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Abstract

Background  Cholinesterase inhibitors (CEIs) have been shown to improve cog-
nitive functioning in Alzheimer’s Disease (ad) patients, but are associated with 
multiple side effects and only 20-40% of the patients clinically improve. In this 
study, we aimed to investigate the acute pharmacodynamic (PD) effects of a single 
dose administration of galantamine on central nervous system (CNS) functioning 
in mild to moderate ad patients and its potential to predict long-term treatment 
response. 

Methods  This study consisted of a challenge and treatment phase. In the chal-
lenge phase, a single dose of 16 mg galantamine was administered to 50 mild to 
moderate ad patients in a double-blind, placebo-controlled cross-over fashion. 
Acute PD effects were monitored up to 5 hours after administration with use of the 
NeuroCart CNS test battery and safety and pharmacokinetics were assessed. In the 
treatment phase, patients were treated with open-label galantamine according to 
regular clinical care. After 6 months of galantamine treatment, patients were cate-
gorized as either responder or as non-responder based on their MMSE, NPI and Dad 
scores. An analysis of covariance was performed to study the difference in acute 
PD effects during the challenge phase between responders and non-responders. 

Results  A single dose of galantamine significantly reduced saccadic reaction 
time (-0.0099; 95%CI=-0.0195,-0.0003; p=.0430), absolute frontal eeg param-
eters in alpha (-14.9; 95%CI=-21.0,-8.3; p=.0002), beta (-12.6; 95%CI=-19.4,-5.3; 
p=.0019) and theta (-17.9; 95%CI=-25.0,-10.0; p=.0001) frequencies. Relative 
frontal (-1.669; 95%CI=-2.999,-0.339; p=.0156) and occipital (-1.856; 95%CI=-
3.339,-0.372; p=.0166) eeg power in theta frequency and relative occipital eeg 
power in the gamma frequency (1.316; 95%CI=0.158,2.475; p=.0273), also 
increased significantly compared to placebo. Acute decreases of absolute fron-
tal alpha (-20.4; 95%CI=-31.6,-7.47; p=.0046), beta (-15.7; 95% CI=-28.3,-0.93; 
p=.0390) and theta (-25.9; 95%CI=-38.4,-10.9; p=.0024) eeg parameters and of 
relative frontal theta power (-3.27%; 95%CI=-5.96,-0.58; p=.0187) on eeg signifi-
cantly distinguished responders (n=11) from non-responders (n=32) after 6 months. 

Conclusions  This study demonstrates that acute PD effects after single dose 
of galantamine are correlated with long-term treatment effects and that patients 
who demonstrate a reduction in eeg power in the alpha and theta frequency after 
a single administration of galantamine 16 mg will most likely respond to treatment. 

Introduction

Alzheimer’s Disease (ad) is the major cause of dementia worldwide.1 This 
neurodegenerative disorder is characterized by a profound loss of cholinergic 
innervation and cholinergic deficiency.2-4 As the disease progresses, cognitive 
functions deteriorate in parallel with loss of cholinergic neurons, which correlates 
with disease severity.5 Despite huge efforts, no curative therapy has been found 
yet, and current therapies mainly focus on the loss of cholinergic function. 
Cholinesterase inhibitors (CEIs) fall under the class of cholinergic treatments 
currently in use for the symptomatic treatment of dementia.6-8 CEIs attempt to 
restore the loss of acetylcholine occurring after the neurodegeneration of the 
cholinergic system by increasing the acetylcholine (ACh) levels in the synaptic 
cleft of the remaining cholinergic neurons.6-8 Galantamine is an example of a 
specific, competitive and reversible CEI, which, however, may also have a more 
direct modulating effect on the nicotinic acetylcholine receptor (AChR).6 CEIs have 
shown to improve cognitive function in ad, Lewy Body Dementia and Parkinson’s 
Disease Dementia.7,8

Unfortunately, CEIs lead to a clinical improvement in only 20-40% of the ad 
patients, depending on the definition of treatment response.9,10 Since it is difficult 
to distinguish who will clinically improve in response to treatment and who will 
not at an early stage of disease10,11 many patients are unnecessarily exposed to 
drug treatment and potentially experience adverse effects. It would be favourable 
to determine responsiveness to treatment before long-term drug exposure. In 
daily clinical practice, a favourable response to CEI treatment is defined by the 
postponement of progression of symptoms of ad. This can only be determined at 
a point in time when clinical progression is expected. Usually, patients are treated 
for at least 6 months before treatment response is assessed, using clinical scales 
for cognitive domains, functioning in daily life and behaviour. However, based 
on the mechanism of action, CEIs are expected to increase the level of ACh in the 
synaptic cleft immediately after dosing. We argue that acute pharmacodynamic 
(PD) effects of CEIs can be measured when sensitive methods are used at multiple 
time points in the hours after dosing, especially in comparison to placebo in a 
cross-over study design. 

Acute PD effects of galantamine in ad patients have been reported previously,12 
but only in pharmacological magnetic resonance imaging studies at one timepoint 
after dosing.12-14 One study showed an effect on paired associate learning after the 
administration of donepezil 5 mg,15 however this study had no placebo-controlled 
cross-over design and measurements were performed at one fixed time point after 
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dosing. None of these studies reported a longer follow-up period or associated 
correlation parameters. Other studies attempted to link long term treatment 
effects of rivastigmine to the pharmacokinetics (PK) in plasma and cerebrospinal 
fluid at steady state16 or measured electroencephalography (eeg) changes after 
one week of treatment.17 However, neither performed PD measurements in the 
first hours after single dosing. Conceptually, acute PD effects, when accurately 
measured, are expected to be correlated with treatment response, if the clinical 
effect is related to the pharmacological activity of the compound. By inference, a 
single administration of a CEI could be used in clinical practice to decide which 
patient to treat and which patient not to expose to unnecessary side effects.

