof. The goal is to prove that νθ is continuous in θ. To do so, let (θn)n∈N be a
sequence in [0, 1] (note that θn is not a random variable) such that limn→∞ θn = θ.
Couple the two infinite systems

dxni (t) = c [θn − xni (t)] dt+
√
g(xni (t)) dwi(t) +Ke [yni (t)− xni (t)] dt,

dyni (t) = e [xni (t)− yni (t)] dt, i ∈ N0,
(6.162)
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and

dxi(t) = c [θ − xi(t)] dt+
√
g(xi(t)) dwi(t) +Ke [yi(t)− xi(t)] dt,

dyi(t) = e [xi(t)− yi(t)] dt, i ∈ N0,
(6.163)

via their Brownian motions, like in the proof of Lemma 6.2.11. Let L[(xni (0), yni (0))] =
δ(θn,θn) and L[(xi(0), yi(0))] = δ(θ,θ). As before, define ∆n

i = xni −xi and δni = yni −yi.
Note that

lim
n→∞

E
[
|∆n

i (0)|+K|δni (0)|
]
= 0. (6.164)

By a similar argument as in the proof of Lemma 6.2.11, we obtain that, for all t ≥ 0,

lim
n→∞

E
[
|∆n

i (t)|+K|δni (t)|
]
= 0. (6.165)

Hence we can construct a sequence (L(n))n∈N satisfying limn→∞ L(n) = ∞ and
limn→∞ L(n)/n = 0 such that

lim
n→∞

E
[
|∆n

i (L(n))|+K|δni (L(n))|
]
= 0. (6.166)

To prove the continuity of the equilibrium νθ in θ, we reason as follows. First note
that we can couple the system in (6.162) starting from δ(θn,θn) with the system in
(6.162) starting from νθn . By the uniqueness and convergence to equilibrium (see
Lemma 6.2.5), we see that this coupling is successful. Similarly, we can couple the
system in (6.163) starting from δ(θ,θ) with the system in (6.163) starting from νθn ,
and see the coupling succesful. Finally, we use (6.166) to obtain

lim
n→∞

Eνθn×νθ
[
|∆n

i (L(n))|+K|δni (L(n))|
]

≤ lim
n→∞

Eνθn×δ(θn,θn)
[
|∆n

i (L(n))|+K|δni (L(n))|
]

+ lim
n→∞

Eδ(θ,θ)×δ(θn,θn)
[
|∆n

i (L(n))|+K|δni (L(n))|
]

+ lim
n→∞

Eνθ×δ(θ,θ)
[
|∆n

i (L(n))|+K|δni (L(n))|
]
= 0.

(6.167)

Let f be a Lipschitz function. Then, by the equilibrium property of νθn and νθ,

lim
n→∞

∣∣Eνθn [f(xn(0))]− Eνθ
[
f(x(0))

]∣∣
= lim
n→∞

∣∣Eνθn [f(xn(L(n)))]− Eνθ
[
f(x(L(n)))

]∣∣
= lim
n→∞

∣∣Eνθn×νθ
[
f(xn(L(n)))− f(x(L(n)))

]∣∣
≤ lim
n→∞

(Lipf)Eνθn×νθ
[
|(xn(L(n)))− (x(L(n)))|

]
= 0.

(6.168)

We can also show this if f is a Lipschitz function of the y component. Hence νθ is
indeed continuous as a function of θ. □

• Proof of Lemma 6.2.13
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Proof. Note that for all N ∈ N fixed, by Itô-calculus we find from (6.15) that

d

dt
E
[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K|y[N ],1

i (t)− y
[N ],2
i (t)|

]
= −2c

N

∑
j∈[N ]

E
[
|x[N ]
j,1 (t)− x

[N ]
j,2 (t)| 1{sgn(x[N]

j,1 (t)−x[N]
j,2 (t)

)
̸=sgn

(
x
[N],1
i (t)−x[N],2

i (t)
)}]

− 2KeE
[
|x[N ],1
i (t)− x

[N ],2
i (t)|

+ |y[N ],1
i (t)− y

[N ],2
i (t)| 1{

sgn
(
x
[N],1
i (t)−x[N],2

i (t)
)
̸=sgn

(
y
[N],1
i (t)−y[N],2

i (t)
)}].
(6.169)

Therefore, for each N ∈ N,

t 7→ E
[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K|y[N ],1

i (t)− y
[N ],2
i (t)|

]
is decreasing. (6.170)

Fix any t(N) → ∞. By the assumption in Lemma 6.2.13, the proofs of Lemma 6.2.9
and Lemma 6.2.11 imply that (6.157) holds for both (X [N ],1, Y [N ],1) and
(X [N ],2, Y [N ],2). Using the construction in the proof of Lemma 6.2.11, we can con-
struct one sequence (l(N))N∈N, satisfying l(N) ≤ t(N), limN→∞ l(N) = ∞ and
limN→∞ l(N)/N = 0, such that (6.161) with L̄(N) replaced by l(N) holds for both
the systems arising from (X [N ],1, Y [N ],1) and (X [N ],2, Y [N ],2).

Write

E
[
|x[N ],1
i (l(N))− x

[N ],2
i (l(N))|+K|y[N ],1

i (l(N))− y
[N ],2
i (l(N))|

]
≤E

[
|x[N ],1
i (l(N))− xµ,1i (l(N))|+K|y[N ],1

i (l(N))− yµ,1i (l(N))|
]

+ E
[
|xµ,1i (l(N))− xµ,2i (l(N))|+K|yµ,1i (l(N))− yµ,2i (l(N))|

]
+ E

[
|xµ,2i (l(N))− x

[N ],2
i (l(N))|+K|yµ,2i (l(N))− y

[N ],2
i (l(N))|

]
.

(6.171)

Note that in the right-hand side of the inequality the first and the third term tend to
zero by (6.161). The second term tends to zero because µ{Θ̄1 = Θ̄2} = 1, and hence
Lemma 6.2.5 can be applied. Therefore

lim
N→∞

E
[
|x[N ],1
i (l(N))− x

[N ],2
i (l(N))|+K|y[N ],1

i (l(N))− y
[N ],2
i (l(N))|

]
= 0. (6.172)

Using the monotonicity in (6.170), we get

lim
N→∞

E
[
|x[N ],1
i (t(N))− x

[N ],2
i (t(N))|+K|y[N ],1

i (t(N))− y
[N ],2
i (t(N))|

]
≤ lim
N→∞

E
[
|x[N ],1
i (l(N))− x

[N ],2
i (l(N))|+K|y[N ],1

i (l(N))− y
[N ],2
i (l(N))|

]
= 0.

(6.173)
□

Combining the proofs of Proposition 6.2.4, Lemma 6.2.11 and Lemma 6.2.13, we ob-
tain the following corollary. This corollary turns out to be important in Section 6.3.2
in the proof of Lemma 6.2.16 to obtain the limiting evolution of the 1-blocks.
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Corollary 6.3.1. Fix s > 0. Let µN be the measure obtained by periodic configura-
tion of

L
[
X [N ](Ns− L(N)), Y [N ](Ns− L(N))

]
, (6.174)

and let µ be a weak limit point of the sequence (µN )N∈N. Let

Θ̄ = lim
N→∞

1

N

∑
i∈[N ]

xµi +Kyµi
1 +K

in L2(µ). (6.175)

and let (XνΘ̄ , Y νΘ̄) be the infinite system evolving according to (6.82) and starting
from its equilibrium measure. Consider the finite system (X [N ], Y [N ]) as a system
on ([0, 1] × [0, 1])N0 obtained by periodic continuation. Construct (X [N ], Y [N ]) and
(XνΘ̄ , Y νΘ̄) on one probability space. Then, for all t ≥ 0,

lim
N→∞

E
[∣∣x[N ]

i (Ns+ t)− x
νΘ̄
i (t)

∣∣]+K E
[∣∣y[N ]

i (Ns+ t)− y
νΘ̄
i (t)

∣∣] = 0, ∀ i ∈ [N ].

(6.176)

Proof. By Proposition 6.2.4 we have that limk→∞ L[X [Nk](Nks) + Y [Nk](Nks)] =
ν(s) = νΘ̄. Let νNk

be defined by periodic continuation of the configuration of
(X [Nk](Nks), Y

[Nk](Nks)) and let ν = limk→∞ νNk
, so ν = νΘ̄. Construct the process

(X [N ](t), Y [N ](t))t≥0, (X
νNk (t), Y νNk (t))t≥0 and (Xν(t), Y ν(t))t≥0 on one probability

space and use for all processes the same Brownian motions. Then the couplings in
the proofs of Lemma 6.2.9 and Lemma 6.2.11 imply (6.176). □

§6.3.2 Proof of step 2. Convergence of the estimator

In this section we prove the three lemmas stated in Step 2 of Section 6.2.2. Afterwards
we prove Proposition 6.2.14 with the help of these lemmas.

• Proof of Lemma 6.2.15

Proof. Recall the definition of Θ̄[N ](t) in (6.43). It follows from the SSDE in (6.15)
that

dΘ̄[N ](t) =
1

1 +K

1

N

∑
i∈[N ]

√
g
(
x
[N ]
i (t)

)
dwi(t). (6.177)

Hence we see that t 7→ Θ̄[N ](t) is a continuous martingale. By Itô’s formula we have

E
[(
Θ̄[N ](t)

)2]
= E

[(
Θ̄[N ](0)

)2]
+

1

(1 +K)2

∫ t

0

dr
1

N2

∑
i∈[N ]

g
(
x
[N ]
i (r)

)
≤ 1 +

1

N

∥g∥
(1 +K)2

t.

(6.178)

Since g is a bounded function, we get that t 7→ Θ̄[N ](t) is square integrable. It follows
that, ((

Θ̄[N ](Ns+ t)− Θ̄[N ](Ns)
)2)

t≥0
(6.179)
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is a sub-martingale. Therefore, defining the stopping time

SNϵ = inf
{
t ≥ 0 :

(
Θ̄[N ](Ns+ t)− Θ̄[N ](Ns)

)2 ≥ ϵ
}
∧ L(N), (6.180)

we find, by the continuity of t 7→ Θ̄[N ](Ns + t) and the optional sampling theorem,
that

P
(
SNϵ ∈ [Ns,Ns+ L(N))

)
≤ 1

ϵ2
E
[(
Θ̄[N ](Ns+ L(N))− Θ̄[N ](Ns)

)2]
. (6.181)

Combining (6.178) and (6.181), we find

lim
N→∞

sup
0≤t≤L(N)

∣∣Θ̄[N ](Ns+ t)− Θ̄[N ](Ns)
∣∣ = 0 in probability. (6.182)

To obtain the increasing process, note that by Itô-calculus it follows from (6.177) that

〈
Θ̄[N ](Ns)

〉
s≥0

=
1

(1 +K)2

∫ s

0

dr
1

N

∑
i∈[N ]

g
(
x
[N ]
i (Nr)

)
. (6.183)

We are left to show that the sequence of processes ((Θ̄[N ](Ns))s≥0)N∈N is tight.
Note that (6.183) implies that, for all N ∈ N and s ≥ 0,

〈
Θ̄[N ](Ns)

〉
≤ ∥g∥

(1 +K)2
s (6.184)

and
d

ds

〈
Θ̄[N ](Ns)

〉
≤ ∥g∥

(1 +K)2
. (6.185)

Hence the sequence (⟨Θ̄[N ](Ns)⟩s≥0)N∈N is equicontinuous. Therefore, by the Arzela-
Ascoli theorem (see e.g. [7, Theorem 7.2]), for each T ≥ 0 the set
(⟨Θ̄[N ](Ns)⟩0≤s≤T )N∈N is relatively compact in C([0, T ],R), the space of continu-
ous functions from [0, T ] → R. Therefore the set of laws (L⟨Θ̄[N ](Ns)⟩0≤s≤T )N∈N
is tight in P(C([0, T ],R)). Hence it follows that (L⟨Θ̄[N ](Ns)⟩s≥0)N∈N is tight in
P(C([0,∞),R)), the set of probability laws on C([0,∞),R).

Since (Θ̄[N ](Ns) − Θ̄[N ](0))s≥0 is a stochastic integral, we can represent it as a
time-transformed Brownian motion (see e.g. [62, Chapter 5]):(

Θ̄[N ](Ns)− Θ̄[N ](0)
)
s≥0

= w
(
⟨Θ̄[N ](Ns)⟩

)
s≥0

. (6.186)

Let χ be a standard normal random variable. Then

E
[(
w
(
⟨Θ̄[N ](Ns)⟩

)
− w

(
⟨Θ̄[N ](Nr)⟩

))2]
≤ E

[(
⟨Θ̄[N ](Ns)⟩ − ⟨Θ̄[N ](Nr)⟩

)2]
E
[
χ4
]

≤ (s− r)
2 ∥g∥2

(1 +K)4
E
[
χ4
]
.

(6.187)
Hence it follows from Kolmogorov’s criterion for weak compactness (see e.g. [62,
Chapter XIII, Theorem 1.8]) that the sequence (L[(Θ̄[N ](Ns))s≥0])N∈N is tight in
P(C([0,∞),R)). □
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• Proof of Lemma 6.2.16

Proof. For ease of notation we will suppress the subsequence notation and assume
that

lim
N→∞

L
[(
Θ̄[N ](Ns)

)
s>0

]
= L

[
(Θ̄(s))s>0

]
. (6.188)

The processes (Θ̄[N ](Ns))s≥0 are martingales, see (6.177), measurable w.r.t. the
canonical filtration (Fs)s≥0 and so are there weak limit points. Therefore also the
weak limit point (Θ̄(s))s>0 is a martingale, (see [21, Section 3]). To obtain (6.93), we
use the following strategy. Recall from the proof of Lemma 6.2.15 that the sequence
{⟨Θ̄[N ](Ns)⟩s>0}N∈N is tight. Hence, in order to prove that

lim
N→∞

L
[
⟨Θ̄[N ](Ns)⟩s>0

]
= L

[(∫ s

0

dr
1

(1 +K)2
EνΘ̄(r) [g(x0)]

)
s>0

]
, (6.189)

it is enough to prove that the finite-dimensional distributions of (⟨Θ̄[N ](Ns)⟩s>0)N∈N
converge to the finite-dimensional distribution of (

∫ s
0
dr 1

(1+K)2E
νΘ̄(r) [g(x0)])s>0. We

will prove a slightly stronger result, namely,

lim
N→∞

E
[∣∣∣∣⟨Θ̄[N ](Ns)⟩ −

∫ s

0

dr
1

(1 +K)2
EνΘ̄(r) [g(x0)]

∣∣∣∣] = 0. (6.190)

Once we have obtained (6.190) and hence (6.189), by Skohorod’s theorem we can
construct the processes (⟨Θ̄[N ](Ns)⟩s>0)N∈N on a single probability space, to obtain

lim
N→∞

⟨Θ̄[N ](Ns)⟩s≥0 =

(∫ s

0

dr
1

(1 +K)2
EνΘ̄(r) [g(x0)]

)
s≥0

a.s. (6.191)

Using the continuity of Brownian motion, we get that (recall (6.186))

lim
N→∞

(
Θ̄[N ](Ns)

)
s>0

= lim
N→∞

[
w
(
⟨Θ̄[N ](Ns)⟩

)
s>0

+ Θ̄[N ](0)
]

= w

(∫ s

0

dr
1

(1 +K)2
EνΘ̄(r) [g(x0)]

)
s>0

+ ϑ0 a.s.
(6.192)

Therefore we can choose a version of (Θ̄(s))s>0 such that

lim
N→∞

(
Θ̄[N ](Ns)

)
s>0

= lim
N→∞

(
Θ̄(s)

)
s>0

a.s. (6.193)

and

lim
N→∞

(
Θ̄[N ](Ns), ⟨Θ̄[N ](Ns)⟩

)
s>0

=
(
Θ̄(s), ⟨Θ̄(s)⟩

)
s>0

a.s. (6.194)

By the continuous mapping theorem, (6.93) follows. The martingale property follows
from the fact that

(
Θ̄[N ](Ns)2−⟨Θ̄[N ](Ns)⟩

)
s>0

are martingales. Therefore, to finish

the proof of Lemma 6.2.16 we are left to prove (6.190).
To prove (6.190), define the empirical measures on [0, 1] by

U [N ](Ns) =
1

N

∑
i∈[N ]

δxi(Ns). (6.195)
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Note that we can write

E
[∣∣∣∣⟨Θ̄[N ](Ns)⟩ −

∫ s

0

dr
1

(1 +K)2
EνΘ̄(r) [g(x0)]

∣∣∣∣]
=

1

(1 +K)2
E
[∣∣∣∣∫ s

0

dr EU
[N](Nr)[g(x0)]−

∫ s

0

dr EνΘ̄(r) [g(x0)]

∣∣∣∣]
≤ 1

(1 +K)2

∫ s

0

drE
[∣∣∣EU [N](Nr)[g(x0)]− EνΘ̄(r) [g(x0)]

∣∣∣] .
(6.196)

Hence, to prove (6.190) it is enough to prove that, for all r > 0,

lim
N→∞

E
[∣∣∣EU [N](Nr)[g(x0)]− EνΘ̄(r) [g(x0)]

∣∣∣] = 0 (6.197)

and apply the dominated convergence theorem.
To prove (6.197), we will use the coupling arguments from Section 6.3.1, as well

as ergodicity and invariance under the evolution of νΘ̄. As before, let z[N ](t) denote

the [N ]-component system (x
[N ]
i (t), y

[N ]
i (t))t≥0 evolving according to (6.15), viewed

as a system on N0 obtained by periodic continuation and with initial law L[z[N ](0)] =

L[x[N ]
i (Nr − L(N)), y

[N ]
i (Nr − L(N))]. Let (zµN (t))t≥0 denote the infinite system

(xµN

i (t), yµN

i (t))t≥0 evolving according to (6.74) with initial law µN obtained by peri-

odic continuation of the configuration of (x
[N ]
i (Nr−L(N)), y

[N ]
i (Nr−L(N))), and let µ

be a weak limit point of the sequence µN . Note that, for all r > 0, by Lemma 6.2.10 we
have that limN→∞ Θ̄[N ](Nr) = Θ̄(r) for Θ̄(r) = limn→∞

1
n

∑
i∈[n]

xi+Kyi
1+K in L2(µ).

Let L̄(N) be the sequence constructed in Corollary 6.3.1. Then we can write

E
[∣∣∣EU [N](Nr)[g(x0)]− EνΘ̄(r)[g(x0)]

∣∣∣]
≤ E

∣∣∣∣∣∣ 1N
∑
i∈[N ]

g(x
[N ]
i (Nr))− 1

N

∑
i∈[N ]

g
(
x
νΘ̄(r)
i (L̄(N))

)∣∣∣∣∣∣


+ E

∣∣∣∣∣∣ 1N
∑
i∈[N ]

g
(
x
νΘ̄(r)

i (L̄(N))
)
− EνΘ̄(r) [g(x0)]

∣∣∣∣∣∣


≤ (Lip g)E
[∣∣∣x[N ]

0 (Nr)− x
νΘ̄(r)
0 (L̄(N))

∣∣∣]
+ E

∣∣∣∣∣∣ 1N
∑
i∈[N ]

g
(
x
νΘ̄(r)

i (L̄(N))
)
− EνΘ̄(r) [g(x0)]

∣∣∣∣∣∣
 ,

(6.198)

where in the second inequality we use the Lipschitz property of g and the translation
invariance of the system. Note that the first term tends to 0 as N → ∞ by Corol-
lary 6.3.1. Finally, note that by Lemma 6.2.5 (xi)i∈N0

is a sequence of bounded i.i.d.
random variables under νΘ̄(r). Hence the last term tends to zero by the law of large
numbers. □

• Proof of Lemma 6.2.17
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Proof. Note that, since g is Lipschitz, the function

θ 7→ Eνθ [g], (6.199)

is Lipschitz by Lemma 6.2.6. Hence, by [72, Theorem 1], the SDE

dΦ(s) =
1

(1 +K)

√
EνΦ(s)[g] dw(s) (6.200)

has a pathwise unique solution (see i̧te[p315–317]KS91) and a unique solution in law
(see [72, Proposition 1]). This implies that the martingale problem with generator

1

(1 +K)2
EνΦ [g]

d

dΦ2
(6.201)

has a unique solution. In particular, choosing f(Φ) = Φ2, we see that the martingale
problem implies that(

Φ2(s)− 1

(1 +K)2

∫ s

0

duEνΦ(u) [g(x0)]

)
s>0

(6.202)

is a martingale.
Since (Θ̄(s))s>0 is a continuous bounded martingale, it could be written as a time

transformed Brownian motion. The uniqueness of the martingale problem in (6.94)
now follows from the fact that the quadratic variation of a martingale is unique. □

• Proof of Proposition 6.2.14

Proof. Combining Lemma 6.2.16–6.2.17, all converging subsequences of (L[(Θ̄[N ](Ns))s≥0])N∈N
converge to the same limit, which is the unique process satisfying the martingale prob-
lem in (6.94). □

§6.3.3 Proof of step 3. Convergence of the 1-blocks
in the Meyer-Zheng topology

In this section we prove Proposition 6.2.18 stated in Step 3 of Section 6.2.2. The
Lemmas 6.2.19, 6.2.20 and 6.2.21 are proven in Appendix B.2.

• Proof of Proposition 6.2.18

Proof. By Proposition 6.2.14 we have that

lim
N→∞

L[Θ̄[N ](Ns)s>0] = L[(Θ̄(s))s>0] (6.203)

in the normal topology and therefore (see B.2 Lemma B.2.1)

lim
N→∞

L[Θ̄[N ](Ns)s>0] = L[(Θ̄(s))s>0] in Meyer-Zheng topology. (6.204)
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By Lemma 6.2.7, for s > 0,

lim
N→∞

E
[∣∣∣Θ̄[N ](Ns)− x

[N ]
1 (s)

∣∣∣] = 0 (6.205)

and therefore, by Lemma 6.2.19,

lim
N→∞

dP (ψΘ̄[N] , ψ
x
[N]
1

) = 0 in probability. (6.206)

To apply the above results to our model, we recall the following basic result (see [7,
Chapter 1]), which also holds for the Meyer-Zheng topology.

Lemma 6.3.2. Let Xn, Yn be random variables. If

lim
n→∞

L[Xn] = L[X] (6.207)

and

lim
n→∞

d(Xn, Yn) = 0 in probability, (6.208)

then

lim
n→∞

L[Yn] = L(X). (6.209)

Applying Lemma (6.3.2) to our case, we obtain

lim
N→∞

L[(x[N ]
1 (s))s>0] = L[(Θ̄(s))s>0] in the Meyer-Zheng topology. (6.210)

The argument for

lim
N→∞

L[(y[N ]
1 (s))s>0] = L[(Θ̄(s))s>0] in the Meyer-Zheng topology (6.211)

follows in the same way. By Lemma 6.2.20, we obtain

lim
N→∞

L[(x[N ]
1 (s), y

[N ]
1 (s)−x[N ]

1 (s))s>0] = L[(Θ̄(s), 0)s>0] in the Meyer-Zheng topology.

(6.212)
Applying Lemma 6.2.21 with f(x, y) = f(x, y + x) and the continuous mapping the-
orem, we obtain

lim
N→∞

L
[(
x
[N ]
1 (s), y

[N ]
1 (s)

)
s>0

]
= L[(Θ̄(s), Θ̄(s))s>0] in the Meyer-Zheng topology.

(6.213)
□

§6.3.4 Proof of step 4. Mean-field finite-systems
scheme

• Proof of Proposition 6.2.1
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Proof. Proposition 6.2.1(b) follows directly from Propostion 6.2.14. The proof of
Proposition 6.2.1(a) follows from Proposition 6.2.1(b) and Proposition 6.2.18.

To prove Proposition 6.2.1(c) fix t > 0. Consider the processes
(X [N ](sN + t), Y [N ](sN + t))t≥0 as processes on ([0, 1]2)N0 by periodic continuation.
Since ([0, 1]2)N0 is compact, the sequence (X [N ](sN+t), Y [N ](sN+t))N∈N is tight and
hence has a converging subsequence. Let (Θ̄(s))s>0 be the limiting process obtained
in Proposition (6.2.14). This has continuous paths and is the unique solution of a
well-posed martingale problem, and hence is a Markov process. Denote by Qs the
time-s semigroup corresponding to (Θ̄(s))s≥0. Combining Proposition 6.2.4, Propos-
ition 6.2.14 and Lemma 6.2.15, we get that, for each converging subsequence,

lim
k→∞

L
[
X [Nk](sNk + t), Y [Nk](sNk + t)

]
=

∫
Qs (θ,dθ

′) νθ′ = ν(s), (6.214)

and hence it follows that, for all t ≥ 0,

lim
N→∞

L
[
X [N ](sN + t), Y [N ](sN + t)

]
=

∫
Qs (θ,dθ

′) νθ′ = ν(s). (6.215)

Let (Xν(s)(t), Y ν(s)(t))t≥0 be the infinite system defined in (6.18), starting from initial
measure ν(s). Then it follows from Corollary 6.3.1 that we can construct the processes
(X [N ](sN + t), Y [N ](sN + t))t≥0 and (Xν(s)(t), Y ν(s)(t))t≥0 on one probability space
such that, for all t ≥ 0,

lim
N→∞

E
[∣∣zν(s)(i,Ri)

(t)− z
[N ]
(i,Ri)

(sN + t)
∣∣] = 0 ∀ (i, Ri) ∈ Z× {A,D}. (6.216)

Hence we see that the finite-dimensional distributions of the process
(X [N ](sN + t), Y [N ](sN + t))t≥0 converge to the finite-dimensional distributions of te
process (Xν(s)(t), Y ν(s)(t))t≥0.

Since we want that

lim
N→∞

L
[(
X [N ](sN + t), Y [N ](sN + t)

)
t≥0

]
= L

[(
Xν(s)(t), Y ν(s)(t)

)
t≥0

]
, (6.217)

we are left to show the tightness of L[(X [N ](sN+t), Y [N ](sN+t))t≥0]N∈N in the path

space C([0,∞), ([0, 1]× [0, 1])
N0). Since ([0, 1]2)N0 is endowed with the product topo-

logy, it is enough to show for all sequence components (x
[N ]
i (t))t≥0 and (y

[N ]
i (t))t≥0

that they are tight in path space (see [7, Theorem 7.3]).
To prove that the components are tight, we use a tightness criterion for semi-

martingales by Joffe and Metivier, [49, Proposition 3.2.3]. To use this criterion,

we have to show that for all i ∈ [N ] the components (x
[N ]
i (t), y

[N ]
i (t)) are D-semi-

martingales as defined in [49, Definition 3.1.1]. To do this, let C∗ ⊂ Cb
(
[0, 1]2

)
be the

set of polynomials on [0, 1]2, and define the operator

G
[N ]
† : (C∗ × [0, 1]2 × [0,∞),Ω) → R (6.218)

by

G
[N ]
† (f, (x, y), t, ω) =

 c

N

∑
j∈[N ]

[x
[N ]
j (t, ω)− x] +K [y − x]

 ∂f
∂x

+
1

2
g(x)

∂2f

∂x2
+ e [x− y]

∂f

∂y
.

(6.219)
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We use the subscript † to emphasize that G
[N ]
† is the operator of a D-semi-martingale

and not a generator. Below we check in 4 steps that the component processes

(x
[N ]
i (t), y

[N ]
i (t))t≥0 are indeed D-semi-martingales.

(a) The functions

f1(xi, yi) = xi, f2(xi, yi) = yi, (6.220)

are in C∗, and so are f21 , f1f2, f
2
2 .

(b) For every ((x, y), t, ω) ∈
(
[0, 1]2 × [0,∞)× Ω

)
, the mapping

f 7→ G
[N ]
† (f, (x, y), t, ω) is linear on C∗ and G

[N ]
† (f, ·, t, ω) ∈ C∗.

(c) Let (Fs)s≥0 be the filtration generated by the Brownian motions ((wi(s))s≥0)i∈[N ],
and let P be the σ-algebra generated by the predictable sets, i.e., sets of the

form (s, t]×F for F ∈ Fs. Since the component processes (x
[N ]
j (t))t≥0 are con-

tinuous, ((x, y), t, ω) 7→ G
[N ]
† (f, (x, y), t, ω) is B([0, 1]2)⊗P measurable for every

f ∈ C∗, where P is the σ-algebra generated by the sets of the form (s, t]×F for
F ∈ Fs.

(d) Applying Itô’s formula to the SSDE in (6.15), we obtain, for every f ∈ C∗,

f
(
x
[N ]
i (t), y

[N ]
i (t)

)
= f

(
x
[N ]
i (0), y

[N ]
i (0)

)
+

∫ t

0

ds
c

N

∑
j∈[N ]

[
x
[N ]
j (s, ω)− x

[N ]
i (s)

] ∂f
∂x

(
x
[N ]
i (t), y

[N ]
i (t)

)
+

1

2

∫ t

0

dwi(s)

√
g(x

[N ]
i (s))

∂f

∂x

(
x
[N ]
i (t), y

[N ]
i (t)

)
+

∫ t

0

dsKe
[
y
[N ]
i (s)− x

[N ]
i (s)

] ∂f
∂x

(
x
[N ]
i (t), y

[N ]
i (t)

)
+

∫ t

0

ds e
[
x
[N ]
i (s)− y

[N ]
i (s)

] ∂f
∂y

(
x
[N ]
i (t), y

[N ]
i (t)

)
+

∫ t

0

ds g(x
[N ]
i (s))

∂2f

∂x2
(
x
[N ]
i (t), y

[N ]
i (t)

)
.

(6.221)
Therefore

M [N ],f (t, ω) = f
(
x
[N ]
i (t, ω), y

[N ]
i (t, ω)

)
− f

(
x
[N ]
i (0, ω), y

[N ]
i (0, ω)

)
−
∫ t

0

dsG
[N ]
†
(
f(x

[N ]
i (s, ω), y

[N ]
i (s, ω)), s, ω

) (6.222)

is a square-integrable martingale on (Ω, (Fs)s≥0,P).

To check that the sequence of component processes ((x
[N ]
i (t), y

[N ]
i (t)))N∈N is tight,

we need the local characteristics of the D-semi-martingale, which are defined in [49,
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Definition 3.1.2] as (recall (6.220))

b
[N ]
1 ((x, y), t, ω) = G

[N ]
† (f1, (x, y), t, ω),

b
[N ]
2 ((x, y), t, ω) = G

[N ]
† (f2, (x, y), t, ω),

a
[N ]
(1,1)((x, y), t, ω) = G

[N ]
† (f1f1, (x, y), t, ω)− 2x b1((x, y), t, ω),

a
[N ]
(2,1)((x, y), t, ω) = G

[N ]
† (f1f2, (x, y), t, ω)− x b2((x, y), t, ω)− yb1((x, y), t, ω),

a
[N ]
(1,2)((x, y), t, ω) = a(2,1)((x, y), t, ω),

a
[N ]
(2,2)((x, y), t, ω) = G

[N ]
† (f2f2, (x, y), t, ω)− 2y b2((x, y), t, ω).

(6.223)
Hence

b
[N ]
1 ((x, y), t, ω) =

c

N

∑
j∈[N ]

[x
[N ]
j (t, ω)− x] +Ke[y − x],

b
[N ]
2 ((x, y), t, ω) = e[x− y],

a
[N ]
(1,1)((x, y), t, ω) = 2g(x),

a
[N ]
(1,2)((x, y), t, ω) = a(2,1)((x, y), t, ω) = 0,

a
[N ]
(2,2)((x, y), t, ω) = 0.

(6.224)

Here, b
[N ]
i and a

[N ]
i,j , i, j ∈ {1, 2}, are called the local coefficients of first and second

order. We check that the hypotheses [49, H1, H2, H3 in Section 3.2.1] are satisfied.

H1: For all N ∈ N,∑
i∈{1,2}

|b[N ]
i ((x, y), t, ω)|2+

∑
i,j∈{1,2}

|a[N ]
(i,j)((x, y), t, ω)|

2 ≤ 4(c+Ke+ e)2+2||g||2.

(6.225)
Hence, choosing as positive adapted process the constant process 1 and letting
the constant be equal to 4(c+Ke+ e)2 + 2||g||2, we see that H1 is satisfied.

H2: Since the component processes are bounded by 1, also H2 is satisfied.

H3: Since the increasing càdlàg function (A[N ](t))t≥0 in [49, Definition 3.1.1] is in
our case A[N ](t) = t, also H3 is satisfied.

SinceH1,H2,H3 are met, [49, Proposition 3.2.3] implies that ((x
[N ]
i (t), y

[N ]
i (t))t>0)N∈N

are tight in the space of càdlàg paths D((0,∞], [0, 1]2). Hence (6.217) indeed holds.
□
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CHAPTER 7
Two-colour mean-field system

In this chapter we extend the results obtained in Section 6.2.1 to a mean-field system
where the seed-bank consists of two colours, one colour that interacts on the slow
time scale and one colour that interacts on the fast time scale. To do so we follow the
set-up used in Chapter 4.4. In particular, we highlight the role of the second colour.
Section 7.1 builds up the setting and states the main scaling result: Proposition 7.1.2.
Section 7.2 provides the proof of this proposition based on a series of lemmas, which
are stated and proved first.

§7.1 Two-colour mean-field finite-systems scheme

Setup. In this section we consider a simplified version of our SSDE in (4.20) on the
finite geographic space

[N ] = {0, 1, . . . , N − 1}, N ∈ N. (7.1)

The migration kernel aΩN (·, ·) is replaced by the migration kernel a[N ](i, j) = c0N
−1

for all i, j ∈ [N ], where c0 ∈ (0,∞) is a constant. The seed-bank consists of two
colours, labeled 0 and 1. The exchange rates between the active and the colour-0
dormant population are given by K0e0, e0. The exchange rates between active and
the colour-1 dormant population are given by K1e1

N , e1N . The state space is

S = s[N ], s = [0, 1]× [0, 1]2, (7.2)

and the system, consisting of three components, is denoted by

Z [N ](t) =
(
X [N ](t), (Y

[N ]
0 (t), Y

[N ]
1 (t))

)
t≥0

,(
X [N ](t), (Y

[N ]
0 (t), Y

[N ]
1 (t))

)
=
(
xi(t), (yi,0(t), yi,1(t))

)
i∈[N ]

.
(7.3)

The components of (Z [N ](t))t≥0 evolve according to the SSDE

dx
[N ]
i (t) =

c0
N

∑
j∈[N ]

[x
[N ]
j (t)− x

[N ]
i (t)] dt+

√
g(x

[N ]
i (t)) dwi(t)

+K0e0 [y
[N ]
i,0 (t)− x

[N ]
i (t)] dt+

K1e1
N

[y
[N ]
i,1 (t)− x

[N ]
i (t)] dt,

dy
[N ]
i,0 (t) = e0 [x

[N ]
i (t)− y

[N ]
i,0 (t)] dt,

dy
[N ]
i,1 (t) =

e1
N

[x
[N ]
i (t)− y

[N ]
i,1 (t)] dt, i ∈ [N ],

(7.4)
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which is a special case of (4.20). The initial state is µ(0) = µ⊗[N ] for some µ ∈
P([0, 1]3). The SSDE in (7.4) has a unique weak solution coming from a well-posed
martingale problem [67, Theorem 3.1]. By [67, Theorem 3.2], (7.4) has a unique
strong solution for every deterministic initial state Z [N ](0). Therefore the solutino of
(7.4) is Feller and Markov for any initial law. The SSDE in (7.4) can alternatively be
written as

dx
[N ]
i (t) = c0

 1

N

∑
j∈[N ]

x
[N ]
j (t)− x

[N ]
i (t)

 dt+

√
g
(
x
[N ]
i (t))

)
dwi(t)

+K0e0 [y
[N ]
i,0 (t)− x

[N ]
i (t)] dt+

K1e1
N

[y
[N ]
i,1 (t)− x

[N ]
i (t)] dt,

dy
[N ]
i,0 (t) = e0 [x

[N ]
i (t)− y

[N ]
i,0 (t)] dt,

dy
[N ]
i,1 (t) =

e1
N

[x
[N ]
i (t)− y

[N ]
i,1 (t)] dt, i ∈ [N ].

(7.5)

So the migration term for a single colony can be interpreted as a drift towards the
average of the active population. We are interested in L[(Z [N ](t)))t≥0] in the limit as
N → ∞, on time scales t and Ns. Heuristically, analysing the SSDE in (7.5), we can
foresee the following results, which are made precise in Proposition 7.1.2.

• On time scale 1 = N0 (space-time scale 0), in the limit as N → ∞ the colour-1

dormant population (Y
[N ]
1 (t))t≥0 in (7.4) converges to a constant process, since the

single components yi,1 do not move on time scale t. The components of

(X [N ](t), Y
[N ]
0 (t))t≥0 converge to i.i.d. copies of the single-colony McKean-Vlasov pro-

cess in (6.1), where in the corresponding SSDE the parameters c, e,K are replaced
by c0, e0,K0 and E = 1. So on time scale t we only see the colour-0 dormant popu-
lation interacting with the active population, and the colour-1 dormant population is
not yet coming into play. Therefore the colour-0 dormant population is the effective
seed-bank on time scale 1, and the process

z
eff,[N ]
0 (t) = (x

[N ]
0 (t), y

[N ]
0,0 (t))t≥0 (7.6)

is called the effective process on level 0. Note that the active population has a drift
towards 1

N

∑
j∈[N ] xj(t), which in the McKean-Vlasov limit is replaced by E[x(t)]

given by (4.111).

• On time scale N (space-time scale 1), we look at the averages

(z
[N ]
1 (s))s>0 =

(
x
[N ]
1 (s), (y

[N ]
0,1 (s), y

[N ]
1,1 (s))

)
s>0

=

 1

N

∑
i∈[N ]

x
[N ]
i (Ns),

 1

N

∑
i∈[N ]

y
[N ]
i,0 (Ns),

1

N

∑
i∈[N ]

y
[N ]
i,1 (Ns)


s>0

.

(7.7)
Again the lower index 1 indicates that the average is the analogue of the 1-block
average defined in (4.22). Using (7.4), we see that the dynamics of the system in (7.7)
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is given by the SSDE

dx
[N ]
1 (s) =

√√√√ 1

N

∑
i∈[N ]

g(x
[N ]
i (Ns)) dw(s) +NK0e0

[
y
[N ]
0,1 (s)− x

[N ]
1 (s)

]
ds

+K1e1

[
y
[N ]
1,1 (s)− x

[N ]
1 (s)

]
ds,

dy
[N ]
0,1 (s) = Ne0

[
x
[N ]
1 (s)− y

[N ]
0,1 (s)

]
ds,

dy
[N ]
1,1 (s) = e1

[
x
[N ]
1 (s)− y

[N ]
1,1 (s)

]
ds.

(7.8)

Thus, as in the mean-field system with one-colour, on time scale N infinite rates ap-
pear in the interaction of the active population with the colour-0 dormant population.
Therefore in the limit as N → ∞ the path becomes rougher and rougher at rarer and

rarer times. Using the Meyer-Zheng topology we can prove that limN→∞ y
[N ]
0,1 (s) =

limN→∞ x
[N ]
1 (s) most of the time. On the other hand, on time scale N , x

[N ]
1 (s) has

a non-trivial interaction with y
[N ]
1,1 (s), and therefore we say that on time scale N the

colour-1 dormant population is the effective seed-bank. Note that for the evolution of

the average
x
[N]
1 (s)+K0y

[N]
0,1 (s)

1+K0
the rates with a factor N in front cancel out. We will use

the quantity
x
[N]
1 (s)+K0y

[N]
0,1 (s)

1+K0
to obtain results in the classical path-space topology.

We call

(z
[N ],eff
1 (s))s>0 =

(
x
[N ]
1 (s) +K0y

[N ]
0,1 (s)

1 +K0
, y1,1(s)

)
s>0

(7.9)

the effective process on space-time scale 1. We will call space-time scale 1 also level
1.

Scaling limit. To describe the limiting dynamics of the system in (7.4), we need
the infinite-dimensional process

(Z(t))t≥0 =
(
(zi(t))t≥0

)
i∈N0

=
(
(xi(t), (yi,0(t), yi,1(t)))t≥0

)
i∈N0

(7.10)

with state space ([0, 1]3)N0 that evolves according to

dxi(t) = c0[θ − xi(t)] dt+
√
g(xi(t)) dwi(t) +K0e0 [yi,0(t)− xi(t)] dt,

dyi,0(t) = e0 [xi(t)− yi,0(t)] dt,

yi,1(t) = yi,1, i ∈ N0.

(7.11)

Here, θ ∈ [0, 1] and yi,1 ∈ [0, 1] for all i ∈ N0. We will also need the limiting effective
process

(Zeff(t))t≥0 =
(
(zeffi (t))t≥0

)
i∈N0

=
(
(xeffi (t), yeffi,0(t))t≥0

)
i∈N0

(7.12)

with state space ([0, 1]2)N0 that evolves according to

dxeffi (t) = c0[θ − xeffi (t)] dt+
√
g
(
xeffi (t)

)
dw(t) +K0e0 [y

eff
i,0(t)− xeffi (t)] dt,

dyeffi,0(t) = e0 [x
eff
i (t)− yeffi,0(t)] dt, i ∈ N0.

(7.13)
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Like for the one-colour mean-field finite-systems scheme, we need the following list
of ingredients to formally state our multi-scaling properties:

(a) For positive times t > 0, we define the so-called estimators for the finite system
by:

Θ̄(1),[N ](t) =
1

N

∑
i∈[N ]

x
[N ]
i (t) +K0y

[N ]
i,0 (t)

1 +K0
,

Θ(1),[N ]
x (t) =

1

N

∑
i∈[N ]

x
[N ]
i (t),

Θ(1),[N ]
y0 (t) =

1

N

∑
i∈[N ]

y
[N ]
i,0 (t),

Θ(1),[N ]
y1 (t) =

1

N

∑
i∈[N ]

y
[N ]
i,1 (t).

(7.14)

We abbreviate

Θ(1),[N ](t) =
(
Θ(1),[N ]
x (t),Θ(1),[N ]

y0 (t),Θ(1),[N ]
y1 (t)

)
,

Θeff,(1),[N ](t) =
(
Θ̄(1),[N ](t),Θ(1),[N ]

y1 (t)
)
.

(7.15)

We refer to (Θeff,(1),[N ](t))t≥0 as the effective estimator process and to
(Θ(1),[N ](t))t≥0 as the estimator process.