Based on the pharmacological properties of CEIs and evidence from previous 
studies, we hypothesized that reactivity to an acute cholinergic challenge will 
predict the long-term response to cholinergic treatment.12,17 In the present 
study, we therefore aimed to investigate the acute PK and PD effects of a single 
dose administration of galantamine on central nervous system (CNS) functioning 
in mild to moderate ad patients in a placebo-controlled, cross-over fashion. 
Subsequently, patients were treated with galantamine for 6 months and clinical 
response to treatment was evaluated. Finally, the relationship between the 
reactivity to the acute cholinergic challenge and clinical response to long term 
cholinergic treatment was assessed. 

Methods
Study design and subjects
This was a multicentre, double-blind, placebo controlled, randomized cross-over 
study with galantamine compared to placebo, followed by a 6 months open label 
treatment phase in patients with ad. Fifty patients with mild to moderate ad were 
included in the study. Inclusion was based on a clinical diagnosis of ad, Mini Mental 
State Examination (MMSE) score ranging from 18 to 26 and a Clinical Dementia 
Rating (CDR)18 score between 0.5 and 2.0. Main exclusion criteria were the previous 
or current use of CEIs, anti-cholinergic drugs or neuroleptics, contraindications for 
the use of CEIs, use of benzodiazepines 48 hours prior to the study days or any 
history of psychiatric disorders. 

Before entering the study, all patients were screened for eligibility, including 
evaluation of diagnosis, use of medication, presence of contraindications for 
the use of galantamine, electrocardiogram (ecg) and laboratory investigations. 
Also, a training session for the pharmacodynamic measurements performed 
with the NeuroCart® CNS test battery was planned. This test battery includes 10 
different computerized tasks and eeg on a wide range of CNS domains 19-22 and is 

also sensitive to cholinergic effects.23,24 All eligible patients entered the challenge 
phase, consisting of two study days, during which the effects of galantamine or 
placebo were measured according to a predefined time schedule, with a one 
week wash-out period in between. Directly after the second challenge occasion, 
patients entered the open-label treatment phase. During this phase, patients 
were treated with galantamine according to standard care for 6 months and 
visited the clinic after two months and 6 months of treatment for the assessment 
of clinical outcome measures. This study was performed in collaboration with the 
VU University Medical Center (Amsterdam, The Netherlands), and the University 
Hospital of Bucharest (Romania). Subjects were also recruited via the memory clinic 
of the Spaarne Gasthuis Hospital (Haarlem, The Netherlands). All subjects gave 
written informed consent for participation in the study. The study was approved by 
the Medical Ethics Committee of the VU University Medical Center and the Medical 
Ethics Committee of the Clinicii de neurologie a Spitalului Universitar de Urgenta 
and it was carried out according to the ICH Good Clinical Practice.

Dosing rationale
Challenge phase  Previous studies have shown measurable changes in 
functional magnetic resonance imaging 3 hours post-administration, and no 
serious side effects as a consequence of the administration of a single dose of 
8 mg galantamine.12-14 Therefore, this study started with a challenge dose of 8 
mg. An interim analysis was planned and performed when the first 11 patients 
completed the challenge phase to assess whether this dose induced any 
measurable acute PD effects compared to placebo. There were no significant 
differences in pharmacodynamic effects between galantamine 8 mg and placebo 
and side effects at this dose were minimal. A recently performed study by Klaassens 
and colleagues also found no pharmacodynamic effects after a single dose of 
galantamine 8 mg.14 Based on this, it was decided to increase the challenge dose 
to 16 mg galantamine. Study drug was administered orally as one or two capsules, 
each containing 8 mg of galantamine hydrobromide or a placebo. During the 
challenge phase, an immediate release formulation of Reminyl® was used. 

Treatment phase  Directly after completing the challenge phase, patients 
entered the treatment phase. Patients were treated with extended release 
galantamine (Reminyl® or equivalent) capsules, according to the guidelines used 
in daily clinical practice: to prevent side effects caused by fast accumulation due 
to the long half-life of galantamine, the starting dose was 8 mg once daily for 
four weeks. The dose was then increased to 16 mg once daily for the remaining 
months.
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Pharmacokinetic assessments
Venous blood samples were obtained via an indwelling catheter at baseline and 
at 0,25, 0,5, 1, 1,5, 2, 2,5, 3,5 and 5 hours following drug administration. Plasma 
galantamine concentrations were determined at the department of Clinical 
Pharmacy and Pharmacology at the VU University Medical Centre by a validated 
method using high-performance liquid chromatography coupled to a tandem-
mass spectrometry.