(b) The time scale Ns is such that L[Θ̄[N ](Ns − L(N)) − Θ̄[N ](Ns)] = δ0 for all
L(N) satisfying limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, but not for
L(N) = N . In words, Ns is the time scale on which Θ̄[N ](·) starts evolving, i.e.,
(Θ̄[N ](Ns))s>0 is no longer a fixed process. When we scale time by Ns, we will
use s as a time index, which indicates the “fast time scale”. The “slow time
scale” will be indicated by t. Thus, the time scales for the two-colour mean-field
system are the same as the time scales for the one-colour mean-field system.

Remark 7.1.1 (Notation). The upper index 1 in Θ̄(1) and Θ
(1)
y1 is used to

indicate that we are working with a system of level 1, so the system that lives
on space-time scale 1. This can later be easily generalized to levels 2 and k. ■

(c) The invariant measure (i.e., the equilibrium measure) for the evolution of a
single colony in (7.11), written

Γθ,θ,y1 , (7.16)

and the invariant measure of the infinite system in (7.11), written νθ,θ,y1
=

Γ⊗N0

θ,θ,y1
with θ ∈ [0, 1] and y1 ∈ [0, 1]N0 a random variable. The existence of

the invariant measure νθ and the convergence of L[Z(t)t≥0] towards νθ will be
shown in the proof of Proposition 7.1.2.

(d) The invariant measure of the effective process in (7.13),

Γeff
θ , (7.17)

and the invariant measure for the full process, νeffθ = (Γeff
θ )⊗N0 .
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(e) The renormalisation transformation F : G → G,

(Fg)(θ) =
∫
([0,1]2)N0

g(x0) ν
eff
θ (dx0,dy0,0), θ ∈ [0, 1], (7.18)

where Γeff
θ is the equilibrium measure of (7.16). Note that this is the same

transformation as defined in (4.75), but for the truncated system. Since νeffθ is
a product measure, we can write

(Fg)(θ) =
∫
[0,1]2

g(x) Γeff
θ (dx,dy0), θ ∈ [0, 1], (7.19)

(f) The limiting 1-block process (z1(s))s>0 = (x1(s), (y0,1(s), y1,1(s)))s>0 evolving
according to

dx1(s) =
1

1 +K0

[√
(Fg)

(
x1(s)

)
dw(s) +K1e1 [y1,1(s)− x1(s)] ds

]
,

y0,1(s) = x1(s),

dy1,1(s) = e1 [x1(s)− y1,1(s)] ds,

(7.20)

where Fg is defined in (7.20). The effective process
(zeff1 (s))s>0 = (xeff1 (s), yeff1,1(s))s>0 on space-time scale 1,

dxeff1 (s) =
1

1 +K0

[√
(Fg)(xeff1 (s)) dw(s) +K1e1 [y

eff
1,1(s)− xeff1 (s)] ds

]
,

dyeff1,1(s) = e1 [x
eff
1 (s)− yeff1,1(s)] ds.

(7.21)

We are now ready to state the scaling limit for the evolution of the averages in (7.7),
which we refer to as the mean-field finite-systems scheme with two colours.

Proposition 7.1.2 (Mean-field: two-colour finite-systems scheme).
Suppose that L[Z [N ](0)] = µ⊗[N ] for some µ ∈ P

(
[0, 1]× [0, 1]2

)
. Let

ϑ0 = Eµ
[
x+K0y0
1 +K0

]
, θy1 = Eµ [y1] . (7.22)

(a) For the effective estimator process defined in (7.15),

lim
N→∞

L
[(

Θeff,(1),[N ](Ns)
)
s>0

]
= L

[(
zeff1 (s)

)
s>0

]
, (7.23)

where the limit is determined by the unique solution of the SSDE (7.21), with
initial state

zeff1 (0) =
(
xeff1 (0), yeff1 (0)

)
= (ϑ0, θy1) . (7.24)

(b) Assume for the 1-dormant single components that

lim
N→∞

L
[
Y

[N ]
1 (Ns)

∣∣∣Θ(1),[N ](Ns)
]
= P

z1(s)
Y1(s)

. (7.25)
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Define

Γeff
(ϑ0,θy1 )

(s) =

∫
[0,1]2

Ss
(
(ϑ0, θy1),d(ux, uy)

)
Γeff
ux

∈ P([0, 1]2), (7.26)

where Ss((ϑ0, θy1), ·) is the time-s marginal law of the process (zeff1 (s))s>0 start-
ing from (θ0, θy1) ∈ [0, 1]2 and Γeff

ux
is the equilibrium distribution of the system

in (7.13) with θ = ux (note that Γeff
ϑ0,θy1

(0) = Γeff
ϑ0
). Let (zeff,Γ(ϑ0,θy1

)(s)(t))t≥0

be the process with initial law zeff,Γ(ϑ0,θy1
)(s)(0) drawn according to Γeff

(ϑ0,θy1 )
(s)

(which is a mixture of random processes in equilibrium) that, conditional on
xeff1 (s) = θ, evolves according to (7.13). Then, for every s ∈ (0,∞),

lim
N→∞

L
[(
z
eff,[N ]
0 (Ns+ t)

)
t≥0

]
= L

[
(z

Γeff
(ϑ0,θy1

)(s)(t))t≥0

]
. (7.27)

(c) For the averages in (7.7),

lim
N→∞

L
[(
z
[N ]
1 (s)

)
s>0

]
= L

[
(z1(s))s>0

]
in the Meyer-Zheng topology,

(7.28)

where the limit process is the unique solution of the SSDE in (7.20) with initial
state

z1(0) = (x1(0), y0,1(0), y1,1(0)) = (ϑ0, ϑ0, θy1) . (7.29)

(d) Assume 7.25 and define

ν(s) =

∫
[0,1]3

Ss
(
(ϑ0, ϑ0, θy1),d(ux, ux, uy1)

) ∫
[0,1]N0

P
(ux,ux,uy1

)

Y1(s)
(dy1) νux,y1 ,

(7.30)
where Ss((ϑ0, ϑ0, θy1), ·) is the time-s marginal law of the process (z1(s))s>0 in
(7.20), starting from (ϑ0, ϑ0, θy1) ∈ [0, 1]3, and νux,y1 is the equilibrium dis-
tribution of the system in (7.11) with θ = ux and (yi,1)i∈N0 = y1, (note that
ν(0) = νϑ0,(yi,1(0))i∈N0

). Let (zν(s)(t))t≥0 be the process on ([0, 1]3)N0 with ini-

tial measure zν(s)(0) drawn according to ν(s) (which is a mixture of random
processes in equilibrium) that conditional on x1(s) = θ and Y1(s) = y1 evolves
according to (7.11) with θ = ux and (yi,1)i∈N0

= y1. Then, for every s ∈ (0,∞),

lim
N→∞

L
[(
Z [N ](Ns+ t)

)
t≥0

]
= L

[
(zν(s)(t))t≥0

]
. (7.31)

Remark 7.1.3 (Law of 1-dormant single components). Note that(
L
[
Y

[N ]
1 (Ns)

∣∣∣ (Θ̄[N ](Ns),Θ[N ]
y1 (Ns)

)])
N∈N0

(7.32)

is a tight sequence of measures. Hence there exist weak limit points. In Section 8 we
will see that if there is a higher layer in the hierarchy, then we can show that all weak
limit points of (7.32) are the same and we can identify the limit. For Theorems 4.4.2
and 4.4.4 we do not need this assumption, since there will alwyas be multiple higher
levels. ■

230



§7.2. Proof of the two-colour mean-field finite-systems scheme

C
h
a
p
t
e
r
7

§7.2 Proof of the two-colour mean-field finite-systems
scheme

The proof of Proposition 7.1.2, the finite-systems scheme with one level and two
colours, follows the strategy used in Section 6.3 for the proof of Proposition 6.2.1.
Like for the one-colour finite-systems scheme, we denote the slow time scale by t and
the fast time scale by s. The proof consists of the following 6 steps:

1 Tightness of the effective estimator processes defined in (7.15).(
(Θeff,(1),[N ](Ns))s>0

)
N∈N (7.33)

2 Stability property of (Θeff,(1),[N ](Ns+ t))t>0, i.e., for L(N) satisfying
limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, and all ϵ > 0,

lim
N→∞

P

[
sup

0≤t≤L(N)

∣∣∣Θ̄(1),[N ](Ns)− Θ̄(1),[N ](Ns− t)
∣∣∣ > ϵ

]
= 0. (7.34)

and

lim
N→∞

P

[
sup

0≤t≤L(N)

∣∣∣Θ(1),[N ]
y1 (Ns)−Θ(1),[N ]

y1 (Ns− t)
∣∣∣ > ϵ

]
= 0. (7.35)

3 Equilibrium of the infinite system and the one-dimensional distribution of the
effective single components (Z(Ns+ t))t>0, analogous to Proposition 6.2.4.

4 Limiting evolution of the effective processes ((Θeff,(1),[N ](Ns))s>0)N∈N.

5 Evolution of the 1-blocks in the Meyer-Zheng topology.

6 Proof of Proposition 7.1.2.

Step 1: Tightness of the 1-block estimators.

Lemma 7.2.1 (Tightness of the 1-block estimator). Let

(Θeff,(1),[N ](Ns))s>0 (7.36)

be defined as in (7.14). Then (L[(Θeff,(1),[N ](Ns))s>0])N∈N is a tight sequence of
probability measures on C((0,∞), [0, 1]2).

Proof. To prove tightness of ((Θeff,(1),[N ](Ns))s>0)N∈N, we will prove for all ϵ > 0
that the set of measures ((Θeff,(1),[N ](Ns))s≥ϵ)N∈N is tight. To do so, fix ϵ > 0. We
will again use [49, Proposition 3.2.3]. From (7.4) we find that the 1-block averages
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(Θeff,(1),[N ](Ns))s>0 evolve according to

dΘ̄(1),[N ](Ns) =
1

1 +K0

[√√√√ 1

N

∑
i∈[N ]

g
(
x
[N ]
i (Ns)

)
dwi(s)

+K1e1

Θ(1),[N ]
y1 − 1

N

∑
i∈[N ]

x
[N ]
i (Ns)

 ds

]
,

dΘ(1),[N ]
y1 (Ns) = e1

 1

N

∑
i∈[N ]

x
[N ]
i (Ns)−Θ(1),[N ]

y1 (Ns)

 ds.

(7.37)

To use [49, Proposition 3.2.3], we define C∗ as the set of polynomials on ([0, 1]2). Note
that (Θeff,(1),[N ](Ns))s≥ϵ is a semi-martingale. Applying Itô’s formula, we get

f
(
Θeff,(1),[N ](Ns)

)
= f

(
Θeff,(1),[N ](Nϵ)

)
+

∫ s

ϵ

dwi(r)
1

1 +K0

√√√√ 1

N

∑
i∈[N ]

g
(
x
[N ]
i (Nr)

) ∂f
∂x

(
Θeff,(1),[N ](Nr)

)

+

∫ s

ϵ

dr
K1e1
1 +K0

Θ(1),[N ]
y1 (Nr)− 1

N

∑
i∈[N ]

x
[N ]
i (Nr)

 ∂f
∂x

(
Θeff,(1),[N ](Nr)

)

+

∫ s

ϵ

dr e1

 1

N

∑
i∈[N ]

x
[N ]
i (Nr)−Θ(1),[N ]

y1 (Nr)

 ∂f

∂y

(
Θeff,(1),[N ](Nr)

)
+

∫ s

ϵ

dr
1

2(1 +K0)2
1

N

∑
i∈[N ]

g
(
x
[N ]
i (Nr)

) ∂2f
∂x2

(
Θeff,(1),[N ](Nr)

)
(7.38)

for all f ∈ C∗. Hence, if we define the operator

G
(1),[N ]
† : (C∗, [0, 1]2, [ϵ,∞),Ω) → R,

G
(1),[N ]
† (f, (x, y), s, ω) =

K1e1
1 +K0

y − 1

N

∑
i∈[N ]

x
[N ]
i (Ns, ω)

 ∂f
∂x

+ e1

 1

N

∑
i∈[N ]

x
[N ]
i (Ns, ω)− y

 ∂f
∂y

+
1

2(1 +K0)2
1

N

∑
i∈[N ]

g(x
[N ]
i (Ns, ω))

∂2f

∂x2
,

(7.39)

then we see that the process (Θeff,(1),[N ](Ns))s≥ϵ is a D-semi-martingale for all ϵ >
0. For all ϵ > 0 the conditions H1, H2, H3 are satisfied as before. Therefore we
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conclude from [49, Proposition 3.2.3] that the sequence ((Θeff,(1),[N ](Ns))s≥ϵ)N∈N is
tight. Since this is true for all ϵ > 0, we conclude that (L[(Θeff,(1),[N ](Ns))s>0])N∈N
is tight. □

Step 2: Stability of the 1-block estimators.

Lemma 7.2.2 (Stability property of the 1-block estimator). Let Θeff,(1),[N ](t)
be defined as in (7.14). For any L(N) satisfying limN→∞ L(N) = ∞ and
limN→∞ L(N)/N = 0,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(1),[N ](Ns)− Θ̄(1),[N ](Ns− t)
∣∣∣ = 0 in probability (7.40)

and

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ(1),[N ]
y1 (Ns)−Θ(1),[N ]

y1 (Ns− t)
∣∣∣ = 0 in probability. (7.41)

Proof. Fix ϵ > 0. From the SSDE (7.4) we obtain that, for N large enough,

P

(
sup

0≤t≤L(N)

∣∣∣∣∣Θ̄(1),[N ](Ns)− Θ̄(1),[N ](Ns− t)

∣∣∣∣∣ > ϵ

)

= P

(
sup

0≤t≤L(N)

1

1 +K0

∣∣∣∣∣
∫ Ns

Ns−t
dr

K1e1
N

Θ(1),[N ]
y1 (r)− 1

N

∑
i∈[N ]

x
[N ]
i (r)


+

∫ Ns

Ns−t
dwi(r)

1

N

∑
i∈[N ]

√
g
(
x
[N ]
i (r)

) ∣∣∣∣∣ > ϵ

]

≤ P

(∣∣∣∣∣L(N)2K1e1
N(1 +K0)

∣∣∣∣∣+ sup
0≤t≤L(N)

∣∣∣∣∣ 1

1 +K0

∫ Ns

Ns−t
dwi(r)

1

N

∑
i∈[N ]

√
g(x

[N ]
i (r))

∣∣∣∣∣ > ϵ

)

= P

(
sup

0≤t≤L(N)

∣∣∣∣∣ 1

1 +K0

∫ Ns

Ns−t
dwi(r)

1

N

∑
i∈[N ]

√
g
(
x
[N ]
i (r)

) ∣∣∣∣∣ > ϵ− L(N)2K1e1
N(1 +K0)

)

≤ P

(
sup

0≤t≤L(N)

∣∣∣∣∣ 1

1 +K0

∫ Ns

Ns−t
dwi(r)

1

N

∑
i∈[N ]

√
g
(
x
[N ]
i (r)

) ∣∣∣∣∣ > ϵ

2

)
.

(7.42)
Applying the same optional stopping argument as used in the proof of Lemma 6.2.15,
we find (7.40). For (7.41), note that

P

(
sup

0≤t≤L(N)

∣∣∣∣∣Θ(1),[N ]
y1 (Ns)−Θ(1),[N ]

y2 (Ns− t)

∣∣∣∣∣ > ϵ

)

= P

(
sup

0≤t≤L(N)

1

1 +K0

∣∣∣∣∣
∫ Ns

Ns−t
dr

e1
N

Θ(1),[N ]
y1 (r)− 1

N

∑
i∈[N ]

x
[N ]
i (r)

 ∣∣∣∣∣ > ϵ

)

≤ P

(
2e1L(N)

(1 +K0)N
> ϵ

)
.

(7.43)
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Let N → ∞ to obtain (7.41). □

Step 3: Equilibrium for the infinite system. To derive the equilibrium of
the single components in the infinite system, we derive the following analoque of
Proposition 6.2.4. Recall that the finite system is denoted by Z [Nk] in (7.3), and
recall the list of ingredients in Section 7.1.

Proposition 7.2.3 (Equilibrium for the infinite 2-colour system). Let (Nk)k∈N
be a sequence in N. Fix s > 0. Let L(N) satisfy limN→∞ L(N) = ∞ and
limN→∞ L(N)/N = 0, and suppose that

lim
k→∞

L
[
Θeff,(1),[Nk](Nks)

]
= PΘeff(s),

lim
k→∞

L
[
Y

[Nk]
1 (Nks)

∣∣∣Θeff,(1),[Nk](Nks)
]
= P

Θeff,(1)(s)
Y1(s)

,

lim
k→∞

L

[
sup

0≤t≤L(Nk)

∣∣∣Θ̄[Nk](Nks)− Θ̄[Nk](Nks− t)
∣∣∣+ ∣∣∣Θ[Nk]

y1 (Nks)−Θy1
[Nk](Nks− t)

∣∣∣]
= δ0,

lim
k→∞

L
[
Z [Nk](Nks)

]
= ν(s).

(7.44)
Then ν(s) is of the form

ν(s) =

∫
[0,1]2

PΘeff (s)(dθ,dθy)

∫
[0,1]N0

P
(θ,θy)

Y1(s)
(dy1) νθ,y1 , (7.45)

where y1 = (yi,1)i∈N0
is a sequence with elements in [0, 1], and νθ,y1 is the equilibrium

measure of the process in (7.10) evolving according to (7.11) with (yi,1)i∈N0
given by

the sequence y1 =.

Preparation for the proof of Proposition 7.2.3. The proof of Proposition 7.2.3
follows the same line of argument as used in the proof of Proposition 6.2.4. We
need lemmas that are similar to Lemmas 6.2.5-6.2.11, but this time in the setting
of the two-colour hierarchical mean-field finite-systems scheme. Afterwards we prove
Proposition 7.2.3.

Lemma 7.2.4 (Convergence for the infinite system). Let µ be an exchangeable
probability measure on ([0, 1]3)N0 . Then for the system (Z(t))t≥0 given by (7.10) with
L[Z(0)] = µ,

lim
t→∞

L[Z(t)] = νθ,y1 , (7.46)

where νθ,y1 is of the form

νθ,y1 =
∏
i∈N0

Γθ,yi,1 (7.47)

with Γθ,yi,1 the equilibrium of the ith single-component process in (7.11).

Proof. For each component of the infinite system in (7.10) the 1-dormant single com-
ponent process (yi,1(t))t≥0 does not move on time scale t. Hence, given the states
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of 1-dormant single components, we can use a similar argument as in the proof of
Proposition 6.1.2 (see Section 6.1.3) to show that the single components converge to
an equilibrium measure Γθ,yi,1 . Since the single components do not interact, the claim
in Lemma 7.2.4 follows. □

The second lemma establishes the continuity of the equilibrium with respect to θ,
its center of drift.

Lemma 7.2.5 (Continuity of the equilibrium). Let P(([0, 1]3)N0) denote the
space of probability measures on ([0, 1]3)N0 . The mapping

[0, 1]× [0, 1]N0 → P(([0, 1]3)N0)

(θ,y1) 7→ νθ,y1
(7.48)

is continuous. Furthermore, if h is a Lipschitz function on [0, 1], then also Fh defined
by

(Fh)(θ) = Eνθ,y1 [h(·)] =
∫
([0,1]3)N0

νθ,y1(dz)h(x0) (7.49)

is a Lipschitz function on [0, 1], whose values are independent of y1.

Proof. Lemma 7.2.5 follows from the proof of Lemma 7.2.9. □

The third lemma characterises the speed at which the estimators (Θ
[N ]
x (t))t≥0 and

(Θ
[N ]
y (t))t≥0 converge to each other when N → ∞ and t→ ∞.

Lemma 7.2.6 (Comparison of empirical averages). Let (Θ
(1),[N ]
x (t))t≥0 and

(Θ
(1),[N ]
y0 (t))t≥0 be defined as in (7.14). Then

E
[∣∣∣Θ(1),[N ]

x (t)−Θ(1),[N ]
y0 (t)

∣∣∣] ≤√E
[(

Θ
(1),[N ]
x (0)−Θ

(1),[N ]
y0 (0)

)2]
e−(K0e0+e0)t

+

√
2

K0e0 + e0

[
||g||
N

+
4K1e1
N

]
.

(7.50)

Proof. From (7.4) it follows via Itô-calculus that

d

dt
E
[(

Θ(1),[N ]
x (t)−Θ(1),[N ]

y0 (t)
)2]

= −2(K0e0 + e0)E
[(

Θ(1),[N ]
x (t)−Θ(1),[N ]

y0 (t)
)2]

+ h[N ](t),
(7.51)

where

h[N ](t) = E
[
2K1e1
N

(
Θ(1),[N ]
x (t)−Θ(1),[N ]

y0 (t)
) [

Θ(1),[N ]
y1 (t)−Θ(1),[N ]

x (t)
]]

+
2

N2

∑
i∈[N ]

E
[
g
(
x
[N ]
i (r)

)]
.

(7.52)
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Hence

E
[(

Θ(1),[N ]
x (t)−Θ(1),[N ]

y0 (t)
)2]

= E
[(

Θ(1),[N ]
x (0)−Θ(1),[N ]

y0 (0)
)2]

e−2(K0e0+e0)t

+

∫ t

0

dr e−2(K0e0+e0)(t−r)h[N ](r).

(7.53)
Take the square root on both sides and use Jensen’s inequality to get (7.50). □

Like for the mean-field system with one colour, we need to compare the finite
system in (7.3) with an infinite system. To derive the analogue of Lemma 6.2.9, let
L(N) satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. Define the measure µN
on ([0, 1]3)N0 by continuing the configuration of

Z [N ](Ns− L(N)) =
(
X [N ](Ns− L(N)),

(
Y

[N ]
0 (Ns− L(N)), Y

[N ]
1 (Ns− L(N))

))
(7.54)

periodically to ([0, 1]3)N0 . Let

Θ̄(1),[N ] =
1

N

∑
i∈[N ]

x
[N ]
i (Ns− L(N)) +K0y

[N ]
i,0 (Ns− L(N))

1 +K0
. (7.55)

Let

(ZµN (t))t≥0 =
(
XµN (t), (Y µN

0 (t), Y µN

1 (t))
)
t≥0

(7.56)

be the infinite system evolving according to

dxµN

i (t) = c0 [Θ̄
(1),[N ] − xµN

i (t)] dt+
√
g
(
xµN

i (t)
)
dwi(t) +K0e0 [y

µN

i,0 (t)− xµN

i (t)] dt,

dyµN

i,0 (t) = e0 [x
µN

i (t)− yµN

i,0 (t)] dt,

yµN

i,1 (t) = yµN

i,1 (0), i ∈ N0,

(7.57)
starting from initial distribution µN . Then the following lemma is the equivalent of
Lemma 6.2.9 for the two-colour mean-field system.

Lemma 7.2.7 (Comparison of finite and infinite systems). Fix s > 0, and let
L(N) satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N . Suppose that

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(1),[N ](Ns)− Θ̄(1),[N ](Ns− t)
∣∣∣ = 0 in probability. (7.58)

Then, for all t ≥ 0,

lim
k→∞

∣∣∣E [f(ZµN (t)
)
− f

(
Z [N ](Ns− L(N) + t)

)]∣∣∣ = 0 ∀ f ∈ C
(
([0, 1]3)N0 ,R

)
.

(7.59)

236



§7.2. Proof of the two-colour mean-field finite-systems scheme

C
h
a
p
t
e
r
7

Proof. We proceed as in the proof of Lemma 6.2.9. We rewrite the SSDE in (7.4) as

dx
[N ]
i (t) = c0

[
Θ(1),[N ] − x

[N ]
i (t)

]
dt

+ c0
[
Θ̄(1),[N ](t)−Θ(1),[N ]

]
dt+ c0

[
Θ(1),[N ]
x (t)− Θ̄(1),[N ](t)

]
dt

+

√
g
(
x
[N ]
i (t)

)
dwi(t)

+K0e0
[
y
[N ]
i,0 (t)− x

[N ]
i (t)

]
dt+

K1e1
N

[
y
[N ]
i,1 (t)− x

[N ]
i (t)

]
dt,

dy
[N ]
i,0 (t) = e0

[
x
[N ]
i (t)− y

[N ]
i,0 (t)

]
dt,

dy
[N ]
i,1 (t) =

e1
N

[
x
[N ]
i (t)− y

[N ]
i,1 (t)

]
dt, i ∈ [N ].

(7.60)

As before, we consider the finite system in (7.60) as a system on ([0, 1]3)N0 by
periodic continuation, and we couple the finite system in (7.60) and the infinite
system in (7.59) via there Brownian motions. We denote the coupled process by

z̃(t) = (z̃i(t))i∈N0 = (z̃
[N ]
i (t), z̃µN

i (t))i∈N0 , where z̃
[N ]
i (t) = (x̃

[N ]
i (t), ỹ

[N ]
i,0 (t), ỹ

[N ]
i,1 (t))

and z̃µN

i (t) = (x̃µN

i (t), ỹµN

i,0 (t), ỹ
µN

i,1 (t)). We define

∆
[N ]
i,0 (t) = x̃

[N ]
i (t)− x̃µN

i (t),

δ
[N ]
i,0 (t) = ỹ

[N ]
i,0 (t)− ỹµN

i,0 (t),

δ
[N ]
i,1 (t) = ỹ

[N ]
i,1 (t)− ỹµN

i,1 (t).

(7.61)

As in the proof of Lemma 6.2.9, we have to show that, for all t ≥ 0,

lim
N→∞

E[|∆[N ]
i (t)|] = 0, lim

N→∞
E[|δ[N ]

i,0 (t)|] = 0, lim
N→∞

E[|δ[N ]
i,1 (t)|] = 0. (7.62)

To prove the third limit in (7.63), note that, by (7.57), (7.60) and the choice of
the initial measure in the coupling,

y
[N ]
i,1 (t) = y

[N ]
i,1 (0)+

e1
N

∫ t

0

dr
[
x
[N ]
i (r)−y[N ]

i,1 (r)
]
= yµN

i,1 (t)+
e1
N

∫ t

0

dr
[
x
[N ]
i (r)−y[N ]

i,1 (r)
]
.

(7.63)
Hence

lim
N→∞

E[|δ[N ]
i,1 (L(N))|] = 0. (7.64)

To prove the first two limits in (7.63), we argue as in the proof of Lemma 6.2.9,
but we need to add extra drift terms towards the first seed-bank. Using Itô-calculus,
we obtain

d

dt
E[|∆[N ]

i (t)|+K|δ[N ]
i,0 (t)|]

= −cE[∆[N ]
i (t)]

− 2K0e0 E
[
[|∆[N ]

i (t)|+ |δ[N ]
i (t)|] 1{sgn∆

[N]
i (t)̸=sgn δ

[N]
i,0 (t)}

]
+ c sgn∆

[N ]
i (t)

[
Θ̄(1),[N ](t)− Θ̄(1),[N ]

]
+ c sgn∆

[N ]
i (t)

[
Θ̄(1),[N ]
x (t)− Θ̄(1),[N ](t)

]
+
K1e1
N

sgn∆
[N ]
i (t)

[
δ
[N ]
i,1 (t)−∆

[N ]
i (t)

]
.

(7.65)
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This can be rewritten as

0 ≤ E[|∆[N ]
i (t)|+K0|δ[N ]

i,0 (t)|]

≤ E[|∆[N ]
i (0)|+K|δ[N ]

i,0 (0)|]− c

∫ t

0

drE[∆[N ]
i (r)]

− 2K0e0

∫ t

0

drE
[
[|∆[N ]

i (r)|+ |δ[N ]
i,0 (r)|] 1{sgn∆

[N]
i (t)̸=sgn δ

[N]
i,0 (t)}

]
+ c

∫ t

0

dr |Θ̄(1),[N ](r)−Θ(1),[N ]|

+ c

∫ t

0

dr |Θ̄(1),[N ]
x (r)− Θ̄(1),[N ](r)|

+
K1e1
N

∫ t

0

dr
∣∣∣δ[N ]
i,1 (r)−∆

[N ]
i (r)

∣∣∣ .

(7.66)

By the construction of the measure µN , we have

lim
N→∞

E[|∆[N ]
i (0)|+K0|δ[N ]

i (0)|] = 0. (7.67)

Therefore, for all t ≥ 0,

lim
N→∞

E[|∆[N ]
i (t)|+K0|δ[N ]

i,0 (t)|] = 0. (7.68)

Combine this with (7.64) and use that Lipschitz functions are dense in the set of
bounded continuous functions. Then, as in the proof of Lemma 6.2.9, we get the
claim in (7.59). □

Before we can prove that the infinite system (XµN (t), Y µN

0 (t), Y µN

1 (t))t≥0 con-
verges to a limiting system as N → ∞, we need the following regularity property for

the estimators (Θ̄[N ],Θ
[N ]
y1 ).

Lemma 7.2.8 (Stability of the estimator for the conserved quantity). Define
µN as in Lemma 7.2.7. Let (xNi , y

N
i,0, y

N
i,1)i∈[N ] be distributed according to the ex-

changeable probability measure µN on ([0, 1]3)N0 restricted to ([0, 1]3)[N ]. Suppose that
limN→∞ µN = µ for some exchangeable probability measure µ on ([0, 1]3)N0 . Define
the random variable ϕ on (µ, ([0, 1]3)N0) by putting

ϕ = (ϕ1, ϕ2),

ϕ1 = lim
n→∞

1

n

∑
i∈[n]

xi +Kyi,0
1 +K

, ϕ2 = lim
n→∞

1

n

∑
i∈[n]

yi,1,
(7.69)

and the random variable ϕ[N ]on (µN , ([0, 1]
3)N0) by putting

ϕ[N ] = (ϕ
[N ]
1 , ϕ

[N ]
2 )

ϕ
[N ]
1 =

1

N

∑
i∈[N ]

xNi +KyNi,0
1 +K

, ϕ
[N ]
2 =

1

N

∑
i∈[N ]

yNi,1.
(7.70)

Then
lim
N→∞

L[ϕ[N ]] = L[ϕ]. (7.71)
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Proof. We can use a similar argument as in the proof of Lemma 6.2.10. Define

D[N ](Z) =

 1

N

∑
j∈[N ]

xj +K0yj,0
1 +K0

,
1

N

∑
j∈[N ]

yi,1

 . (7.72)

Then we can proceed as in the proof of Lemma 6.2.10, using Fourier analysis for both
components of D[N ](Z) separately. □

In the fifth and final lemma we state the convergence of
L[(XµN (t), Y µN

0 (t), Y µN

1 (t))] to the law of a limiting system as N → ∞.

Lemma 7.2.9 (Uniformity of the ergodic theorem for the infinite system).
Let µN be defined as in (7.56). Since (µN )N∈N is tight, it has convergent subsequences.
Let (Nk)k∈N be a subsequence such that µ = limk→∞ µNk

. Define

Θ = lim
N→∞

1

N

∑
i∈[N ]

xµi +Kyµi,0
1 +K

in L2(µ). (7.73)

Let Zµ(t) =
(
Xµ(t), Y µ0 (t), Y µ1 (t)

)
t≥0

be the infinite system evolving according to

dxµi (t) = c [Θ− xµi (t)] dt+
√
g(xµi (t)) dwi(t) +Ke [yµi,1(t)− xµi (t)] dt,

dyµi,0(t) = e [xµi (t)− yµi,1(t)] dt,

dyµi,1(t) = yµi,1(0), i ∈ N0.

(7.74)

and let ZµNk (t) = (XµNk (t), Y
µNk
0 (t), Y

µNk
1 (t))t≥0 be the infinite system defined in

(7.56). Then

(a) For all t ≥ 0,

lim
k→∞

∣∣E[f(ZµNk (t)
)]

− E
[
f
(
Zµ(t)

)]∣∣ = 0 ∀ f ∈ C
(
([0, 1]2)N0 ,R

)
. (7.75)

(b) There exists a sequence L̄(N) satisfying limN→∞ L̄(N) = ∞ and
limN→∞ L̄(N)/N = 0 such that

lim
k→∞

∣∣E[f(Z [Nk](Nks− L(Nk) + L̄(Nk))
)
− f

(
ZµNk (L̄(Nk))

)∣∣]
+
∣∣E[f(ZµNk (L̄(Nk))

)]
− E

[
f
(
Zµ(L̄(Nk))

)]∣∣ = 0 ∀ f ∈ C
(
([0, 1]2)N0 ,R

)
.

(7.76)

Proof. As in the proof of Lemma 6.2.11, we can construct (zµN

i )i∈N0
and (zµi )i∈N0

on
one probability space. Then

lim
N→∞

yµN

i,1 (0) = yµi,1(0) a.s. (7.77)

and
lim
N→∞

E[|Θ̄[N ] −Θ|] = 0. (7.78)
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Via a similar coupling as in Lemma (7.2.7), it follows via Itô-calculus that (7.75) holds.
Combining (7.64), (7.68), (7.77) and (7.78), we obtain, via a similar construction as
in the proof of Lemma 6.2.11, a sequence L̄(N) such that

lim
N→∞

E[|∆N
i (L̄(N))|+K0|δNi,0(L̄(N))|] +K1|δNi,1(L̄(N))|]

+ E[|∆µN

i (L̄(N))|+K0|δµN

i,0 (L̄(N))|] +K1|δµN

i,1 (L̄(N))|] = 0.
(7.79)

As in the proof of Lemma 6.2.11, we can again use Lipschitz functions to conclude
(7.76). □

Lemma 7.2.10 (Coupling of finite systems). Let

Z [N ],1 = (X [N ],1, Y
[N ],1
0 , Y

[N ],1
1 ) (7.80)

be the finite system evolving according to (7.4) starting from an exchangeable initial
measure. Let µ[N ],1 be the measure obtained by periodic continuation of the configur-
ation of Z [N ],1(0). Similarly, let

Z [N ],2 = (X [N ],2, Y
[N ],2
0 , Y

[N ],2
1 ) (7.81)

be the finite system evolving according to (7.4) starting from an exchangeable initial
measure. Let µ[N ],2 be the measure obtained by periodic continuation of the con-
figuration of Z [N ],2(0). Let µ̃ be any weak limit point of the sequence of measures
(µ[N ],1 × µ[N ],2)N∈N. Define the random variables Θ̄[N ],1 and Θ̄[N ],2 on (([0, 1]3)N0 ×
([0, 1]3)N0 , µ[N ],1 × µ[N ],2) and Θ̄1 and Θ̄2 on (([0, 1]3)N0 × ([0, 1]3)N0 , µ̄) by

Θ̄[N ],1 =
1

N

∑
i∈[N ]

x
[N ],1
i +K0y

[N ],1
i,0

1 +K0
, Θ̄[N ],2 =

1

N

∑
i∈[N ]

x
[N ],2
i +K0y

[N ],2
i,0

1 +K0
,

Θ̄1 = lim
n→∞

1

n

∑
i∈[n]

x1i +K0y
1
i,0

1 +K0
, Θ̄2 = lim

n→∞

1

n

∑
i∈[n]

x2i +K0y
2
i,0

1 +K0
,

(7.82)

and let (Θ̄(1),[N ],1(t))t≥0 and (Θ̄(1),[N ],2(t))t≥0 be defined as in (7.14) for Z [N ],1, re-
spectively, Z [N ],2. Suppose that

lim
N→∞

sup
0≤t≤L(N)

(∣∣∣Θ̄[N ],k(0)− Θ̄[N ],k(t)
∣∣∣) = 0 in probability, k ∈ {1, 2}, (7.83)

and suppose that µ̃({Θ̄1 = Θ̄2, Y
1
1 = Y 2

1 }) = 1. Then, for any t(N) → ∞,

lim
N→∞

E
[
|x[N ],1
i (t(N))− x

[N ],2
i (t(N))|+K0|y[N ],1

i,0 (t(N))− y
[N ],2
i,0 (t(N))|

+K1|y[N ],1
i,1 (t(N))− y

[N ],2
i,1 (t(N))|

]
= 0.

(7.84)
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Proof. Via standard Itô-calculus we obtain from (7.4) that

d

dt
E
[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K0|y[N ],1

i,0 (t)− y
[N ],2
i,0 (t)|+K1|y[N ],1

i,1 (t)− y
[N ],2
i,1 (t)|

]
= −2c

N

∑
j∈[N ]

E
[
|x[N ],1
j (t)− x

[N ],2
j (t)|1{sgn (x

[N],1
j (t)−x[N],2

j (t)) ̸=sgn (x
[N],1
i (t)−x[N],2

i (t))}

]
− 2K0e0 E

[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K|y[N ],1

i,0 (t)− y
[N ],2
i,0 (t)|

× 1{sgn (x
[N],1
i (t)−x[N],2

i (t)) ̸=sgn (y
[N],1
i,0 (t)−y[N],2

i,0 (t))}

]
− 2

K1e1
N

E
[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K1|y[N ],1

i,0 (t)− y
[N ],2
i,0 (t)|

× 1{sgn (x
[N],1
i (t)−x[N],2

i (t)) ̸=sgn (y
[N],1
i,1 (t)−y[N],2

i,1 (t))}

]
.

(7.85)
Therefore, for all N ∈ N,

t 7→ E
[
|x[N ],1
i (t)− x

[N ],2
i (t)|+K0|y[N ],1

i,0 (t)− y
[N ],2
i,0 (t)|+K1|y[N ],1

i,1 (t)− y
[N ],2
i,1 (t)|

]
(7.86)

is a decreasing function. Hence we can use the same strategy as in the proof of
Lemma 6.2.13 to finish the proof. □

• Proof of Proposition 7.2.3

Proof. We follow a similar argument as in the proof of Proposition 6.2.4. Let L(N)
satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. Let µN be the measure
on ([0, 1]3)N0 obtained by periodic continuation of L[Z [N ](Ns − L(N))]. Note that
([0, 1]3)N0 is compact. Hence, letting (Nk)k∈N be the subsequence in Proposition 7.2.3,
we can pass to a possibly further subsequence and obtain

lim
k→∞

µNk
= µ. (7.87)

Since we assumed that L[Z [N ](0)] is exchangeable and the dynamics preserve ex-
changeability, the measures µNk

are translation invariant and also the limiting law µ
is translation invariant.

Let ϕ = (ϕ1, ϕ2) be defined as in (7.69) in Lemma 7.2.8. Then we can condition
on ϕ = (ϕ1, ϕ2) and write

µ =

∫
[0,1]2

µρ dΛ(ρ), (7.88)

where Λ(·) = L[ϕ] = L[(ϕ1, ϕ2)] and ρ = (ρ1, ρ2). By assumption we know that

lim
k→∞

L
[
Θeff,(1),[Nk](Nks)

]
= PΘeff (s)(·) (7.89)
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and

lim
k→∞

L

[
sup

0≤t≤L(Nk)

∣∣∣Θ̄[Nk](Nks)− Θ̄[Nk](Nks− t)
∣∣∣+ ∣∣∣Θ[Nk]

y1 (Nks)−Θy1
[Nk](Nks− t)

∣∣∣]
= δ0.

(7.90)

Hence

lim
k→∞

L
[
Θeff,(1),[Nk](Nks− L(Nk))

]
= PΘeff (s)(·). (7.91)

Recall that

Λ(·) = L

 lim
n→∞

 1

n

∑
i∈[n]

xi +Kyi,0
1 +K

,
1

n

∑
i∈[n]

yi,1

 on (µ, ([0, 1]2)N0). (7.92)

By Lemma 6.2.10, if

ϕNk = (ϕNk
1 , ϕNk

2 ) =

 1

Nk

∑
i∈[Nk]

xi +Kyi,0
1 +K

,
1

Nk

∑
i∈[Nk]

y
[Nk]
i,1

 on (µNk
, ([0, 1]3)N0),

(7.93)
then limk→∞ L[ϕNk ] = L[ϕ]. Taking the subsequence (µNk

)k∈N, we get Λ(·) =
PΘeff (s)(·), and hence

µ =

∫
[0,1]

µρ dPs(ρ). (7.94)

Let L̄(N) be the sequence constructed in Lemma 7.2.9[b]. By construction we can
require that L̄(N) ≤ L(N) for all N ∈ N. Write

L
[
Z [Nk](Nks− L(Nk) + L̄(Nk))

]
= L

[
Z [Nk](Nks− L(Nk) + L̄(Nk))

]
− L

[
ZµNk (L̄(Nk))

]
,

+ L
[
ZµNk (L̄(Nk))

]
− L

[
Zµ(L̄(Nk))

]
+ L

[
Zµ(L̄(Nk))

]
.

(7.95)

By Lemma 7.2.9 the first and second differences tend to zero as k → ∞. Hence

lim
k→∞

L
[
Z [Nk](Nks− L(Nk) + L̄(Nk))

]
= L

[
Zµ(L̄(Nk))

]
. (7.96)

By (7.88),

L
[
Zµ(L̄(Nk))

]
=

∫
[0,1]2

L
[
Zµρ(L̄(Nk))

]
PΘeff (s)(dρ). (7.97)

For the infinite system (Zµρ(t))t≥0 =
(
Xµρ(t), Y

µρ

0 (t), Y
µρ

1 (t)
)
t≥0

we have

Y µ1 (t) = Y µ1 (0) a.s. (7.98)

and hence, since limk→∞ L̄(Nk)/Nk = 0 by (7.44),

lim
k→∞

L[Y µρ

1 (L̄(Nk))] = L[Y µρ

1 (0)] ∀ ρ ∈ [0, 1]. (7.99)
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Therefore
lim
k→∞

L[Y µρ

1 (L̄(Nk))] = P ρY1(s)
(·) (7.100)

and
L
[
Xµρ(L̄(Nk)), Y

µρ

0 (L̄(Nk)), Y
µρ

1 (L̄(Nk))
]

=

∫
L
[
X
µρ

1 (L̄(Nk)), Y
µρ

0 (L̄(Nk)),y1

]
dP ρY1(s)

(dy1).
(7.101)

Hence, since limk→∞ L̄(Nk) = ∞, by Lemma 6.2.5 we have

lim
k→∞

L
[
Zµρ(L̄(Nk))

]
= lim
k→∞

L
[
X
µρ

1 (L̄(Nk)), Y
µρ

0 (L̄(Nk)), Y
µρ

1 (L̄(Nk))
]

=

∫
νρ,y1

P ρY1(s)
(dy1).

(7.102)

Therefore, by (6.109), (7.97) and Lemma 6.2.6,

lim
k→∞

L
[
Z [Nk](Nks− L(Nk) + L̄(Nk))

]
=

∫
[0,1]

PΘeff (s)(dρ)

∫
νρ,y1

P ρY1(s)
(dy1).