Pharmacodynamic assessments
To evaluate the acute PD effects of galantamine, the NeuroCart® was used, 
including 10 different computerized tasks and eeg. The NeuroCart test battery 
has previously shown sensitivity to drug effects on a wide range of CNS domains 
19-22 and is also sensitive to (anti)cholinergic effects.23,24 The N-back tests evaluated 
working memory,25,26,27 adaptive tracking measured sustained attention and 
eye-hand coordination,28,29-32 and the Simple Reaction Time task measured the 
attention and speed of information processing.29 The visual analogue scale 
according to Bond and Lader assessed changes in subjective states,13 the facial 
encoding and recognition task episodic memory,12,21 and the visual verbal learning 
test (VVLT) covered the scope of learning behaviour (i.e., acquisition, consolidation, 
storage and retrieval.30 Pharmaco-electroencephalography, eye movements, 
and pupil size were used to determine drug effects on neurophysiological and 
autonomous system function.10,31,34 Pupil size, eye movements, adaptive tracking, 
simple reaction time, visual analogue scales and N-back tests were performed 
twice at baseline, and at 1, 2, 4, and 5 hours following galantamine or placebo 
administration. The VVLT was executed 1.5 hours after drug-administration 
(immediate recall) and 3.0 hours following drug-administration (delayed recall 
and recognition). The facial recognition task was performed at baseline and 2.5 
hours after dosage. Pharmaco-eeg measurements were performed at baseline 
and 0,5, 1, 1,5, 2, 4 and 5 hours post galantamine administration. Measurements 
were performed in a quiet room with ambient illumination with only one subject 
per session in the same room.

Clinical outcome assessments
The Alzheimer’s Disease Assessment (adAS)-cog subscale was used to evaluate the 
severity of cognitive and non-cognitive behavioral dysfunction characteristic for ad 
patients.35 This subscale comprises 11 items that have been allocated to represent 

3 key cognitive domains: language, memory, and praxis.36-38 Positive changes on 
the adAS-cog scale (0-70) imply worsening of cognition. Cognitive performance 
of subjects was assessed by the Clinical Dementia Rating Scale (CDR) in which 
statements related to the following 6 domains are scored: memory, orientation, 
judgment and problem solving, community affairs, home and hobbies, and 
personal care.18 The global CDR score is derived from a synthesis of the individual 
ratings in each domain in accordance with established clinical scoring rules and 
represents a 5-point ordinal scale, where CDR 0 indicates no dementia, and CDR 
0.5, 1, 2, and 3 indicate questionable, mild, moderate, and severe dementia. The 
Disability Assessment in Dementia (Dad) scale was used to evaluate basic and 
instrumental activities of daily living (adL).39 Items from this 46-item questionnaire 
can be divided into basic adL and instrumental adL. Higher scores represent fewer 
disabilities and lower scores indicate increased disabilities.40 The Mini Mental 
State Examination (MMSE) is a brief 30-point questionnaire test which was used 
to screen for cognitive impairment.41,42 With the Neuropsychiatric Inventory (NPI) 
diverse behavioural and psychological symptoms of dementia were measured.43 
The adAS-cog, CDR, Dad, MMSE and NPI were carried out after two and 6 months of 
treatment.

Safety assessments
Before participation in the study, all subjects underwent medical screening, 
including medical history, physical examination, vital signs measurements, 
12-lead ecg, urinalysis, urinary drug screen, haematology and biochemistry blood 
sampling. During study days, vital signs measurements, 12-lead ecg, urinalysis, 
urinary drug screen, haematology and biochemistry blood sampling were 
performed at baseline. ecg and vital signs were additionally performed at 0.5, 
1.5 and 5.0 hours post- drug administration in order to monitor possible adverse 
effects of the drug and assess safety.

Sample size calculation  The study aimed to enrol 50 patients with mild 
to moderate ad. This number was based on a sample size calculation that 
hypothesized an effect size comparable to the reduction in theta power on eeg 
examination (-27.3%) after onset of treatment with rivastigmine in patients who 
clinically improved in another.17 Of the 20 patients with mild to moderate ad who 
participated in that study, 8 patients (40%) clinically improved in response to 
treatment, defined as an improvement of short-term memory after 6 months. A 
logistic regression analysis revealed that 50% of the observed variance in clinical 
improvement as a result of treatment could be explained by the decrease in 
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theta power, one week after onset of treatment.17 With an estimated correlation 
coefficient of r²=0.50, a sample size calculation determined that with an alpha of 
0.05 and a power (1-beta) of 0.8, at least 30 patients were needed to observe a 
significant correlation between the acute response to the galantamine challenge 
and clinical improvement after 26 weeks. With an estimated drop-out rate of 35%,11 
the total number of patients needed was calculated to be 46, which is why 50 
patients were targeted. 

Interim analysis  After the challenge phase, data of the first 11 subjects were 
collected and a pre-defined interim analysis was performed. For the interim 
analysis, the PD variables were analysed by mixed model of analysis with treatment, 
time, and treatment by time as fixed factors, subject, subject by treatment, 
and subject by time as random factors and the average pre-value as covariate. 
The results were presented as a result table of the analysis with the p-value of 
the contrast between placebo and galantamine, the least square means of the 
treatments, the estimate of the difference and the 95% confidence interval around 
the difference. No individual data were reported to avoid unblinding. 

Pharmacodynamic analysis  Acute effects on different PD variables were anal-
ysed as described for the interim analysis. Log transformation was used to correct 
for log-normal distribution of the data. Calculation of time and treatment by time 
effects were for graphical presentation purposes only; only contrasts within the 
overall treatment effect were estimated and reported, along with 95% confidence 
intervals. Log-transformed parameters were back-transformed after analysis 
where the results may be interpreted as percentage change. Due to the explor-
atory nature of this study, no formal adjustment for multiple testing was used. 