(7.103)
To finish the proof, we proceed as in the proof of Proposition 6.2.4 and invoke

Lemma 7.2.10. Let Z [N ],1 = (X [N ],1, Y
[N ],1
0 , Y

[N ],1
1 ) be the finite system starting

from

L
[
Z [N ](Ns− L(N))

]
= L

[
X [N ](Ns− L(N)), Y

[N ]
0 (Ns− L(N)), Y

[N ]
1 (Ns− L(N))

]
.

(7.104)
Let (L̄(N))N∈N be the sequence constructed in Lemma 7.2.9. Let

Z [N ],2 = (X [N ],2, Y
[N ],2
0 , Y

[N ],2
1 ) be the finite system starting from

L
[
X [N ](Ns−L̄(N))

]
= L

[
X [N ](Ns− L̄(N)), Y

[N ]
0 (Ns− L̄(N)), Y

[N ]
1 (Ns− L̄(N))

]
.

(7.105)
Choose for t(N) in Lemma 7.2.10 the sequence L̄(N). Let µ[N ],1 be defined by the
periodic continuation of the configuration of Z [N ](Ns− L(N)) and µ[N ],2 be defined
by periodic continuation of the configuration of Z [N ](Ns − L̄(N)). Define Θ1 and
Θ2 according to (6.85), where under µ[N ],2 we replace L(N) by L̄(N). Then, by the
assumptions in (7.44),

lim
k→∞

|Θ(1),[Nk],1 −Θ(1),[Nk],2| = lim
k→∞

|ΘNk(Nks− L(Nk))−ΘNk(Nks− L̄(Nk))|

= 0 in probability.
(7.106)

Using 7.63 we see that also, for all i ∈ [N ],

lim
k→∞

|y[Nk],1
i,1 (0)− y

[Nk],2
i,1 (0)| = lim

k→∞
|y[Nk]
i,1 (Nks− L(Nk))− y

[Nk]
i,1 (Nks− L̄(Nk))|

= 0 in probability.
(7.107)

Therefore, if µ is any weak limit point of the sequence
(
µ[Nk],1 × µ[Nk],2

)
k∈N, then

µ({Θ1 = Θ2, Y
1
1 = Y 2

1 }) = 1. (7.108)
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Hence, by possibly passing to a further subsequence, we can now apply Lemma 7.2.10
to obtain, for all i,

lim
k→∞

E
[
|x[Nk],1
i (L̄(Nk))− x

[Nk],2
i (L̄(Nk))|

+K0 |y[Nk],1
i,0 (L̄(Nk))− y

[Nk],2
i,0 (L̄(Nk))|

+K1 |y[Nk],1
i,1 (L̄(Nk))− y

[Nk],2
i,1 (L̄(Nk))|

]
= 0.

(7.109)

Hence

lim
N→∞

(
L[Z [N ],1(L̄(Nk))]− L[Z [N ],2(L̄(Nk))]

)
= δ0 (7.110)

and therefore

lim
k→∞

L
(
Z [Nk](Nks)

)
=

∫
[0,1]

PΘeff (s)(dρ)

∫
νρ,y1

P ρY1(s)
(dy1). (7.111)

This concludes the proof of Proposition 7.2.3. □

Like for the one-colour mean-field system, Proposition 7.2.3 and Lemmas 7.2.4–
7.2.10 give rise to the following corollary, which will be important to derive the evol-
ution of the 1-blocks on time scale Ns.

Corollary 7.2.11. Fix s > 0. Let µN be the measure obtained by periodic continu-
ation of

Z [N ](Ns−L(N)) = (X [N ](Ns−L(N)), Y
[N ]
0 (Ns−L(N)), Y

[N ]
1 (Ns−L(N))), (7.112)

and let µ be a weak limit point of the sequence (µN )N∈N. Let

Θ = lim
N→∞

1

N

∑
i∈[N ]

xµi +Kyµi
1 +K

in L2(µ), (7.113)

and let (ZνΘ(t))t>0 = (XνΘ(t), Y νΘ0 (t), Y νΘ1 (t))t>0 be the infinite system evolving ac-
cording to (7.74) starting from its equilibrium measure. Consider the finite system
Z [N ] as a system on ([0, 1]3)N0 by periodic continuation. Construct (Z [N ](t))t>0 and
(ZνΘ(t))t>0 on one probability space. Then, for all t ≥ 0,

lim
N→∞

E
[∣∣∣x[N ]

i (Ns+ t)− xνΘi (t)
∣∣∣]+K0 E

[∣∣∣y[N ]
i,0 (Ns+ t)− yνΘi,0 (t)

∣∣∣]
+K1 E

[∣∣∣y[N ]
i,1 (Ns+ t)− yνΘi,1 (t)

∣∣∣] = 0 ∀ i ∈ [N ].
(7.114)

Proof. Proceed as in the proof of Corollary 6.3.1, but use the setup of the two-
colour mean-field system and therefore replace Proposition 6.2.4, Lemma 6.2.11 and
Lemma 6.2.13 by, respectively Proposition 7.2.3, Lemma 7.2.9 and Lemma 7.2.10. □

Step 4: Limiting evolution of the 1-blocks.
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Lemma 7.2.12 (Limiting evolution of the 1-blocks). Let (zeff1 (s))s>0 be the pro-
cess defined in (7.21) with initial state

zeff1 (0) = (ϑ0, θy1). (7.115)

Then

lim
N→∞

L
[(
Θeff,(1),[N ](Ns)

)
s>0

]
= L

[
(zeff1 (s))s>0

]
. (7.116)

Proof. By [72], the SSDE in (7.21) has a unique strong solution. Therefore the process
(zeff1 (s))s>0 is Markov. Its generator G is given by

G =
K1e1
1 +K0

(y − x)
∂

∂x
+ e1(x− y)

∂

∂y
+

1

(1 +K0)2
(Fg)(x) ∂2

∂x2
, (7.117)

and hence (zeff1 (s))s≥0 solves the martingale problem for G. We will use [49, Theorem
3.3.1], to prove that (7.116) holds.

Define

(ϑN0 , ϑ
N
y1) =

(
Θ̄(1),[N ](0),Θ(1),[N ]

y1 (0)
)
. (7.118)

Since we start from an i.i.d. law, by the law of large numbers we have that

lim
N→∞

Θeff,(1),[N ](0) = lim
N→∞

(ϑN0 , ϑ
N
y1) = (ϑ0, θy1) a.s. (7.119)

By the SSDE in (7.37) and an optional sampling argument, we have, for all N ∈ N,

lim
s↓0

(
Θ̄(1),[N ](Ns),Θ(1),[N ](Ns)

)
= (ϑN0 , ϑ

N
y1) a.s. (7.120)

Therefore we can continuously extend the process (Θeff,(1),[N ](Ns))s>0 to 0 and, in
particular,

lim
N→∞

L
[
Θeff,(1),[N ](0)

]
= L

[
zeff1 (0)

]
. (7.121)

Since we already showed that the processes(
Θeff,(1),[N ](Ns)

)
s>0

(7.122)

are D-semimartingales, and are trivially bounded, we are left to show that

lim
N→∞

∫ s

0

drE
[∣∣∣G(1),[N ]

†
(
f,Θeff,(1),[N ](Nr), r, ·

)
− (Gf)

(
Θeff,(1),[N ](Nr)

)∣∣∣] = 0.

(7.123)

Here, G
(1),[N ]
† is the operator defined in (7.39). Since we are working on the space C∗

of polynomials on [0, 1]2, all derivatives of f ∈ C∗ are bounded. Hence, by dominated
convergence, it is enough to prove that, for all s > 0,

lim
N→∞

E[N ]
[∣∣∣G(1),[N ]

†
(
f,Θeff,(1),[N ](Ns), s, ·

)
− (Gf)

(
Θeff,(1),[N ](Ns)

)∣∣∣] = 0. (7.124)
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Note that

E
[∣∣∣G(1),[N ]

†
(
f,Θeff,(1),[N ](Ns), s, ·

)
− (Gf)

(
Θeff,(1),[N ](Ns)

)∣∣∣]
= E

[∣∣∣∣∣ K1e1
1 +K0

[
Θ(1),[N ]
y1 (Ns)− 1

N

∑
i∈[N ]

xi(Ns, ω)
] ∂f
∂x

(
Θeff,(1),[N ](Ns)

)
+ e1

[ 1
N

∑
i∈[N ]

xi(Ns, ω)−Θ(1),[N ]
y1 (Ns)

]∂f
∂y

(
Θeff,(1),[N ](Ns)

)
+

1

(1 +K0)2
1

N

∑
i∈[N ]

g(xi(Ns, ω))
∂2f

∂x2
(
Θeff,(1),[N ](Ns)

)
− K1e1

1 +K0

[
Θ(1),[N ]
y1 (Ns)− Θ̄(1),[N ](Ns)

] ∂f
∂x

(
Θeff,(1),[N ](Ns)

)
− e1

[
Θ̄(1),[N ](Ns)−Θ(1),[N ]

y1 (Ns)
] ∂f
∂y

(
Θeff,(1),[N ](Ns)

)
− 1

(1 +K0)2
(Fg)(Θ̄(1),[N ](Ns))

∂2f

∂x2
(
Θeff,(1),[N ](Ns)

)∣∣∣∣∣
]
.

(7.125)

Hence

lim
N→∞

E
[∣∣∣G(1),[N ]

†
(
f,Θeff,(1),[N ](Ns), s, ·

)
− (Gf)

(
Θeff,(1),[N ](Ns)

)∣∣∣]
≤ lim

N→∞
E

 K1e1
1 +K0

∣∣∣∣∣∣Θ̄(1),[N ](Ns)− 1

N

∑
i∈[N ]

xi(Ns, ω)

∣∣∣∣∣∣
∣∣∣∣∂f∂x (Θeff,(1),[N ](Ns)

)∣∣∣∣


+ lim
N→∞

E

e1
∣∣∣∣∣∣ 1N

∑
i∈[N ]

xi(Ns, ω)− Θ̄(1),[N ](Ns)

∣∣∣∣∣∣
∣∣∣∣∂f∂y (Θeff,(1),[N ](Ns)

)∣∣∣∣


+ lim
N→∞

E

 1

(1 +K0)2

∣∣∣∣∣∣ 1N
∑
i∈[N ]

g(xi(Ns, ω))− (Fg)
(
Θ̄(1),[N ](Ns)

)∣∣∣∣∣∣
∣∣∣∣∂2f

∂x2

(
Θeff,(1),[N ](Ns)

)∣∣∣∣
 .

(7.126)

Note that each of the derivatives is bounded by aconstant because we work on C∗.
The first and the second term tend to zero by Lemma 7.2.6. For the third term we
can use a similar argument as used in (6.198), since we showed Lemmas 7.2.4–7.2.10
for the single components in the mean-field system with two colours. □

Step 5: Evolution of the averages in the Meyer-Zheng topology. In this
section we prove the following proposition

Proposition 7.2.13 (Convergence in the Meyer-Zheng topology). Suppose that
the effective estimator process defined in (7.15) satisfies

lim
N→∞

L
[(

Θeff,(1),[N ](Ns)
)
s>0

]
= L

[(
zeff1 (s)

)
s>0

]
. (7.127)
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Then for the averages in (7.7),

lim
N→∞

L
[(
z
[N ]
1 (s)

)
s>0

]
= L

[
(z1(s))s>0

]
in the Meyer-Zheng topology,

(7.128)

where the limiting process (z1(s))s>0 is defined as in (7.20).

To prove Proposition 7.2.13 we need the following characterisation of continuous
functions in the Meyer-Zheng topology

Lemma 7.2.14 (Convergence of marginals in the Meyer-Zheng topology).
Let (E, d) be a Polish space with metric d. Suppose that (Xn(s), Yn(s))s>0 is a
stochastic process with state space E2. If

lim
n→∞

L [(Xn(s), Yn(s))s>0] = L [(X(s), Y (s))s>0] in the Meyer-Zheng topology,

(7.129)
then the marginals also converge in the Meyer-Zheng topology, i.e.,

lim
n→∞

L [(Xn(s))s>0] = L [(X(s))s>0] in the Meyer-Zheng topology,

lim
n→∞

L [(Yn(s))s>0] = L [(Y (s))s>0] in the Meyer-Zheng topology.
(7.130)

The proof of Lemma 7.2.14 is given in Appendix B.2.3.

Proof of Proposition 7.2.13. By Lemma 7.2.6, we have that, for all s > 0,

lim
n→∞

E
[∣∣∣Θ̄[N ](Ns)− x

[N ]
1 (s)

∣∣∣] = 0 (7.131)

and
lim
n→∞

E
[∣∣∣Θ̄[N ](Ns)− y

[N ]
0,1 (s)

∣∣∣] = 0. (7.132)

Applying Lemmas 6.2.19, 6.2.20 and 6.2.21, like in the proof of Proposition 6.2.18,
we obtain

lim
N→∞

L
[(
x
[N ]
1 (s), y

[N ]
0,1 (s), Θ̄

[N ](Ns),Θ[N ]
y1,1(Ns)

)
s>0

]
= L

[(
xeff1 (s), xeff1 (s), xeff1 (s), yeff1 (s)

)
s>0

]
in the Meyer-Zheng topology.

(7.133)

Applying Lemma 7.2.14, we get the claim. □

Step 6: Proof of the two-colour mean-field finite-systems scheme.

Proof. The proof of Proposition 7.1.2(a) follows directly from Lemma 7.2.12. The
proof of Proposition 7.1.2(b) is a consequence of Proposition 7.1.2(d). The proof of
Prosition 7.1.2(c) follows from Proposition 7.1.2(a) by applying Proposition 7.2.13.
The proof of Proposition (7.1.2)(d) follows by the same argument as used in the
proof Proposition 6.2.1(c) in Section 6.3.4. In this argument we have to replace the
two-component system Z [N ](Ns+ t) = (X [N ](Ns+ t), Y [N ](Ns+ t))t≥0 by the three-

component system Z [N ](Ns + t) = (X [N ](Ns + t), Y
[N ]
0 (Ns + t), Y

[N ]
1 (Ns + t))t≥0
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and use the infinite system defined in 7.11 instead of the infinite system defined in
(6.42). We now use the two-dimensional transition kernel in (7.30), which controls the

transition probabilities of the two-dimensional process (Θ̄(1)(s),Θ
(1)
y1 (s))s>0, instead

of the one-dimensional transition kernel in (6.59). □
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CHAPTER 8
Two-level three-colour mean-field

system

To get a proper understanding of how the migration comes into play on different
space-time scales, we next look at a two-level mean-field system where the geographic
space consists of two layers and the seed-bank consist of three layers, corresponding
three colours 0, 1, 2. In Section 8.1 we give the set-up of the two-level three-colour
mean-field model. In Section 8.2 we give a scheme to prove the analysis of the two-
level three-colour mean-field model. Finally, in Section 8.3 we prove the steps of the
scheme given in Section 8.2.

§8.1 Two-level three-colour mean-field finite-systems
scheme

We consider a restricted version of the SSDE in (4.20) on the finite geographic space

[N2] = {0, 1, . . . , N2 − 1}, N ∈ N. (8.1)

This space should be interpreted as grouping the N -blocks consisting of N colonies
together, i.e.

[N2] =

N−1⋃
l=0

{Nl,Nl + 1, · · · , Nl +N − 1}. (8.2)

With this interpretation we can use the metric d[N2] that is induced by the metric
dΩN

on the hierarchical group ΩN (recall (4.4)). The migration kernel aΩN (·, ·) is
restricted to [N2] by setting all migration rates outside the 2-block equal to 0, i.e.,
ck = 0 for all k ≥ 2. Hence the migration kernel is given by

a[N
2](i, j) = 1{d[N2](i,j)≤1}

c0
N

+
c1
N3

, (8.3)

where c0, c1 ∈ (0,∞) are constants. The seed-bank of the restricted system consists
of three colours, labeled 0 1 and 2, with exchange rates given by K0e0, e0,

K1e1
N , e1N

and K2e2
N2 , e2N2 respectively. The state space of the restricted system is

S = s[N
2], s = [0, 1]× [0, 1]3, (8.4)
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and the restricted system is denoted by

(Z [N2](t))t≥0 =
(
X [N2](t),

(
Y

[N2]
0 (t), Y

[N2]
1 (t), Y

[N2]
2 (t)

))
t≥0

,(
X [N2](t),

(
Y

[N2]
0 (t), Y

[N2]
1 (t), Y

[N2]
2 (t)

))
=
(
x
[N2]
i (t),

(
y
[N2]
i,0 (t), y

[N2]
i,1 (t), y

[N2]
i,2 (t)

))
i∈[N2]

.

(8.5)

The components of the restricted system (Z [N2](t))t≥0 evolve according to the SSDE

dx
[N2]
i (t) =

c0
N

∑
j∈[N2]

1{d[N2](i,j)≤1}[x
[N2]
j (t)− x

[N2]
i (t)] dt

+
c1
N3

∑
j∈[N2]

[x
[N2]
j (t)− x

[N2]
i (t)] dt+

√
g(x

[N2]
i (t)) dwi(t)

+K0e0 [y
[N2]
i,0 (t)− x

[N2]
i (t)] dt

+
K1e1
N

[y
[N2]
i,1 (t)− x

[N2]
i (t)] dt

+
K2e2
N2

[y
[N2]
i,2 (t)− x

[N2]
i (t)] dt,

dy
[N2]
i,0 (t) = e0 [x

[N2]
i (t)− y

[N2]
i,0 (t)] dt,

dy
[N2]
i,1 (t) =

e1
N

[x
[N2]
i (t)− y

[N2]
i,1 (t)] dt,

dy
[N2]
i,2 (t) =

e2
N2

[x
[N2]
i (t)− y

[N2]
i,2 (t)] dt, i ∈ [N2],

(8.6)

which is a special case of (4.20). By [67, Theorem 3.1], the SSDE in (8.6) is the
unique solution. It is important to note that we can write the SSDE also

dx
[N2]
i (t) = c0

 1

N

∑
j∈[N ]i

x
[N2]
j (t)− x

[N2]
i (t)

 dt

+
c1
N

 1

N2

∑
j∈[N2]

x
[N2]
j (t)− x

[N2]
i (t)

 dt+

√
g(x

[N2]
i (t)) dwi(t)

+K0e0 [y
[N2]
i,0 (t)− x

[N2]
i (t)] dt+

K1e1
N

[y
[N2]
i,1 (t)− x

[N2]
i (t)] dt

+
K2e2
N2

[y
[N2]
i,2 (t)− x

[N2]
i (t)] dt,

dy
[N2]
i,0 (t) = e0 [x

[N2]
i (t)− y

[N2]
i,0 (t)] dt,

dy
[N2]
i,1 (t) =

e1
N

[x
[N2]
i (t)− y

[N2]
i,1 (t)] dt,

dy
[N2]
i,2 (t) =

e2
N2

[x
[N2]
i (t)− y

[N2]
i,2 (t)] dt, i ∈ [N2],

(8.7)

where [N ]i denotes the set of colonies in the 1-block around site i ∈ [N2]. Therefore
the migration term for a single colony in the two-level mean-field system can be
interpreted as a drift towards the 1-block average of the active population at rate
c0 and a drift towards the 2-block average of the active population at rate c1

N . We
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are interested in (8.7) on time scales N0, N and N2. On time scale N0 we will look
at the single colonies, i.e., space-time scale 0. On time scale N we will look at the
1-block averages, i.e., space-time scale 1 and on time scale N2 we will look at the
2-block averages, i.e., space-time scale 2. In the sequel we will focus on site 0, the
1-block around site 0 and the 2-block around site 0. We will suppress this site from
the notation, but instead use subscripts 0, 1, 2 to indicate when we look at a single
colony, a 1-block average or a 2-block average. We will use the convention that in
the subscript of a dormant population the first subscript denotes the colour and the
second subscript denotes the level of the block, so y0,1 is the 1-block average around
site 0 of the dormant population with colour 0, while y1,0 is the 1-dormant single
colony at site 0. Heuristically, we can read off the following results from the SSDE in
(8.7).

• On time scale 1 = N0 (i.e., space-time scale 0) in the limit as N → ∞, the
colour-1 dormant population and the colour-2 dormant population do not yet move.
Hence

(
y
[N2]
1,0 (t0), y

[N2]
2,0 (t0)

)
t0≥0

, (8.8)

converges as N → ∞ to the constant processes on time scale t0. Therefore the colour
1-dormant population and the colour 2-dormant population are both slow seed-banks

on space-time scale 0. The components ((x
[N2]
0 (t0), y

[N2]
0,0 (t0)))t0≥0 converge to i.i.d.

copies of the single-colony McKean-Vlasov process in (6.1), where in the corresponding
SSDE the parameters e,K, c are replaced by c0, e0,K0 and E = 1. So, on time scale 1
we only see the colour 0-dormant population evolve. Therefore the colour-0 dormant
population is the effective seed-bank on time scale t0. The process

(z
[N2]
0 (t0))t0≥0 = (x

[N2]
0 (t0), y

[N2]
0,0 (t0))t0≥0, (8.9)

will be called the single colony effective process.

• On time scale N1 (i.e., space-time scale 1), we look at the averages

(z
[N2]
1 (t1))t1>0 =

(
x
[N2]
1 (t1),

(
y
[N2]
0,1 (t1), y

[N2]
1,1 (t1), y

[N2]
2,1 (t1)

))
t1>0

=

 1

N

∑
i∈[N ]

x
[N2]
i (Nt1),

 1

N

∑
i∈[N ]

y
[N2]
i,0 (Nt1),

1

N

∑
i∈[N ]

y
[N2]
i,1 (Nt1),

1

N

∑
i∈[N ]

y
[N2]
i,2 (Nt1)


t1>0

.

(8.10)
(Recall Remark 4.2.4 to appreciate the notation.) We use the lower index 1 to indicate
that the average is the analogue of the 1-block average defined in (4.22). Using (8.6),
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we see that the dynamics of the system in (8.10) is given by the SSDE

dx
[N2]
1 (t1) = c1

 1

N2

∑
j∈[N2]

xj(Nt1)− x1(t1)

 dt1 +

√
1

N

∑
i∈[N ]

g(xi(Nt1)) dw(t1)

+NK0e0
[
y
[N2]
0,1 (t1)− x

[N2]
1 (t1)

]
dt1

+K1e1
[
y
[N2]
1,1 (t1)− x

[N2]
1 (t1)

]
dt1

+
K2e2
N

[
y
[N2]
2,1 (t1)− x

[N2]
1 (t1)

]
dt1,

dy
[N2]
0,1 (t1) = Ne0

[
x
[N2]
1 (t1)− y

[N2]
0,1 (t1)

]
dt1,

dy
[N2]
1,1 (t1) = e1

[
x
[N2]
1 (t1)− y

[N2]
1,1 (t1)

]
dt1,

dy
[N2]
2,1 (t1) =

e2
N

[
x
[N2]
1 (t1)− y

[N2]
1,1 (t1)

]
dt1.

(8.11)

In the limit N → ∞ we expect that the colour 2-dormant population does not move,
since it only interacts with the active population at rate e2

N . Therefore we expect

(y
[N2]
2,1 (t))t>0 to converge to a constant process and hence we say that the colour 2-

dormant population behaves like a slow seed-bank. The colour 1-dormant population,
however, has a non-trivial interaction with the active population and therefore is the
effective seed-bank on space-time scale 1. The colour 0-dormant population has, in the
limit as N → ∞, an infinitely strong interaction with the active population. Therefore
we expect that, in the limit as N → ∞, its path becomes rougher and rougher at
rarer and rarer times. We will need to use the Meyer-Zheng topology to prove that

lim
N→∞

y
[N2]
0,1 (t1) = lim

N→∞
x
[N2]
1 (t1) for most t1. (8.12)

Therefore the colour 0-dormant population equalizes with the active population, due
to its infinitely strong interaction with the active population. Hence at space-time
scale 1, the colour 0-dormant population behaves like a fast seed-bank. If we look at
the active population, then we see that it feels a drift towards the 2-block average
of the active population, and resamples at a rate that is the 1-block average of the
resampling rates in the single colonies. Furthermore, in the limit as N → ∞, it feels
an infinitely fast drift towards the colour 0-dormant population, has a non-trivial
interaction with the colour 1-dormant population, and its interaction with the colour
2-dormant population cancels out. As long as we focus on the combination

x
[N2]
1 (t1) +K0y

[N2]
0,1 (t1)

1 +K0
,

we see that the colour-0 terms with the factor N in front cancel out. This will allow us
to do most of the analysis in the path space topology, without using the Meyer-Zheng
topology. The processx[N2]

1 (t1) +K0y
[N2]
0,1 (t1)

1 +K0
, y

[N2]
1,1 (t1)


t1>0
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will therefore be called the effective process.

• On time scale N2 (i.e., space-time scale 2) we look at the equivalent of the 2-block
averages in (4.22),

(
x
[N2]
2 (t2), (y

[N2]
0,2 (t2), y

[N2]
1,2 (t2), y

[N2]
2,2 (t2))

)
t2>0

=

(
1

N2

∑
i∈[N2]

x
[N2]
i (N2t2),

(
1

N2

∑
i∈[N2]

y
[N2]
i,0 (N2t2),

1

N2

∑
i∈[N2]

y
[N2]
i,1 (N2t2),

1

N2

∑
i∈[N2]

y
[N2]
i,2 (N2t2)

))
t2>0

,

(8.13)

which evolves according to the SSDE

dx
[N2]
2 (t2) =

√√√√ 1

N2

∑
i∈[N2]

g(xi(N2t2)) dw(t2)

+N2K0e0

[
y
[N2]
0,2 (t2)− x

[N2]
2 (t2)

]
dt2

+NK1e1

[
y
[N2]
1,2 (t2)− x

[N2]
2 (t2)

]
dt2

+K2e2

[
y
[N2]
2,2 (t2)− x

[N2]
2 (t2)

]
dt2,

dy
[N2]
0,2 (t2) = N2e0

[
x
[N2]
2 (t2)− y

[N2]
0,2 (t2)

]
dt2,

dy
[N2]
1,2 (t2) = Ne1

[
x
[N2]
2 (t2)− y

[N2]
1,2 (t2)

]
dt2,

dy
[N2]
2,2 (t2) = e2

[
x
[N2]
2 (t2)− y

[N2]
2,2 (t2)

]
dt2.

(8.14)

In this case we see that migration in the active component cancels out and the res-
ampling rate is given by the average over the complete population. In the limit as
N → ∞, we see that the active population interacts at an infinitely fast rate with
the 0-dormant population as well as with the colour 1-dormant population. Hence
both the colour 0 and the colour 1 seed-banks are fast seed-banks and we expect
equalisation of the active population and the colour 0-dormant population and the
colour 1-dormant population in Meyer-Zheng topology. The active population, in the
limit as N → ∞, has a non-trivial interaction with the colour 2-dormant population,
and hence the colour 2-dormant population is the effective seed-bank on time scale
N2. Looking at the quantity

x
[N2]
2 (t2) +K0y

[N2]
0,2 (t2) +K1y

[N2]
1,2 (t2)

1 +K0 +K1
, (8.15)
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for which we find

d

x[N2]
2 (t2) +K0y

[N2]
0,2 (t2) +K1y

[N2]
1,2 (t2)

1 +K0 +K1


=

1

1 +K0 +K1

√√√√ 1

N2

∑
i∈[N2]

g(xi(N2t2)) dw(t2) +K2e2

[
y
[N2]
2,2 (t2)− x

[N2]
2 (t2)

]
dt2,

(8.16)
we see that the infinite rates cancel out. We will call

x[N2]
2 (t2) +K0y

[N2]
0,2 (t2) +K1y

[N2]
1,2 (t2)

1 +K0 +K1
, y

[N2]
2,2 (t2)


t2>0

(8.17)

the effective process. Using the effective process we can analyse our system in path
space.

▶ Scaling limit. Let (z0(t))t≥0 = (x0(t), (y0,0(t), y1,0(t), y2,0(t)))t≥0 be the process
evolving according to

dx0(t) = c0 [θ − x0(t)] dt+
√
g(x0(t)) dw(t)

+K0e0 [y0,0(t)− x0(t)] dt,

dy0,0(t) = e0 [x0(t)− y0,0(t)] dt,

y1,0(t) = y1,0,

y2,0(t) = y2,0,

(8.18)

where θ ∈ [0, 1], y1,0 ∈ [0, 1] and y2,0 ∈ [0, 1]. The process (z0(t))t≥0) will be the
limiting process for the single colonies. The corresponding single colony effective
processes are given by

dxeff0 (t) = c0[θ − xeff0 (t)] dt+
√
g(xeff0 (t)) dw(t) +K0e0 [y

eff
0,0(t)− xeff0 (t)] dt,

dyeff0,0(t) = e0 [x
eff
0 (t)− yeff0,0(t)] dt, i ∈ N0,

(8.19)

where θ ∈ [0, 1]. By [72], (8.18) and (8.19) have a unique strong solution. Like for the
one-colour mean-field finite-systems scheme, we need the following list of ingredients
to formally state the multi-scale analysis:

(a) For positive times t > 0, we define the following 1-block estimators for the finite
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system:

Θ̄(1),[N2](t) =
1

N

∑
i∈[N ]

x
[N2]
i (t) +K0y

[N2]
i,0 (t)

1 +K0
,

Θ(1),[N2]
x (t) =

1

N

∑
i∈[N ]

x
[N2]
i (t),

Θ(1),[N2]
y0 (t) =

1

N

∑
i∈[N ]

y
[N2]
i,0 (t),

Θ(1),[N2]
y1 (t) =

1

N

∑
i∈[N ]

y
[N2]
i,1 (t),

Θ(1),[N2]
y2 (t) =

1

N

∑
i∈[N ]

y
[N2]
i,2 (t).

(8.20)

We abbreviate

Θ(1),[N2](t) =
(
Θ(1),[N2]
x (t),

(
Θ(1),[N2]
y0 (t),Θ(1),[N2]

y1 (t),Θ(1),[N2]
y2 (t)

))
,

Θaux,(1),[N2](t) =
(
Θ̄(1),[N2](t),Θ(1),[N2]

y1 (t),Θ(1),[N2]
y2 (t)

)
,

Θeff,(1),[N2](t) =
(
Θ̄(1),[N2](t),Θ(1),[N2]

y1 (t)
)
.

(8.21)

We call (Θ(1),[N2](t))t>0 the 1-block estimator process, (Θaux,(1),[N2](t))t>0 the

auxiliary 1-block estimator process and (Θeff,(1),[N2](t))t>0 the effective 1-block
estimator process. The auxiliary 1-block estimator will be useful in the proofs.
For t > 0, we define the following 2-block estimators for the finite system:

Θ̄(2),[N2](t) =
1

N2

∑
i∈[N2]

x
[N2]
i (t) +K0y

[N2]
i,0 (t) +K1y

[N2]
i,1 (t)

1 +K0 +K1
,

Θ(2),[N2]
x (t) =

1

N2

∑
i∈[N2]

x
[N2]
i (t),

Θ(2),[N2]
y0 (t) =

1

N2

∑
i∈[N2]

y
[N2]
i,0 (t),

Θ(2),[N2]
y1 (t) =

1

N2

∑
i∈[N2]

y
[N2]
i,1 (t),

Θ(2),[N2]
y2 (t) =

1

N2

∑
i∈[N2]

y
[N2]
i,2 (t).

(8.22)

We abbreviate

Θ(2),[N2](t) =
(
Θ(2),[N2]
x (t),

(
Θ(2),[N2]
y0 (t),Θ(2),[N2]

y1 (t),Θ(2),[N2]
y2 (t)

))
,

Θeff,(2),[N2](t) =
(
Θ̄(2),[N2](t),Θ(2),[N2]

y1 (t)
)
.

(8.23)
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We call (Θeff,(2),[N2](t))t>0 the effective 2-block estimator process and

(Θ(2),[N2](t))t>0 as the 2-block estimator process.

(b) The time scale N for which L[Θ̄(1),[N2](Nt1 − L(N)) − Θ̄(1),[N2](Nt1)] = δ0
for all L(N) such that L(N) → ∞ and limN→∞ L(N)/N = 0, but not for

L(N) = N . In words, N is the time scale on which Θ̄(1),[N2](·) starts evolving,
i.e., (Θ̄(1),[N2](Nt1))t1>0 is no longer a fixed process. When we use time scale
N , we will use t1 as a time index, which indicates the “faster time scale”. For
the “slow time scale” we use t0 as time index.

The time scale N2 for which L[Θ̄(2),[N2](N2t2−L(N)N)−Θ̄(2),[N2](N2t2)] = δ0
for all L(N) such that L(N) → ∞ and limN→∞ L(N)/N = 0, but not for

L(N) = N . In words, N2 is the time scale on which Θ̄(2),[N2](·) starts evolving,
i.e., (Θ̄(2),[N2](N2t2))t2>0, is no longer a fixed process. When we use time scale
N2, we will use t2 as a time index, which indicates the “fastest time scale”.

(c) The invariant measure for the evolution of a single colony in (8.18), written

Γ
(0)
θ,y0

, y0 = (θ, y1,0, y2,0), (8.24)

and the invariant measure of the level-0 effective process evolving according to
(8.19), written

Γ
eff,(0)
θ . (8.25)

(d) The renormalisation transformation F : G → G,

(Fg)(θ) =
∫
[0,1]2

g(x) Γ
eff,(0)
θ (dx, dy0), θ ∈ [0, 1], (8.26)

where Γ
eff,(0)
θ is the equilibrium measure in (8.25). Note that this is the same

transformation as defined in (4.75), but defined for the truncated system. Later
we will study iterates of the renormalisation transformation. Therefore we will
write F (1)g = Fg, to indicate that we apply the renormalisation transformation
only once.

(e) The limiting 1-block process is given by

(z1(t))t>0) = (x1(t), (y0,1(t), y1,1(t), y2,1(t)))t>0 (8.27)

and evolves according to

dx1(t) =
1

1 +K0

[
c1[θ − x1(t)] dt+

√
(F (1)g)(x1(t)) dw(t)

+K1e1 [y1,1(t)− x1(t)] dt

]
,

y0,1(t) = x1(t),

dy1,1(t) = e1 [x1(t)− y1,1(t)] dt,

y2,1(t) = y2,1,

(8.28)
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where θ ∈ [0, 1], and y2,1 ∈ [0, 1], and F (1) is the renormalisation transforma-
tion defined in (8.26). The limiting 1-block process for the auxiliary estimator
process is given by (zaux1 (t))t>0 = (xaux1 (t), yaux1,1 (t), y

aux
2,1 (t))t>0 and evolves ac-

cording to

dxaux1 (t) =
1

1 +K0

[
c1[θ − xaux1 (t)] dt+

√
(F (1)g)(xaux1 (t)) dw(t)

+K1e1 [y
aux
1,1 (t)− xaux1 (t)] dt

]
,

dyaux1,1 (t) = e1 [x
aux
1 (t)− yaux1,1 (t)] dt,

yaux2,1 (t) = y2,1,

(8.29)

for θ ∈ [0, 1]. The auxiliary estimator process turns out to be important in the
next section. The effective limiting 1-block process is given by (zeff1 (t))t>0) =
(xeff1 (t), yeff1,1(t))t>0 and evolves according to

dxeff1 (t) =
1

1 +K0

[
c1[θ − xeff1 (t)] dt+

√
(F (1)g)(xeff1 (t)) dw(t)

+K1e1 [y
eff
1,1(t)− xeff1 (t)] dt

]
,

dyeff1,1(t) = e1 [x
eff
1 (t)− yeff1,1(t)] dt,

(8.30)

for θ ∈ [0, 1]. By [72], (8.28), (8.29) and (8.30) have a unique strong solution.

(f) The invariant measure of the infinite system in (8.28), written

Γ
(1)
θ,y1

, y1 = (θ, θ, y2,1), (8.31)

and the invariant measures of the level-1 limiting estimator process evolving
according to (8.29) and the level-1 effective process evolving according to (8.30),

Γ
aux,(1)
θ , Γ

eff,(1)
θ . (8.32)

(g) The first iteration of the renormalisation transformation,

(F (2)g)(θ) =

∫
[0,1]2

(Fg)(x) Γeff,(1)
θ (dx, dy1), θ ∈ [0, 1]. (8.33)

Hence

(F (2)g)(θ) =

∫
[0,1]2

Γ
eff,(1)
θ (du,dv)

∫
[0,1]2

g(x) Γeff,(0)
u (dx, dy). (8.34)

(h) The limiting 2-block process (z2(t))t>0 = (x2(t), (y0,2(t), y1,2(t), y2,2(t)))t>0
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evolves according to

dx2(t) =
1

1 +K0 +K1

[√
(F (2)g)

(
x2(t)

)
dw(t) +K2e2

[
y2,2(t)− x2(t)

]
dt

]
,

y0,2(t) = x2(t),

dy1,2(t) = x2(t),

dy2,2(t) = e2
[
x2(t)− y2,2(t)

]
dt,

(8.35)
where F (2)g is defined as in (8.33). The limiting effective 2-block process on
space-time scale 2 is (zeff2 (t))t>0) = (xeff2 (t), yeff2,2(t))t>0 and evolves according to

dxeff2 (t) =
1

1 +K0 +K1

[√
(F (2)g)(xeff2 (t)) dw(t) +K2e2 [y

eff
2,2(t)− xeff2 (t)] dt

]
,

dyeff2,2(t) = e2 [x
eff
2 (t)− yeff2,2(t)] dt.

(8.36)

We are now ready to state the scaling limit for the evolution of the averages in
(7.7).

Proposition 8.1.1 (Two-level three-colour finite-systems scheme). Suppose

that µ(0) = µ⊗[N2] for some µ ∈ P
(
[0, 1]× [0, 1]2

)
. Let

ϑ0 = Eµ
[
x+K0y0
1 +K0

]
, ϑ1 = Eµ

[
x+K0y0 +K1y1
1 +K0 +K1

]
,

θy1 = Eµ [y1] , θy2 = Eµ [y2] .
(8.37)

and recall the limiting process (z2(t))t>0 in (8.35) and the limiting process (z1(t))t>0

in (8.28). Assume for the 2-dormant 1-blocks that

lim
N→∞

L
[
Y

[N2]
2,1 (Nt2)

∣∣∣Θ(2),[N2](N2t2)
]
= P z2(t2), (8.38)

and for the 2-dormant 0-blocks (= single colonies) that

lim
N→∞

L
[
Y

[N2]
2,0 (Nt2 +Nt1)

∣∣∣Θeff,(1),[N2](N2t2 +Nt1)
]
= P z1(t1). (8.39)

Then the following hold:

(a) For the effective 2-block estimator process defined in (8.23),

lim
N→∞

L
[(

Θeff,(2),[N2](N2t2)
)
t2>0

]
= L

[(
zeff2 (t2)

)
t2>0

]
, (8.40)

where the limit is determined by the unique solution of the SSDE (8.36) with
initial state

zeff2 (0) =
(
xeff2 (0), yeff2 (0)

)
= (ϑ1, θy2) . (8.41)
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(b) For the effective 1-block estimator process defined in (8.21),

lim
N→∞

L
[(

Θeff,(1),[N2](N2t2 +Nt1)
)
t1>0

]
= L

[
(zeff1 (t1))t1>0

]
, (8.42)

where, conditional on xeff2 (t2) = u, the limit process is the unique solution of the

SSDE in (8.30) with θ replaced by u and with initial measure Γ
eff,(1)
u .

(c) For the single colony effective process defined in (8.9),

lim
N→∞

L
[(
z
eff,[N2]
0 (N2t2 +Nt1 + t0)

)
t0≥0

]
= L

[
(zeff0 (t0))t0≥0

]
, (8.43)

where, conditional on xeff1 (t1) = v, the limit process is the unique solution of the

SSDE in (8.19) with θ replaced by v and with initial measure Γ
eff,(0)
v .

(d) For the 2-block estimator process defined in (8.23),

lim
N→∞

L
[(

Θ(2),[N2](N2t2)
)
t2>0

]
= L

[
(z2(t2))t2>0

]
in the Meyer-Zheng topology,

(8.44)

where the limit process is the unique solution of the SSDE in (8.35) with initial
state

z2(0) = (ϑ1, (ϑ1, ϑ1, θy2)) . (8.45)

(e) Fix t2 > 0. Assume (8.38). Define

Γ(1)(t2) =

∫
[0,1]4

S
[2]
t2

(
(ϑ1, (ϑ1, ϑ1, θy2)),d(ux, ux, ux, uy2,2)

)
∫
[0,1]

P (ux,ux,ux,uy2,2 )(dy2,1) Γ
(1)
(ux,(ux,ux,y2,1))

∈ P([0, 1]4),

(8.46)

where Γ
(1)
(ux,(ux,ux,y2,1))

is the equilibrium measure in (8.31) and

S
[2]
t2 ((ϑ1, (ϑ1, ϑ1, θy2)), ·) is the time-t2 law of the limiting process (z2(t2))t2>0 in

(8.44) starting from (ϑ1, (ϑ1, ϑ1, θy2)) ∈ [0, 1]× [0, 1]3.

Let (zΓ
(1)(t2)(t1))t1≥0 be the random process that conditioned on

z2(t2) = (θ, (θ, θ, y2,2)) moves according to (8.28) with θ = θ and y2,1(0) = y2,1

and with zΓ
(1)(t2)(0) be drawn according to Γ(1)(t2) (which is a mixture of random

processes in equilibrium). Then for the 1-block estimator process defined in
(8.21),

lim
N→∞

L
[(

Θ(1),[N2](N2t2 +Nt1)
)
t1>0

]
= L

[
(zΓ

(1)(t2)(t1))t1>0

]
in the Meyer-Zheng topology.

(8.47)
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(f) Let z1(t1) be the limiting process obtained in (e). Assume (8.39). Define, for
t2 ∈ (0,∞),

Γ(0)(t2) =

∫
[0,1]4

Γ(1)(t2)(dz1)

∫
[0,1]

P z1(dy2,0) Γ
(0)
(x1,(x1,y1,1.y2,0))

, (8.48)

where Γ(1)(t2) is as defined in (8.46). Let (zΓ
(0)(t2)(t0))t0≥0 be the random

process in (8.18) with zΓ
(0)(t2)(0) drawn according to Γ(0)(t2) which is a mixture

of random processes in equilibrium. Then

lim
N→∞

L
[(
z
[N2]
0 (N2t2 +Nt1 + t0)

)
t0≥0

]
= L

[
(zΓ

(0)(t2)(t0))t0≥0

]
. (8.49)

Remark 8.1.2. Note that Proposition 8.1.1(f) does not depend on the choice of t1,
because Γ(1)(t2) is already a mixture of equilibrium measures of the 1-block process.
■

Remark 8.1.3. Note that in Propostion 8.1.1(f) Γ
(0)
(x1,(x1,y1,1,y2,0))

is the equilibrium

measure of (8.18) (see also (8.24)), where y1,0 = y1,1. This means that all colour
1-dormant single colonies equal the current state of the colour 1-dormant 1-block.
We say that given the state of the 1-dormant 1-block, the 1-dormant single colonies
become deterministic. This effect occurs once a slow seed-bank, in this case the colour
1 seed-bank, is already in equilbrium on the space-time scale where it is effective, in
this case space-time-scale 1. Since we start at times N2t2, the 1-dormant 1-blocks
are already in equilibrium. This will turn out to be the reason that the single colour
1-dormant colonies are equal to the current value of the 1-dormant 1-block averages.
Note that at time N2t2 the 2-dormant 2-blocks do not yet have reached equilibrium.
Hence the colour 2-dormant 1-blocks and the colour 2-dormant single colonies do not
equal the instantaneous value of the 2-dormant 2-block averages. In the Section 8.3.8
we will treat this effect in detail. ■

§8.2 Scheme for the two-level three-colour mean-
field analysis.

In this section we give a scheme to prove Proposition 8.1.1. The proof of the steps
in the scheme will be written in Section 8.3. To analyse the two-level hierarchical
mean-field system we use the results obtained in Sections 6.2.2, 6.3 and 7.2.

The scheme for the two-level three-colour hierarchical mean-field system comes in
11 steps. Recall the estimators defined in (8.20) and (8.22).

1 Tightness of the effective 2-block estimator processes((
Θeff,(2),[N2](N2t2)

)
t2>0

)
N∈N

. (8.50)

2 Stability property of the 2-block estimators, i.e., for L(N) such that
limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(2),[N2](N2t2)− Θ̄(2),[N2](N2t2 −Nt)
∣∣∣ = 0 in probability

(8.51)
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and

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ(2),[N2]
y2 (N2t2)−Θ(2),[N2]

y2 (N2t2 −Nt)
∣∣∣ = 0 in probability.

(8.52)

3 Tightness of the effective 1-block estimator process (recall (8.21)),((
Θaux,(1),[N2](N2t2 +Nt1)

)
t1>0

)
N∈N

. (8.53)

4 Stability property of (Θaux,(1),[N2](N2t2 + Nt1))t1>0, i.e., for L(N) such that
limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, for all ϵ > 0,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(1),[N2](N2t2 +Nt1)− Θ̄(1),[N2](N2t2 +Nt1 − t)
∣∣∣ = 0

in probability,
(8.54)

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ(1),[N2]
y1 (N2t2 +Nt1)−Θ(1),[N ]

y1 (N2t2 +Nt1 − t)
∣∣∣ = 0

in probability,

(8.55)

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ(1),[N2]
y2 (N2t2 +Nt1)−Θ(1),[N ]

y2 (N2t2 +Nt1 − t)
∣∣∣ = 0

in probability.

(8.56)

5 Recall that there are N 1-blocks in [N2]. Since tightness of components implies
tightness of the process, step 3 implies that the full 1-block process((

Θ
aux,(1),[N2]
i (N2t2 +Nt1)

)
t1>0, i∈[N ]

)
N∈N

(8.57)

is tight. From the tightness in steps 1 and 3 we can construct a subsequence
(Nk)k∈N along which

lim
k→∞

L
[(

Θeff,(2),[N2
k ](N2

k t2)
)
t2>0

]
,

lim
k→∞

L
[(

Θ
aux,(1),[N2

k ]
i (N2

k t2 +Nkt1)
)
t1>0, i∈[Nk]

] (8.58)

both exists. Define the measure

ν(0)(t2) =
∏
i∈N0

Γ
(0)
i (t2). (8.59)

Show that along the same subsequence the single components converge to the
infinite system, i.e.,

lim
k→∞

L
[(
Z [N2

k ](N2
k t2 +Nkt1 + t0)

)
t0≥0

]
= L

[
(Zν

(0)(t2)(t0))t0≥0

]
. (8.60)
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Here, (Zν
(0)(t2)(t0))t0≥0 is the process starting from ν(0)(t2) with components

evolving according to (8.18), where θ is now a random variable that inherits its
law from

lim
k→∞

L[(Θaux,(1),[N2
k ](N2

k t2 +Nkt1))i∈[N2
k ]
], (8.61)

and, similarly, the laws of y1,0 and y2,0 in the limiting process (Zν
(0)(t2)(t0))t0≥0

are determined by

lim
k→∞

L[(Θaux,(1),[N2
k ](N2

k t2 +Nkt1))i∈[N2
k ]
]. (8.62)

6 Use the limiting evolution of the single colonies obtained in step 5 to identify
the limiting 1-block process along the same subsequence, i.e., identify the limit

lim
k→∞

L
[(

Θaux,(1),[N2
k ](N2

k t2 +Nkt1)
)
t1>0,i∈[Nk]

]
. (8.63)

7 Identify the limit limk→∞ L[(Θeff,(2),[N2
k ](N2

k t2))t2>0] with the help of the limit-
ing evolution of the single colonies obtained in step 5 and the limiting evolution
of the full 1-block process obtained in step 6.

8 Prove that the 1-dormant single colonies at time N2t2 +Nt1 equal, in the limit
as N → ∞, the 1-dormant 1-block averages. The proof of this step shows how
the evolution of the slow seed-banks must be analysed.

9 Show that the convergence in step 8, step 7 and step 5 actually holds along each
subsequence. Therefore we obtain the limiting evolution of the single colonies,
the auxiliary 1-block process and the effective 2-block process.

10 Use the Meyer-Zheng topology to describe the limiting evolution of(
Θ(1),[N2]
x (N2t2 +Nt1),Θ

(1),[N2]
y0 (N2t2 +Nt1),Θ

(1),[N2]
y1 (N2t2 +Nt1),

Θ(1),[N2]
y2 (N2t2 +Nt1)

)
t1>0

(8.64)

and(
Θ(2),[N2]
x (N2t2),Θ

(2),[N2]
y0 (N2t2),Θ

(2),[N2]
y1 (N2t2),Θ

(2),[N2]
y2 (N2t2)

)
t2>0

. (8.65)

11 Combine the above steps to complete the proof of Proposition 8.1.1.

§8.3 Proof of two-level three-colour mean-field finite-
systems scheme

In this section we prove the steps in the scheme given in Section 8.2.
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§8.3.1 Tightness of the 2-block estimators

In this section we prove step 1 of the scheme.

Lemma 8.3.1 (Tightness of the 2-block estimator). Let

Θeff,(2),[N2](N2t2) = (Θ̄(2),[N2](N2t2),Θ
(2),[N2]
y2 (N2t2)) (8.66)

be defined as in (8.22). Then (L[(Θeff,(2),[N2](N2t2))t2>0])N∈N is a tight sequence of
probability measures on C((0,∞), [0, 1]2).

Proof. To prove the tightness of the 1-blocks, we use [49, Proposition 3.2.3]. From

(8.6) we find that (Θeff,(2),[N2](t))t>0 evolves according to

dΘ̄(2),[N2](t) =
1

1 +K0 +K1

1

N2

∑
i∈[N2]

√
g(x

[N2]
i (t)) dwi(t)

+
1

1 +K0 +K1

K2e2
N2

 1

N2

∑
i∈[N2]

y
[N2]
i,2 (t)− 1

N2

∑
i∈[N2]

x
[N2]
i (t)

 dt,

dΘ(2),[N2]
y2 (t) =

e2
N2

 1

N2

∑
i∈[N2]

x
[N2]
i (t)− 1

N2

∑
i∈[N2]

y
[N2]
i,2 (t)

 dt.

(8.67)

Therefore the process (Θeff,(2),[N2](N2t2))t2>0 evolves according to

dΘ̄(2),[N2](N2t2) =
1

1 +K0 +K1

√√√√ 1

N2

∑
i∈[N2]

g(x
[N2]
i (N2t2)) dwi(t2)

+
1

1 +K0 +K1
K2e2

 1

N2

∑
i∈[N2]

y
[N2]
i,2 (N2t2)−

1

N2

∑
i∈[N2]

x
[N2]
i (N2t2)

 dt2,

dΘ(2),[N2]
y2 (N2t2) = e2

 1

N2

∑
i∈[N2]

x
[N2]
i (N2t2)−

1

N2

∑
i∈[N2]

y
[N2]
i,2 (N2t2)

 dt2.

(8.68)
To use [49, Proposition 3.2.3], we define C∗ as the set of polynomials on ([0, 1]2). Since

(Θeff,(2),[N2](N2t2))t2>0 is a semi-martingale, by applying Itô’s formula we obtain that

(Θeff,(2),[N2](N2t2))t2>0 is a D-semi-martingale with corresponding operator
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G
(2),[N2]
† : (C∗, [0, 1]2, (0,∞),Ω) → R,

G
(2),[N2]
† (f, (x, y), t, ω) =

K2e2
1 +K0 +K1

y − 1

N2

∑
i∈[N2]

x
[N2]
i (N2t, ω)

 ∂f

∂x

+ e2

 1

N2

∑
i∈[N2]

x
[N2]
i (N2t, ω)− y

 ∂f

∂y

+
1

2(1 +K0 +K1)2
1

N2

∑
i∈[N2]

g(x
[N2]
i (N2t, ω))

∂2f

∂x2
.

(8.69)
The conditions H1, H2, H3 in [49, Proposition 3.2.3] are satisfied. Hence tightness
follows from [49, Proposition 3.2.3]. □

§8.3.2 Stability of the 2-block estimators

Lemma 8.3.2 (Stability property of the 2-block estimator). Let (Θeff,(2),[N2](t))t>0

be defined as in (8.23). For any L(N) such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N =
0,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(2),[N2](N2t2)− Θ̄(2),[N2](N2t2 −Nt)
∣∣∣ = 0 in probability (8.70)

and

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ(2),[N2]
y2 (N2t2)−Θ(2),[N2]

y2 (N2t2 −Nt)
∣∣∣ = 0 in probability. (8.71)
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Proof. Fix ϵ > 0. From the SSDE in (8.67) we obtain that, for N large enough,

P

[
sup

0≤t≤L(N)

∣∣∣∣∣Θ̄(2),[N2](N2t2)− Θ̄(2),[N2](N2t2 −Nt)

∣∣∣∣∣ > ϵ

]

= P

[
sup

0≤t≤L(N)

1

1 +K0 +K1

∣∣∣∣∣
∫ N2t2

N2t2−Nt
dwi(r)

1

N2

∑
i∈[N2]

√
g(x

[N2]
i (r))

+

∫ N2t2

N2t2−Nt
dr

K2e2
N2

Θ(2),[N2]
y2 (r)− 1

N2

∑
i∈[N2]

x
[N2]
i (r)

 ∣∣∣∣∣ > ϵ

]

≤ P

[
sup

0≤t≤L(N)

1

1 +K0 +K1

∣∣∣∣∣
∫ N2t2

N2t2−Nt
dwi(r)

1

N2

∑
i∈[N2]

√
g(x

[N2]
i (r))

∣∣∣∣∣
> ϵ− K2e2

1 +K0 +K1

L(N)N

N2

]

≤ P

[
sup

0≤t≤L(N)

1

1 +K0 +K1

∣∣∣∣∣
∫ N2t2

N2t2−Nt
dwi(r)

1

N2

∑
i∈[N2]

√
g(x

[N2]
i (r))

∣∣∣∣∣ > ϵ

2

]
.

(8.72)
By a similar optional stopping time argument as in the proof of Lemma 6.2.15, the
above computation shows that (8.70) holds. Equation (8.71) holds by a similar argu-
ment as given in the proof of Lemma 7.2.2. □

§8.3.3 Tightness of the 1-block estimators

Lemma 8.3.3 (Tightness of the 1-block estimator). Let

Θaux,(1),[N2](N2t2 +Nt1)

= (Θ̄(1),[N2](N2t2 +Nt1),Θ
(1),[N2]
y1 (N2t2 +Nt1),Θ

(1),[N2]
y2 (N2t2 +Nt1))

(8.73)

be defined as in (8.20). Then (L[(Θaux,(1),[N ](N2t2 + Nt1))t1>0])N∈N is a tight se-
quence of probability measures on C((0,∞), [0, 1]3).

Proof. To prove the tightness of the 1-blocks, we again use [49, Proposition 3.2.3].

From (8.11) we find that the effective process (Θaux,(1),[N2](N2t2 +Nt1))t1>0 evolves
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according to

dΘ̄(1),[N2](Nt1) =
1

1 +K0
c1

 1

N2

∑
j∈[N2]

x
[N2]
j (Nt1)−

1

N

∑
i∈[N ]

x
[N2]
i (Nt1)

 dt1

+
1

1 +K0

√
1

N

∑
i∈[N ]

g(x
[N2]
i (Nt1)) dwi(t1)

+
K1e1
1 +K0

Θ(1),[N2]
y1 (Nt1)−

1

N

∑
i∈[N ]

x
[N2]
i (Nt1)

 dt1

+
K2e2

N(1 +K0)

Θ(1),[N2]
y2 (Nt1)−

1

N

∑
i∈[N ]

x
[N2]
i (Nt1)

 dt1,

dΘ(1),[N2]
y1 (Nt1) = e1

 1

N

∑
i∈[N ]

x
[N2]
i (Nt1)−Θ(1),[N2]

y1 (Nt1)

 dt1,

dΘ(1),[N2]
y2 (Nt1) =

e2
N

 1

N

∑
i∈[N ]

x
[N2]
i (Nt1)−Θ(1),[N2]

y2 (Nt1)

 dt1.

(8.74)

To use [49, Proposition 3.2.3], we define C∗ as the set of polynomials on ([0, 1]2). Since

(Θaux,(1),[N2](N2t2 + Nt1))t1>0 is a semi-martingale, by applying Itô’s formula we

obtain that (Θaux,(1),[N2](N2t2+Nt1))t1>0 is a D-semi-martingale with corresponding
operator

G
(1),[N2]
† : (C∗, [0, 1]3, (0,∞),Ω) → R,

G
(1),[N2]
† (f, (x, y1, y2), t, ω) =

c1
1 +K0

 1

N2

∑
j∈[N2]

x
[N2]
j (Nt, ω)− 1

N

∑
i∈[N ]

x
[N2]
i (Nt, ω)

 ∂f

∂x

+
K1e1
1 +K0

y1 − 1

N

∑
i∈[N ]

x
[N2]
i (Nt, ω)

 ∂f

∂x

+
K2e2

N(1 +K0)

y2(Nt, ω)− 1

N

∑
i∈[N ]

x
[N2]
i (Nt)

 ∂f

∂x

+ e1

 1

N

∑
i∈[N ]

x
[N2]
i (Nt, ω)− y1

 ∂f

∂y1

+
e2
N

 1

N

∑
i∈[N ]

x
[N2]
i (Nt, ω)− y2(Nt, ω)

 ∂f

∂y2

+
1

2(1 +K0)2
1

N

∑
i∈[N ]

g(x
[N2]
i (Nt, ω))

∂2f

∂x2
.

(8.75)
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The conditions H1, H2, H3 in [49, Proposition 3.2.3] are satisfied as before. Hence

we conclude that the sequence (L[(Θaux,(1),[N2](N2t2 +Nt1))t1>0])N∈N is tight. □

§8.3.4 Stability of the 1-block estimators

Lemma 8.3.4 (Stability property of the 1-block estimator). Let

Θaux,(1),[N2](t) be defined as in (7.14). For any L(N) such that limN→∞ L(N) = ∞
and limN→∞ L(N)/N = 0,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(1),[N2](N2t2 +Nt1)− Θ̄(1),[N2](N2t2 +Nt1 − t)
∣∣∣ = 0 in probability,

(8.76)

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ(1),[N2]
y1 (N2t2 +Nt1)−Θ(1),[N2]

y1 (N2t2 +Nt1 − t)
∣∣∣ = 0 in probability,

(8.77)

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ(1),[N2]
y2 (N2t2 +Nt1)−Θ(1),[N2]

y2 (N2t2 +Nt1 − t)
∣∣∣ = 0 in probability.

(8.78)

Proof. Define

u = N2t2 +Nt1. (8.79)

From the SSDE in (8.7) we obtain that

P

[
sup

0≤t≤L(N)

∣∣∣∣∣Θ̄(1),[N2](u)− Θ̄(1),[N2](u− t)

∣∣∣∣∣ > ϵ

]

= P

[
sup

0≤t≤L(N)

1

1 +K0

∣∣∣∣∣
∫ u

u−t

dr
c1
N

 1

N2

∑
j∈[N2]

x
[N2]
j (r)− 1

N

∑
i∈[N ]

x
[N2]
i (r)


+

∫ u

u−t

dr
K1e1
N

Θ(1),[N2]
y1 (r)− 1

N

∑
i∈[N ]

x
[N2]
i (r)


+

K2e2
N2

 1

N

∑
i∈[N ]

y
[N2]
i,2 (r)− 1

N

∑
i∈[N ]

x
[N2]
i (r)


+

∫ u

u−t

dwi(r)
1

N

∑
i∈[N ]

√
g(x

[N2]
i (r))

∣∣∣∣∣ > ϵ

]

≤ P

[
sup

0≤t≤L(N)

1

1 +K0

∣∣∣∣∣
∫ u

u−t

dwi(r)
1

N

∑
i∈[N ]

√
g(x

[N2]
i (r))

∣∣∣∣∣
> ϵ−

L(N)2(c1 +K1e1 +
K2e2
N

)

N(1 +K0)

]

≤ P

[
sup

0≤t≤L(N)

1

1 +K0

∣∣∣∣∣
∫ u

u−t

dwi(r)
1

N

∑
i∈[N ]

√
g(x

[N2]
i (r))

∣∣∣∣∣ > ϵ

2

]
.

(8.80)
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Via the same optional stopping time argument as in the proof of Lemma 6.2.15, the
above computation shows that (8.76) holds. Note that the extra drift term K2e2

N does
not have any influence. Equations (8.77)–(8.78) hold by a similar argument as given
in the proof of Lemma 7.2.2. □

§8.3.5 Limiting evolution for the single components

Proposition 8.3.5 (Equilibrium for the infinite system). Fix t2, t1 > 0. Let
(Nk)k∈N ⊂ N and let L(N) be any sequence satisfying limN→∞ L(N) = ∞ and
limN→∞ L(N)/N = 0 such that

lim
k→∞

L
[
Θaux,(1),[N2

k ](N2
k t2 +Nkt1)

]
= Pt1,t2 ,

lim
k→∞

L
[(
Y

[N2
k ]

1,0 (N2
k t2 +Nkt1), Y

[N2
k ]

2,0 (N2
k t2)

) ∣∣∣Θaux,(1),[N2
k ](N2

k t2 +Nkt1)
]

= P z
eff
1 (t1),

lim
k→∞

L
[

sup
0≤t≤L(Nk)

∣∣∣Θ̄[N2
k ](N2

k t2 +Nkt1)− Θ̄[N2
k ](N2

k t2 +Nkt1 − t)
∣∣∣

+
∣∣∣Θ[N2

k ]
y1 (N2

k t2 +Nkt1)−Θy1
[N2

k ](N2
k t2 +Nkt1 − t)

∣∣∣
+
∣∣∣Θ[N2

k ]
y2 (N2

k t2 +Nkt1)−Θy2
[N2

k ](N2
k t2 +Nkt1 − t)

∣∣∣] = δ0,

lim
k→∞

L
(
Z [N2

k ](N2
k t2 +Nkt1),

)
= ν(t1, t2).

(8.81)

Then ν(t1, t2) is of the form

ν(t1, t2) =

∫
[0,1]2

Pt1,t2(dθ
(1),dθ(1)y )

∫
[0,1]N0

P (θ(1),θ(1)y )(dy) νθ,y, (8.82)

where
νθ,y0 =

∏
i∈N0

Γ(θ,y0,i)
(8.83)

with Γ(θ,y0,i)
the equilibrium measure for the i’th single colony defined in (8.24).

Note that by step 1 and step 3 we can find a subsequence (Nk)k∈N such that the
first and third line in (8.81) hold. The second line in (8.81) follows from assumptions
(8.38) and (8.39). To prove Proposition 8.3.5 we proceed as in the proof of Proposi-
tion 7.2.3, but with the finite system in (7.4) replaced by the system in (8.6) and the
infinite system in (7.11) replaced by the system in (8.18). Note that Lemma 7.2.4
holds also for the system in (8.18), after adding the non-interacting component y2,0
to the equilibrium. The equivalent of Lemma 7.2.5 will again follow from the equi-
valent of Lemma 7.2.9. We will derive the analogue of Lemmas 7.2.6 and 7.2.7 (see
Lemma’s 8.3.6 and 8.3.7 below). Lemma 7.2.8 can be extended with an extra colour-2
seed-bank estimator by using the same proof. Since the infinite system for the single
colonies in the two-layer three-colour mean-field system (see (8.89)) equals the one
for the one-layer two-colour mean-field system, up to a non-interacting component,
we obtain an equivalent of Lemma 7.2.9. Finally, also the equivalent of Lemma 7.2.10
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holds under an additional assumption, see Lemma 8.3.8. Finally Corollary 8.3.9 states
the equivalent of Corollary 7.2.11. With the help of the lemma’s and the corollary,
the proof of Proposition 8.3.5 follows from the same argument as used in the proof of
Proposition 7.2.3.

Lemma 8.3.6 (Comparison of empirical averages).

Let (Θ
(1),[N2]
x (t0))t0≥0 and (Θ

(1),[N2]
y0 (t0))t0≥0 be defined as in (8.20). Then

E
[∣∣∣Θ(1),[N ]

x (t)−Θ(1),[N ]
y0 (t)

∣∣∣] ≤√E
[(

Θ
(1),[N ]
x (0)−Θ

(1),[N ]
y0 (0)

)2]
e−(K0e0+e0)t

+

√
1

K0e0 + e0

[
c1
N

+
||g||
N

+
K1e1
N

+
K2e2
N2

]
.

(8.84)

Proof. The result follows by Itô-calculus on the SSDE in (8.6) and the same type of
argument as used in the proof of Lemma 7.2.6. □

Like for the mean-field system with one colour, we need to compare the finite
system in (8.6) with an infinite system. To derive the analogue of Lemma 7.2.7, let
L(N) satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. Define [N ]i to be the
1-block that contains site i ∈ [N2]. Since we start our system in an exchangeable
measure and the dynamics are exchangeable, we will only consider the single colonies
in [N ]0, the 1-block containing the site 0 ∈ [N2]. In the rest of the prove, we will

suppress the 0 from the notation i.e., [N ]0 = [N ] and Θ̄
(1),[N2]
0 = Θ̄(1),[N2]. Define

u = N2t2 +Nt1 (8.85)

and let µN be the measure on ([0, 1]3)N0 by continuing the configuration of(
Z [N2](u− L(N))

)
=
(
X [N2](u− L(N)),

(
Y

[N2]
0 (u− L(N)), Y

[N2]
1 (u− L(N)), Y

[N2]
2 (u− L(N))

))
(8.86)

periodically to ([0, 1]4)N0 , i.e., we continue the configuration of the single colonies in
the first block to ([0, 1]4)N0 . Let

Θ̄(1),[N2] =
1

N

∑
i∈[N ]

x
[N2]
i (u− L(N)) +K0y

[N2]
i,0 (u− L(N))

1 +K0
. (8.87)

Let
(ZµN (t))t≥0 =

(
XµN (t), (Y µN

0 (t), Y µN

1 (t), Y µN

2 (t))
)
t≥0

(8.88)

be the infinite system evolving according to

dxµN

i (t) = c0 [Θ̄
(1),[N2] − xµN

i (t)] dt+
√
g
(
xµN

i (t)
)
dwi(t) +K0e0 [y

µN

i,0 (t)− xµN

i (t)] dt,

dyµN

i,0 (t) = e0 [x
µN

i (t)− yµN

i,0 (t)] dt,

yµN

i,1 (t) = yµN

i,1 (0),

yµN

i,2 (t) = yµN

i,2 (0), i ∈ N0,

(8.89)
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starting from initial distribution µN . Then the following Lemma 8.3.7 is the equival-
ent of Lemma 7.2.7 for the three-colour two-layer mean-field system. In particular,
the infinite system considered in Lemma 8.3.7 is similar to the infinite system in
Lemma 7.2.7. The only difference is that there is one more non-interacting compon-
ent added in (8.89).

Lemma 8.3.7. [Comparison of finite and infinite systems] Fix t1, t2 > 0, and let u =
N2t2 + Nt1. Let L(N) satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N . Suppose
that

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(1),[N ](u)− Θ̄(1),[N ](u− t)
∣∣∣ = 0 in probability. (8.90)

Then, for all t ≥ 0,

lim
k→∞

∣∣∣E [f(ZµN (t)
)
− f

(
Z [N2](u− L(N) + t)

)]∣∣∣ = 0 ∀ f ∈ C
(
([0, 1]3)N0 ,R

)
.

(8.91)

Proof. We proceed as in the proof of Lemma 7.2.7 and couple the finite and infinite
systems by their Brownian motion, exactly as was done there. The single components
in the block around site 0 of the finite process (Z [N2](t)) are evolving according to

dx
[N2]
i (t) = c0

[
Θ(1),[N2] − x

[N2]
i (t)

]
dt+ c0

[
Θ̄(1),[N2](t)−Θ(1),[N2]

]
dt

+ c0

[
Θ(1),[N2]
x (t)− Θ̄(1),[N2](t)

]
dt+

c1
N

 1

N2

∑
i∈[N2]

x
[N2]
j (t)− x

[N2]
i (t)

dt

+

√
g(x

[N2]
i (t)) dwi(t) +K0e0 [y

[N2]
i,0 (t)− x

[N2]
i (t)] dt

+
K1e1
N

[
y
[N2]
i,1 (t)− x

[N2]
i (t)

]
dt+

K2e2
N2

[y
[N2]
i,0 (t)− x

[N2]
i (t)] dt,

dy
[N2]
i,0 (t) = e0 [x

[N2]
i (t)− y

[N2]
i,0 (t)] dt,

dy
[N2]
i,1 (t) =

e1
N

[x
[N2]
i (t)− y

[N2]
i,1 (t)] dt,

dy
[N2]
i,2 (t) =

e2
N2

[x
[N2]
i (t)− y

[N2]
i,2 (t)] dt, i ∈ [N ].

(8.92)
Using this SSDE we can exactly proceed as in the proof of Lemma 7.2.7 to obtain the
result. Note that the colour-2 seed-bank can be treated just in the same way as the
colour-1 seed-bank in the proof of Lemma 7.2.7, since its rate of interaction with the
active population is even slower than the rate of interaction of the colour-1 seed-bank.
□

Finally, we state the equivalent of Lemma 7.2.10 for the three-colour two-layer
mean-field system.

Lemma 8.3.8 (Coupling of finite systems). Let

Z [N2],1 = (X [N2],1, Y
[N2],1
0 , Y

[N2],1
1 , Y

[N2],1
2 ) (8.93)
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be the finite system evolving according to (8.6) starting from an exchangeable initial
measure. Let µ[N ],1 be the measure obtain by periodic continuation of the configuration
of Z [N2],1(0) in the 1-block around 0. Similarly, let

Z [N2],2 = (X [N2],2, Y
[N2],2
0 , Y

[N2],2
1 , Y

[N2],2
2 ) (8.94)

be the finite system evolving according to (8.6) starting from an exchangeable initial
measure. Let µ[N ],2 be the measure obtained by periodic continuation of the configura-
tion of Z [N2],1(0) in the 1-block around 0. Let µ̃ be any weak limit point of the sequence
of measures (µ[N ],1 × µ[N ],2)N∈N. Define the variables Θ̄[N ],1 on (([0, 1]4, µ[N ],1)N0),
Θ̄[N ],2 on (([0, 1]4)N0 , µ[N ],2) and Θ̄1 and Θ̄2 on (([0, 1]4)N0 × ([0, 1]4)N0 , µ) by

Θ̄[N ],1 =
1

N

∑
i∈[N ]

x
[N2],1
i +K0y

[N2],1
i,0

1 +K0
, Θ̄[N ],2 =

1

N

∑
i∈[N ]

x
[N2],2
i +K0y

[N2],2
i,0

1 +K0
,

Θ̄1 = lim
n→∞

1

n

∑
i∈[n]

x1i +K0y
1
i,0

1 +K0
, Θ̄2 = lim

n→∞

1

n

∑
i∈[n]

x2i +K0y
2
i,0

1 +K0
,

(8.95)

and let (Θ̄(1),[N ],1(t))t≥0 and (Θ̄(1),[N ],2(t))t≥0 be defined as in (7.14) for Z [N2],1,

respectively, Z [N2],2. Suppose that

lim
N→∞

sup
0≤t≤L(N)

(∣∣∣Θ̄[N ],k(0)− Θ̄[N ],k(t)
∣∣∣) = 0 in probability, k ∈ {1, 2}, (8.96)

and suppose that µ̃({Θ̄1 = Θ̄2, Y
1
1 = Y 2

1 , Y
1
2 = Y 2

2 }) = 1. Then, for any sequence
(t(N))N∈N with limN→∞ t(N) = ∞,

lim
N→∞

E
[
|x[N ],1
i (t(N))− x

[N ],2
i (t(N))|+K0|y[N ],1

i,0 (t(N))− y
[N ],2
i,0 (t(N))|

+K1|y[N ],1
i,1 (t(N))− y

[N ],2
i,1 (t(N))|+K2|y[N ],1

i,2 (t(N))− y
[N ],2
i,2 (t(N))|

]
= 0.

(8.97)

Proof. Like in the proof of Lemma 7.2.10, we can show with Itô calculus that the
function

t→E
[
|x[N ],1
i (t(N))− x

[N ],2
i (t(N))|+K0|y[N ],1

i,0 (t(N))− y
[N ],2
i,0 (t(N))|

+K1|y[N ],1
i,1 (t(N))− y

[N ],2
i,1 (t(N))|+K2|y[N ],1

i,2 (t(N))− y
[N ],2
i,2 (t(N))|

]
(8.98)

is monotonically decreasing. Hence we can proceed as in the proof of Lemma 6.2.13
to show that (8.97) is true. □

From the above couplings we can derive the following corollary, which is the ana-
logue of Corollary 7.2.11 for the two-level three-colour mean-field system.

Corollary 8.3.9. Fix t1, t2 > 0 and set u = N2t2 + Nt1. Let µN be the measure
obtained by periodic continuation of

Z [N2](u−L(N)) =
(
X [N2](u−L(N)), Y

[N2]
0 (u−L(N)), Y

[N2]
1 (u−L(N)), Y

[N2]
2 (u−L(N))

)
,

(8.99)
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and let µ be a weak limit point of the sequence (µN )N∈N. Let

Θ = lim
N→∞

1

N

∑
i∈[N ]

xµi +Kyµi
1 +K

in L2(µ), (8.100)

and let (ZνΘ(t))t>0 = (XνΘ(t), Y νΘ0 (t), Y νΘ1 (t), Y νΘ2 (t))t>0 be the infinite system with
components evolving according to (8.18) with θ = Θ and yi,1,0 and yi,2,0 determined by
assumption (8.81) and starting from its equilibrium measure. Extend the finite system

Z [N2] as a system on ([0, 1]4)N0 by periodic continuation. Construct (Z [N2](t))t>0 and
(ZνΘ(t))t>0 on one probability space. Then there exists a sequence (L̄(N))N∈N such

that limN→∞ L̄(N) = ∞, limN→∞
¯L(N)
N = 0 and

lim
N→∞

E
[∣∣∣x[N2]

i (Ns)− xνΘi (L̄(N))
∣∣∣]+K0 E

[∣∣∣y[N2]
i,0 (Ns)− yνΘi,0 (L̄(N))

∣∣∣]
+K1 E

[∣∣∣y[N2]
i,1 (Ns)− yνΘi,1 (L̄(N))

∣∣∣]+K2 E
[∣∣∣y[N2]

i,2 (Ns)− yνΘi,2 (L̄(N))
∣∣∣] = 0, i ∈ [N ].

(8.101)

Note that Lemmas 8.3.7, 8.3.8 and Corollary 8.3.9 do not only hold for sites i in

the 1-block around 0, but hold for for all sites i ∈ [N2], after we replace Θ
[N ]0
0 by

Θ
[N ]i
i .

§8.3.6 Limiting evolution of the 1-block estimator
process

Proposition 8.3.10 (Limiting evolution of the 1-blocks). Fix t2 > 0. Let
(L(N))N∈N satisfy limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. Let (Nk)k∈N be a
subsequence such that

lim
k→∞

L
[(

Θeff,(2),[N2
k ](N2

k t2)
)]

= Pt2(·),

lim
k→∞

L
[
y
[N2

k ]
2,1 (Nkt2)

∣∣∣Θ(2),[N2
k ](N2

k t2)
]
= P z2(t2),

lim
k→∞

L
[(
Y

[N2
k ]

1,0 (N2
k t2 +Nkt1), Y

[N2
k ]

2,0 (N2
k t2)

) ∣∣∣Θaux,(1),[N2
k ](N2

k t2 +Nkt1)
]
= P z

eff
1 (t1),

lim
k→∞

L

[
sup

0≤t≤L(Nk)

∣∣∣Θ̄(2),[N2
k ](N2

k t2)− Θ̄(2),[N2
k ](N2

k t2 −Nkt)
∣∣∣

+
∣∣∣Θ(2),[N2

k ]
y2 (N2

k t2)−Θy2
(2),[N2

k ](N2
k t2 −Nt)

∣∣∣ ] = δ0.

(8.102)
Then, for the 1-block around 0,

lim
k→∞

L
[
Θaux,(1),[N2

k ](N2
k t2)

]
=

∫
[0,1]2

∫
[0,1]

Γaux,(1)
u,y2,1 P (u,v)(dy2,1)Pt2(du,dv),

(8.103)
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where Γ
aux,(1)
u,y2,1 is the equilibrium measure of (8.29) with θ replaced by u, and

lim
k→∞

L
[(

Θaux,(1),[N2
k ](N2

k t2 +Nkt1)
)
t1>0

]
= L [(zaux1 (t1))t1>0)] , (8.104)

where (zaux1 (t1))t1>0 is the process evolving according to (8.29) with θ replaced by the
random variable Θ̄(2)(t2) and with initial measure∫
[0,1]2

∫
[0,1]

Γ
aux,(1)
u,y2,1 P (u,v)(dy2,1)Pt2(du,dv), and y2,1 is a random variable.

Note that by tightness of the 2-blocks and the assumptions in Proposition 8.1.1, we
can always find a subsequence (Nk)k∈N such that (8.102) holds and also (8.81) holds.
To prepare for the proof of Proposition 8.3.10, we prove four lemmas: Lemma 8.3.11
shows that the limiting 1-block system has a unique equilibrium, Lemma 8.3.13 im-
plies convergence of the active 2-block estimator and the combined 2-block estimator,
Lemma 8.3.14 gives a regularity property for the 2-block estimator, and Lemma 8.3.15
shows the limiting evolution of the auxiliary 1-block estimator process. Lemma 8.3.17
proves equation (8.103). After we derive these lemmas we prove Proposition 8.3.10.

Lemma 8.3.11 (1-block equilibrium). For any initial distribution µ ∈ ([0, 1]3),
the process (zaux1 (t1))t1>0 evolving according to (8.29) is well defined and converges
to a unique equilibrium measure

lim
t1→∞

L[zaux1 (t1)] = Γ
aux,(1)
θ,y2,1

. (8.105)

Proof. By [72], the SSDE in (8.29) has a unique strong solution. By a similar ar-
gument as in the proof of Lemma 7.2.4, the SSDE in (8.29) converges to a unique

equilibrium measure Γ
aux,(1)
θ,y2,1

. □

Remark 8.3.12 (Equilibrium measure). Note that Lemma 8.3.11 still holds when
we allow θ and y2,1 to be the random variables Θ̄(t2) and y2,1. Assuming (8.102), we
can derive the distributions of Θ̄(t2) and y2,1, and we can write the equilibrium as∫
[0,1]2

∫
[0,1]

Γ
aux,(1)
u,y2,1 P (u,v)(dy2,1)Pt2(du,dv). In what follows we abbreviate

Γ
(1)

Θ̄(t2),y2,1,i
=

∫
[0,1]2

∫
[0,1]

Γaux,(1)
u,y2,1,i P

(u,v)(dy2,1,i)Pt2(du,dv). (8.106)

■

Lemma 8.3.13 (2-block averages). Define

∆
(2),[N2]
Σ (Nt1) =

Θ
(2),[N2]
x (Nt1) +K0Θ

(2),[N2]
y0 (Nt1)

1 +K0
−Θ(2),[N2]

y1 (Nt1). (8.107)
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Then

E
[∣∣∣∆(2),[N2]

Σ (Nt1)
∣∣∣]

≤

√
E
[(

∆
(2),[N2]
Σ (0)

)2]
e
−e1

(
1+K0+K1

1+K0

)
t1

+

√∫ t1

0

ds 2e1

(
1 +K0 +K1

1 +K0

)
e
−2e1

(
1+K0+K1

1+K0

)
(t1−s)E

[∣∣∣Θ̄(1),[N2](Ns)−Θ
(1),[N2]
x (Ns)

∣∣∣]
+

√
1

e1

[
K2e2

N(1 +K0 +K1)
+

||g||
2N(1 +K0 +K1)

]
.

(8.108)

Proof. For the two-level mean-field system we have the following SSDE for the 2-block
averages:

dΘ(2),[N2]
x (Nt1) =

√√√√ 1

N3

∑
i∈[N2]

g(x
[N2]
i (Nt1)) dw̃(t1)

+NK0e0
[
Θ(2),[N2]

y0 (Nt1)−Θ(2),[N2]
x (Nt1)

]
dt1

+K1e1
[
Θ(2),[N2]

y1 (Nt1)−Θ(2),[N2]
x (Nt1)

]
dt1

+
K2e2
N

[
Θ(2),[N2]

y2 (Nt1)−Θ(2),[N2]
x (Nt1)

]
dt1,

dΘ(2),[N2]
y0 (Nt1) = Ne0

[
Θ(2),[N2]

x (Nt1)−Θ(2),[N2]
y0 (Nt1)

]
dt1,

dΘ(2),[N2]
y1 (Nt1) = e1

[
Θ(2),[N2]

x (Nt1)−Θ(2),[N2]
y1 (Nt1)

]
dt1,

dΘ(2),[N2]
y2 (Nt1) =

e2
N

[
Θ(2),[N2]

x (Nt1)−Θ(2),[N2]
y2 (Nt1)

]
dt1.

(8.109)

Therefore

d
(
∆

(2),[N2]
Σ (Nt1)

)2
= 2∆

(2),[N2]
Σ (Nt1) d∆

(2),[N2]
Σ (Nt1) + d

〈
∆

(2),[N2]
Σ (Nt1)

〉
= 2∆

(2),[N2]
Σ (Nt1)

1

1 +K0

√√√√ 1

N3

∑
i∈[N2]

g(x
[N2]
i (Nt1)) dw̃(t1)

+ 2∆
(2),[N2]
Σ (Nt1)

K1e1
(1 +K0)

[
Θ(2),[N2]
y1 (Nt1)−Θ(2),[N2]

x (Nt1)
]
dt1,

+ 2∆
(2),[N2]
Σ (Nt1)

K2e2
N(1 +K0)

[
Θ(2),[N2]
y2 (Nt1)−Θ(2),[N2]

x (Nt1)
]
dt1,

− 2∆
(2),[N2]
Σ (Nt1) e1

[
Θ(2),[N2]
x (Nt1)−Θ(2),[N2]

y1 (Nt1)
]
dt1

+
1

(1 +K0)2
1

N3

∑
i∈[N2]

g(x
[N2]
i (Nt1)) dt1.

(8.110)
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Hence

d

dt
E
[(

∆
(2),[N2]
Σ (Nt1)

)2]
= −2e1

(
1 +K0 +K1

1 +K0

)
E
[(

∆
(2),[N2]
Σ (Nt1)

)2]
+ 2e1

(
1 +K0 +K1

1 +K0

)
× E

[
∆

(2),[N2]
Σ (Nt1)

(
Θ

(2),[N2]
x (Nt1) +K0Θ

(2),[N2]
y0 (Nt1)

1 +K0
−Θ(2),[N2]

x (Nt1)

)]

+
K2e2

N(1 +K0)
2E
[
∆

(2),[N2]
Σ (Nt1)

[
Θ(2),[N2]

y2 (Nt1)−Θ(2),[N2]
x (Nt1)

]]
+

1

(1 +K0)2
E

 1

N3

∑
i∈[N2]

g(x
[N2]
i (Nt1))

 ,

(8.111)

and therefore

E
[(

∆
(2),[N2]
Σ (Nt1)

)2]
= E

[(
∆

(2),[N2]
Σ (0)

)2]
e
−2e1

(
1+K0+K1

1+K0

)
t1 +

∫ t1

0

ds e
−2e1

(
1+K0+K1

1+K0

)
(t1−s)h[N ](s),

(8.112)
where

h[N ](s) = 2e1

(
1 +K0 +K1

1 +K0

)
× E

[
∆

(2),[N2]
Σ (Ns)

(
Θ

(2),[N2]
x (Ns) +K0Θ

(2),[N2]
y0 (Ns)

1 +K0
−Θ(2),[N2]

x (Ns)

)]

+
2K2e2

N(1 +K0)
E
[
∆

(2),[N2]
Σ (Ns)

[
Θ(2),[N2]
y2 (Ns)−Θ(2),[N2]

x (Ns)
]]

+
1

(1 +K0)2
E

 1

N3

∑
i∈[N2]

g(x
[N2]
i (Ns))

 .
(8.113)

Therefore

E
[∣∣∣∆(2),[N2]

Σ (Nt1)
∣∣∣]

≤

√
E
[(

∆
(2),[N2]
Σ (0)

)2]
e
−e1

(
1+K0+K1

1+K0

)
t1

+

√∫ t1

0

ds 2e1

(
1 +K0 +K1

1 +K0

)
e
−2e1

(
1+K0+K1

1+K0

)
(t1−s)E

[∣∣∣Θ̄(1),[N2](Ns)−Θ
(1),[N2]
x (Ns)

∣∣∣]
+

√
1

e1

[
K2e2

N(1 +K0 +K1)
+

||g||
2N(1 +K0 +K1)

]
.