Correlation analysis  To investigate whether the acute PD effects were cor-
related with the MMSE, NPI and Dad scores at 6 months independently, change 
from baseline AUC for galantamine and placebo were calculated and Pearson (or 
Spearman) correlation coefficients were calculated. According to Chan et al., cor-
relation was defined as poor (0.1 – 0.2), fair (0.3 – 0.5), moderate (0.6 - 0.7), very 
strong (0.8 – 0.9) or perfect (1).44 

The group of patients was subsequently divided in responders and non-re-
sponders. If MMSE and NPI and Dad at month 6 were ≥ MMSE and NPI and Dad at 
baseline, a patient was a responder. If not all three measurements improved or 
at least stayed the same, the patient was a non-responder. The challenge effects 
of the PD variables were analysed comparing the responders with the non-re-
sponders. The challenge variables were analysed with a mixed model analysis of 

variance with fixed factor group (responder/non-responder), treatment, period, 
time, treatment by time, treatment by group and treatment by group by time as 
fixed factor, subject, subject by time and subject by treatment as random factor 
and the average pre-value as covariate. The contrast of interest was responders 
(galantamine-placebo) versus non-responders (galantamine-placebo). The dif-
ference of the change from baseline galantamine AUC and the placebo AUC was 
graphically analysed for the responders and the non-responders. The percentage 
of responders and non-responders outside the range of the non-responders and 
responders respectively, was calculated. 

Pharmacokinetic analysis  The following PK parameters were estimated 
using compartmental analysis: maximum plasma concentrations (Cmax), time of 
maximum plasma concentrations (Tmax), area under the concentration versus 
time curve from time zero to the time of the last quantifiable concentration and to 
infinity (AUC∞), terminal elimination rate constant (λz), terminal elimination half-life 
(T½), and clearance (CL/F). 

Results

In total, 50 patients with mild to moderate ad were included in our study. Of these 
patients, 39 were enrolled via the Centre for Human Drug Research and the VU 
medical center in the Netherlands (of whom 5 were recruited via the Spaarne 
Gasthuis in Haarlem) and 11 patients were enrolled at the Tangent data research 
unit at University hospital of Bucharest in Romania. Patients had a mean age of 
66.8 years (range 49 - 90) and a mean weight of 75.8 kg (range 50 - 122). The first 
11 patients (all tested in the Netherlands) received 8 mg of galantamine. Following 
the predefined interim analysis, it was decided to escalate the dose to 16 mg of 
galantamine for the remaining 39 patients. Two patients prematurely dropped out 
of the study during the challenge phase due to practical issues (lack of time or 
hospitalization for unrelated reasons). Therefore, 48 patients could be analyzed 
in the challenge phase of the study. During the treatment phase, three additional 
patients cancelled study appointments (one patient experienced side effects, two 
patients lacked time or were hospitalized for other reasons). Two patients had 
incomplete follow-up data. A total of 43 patients could therefore be analyzed in 
the treatment phase.
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Challenge phase
Interim analysis  An interim analysis after the first 11 subjects revealed no clear 
differences between 8 mg galantamine treatment and placebo on most of the PD 
measurements. Differences were observed between galantamine and placebo 
treatment for the second immediate recall of the VVLT (-1.8; 95% CI=-2.7,-0.9; p= 
0.0084). However, since no differences were found for all other parameters (see 
supplementary material online), the measured PD effects of 8 mg galantamine were 
considered insufficient and it was decided to increase the dose of galantamine to 
16 mg for the remaining 39 subjects. No interim analysis could be performed for 
the pupil size, N-back average reaction time 2 back and recognition of the VVLT, 
since too few subjects were able to perform these tests, due to the complexity 
of the computer interface. The computer interface was subsequently simplified 
based on this observation. 

Pharmacodynamics  Acute PD effects of a single dose of galantamine in 
comparison to placebo in mild to moderate ad patients are displayed in table 
1. A single dose of galantamine significantly reduced saccadic reaction time 
(-0.0099; 95%CI=-0.0195,-0.0003; p=.0430) when compared to placebo 
condition. Peak effects on saccadic eye movements were observed around the 
Tmax of galantamine. An improvement in performance on the adaptive tracker 
was observed after administration of galantamine, but the difference was not 
significant. Notably, galantamine appeared to increase performance on adaptive 
tracking at 1, 4 and 5 hours post drug administration, but not around 2 hours 
following administration (Table 1).

In addition, galantamine administration acutely reduced absolute alpha (-14.9; 
95%CI=-21.0,-8.3; p=.0002), beta (-12.6; 95%CI=-19.4,-5.3; p=.0019) and theta 
power (-17.9; 95%CI=-25.0,-10.0; p=.0001) and relative frontal (-1.669; 95%CI=-
2.999,-0.339; p=.0156) and occipital (-1.856; 95%CI=-3.339,-0.372; p=.0166) 
eeg power in theta frequency and increased relative occipital eeg power in 
the gamma frequency (1.316; 95%CI=0.158,2.475; p=.0273) on the pharmaco-
electroencephalography in comparison to placebo. For all eeg spectra, except 
for the delta range, a significant decrease in power was observed compared 
to placebo, with strongest reductions around the Tmax of galantamine. For the 
delta range a reduction of absolute power was observed following galantamine 
administration, but the difference was not significant. Reductions in delta power 
were strongest around 2 hours post-drug administration and continued to be 
equally reduced over time. vas scores on nausea significantly increased after 
galantamine compared to placebo (0.2908 log mm; 95%CI=0.0968,0.4848; 
p=.0043). All other PD parameters were not significantly affected by galantamine. 

Pharmacokinetics  Mean Tmax was 2.42 h (range 1.00 – 4.58) for 8 mg and 1.38 
h (range 0.45 – 4.60) for 16 mg of galantamine with a Cmax of respectively 43.17 ng 
mL-¹ (range 23.90 – 57.30) and 79.00 (range 43.30 – 139.00). Graphs and other PK 
parameters can be found in the supplemental material.