(8.114)
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□

Let µNk
be the measure obtained by periodic continuation of the configuration

Z [N2](N2
k t2). (8.115)

Since the state space ([0, 1] × [0, 1]3)N0 is compact, we can pass to a further sub-
sequence, to obtain

µ = lim
k→∞

µNk
. (8.116)

Lemma 8.3.14 (Regularity for 2-block estimator). Let µ and µN be as defined
above. Let (xi, y1,i, y2,i)i∈N0

be distributed according to µ. Define the random variable

ϕ = (ϕ1, ϕ2),

ϕ1 = lim
n→∞

1

n2

∑
i∈[n2]

xi +K0yi,0 +K1yi,1
1 +K0 +K1

, ϕ2 = lim
n→∞

1

n2

∑
i∈[n2]

yi,2,
(8.117)

and the random variable ϕ[N ] on (µN , ([0, 1]
3)N0) by putting

ϕ[N
2] = (ϕ

[N2]
1 , ϕ

[N2]
2 ),

ϕ
[N2]
1 =

1

N2

∑
i∈[N2]

x
[N2]
i +K0y

[N2]
i,0 +K1y

[N2]
i,1

1 +K0 +K1
, ϕ2 = lim

N→∞

1

N2

∑
i∈[N2]

y
[N2]
i,2 .

(8.118)
Then

lim
N→∞

L[ϕ[N
2]] = L[ϕ]. (8.119)

Proof. Use a similar argument as in the proof of Lemma 7.2.8. □

We will first determine the limiting evolution of (Θaux,(1),[N2
k ](N2

k t2 +Nt1))t1>0.
To do so we consider all the Nk 1-blocks in [N2

k ]. After that we show that

lim
k→∞

L
[(

Θ
aux,(1),[N2

k ]
i (N2

k t2)
)
i∈[Nk]

]
=
∏
i∈N0

Γ
(1)

Θ̄(t2),y2,1,i
, (8.120)

The limiting 1-block process for the auxiliary estimator process (recall (8.29)) is
given by

(zaux1 (t))t>0 = (xaux
1 (t),yaux

1,1 (t),y
aux
2,1 (t))t>0,

zaux1 (t) = (zaux1,i (t))i∈N0
, xaux

1 (t) = (xaux1,i (t))i∈N0
,

yaux
1,1 (t) = (yaux1,1,i(t))i∈N0 yaux

2,1 (t) = (yaux2,i (t))i∈N0

(8.121)

and its components evolve according to

dxaux1,i (t) =
1

1 +K0

[
c1[Θ̄

(2)(t2)− xaux1,i (t)] dt+
√

(F (1)g)(xaux1,i (t)) dw(t)

+K1e1 [y
aux
1,1,i(t)− xaux1,i (t)] dt

]
,

dyaux1,1,i(t) = e1 [x
aux
1,i (t)− yaux1,1,i(t)] dt,

yaux2,1,i(t) = y2,1,i, i ∈ N0,

(8.122)
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where

Θ̄(2)(t2) = lim
N→∞

∑
i∈[N2]

x
[N2]
i +K0y

[N2]
i,0 +K1y

[N2]
i,1

1 +K0 +K1
in L2(µ). (8.123)

Let µ
(1)
Nk

be the law obtained by periodic continuation of (Θ
aux,(1),[N2

k ]
i (N2

k t2))i∈[Nk],

and let µ(1) = limk→∞ µ
(1)
Nk

be any weak limit point of the sequence (µ
(1)
Nk

)k∈N.

Lemma 8.3.15 (Limiting evolution of auxiliary 1-block estimator). Let
L[(zaux1 (0))] = µ(1). Then the following hold.

(a) For all t1 > 0 and i ∈ [Nk],

lim
k→∞

E

[
(1 +K0)

(
xaux1,i (t1)− Θ̄

aux,(1),[N2
k ]

i (N2
k t2 +Nkt1)

)2
+K1

(
y1,1,i(t1)−Θ

aux,(1),[N2
k ]

y1,i
(N2

k t2 +Nkt1)
)2

+K2

(
y
aux,(1),[N2

k ]
2,1,i (t1)−Θ

aux,(1),[Nk]
y2,i

(N2
k t2 +Nkt1)

)2 ]
= 0.

(8.124)

(b) For all t2 > 0,

lim
k→∞

L
[
(Θaux,(1),[N2

k ](N2
k t2 +Nt1))t1>0

]
= L[(zaux1 (t1))t1>0]. (8.125)

Proof. Abbreviate

∆
(1),[N2

k ]
i (Nkt1) = xaux1,i (t1)−Θ

aux,(1),[N2
k ]

i (N2
k t2 +Nkt1),

δ
(1),[N2

k ]
y1,i

(Nkt1) = y1,1,i(t1)−Θ
aux,(1),[N2

k ]
y1,i

(N2
k t2 +Nkt1),

δ
(1),[N2

k ]
y2,i

(Nkt1) = yaux2,1,i(t1)−Θ
aux,(1),[N2

k ]
y2,i

(N2
k t2 +Nkt1).

(8.126)

Extending (Θaux,(1),[N2
k ](Nkt1))t1>0 as a process on N0 by periodic continuation, we

can construct (zaux1 (t1))t1>0 and (Θaux,(1)(Nkt1))t1>0 on one probability space such
that

lim
k→∞

Θaux,(1),[N2
k ](N2

k t2) = z
aux,(1)
1 (0) a.s. (8.127)

We couple the processes (zaux1 (t1))t1>0 and (Θaux,(1),[N2
k ](N2

k t2 +Nkt1))t1>0 by using
the same Brownian motions for both processes. By Itô-calculus we obtain for the
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coupled process (recall (8.74))

E
[
(1 +K0)

(
∆

(1),[N2
k ]

i (Nkt1)
)2

+K1

(
δ
(1),[N2

k ]
y1,i

(Nkt1)
)2

+K2

(
δ
(1),[N2

k ]
y2,i

(Nkt1)
)2]

=E
[
(1 +K0)

(
∆

(1),[N2
k ]

i (0)
)2

+K1

(
δ
(1),[N2

k ]
y1,i

(0)
)2

+K2

(
δ
(1),[N2

k ]
y2,i

(0)
)2]

− 2c1

∫ t1

0

E
[(

∆
(1),[N2

k ]
i (Nks)

)2]
ds

− 2K1e1

∫ t1

0

E
[(

∆
(1),[N2

k ]
i (Nks)− δ

(1),[N2
k ]

y1,i
(Nks)

)2]
ds

+ 2c1

∫ t1

0

E

∆(1),[N2
k ]

i (Nks)

Θ(2)(t2)−
1

N2
k

∑
j∈[N2

k ]

x
[N2

k ]
j (N2

k t2 +Nks)

ds

+ (K1e1 + c1)

∫ t1

0

E
[
∆

(1),[N2
k ]

i (Nks)

×

 1

Nk

∑
j∈[Nk]i

x
[N2

k ]
j (N2

k t2 +Nks)− Θ̄
aux,(1),[N2

k ]
i (N2

k t2 +Nks)

ds

+ 2K1e1

∫ t1

0

E
[
δ
(1),[N2

k ]
y1,i

(Nks)

×

Θ̄aux,(1),[N2
k ]

i (N2
k t2 +Nks)−

1

Nk

∑
j∈[Nk]i

x
[N2

k ]
j (N2

k t2 +Nks)

ds

+ 2
K2e2
Nk

∫ t1

0

E

[ [
δ
(1),[N2

k ]
y1,i

(Nks)−∆
(1),[N2

k ]
i (N2

k t2 +Nks)
]

×

 1

Nk

∑
j∈[Nk]i

x
[N2

k ]
j (N2

ks)−Θ
aux,(1),[N2

k ]
y2,i

(N2
k t2 +Nt1)

]ds
+ (1 +K0)

2

∫ t1

0

E


√(Fg) (xaux1 (s))−

√√√√ 1

N

∑
i∈[N ]

g(x
[N2

k ]
i (N2

k t2 +Nks))


2 ds.

(8.128)

Note that |∆(1),[N2
k ]

i | ≤ 1 and |δ(1),[N
2
k ]

y1,i
| ≤ 1. Note that the first term tends to 0

by (8.127). We show by dominated convergence that also all other positive terms in
the right-hand side of (8.128) tend to 0 as k → ∞.
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For the third term, we can estimate

lim
k→∞

E

[
c1

1 +K0

∣∣∣∣∣ 1

N2
k

∑
i∈[N2

k
]

x
[N2

k ]

j (N2
k t2 +Nks)− Θ̄(2)(t2)

∣∣∣∣∣
]

≤ lim
k→∞

E

[
c1

1 +K0

∣∣∣∣∣Θ(2),[N2
k ]

x (N2
k t2 +Nks)

− Θ
(2),[N2

k ]
x (N2

k t2 +Nks) +K0Θ
(2),[N2

k ]
y0 (N2

k t2 +Nks)

1 +K0

∣∣∣∣∣
]

+ E

[
c1

1 +K0

∣∣∣∣∣Θ
(2),[N2

k ]
x (N2

k t2 +Nks) +K0Θ
(2),[N2

k ]
y0 (N2

k t2 +Nks)

1 +K0

− Θ
(2),[N2

k ]
x (N2

k t2 +Nks) +K0Θ
(2),[N2

k ]
y0 (N2

k t2 +Nks) +K1Θ
(2),[N2

k ]
y1 (N2

k t2 +Nks)

1 +K0 +K1

∣∣∣∣∣
]

+ E

[
c1

1 +K0

∣∣∣∣∣Θ
(2),[N2

k ]
x (N2

k t2 +Nks) +K0Θ
(2),[N2

k ]
y0 (N2

k t2 +Nks) +K1Θ
(2),[N2

k ]
y1 (N2

k t2 +Nks)

1 +K0 +K1

− Θ̄(2)(t2)

∣∣∣∣∣
]
.

(8.129)

The first term in (8.129) tends to zero by Lemma 8.3.6, the second term tends to
zero by Lemma 8.3.13, while the third term tends to zero by Lemma 8.3.14 and
Lemma 8.3.2, which is the third assumption in (8.102). Hence the third term in
(8.128) tends to zero by dominated convergence as k → ∞.

The fourth and fifth term in (8.128) tend to zero by Lemma 8.3.6 and dominated
convergence. The sixth term in (8.128) tends to zero because the integral is bounded
by t1 and there is a factor 1

Nk
in front. To see that the last term in the right-hand

side in (8.128) tends to zero, recall that the subsequence Nk is chosen such that

lim
k→∞

L
[
(Θaux,(1),[N2

k ](N2
k t2 +Nt1))t1>0

]
(8.130)

exists. Note that

E


√(Fg)(xaux1 (s))−

√√√√ 1

N

∑
i∈[N ]

g(x
[N2

k ]
i (N2

k t2 +Nks))


2

≤ E

∣∣∣∣∣∣(Fg)(xaux1 (s))− 1

N

∑
i∈[N ]

g(x
[N2

k ]
i (N2

k t2 +Nks))

∣∣∣∣∣∣
 ,

(8.131)

and hence we can apply a similar reasoning as in (6.198) to see that (8.131) tends to
zero as k → ∞. Therefore we obtain

lim
k→∞

E
[
(1 +K0)(∆

(1),[N2
k ]

i (Nkt1))
2 +K1(δ

(1),[N2
k ]

y1,i
(Nkt1))

2 +K2(δ
(1),[N2

k ]
y2,i

(Nkt1))
2
]

= 0.
(8.132)
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To prove (8.125), note that (8.132) implies convergence of the finite-dimensional dis-

tributions of (Θaux,(1),[N2
k ](N2

k t2 + Nkt1))t1>0 by a similar argument as given below
(6.137). By Lemma 8.3.3 we see that the laws of the processes(

L
[
(Θaux,(1),[N2

k ](N2
k t2 +Nkt1))t1>0

])
k∈N0

(8.133)

are tight. Therefore (8.125) indeed holds. □

Remark 8.3.16. Note that in the proof of Lemma 7.2.12 we could have proceeded
as in the proof of Lemma 8.3.15, instead of using the criterion in [49, Theorem 3.3.1].
■

Lemma 8.3.17 (Proof of (8.103)). Under the assumptions in Proposition 8.3.10,

lim
k→∞

L
[
Θaux,(1),[N2

k ](N2
k t2)

]
=

∫
[0,1]2

∫
[0,1]

Γaux,(1)
u,y2,1 P (u,v)(dy2,1)Pt2(du,dv).

(8.134)

Proof. For ease of notation, we drop the subsequence notation in this proof. Let
(tn)n∈N0 be any sequence satisfying limn→∞ tn = ∞ and limn→∞ tn/n = 0. For

each tn, let µ
(1)
N,tn

be the law obtained by periodic continuation of the configuration

of (Θ
aux,(1),[N2]
i (N2t2 − Ntn))i∈[N ]. Recall that, since our state space is compact,

the sequence (µ
(1)
N,tn

)N∈N is tight. Let µ
(1)
tn be any weak limit point of the sequence

(µ
(1)
N,tn

)N∈N.

Let L[zaux,n1 (0)] be the law obtained by periodic continuation ofΘaux,(1),[N2](N2t2−
Ntn). By Lemma 8.3.3 we know that the sequence(

L
[(

Θ
aux,(1),[N2]
i (N2t2 −Ntn +Nt1)

)
t1>0,i∈[N ]

])
N∈N

(8.135)

is tight and hence for each tn we can pass to a subsequence such that

lim
k→∞

L
[(

Θ
aux,(1),[N2

k ]
i (N2

k t2 −Nktn +Nkt1)
)
t1>0,i∈[N ]

]
(8.136)

exists. By Lemmas 8.3.2–8.3.14, we obtain for all tn that

lim
N→∞

Θ̄(2),[N2
k ](N2

k t2 −Ntn) = Θ̄(2)(t2) in probability. (8.137)

Then, by (8.128) in the proof of Lemma 8.3.15, for fixed tn and all i ∈ [N ],

lim
k→∞

E

[
(1 +K0)

(
xaux,n1,i (tn)− Θ̄

aux,(1),[N2
k ]

i (N2
k t2 −Nktn +Nktn)

)2
+K1

(
yaux,n1,1,i (tn)−Θ

aux,(1),[N2
k ]

y1,i
(N2

k t2 −Nktn +Nktn)
)2

+K2

(
yaux,n2,1,i (tn)−Θ

aux,(1),[N2
k ]

y2,i
(N2

k t2 −Nktn +Nktn)
)2 ]

= 0.

(8.138)
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By contradiction we can argue that

lim
N→∞

E

[
(1 +K0)

(
xaux,n1,i (tn)− Θ̄

aux,(1),[N2]
i (N2t2 −Ntn +Ntn)

)2
+K1

(
yaux,n1,1,i (tn)−Θ

aux,(1),[N2]
y1,i

(N2t2 −Ntn +Ntn)
)2

+K2

(
yaux,n2,1,i (tn)−Θ

aux,(1),[N2]
y2,i

(N2t2 −Ntn +Ntn)
)2 ]

= 0.

(8.139)

To see why, suppose that (8.139) does not hold. Then for any δ > 0 we can construct
a sequence (Nl)l>0 such that, for l ∈ N,

E

[
(1 +K0)

(
xaux,n1,i (tn)− Θ̄

aux,(1),[N2
l ]

i (N2
l t2 −Nltn +Nltn)

)2
+K1

(
yaux,n1,1,i (tn)−Θ

aux,(1),[N2
l ]

y1,i
(N2

l t2 −Nltn +Nltn)
)2

+K2

(
yaux,n2,1,i (tn)−Θ

aux,(1),[N2
l ]

y2,i
(N2

l t2 −Nltn +Nltn)
)2 ]

> δ.

(8.140)

However, also the sequence(
L
[(

Θ
aux,(1),[N2

l ]
i (N2

l t2 −Nltn +Nlt1)
)
t1>0,i∈[N ]

])
l∈N

(8.141)

is tight. Hence we can pass to a further subsequence (Nl̃)l̃∈N for which (8.138) holds.
But this contradicts (8.140). We conclude that (8.139) indeed holds. Moreover the
argument holds for all tn, so that (8.139) holds for all tn.

Hence for every tn there exists a Nn such that, for all N ≥ Nn,

E

[
(1 +K0)

(
xaux,n1,i (tn)− Θ̄

aux,(1),[N2
k ]

i (N2t2)
)2

+K1

(
yaux,n1,1,i (tn)−Θ

aux,(1),[N2
k ]

y1,i
(N2t2)

)2
+K2

(
yaux,n2,1,i (tn)−Θ

aux,(1),[N2
k ]

y2,i
(N2t2)

)2 ]
<

1

n
.

(8.142)

In particular, we may require that Nn > Nn−1. Setting N = Nn, we obtain

lim
n→∞

E

[
(1 +K0)

(
xaux,n1,i (tn)− Θ̄

aux,(1),[N2
n]

i (N2
nt2)

)2
+K1

(
yaux,n1,1,i (tn)−Θ

aux,(1),[N2
n]

y1,i
(N2

nt2)
)2

+K2

(
yaux,n2,1,i (tn)−Θ

aux,(1),[N2
n]

y2,i
(N2

nt2)
)2 ]

= 0.

(8.143)
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If we can prove that

lim
n→∞

L[zaux,ni (tn)] = Γ
(1)

Θ̄(t2)
, (8.144)

then we are done. To see why, note that, for all f ∈ Cb([0, 1] × [0, 1]2), f Lipschitz
continuous∣∣∣∣E[f(Θaux,(1),[N2]

i (N2t2))]− EΓ
(1)

Θ̄(t2) [f ]

∣∣∣∣
≤
∣∣∣E[f(Θaux,(1),[N2]

i (N2t2))− f(z1,i
aux,n(tn))]

∣∣∣+ ∣∣∣∣E[f(z1,iaux,n(tn))]− EΓ
(1)

Θ̄(t2) [f ]

∣∣∣∣ .
(8.145)

Therefore if (8.144) holds, then for all ϵ > 0 we can choose n̄ such that, for all n > n̄,∣∣∣∣E[f(z1,iaux,n(tn))]− EΓ
(1)

Θ̄(t2) [f ]

∣∣∣∣ < ϵ

2
. (8.146)

By (8.143) we can find a n̂ > n̄ such that for all n > n̂∣∣E[f(Θaux
i (N2

nt2))− f(z1,i
aux,n(tn̂))]

∣∣ < ϵ

2
. (8.147)

Using (8.144) and the fact that the Lipschitz functions are dense in Cb([0, 1]× [0, 1]2),
we obtain (8.134).

Proof of (8.144). We use that any two systems (zaux,1(t1))t1>0 and (zaux,2(t1))t1>0

evolving according to (8.29), and having the same y2,1-components and the same
Θ̄(t2), can be constructed on one probability space and can coupled by their Brownian
motions. We obtain, for a component i ∈ N0,

E[|xaux,11,i (tn)− xaux,21,i (tn)|+K1|yaux,11,1,i (tn)− yaux,21,1,i (tn)|+K2|yaux,12,1,i (tn)− yaux,22,1,i (tn)|]

= E[|xaux,11,i (0)− xaux,21,i (0)|+K1|yaux,11,1,i (0)− yaux,21,1,i (0)|+K2|yaux,12,1,i (0)− yaux,22,1,i (0)|]

− c

∫ tn

0

E[|xaux,11,i (s)− xaux,21,i (s)|]ds

− 2K1e1

∫ tn

0

E
[
[|xaux,11,i (s)− xaux,21,i (s)|+K1|yaux,11,1,i (s)− yaux,21,1,i (s)|]

× 1{sgn (xaux,1
1,i (s)−xaux,2

1,i (s))̸=sgn (yaux,11,1,i (s)−yaux,21,1,i (s))}
]
ds.

(8.148)
Therefore the difference between these two systems monotonically decreases.

Since the state space [0, 1]× [0, 1]2 is compact, the sequence of laws

(L[zaux,ni (0)])n∈N (8.149)

is tight. Therefore we can find converging subsequences such that

lim
k→∞

L[ziaux,nk(0)] = µ (8.150)

for some probability measure µ on [0, 1]× [0, 1]2.

282



§8.3. Proof of two-level three-colour mean-field finite-systems scheme

C
h
a
p
t
e
r
8

Let (zaux,0(t1))t1>0 be the limiting system evolving according to (8.29) and starting
from initial distribution µ. By Skorohod’s theorem, we can construct the sequence of
limiting systems ((zaux,nk(t1))t1>0)k∈N and (zaux,0(t1))t1>0 on one probability space
such that

lim
k→∞

zaux,nk(0) = zaux,0(0) a.s. (8.151)

Use the coupling of Brownian motions to obtain

E[|xaux,nk

1,i (tnk
)− xaux,01,i (tnk

)|+K1|yaux,nk

1,1,i (tnk
)− yaux,01,1,i (tnk

)|

+K2|yaux,nk

2,1,i (tnk
)− yaux,02,1,i (tnk

)|]

= E[|xaux,nk

1,i (0)− xaux,01,i (0)|+K1|yaux,nk

1,1,i (0)− yaux,01,1,i (0)|+K2|yaux,nk

2,1,i (0)− yaux,02,1,i (0)|]

− c

∫ tnk

0

E[|xaux,nk

1,i (s)− xaux,01,i (s)|]ds

− 2K1e1

∫ tnk

0

E
[
[|xaux,nk

1,i (s)− xaux,01,i (s)|+K1|yaux,nk

1,1,i (s)− yaux,01,1,i (s)|]

× 1{sgn (x
aux,nk
1,i (s)−xaux,0

1,i (s)) ̸=sgn (y
aux,nk
1,1,i (s)−yaux,01,1,i (s))}

]
ds.

(8.152)
Taking the limit k → ∞ on both sides of (8.152), we obtain

lim
k→∞

E[|xaux,nk

1,i (tnk
)− xaux,01,i (tnk

)|+K1|yaux,nk

1,1,i (tnk
)− yaux,01,1,i (tnk

)|

+K2|yaux,nk

2,1,i (tnk
)− yaux,02,1,i (tnk

)|] = 0.
(8.153)

Note that limn→∞ tn = ∞ implies that limk→∞ tnk
= ∞, so zaux,0i is the limiting

system in (8.29) with θ replaced by the random variable Θ̄(t2) and y2,1,i. Therefore
we can condition on Θ̄(t2) and y2,1,i, and use the assumption in (8.81), to obtain

lim
k→∞

L
[
zaux,0i (tnk

)
]
=

∫
[0,1]2

∫
[0,1]

Γaux,(1)
u,y2,1 P (u,v)(dy2,1)Pt2(du,dv). (8.154)

Hence we conclude that

lim
k→∞

L[zaux,nk

i (tnk
)] =

∫
[0,1]2

∫
[0,1]

Γaux,(1)
u,y2,1 P (u,v)(dy2,1)Pt2(du,dv). (8.155)

Equation (8.155) holds for all subsequences along which the initial distribution con-
verges,

lim
k→∞

zaux,nk

i (0) = zaux,0i (0) a.s. (8.156)

We will show that this implies (8.144).
Suppose that

lim
n→∞

L[zaux,ni (tn)] ̸=
∫
[0,1]2

∫
[0,1]

Γaux,(1)
u,y2,1 P (u,v)(dy2,1)Pt2(du,dv). (8.157)

Then there exist f ∈ Cb([0, 1]× [0, 1]3) and δ > 0 such that for all N ∈ N there exists
an n ∈ N, n > N such that∣∣∣∣E[f(zaux,ni (tn))]− EΓ

(1)

Θ̄(t2) [f ]

∣∣∣∣ > δ. (8.158)
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Hence we can construct a subsequence (zaux,nk

i (t1))t1>0, k∈N such that (8.158) holds
for each k ∈ N. However, also for this sequence (L[zaux,nk

i (0)])k∈N is tight. Passing to
a possibly further subsequence of converging initial distributions, we argue like before
to obtain that along this subsequence

lim
k→∞

∣∣∣∣E[f(zaux,nk

i (tnk
))]− EΓ

(1)

Θ̄(t2) [f ]

∣∣∣∣ = 0. (8.159)

This contradicts (8.158) and so (8.144) is indeed true. □

Proof of Proposition 8.3.10

Proof. Lemma 8.3.17 implies (8.103). Therefore Lemma 8.3.15 implies (8.104). □

§8.3.7 Convergence of 2-block process

In this section we derive the limiting evolution of the effective 2-block process.

Lemma 8.3.18 (Convergence of the 2-block averages). Assume that
(Nk)k∈N ⊂ N is a subsequence satisfying

lim
k→∞

L
[
y
[N2

k ]
2,1 (Nkt2)

∣∣∣Θ(2),[N2
k ](N2

k t2)
]
= P z2(t2),

lim
k→∞

L
[(
Y

[N2
k ]

1,0 (N2
k t2 +Nkt1), Y

[N2
k ]

2,0 (N2
k t2)

) ∣∣∣Θaux,(1),[N2
k ](N2

k t2 +Nkt1)
]

= P z
eff
1 (t1).

(8.160)

Then, for the effective 2-block estimator process defined in (8.23),

lim
k→∞

L
[(

Θeff,(2),[N2
k ](N2

k t2)
)
t2>0

]
= L

[(
zeff2 (t2)

)
t2>0

]
, (8.161)

where the limit is determined by the unique solution of the SSDE (8.36) with initial
state

zeff2 (0) =
(
xeff2 (0), yeff2 (0)

)
= (ϑ1, θy2) . (8.162)

Proof. Again we use [49, Theorem 3.3.1]. By a similar argument as used in the proof
of Lemma 7.2.12 we can show that

lim
t2↓0

L
[
Θeff,(2),[N2

k ](N2
k t2)

]
= δ(ϑ1,θy2 )

. (8.163)

Note that by steps 1-4 of the scheme in Section 8.2 we can choose the subsequence
(Nk)k∈N such that both (8.81) and (8.102) hold. Since we already established the
tightness of the 2-block in Lemma 8.3.1, we are left to show that, for all t2 > 0,

lim
N→∞

E
[∣∣∣G(2),[N2

k ]
† (f,Θeff,(2),[N2

k ](N2
k t2), t2, ω)

−G(2)f
(
Θeff,(2),[N2

k ](N2
k t2)

) ∣∣∣] = 0,
(8.164)
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where G
(2),[N2

k ]
† is the D-semi-martingale operator defined in (8.69), G(2) is the gen-

erator of the process (zeff2 (t2))t2>0 defined in (8.36), and both generators work on a
probability space driven by one set of Brownian motions. Note that, for all t2 > 0,

E
[∣∣∣G(2),[N2

k ]
†

(
f,
(
Θ̄(2),[N2

k ](N2
k t2),Θ

(2),[N2
k ]

y2 (N2
k t2)

)
, t2, ω

)
−G(2)f

(
Θ̄(2),[N2

k ](N2
k t2),Θ

(2),[N2
k ]

y2 (N2
k t2)

) ∣∣∣]
≤ K2e2

1 +K0 +K1
E
[∣∣∣Θ̄(2),[N2

k ](N2
k t2)−Θ

(2),[N2
k ]

x (N2
k t2, ω)

∣∣∣ ∣∣∣∣ ∂f∂x
∣∣∣∣]

+ e2E
[∣∣∣Θ(2),[N2

k ]
x (N2

k t2, ω)− Θ̄(2),[N2
k ](N2

k t2)
∣∣∣ ∣∣∣∣ ∂f∂y

∣∣∣∣]
+

1

(1 +K0 +K1)2

× E

∣∣∣∣∣∣ 1

N2
k

∑
i∈[N2

k ]

g(x
[N2

k ]
i (N2

k t2, ω))− (F (2)g)(Θ̄(2),[N2
k ](N2

k t2))

∣∣∣∣∣∣
∣∣∣∣ ∂2f∂x2

∣∣∣∣
 .

(8.165)
The first and second term on the right-hand side tend to 0 as k → ∞ by a similar
argument as used in (8.129) and below. For the third let [N ]i denote the 1-block that

contains site i and let (z
ν
Θ̄

(1)
i (t))t>0 be the limiting single colony system, with drift

towards the random variable Θ̄i and starting from the equilibrium measure ν
Θ̄

(1)
i
.

We construct the single colony system Z [N2
k ](N2

k t2 − L(N) + t)t≥0 and the limiting

system (z
ν
Θ̄

(1)
i (t))t>0 on one probability space, such that by Skohorod’s theorem, we

can assume that the convergence is almost surely. Note that Θ̄i is the limiting one
block. Then we can write

E

∣∣∣∣∣∣ 1

N2
k

∑
i∈[N2

k ]

g(x
[N2

k ]
i (N2

k t2, ω))− (F (2)g)(Θ̄(2),[N2
k ](N2

k t2))

∣∣∣∣∣∣
∣∣∣∣∂2f∂x2

∣∣∣∣


≤ 1

Nk

∑
i∈[N ]

E

∣∣∣∣∣∣ 1

Nk

∑
j∈[N ]i

g(x
[N2

k ]
j (N2

k t2, ω))−
1

Nk

∑
j∈[N ]i

g(x
ν
Θ̄

(1)
i

j (L(N))

∣∣∣∣∣∣
∣∣∣∣∂2f∂x2

∣∣∣∣


+
1

Nk

∑
i∈[N ]

E

∣∣∣∣∣∣ 1

Nk

∑
j∈[N ]i

g(x
ν
Θ̄

(1)
i

j (L(N))− (F (1)g)(Θ̄
(1)
i )

∣∣∣∣∣∣
∣∣∣∣∂2f∂x2

∣∣∣∣


+ E

∣∣∣∣∣∣ 1

Nk

∑
i∈[N ]

(F (1)g)(Θ̄
(1)
i )− (F (2)g)(Θ̄

(2)
i )

∣∣∣∣∣∣
∣∣∣∣∂2f∂x2

∣∣∣∣


+ E
[∣∣∣(F (2)g)(Θ̄

(2)
i )− (F (2)g)(Θ̄

(2)
i (N2

k t2))
∣∣∣ ∣∣∣∣∂2f∂x2

∣∣∣∣] .
(8.166)

The first term on the right-hand side tends to zero by Lipschitz continuity for g and
Corollary 8.3.9. The second term tends to zero by the law of large numbers, since

the limiting single colonies are i.i.d. given the value of the random variable Θ̄
(1)
i .
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The third term tends to zero since by Proposition 8.3.10 also the limiting 1-blocks
become independent given the value of the 2-block. Hence we can again apply the law
of large numbers. Finally, for the last term, note that since we construct the single
components and the limiting process on one probability space, we can argue like in
the proof of Lemma 7.2.8 that

lim
k→∞

E
[∣∣∣Θ̄(2)

i − Θ̄
(2)
i (N2

k t2)
∣∣∣] = 0. (8.167)

Hence the last term tends to zero by the Lipschitz property of F (2)g. □

Remark 8.3.19. Instead of [49, Theorem 3.3.1] we could have used a similar strategy
as in the proof of Lemma 8.3.15 to obtain Lemma 8.3.18. ■

§8.3.8 State of the slow seed-banks

On time scale t0, i.e., space-time scale 0, the colour-1 seed-bank is a “slow seed-
bank,” since it does not move on this time scale. Because we study the two-layer
three-colour mean-field system from time N2t2 onwards, the 1-block averages of the
colour 1-dormant population are already in equilibrium. As a consequence we can
exactly describe the single 1-dormant colonies, which turn out to be in a state that
equals the current 1-block average of the dormant population of colour 1. To obtain
the formal result we will first prove the following lemma.

Lemma 8.3.20 (Slow seed-banks). Fix t2, t1 > 0, for i ∈ [N2] and all t0 ≥ 0,

lim
N→∞

[
y
[N2]
i,1 (N2t2 +Nt1 + t0)−Θ

(1),[N2]
y1,i

(N2t2 +Nt1 + t0)
]
= 0 a.s., (8.168)

where Θ
(1),[N2]
y1,i

is the 1-block average to which y
[N2]
i,1 contributes.

To prove Lemma 8.3.20, we need the kernel b[N
2](·, ·) defined in 4.31, which be-

comes in the current setting

b[N
2]((i, Ri), (j, Rj)) =


1{d

[N2]
(i,j)≤1}

c0
N

+ c1
N3 , if Ri = Rj = A,

Km
em
Nm , if i = j, Ri = A, Rj = Dm, m ∈ {0, 1, 2},

em
Nm , if i = j, Ri = Dm, Rj = A, m ∈ {0, 1, 2},
0, otherwise.

(8.169)

The corresponding semigroup of the kernel b[N
2](·, ·) is denoted by b

[N2]
t (·, ·).

To prove Lemma 8.3.20 we will use the following lemma, which was proved in
[43][Lemma 6.1] and for our setting reads as follows.

Lemma 8.3.21 (First and second moment).

Let Ez[N2] the expectation if the process start from some state z[N
2] ∈ ([0, 1]×[0, 1]3)[N

2].

For z[N
2] ∈ ([0, 1]× [0, 1]2)[N

2], t ≥ 0 and (i, Ri), (j, Rj) ∈ [N2]× {A,D0, D1, D2},

Ez[N2] [z
[N2]
(i,Ri)

(t)] =
∑

(k,Rk)∈
ΩN×{A,D0,D1,D2}

b
[N2]
t

(
(i, Ri), (k,Rk)

)
z
[N2]
(k,Rk)

(8.170)
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and

Ez[N2] [z
[N2]
(i,Ri)

(t)z
[N2]
(j,Rj)

(t)]

=
∑

(k,Rk),(l,Rl)∈
ΩN×{A,D0,D1,D2}

b
[N2]
t

(
(i, Ri), (k,Rk)

)
b
[N2]
t

(
(j, Rj), (l, Rl)

)
z
[N2]
(k,Rk)

z
[N2]
(l,Rl)

+ 2

∫ t

0

ds
∑
k∈ΩN

b
[N2]
(t−s)((i, Ri), (k,A)) b

[N2]
(t−s)((j, Rj), (k,A))E

[N2]
z [g(x

[N2]
k (s))].

(8.171)

Proof of Lemma 8.3.20. The argument is given in such a way that it can easily be
generalised to more complicated systems, which we treat later. Let t̄(N) = N2t2 +
Nt1 + t0. We will show that if i, j ∈ [N ]i, i.e., i and j belong to the same 1-block,
then

lim
N→∞

E
[(
y
[N2]
i,1 (t̄(N))− y

[N2]
j,1 (t̄(N))

)2]
= 0. (8.172)

This implies (8.168). By Lemma 8.3.21, we can write

E
[(
y
[N2]
i,1 (t̄(N))− y

[N2]
j,1 (t̄(N))

)2]
=

∑
(k,Rk),(l,Rl)∈

[N2]×{A,D0,D1,D2}

(
b
[N2]
t̄(N) ((i,D1), (k,Rk))− b

[N2]
t̄(N) ((j,D1), (k,Rk))

)

×
(
b
[N2]
t̄(N) ((i,D1), (l, Rl))− b

[N2]
t̄(N) ((j,D1), (l, Rl))

)
E[z[N

2]
(k,Rk)

z
[N2]
(l,Rl)

]

+ 2

∫ t̄(N)

0

ds
∑

k∈[N2]

(
b
[N2]
(t̄(N)−s)((i,D1), (k,A))− b

[N2]
(t̄(N)−s)((j,D1), (k,A))

)2
× E[g(x[N

2]
k (s))].

(8.173)

Using a coupling argument, we show that both terms in (8.173) tend to 0 as N → ∞.
To prove that the first term tends to 0, we will show that

lim
N→∞

∑
(k,Rk)∈

[N2]×{A,D0,D1,D2}

∣∣∣b[N2]
t̄(N) ((i,D1), (k,Rk))− b

[N2]
t̄(N) ((j,D1), (k,Rk))

∣∣∣ = 0. (8.174)

To do so, let (RW [N2](t))t≥0 and (RW ′[N2](t))t≥0 be two independent random

walks, starting from RW [N2](0) = (i,D1) and RW ′[N2](0) = (j,D1), where i and

j are in the same 1-block. Let RW [N2] and RW ′[N2] both evolve according to the

kernel b[N
2](·, ·), so b[N

2]
t (·, ·) is their corresponding semigroup. Since RW [N2] and

RW ′[N2] both start from the colour 1-seed-bank, we can perfectly couple their switches

between A, D0, D1 and D2. Since this implies that both RW [N2] and RW ′[N2] are
always simultaneously active, we can also couple the times when they jump due to
migration and the distance over which they migrate. However, we do not couple

their migrations, i.e. RW [N2] and RW ′[N2] jump at the same time and over the same
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distance, but they can jump to different sites. This implies that the coupled process

(RW [N2](t), RW ′[N2](t))t≥0 has transition rates

((i, Ri), (j, Ri)) →


((k,A), (l, A)) if Ri = Rj = A and d[N2](i, k) = d[N2](j, l)

at rate 1{d
[N2]

(i,j)≤1}
c0
N

+ c1
N3 ,

((i,Dm), (j,Dm)) if Ri = Rj = A at rate Kmem
Nm , m ∈ {0, 1, 2},

((i, A), (j, A)) if Ri = Rj = Dm at rate em
Nm , m ∈ {0, 1, 2}.

(8.175)

Define the event

H
[N2]
t = {RW [N2] has migrated at least once up to time t}. (8.176)

Note that if H
[N2]
t has happened, then also RW ′[N2] has migrated. Hence

b
[N2]
t̄(N) ((i,D1), (k,Rk))− b

[N2]
t̄(N) ((j,D1), (k,Rk))

= P(i,D1)

(
RW [N2](t̄(N)) = (k,Rk)

)
− P(j,D1)

(
RW ′[N2](t̄(N)) = (k,Rk)

)
= P̃(i,D1),(j,D1)

(
RW [N2](t̄(N)) = (k,Rk), H

[N2]
t̄(N)

)
+ P̃(i,D1),(j,D1)

(
RW [N2](t̄(N)) = (k,Rk), (H

[N2]
t̄(N))

c
)

− P̃(i,D1),(j,D1)

(
RW ′[N2](t̄(N)) = (k,Rk), H

[N2]
t̄(N)

)
− P̃(i,D1),(j,D1)

(
RW ′[N2](t̄(N)) = (k,Rk), (H

[N2]
t̄(N))

c
)

= P̃(i,D1),(j,D1)

(
RW [N2](t̄(N)) = (k,Rk), (H

[N2]
t̄(N))

c
)

− P̃(i,D1),(j,D1)

(
RW ′[N2](t̄(N)) = (k,Rk), (H

[N2]
t̄(N))

c
)
,

(8.177)
where the last equality follows because, once the random walks have just jumped once,
RW [N2] and RW ′[N2] are uniformly distributed over [N ] × A if their jump horizon
was 1 and they are uniformly distributed of [N2]×A if they jumped over distance 2.

Hence if H
[N2]
t has occurred, then RW [N2] and RW ′[N2] have the same distribution.

Therefore∑
(k,Rk)∈

[N2]×{A,D0,D1,D2}

∣∣∣b[N2]
t̄(N) ((i,D1), (k,Rk))− b

[N2]
t̄(N) ((j,D1), (k,Rk))

∣∣∣ ≤ 2P̃((H [N2]
t̄(N))

c)

(8.178)
and we are left to show that

lim
N→∞

P̃((H [N2]
t̄(N))

c) = 0. (8.179)

The event (H
[N2]
t̄(N))

c occurs either when the random walks do not wake up before time

t̄(N) or when the random walks wake up before time t̄(N) but do not migrate. By the
coupling we only have to consider one of the random walks. Therefore the probability
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that RW [N2] and RW ′[N2] do not wake up before time t̄(N) is given by

P̃(i,D1),(j,D1)

(
RW [N2] does not wake up before t̄(N)

)
= e−

e1
N t̄(N) = e−

e1(N2t2+Nt1+t0)
N

(8.180)
and hence

lim
N→∞

P(i,D1),(j,D1)

(
RW [N2] does not wake up before t̄(N)

)
= 0. (8.181)

The probability that the random walks do wake up, but do not migrate is a little
more complicated, since each time they wake up with positive probability they go to
sleep before they migrate. Define

C [N2](t) = {#times RW [N2] gets active before time t},

T
[N2]
A (t) = {total time RW [N2] is active up to time t},

T
[N2]
D (t) = {total time RW [N2] is dormant up to time t}.

(8.182)

Thus, C [N2](t) counts the number of active/dormant cycles. Define T
[N2]
A,n , T

[N2]
D,n as

the active respectively, dormant time during the nth cycle. Define

χ = K0e0 +
K1e1
N

+
K2e2
N2

, (8.183)

so χ is the total rate at which RW and RW ′ become dormant when they are active.
Define

c = c0 +
c1
N
, (8.184)

so c is the total rate at which RW and RW ′ migrate when they are active. Then

T
[N2]
A (t) =

C[N2](t)∑
n=1

T
[N2]
A,n , T

[N2]
D (t) =

C[N2](t)∑
n=1

T
[N2]
D,n , (8.185)

where T
[N2]
A,n

d
= exp(χ) and T

[N2]
D,n

d
= 1

χK0e0 exp(e0)+
1
χ
K1e1
N exp( e1N )+ 1

χ
K2e2
N2 exp( e2N2 ).

Once awake, RW [N2] migrates at rate c and hence the probability to migrate before

time t̄(N) is given by 1− e−cT
[N2]
A (t̄(N)). Therefore we are left to show that

lim
N→∞

cT
[N2]
A (t̄(N)) = lim

N→∞
c

C[N2](t̄(N))∑
n=1

T
[N2]
A,n = ∞, a.s. (8.186)

Since T
[N2]
A,n

d
=exp(χ), it is enough to show that

lim
N→∞

C [N2](t̄(N)) = ∞ a.s. (8.187)

To do so, we assume the contrary, i.e., there exists an R ∈ N such that for all
N̄ ∈ N there exists an N > N̄ such that

P(i,D1)(C
[N2](t̄(N)) ≤ R) > 0. (8.188)
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Let L(N) be such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0. Note that, by
(8.181), we can condition on the first wake-up time and estimate

P(i,D1)(C
[N2](t̄(N)) ≤ R) =

∫ t̄(N)

0

dsP(i,A)(C
[N2](t̄(N)− s) ≤ R)

e1
N

e−
e1
N s

=

∫ t̄(N)−L(N)

0

dsP(i,A)(C
[N2](t̄(N)− s) ≤ R)

e1
N

e−
e1
N s

+

∫ t̄(N)

t̄(N)−L(N)

dsP(i,A)(C
[N2](t̄(N)− s) ≤ R)

e1
N

e−
e1
N s

≤ P(i,A)(C
[N2](L(N)) ≤ R) + e−

e1
N t̄(N)

[
e

e1
N L(N) − 1

]
.

(8.189)
Note that the second term in the last inequality tends to 0 as N → ∞. For the first
term, note that we are now looking at time L(N), i.e., time scale N0. Since

lim
N→∞

Pi,A
(
RW [N2] jumps to D1 or D2 before time L(N)

)
= lim
N→∞

1− e−(
K1e1

N +
K2e2
N2 )L(N) = 0.

(8.190)

we have limN→∞ Pi,A
(
{RW [N2](s) ∈ {A,D0} for s ∈ [0, L(N)]}

)
= 1. Hence, con-

ditioned on the event {RW [N2] ∈ {A,D0}}, T [N2]
A,n

d
= exp(K0e0) and T

[N2]
D,n

d
= exp(e0).

We therefore obtain

P(i,A)(C
[N2](L(N)) ≤ R) = P(i,A)

(
R∑
n=1

(T
[N2]
A,n + T

[N2]
D,n ) ≥ L(N)

)

≤ R

L(N)
E(i,A)

[
T

[N2]
A,n + T

[N2]
D,n

]
=

R

L(N)

[
1

K0e0
+

1

e0

]
.

(8.191)

Taking the limit N → ∞ in (8.191) and combining this with (8.189), we conclude
that (8.187) indeed holds. Hence also (8.179) and (8.174) hold.

We are left to show that

lim
N→∞

2

∫ t̄(N)

0

ds
∑

k∈[N2]

(
b
[N2]
(t̄(N)−s)((i,D1), (k,A))− b

[N2]
(t̄(N)−s)((j,D1), (k,A))

)2
× E[g(xk(s))] = 0.

(8.192)
Also here the idea is to make a similar coupling. As soon as the random walks migrate,
they are equally distributed. On time scale N , after waking up from the colour 1 seed-
bank they will almost immediately migrate, since migration happens on time scale 1,
i.e., by time L(N) they have migrated with probability tending to 1. This will again
be the key to show that (8.192) tends to 0 as N → ∞.
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Note that, by (8.173),

∣∣∣∣∣2
∫ t̄(N)

0

ds
∑

k∈[N2]

(
b
[N2]

(t̄(N)−s)((i,D1), (k,A))− b
[N2]

(t̄(N)−s)((j,D1), (k,A))
)2

× E[g(x[N2]
k (s))]

∣∣∣∣∣ ≤ 2.

(8.193)

We will again use the coupling in (8.176). Define

τ [N
2] = inf{t ≥ 0 : RW [N2](t) = (k,A) for some k ∈ [N2]}. (8.194)

Then, for all l ∈ [N2],

P(l,D1)(τ
[N2] ≤ t) = 1− e−

e1
N t. (8.195)

Setting s = t̄(N)− s, we can rewrite the integral in (8.192) as

2

∫ t̄(N)

0

ds
∑

k∈[N2]

(
P̃[N2]
(i,D1),(j,D1)

(
RW [N2](s) = (k,A)

)
− P̃[N2]

(i,D1),(j,D1)

(
RW ′[N2](s) = (k,A),

))2
E[g(x[N

2]
k (t̄(N)− s))]

= 2

∫ t̄(N)

0

ds
∑

k∈[N2]

[∫ s

0

dr P̃(τ [N
2] = r)

(
P̃[N2]
(i,A),(j,A)

(
RW [N2](s− r) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](s− r) = (k,A)

))]
×
(
P̃[N2]
(i,D1),(j,D1)

(
RW [N2](s) = (k,A)

)
− P̃[N2]

(i,D1),(j,D1)

(
RW ′[N2](s) = (k,A)

))
× E[g(x[N

2]
k (t̄(N)− s))].

(8.196)
In what follows we will abbreviate

P
∆

[N2]

(i,A),(j,A)

(t, ((l, Rl), (j, Rj)))

= P̃(i,A),(j,A)

(
RW [N2](t) = (l, Rl)

)
− P̃(i,A),(j,A)

(
RW ′[N2](t) = (j, Rj)

)
,

(8.197)

and similarly, for m ∈ {0, 1, 2},

P
∆

[N2]

(i,Dm),(j,Dm)

(t, ((l, Rl), (j, Rj)))

= P̃(i,Dm),(j,Dm)

(
RW [N2](t) = (l, Rl)

)
− P̃(i,Dm),(j,Dm)

(
RW ′[N2](t) = (j, Rj)

)
.

(8.198)
By (8.193), we can use Fubini to swap the order of integration and subsequently
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substitute v = s− r, to obtain

2

∫ t̄(N)

0

dr P̃(τ [N2] = r)

∫ t̄(N)−r

0

dv
∑

k∈[N2]

P
∆

[N2]
(i,A),(j,A)

(v, ((k,A), (k,A)))

× P
∆

[N2]
(i,D1),(j,D1)

(v + r, ((k,A), (k,A)))E[g(x[N2]
k (t̄(N)− r − v))]

= 2

∫ t̄(N)

0

dr P̃(τ [N2] = r)∑
(l,Rl)∈

[N2]×{A,D0,D1,D2}

(
P(i,D1)

(
RW [N2](r) = (l, Rl)

)
− P(j,D1)

(
RW ′[N2](r) = (l, Rl)

))

×
∫ t̄(N)−r

0

dv
∑

k∈[N2]

P
∆

[N2]
(i,A),(j,A)

(v, ((k,A), (k,A)))

× P(l,Rl)

(
RW [N2](v) = (k,A)

)
E[g(x[N2]

k (t̄(N)− r − v))],

(8.199)

where in the last equality we use that the random walks move according to the same
kernel b(·, ·).
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We can continue by writing

2

∫ t̄(N)

0

dr P̃(τ [N
2] = r)∑

(l,Rl)∈
[N2]×{A,D0,D1,D2}

(
P[N2]
(i,D1)

(
RW [N2](r) = (l, Rl)

)
− P[N2]

(j,D1)

(
RW ′[N2](r) = (l, Rl)

))

×
∫ t̄(N)−r

0

dv
∑

k∈[N2]

(
P̃[N2]
(i,A),(j,A)

(
RW [N2](v) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v) = (k,A)

))
× P[N2]

(l,Rl)

(
RW [N2](v) = (k,A)

)
E[g(x[N

2]
k (t̄(N)− r − v))]

= 2

∫ t̄(N)

0

dr P̃(τ [N
2] = r)

∫ r

0

du P̃(τ [N
2] = u)

∑
(l,Rl)∈

[N2]×{A,D0,D1,D2}(
P̃[N2]
(i,A),(j,A)

(
RW [N2](r − u) = (l, Rl)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](r − u) = (l, Rl)

))
×
∫ t̄(N)−r

0

dv
∑

k∈[N2]

(
P̃[N2]
(i,A),(j,A)

(
RW [N2](v) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v) = (k,A)

))
× P[N2]

(l,Rl)

(
RW [N2](v) = (k,A)

)
E[g(x[N

2]
k (t̄(N)− r − v))]

+ 2

∫ t̄(N)

0

dr P̃(τ [N
2] = r)P̃(τ [N

2] ≥ r)

×
∫ t̄(N)−r

0

dv
∑

k∈[N2]

(
P̃[N2]
(i,A),(j,A)

(
RW [N2](v) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v) = (k,A)

))
×
(
P[N2]
(i,D1)

(
RW [N2](v) = (k,A)

)
− P[N2]

(j,D1)

(
RW ′[N2](v) = (k,A)

))
× E[g(x[N

2]
k (t̄(N)− r − v))].

(8.200)

We will show that both terms in the last equality of (8.200) tends to 0 as N → ∞.
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For the first term note that, by (8.171), (8.173) and (8.195), we have

2

∫ t̄(N)

0

dr P̃(τ [N
2] = r)

∫ r

0

du P̃(τ [N
2] = u)

×

[ ∑
(l,Rl)∈

[N2]×{A,D0,D1,D2}

P̃[N2]
(i,A),(j,A)

(
RW [N2](r − u) = (l, Rl)

)

− P̃[N2]
(i,A),(j,A)

(
RW ′[N2](r − u) = (l, Rl)

)]

×
∫ t̄(N)−r

0

dv
∑

k∈[N2]

(
P̃[N2]
(i,A),(j,A)

(
RW [N2](v) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v) = (k,A)

))
× P[N2]

(l,Rl)

(
RW [N2](v) = (k,A)

)
E[g(xk(t̄(N)− r − v))]

≤ 4

∫ t̄(N)

0

dr P̃(τ [N
2] = r)

∫ r

0

du P̃(τ [N
2] = u)

×

∣∣∣∣∣ ∑
(l,Rl)∈

[N2]×{A,D0,D1,D2}

P̃[N2]
(i,A),(j,A)

(
RW [N2](r − u) = (l, Rl)

)

− P̃[N2]
(i,A),(j,A)

(
RW ′[N2](r − u) = (l, Rl)

) ∣∣∣∣∣
≤ 4

∫ t̄(N)

0

dr P̃(τ [N
2] = r)

∫ r−L(N)

0

du P̃(τ [N
2] = u)

×

∣∣∣∣∣ ∑
(l,Rl)∈

[N2]×{A,D0,D1,D2}

P̃[N2]
(i,A),(j,A)

(
RW [N2](r − u) = (l, Rl)

)

− P̃[N2]
(i,A),(j,A)

(
RW ′[N2](r − u) = (l, Rl)

) ∣∣∣∣∣
+ 8

∫ t̄(N)

L(N)

dr P̃(τ [N
2] = r)P̃(τ [N

2] ∈ [r − L(N), r]) + 8P[τ [N
2] ∈ [0, L(N)]]

≤ 4

∫ t̄(N)

0

dr P̃(τ [N
2] = r)

∫ r−L(N)

0

du P̃(τ [N
2] = u)

×

∣∣∣∣∣ ∑
(l,Rl)∈

[N2]×{A,D0,D1,D2}

P̃[N2]
(i,A),(j,A)

(
RW [N2](r − u) = (l, Rl)

)

− P̃[N2]
(i,A),(j,A)

(
RW ′[N2](r − u) = (l, Rl)

) ∣∣∣∣∣
+ 16[1− e−

e1
N L(N)].

(8.201)
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Hence the last term in the last inequality tends to 0 as N → ∞.

To show that the first term in the last inequality tends to 0 we use the coupling

again. Recall the definition of H
[N2]
t in (8.176). Note that we can rewrite the sum as∑

(l,Rl)∈
[N2]×{A,D0,D1,D2}

P̃[N2]
(i,A),(j,A)

(
RW [N2](r − u) = (l, Rl)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](r − u) = (l, Rl)

)

≤
∑

(l,Rl)∈
[N2]×{A,D0,D1,D2}

∑
(l′,Rl′ )∈

[N2]×{A,D0,D1,D2}

(
P[N2]
(i,A)

(
RW [N2](L(N)) = (l′, R′

l)
)

−P[N2]
(i,A),(j,A)

(
RW ′[N2](L(N)) = (l′, R′

l)
))

× P[N2]

(l′,R′
l
)

(
RW [N2](r − u− L(N)) = (l, Rl)

)
≤

∑
(l′,Rl′ )∈

[N2]×{A,D0,D1,D2}

(
P[N2]
(i,A)

(
RW [N2](L(N)) = (l′, R′

l)
)
− P[N2]

(j,A)

(
RW ′[N2](L(N)) = (l′, R′

l)
))

=
∑

(l′,Rl′ )∈
[N2]×{A,D0,D1,D2}

(
P̃[N2]
(i,A),(j,A)

(
RW [N2](L(N)) = (l′, R′

l), (H
[N2]
t )c

)

− P̃[N2]
(i,A),(j,A)

(
RW ′[N2](L(N)) = (l′, R′

l), (H
[N2]
t )c

))
≤ 2P̃[N2]

(i,A),(j,A)

(
(H

[N2]
t )c

)
.

(8.202)

To show that

lim
n→∞

P̃[N2]
(i,A),(j,A)

(
(H

[N2]
t )c

)
= 0, (8.203)

we can use a similar strategy as between (8.189) and (8.191), but note that we now
start from two active sites instead of two 1-dormant sites. Therefore (8.187) directly
follows from (8.190) and (8.191).

To show the second term in (8.200) tends to 0, we write it as

2

∫ t̄(N)

0

dr P̃(τ [N2] = r)P̃(τ [N2] ≥ r)

×
∫ t̄(N)−r

0

dv
∑

k∈[N2]

(
P̃[N2]

(i,A),(j,A)

(
RW [N2](v) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v) = (k,A)

))
×
[
P[N2]

(i,D1)

(
RW [N2](v) = (k,A)

)
− P[N2]

(j,D1)

(
RW ′[N2](v) = (k,A)

)]
E[g(x[N2]

k (t̄(N)− r − v))]

= 2

∫ t̄(N)

0

dr P̃(τ [N2] = r)P̃(τ [N2] ≥ r)

×
∫ t̄(N)−r

0

dv
∑

k∈[N2]

(
P̃[N2]

(i,A),(j,A)

(
RW [N2](v) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v) = (k,A)

))
×
∫ v

0

du P̃[N2](τ [N2] = u)(
P̃[N2]

(i,A),(j,A)

(
RW [N2](v − u) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v − u) = (k,A)

))
× E[g(x[N2]

k (t̄(N)− r − v))].
(8.204)
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Changing the order of integration and setting w = v − u, we obtain

2

∫ t̄(N)

0

dr P̃(τ [N2] = r)P̃(τ [N2] ≥ r)

×
∫ t̄(N)−r

0

du P̃[N2](τ [N2] = u)

∫ t̄(N)−r

u

dv∑
k∈[N2]

[
P̃[N2]

(i,A),(j,A)

(
RW [N2](v) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v) = (k,A)

)]
×
[
P̃[N2]

(i,A),(j,A)

(
RW [N2](v − u) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](v − u) = (k,A)

)]
× E[g(x[N2]

k (t̄(N)− r − v))]

= 2

∫ t̄(N)

0

dr P̃(τ [N2] = r)P̃(τ [N2] ≥ r)

×
∫ t̄(N)−r

0

du P̃[N2](τ [N2] = u)

∫ t̄(N)−r−u

0

dw∑
k∈[N2]

[
P̃[N2]

(i,A),(j,A)

(
RW [N2](w + u) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](w + u) = (k,A)

)]
×
[
P̃[N2]

(i,A),(j,A)

(
RW [N2](w) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](w) = (k,A)

)]
× E[g(x[N2]

k (t̄(N)− r − u− w))].
(8.205)
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This can be rewritten as

2

∫ t̄(N)

0

dr P̃(τ [N2] = r)P̃(τ [N2] ≥ r)∫ t̄(N)−r

0

du P̃[N2](τ [N2] = u)

×
∑

(l,Rl)∈[N2]

[
P̃[N2]

(i,A),(j,A)

(
RW [N2](u) = (l, Rl)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](u) = (l, Rl)

)]

×
∫ t̄(N)−r−u

0

dw
∑

k∈[N2]

[
P[N2]

(l,Rl)

(
RW [N2](w) = (k,A)

)]
×
[
P̃[N2]

(i,A),(j,A)

(
RW [N2](w) = (k,A)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](w) = (k,A)

)]
× E[g(x[N2]

k (t̄(N)− r − u− w))]

≤ 8

∫ t̄(N)

L(N)

dr P̃(τ [N2] = r)P̃(τ [N2] ≥ r)∫ t̄(N)−r

L(N)

du P̃[N2](τ [N2] = u)

×
∑

(l,Rl)∈[N2]

[
P̃[N2]

(i,A),(j,A)

(
RW [N2](u) = (l, Rl)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](u) = (l, Rl)

)]

+ 8

∫ t̄(N)

L(N)

dr P̃(τ [N2] = r)P̃(τ [N2] ≥ r)∫ L(N)

0

du P̃[N2](τ [N2] = u)

×
∑

(l,Rl)∈[N2]

[
P̃[N2]

(i,A),(j,A)

(
RW [N2](u) = (l, Rl)

)
− P̃[N2]

(i,A),(j,A)

(
RW ′[N2](u) = (l, Rl)

)]

+ 16

∫ L(N)

0

dr P̃(τ [N2] = r)P̃(τ [N2] ≥ r).

(8.206)

This tends to 0 by (8.202) and the reasoning below (8.203). □

§8.3.9 Limiting evolution of the estimator processes

In this section we show that the results along the subsequences used in steps 5-
8 of the scheme for the two-level three-colour mean-field system actually hold for
all subsequences. Therefore the limiting evolution holds for N → ∞. Recall that
Lemma 8.3.20 tells us that all single 1-dormant colonies equal the value of the 1-
dormant 1-block average. Therefore the second assumption in (8.81) in Proposi-
tion (8.3.5) can be replaced by

lim
k→∞

L
[(
Y

[N2
k ]

2,0 (N2
k t2)

) ∣∣∣Θaux,(1),[N2
k ](N2

k t2 +Nkt1)
]
= P z

eff
1 (t1), (8.207)

since, by Lemma 8.3.20, the limiting law

lim
k→∞

L
[(
Y

[N2
k ]

1,0 (N2
k t2)

)]
(8.208)
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is completely determined by the first line in (8.81). Hence, the assumptions in Pro-
position 8.3.10 and Lemma 8.3.18 can be weakened in the same way. Using that in
Proposition 8.1.1 we assume (8.38) and (8.39), we find that the 2-block convergence
stated in Lemma 8.3.18 holds along all subsequences we choose in Step 5. We con-
clude that Proposition 8.1.1(a) is indeed true. Combining Proposition 8.1.1(a) with
steps 1-4 of the scheme and Lemma 8.3.20, we find that the assumptions in Proposi-
tion 8.3.10 are true for all subsequences, and we obtain the limiting evolution of the
1-block estimator process. Projecting this limiting evolution onto the active 1-block
average and the 1-dormant 1-block average, we obtain Proposition 8.1.1(b). Finally,
combining Proposition 8.1.1(a), steps1-4, and the fact that Proposition 8.3.10 is true
along all subsequences, we obtain Proposition 8.1.1(c) and (f).

§8.3.10 Convergence in the Meyer-Zheng topology

In this section we show how the results on the effective and estimator processes can
be use to show convergence of the full 1- and 2-block processes.

Lemma 8.3.22 ([Convergence of 1-process in the Meyer-Zheng topology]).
Assume that for the 1-block estimator process defined in (8.21)

lim
N→∞

L
[(

Θaux,(1),[N2](N2t2 +Nt1)
)
t1>0

]
= L [(zaux1 (t1))t1>0] , (8.209)

where, conditional on xeff2 (t2) = u, the limit process is the unique solution of the SSDE

in (8.30) with θ replaced by u and with initial measure Γ
eff,(1)
u . Then

lim
N→∞

L
[(

Θ(1),[N2](N2t2 +Nt1)
)
t1>0

]
= L

[
(z

Γ(1)(t2)
1 (t1))t1>0

]
in the Meyer-Zheng topology,

(8.210)

where Γ(1)(t2) is defined as in (8.46) and (z
Γ(1)(t2)
1 (t1))t1>0 is the process moving

according to (8.28) with initial measure Γ(1)(t2).

Proof. By assumption 8.209 and Lemma 8.3.6, we can proceed as in the proof of
Proposition 7.2.13 to find (8.210). □

Lemma 8.3.23 ([Convergence of 2-process in the Meyer-Zheng topology]).

Assume that for the effective 2-block process defined in (8.23)

lim
N→∞

L
[(

Θeff,(2),[N2](N2t2)
)
t2>0

]
= L [(zaux2 (t2))t2>0] , (8.211)

where (zeff2 (t2))t2>0 is the process evolving according to (8.36) and starting from
(ϑ1, θy2). Then for the 2-block estimator process defined in (8.23)

lim
N→∞

L
[(

Θ(2),[N2](N2t2)
)
t2>0

]
= L

[
(z2(t2))t2>0

]
in the Meyer-Zheng topology,

(8.212)
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where (z2(t2))t2>0 is the process evolving according to (8.35) and starting in state
(ϑ1, ϑ1, ϑ1, θy2).

Proof. Combining Lemmas 8.3.6 and 8.3.13, we find for t2 > 0

lim
N→∞

E
[∣∣∣Θ̄(2),[N2](N2t2)−Θ(2),[N2]

x (N2t2)
∣∣∣] = 0,

lim
N→∞

E
[∣∣∣Θ̄(2),[N2](N2t2)−Θ(2),[N2]

y0 (N2t2)
∣∣∣] = 0,

lim
N→∞

E
[∣∣∣Θ̄(2),[N2](N2t2)−Θ(2),[N2]

y1 (N2t2)
∣∣∣] = 0.

(8.213)

Therefore we can again proceed as in the proof of Proposition 7.2.13 to find (8.212).
□

§8.3.11 Proof of the two-level three-colour mean-
field finite-systems scheme

In Section 8.3.9 we already proved Proposition 8.1.1(a),(b),(c) and (f). The proof of
Proposition 8.1.1(d) follows from Proposition 8.1.1(a) by applying Lemma 8.3.23. The
proof of Proposition 8.1.1(e) follows from Proposition 8.1.1(b) by applying Lemma 8.3.22.
This completes the proof of Proposition 8.1.1.
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CHAPTER 9
Proofs of the hierarchical multi-scale

limit theorems

In this chapter we prove the hierarchical multi-scale limit theorems stated in The-
orem 4.4.2 and Theorem 4.4.4. In Section 9.1 we first introduce the finite-level
mean-field finite-systems scheme. In Section 9.2 we given an outline of how to prove
the finite-level mean-field finite-systems scheme. In Section 9.3 we show how Theor-
ems 4.4.2–4.4.4 can be obtained by a simple generalisation of the finite-level mean-field
finite-systems scheme. The proof of the finite-level mean-field finite-systems scheme
follows a similar line of argument as in Section 8.2 once we incorporate more levels.
Since the proofs for the finite-level mean-field systems scheme are similar as the proofs
in Section 8.3, we will not write out the full proof, but only give an outline and a
sketch.

§9.1 Finite-level mean-field finite-systems scheme and
interaction chain

In this section we extend the two-level three-colour system to a k-level (k+1)-colour
system with an “outside world” for any k ∈ N. This outside world allows also the
highest level, the k-block, to start from equilibrium. It is also needed to generalize
the results in this subsection to the infinite hierarchical group.

▶ Definitions. To set up the system, fix k ∈ N and consider the geographic space
Ωk+1
N obtained by truncating the hierarchical goup ΩN (recall (4.2)) after hierarchical

level k + 1, i.e., Ωk+1
N = Bk+1(0) the (k + 1)-block centred at the origin (recall

(4.2), (4.4) and Fig. 4.2). Note that the k + 1-block consists of N k-blocks i.e.,

Bk+1(0) =
⋃N
i=0Bk(i) and Bk+1(0) = [Nk+1]. The seed-bank in this model consists

of the k + 2 layers corresponding to colours {0, · · · , k} ∪ {k + 1}. On this space we
again consider a restricted version of the SSDE in (4.20) to the geographic space Ωk+1

N .

The migration kernel aΩN (·, ·) is restricted to Ωk+1
N by setting all migration outside

Bk+1(0) equal to 0, i.e.,

a[Ω
k+1
N ](ξ, η) =

k+1∑
l=1

1{
d
Ω
k+1
N

(ξ,η)≤l
} cl
N l−1

1

N l
, (9.1)
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where dΩk+1
N

is the hierarchical distance dΩN
restricted to the space Ωk+1

N . The colour-

l dormant population exchanges individuals with the active population at rates el
N l ,

Klel
N l for all 0 ≤ l ≤ k. We set the interaction of the active population with the colour
(k + 1)-dormant population equal to 0. This seed-bank is only needed later, namely
for the “outside world”.

The state space of the finite-level mean-field system is

S = (sk+1)Ω
k+1
N , sk+1 = [0, 1]× [0, 1]k+2, (9.2)

and the system is denoted by

ZΩk+1
N = (ZΩk+1

N (t))t≥0, ZΩk+1
N (t) = (z

Ωk+1
N

ξ (t))ξ∈Ωk+1
N

,

z
Ωk+1

N

ξ (t) = (x
Ωk+1

N

ξ (t), (y
Ωk+1

N

ξ,m (t))k+1
m=0).

(9.3)

The components evolve according to the SSDE

dx
Ωk+1

N

ξ (t) =

k∑
l=1

cl−1

N l−1

1

N l

∑
η∈Bl(ξ)

[
x
Ωk+1

N
η (t)− x

Ωk+1
N

ξ (t)

]
dt

+

√
g(x

Ωk+1
N

ξ (t)) dwξ(t) +

k∑
m=0

Kmem
Nm

[
y
Ωk+1

N

ξ,m (t)− x
Ωk+1

N

ξ (t)

]
dt,

dy
Ωk+1

N

ξ,m (t) =
em
Nm

[
x
Ωk+1

N

ξ (t)− y
Ωk+1

N

ξ,m (t)

]
dt, 0 ≤ m ≤ k,

dy
Ωk+1

N

ξ,m (t) = 0, ξ ∈ Ωk+1
N ,

(9.4)

with Bl(ξ) the ball of radius l around ξ ∈ Ωk+1
N .

Note that this system is the hierarchical SSDE in (4.20) with all interactions
at distance > k switched off (i.e., cl = 0 for l > k + 1), and also the exchange with
dormant populations of colourm > k is switched off. As before, by [67] the martingale
problem associated with (9.4) is well-posed, and for every initial state in S the SSDE
has a unique strong solution. We will analyse (9.4) on time scales 1, N,N2, · · · , Nk.
If for 0 ≤ l ≤ k time runs on time scale N l, then we write N ltl with tl > 0.

To study the k-level mean-field system, we analyse the equivalent of the block
averages defined in (4.2.3). For the k-level mean-field system these are given by

x
Ωk+1

N

l (t) =
1

N l

∑
η∈Bl(0)

x
Ωk+1

N
η (N lt),

y
Ωk+1

N

m,l (t) =
1

N l

∑
η∈Bl(0)

y
Ωk+1

N
η,m (N lt), 0 ≤ m ≤ k + 1, 0 ≤ l ≤ k.

(9.5)
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For 0 ≤ l ≤ k these block averages evolve according to the SSDE

dx
Ωk+1

N

l (t) =

k−(l−1)∑
n=1

cl+n−1

Nn−1

[
x
Ωk+1

N

l+n (N−nt)− x
Ωk+1

N

l (t)
]
dt

+

√√√√ 1

N l

∑
i∈Bl(0)

g(xi(N lt)) dwl(t) (9.6)

+

k∑
m=0

N lKmem
Nm

[
y
Ωk+1

N

m,l (t)− x
Ωk+1

N

l (t)
]
dt,

dy
Ωk+1

N

m,l (t) = N l em
Nm

[
x
Ωk+1

N

l (t)− y
Ωk+1

N

m,l (t)
]
dt, 0 ≤ m ≤ k, (9.7)

dy
Ωk+1

N

k+1,l(t) = 0, (9.8)

In the limit as N → ∞, the active l-block average feels a drift towards the active
(l+ 1)-block average, which is not moving on time scale N l, at rate cl. The diffusion
term for the l-block average becomes the average diffusion over the l-block. The drift
of the active l-block average towards the l-block average of m-dormant populations

y
Ωk+1

N

m,l with m > l vanishes in the limit as N → ∞. Therefore, the m > l m-dormant
populations are slow seed-banks on space-time scale l. The l-block average of the

colour-l dormant population y
Ωk+1

N

l,l has a non-trivial drift towards the active l-block

average, written x
Ωk+1

N

l . Therefore the l-dormant population is the effective seed-bank

on space-time scale l. For the colourm-dormant populations y
Ωk+1

N

m,l withm < l, we see
that infinite rates appear. Therefore the m-dormant populations with m < l are fast
seed-banks on space-time scale l. We again need the Meyer-Zheng topology to show

that limN→∞ y
Ωk+1

N

m,l = limN→∞ x
Ωk+1

N

l . On space-time scale l, the colour-l dormant
population is the effective seed-bank. To get rid of the infinite rates we again look at
combinations. From the above discussion and the SSDE in (9.6)–(9.6), we see that if
we consider the quantity

x
Ωk+1

N

l (t) +
∑l−1
m=0Kmy

Ωk+1
N

l,m (t)

1 +
∑l−1
m=0Km

, (9.9)

then all infinite rates cancel out. ThereforexΩk+1
N

l (t) +
∑l−1
m=0Kmy

Ωk+1
N

l,m (t)

1 +
∑l−1
m=0Km

, y
Ωk+1

N

l,l (t)


t>0

(9.10)

is called the effective process on space-time scale l. Like in the simpler mean-field
finite-systems scheme, the effective process allows us to analyse our system in path
space.

An important difference between the finite-level mean-field system in (9.6)–(9.7)
and the two-level three-colour mean-field system in Section (8.1) is that in the finite-
level mean-field system also the highest level k has a drift towards the outside world.
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This outside world is the active k + 1-block average, which does not evolve on time
scale Nk. This drift allows the finite-level mean-field system to equilibrate to a non-
trivial equilibrium. In the two-level mean-field system, the highest level, i.e., the
active 2-block average, does not feel a drift due to migration. Consequently, the
2-block averages will eventually cluster.

▶ Scaling limit. To state and prove the finite-level multi-scale limit, we need the
following three limiting processes. Recall (4.64) and (4.62). For 0 ≤ l ≤ k, let

(zl,(θ,(ym,l)
k+1
m=0)

(t))t≥0) = (xl(t), (ym,l(t))
k+1
m=0)t≥0) (9.11)

be the process evolving according to

dxl(t) = El

[
cl[θ − xl(t)] dt+

√
F (l)g(x1(t)) dw(t) +Klel [yl,l(t)− xl(t)] dt

]
,

ym,l(t) = xl(t), for 0 ≤ m < l

dyl,l(t) = el [xl(t)− yl,l(t)] dt,

ym,l(t) = ym,l, for l < m ≤ k + 1,

(9.12)

where θ ∈ [0, 1] and ym,l ∈ [0, 1] for l < m ≤ k + 1.
For 0 ≤ l ≤ k, let

(zaux
l,(θ,(ym,l)

k+1
m=l+1)

(t))t≥0 = (xauxl (t), (yauxm,l (t))
k+1
m=l+1)t≥0 (9.13)

be the process evolving according to

dxauxl (t) = El

[
cl[θ − xauxl (t)] dt+

√
F (l)g(xaux1 (t)) dw(t)

+Klel [y
aux
l,l (t)− xauxl (t)] dt

]
,

dyauxl,l (t) = el [x
aux
l (t)− yauxl,l (t)] dt,

yauxm,l (t) = ym,l, for l < m ≤ k + 1,

(9.14)

where θ ∈ [0, 1] and yauxm,l ∈ [0, 1], for l < m ≤ k + 1.
For 0 ≤ l ≤ k, let

(zeffl,θ(t))t≥0 =
(
xeffl (t), yeffl,l (t)

)
t≥0

(9.15)

be the effective process evolving according to

dxeffl (t) = El

[
cl [θ − xeffl (t)] dt+

√
(F (l)g)(xeffl (t)) dw(t) +Klel [y

eff
l,l (t)− xeffl (t)] dt

]
,

dyeffl,l (t) = el [x
eff
l (t)− yeffl,l (t)] dt.

(9.16)
Comparing (9.12) with (9.16), we see that the effective process looks at the non-trivial
components of the full process. The auxiliary process in (9.14) looks at the active
population, the effective seed-bank and the slow seed-banks.

To state and prove the finite-level multi-scale limit, we need the following list of
ingredients:
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(a) For t > 0 and for 0 ≤ l ≤ k, define the l-block estimators

Θ̄(l),Ωk+1
N (t) =

1

N l

∑
i∈Bl

x
Ωk+1

N
i (t) +

∑l−1
m=0Kmy

Ωk+1
N

i,0 (t)

1 +K0
,

Θ
(l),Ωk+1

N
x (t) =

1

N l

∑
i∈Bl

x
Ωk+1

N
i (t),

Θ
(l),Ωk+1

N
ym (t) =

1

N l

∑
i∈Bl

y
Ωk+1

N
i,m (t), 0 ≤ m ≤ k + 1,

(9.17)

and put

Θ(l),Ωk+1
N (t), =

(
Θ

(l),Ωk+1
N

x (t),
(
Θ

(l),Ωk+1
N

ym (t)
)k+1

m=0

)
,

Θaux,(l),Ωk+1
N (t) =

(
Θ̄(l),Ωk+1

N (t),

(
Θ

(l),Ωk+1
N

yl (t)

)k+1

m=l

)
,

Θeff,(l),Ωk+1
N (t) =

(
Θ̄(l),Ωk+1

N (t),Θ
(l),Ωk+1

N
yl (t)

)
.

(9.18)

We call (Θ(l),Ωk+1
N (t))t>0 the l-block estimator process, (Θaux,(l),Ωk+1

N (t))t>0 the

auxiliary l-block estimator process and (Θeff,(l),Ωk+1
N (t))t>0 the effective l-block

estimator process.

(b) For 0 ≤ l ≤ k, define the time scales N l such that

L[Θ̄(l),Ωk+1
N (N ltl − L(N)N l−1)− Θ̄(l),Ωk+1

N (N ltl)] = δ0 (9.19)

for all L(N) such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, but

not for L(N) = N . In words, N is the time scale on which Θ̄(l),Ωk+1
N (·) starts

evolving, i.e.,
(
Θ̄(l),Ωk+1

N (N ltl)
)
tl>0

, is no longer a fixed process.

(c) The invariant measure for the evolution of the l-block average in (9.12), denoted
by

Γ
(l)
θ,yl

, yl = (ym,l)
k+1
m=0. (9.20)

The invariant measures of the auxiliary l-block process in (9.15) and the effective
l-block process in (9.16), denoted by, respectively,

Γ
(l),aux
θ,yl

, yl = (ym,l)
k+1
m=l+1 (9.21)

and
Γ
(l),eff
θ . (9.22)

(d) For 0 ≤ l ≤ k, let FEl,cl,Kl,el denote the renormalisation transformation acting
on G defined by

(FEl,cl,Kl,elg)(θ) =

∫
[0,1]2

g(x) Γ
(l)
θ (dx, (dy)k+1

m=0), θ ∈ [0, 1], (9.23)
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and define the iterates F (n), 0 ≤ n ≤ k, of the renormalisation transformation
as the compositions

F (l) = FEn−1,cn−1,Kn−1,en−1 ◦ · · · ◦ FE0,c0,K0,e0 , 0 ≤ l ≤ k. (9.24)

(Recall (4.76).)

(e) To give a detailed description of the multi-scale behaviour of the SSDE in (4.20),
define the interaction chain

(Mk
−l)−l=−(k+1),−k,...,0 (9.25)

as the time-inhomogeneous Markov chain on [0, 1]× [0, 1]k+1 with initial state

Mk
−(k+1) = (ϑk,

k+1 times︷ ︸︸ ︷
ϑk, · · · , ϑk, θy,k+1) (9.26)

that evolves according to the transition kernel Q[l] from time −(l + 1) to time
−l given by

Q[l](u,dv) = Γ(l)
u (dv), 0 ≤ l ≤ k. (9.27)

(Recall (4.77).)

We are now ready to state the scaling limit for the evolution of the averages in
(7.7).

Proposition 9.1.1. [Finite-level mean-field: finite-systems scheme] Suppose that the

initial state of the system in (9.4) is given by µ(0) = µ⊗[Ωk+1
N ] for some µ ∈ P([0, 1]×

[0, 1]k+2). Let L(N) be such that limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0, and

for tk, . . . , t0 ∈ (0,∞) set t̄ = L(N)Nk +
∑k
n=0 tnN

n.

(a) For every tk, . . . , t0 ∈ (0,∞),

lim
N→∞

L

[(
Θ(l),Ωk+1

N (t̄)

)
l=k+1,k,...,0

]
= L

[
(Mk

−l)−l=−(k+1),−k,...,0
]
, (9.28)

where (Mk
−l)−l=−(k+1),−k,...,0 is the interaction chain in (9.25) starting from

Mk
−(k+1) = (ϑk,

k+1 times︷ ︸︸ ︷
ϑk, · · · , ϑk, θy,k+1). (9.29)

(b) For all 0 ≤ l ≤ k,

lim
N→∞

L
[(

Θ(l),Ωk+1
N (t̄+ tlN

l)
)
tl>0

]
= L

[(
zl,Mk

−(l+1)
(tl)
)
tl>0

]
,

in the Meyer-Zheng topology,

(9.30)

where
(zl,Mk

−(l+1)
(tl))tl>0 (9.31)
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is the processes defined (9.12) with θ, (ym, l)
k+1
m=l+1 given by the corresponding

components in Mk
−(l+1) and with initial measure

L
[
zl,Mk

−(l+1)
(0)
]
= Γ

(l)

Mk
−(l+1)

Γ
(l)

Mk
−(l+1)

=

∫
sk+1

· · ·
∫
sk+1

∫
sk+1

Γ
(k)

Mk
−(k+1)

(duk)Γ
(k−1)
uk

(duk−1) · · ·Γ(l+1)
u2

(dul+2)Γ
(l)
ul+1

.

(9.32)

In Part (a), the limit does not depend on the choice of the times tk, . . . , t0, since we
let time start from a time larger than L(N)Nk, so that in the limit as N → ∞ all the
l-block averages with l ≤ k are already in quasi-equilibrium. In Part (b), for l < k the
center of the drift for the active population is random and is determined by the first
component of the interaction chain. Also the states of the m-dormant populations
with l < m ≤ k + 1 are determined by the interaction chain.

Remark 9.1.2. In contrast to Propositions 7.1.2–8.1.1, there are no assumptions on
the seed-bank behaviour in Proposition 9.1.1. This is because all the block-averages
that we consider are in equilibrium at time t̄. Consequently on space-time scales
l < m the m-dormant l-block average will equal the state of the m-dormant m-block
average at time t̄. Therefore we say that the state of the slow seed-banks is determined
by the space-time scaleon which this seed-bank is effective. Hence the state of the
slow seed-banks is determined by the interaction chain. ■

The proof of Proposition 9.1.1 will be given in Section 9.2.

§9.2 Proof of the mean-field finite-systems scheme:
finite-level

We give a sketch of the proof Proposition 9.1.1. The proof uses a similar scheme as
the proof of Proposition 8.1.1. We state the scheme and indicate at each step how it
can be proved.

1 Tightness of the auxiliary l-block estimator processes, for 0 ≤ l ≤ k,((
Θaux,(l),Ωk+1

N (N ltl)
)
tl>0

)
N∈N

. (9.33)

Proof. For each 0 ≤ l ≤ k we use the tightness criterion in [49, Proposition
3.2.3.]. □

2 Stability property of the 2-block estimators, i.e., for L(N) such that
limN→∞ L(N) = ∞ and limN→∞ L(N)/N = 0,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣Θ̄(l),Ωk+1
N (N ltl)− Θ̄(l),Ωk+1

N (N ltl −N l−1t)
∣∣∣ = 0 in probability

(9.34)
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and, for all l ≤ m ≤ k + 1,

lim
N→∞

sup
0≤t≤L(N)

∣∣∣∣Θ(l),Ωk+1
N

ym (N ltl)−Θ
(l),Ωk+1

N
ym (N ltl −N l−1tl)

∣∣∣∣ = 0 in probability.

(9.35)

Proof. Use a similar computation as in the proof of Lemma 8.3.4. □

3 We analyse the behaviour of the slow seed-banks by proving the following
lemma.

Lemma 9.2.1. [Slow seed-banks in the multi-level system] Let Θ
(l)
ym,i

denote the

m-dormant l-block average containing colony i ∈ Ωk+1
N . Then for all i ∈ Ωk+1

N ,
m < k + 1, l < m and tl > 0,

lim
N→∞

[
y
Ωk+1

N
i,m (t̄+N ltl)−Θ

(m),Ωk+1
N

ym,i
(t̄+N ltl)

]
= 0 a.s. (9.36)

and hence

lim
N→∞

[
Θ

(l),Ωk+1
N

ym,i
(t̄+N ltl)−Θ

(m),Ωk+1
N

ym,i
(t̄+N ltl)

]
= 0 a.s. (9.37)

Proof. We can proceed as in the proof of Lemma 8.3.20, after adapting the

kernel b[N
2](·, ·) to the kernel bΩ

k+1
N (·, ·). Then we can use that, from each of

the m < k + 1 m-dormant populations, individuals wake up before time t̄ with
probability 1. For individuals starting from an m-dormant state, we define the
coupling event

H
m,Ωk+1

N
t = {RWΩk+1

N has migrated over distance m at least once up to time t}.
(9.38)

The migration over distancem is needed because we needm-dormant individuals
to be uniformly distributed over the m-block in order to almost surely equal the
state of the m-block. □

4 We prove the convergence of the single components. Recall that there are
Nk+1−l l-blocks in Ωk+1

N . Since tightness of components implies tightness of
the process, step 1 implies that for 0 ≤ l ≤ k the full l-block processes((

Θ
aux,(l),Ωk+1

N
i (t̄+N ltl)

)
tl>0, i∈[Nk+1−l]

)
N∈N

(9.39)

are tight. From the tightness in steps 1 we can construct a subsequence (Nn)n∈N
along which, for all 0 ≤ l ≤ k,

lim
n→∞

L

[(
Θ

aux,(1),Ωk+1
Nn

i (t̄+N l
ntl)

)
tl>0, i∈[Nk+1−l

n ]

]
(9.40)

308



§9.2. Proof of the mean-field finite-systems scheme: finite-level

C
h
a
p
t
e
r
9

exists. Note that t̄ depends on the subsequence. For example, along the sub-
sequence (Nñ)ñ∈N,

t̄ = L(N)Nk +

k∑
n=0

tnN
n
ñ . (9.41)

We define the measure
ν
(0)
Θ =

∏
i∈N0

Γ
(0)
Θi

(t̄), (9.42)

where
Θi ∈ sk+1. (9.43)

In this step we show that along the same subsequence the single components
converge to the infinite system. We show that if

lim
n→∞

L[(Θaux,(1),Ωk+1
Nn (t̄))i∈[Nk

n ]] = P (1), (9.44)

then

lim
n→∞

L
[(
ZΩk+1

Nn (t̄+ t0)
)
t0≥0

]
= L

[
(Zν

(0)(t̄)(t0))t0≥0

]
, (9.45)

where

ν(0)(t̄) =

∫
ν(0)u P (1)(du). (9.46)

Here, (Zν
(0)(t̄)(t0))t0≥0 is the process starting from ν(0)(t̄) with components

evolving according to (8.18), where θ is now a random variable that inherits its
law from

lim
n→∞

L[(Θaux,(1),Ωk+1
Nn (t̄))i∈[Nk

n ]] (9.47)

and, similarly, the laws of ym,0, 1 ≤ l ≤ k + 1 in the limiting process

(Zν
(0)(t2)(t0))t0≥0 are determined by

lim
n→∞

L[(Θaux,(1),Ωk+1
Nn (t̄))i∈[Nk

n ]]. (9.48)

Note that we choose the subsequence (Nn)n∈N in such a way that we know that
the law P (1) in (9.44) exists.