Treatment Phase
After 6 months, 11 (26%) patients were defined as responder to galantamine 
treatment and 32 (74%) patients were defined as non-responder, based on the a 
priori definition of response of no decline on MMSE, Dad and NPI. Table 2 describes 
the differences between responders and non-responders in their reactivity to 
the acute cholinergic challenge compared to placebo. Differences between 
responders and non-responders in their reactivity to the cholinergic challenge 
compared to placebo were statistically significant for absolute frontal alpha (-20.4; 
95%CI=-31.6,-7.47; p=.0046), beta (-15.7; 95% CI=-28.3,-0.93; p=.0390) and theta 
power (-25.9; 95%CI=-38.4,-10.9; p=.0024) and for relative frontal theta power 
(-3.27%; 95%CI=-5.96,-0.58; p=.0187) on eeg. It is interesting to note that on visu-
al inspection, long-term responders showed an acute increase after placebo on 
absolute frontal eeg parameters and on relative frontal theta power compared 
to baseline on the placebo occasion and a decrease compared to baseline on 
the galantamine occasion, whereas non-responders hardly showed any change 
from baseline on either the placebo nor galantamine occasion (figure 1). On the 
scatter plots, both absolute frontal alpha and frontal theta power distinguished 
responders from non-responders well, with minimal overlap between respond-
ers and non-responders (figure 2). For frontal alpha power, no responders were 
in the overlapping range. For frontal theta power, 2 responders (22,2%) and 3 
non-responders (12,5%) were in the overlapping range. For relative frontal theta 
power on the eeg, 4 responders (80%) and 9 non-responders (64,3 %) were in the 
overlapping range. Acute improvements in saccadic eye movements that were 
observed after single dose galantamine, did not clearly predict long-term clinical 
improvement: saccadic peak velocity increased on average in responders but not 
in non-responders, but this failed to reach statistical significance (Table 2).

Correlations between the acute PD effects and MMSE, NPI and Dad scores at 
6 months independently, are shown in the supplementary material (online 
available). Supplemental Table 2 shows that the majority of the coefficients of 
correlation reached a value under (-)0.50, which can be considered as fair.44 
Coefficients reaching levels over (-)0.50 showed a moderate correlation between 
acute effects on smooth pursuit (r=0.58), alertness (r=0.54), N-back (r=0.63) and 
relative frontal alpha power on eeg (r=-0.59) and treatment response according 
to the Dad only.
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Safety  Of all patients in the challenge phase, 39 reported at least one treatment 
emergent adverse event. Nausea was the most frequent reported adverse event, 
with 6 (54.5%) patients receiving 8 mg and 25 (64.1%) patients receiving 16 mg of 
galantamine and 2 (4%) patients receiving placebo. Diarrhoea was reported in 5 
(12.8%) patients on galantamine 16 mg and 1 (2.6%) patient on placebo. Vomiting 
was reported in 2 (18.2%) patients on galantamine 8 mg and 14 (35.9%) patients on 
galantamine 16 mg. Dizziness was reported in 2 (18.2%) patients on galantamine 
8 mg, 15 (38.5%) patients on galantamine 16 mg and 2 (4%) patients on placebo. 
Malaise and somnolence were reported in 4 (10.3%) patients on galantamine 16 
mg and somnolence was reported in 1 (2.6%) patient on placebo. None of the 

  LS Means   Contrast  
Parameter Resp. 

(Gal-Plac)
Non-Resp. 
(Gal-Plac)

Resp. (Gal-Plac) vs Non-Resp. 
(Gal-Plac)

 

      Treatment effect (95% CI) P-value
Smooth Pursuit (%) 0.80 -0.40  1.21 (-1.63,  4.05)  0.3882