Proof. Proceed as in the proof of Proposition 8.3.5. Note that the assumptions
on the seed-banks in Proposition 8.3.5 follow from the choice of the subsequence
and Lemma 9.2.1. □

5 Using the limiting evolution of the single colonies obtained in step 4, we can
identify the limiting l-block process along the same subsequence. For 1 ≤ l ≤ k,
we show that if

lim
n→∞

L[(Θaux,(l+1),Ωk+1
Nn (t̄))i∈[Nk

n ]] = P (l+1), (9.49)

then

lim
n→∞

L
[(

Θaux,(l),Ωk+1
Nn (t̄+N l

ntl)
)
tl>0, i∈[Nk+1−l

n ]

]
= L

[
(zauxl,Θ(l+1)(t))t≥0

]
,

(9.50)
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where Θ(l+1) = (Θ
(l+1)
x , (Θ

(l+1)
ym,l

)k+1
m=l+1) ∈ [0, 1]× [0, 1]k+2−(l+1),

L
[
zauxl,Θ(l)(0)

]
= Γ

(l),aux

Θ(l+1) ,

Γ
(l),aux

Θ(l+1) =

∫
[0,1]×[0,1]k+2−(l+1)

Γ(l),aux
u P (l+1)(du)

(9.51)

and (zaux
l,Θ(l+1)(t))t≥0 is the process evolving according to (9.14) with θ, (ym,l)

k+1
m=l

replaced by the random variables Θ
(l+1)
x , (Θ

(l+1)
ym,l

)k+1
m=l. Note that by the choice

of the subsequence (Nn)n∈N we know that for 1 ≤ l ≤ k the limiting laws in
(9.49) exist.

Proof. The proof goes by induction. Using the convergence of the single com-
ponents, we can proceed as in the proof of Proposition 8.3.10 to prove the
convergence of the 1-blocks averages

lim
n→∞

L

[(
Θ

aux,(1),Ωk+1
Nn

i (t̄+Nnt1)

)
t1>0, i∈[Nk+1−l

n ]

]
. (9.52)

Then, assuming that we have the convergence for all 0 ≤ l ≤ L, we get

lim
n→∞

L

[(
Θ

aux,(l),Ωk+1
Nn

i (t̄+N l
ntl)

)
tl>0, i∈[Nk+1−l

n ]

]
, (9.53)

and we prove the convergence of

lim
n→∞

L

[(
Θ

aux,(L+1),Ωk+1
Nn

i (t̄+N (L+1)
n t(L+1))

)
t(L+1)>0, i∈[N

k+1−(L+1)
n ]

]
. (9.54)

This is done using a similar proof strategy as in the proof of Proposition 8.3.10.
In particular, we need to derive the l-level equivalent of Lemma 8.3.13. Since
this lemma is also key to proving convergence in the Meyer-Zheng topology, we
state it explicitly below. □

Lemma 9.2.2 (l-block averages). Define

∆
(l),Ωk+1

N

Σ (N l−1tl−1)

=
Θ

(l),Ωk+1
N

x (N l−1tl−1) +
∑l−2
m=0KmΘ

(l),Ωk+1
N

ym (N l−1tl−1)

1 +
∑l−2
m=0Km

−Θ
(l),Ωk+1

N
yl−1 (N l−1tl−1)

(9.55)
and

Rl =
1 +

∑l−1
m=0Km

1 +
∑l−2
m=0Km

. (9.56)
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For t ≥ 0 set Θ̄(0)(t) = Θ
(0)
x (t) = x0(t). Then, for 1 ≤ l ≤ k,

E
[∣∣∣∣∆(l),Ωk+1

N

Σ (N l−1tl−1)

∣∣∣∣]

≤

√√√√E

[(
∆

(l),Ωk+1
N

Σ (0)

)2
]
e−elRltl−1

+

√∫ t1

0

ds 2elRle−2elRl(t1−s)E
[∣∣∣∣Θ̄(l−1),Ωk+1

N (N l−1s)−Θ
(l−1),Ωk+1

N
x (N l−1s)

∣∣∣∣]

+

√√√√ 1

N

1

2el(1 +
∑l−1
m=0Km)

[
k∑

n=l+1

cn−1

Nn−(l+1)
+

k∑
m=l

Kmem
Nm−l + El−1||g||

]
.

(9.57)

Proof. Proceed like in the proof of Lemma 8.3.13, using the SSDE in (9.4)
instead of the SSDE in (8.6). □

We obtain the following useful corollary from Lemma 9.2.2.

Corollary 9.2.3. For all 1 ≤ l ≤ k, s > 0 and l̃ ≥ l,

lim
N→∞

E
[∣∣∣∣Θ̄(l−1),Ωk+1

N (N l̃−1s)−Θ
(l−1),Ωk+1

N
x (N l̃−1s)

∣∣∣∣] = 0. (9.58)

Proof. We proceed by induction. The result for l = 1 is trivial. Suppose that
the result holds for l = L. Then for l = L+ 1 we obtain

E
[∣∣∣∣Θ̄(L),Ωk+1

N (NLs)−Θ
(L),Ωk+1

N
x (NLs)

∣∣∣∣]
≤ E

[∣∣∣∣∣Θ̄(L),Ωk+1
N (NLs)− 1

N

N−1∑
i=0

Θ̄
(L−1),Ωk+1

N
i (NLs)

∣∣∣∣∣
]

+
1

N

N−1∑
i=0

E
[∣∣∣∣Θ̄(L−1),Ωk+1

N
i (NLs)−Θ

(L−1),Ωk+1
N

x,i (NLs)

∣∣∣∣] .
(9.59)

Note that the second term in the right-hand side of (9.59) tends to 0 as N → ∞
by the induction hypothesis. For the first term in the right-hand side of (9.59),
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note that

E

[∣∣∣∣∣Θ̄(L),Ωk+1
N (NLs)− 1

N

N−1∑
i=0

Θ̄
(L−1),Ωk+1

N
i (NLs)

∣∣∣∣∣
]

= E

∣∣∣∣∣∣Θ
(L),Ωk+1

N
x (NLs) +

∑L−1
m=0KmΘ

(L),Ωk+1
N

ym (NLs)

1 +
∑L−1
m=0Km

−
Θ

(L),Ωk+1
N

x (NLs) +
∑L−2
m=0KmΘ

(L),Ωk+1
N

ym (NLs)

1 +
∑L−2
m=0Km

∣∣∣∣∣∣


=
KL−1

1 +
∑L−1
m=0Km

E
[∣∣∣∣Θ(L),Ωk+1

N
yL−1 (NLs)− Θ̄(L),Ωk+1

N (NLs)

∣∣∣∣] .

(9.60)

Invoking Lemma 9.2.2 and using the induction hypothesis, we see that for s > 0
and l̃ ≥ L indeed

lim
N→∞

E
[∣∣∣∣Θ̄(L),Ωk+1

N (N l̃s)−Θ
(L),Ωk+1

N
x (N l̃s)

∣∣∣∣] = 0. (9.61)

□

6 Show that the convergence in step 4 and step 5 actually holds along each sub-
sequence. Therefore we obtain the limiting evolution of the single colonies,
the auxiliary 1-block process and the effective 2-block process. This follows
from the fact that the auxiliary k-estimator process converges to the same limit
along every subsequence. Consequently, the same holds for the auxiliary k − 1-
estimator process. In this way we can traverse back through the levels to obtain
that all l-estimator process converges as N → ∞.

Define, for 0 ≤ l ≤ k,

sk+1
l = [0, 1]× [0, 1]k+2−l. (9.62)

We obtain, for 0 ≤ l ≤ k − 1,

lim
N→∞

L[(Θaux,(l+1),Ωk+1
N (t̄))]] = Γ

(l+1),aux

Θ(l+2) ,

Γ
(l+1),aux

Θ(l+2) =

∫
sk+1
l+2

· · ·
∫
sk+1
k

Γ
(k),aux
ϑk

(duk) · · ·Γ(l+2),aux
ul+3

(dul+2)Γ
(l+1),aux
ul+2

.
(9.63)

Therefore by step 5

lim
N→∞

L
[(

Θaux,(l),Ωk+1
N (t̄+N l

ntl)
)
tl>0, i∈[Nk+1−l]

]
= L

[
(zauxl,Θ(l+1)(t))t≥0

]
,

(9.64)

where Θ(l+1) = (Θ
(l+1)
x , (Θ

(l+1)
ym,l

)k+1
m=l) ∈ s

(k+1)
l are random variables with law

L
[
Θ(l+1)

]
= Γ

(l+1),aux

Θ(l+2) . (9.65)
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The initial state of the limiting process in (9.64) is given by

L
[
zauxl,Θ(l)(0)

]
= Γ

(l),aux

Θ(l+1) ,

Γ
(l),aux

Θ(l+1) =

∫
sk+1
l+2

· · ·
∫
sk+1
k

Γ
(k),aux
ϑ+k (duk) · · ·Γ(l+2),aux

ul+2
(dul+1)Γ

(l+1),aux
ul+1

(9.66)
and (zaux

l,Θ(l+1)(t))t≥0 is the process evolving according to (9.14) with θ,

(ym,l)
k+1
m=l+1 replaced by the random variables Θ

(l+1)
x , (Θ

(l+1)
ym )k+1

m=l+1. Recall
that, by Lemma 9.2.1, we have, for l + 1 ≤ m ≤ k + 1,

Θ(l+1)
ym = Θ(m)

ym . (9.67)

7 Use the Meyer-Zheng topology to obtain Proposition 9.1.1(b).

Proof. Note that Lemma 9.2.2 and Corollary 9.2.3 together imply

lim
N→∞

E
[∣∣∣∣Θ̄(l),Ωk+1

N (N ltl)−Θ
(l),Ωk+1

N
x (N ltl)

∣∣∣∣] = 0,

lim
N→∞

E
[∣∣∣∣Θ̄(l),Ωk+1

N (N ltl)−Θ
(l),Ωk+1

N
ym (N ltl)

∣∣∣∣] = 0, for 0 ≤ m ≤ l − 1.

(9.68)

Combining the result obtained in step 6 with the proof strategy followed in
Section 8.3.10, we get the claim. □

8 Finally, we prove Proposition 9.1.1(a).

Proof. Step 6 and step 7 yield the laws of the components L[Mk
l ] of the inter-

action chain (Mk
−l)

0
−l=−(k+1). Note that the state space ([0, 1]× [0, 1]k+2)k+2 is

compact, and therefore the sequence of random variables(Θ(l),Ωk+1
N (t̄)

)
l=k+1,k,...,0


N∈N

(9.69)

is tight. For any
f : ([0, 1]× [0, 1]k+2)n+2 → R,

f(x) =

n∏
i=1

fi(xi),

fi ∈ Cb([0, 1] → R),

(9.70)

we can use conditioning on the previous block average to obtain

lim
N→∞

E

f
(Θ(l),Ωk+1

N (t̄)

)
l=k+1,k,...,0

 = E
[
f
(
(Mk

−l)
0
−l=−(k+1)

)]
.

(9.71)
Using that the set of functions of the form (9.70) is separating, we obtain the
claim. □
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§9.3 Proof: of the hierarchical multi-scale limit the-
orems.

In this section we prove Theorems 4.4.2 and 4.4.4. We start by proving Theorem 4.4.4.
Theorem 4.4.2 will follow from Theorem 4.4.4 by projection onto the effective com-
ponents.

Proof of Theorem 4.4.2

Proof. Recall the estimators in (4.70). Like for the finite-level hierarchical mean-field
system, we can define the auxiliary estimator process by

Θ(l),aux,ΩN (t) =
(
Θ̄(l),ΩN (t),

(
Θ(l),ΩN
ym (t)

)∞
m=l

)
. (9.72)

For l, k ∈ N the processes (Θ(l),aux,ΩN (t̄+Nkt))t>0 evolve according to (recall, (4.114))

dΘ̄(l),ΩN (Nkt) = El

∞∑
n=l+1

cn−1

Nn−1−k

[
Θ(n),ΩN
x (Nkt)−Θ(l),ΩN

x (Nkt)
]
dt

+ El

√√√√Nk

N2l

∑
ξ∈Bl

g
(
xξ(Nkt)

)
dw(t)

+ El

∞∑
m=l

Kmem
Nm−k

[
Θ(l),ΩN
ym (Nkt)−Θ(l),ΩN

x (Nkt)
]
dt,

dΘ(l),ΩN
ym (Nkt) =

em
Nm−k

[
Θ(l),ΩN
x (Nkt)−Θ(l),ΩN

ym (Nkt)
]
dt, l ≤ m ≤ ∞.

(9.73)

Therefore, for l > k and all ϵ > 0,

P

[
sup

0≤t≤L(N)

∣∣∣∣∣Θ̄(l),ΩN (t̄)− Θ̄(l),ΩN (t̄+Nkt)

∣∣∣∣∣ > ϵ

]

= P

[
sup

0≤t≤L(N)

El

∣∣∣∣∣
∫ t̄+Nkt

t̄

dr

∞∑
n=l+1

cn−1

Nn−1

[
Θ(n),ΩN
x (r)−Θ(l),ΩN

x (r)
]

+

∫ t̄+Nkt

t̄

dr

∞∑
m=l

Kmem
Nm

[
Θ(l),ΩN
ym (r)−Θ(l),ΩN

x (r)
]

+

∫ t̄+Nkt

t̄

dwi(r)

√
1

N2l

∑
ξ∈Bl

g
(
xξ(r)

) ∣∣∣∣∣ > ϵ

]

≤ P

[
sup

0≤t≤L(N)

El

∣∣∣∣∣
∫ t̄+Nkt

t̄

dwi(r)

√
1

N2l

∑
ξ∈Bl

g
(
xξ(r)

) ∣∣∣∣∣
> ϵ− t

[ ∞∑
n=l+1

cn−1

Nn−1−k +

∞∑
m=l

Kmem
Nm−k

]]
.

(9.74)
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Note that, since l > k,

lim
N→∞

t

[ ∞∑
n=l+1

cn−1

Nn−1−k +

∞∑
m=l

Kmem
Nm−k

]
= 0. (9.75)

Hence, like in the proof of Lemma 8.3.4, we can use an optional stopping argument
to obtain

lim
N→∞

sup
0≤t≤L(N)

∣∣∣∣∣Θ̄(l),ΩN (t̄)− Θ̄(l),ΩN (t̄+Nkt)

∣∣∣∣∣ = 0 in probability. (9.76)

Using a similar computation as in (9.74), we can show

lim
N→∞

sup
0≤t≤L(N)

∣∣∣∣∣Θ̄(l),ΩN
ym (t̄)−Θ(l),ΩN

ym (t̄+Nkt)

∣∣∣∣∣ = 0 in probability. (9.77)

Hence we obtain that, on time scale Nk as N → ∞, the process (Θ(l),aux,ΩN (t̄ +
Nkt))t>0 does not evolve and therefore is still in its initial state(Θ(l),aux,ΩN (t̄)).

Using that the l-auxiliary estimator processes do not move for l > k, they function
like the “outside world” for the finite-level mean-field system in Section 9.1. Therefore
we can proceed as in the proof of Proposition 9.1.1 to prove the second and third line
in (4.88) in Theorem 4.4.2. The l-block estimator process (Θ(l),aux,ΩN (t̄ + N lt))t>0

evolves according to (9.73) with l = k. Note that the extra interactions due to
migration over larger blocks l > k and exchange with deeper seed-banks m > k in
(4.126) are of order O(1/N). Therefore these terms vanish as N → ∞, and we can
just proceed as in the scheme of Section 9.2, to obtain the second and third line in
(4.88) in Theorem 4.4.2. Using these results, we obtain that, for l > k,

Θ(l),aux,ΩN (t̄) = δMk
−(k+1)

. (9.78)

□
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CHAPTER 10
Orbit of the renormalisation

transformation

In this chapter we analyse the orbit of the renormalisation transformation and show
that it has the Fisher-Wright diffusion as a global attractor. In Section 10.1 we
write down moment relations for the equilibrium defined in (4.67) for single colonies
(Proposition 10.1.1) and for block averages (Proposition 10.1.2). In Section 10.2 we
derive the iterates of these moment relations for single colonies (Proposition 10.2.1)
and for blocks (Proposition 10.2.2). In Section 10.3 we prove clustering (Proposi-
tions 10.3.1–10.3.2). In Section 10.4 we prove Theorems 4.5.1 and 4.5.3, and work
out the dichotomy of a finite seed-bank (ρ <∞) versus infinite seed-bank (ρ = ∞).

§10.1 Moment relations

We use Itô-calculus to compute the mixed moments. Recall θx, (θym) as defined in
(4.21), ϑk as defined in (4.62) and ϑ̄(k) (4.135). Also recall Ek as defined in (4.64).
Abbreviate

An0 =
1

2

n∑
k=0

Ek
ck

(Ekck + ek)

(Ekck + ek) + EkKkek
, n ∈ N, (10.1)

and

B0 =
1

2

E2
0

(E0c0 + e0) + E0K0e0
. (10.2)

In the following proposition, the first five equations are first and second moment
relations, while the last equation is the definition of the renormalisation transforma-
tion. Later we will see that this set of equations can be iterated.

Proposition 10.1.1 (Moment relations: single colonies).

Let ϑ0 be as defined in (4.62), and let Γ
(0)
(ϑ0,yl)

= Γg,c0,E0,K0,e0
(ϑ0,yl)

be the equilibrium of

(4.67) measure defined in (4.73) with k = 0, with g ∈ G, c0 ∈ (0,∞), E0 ∈ [0, 1] and
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K0, e0 ∈ (0,∞). Then the following moment relations hold:∫
[0,1]×[0,1]N0

x0 Γg,E0,c0,K0,e0
(ϑ0,yl)

(dz0) = ϑ0, (10.3)∫
[0,1]×[0,1]N0

y0,0 Γg,E0,c0,K0,e0
(ϑ0,yl)

(dz0) = ϑ0, (10.4)∫
[0,1]×[0,1]N0

x0y0,0 Γg,E0,c0,K0,e0
(ϑ0,yl)

(dz0) =

∫
[0,1]×[0,1]N0

y2
0,0 Γg,E0,c0,K0,e0

(ϑ0,yl)
(dz0), (10.5)∫

[0,1]×[0,1]N0
x2
0 Γg,E0,c0,K0,e0

(ϑ0,yl)
(dz0) = ϑ2

0 +A0
0(Fg)(ϑ0), (10.6)∫

[0,1]×[0,1]N0
y2
0,0 Γg,E0,c0,K0,e0

(ϑ0,yl)
(dz0) = ϑ2

0 + (A0
0 −B0)(Fg)(ϑ0), (10.7)∫

[0,1]×[0,1]N0
g(x0) Γ

g,E0,c0,K0,e0
(ϑ0,yl)

(dz0) = (Fg)(ϑ0). (10.8)

Proof. For ease of notation we write x, y0 instead of x0, y0,0 for the single colonies. We
use Itô’s formula to compute the first and second moments, and invoke the equilibrium
condition to get the above formulas, except for the last formula, which is the definition
of F in (4.75).

1. We begin with the first moments of x and y0. For k = 0, (4.67) becomes

dx(t) = E0

[
c0
[
ϑ0 − x(t)

]
dt+

√
g(x(t)) dw0(t) (10.9)

+K0e0 [y0(t)− x(t)] dt] ,

dy0(t) = e0 [x(t)− y0(t)] dt, (10.10)

dym(t) = 0.

In equilibrium the distribution of x(t) is constant in time, and so d
dtE[x(t)] = 0,

where E denotes expectation w.r.t. Γg,c0,E0,K0,e0
θ . Integrating (10.9) and taking the

expectation, we get

E[x(t)− x(0)] = E0

[
E
[∫ t

0

ds c0
[
ϑ0 − x(s)

]
+K0e0

∫ t

0

ds [y0(s)− x(s)]

]]
,

= E0

[∫ t

0

dsE
[
c0
[
ϑ0 − x(s)

]
+K0e0

[
y0(s)− x(s)

]]]
, (10.11)

where in the second equation we use Fubini. Turning back to differential notation,
we see from (10.11) that

d

dt
E[x(0)] = 0 = E0

{
E
[
c0
[
ϑ0 − x(t)

]
+K0e0

[
y0(t)− x(t)

]]}
, (10.12)

and it follows that
E
[
c0
[
ϑ0 − x

]
+K0e0

[
y0 − x

]]
= 0. (10.13)

In the same way it follows from (10.10) that

E
[
e0
[
x− y0

]]
= 0. (10.14)

318



§10.1. Moment relations

C
h
a
p
t
e
r
1
0

Therefore we obtain from (10.13)–(10.14) that

E[x] = E[y0] = ϑ0. (10.15)

2. We next compute the second moments. By Itô’s formula,

d(x(t))2 = 2x(t) dx(t) + (dx(t))2 (10.16)

= 2c0x(t)E0[ϑ0 − x(t)] dt+ 2x(t)E0

√
g(x(t)) dw0(t)

+ E0

[
2K0e0 x(t)y0(t)− 2K0e0 x

2
t

]
dt+ E2

0g(x(t)) dt.

Taking expectations and using that we are in equilibrium, we get

0 = 2c0ϑ
2
0 − 2c0E[x2] + 2K0e0E[xy0]− 2K0e0E[x2] + E0E[g(x)]. (10.17)

Using E[g(x)] = (Fg)(ϑ0), we find

E[x2] =
c0

(c0 +K0e0)
ϑ20 +

K0e0
(c0 +K0e0)

E[xy0] +
E0

2(c0 +K0e0)
(Fg)(ϑ0). (10.18)

In the same way we find

E[y20 ] = E[xy0], (10.19)

and for the mixed second moment

E[xy0] =
E0c0

(E0c0 + e0)
ϑ20 +

e0
(E0c0 + e0)

E[x2]. (10.20)

Substituting (10.20) into (10.18), we find E[x2] and hence also E[y20 ] and E[x0y0]. This
finishes the proof of Proposition 10.1.1. □

Similar moment relations can be derived for the equilibrium measures of the block
averages. Define

Anm =
1

2

n∑
k=m

Ek
ck

(Ekck + ek)

(Ekck + ek) + EkKkek
, m ∈ N0, n ∈ N, (10.21)

and

Bm =
1

2

E2
m

(Emcm + em) + EmKmem
, m ∈ N0. (10.22)

Recall the definition of F (n) in (4.76).

Proposition 10.1.2 (Moment relations: blocks).

Let ϑm be as defined in (4.62), and let Γ
(m)
(ϑm,ym) = ΓF(m)g,cm,Em,Km,em

(ϑm,ym) be the equi-

librium measure of (4.67) with k = m, with g ∈ G, c0 ∈ (0,∞), E0 ∈ [0, 1] and
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K0, e0 ∈ (0,∞). Then the following moment relations hold:∫
[0,1]×[0,1]N0

xm ΓF(m)g,Em,cm,Km,em
(ϑm,ym) (dzm) = ϑm, (10.23)∫

[0,1]×[0,1]N0
ym,m ΓF(m)g,Em,cm,Km,em

(ϑm,ym) (dzm) = ϑm, (10.24)∫
[0,1]×[0,1]N0

xmym,m ΓF(m)g,Em,cm,Km,em
(ϑm,ym) (dzm) (10.25)

=

∫
[0,1]×[0,1]N0

y2m,mΓF(m)g,Em,cm,Km,em
(ϑm,ym) (dzm),∫

[0,1]×[0,1]N0
x2m ΓF(m)g,Em,cm,Km,em

(ϑm,ym) (dzm) (10.26)

= ϑ2m +Amm(F (m+1)g)(ϑm), (10.27)∫
[0,1]×[0,1]N0

y2m,m ΓF(m)g,Em,cm,Km,em
(ϑm,ym) (dzm) (10.28)

= ϑ2m + (Amm −Bm)(F (m+1)g)(ϑm),∫
[0,1]×[0,1]N0

(F (m)g)(xm) dΓF(m)g,Em,cm,Km,em
(ϑm,ym) (dzm) (10.29)

= (F (m+1)g)(ϑm). (10.30)

Proof. The proof follows the same line of argument as the proof of Proposition 10.1.1.
□

§10.2 Iterate moment relations

Recall the kernels defined in (4.79), the iterates of the kernels defined in (4.134) and
ϑ̄(n). Recall that Q(n)(ϑ̄(n),dz0) is the probability density to see the population of a
single colony in state z0 given that the (n+ 1)-block averages equal ϑ̄(n).

Proposition 10.2.1 (Iterated moment relations: single components). For n ∈
N0, ∫

[0,1]×[0,1]N0
x0 Q(n)(ϑ̄(n), dz0) = ϑn, (10.31)∫

[0,1]×[0,1]N0
y0,0 Q(n)(ϑ̄(n), dz0) = ϑn, (10.32)∫

[0,1]×[0,1]N0
x2
0 Q(n)(ϑ̄(n), dz0) = ϑ2

n +An
0 (F (n+1)g)(ϑn), (10.33)∫

[0,1]×[0,1]N0
y2
0,0 Q(n)(ϑ̄(n), dz0) = ϑ2

n + (An
0 −B0)(F (n+1)g)(ϑn), (10.34)∫

[0,1]×[0,1]N0
x0y0,0 Q(n)(ϑ̄(n), dz0) =

∫
[0,1]×[0,1]N0

y2
0,0 Q(n)(ϑn, dz0), (10.35)∫

[0,1]×[0,1]N0
g(x) Q(n)(ϑ̄(n),dz0) = (F (n+1)g)(ϑn). (10.36)
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Proof. We prove the claim for x20 only. The other relations follow in a similar way.
The proof proceeds by induction. The result for n = 0 follows directly from Proposi-
tion 10.1.1. Assume the result holds true for n = n, for n = n+ 1 we write∫

[0,1]×[0,1]N0
x20 Q

(n+1)(ϑ̄(n+1),dz0) (10.37)

=

∫
[0,1]×[0,1]N0

x20 (Q
[n+1] ◦Q(n))(ϑ̄(n+1),dz0)

=

∫
[0,1]×[0,1]N0

∫
[0,1]×[0,1]N0

x20Q
[n+1](ϑ̄(n+1),dzn+1)Q

(n)(zn+1,dz0)

=

∫
[0,1]×[0,1]N0

[∫
[0,1]×[0,1]N0

x20Q
(n)(zn+1,dz0)

]
Q[n+1](ϑ̄(n+1),dzn+1)

=

∫
[0,1]×[0,1]N0

[
x2n+1 +An0 (F (n+1)g)(xn+1)

]
Γϑ̄(n+1)(dzn+1)

= ϑ2n+1 +An0 (F (n+2)g)(ϑn+1) +An+1
n+1 (F (n+2)g)(ϑn+1)

= θ2n+1 +An+1
0 (F (n+2)g)(ϑn+1).

The first and second equality use the definition in (4.134), the third equality uses
Fubini, the fourth equality is the induction step, the fifth equality uses Proposi-
tion 10.1.2, in particular, (10.26) and (10.29). □

Similar iterate moment relations hold for blocks. Define, for m,n ∈ N0 with
n ≥ m,

Q(n)
m = Q[n] ◦ · · · ◦Q[m]. (10.38)

Proposition 10.2.2 (Iterated moment relations: blocks of components). For
n,m ∈ N0 with n ≥ m,∫

[0,1]×[0,1]N0
xm Q(n)

m (ϑ̄(n), dzm) = ϑn, (10.39)∫
[0,1]×[0,1]N0

ym,m Q(n)
m (ϑ̄(n), dzm) = ϑn, (10.40)∫

[0,1]×[0,1]N0
x2
m Q(n)

m (ϑ̄(n), dzm) = ϑ2
n +An

m (F (n+1)g)(ϑn), (10.41)∫
[0,1]×[0,1]N0

y2
m,m Q(n)

m (ϑ̄(n), dzm) = ϑ2
n + (An

m −Bm)(F (n+1)g)(ϑn),(10.42)∫
[0,1]×[0,1]N0

xmym,m Q(n)
m (ϑ̄(n), dzm) =

∫
[0,1]×[0,1]N0

y2
m,m Q(n)

m (ϑ̄(n),dzm),(10.43)∫
[0,1]×[0,1]N0

(F (m)g)(xm) Q(n)
m (ϑ̄(n), dzm) = (F (n+1)g)(ϑn). (10.44)

Proof. Follow a similar induction argument as in the proof of Proposition 10.2.1. □

§10.3 Clustering

To prove Theorem 4.5.1, we proceed as in [5]. The following clustering property holds
for the kernels associated with single colonies.
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Proposition 10.3.1 (Clustering: single colonies). Assume

lim
n→∞

ϑn = θ. (10.45)

Then
lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, y(0,0)) = (0, 0)}

)
= 1− θ,

lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, y(0,0)) = (1, 1)}

)
= θ,

(10.46)

if and only if

lim
n→∞

An0 = ∞. (10.47)

Consequently,

lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, y0,0)} /∈ {(0, 0), (1, 1)}

)
= 0. (10.48)

Proof. The proof exploits the iterated moment relations. First assume (10.47)

1. By Proposition 10.2.1∫
[0,1]×[0,1]N0

x0(1− x0)Q
(n)(ϑ̄(n),dz0) = ϑn(1− ϑn)−An0 (F (n+1)g)(ϑn). (10.49)

Because x0(1− x0) ≥ 0 for x ∈ [0, 1], we have

ϑn(1− ϑn) ≥ An0 (F (n+1)g)(ϑn) ∀n ∈ N. (10.50)

Since limn→∞An0 = ∞, it follows that limn→∞(F (n+1)g)(ϑn) = 0. On the other
hand,

(F (n+1)g)(ϑn) =

∫
[0,1]×[0,1]N0

g(x0)Q
(n)(ϑ̄(n),dz0) (10.51)

and, because g(x) > 0 for x ∈ (0, 1), Q(n)(ϑn,dz0) puts all its mass on x0 = 0 and
x0 = 1 in the limit as n→ ∞. Let

Q(n)
(
ϑ̄(n), {x0 = 0 or x0 = 1}

)
=

∫
[0,1]×[0,1]N0

1{x0=0 or x0=1}(z0)Q
(n)(ϑ̄(n),dz0),

(10.52)
then

lim
n→∞

Q(n)
(
ϑ̄(n), {x0 = 0 or x1 = 1}

)
= 1. (10.53)

The first moment of x0 converges to (recall (4.63))

lim
n→∞

∫
[0,1]×[0,1]N0

x0Q
(n)(ϑ̄(n),dz0) = lim

n→∞
ϑn = θ. (10.54)

Hence
lim
n→∞

Q(n)(ϑ̄(n), {x0 = 0}) = 1− θ,

lim
n→∞

Q(n)(ϑ̄(n), {x0 = 1}) = θ,
(10.55)
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and

lim
n→∞

∫
[0,1]×[0,1]N0

x20Q
(n)(ϑ̄(n),dz0)

= lim
n→∞

∫
[0,1]×[0,1]N0

x20

(
1{1}(x0) + 1{0}(x0) + 1{(0,1)}(x0)

)
Q(n)(ϑ̄(n),dz0) = θ.

(10.56)
On the other hand,

lim
n→∞

∫
[0,1]×[0,1]N0

x20 Q
(n)(ϑ̄(n),dz0) = θ2 + lim

n→∞
An0 (F (n+1)g)(θ), (10.57)

and so, combining (10.56)–(10.57), we obtain

lim
n→∞

An0 (F (n+1)g)(θ) = θ(1− θ). (10.58)

2. We know also that

lim
n→∞

∫
[0,1]×[0,1]N0

x0y0,0Q
(n)(ϑ̄(n),dz0) (10.59)

= lim
n→∞

ϑ2n +

(
An0 − E2

0

E0c0 + e0 + E0K0e0

)
(F (n+1)g)(ϑn)

= θ2 + θ(1− θ) = θ

and

lim
n→∞

∫
[0,1]×[0,1]N0

xy0Q
(n)(ϑ̄(n),dz0) (10.60)

= lim
n→∞

∫
[0,1]×[0,1]N0

x0y0,0

(
1{1}(x0) + 1{0}(x0) + 1{(0,1)}(x0)

)
Q(n)(ϑ̄(n),dz0)

= lim
n→∞

∫
[0,1]×[0,1]N0

y0,0 1{1}(x0)Q
(n)(ϑ̄(n),dz0).

Therefore

lim
n→∞

∫
[0,1]×[0,1]N0

y0,0 1{1}(x0)Q
(n)(ϑ̄(n),dz0) = lim

n→∞
ϑn = θ, (10.61)

and hence

lim
n→∞

∫
[0,1]×[0,1]N0

(1− y(0,0))1{1}(x0)Q
(n)(ϑ̄(n),dz0) = θ − θ = 0. (10.62)

Since 1− y(0,0) ≥ 0, we conclude that if x0 = 1, then Q(n)(ϑ̄(n),dz0) puts all its mass
on y0,0 = 1 in the limit as n→ ∞. Hence

lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, y0,0) = (1, 1)}

)
= θ. (10.63)
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From Proposition 10.2.2 it also follows that

lim
n→∞

∫
[0,1]×[0,1]N0

(1− x0)(1− y0,0)Q
(n)(ϑ̄(n),dz0) (10.64)

= 1− θ − θ + θ2 + lim
n→∞

(
An0 − E2

0

E0c0 + e0 + E0K0e0

)
(F (n+1)g)(ϑn)

= 1− θ.

On the other hand,

lim
n→∞

∫
[0,1]×[0,1]N0

(1− x0)(1− y0,0)Q
(n)(ϑ̄(n),dz0)

= lim
n→∞

∫
[0,1]×[0,1]N0

(1− x0)(1− y0,0)
(
1{1}(x0) + 1{0}(x0) + 1{(0,1)}(x0)

)
×Q(n)(ϑ̄(n),dz0)

= lim
n→∞

∫
[0,1]×[0,1]N0

(1− y0,0)1{0}(x0)Q
(n)(ϑ̄(n),dz0)

= 1− θ.

(10.65)

Since y ∈ [0, 1] and

lim
n→∞

∫
[0,1]×[0,1]N0

1{0}(x0)Q
(n)(ϑ̄(n),dz0) = 1− θ, (10.66)

it follows that

lim
n→∞

∫
[0,1]×[0,1]N0

y0,01{0}(x0)Q
(n)(ϑ̄(n),dz0) = 0. (10.67)

This implies that if x0 = 0, then Q(n)(ϑ̄(n),dz0) puts all its mass on y0,0 = 0 in the
limit as n→ ∞. Hence

lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, y0,0) = (0, 0)}

)
= 1− θ,

lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, y0,0) = (1, 1)}

)
= θ.

(10.68)

Now assume (10.46). Then (10.56) still holds. On the other hand, also (10.57) still
holds by Proposition 10.2.1. Therefore we obtain (10.58). On the other hand, by
(10.46)

lim
n→∞

F (n+1)g = lim
n→∞

∫
[0,1]×[0,1]N0

g(x0)Q
(n)(ϑ̄(n),dz0) = 0. (10.69)

Hence (10.47) holds. □

A similar clustering property holds for the kernels associated with blocks.
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Proposition 10.3.2 (Clustering: blocks). Assume

lim
n→∞

ϑn = θ. (10.70)

Then
lim
n→∞

Q(n)
m

(
ϑ̄(n), {(xm, y(m,m)) = (0, 0)}

)
= 1− θ,

lim
n→∞

Q(n)
m

(
ϑ̄(n), {(xm, y(m,m)) = (1, 1)}

)
= θ,

(10.71)

if and only if
lim
n→∞

Anm = ∞. (10.72)

Consequently,

lim
n→∞

Q(n)
m

(
ϑ̄(n), {(xm, ym,m)} /∈ {(0, 0), (1, 1)}

)
= 0. (10.73)

Proof. We can proceed exactly as in the proof of Proposition 10.3.1. □

Finally, we can prove Theorem 4.5.1.

Proof. Note that (10.47) implies (10.72). Recall that single colonies of deep seed-
banks that have already interacted and reached their quasi-equilibrium equal the
block average of the level on which they interact (see Theorem 4.4.4). It follows that,
for m ∈ N0,

lim
n→∞

Q(n)
(
ϑ̄(n), (x0, y0,m) = (1, 1)

)
= θ,

lim
n→∞

Q(n)
(
ϑ̄(n), (x0, y0,m) = (0, 0)

)
= 1− θ.

(10.74)

Therefore, for N ∈ N0,

lim
n→∞

Q(n)

(
ϑ̄(n),

N⋂
m=0

{
(x0, y0,m) = (1, 1) or (x0, y0,m) = (0, 0)

})

= 1− lim
n→∞

Q(n)

(
ϑ̄(n),

N⋃
m=0

{
(x0, y0,m) ∈ [0, 1]2\{(0, 0), (1, 1)}

})

≥ 1− lim
n→∞

N∑
m=0

Q(n)
(
ϑ̄(n),

{
(x0, y0,m) ∈ [0, 1]2\{(0, 0), (1, 1)}

})
= 1− 0 = 1.

(10.75)
Note that

lim
n→∞

Q(n)

(
ϑ̄(n),

N⋂
m=0

{
(x0, y0,m) = (1, 1) or (x0, y0,m) = (0, 0)

})
= lim
n→∞

Q(n)
(
ϑ̄(n),

{
(x0, (y0,m)0≤m≤N ) = (0, 0N+1)

or (x0, (y0,m)0≤m≤N ) = (1, 1N+1)
})

= 1.

(10.76)

On the other hand,

lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, (y0,m)0≤m≤N ) = (1, 1N+1)}

)
≤ lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, y0,0) = (1, 1)}

)
= θ

(10.77)
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and

lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, (y0,m)0≤m≤N ) = (0, 0N+1)}

)
≤ lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, y0,0) = (0, 0)}

)
= 1− θ.

(10.78)

Hence we conclude that

lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, (y0,m)0≤m≤N ) = (1, 1N+1)}

)
= θ (10.79)

and
lim
n→∞

Q(n)
(
ϑ̄(n), {(x0, (y0,m)0≤m≤N ) = (0, 0N+1)}

)
= 1− θ. (10.80)

We can do the same for all finite-dimensional distributions. Since [0, 1] × [0, 1]N0 is
compact, the process z0 = (x0, (y0,m)m∈N0

) is tight. Therefore, by (10.79)–(10.80) we
find for every converging subsequence

lim
k→∞

Q(nk)
(
ϑ̄(nk), ·

)
= (1− θ) δ(0,0N0 ) + θ δ(1,1N0 ). (10.81)

We conclude that

lim
n→∞

Q(n)(ϑ̄(n),dz0) = (1− θ) δ(0,0N0 ) + θ δ(1,1N0 ), (10.82)

which is the claim in (4.137). □

§10.4 Dichotomy finite versus infinite seed-bank

In this section we prove Theorem 4.5.3.

Proof. We investigate for what choices of the sequences c,K, e defined in (4.5) and
(4.10) we meet the clustering criterion limn→∞An → ∞ in (4.138). Recall from
(4.64) and (4.136) that

An =
1

2

n−1∑
k=0

Ek
ck

(Ekck + ek)

(Ekck + ek) + EkKkek
, Ek =

1

1 +
∑k−1
m=0Km

. (10.83)

We distinguish between three regimes as k → ∞:

(a) Ekck + ek ≫ EkKkek.

(b) Ekck + ek ≍ EkKkek.

(c) Ekck + ek ≪ EkKkek.

These regimes correspond to the following scaling for An as n→ ∞:

(a) An ∼ 1
2

∑n−1
k=0

Ek

ck
.

(b) An ≍
∑n−1
k=0

Ek

ck
.

(c) An ∼ 1
2

∑n−1
k=0

Ekck+ek
ckKkek

.

Recall from that (4.14) that

ρ =
∑
m∈N0

Km. (10.84)

Different behaviour shows up for finite seed-bank (ρ < ∞) and infinite seed-bank
(ρ = ∞).
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(I) ρ < ∞. Note that k 7→ Ek is non-increasing and converges to 1/(1 + ρ) > 0.
Since Ek ≤ 1, we have limk→∞EkKk = 0 and hence we are in regime 1. Therefore

An ∼ 1

2(1 + ρ)

n−1∑
k=0

1

ck
, n→ ∞, (10.85)

and clustering occurs if and only if
∑
k∈N0

1
ck

= ∞, which is the same criterion as for
the system without seed-bank.

(II) ρ = ∞. We focus on the settings in (4.52) and (4.53), which fall in regimes 1
and 2.

Asymptotically polynomial. Suppose that

Kk ∼ Ak−α, k → ∞, A ∈ (0,∞), α ∈ (−∞, 1). (10.86)

Then

Ek ∼ 1− α

A
k−(1−α), EkKk ∼ 1− α

A
k−1, k → ∞. (10.87)

Hence we are in regime 1. Suppose that

ck ∼ Fk−ϕ, k → ∞, F ∈ (0,∞), ϕ ∈ R. (10.88)

Then

An ∼ 1− α

2AF

n−1∑
k=1

k−1+α+ϕ, n→ ∞, (10.89)

and clustering occurs if and only if −ϕ ≤ α < 1. In this case

− ϕ < α : An ∼ 1− α

2AF (α+ ϕ)
nα+ϕ,

− ϕ = α : An ∼ 1− α

2AF
log n.

(10.90)

The case α = 1 can be included. Then (10.87) becomes

Ek ∼ 1

A log k
, EkKk ∼ 1

k log k
, k → ∞, (10.91)

so that we are again in regime 1. Now (10.89) becomes

An ∼ 1
2AF

n−1∑
k=1

kϕ

log k
, n→ ∞, (10.92)

and clustering occurs if and only if −ϕ ≤ 1. In this case

− ϕ < 1: An ∼ 1

2AF (1 + ϕ)

n1+ϕ

log n
,

− ϕ = 1: An ∼ 1

2AF
log log n.