Saccadic Inaccuracy (%) -0.90 -0.50 -0.43 (-1.80,  0.94) 0.5218

Saccadic Peak Velocity (deg/s) 18.20 -3.80 22.09 (-1.38, 45.57) 0.0636

Saccadic Reaction Time (sec) -0.008 -0.012 0.0043 (-0.01,  0.02)  0.6498

Simple reaction time task (sec) 1.04% 0.96%  7.80% (-6.40%, 24.10%)  0.2841

Adaptive tracking (%) 0.71 0.85 -0.14 (-2.19,  1.92)  0.8948

VAS Alertness (mm) -6.50 -3.20 -3.35 (-13.31,  6.61)  0.4968

VAS Calmness (mm) -2.80 -4.20  1.43 (-10.9, 13.85)  0.8135

VAS Mood (mm) -2.90 -0.90 -2.03 (-10.87,  6.82)  0.6398

VAS Nausea log(mm) 0.20 0.379 -0,17 (-0.56,  0.21)  0.3595

N-back mean RT 0 back (msec) 9 15 -6.10 (-73.40, 61.10)  0.8518

N-back mean RT 1 back (msec) -21 -27  5.40 ( -106.80, 117.60)  0.9187

N-back mean RT 2 back (msec) 0 -34 33.60 ( -142.30, 209.50)  0.6948

N-back corr-incorr/total 0 -0.05 0.14 -0.19 (-0.42,  0.04)  0.1028

N-back corr-incorr/total 1 -0.11 0.21 -0.32 (-1.12,  0.48)  0.4126

N-back corr-incorr/total 2 0.00 -0.13  0.14 (-0.90,  1.17)  0.7873

EEG Alpha Fz-Cz (uV) 0.77% 0.95% -18.4% (-29.6%, -5.5%) 0.0086

EEG Alpha Pz-Oz (uV) 0.93% 1.05% -11.2% (-27.5%, 8.9%) 0.2440

EEG Beta Fz-Cz (uV) 0.82% 0.95% -14.0% (-26.6%, 0.9%) 0.0629

EEG Beta Pz-Oz (uV) 0.99% 1.07% -7.7% (-22.6%, 10.1%) 0.3605

EEG Delta Fz-Cz (uV) 0.86% 0.98% -11.6% (-32.8%, 16.2%) 0.3644

EEG Delta Pz-Oz (uV) 0.91% 0.96% -5.3% (-32.8%, 16.2%) 0.6889

EEG Gamma Fz-Cz (uV) 0.93% 0.97% -3.7% (-20.7%, 16.9%) 0.6924

EEG Gamma Pz-Oz (uV) 1.13% 1.15% -2.0% (-20.7%, 16.9%) 0.8970

EEG Theta Fz-Cz (uV) 0.71% 0.95% -25.3% (-37.8%, -10.4%) 0.0027

EEG Theta Pz-Oz (uV) 0.81% 1.02% -20.7% (-39.5%, 4.0%) 0.0903

EEG Relative Alpha Fz-Cz (%) -0.82 -0.28 -0.538 (-2.441, 1.364) 0.5679

EEG Relative Alpha Pz-Oz (%) 0.73 0.14 0.590 (-3.184, 4.365) 0.7481

EEG Relative Beta Fz-Cz (%) 0.04 -0.25 0.282 (-1.147, 1.711) 0.6898

EEG Relative Beta Pz-Oz (%) 1.19 0.43 0.767 (-1.178, 2.711) 0.4258

EEG Relative Delta Fz-Cz (%) 2.06 0.42 1.644 (-1.556, 4.845) 0.3029

EEG Relative Delta Pz-Oz (%) -0.50 -1.27 0.771 (-1.874, 3.415) 0.5548

EEG Relative Gamma Fz-Cz (%) 1.54 0.20 1.341 (-0.456, 3.137) 0.1375

EEG Relative Gamma Pz-Oz (%) 1.60 1.04 0.561 (-1765, 2.886) 0.6256

EEG Relative Theta Fz-Cz (%) -3.30 -0.03 -3.271 (-5.958, -0.584) 0.0187

EEG Relative Theta Pz-Oz (%) -3.18 -0.53 -2.651 (-5.631, 0.328) 0.0785

Left Pupil/Iris ratio 0.0037 0.0065 -0.00282 (-0.04087, 0.03524) 0.8811

Right Pupil/Iris ratio 0.0083 0.0060 0.00232 (-0.03353, 0.03817) 0.8966

Face: number correct -1.1 0.8 -1.86 (-4.90, 1.19) 0.2226

Face: avg rt correct (msec) -72 -75 2.3 (-513.3, 518.0) 0.9924

Word recall 1 correct 0.1 0.2 -0.06 (-0.97, 0.85) 0.8962

Word recall 2 correct -0.7 0.7 -1.34 (-2.68, 0.01) 0.0517

Word recall 3 correct 0.3 0.3 -0.08 (-1.59, 1.43) 0.9129

Delayed word recall correct -0.3 -0.1 -0.21 (-1.05, 0.62) 0.6072

Delayed word recognition correct -0.7 -1.1 0.41 (-3.23, 4.05) 0.8207

Delayed word recog RT correct (msec) -1885.8 -462.4 -1423.38 (-4257.69, 1410.93) 0.3135

IGF_BP3 serum (mg/L) 1.04% 1.03% 1.0% (-7.6%, 10.4%) 0.8265

IGF_I serum (nmol/L) 1.01% 1.03% -1.8% (-8.0%, 4.8%) 0.5649

  LS Means   Contrast  
Parameter Resp. 

(Gal-Plac)
Non-Resp. 
(Gal-Plac)

Resp. (Gal-Plac) vs Non-Resp. 
(Gal-Plac)

 

      Treatment effect (95% CI) P-value

Table 2	 Differences between responders and non-responders in their reactivity to the cholinergic 
challenge compared to placebo. PD variables were analysed by mixed model of analysis with treatment, time, 
and treatment by time as fixed factors, subject, subject by treatment, and subject by time as random factors 
and the average pre-value as covariate. Subjects were responders if MMSE, NPI and DAD at 6 months ≥ MMSE, 
NPI and DAD at baseline.

continuation Table 2
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other reported AEs occurred in more than 10% of patients. All adverse events were 
considered mild or moderate and spontaneously disappeared after a few hours. 

During the treatment phase, one patient experienced moderate nausea during 
the first week of treatment and decided to discontinue the study and stop using 
galantamine. Two patients experienced mild nausea in the first two months 
of treatment. This subsided spontaneously and patients continued the use of 
galantamine. One patient reported moderate hyperhidrosis at the 6 month visit. 
In hindsight, this has been present the whole period. This patient decided to stop 
using galantamine.

Discussion

In this study, we investigated the acute pharmacodynamic effects of a single dose 
administration of the galantamine on CNS functioning in mild to moderate ad 
patients and its role as a potential predictor of long-term treatment response. The 
results show improvements of saccadic eye movements and reductions of frontal 
eeg parameters in alpha, beta and theta frequencies after the challenge phase. 
Acute decreases of absolute frontal alpha, beta and theta power on eeg and an 
acute decrease in relative theta power significantly correlated with long-term 
response to galantamine treatment. In addition, a highly significant effect on the 
nausea vas score was found, which may have particularly had an impact on tests 
that required sustained attention or active participation.

Reductions in saccadic inaccuracy and reaction time during the challenge 
phase might reflect an improvement in visual attentional function.45 The 
cholinergic neuronal system plays a well-known role in the maintenance of 
attention through projections of neurons in the basal forebrain complex to 
broad areas of the neocortex. Moreover, slowing of saccadic eye movements 
is considered as a biomarker of declining alertness, particularly caused by 
benzodiazepines,46-50 and eye movements are also sensitive to anticholinergic 
drugs. In this context it is interesting to note that patients demonstrated a clear and 
anticipated improvement in attentional function, without a statistically significant 
improvement in mean adaptive tracker performance. The adaptive tracker is 
known for its sensitivity to disturbances and enhancement of central cholinergic 
neuronal functioning and can be regarded as a test of sustained attention.21,23,47 
It might be that a reduced eye-hand coordination in this population of elderly 
patients has played a role in this discrepancy. The occurrence of adverse events 
(e.g. nausea) during the challenge phase of the study, as well as the highly 
significant effect on the nausea vas score may also have played a role in obscuring 

Figure 1	 Changes in relative frontal EEG alpha and theta parameters of responders and non-
responders. Figure 1 shows the changes in relative frontal EEG alpha (A) and theta (B) parameters 
of responders and non-responders compared to baseline on either the placebo or galantamine 
occasion. Long-term responders showed an acute increase after placebo on absolute frontal EEG 
parameters and on relative frontal theta power compared to baseline on the placebo occasion 
and a decrease compared to baseline on the galantamine occasion, whereas non-responders 
hardly showed any change from baseline on either the placebo nor galantamine occasion.

Figure 2	 Delta AUC in relative frontal EEG alpha and theta parameters of responders and non-
responders. Figure 2 shows a plot of delta AUC in relative frontal EEG alpha (A) and theta (B) power 
parameters of responders and non-responders. On the scatter plots, both absolute frontal alpha 
and frontal theta power distinguished responders from non-responders, with minimal overlap 
between responders and non-responders. For frontal alpha power, no responders were in the 
overlapping range. For frontal theta power, 2 responders (22,2%) and 3 non-responders (12,5%) 
were in the overlapping range. 
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some of the beneficial effects of galantamine on CNS test performance, as some 
patients were not able to perform all tests, and particularly the adaptive tracking 
test which requires sustained attention.

In addition to the acute improvement in attentional function, the results show 
decreases of frontal alpha, beta and theta eeg parameters after dosing in the 
challenge phase. Slow wave activity, such as theta and delta waves, are associated 
with a lower cognitive function in ad patients.51,52 Previous studies have already 
reported reductions in theta power following chronic CEI treatment.17,53 In this 
study we demonstrate that galantamine administration also acutely reduces theta 
power in ad patients. Previous, an increase in frontal theta power was observed 
in a condition of mental exhaustion.54 This might explain the observed increase 
in theta power during the day on the placebo occasion among patients classified 
as responders. This might also explain the increase of theta power in responders 
after the administration of placebo in the challenge phase. Interestingly, our 
results indicate that a single dose of galantamine is already able to reduce theta 
power. It is surprising that galantamine administration also reduced alpha and 
beta power in our study, while faster wave lengths are associated with improved 
cognition.51,52,55,56 However, the absolute values for alpha and beta power 
reduction were relatively small and there was no reduction in relative alpha or 
beta power. Also, studies involving the anti-cholinergic and cognitive impairing 
drug scopolamine have reported conflicting results regarding the effects on alpha 
and beta power.21,57 

Overall, there is a serious need for predictive markers of treatment response 
following CEI treatment in ad patients. So far it has been impossible to predict who 
will respond to CEI treatment and only 20-40% of the patients clinically improve. 
Most of the attempts to predict clinical response to long term treatment included 
pre-dose characteristics, for example sex,58-61 age,62,63 severity of cognitive impair-
ment and impaired performance on baseline neuropsychological test scores at 
baseline,11,64-67 pre-treatment progression rate,68-71 cerebrospinal fluid levels of 
Aβ42, T-tau and P-tau at baseline,68,72 carotid intima media thickness,73 regional 
cerebral blood flow of the lateral and medial frontal lobes,74 substantia innominata 
atrophy,75,76 performance on baseline alertness tests,9 baseline behavioural77 and 
SPECT profile,78 pre-treatment blood pressure drop,62,79 and APOE genotype.58-61,80-83 
Some of these factors showed a positive correlation with treatment response. Our 
findings suggest that patients demonstrating a reduction in eeg alpha and theta 
power and saccadic eye movements after a single administration of galantam-
ine 16 mg are more likely to respond to treatment. Nevertheless, it remains to be 
investigated how the addition of a galantamine challenge adds value on top of the 
above-mentioned correlations found in previous studies in predicting treatment 
response.