(10.93)
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Pure exponential. Suppose that

Kk = Kk, k ∈ N0, K ∈ (1,∞). (10.94)

Then

Ek =
1

1 +
∑k−1
m=0K

m
=

1

1 + Kk−1
K−1

=
K − 1

Kk +K − 2
. (10.95)

Suppose that
ek = ek, ck = ck, k ∈ N0, e, c ∈ (0,∞). (10.96)

Then

Ekck + ek =
K − 1

Kk +K − 2
ck + ek, EkKkek =

K − 1

Kk +K − 2
Kkek, (10.97)

and so

Ekck + ek ∼ (K − 1)
( c
K

)k
+ ek, EkKkek ∼ (K − 1)ek, k → ∞. (10.98)

For c ≤ Ke we are in regime 2, and hence

An ∼ 1

2

n−1∑
k=0

K − 1

(Kc)k
(K − 1)( cK )k + ek

(K − 1)( cK )k +Kek
, n→ ∞, (10.99)

which simplifies to

c < Ke : An ∼ 1

2K

n−1∑
k=0

K − 1

(Kc)k
,

c = Ke : An ∼ K − 1

2(2K − 1)

n−1∑
k=0

K − 1

(Kc)k
.

(10.100)

Clustering occurs if and only if Kc ≤ 1. In this case

Kc < 1:

n−1∑
k=0

1

(Kc)k
∼ 1

1−Kc
(Kc)−(n−1),

Kc = 1:

n−1∑
k=0

1

(Kc)k
∼ n.

(10.101)

For c > Ke, on the other hand, we are in regime 1, and hence

An ∼ 1

2

n−1∑
k=0

K − 1

(Kc)k
, n→ ∞, (10.102)

for which we can again use (10.101).
The case K = 1 can be included. Then Ek = 1/k and (10.98) becomes

Ekck + ek ∼ 1

k
ck + ek, EkKkek ∼ 1

k
ek, k → ∞, (10.103)

328



§10.4. Dichotomy finite versus infinite seed-bank

C
h
a
p
t
e
r
1
0

we are again in regime 1. Hence

An ∼ 1

2

n−1∑
k=0

1

kck
, n→ ∞, (10.104)

and clustering occurs if and only if c ≤ 1. In that case

c < 1: An ∼ 1

2(1− c)

1

n
c−(n−1),

c = 1: An ∼ 1

2
log n.

(10.105)

□

In the above computations, only regimes 1 and 2 arise. Regime 3 arises, for
instance, when

lim
k→∞

1

k
logKk = ∞, lim

k→∞
Kkek/ck = ∞. (10.106)

Indeed, the first condition implies that Ek ∼ 1/Kk−1 and EkKk ≫ 1, while the
second implies that EkKkek ≫ Ekck. There are two subcases:

Kk−1ek ≪ ck : An ∼ 1
2

n−1∑
k=0

1

KkKk−1ek
,

Kk−1ek ≫ ck : An ∼ 1
2

n−1∑
k=0

1

Kkck
.

(10.107)

By picking, for instance, ek = 1/KkKk−1, we find that An ∼ 1
2n in the first subcase

and An ≫ n in the second subcase. By picking, alternatively, ck = 1/Kk, we find
that An ≫ n in the first subcase and An ∼ 1

2n in the second subcase.
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APPENDIX B
Appendix Part II

§B.1 Computation of scaling coefficients

In Appendices B.1.1–B.1.2 we spell out a technical computation for the tail of the
wake-up time defined in (4.40)–(4.41) in the two parameter regimes given by (4.52)–
(4.53). In Appendix B.1.3 we carry out a computation that is needed in Section 5.1.

§B.1.1 Regularly varying coefficients

In (4.40), note that for large t in the sum over m only small values of em/N
m contrib-

ute, which means large m. Hence, by the Euler-MacLaurin approximation formula,
we have

P (τ > t) =
1

χ

∑
m∈N0

Km
em
Nm

e−(em/N
m)t ∼ 1

χ

∫ ∞

c

dmKm
em
Nm

e−(em/N
m)t, (B.1)

where c is a constant that identifies from which value of m onward terms contribute
significantly. Make the change of variable s = em

Nm . Since em ∼ Bm−β and Km ∼
Am−α as m→ ∞, we have

s ∼ Bm−βN−m (B.2)

and hence

log s ∼ logB − β logm−m logN,

log
1

s
= m logN

(
− B

m logN
+
β logm

m logN
+ 1

)
= [1 + o(1)]m logN,

(B.3)

which gives

m = [1 + o(1)]
log( 1s )

logN
. (B.4)

Thus,
1

s

ds

dm
= − logN − β

m
= −[1 + o(1)] logN, (B.5)

which implies
ds

dm
= −[1 + o(1)] s logN, (B.6)
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so that s(m) is asymptotically decreasing in m, and

dm

ds
= −[1 + o(1)] (s logN)

−1
. (B.7)

Note that if c ≤ m <∞, then asymptotically 0 < m−βN−m < c−βN−c = C2. Doing
the substitution, we get

P(τ > t) ∼ 1

χ

∫ C2

0

dsKms (s logN)
−1

e−st

∼ 1

χ

∫ C2

0

dsAm−α (logN)
−1

e−st

∼ 1

χ

∫ C2

0

dsA

(
log( 1s )

logN

)−α

(logN)
−1

e−st

∼ A

χ

(
1

logN

)−α+1 ∫ C2

0

ds log
(
1
s

)−α
e−st.

(B.8)

Next, put st = u, so s = u
t and ds

du = 1
t and 0 < u < tC2. Then

P(τ > t) ∼ A

χ

(
1

logN

)−α+1
1

t

∫ C2t

0

du log
(
t
u

)−α
e−u. (B.9)

We will show that

A

χ

(
1

logN

)−α+1
1

t

∫ C2t

0

du log
(

t
u

)−α
e−u ≍ A

χ

(
1

logN

)−α+1
1

t

∫ C2t

0

du log t−α e−u.

(B.10)

For α = 0 this claim is immediate. For α ∈ (−∞, 0), note that log
(
t
u

)−α
is a

decreasing function on (0, C2t). Therefore we can reason as follows:∫ C2t

0

du log
(
t
u

)−α
e−u

=

∫ 1

0

du log
(
t
u

)−α
e−u +

∫ C2t

1

du log
(
t
u

)−α
e−u

≤
∫ 1

0

du log
(
t
u

)−α
+

∫ C2t

1

du log t−αe−u

≤ 2−α
∫ 1

t

0

du log
(
1
u

)−α
+ 2−α

∫ 1

1
t

du log t−α + log t−α
[
1− e−1

]
≤ 2−αΓ(−α+ 1) + 2−α log t−α

[
1− 1

t

]
+ log t−α

[
1− e−1

]
= log t−α

[
2−α Γ(−α+1)

log t−α + 2−α
[
1− 1

t

]
+
[
1− e−1

]]
≍ log t−α.

(B.11)

For the lower bound, note that∫ C2t

0

du log
(
t
u

)−α
e−u ≥ log (t)

−α
∫ 1

0

du e−u + log( 1
C2

)−α
∫ C2t

1

du e−u

= log t−α

[
1− e−1 +

log( 1
C2

)−α

log t−α

]
≍ log t−α.

(B.12)
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For α ∈ (0, 1], note that the function log
(
t
u

)−α
is increasing in u. For the lower

bound estimate∫ C2t

0

du log
(
t
u

)−α
e−u ≥ lim

u→0
log
(
t
u

)−α
[1− e−1] + log t−α[e−1 − e−C2t]

= log t−α
[
0 + e−1 − e−C2t

]
≍ log t−α.

(B.13)

For the upper bound estimate∫ C2t

0

du log
(
t
u

)−α
e−u

≤ log t−α[1− e−1] + log

(
t√
C2t

)−α ∫ √
C2t

1

du e−u + log

(
1

C2

)−α ∫ C2t

√
C2t

du e−u

= log t−α[1− e−1] + ( 12 )
−α log

(
t

C2

)−α [
e−1 − e−

√
C2t
]

+ log

(
1

C2

)−α [
e−

√
C2t − e−C2t

]
= log t−α

[
1− e−1 + ( 12 )

−α
(
log t− logC2

log t

)−α [
e−1 − e−

√
C2t
]

+ log

(
1

C2

)−α
[
e−

√
C2t − e−C2t

]
log t−α

]
≍ log t−α.

(B.14)

§B.1.2 Pure exponential coefficients

In order to satisfy condition in (4.12), we must assume that Ke < N . Since K ≥ 1
for ρ = ∞, we also have e < N . We again use that for large t only large m contribute
to the sum. Hence, again by the Euler-MacLaurin approximation formula, we have

P (τ > t) =
1

χ

∑
m∈N0

Km
em
Nm

e−(em/N
m)t ∼

∫ ∞

M

dmKm
em
Nm

e−(em/N
m)t. (B.15)

Again we put s = em

Nm . Hence

log s = m log
( e
N

)
, m =

log s

log e
N

,
dm

ds
=

1

s log e
N

, (B.16)

and

Km ∼ Km ∼ e
log s log K

log e
N ∼ s

log K
log e

N . (B.17)

Since s(m) is decreasing in m, putting C = ( eN )M we obtain

P(τ > t) ∼
∫ C

0

dsKm
s

s log e
N

e−st ∼ 1

log e
N

∫ C

0

ds s
log K
log e

N e−st. (B.18)
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Substitute u = st, i.e., ut = s, to get

P(τ > t) ∼ 1

log e
N

t
−1− log K

log e
N

∫ Ct

0

duu
log K
log e

N e−u

∼ 1

log e
N

t
− log( e

N
)−log K

log e
N

∫ Ct

0

duu
log K
log e

N e−u ∼ 1

log e
N

t
−

log( N
Ke

)

log N
e

∫ Ct

0

duu
log K
log e

N e−u.

(B.19)
The last integral converges because logK

log( e
N ) > −1, and∫ Ct

0

duu
log K
log e

N e−u ≤
∫ ∞

0

duu
log K
log e

N e−u = Γ

(
logK

log( eN )
+ 1

)
. (B.20)

§B.1.3 Slowly varying functions

Return to Section 5.1. Note that t(s) = φ(s)−1sγ . Since this is the total time two
lineages are active up to time s, t(s) must be smaller than s. By (4.49), we have

φ(t)

φ(s)
= exp

[
−
∫ s

t(s)

du

u
ψ(u)

]
. (B.21)

Since we are interested in s → ∞, we may assume that s ≫ 1 and t(s) > 1, and
estimate

φ(t)

φ(s)
≤ exp

[∫ s

t(s)

du

u

C

log u

]
= exp

[
C(log log s− log log t(s))

]
= exp

[
C log

(
log s

log (φ(s)−1sγ)

)]
= exp

[
−C log

(
γ log s− logφ(s)

log s

)]
.

(B.22)

A similar lower bound holds with the sign reversed. Using that lims→∞
logφ(s)
log s = 0,

we get

γC ≤ lim inf
s→∞

φ(t)

φ(s)
≤ lim sup

s→∞

φ(t)

φ(s)
≤ γ−C . (B.23)

Both bounds above are positive, so indeed φ(t)
φ(s) ≍ 1.

§B.2 Meyer-Zheng topology

§B.2.1 Basic facts about the Meyer-Zheng topology

In the Meyer-Zheng topology we assign to each real-valued Borel measurable function
(w(t))t≥0 a probability law on [0,∞]× R̄ that is called the pseudopath ψw. Note that
the Borel-σ algebra on [0,∞]× R̄ is generated by sets of the form [a, b]×B for B ∈ B
and 0 < a < b. For A = [a, b]×B, set

ψw(A) =

∫
1A(t, w(t))e

−tdt =

∫ b

a

1B(w(t))e
−tdt, (B.24)
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i.e., ψw is the image measure of the mapping t → (t, w(t)) under the measure
λ(dt) = e−tdt. The set of all pseudopaths is denoted by Ψ. Note that a pseudo-
path corresponding to (w(t))t>0 is simply its occupation measure. The following
important facts are stated in [59]:

� If two paths w1 and w2 are the same Lebesgue a.e., then ψw1 = ψw2 .

� Denote by D the space of càdlàg paths on [0,∞]× R. The mapping
ψ : D → Ψ, w 7→ ψw is one-to-one on D and hence gives an embedding of D
into the compact space P̄, the space of probability measures on [0,∞]× R̄.

� Note if f is a function on [0,∞]× R and w ∈ D, then

ψw(f) =

∫ ∞

0

f(t, w(t)) e−tdt. (B.25)

Therefore we say that the sequence of pseudopaths induced by (wn) ⊂ D con-
verges to a pseudopath w if, for all continuous bounded function f(t, w(t)) on
[0,∞]× R̄,

lim
n→∞

∫ ∞

0

f(t, wn(t)) e
−tdt =

∫ ∞

0

f(t, w(t)) e−tdt. (B.26)

Since a pseudopath is a measure, convergence of pseudopaths is convergence of
measures.

� D endowed with the pseudopath topology is not a Polish space. Ψ endowed
with the pseudopath topology is a Polish space.

� According to [59][Lemma 1], the pseudopath topology on Ψ is convergence in
Lebesgue measure on D.

§B.2.2 Pseudopaths of stochastic processes on a gen-
eral metric separable space

In [53] the results of [59] on state space R are generalised to a general metric separable
space E. Let (Z(t))t>0 be a stochastic process with state space E. Then we assign a
random pseudopath to (Z(t)) as follows: for ω ∈ Ω and A = [a, b]×B, 0 ≤ a < b and
B ∈ B(E),

ψ(Z(t,ω))t≥0
(A) =

∫ b

a

1B(Z(t, ω)) e
−tdt. (B.27)

Hence ψ(Z(t))t≥0
is a random variable with state space Ψ, i.e., ψ(Z(t))t≥0

∈ M(Ψ), the
set of probability measures on pseudopaths. Note that

E
[
ψ(Z(t))t≥0

f
]
= E

[∫ ∞

0

f(t, Z(t, ω)) e−tdt

]
= E

[∫ ∞

0

f(t, Z(t)) e−tdt

]
. (B.28)
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Weak convergence in the Meyer-Zheng topology. Let (Zn(t))t≥0 and (Z(t))t≥0

be stochastic processes with state-space E. We say that

L [(Zn(t))t≥0] = L [(Z(t))t≥0] in the Meyer-Zheng topology (B.29)

if, for all f ∈ Cb(Ψ),

lim
n→∞

E[f(ψ(Zn(t))t≥0
)] = E[f(ψ(Z(t))t≥0

)]. (B.30)

Let Cm([0,∞)× E) ⊂ Cb([0,∞)× E) be the set of functions of the form

Cm([0,∞)× E) =
{
F ∈ Cb([0,∞)× E) : F (t, x(t)) =

m∏
i=1

∫ Ti

0

fi(t, x(t))dt,

m ∈ N, ∀1 ≤ i ≤ m, fi ∈ Cb([0,∞)× E), Ti > 0
}
.

(B.31)

Note that Cm is an algebra. Let ME [0,∞) be the space of measurable processes from
[0,∞) to E, so D ⊂ ME [0,∞). Note that Cm separates points in ME [0,∞). By
[53][Proposition 4.5], the set Cm is separating in the set of measures on ME [0,∞).
This means that if two stochastic processes (Z1(t))t>0 and (Z2(t))t≥0 satisfy

E[F (Z1)] = E[F (Z2)] ∀F ∈ Cm, (B.32)

then L[Z1] = L[Z2].
Define

F (ψ) =

∫
dψ

m∏
i=1

∫ Ti

0

fi(t, x(t)) dt. (B.33)

Recall that a pseudopath ψ is associated with a path w ∈ ME [0,∞). Hence this
becomes

F (ψw) =

m∏
i=1

∫ Ti

0

fi(t, w(t)) dt. (B.34)

Since each pseudopath ψ ∈ Ψ is associated with a path inME [0∞), Cm also separates
points on Ψ and hence Cm separates measures on Ψ. This implies that if

E[F (ψZ1
)] = E[F (ψZ2

)] ∀F ∈ Cm, (B.35)

then L[ψZ1 ] = L[ψZ2 ]. Therefore L[Z1] = L[Z2] if and only if L[ψZ1 ] = L[ψZ2 ].
The Meyer-Zheng topology is a weaker than the Skohorod topology.

Lemma B.2.1. Let (Zn(t))t≥0 n ∈ N and (Z(t))t≥0 be stochastic processes with
Polish state-space E. If

lim
n→∞

L [(Zn(t))t≥0] = L [(Z(t))t≥0] in the Skohorod topology, (B.36)

then

lim
n→∞

L [(Zn(t))t≥0] = L [(Z(t))t≥0] in the Meyer-Zheng topology. (B.37)
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Proof. Since we do not know whether Ψ is compact, the set Cm does not have to be
convergence determining. Therefore, via Skorohod’s theorem we construct the process
Z̃n and Z̃ on one probability space, such that L[Z̃n] = L[Zn] and L[Z̃] = L[Z], and

lim
n→∞

Z̃n = Z̃ a.s. (B.38)

This implies

lim
n→∞

ψZ̃n = ψZ̃ a.s. (B.39)

Consequently, for all f ∈ Cb(Ψ),

lim
n→∞

E[f(ψZ̃n)] = E[f(ψZ̃)]. (B.40)

Note that, since L[Z̃n] = L[Zn] and L[Z̃] = L[Z], we can use (B.32) and (B.35) to
see that the latter implies L[ψZn ] = L[ψZ̃n ] and L[ψZ ] = L[ψZ̃ ]. Hence (B.40) indeed
implies that

lim
n→∞

L[ψZn ] = L[ψZ ]. (B.41)

□

Convergence in probability in the Meyer-Zheng topology. Let (S, d) be a
metric space, B(S) denote the Borel-σ algebra on S, and P(S) the set of probability
measures on B(S). Recall (see e.g. [32, Chapter 3]) that the Prohorov metric dP on
the space P(S) is given by

dP (P,Q) = inf {ϵ > 0: P(A) ≤ Q(Aϵ) + ϵ ∀A ∈ C} , (B.42)

where C ⊂ B(S) is the set of all closed sets in S and Aϵ = {x ∈ S : infy∈A d(x, y) < ϵ}.
Recall the following theorem (see e.g.[[32, Theorem 3.1.2]])

Theorem B.2.2. Let (S, d) be separable and let P,Q ∈ P(S). Define M(P,Q) to
be the set of all µ ∈ P(S × S) with marginals P and Q, i.e., µ(A × S) = P(A) and
µ(S ×A) = Q(A) for all A ∈ B(S). Then

dP (P,Q) = inf
µ∈M(P,Q)

inf{ϵ > 0: µ({(x, y) : d(x, y) ≥ ϵ}) ≤ ϵ}. (B.43)

Moreover, [32, Theorem 3.3.1] states that convergence of measures in the Prohorov
distance, limn→∞ dP (Pn,P) = 0, is the same as weak convergence Pn ⇒ P. Hence,
since convergence of pseudopaths is weak convergence, we can endow the space of
pseudopaths Ψ with the metric dP .

Let (Ψ, dP ) be the pseudopath space metrized by the Prohorov distance. Let
(Zn(t))t>0, (Z(t))t>0 be stochastic processes on the state space E, where E is endowed
with the metric d(·, ·). Note that convergence in probability in the Meyer-Zheng
topology means that

∀ δ > 0: lim
n→∞

P [dP (ψZn , ψZ) > δ] = 0. (B.44)
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Tightness. Define the conditional variation for an R-valued process (U(t))t≥0 with
natural filtration (F(t))t≥0 as follows. For a subdivision
τ : 0 = t0 < t1 < · · · < tn = ∞, set

Vτ (U) =
∑

0≤i<n

E
[∣∣E[U(ti+1)− U(ti) | F (ti)]

∣∣] (B.45)

(with U(∞) = 0) and

V (U) = sup
τ
Vτ (U). (B.46)

If V (U) <∞, then U is called a quasi-martingale. Note that we can always stop the
process at some finite time and work with compact time intervals.

Lemma B.2.3 (Tightness in the Meyer-Zheng topology).
If (Pn)n∈N is a sequence of probability laws on D([0, T ],R) such that under Pn the
coordinate process (U(t))t≥0 is a quasi-martingale with a conditional variation Vn(U)
that is bounded uniformly in n, then there exists a subsequence (Pnk

)k∈N that con-
verges weakly in the Meyer-Zheng topology on D([0, T ],R) to a probability law P , and
(U(t))t≥0 is a quasi-martingale under P .

(See [59, Theorem 7] for the identification of the limiting semi-martingale.)

§B.2.3 Proof of key lemmas

• Proof of Lemma 6.2.19.

Proof. Fix δ > 0. Then

lim
n→∞

P [dP (ψZn
, ψZ) > δ]

= lim
n→∞

P
[

inf
µ∈M(ψZn ,ψZ)

inf{ϵ > 0: µ({(x, y) : d(x, y) ≥ ϵ}) ≤ ϵ} > δ

]
= lim
n→∞

P [∀µ ∈ M(ψZn , ψZ), inf{ϵ > 0: µ({(x, y) : d(x, y) ≥ ϵ}) ≤ ϵ} > δ]

= lim
n→∞

P [∀µ ∈ M(ψZn
, ψZ), µ({(x, y) : d(x, y) ≥ δ}) > δ] .

(B.47)

Let µn ∈ P(([0,∞]× E)2) be the measure defined by

µn(A) =

∫ ∞

0

1A ((t, Zn(t)), (t, Z(t))) e
−tdt, A ∈ B(([0,∞]× E)2), (B.48)

such that, for B ∈ B([0,∞]× E),

µn(B × S) =

∫ ∞

0

1B(t, Zn(t))1S((t, Z(t)) e
−tdt = ψZn(B), (B.49)

and similarly µn(S × B) = ψZ(B). Hence µn ∈ M(ψZn
, ψZ) for all n ∈ N, and we
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obtain from (B.47) that

lim
n→∞

P [dP (ψZn
, ψZ) > δ]

≤ lim
n→∞

P [µn({(x, y) : d(x, y) ≥ δ}) > δ]

≤ lim
n→∞

P
[∫ ∞

0

1{(x,y):d(x,y)≥δ} ((t, Zn(t)), (t, Z(t))) e
−tdt > δ

]
≤ lim
n→∞

P
[∫ ∞

0

1{d(Zn(t),Z(t))≥δ} e
−tdt > δ

]
≤ lim
n→∞

1

δ
E
[∫ ∞

0

d(Zn(t), Z(t)) e
−tdt

]
= lim
n→∞

1

δ

∫ ∞

0

E [d(Zn(t), Z(t))] e
−tdt = 0.

(B.50)

□

• Proof of Lemma 6.2.20.

Proof. We have to show that

lim
n→∞

L
[
ψ(Xn,Yn)

]
= L

[
ψ(X,c)

]
. (B.51)

Hence we must show that, for all f ∈ Cb(Ψ),

lim
n→∞

E[f(ψ(Xn,Yn))] = E[f(ψ(X,c))]. (B.52)

We can write

|E[f(ψ(Xn,Yn))− f(ψ(X,c))]|
≤ |E[f(ψ(Xn,Yn))− f(ψ(Xn,c))]|+ |E[f(ψ(Xn,c))− f(ψ(X,c))]|.

(B.53)

Since limn→∞ E[d(Yn(t), c)] = 0 implies limn→∞ E[d((Xn(t), Yn(t)), (Xn(t), c))] = 0,
it follows from Lemma 6.2.19 that, for all δ > 0,

lim
n→∞

P
[
dP
(
ψ(Xn,Yn), ψ(Xn,c)

)]
= 0. (B.54)

Hence, for all f ∈ Cb(Ψ),

lim
n→∞

|E[f(ψ(Xn,Yn))− f(ψ(Xn,c))]| = 0. (B.55)

To see that the second term in the right-hand side of (B.53) tends to zero, note that
we can define

f̃(ψx) = f(ψx,c). (B.56)

We show that f̃ is continuous.
Recall that convergence in the Meyer-Zheng topology is simply convergence in

Lebesgue measure. Hence, for two paths (t, xn(t)) and (t, x(t)) ∈ ME [0∞) we have
ψxn → ψx if and only if, for all δ > 0,

lim
n→∞

∫ ∞

0

1{d(xn(t),x(t))>δ} e
−tdt = 0. (B.57)
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Therefore ψxn
→ ψx implies that, for all δ > 0,

lim
n→∞

∫ ∞

0

1{d((xn(t),c),(x(t),c))>δ} e
−tdt = 0, (B.58)

and hence ψxn,c → ψx,c. Therefore

lim
n→∞

f̃(ψxn) = lim
n→∞

f(ψ(xn,c)) = f(ψ(x,c)) = f̃(ψx) (B.59)

and we conclude that f ∈ Cb(Ψ). Since L[Xn] = L[X] in the Meyer-Zheng topology,
we have, for all f ∈ Cb(Ψ),

lim
n→∞

|E[f(ψ(Xn,c))− f(ψ(X,c))]| = lim
n→∞

|E[f̃(ψ(Xn))− f̃(ψ(X))]| = 0. (B.60)

Therefore also the second term on the right-hand side of (B.53) tends to 0. □

• Proof of Lemma 6.2.21.

Proof. For part (a), suppose that limn→∞ ψxn
= ψx. Then, since convergence in

pseudopath space is convergence in measure, we have, for all δ > 0,

lim
n→∞

∫ ∞

0

1{d(xn(t),x(t))>δ} e
−tdt = 0. (B.61)

Since f is a continuous function, this implies that, for all ϵ > 0,

lim
n→∞

∫ ∞

0

1{d(f(xn(t)),f(x(t)))>ϵ} e
−tdt = 0. (B.62)

and we conclude that limn→∞ ψf(xn) = ψf(x). Hence h is indeed continuous.

For part (b), recall that

lim
n→∞

L[Xn] = L[X] in the Meyer-Zheng topology (B.63)

implies that, for all g ∈ Cb(Ψ),

lim
n→∞

E[g(ψXn
)] = E[g(ψX)]. (B.64)

Since h : Ψ → Ψ is continuous, we have for all g ∈ Cb(Ψ) that g ◦ h ∈ Cb(Ψ). Hence

lim
n→∞

E[g(ψf(Xn)] = lim
n→∞

E[g ◦ h(ψXn)] = E[g ◦ h(ψX)] = E[g(ψf(X))]. (B.65)

We conclude that

lim
n→∞

L[f(Xn)] = L[f(X)] in the Meyer-Zheng topology. (B.66)

□
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• Proof of Lemma 7.2.14.

Proof. Suppose that limn→∞ ψ(xn,yn) = ψ(x,y). Since convergence of pseudopaths is
convergence in Lebesgue measure, we have

lim
n→∞

∫ ∞

0

1{d[(xn,yn),(x,y)]>δ}e
−tdt = 0 (B.67)

and, consequently,

lim
n→∞

∫ ∞

0

1{d[xn,x]>δ}e
−tdt = 0. (B.68)

Therefore limn→∞ ψxn
= ψx. Suppose that f ∈ Cb(Ψ(E)), so f is bounded continuous

function on the space of pseudopaths on [0,∞] × E. Define the function f̃ on the
space of pseudopaths on [0,∞]× E2, i.e., f̃ is a function on Ψ(E2), by

f̃(ψ(x,y)) = f(ψx). (B.69)

Then f̃ ∈ Cb(Ψ(E2)) and

lim
n→∞

f̃(ψ(xn,yn)) = lim
n→∞

f(ψxn) = f(ψx) = f̃(ψ(xn,yn)). (B.70)

Hence f̃ is indeed a continuous function on Ψ(E2). Moreover, since f is bounded, it
follows that f̃ is bounded and we conclude that f̃ ∈ Cb(Ψ(E2)).

Therefore, if Xn, Yn are continuous-time stochastic processes on E and

lim
n→∞

L [(Xn(s), Yn(s))s>0] = L [(X(s), Y (s))s>0] in Meyer Zheng topology, (B.71)

then for all f ∈ Cb(Ψ(E2)) we have

lim
n→∞

E[f(ψ(Xn,Yn))] = E[f(ψ(X,Y ))]. (B.72)

Since for each f ∈ Cb(Ψ(E)) we can construct a function f̃ ∈ Cb(Ψ(E2)) as in (B.69),
we obtain for all f ∈ Cb(Ψ(E)) that

lim
n→∞

E[f(ψ(Xn))] = lim
n→∞

E[f̃(ψ(Xn,Yn))] = E[f̃(ψ(X,Y ))] = E[f̃(ψX)]. (B.73)

We conclude that

lim
n→∞

L[(Xn(s))] = L[(X(s))s>0] in Meyer-Zheng topology (B.74)

and, similarly,

lim
n→∞

L[(Yn(s))] = L[(Y (s))s>0] in Meyer-Zheng topology. (B.75)

□
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Stel je een weide voor met rode en paarse klaprozen. Je kunt je afvragen of er een
moment komt dat er alleen nog maar rode klaprozen zijn of juist alleen nog maar
paarse klaprozen, of dat er altijd zowel rode als paarse klaprozen zullen zijn. En als
er na vele generaties alleen nog één kleur klaprozen overblijft, met welke kans zijn dit
dan de rode klaprozen en met welke kans zijn dit de paarse klaprozen?

Bovenstaande vragen gaan over de genetische evolutie van een populatie klaprozen.
Als er na een aantal generaties nog maar één kleur klaprozen overblijft, zeggen we dat
de genetische diversiteit van de populatie verloren is gegaan. In dit proefschrift be-
studeren we genetische evolutie in populaties. Een wiskundig model om de genetische
evolutie in een populatie te beschrijven is het Fisher-Wright model. Het Fisher-Wright
model kan uitgebreid worden met verschillende evolutiemechanismen, zoals mutaties
van genen of de selectie van sterkere genen. Ook bestaat er een model met meerdere
koloniën, waarbij individuen in verschillende koloniën leven die elk door het Fisher-
Wright model beschreven worden en waarbij de individuen kunnen migreren tussen
de verschillende koloniën.

Een recente uitbreiding van het Fisher-Wright model is de toevoeging van een
zaadbank aan de populatie. In een populatie met een zaadbank kan een individu
voor een zekere tijd stoppen met zichzelf voort te planten. We zeggen dan dat het
individu gaat “slapen”. Alle slapende individuen samen vormen de zaadbank. Na
een aantal generaties wordt het individu wakker en begint zich weer voor te planten.
De klaproos is een soort die een zaadbank heeft. Als een zaadje van een klaproos
in de grond belandt, maar door een storm met een dikke laag zand bedekt wordt,
dan kan het gebeuren dat dit zaadje niet de volgende lente ontkiemt, maar pas vijf
lentes later. Het zaadbank fenomeen wordt ook bij bacteriën waargenomen. Wanneer
de omstandigheden voor een bacterie slecht zijn, bijvoorbeeld door te weinig voedsel
of te lage temperaturen, dan kan een bacterie zich omvormen tot een zogeheten en-
dospore. Een endospore kan overleven in moeilijke omstandigheden, maar kan zich
niet voortplanten. Als de omstandigheden verbeteren dan kan de endospore weer
terug transformeren in een bacterie en opnieuw zichzelf voortplanten.

In dit proefschrift bestuderen we het Fisher-Wright model waarbij individuen een
van twee (gen)types kunnen zijn, tussen verschillende koloniën kunnen migreren, en
in een zaadbank kunnen gaan slapen voor een bepaalde tijd. We nemen aan dat
in elke kolonie oneindig veel individuen leven. Het bijbehorende wiskundige model
heet het “multi-kolonie continuüm Fisher-Wright model met zaadbank”. Doel van
het proefschrift is om te bepalen of na zeer lange tijd de diversiteit in de populatie
behouden blijft (in het geval van de klaprozen of er altijd rode en paarse klaprozen
blijven bestaan) of dat de diversiteit verloren gaat (of na lange tijd er alleen nog maar
rode of alleen nog maar paarse klaprozen bestaan). In het bijzonder proberen we het
effect van de zaadbank op de genetische diversiteit vast te stellen.
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We bestuderen dit vraagstuk in verschillende geografische ruimtes. In het eerste
deel van het proefschrift zijn de koloniën waarin de individuen leven geplaatst in
een algemene geografische ruimte. Het belangrijkste voorbeeld van zo’n geografische
ruimte is het rooster Zd. In het tweede deel van het proefschrift zijn de koloniën
waarin de individuen leven geplaatst volgens de hiërarchische groep. Intüıtief kan de
hiërarchische groep als volgt gëınterpreteerd worden. Elke kolonie is een huis, een
aantal huizen samen vormen een straat, een aantal straten samen vormen een stad,
een aantal steden samen een provincie enzovoort. Individuen bewegen (migreren)
veel vaker tussen de huizen in de straat, dan tussen de verschillende straten in stad.
Een niveau hoger bewegen individuen veel vaker binnen hun eigen stad dan tussen de
verschillende steden binnen de provincie, en nog minder vaak tussen de verschillende
provincies. Deze structuur komt vaak voor in de ecologie. De hiërarchische groep
beschrijft deze structuur op een wiskundige manier.

Het proefschrift bestaat uit twee delen voorafgegaan door een introductie in het
vakgebied in Hoofdstuk 1. In deel I van het proefschrift bestuderen we drie varianten
van “het multi-kolonie continuüm Fisher-Wright model met zaadbank”. In elk van
deze drie varianten zijn er twee (gen)type individuen, aangeduid met type ♡ en type
♢. In het eerste model bestaat de populatie in elke kolonie uit actieve individuen
en slapende individuen. De slapende individuen samen vormen de zaadbank. De
actieve individuen kunnen zich voortplanten, migreren naar een andere kolonie, en
gaan slapen. De slapende individuen kunnen alleen wakker worden: ze planten zich
niet voort en migreren ook niet. Het tweede model is een uitbreiding van het eerste
model waarbij we de zaadbank een interne structuur geven. Door de interne structuur
kan een individu op verschillende manieren gaan slapen, langer of korter. In het derde
model heeft de zaadbank dezelfde interne structuur als in het tweede model, maar
kunnen individuen gaan slapen in verschillende koloniën. In elk van de drie modellen
kan de voortplantingssnelheid afhankelijk zijn van de diversiteit in de populatie.

In hoofdstuk 2 stellen we voor elk van de drie modellen een stelsel van stochas-
tische differentiaalvergelijkingen op. Deze stochastische differentiaalvergelijkingen
beschrijven de frequentie van gentype ♡ in de populatie. We tonen aan dat de pro-
cessen die deze differentiaalvergelijkingen beschrijven goed gedefinieerd zijn en de
Markov eigenschap hebben. Door de interne structuur van de zaadbank in het tweede
en derde model heeft de tijd die een individu in de zaadbank doorbrengt een verdeling
met een dikke staart, maar gaat de Markoveigenschap van het model niet verloren.

In hoofdstuk 2 tonen we ook aan dat, in het bijzondere geval dat de diffusie functie
in de stochastische differentiaalvergelijkingen de Fisher-Wright diffusie is, er een duaal
proces bestaat. Dit duale process stelt ons in staat voor elk model het lange termijn
gedrag van het stelsel van stochastische differentiaalvergelijkingen te analyseren.

Tenslotte bepalen we in hoofdstuk 2 voor elk van de drie modellen of op de lange
termijn de diversiteit in de populatie verloren gaat of dat deze altijd behouden blijft.
Het blijkt dat in het eerste model enkel de manier waarop individuen migreren bepaalt
of de diversiteit in de populatie verloren gaat of niet. In het tweede model blijkt
dat als individuen lang genoeg slapen, zowel de manier waarop individuen migreren
als de manier waarop individuen gaan slapen bepaalt of de genetische diversiteit
behouden blijft. De interne structuur van de zaadbank zorgt ervoor dat de zaadbank
kan voorkomen dat de diversiteit in de populatie verdwijnt. Als in het tweede model de
individuen heel erg lang slapen dan blijkt dat de genetische diversiteit altijd behouden
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zal blijven, onafhankelijk van de manier waarop de individuen migreren. Voor het
derde model vinden we dezelfde resultaten als voor het tweede model. Hoofdstuk 3
bevat de bewijzen van de stellingen in hoofdstuk 2.

In deel II van dit proefschrift bekijken we het tweede model in het specifieke geval
dat de geografische ruimte de hiërarchische groep is. Het eerste doel van deel II is
om de resultaten uit deel I toe te passen. Het tweede doel is het analyseren van
de genetische diversiteit in de zogeheten “hiërarchische gemiddelde veld limiet”. In
hoofdstuk 4 geven we een formele beschrijving van het model op de hiërarchische
groep. Daarnaast geven we de resultaten volgend uit deel I van het proefschrift en
beschrijven we de “hiërarchische gemiddelde veld limiet”. Hoofdstukken 5 tot en met
10 bevatten de bewijzen van de stellingen in hoofdstuk 4. Opnieuw blijkt dat als de
individuen lang genoeg slapen de zaadbank kan voorkomen dat de diversiteit in de
populatie verdwijnt.
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Imagine a meadow with red and purple poppies. You might wonder whether there
will be a moment when there are only red poppies left or only purple poppies left,
or whether there will always be both red and purple poppies. And if, after multiple
generations, only one colour is left, then what is the probability that there are only
red poppies left and what is the probability there are only purple poppies left?

The above questions concern the genetic evolution of a poppy population. If after
a number of generations only one colour of poppies is left, then we say that the ge-
netic diversity in the population is lost. In this thesis we study genetic evolution in
populations in a broader setting. A mathematical model that describes the genetic
evolution in a population is the Fisher-Wright model. Different evolutionary mech-
anisms can be incorporated into the Fisher-Wright model, for example, mutation of
genes or selection of stronger genes. There also exists a model where individuals
live in multiple colonies, each evolving according to the Fisher-Wright model, and
individuals are allowed to migrate between different colonies.

A recent extension of the Fisher-Wright model is the addition of a seed-bank to
the population. In a population with seed-bank, individuals can stop reproducing
themselves for awhile. We then say that these individuals become dormant. The
repository of the dormant individuals is called the seed-bank. After a number of
generations individuals resuscitate and reprise reproduction. The poppy is a species
that has a seed-bank. If a poppy seed drops on the soil, but due to a storm gets covered
with a thick layer of sand, then it may happen that the seed does not germinate next
spring, but only five springs later. The seed-bank phenomenon is also observed in
bacteria. When environmental conditions are bad, for example, the nutrition level is
low or the temperature is low, a bacteria can produce an endospore. An endospore
can survive difficult conditions, but cannot reproduce itself. When the environmental
conditions improve, the endospore can transform itself back into a bacteria and reprise
reproduction.

In this thesis we study the Fisher-Wright model with seed-bank in which indi-
viduals carry one of two gene types, the individuals can migrate between different
colonies, and can become dormant in a seed-bank for a certain amount of time. We
assume that in each colony there are infinitely many individuals. The corresponding
mathematical model is called the “multi-colony continuum Fisher-Wright model with
seed-bank”. The goal of this thesis is to determine whether on the long term the
genetic diversity will be maintained (in case of the poppies, there will always be both
red and purple poppies) or whether genetic diversity is lost (there are after a long
time only red or only purple poppies). In particular, we try to determine the effect
of the seed-bank on the genetic diversity in the population.

We study this question in different geographical spaces. In the first part of the
thesis the colonies in which individuals live are placed on a general geographical space.
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The most important example of such a space is the lattice Zd. In the second part of the
thesis the colonies are placed on the hierarchical group. Intuitively, the hierarchical
group may be interpreted in the following way. Each colony is a house, a couple of
houses together forms a street, a couple of streets together forms a city and a couple
cities together form a province, and so on. Individuals move more often between the
houses in the street, than between the different streets in the city. One level up,
the individuals move more often between the streets in their own city than between
the different cities in the province, and even less often between different provinces.
In ecology for instance, this multi-layer structure is natural. The hierarchical group
describes this structure in a mathematical way.

The thesis consists of two parts, preceded by an introduction to population genetics
in Chapter 1. In part I of the thesis we consider three versions of “the multi-colony
continuum Fisher-Wright model with seed-bank”. In each of these three versions
individuals carry one of two gene types, denoted by type ♡ and type ♢. In the first
model the population in each colony consists of active and dormant individuals. The
dormant individuals together form the seed-bank. The active individuals reproduce
themselves, migrate between different colonies, and become dormant. The dormant
individuals can only wake up: they do not reproduce themselves and also do not
migrate. The second model is an extension of the first model in which the seed-bank
has extra structure, which allows individuals become dormant in different ways, so
that they can sleep shorter or longer. In the third model the seed-bank has the
same structure as in the second model, but when an individual becomes dormant it
is allowed to do so in a different colony then where it resides. In each of the three
models the reproduction rate is dependent on the genetic diversity of the population.

In Chapter 2 we set up a system of stochastic differential equations for each of
the three models. These systems describe the frequency of the gene type ♡ in the
population. We show that the processes described by these systems are well defined
and have the Markov property. Due to the internal structure of the seed-bank in
the second and third model, the time an individual spends in the seed-bank can be
fat-tailed, while the Markov property of the system is maintained.

In Chapter 2 we also show that, in the special case where the diffusion function
in the system of stochastic differential equations is the Fisher-Wright diffusion, there
exists a dual. This dual enables us to describe the long-time behaviour of the system
of stochastic differential equations.

Finally, in Chapter 2 we determine for each of the three models whether the
genetic diversity is lost on the long term or not. It turns out that in the first model
only the way in which the individuals migrate determines whether genetic diversity is
preserved or lost. It turns out that in the second model if individuals are dormant long
enough, then both the way in which the individuals migrate as well was the amount
of time individuals are dormant determine whether genetic diversity is preserved or
lost. The internal structure of the seed-bank can prevent the loss of genetic diversity.
If in the second model individuals become dormant for a very long term, then the
genetic diversity in the population is always preserved, independently of the way in
which the individuals migrate. In the third model we find similar results as for the
second model. Chapter 3 contains the proofs of the theorems stated in Chapter 2.

In part II of the thesis we consider the second model in the specific case where
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the geographical space is the hierarchical group. The first goal of Part II is to apply
the results obtained in Part I. The second goal is to analyse the genetic diversity in
the so-called “hierarchical mean-field limit”. In Chapter 4 we formally describe the
model on the hierarchical group, state the results that follow from Part I and describe
the “hierarchical mean-field limit”. Chapters 5–10 contain the proofs of the theorems
stated in Chapter 4. Again, it turns out that if individuals can become dormant for
a long enough period, then the seed-bank can prevent the loss of genetic diversity
within the population.
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