Lanctot and colleagues reviewed studies focusing on methods to predict the 
response to anticholinesterase therapy and markers for treatment response.84 
They were able to demonstrate the predictive value of qeeg profile after a 
test dose of the CEI tacrine, based on four clinical trials. Alhainen et al85 firstly 
demonstrated that an increased alpha-theta ratio 90 minutes after a 50 mg test 
dose of tacrine led to higher MMSE scores four weeks post-treatment in 14 patients 
with probable ad. Alhainen and Riekkinen confirmed these findings on a longer 
term and showed that responders after seven weeks demonstrated a significant 
increase in mean absolute alpha power and alpha/theta ratio 90 minutes after 
a 50 mg test dose of tacrine.86 Knott et al observed an increase of relative alpha 
and delta power waves in responders at 12 weeks, only 2 hours after an oral dose 
of 30 mg tacrine.87 Almkvist et al suggested the validity of baseline eeg profiles 
as predictors of response to CEI therapy in 24 mildly to very mildly demented ad 
patients.88 Except for the trial of Almkvist, these trials had an open-label design 
and all of them included only small numbers of patients, thus replication of these 
findings under double-blind conditions with larger patient samples was in our 
view necessary before conclusions can be drawn. Adler et al. further showed that 
treatment with rivastigmine 3 mg/day for one week led to a significant decrease 
in theta power on eeg which significantly correlated with responder status. When 
theta power and a baseline score for short term memory were both included as 
independent variables in a logistic regression model, treatment response could 
be accurately predicted.17 Interestingly, the decrease in absolute alpha and 
theta power on eeg also predicted treatment response in our study. If we would 
have selected patients to be treated with galantamine based on either absolute 
frontal alpha power or absolute frontal theta power, and would also treat patients 
in the overlapping range, all patients defined as treatment responder would 
receive treatment. If this selection would be based on absolute alpha power, no 
non-responders would be treated. A selection based on absolute frontal theta 
power would result in the treatment of 3 non-responders. When selecting based 
on relative frontal theta power, 9 non-responders would be treated. Several 
combinations of these parameters have been investigated, but do not lead to a 
better prediction of treatment response. Moreover, all these explorations were 
post hoc and they would obviously require prospective validation.

While the studies of Adler, the Lanctot trials and our study show some 
inconsistencies, i.e. none of the other studies investigated the effects of 
galantamine and all of them used different definitions for ‘acute response’ 
(ranging from 90 minutes to one week), the predictive role of theta power on 
eeg seems consistent and is also confirmed in the current study. The Lanctot trials 
interestingly report on the increased alpha/theta ratio as a discriminator between 



116 	 innovation in cholinergic enhancement for alzheimer’s disease chapter 6 – acute response to cholinergic challenge as prediction for long-term response	 117

responders and non-responders, and not on absolute power eeg bands. Previous 
studies have shown that high/low band frequency ratios, e.g. alpha/theta ratios, 
can easily differentiate between ad patients and controls.89-91 In our study, alpha/
theta ratio was not a pre-defined outcome measure. 

The sizeable group, the placebo controlled cross-over design and frequently 
repeated measures after dosing in the challenge phase and the combination 
with a follow-up study are strong aspects of the current study. Although the 
predefined response criteria of improvement on all three clinical scales may 
seem strict, this definition is based on not only improvement in cognition, but 
also activities of daily living and behavioural aspects, and it is closer therefore 
to a true clinical improvement than a responder criterion based on only one of 
these tests. If a patient declines in one dimension, e.g. adL functioning, but not 
in another, e.g. cognitive functioning, both patient and doctor are likely to still 
regard this as an unsatisfactory non-response to treatment. Also, the correlations 
between the individual challenge tests and clinical follow-up measures did not 
show any consistent correlations and the number of responders (11 (25%)), which 
was consistent with expectations based on previous studies.10,17,83 The difference 
between responders and non-responders could not be attributed to differences 
in levels of drug exposure, since there was no difference in average plasma 
concentrations of galantamine after two months of treatment between responders 
and non-responders. 

It should be noted that sample size calculations were based on the observed 
variance in clinical improvement correlated with the decrease in theta power in 
a comparable study,17 while we mainly draw conclusions about dichotomized 
treatment response (responder and non-responder) at 6 months in relation 
with acute challenge effects of PD variables. As data from that study was most 
comparable to data in the current study at that time, we believe this as the most 
appropriate method. Also, a responder score based on MMSE, NPI and Dad 
instead of independent scores, seemed more representative for real-world 
clinical improvement in ad patients. Other weaknesses of this study include the 
occurrence of side effects due to a pharmacological challenge, which were such 
that in the challenge phase some patients were not able to perform all tests due 
to nausea or had to decline the last round of tests due to fatigue. Also, especially 
the 2-back condition of the N-back turned out to be too difficult for ad patients.

This study is the first placebo controlled study with cross-over design that links 
typical PD effects in an early phase clinical drug trial to the clinically relevant outcome 
measures used for phase III registration studies in the field of ad. Furthermore, 
this study generates a well-defined time-profile of the effects of galantamine in 
the target population of patients with mild to moderate ad, with an observed 

Tmax of galantamine around 2 hours after administration, which is consistent with 
previously reported findings of a Tmax of approximately 1.5 hours after a single oral 
dose of 10 mg galantamine with immediate release formulation.92 Reductions in 
both absolute and relative theta power were obviously most pronounced around 
2 hours after the administration of galantamine and continued to be equally 
reduced over time. Cut-off criteria seem arbitrary, however we believe that cut-
off criteria based on multiple tests are more representative for the actual patient 
condition, compared to cut-off criteria based on one test. 

Conclusion and future perspectives
This study demonstrates that acute PD effects after single dose of galantamine 
are correlated with long-term treatment effects and that patients demonstrating a 
reduction in eeg alpha and theta power and saccadic eye movements after a single 
administration of galantamine 16 mg are more likely to respond to treatment. 
Further confirmation of these findings is needed from prospective trials. This study 
takes a first step towards finding predictive biomarkers of treatment response to 
CEIs. In the future, these biomarkers might prevent the redundant exposure of ad 
patients to drug treatment and its related side effects. 
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