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Loop-Directed Mutagenesis Converts Amicyanin
from Thiobacillus Wersutusinto a Novel Blue
Copper Protein
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Extensive structural,1 spectroscopic, and mechanistic studies
have shown that small blue copper proteins can be divided into
a number of distinctive subclasses.2-5 Although the descriptive
features of these subclasses are clear-cut, the structural principles
underlying this division are less clear. A characteristic trait of
all blue copper proteins is that three of the four ligands of the
copper atom in the active site are located on a single loop (see
Figure 1). It appears that the structure and length of this loop,
in part, distinguish the various subclasses.6

Recently, site-directed mutagenesis has been applied as a new
tool for investigating the peculiarities of blue copper sites. In
particular, the effect of point mutations in the coordination
sphere of the copper have been investigated in detail.7 We
thought it worthwhile to test the above mentioned hypothesis
and to study the effect that the ligand loop may have on the
copper site by exchanging whole ligand loops between blue
copper proteins. This “loop-directed mutagenesis” technique
has been applied in the present work to exchange the ligand
loop in amicyanin fromThiobacillusVersutuswith the corre-
sponding loop of plastocyanin from poplar leaves (see Table
1). We obtain a completely viable new blue copper protein
with a Cu2+ site that exhibits a striking resemblance to that of
a pseudoazurin.
Residues 93-99 comprising the ligand loop in amicyanin

were replaced by the corresponding loop of plastocyanin (see
Table 1), extending in the process the length of the loop between
the ligating His and Met by two residues. The genetic construct
was implemented via a plasmid called pCD5,8 and the corre-
sponding amicyanin variant is called CD5,9 accordingly. The
newly obtained protein exhibits spectroscopic and mechanistic
features that clearly distinguish it from the wild-type (wt)
amicyanin. The UV-Vis spectrum of the CD5 protein (Figure
2) exhibits a strongly enhanced absorption around 460 nm,10

and the EPR spectrum (Figure 2) has conspicuously rhombic
features and drastically altered parameters (wt,gz ) 2.239,Az

) 5.29 mT,g⊥ ) 2.049; CD5,gz ) 2.204,Az ) 4.3 mT,gy )
2.041,gx ) 2.017,Ax ) 6.9 mT).11 Both observations point to
an enhanced interaction of the “axial” ligand (methionine) with
the copper.12-15 This is nicely confirmed by a recent NMR
study of the paramagnetic copper forms of the wt and CD5
proteins, which indicates a 2-fold increase in the spin density
on the methionine in the CD5 variant.16 Additional verification
of a shorter Cu-S(Met) bond in the CD5 mutant has been
obtained from resonance Raman studies which demonstrated
that the Cu-S(Cys) bond length has increased in comparison
to that of the wt protein.17
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Figure 1. Representation of the Cu-site of amicyanin, showing the
loop which contains the three copper ligands Cys93, His96, and Met99.
The copper atom is indicated by the dark sphere in the center of the
figure.

Table 1. The Amino Acid Sequences of the C-terminal Ligand
Containing Loop of Amicyanin fromT. Versutus, Poplar
Plastocyanin, and Pseudoazurin fromAlcaligenes faecalisS-6a

a In all cases the three ligands to the copper are numbered.
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Mechanistic properties have been studied by comparing the
electron self-exchange (ese) rate constants as determined by
NMR, and the reduction potentials (E°) of wt and CD5 proteins.
The ese rate constant (25°C) of the CD5 protein is about 6-fold
lower than that of wt18 (wt, 1.2× 105 M-1 s-1; CD5, 2.1×
104 M-1 s-1; both determined at pH* 8.1 (pH reading not
adjusted for the deuterium isotope effect),I ) 0.05 M). The
drop in rate is equivalent to an increase in the reorganizational
energy of 18 kJ/mol (185 mV), an increase in distance between
the redox centres in the encounter complex by ca. 1 Å, or a
6-fold decrease in the formation constant of the encounter
complex. We have to await further structural information to
decide which (combination) of these factors is responsible for
the observed decrease in rate.
The midpoint potential19 of the wt protein depends on pH

(see Figure 3) and, when fitted with eq 1, titrates with a pKa
red

of 6.6. It is known that the pH dependence is caused by the
titration of His96, which at low pH dissociates from the Cu
when the protein is in the reduced form, thereby rendering the
Cu three-coordinate.18 This change from four- to three-
coordinate stabilizes the Cu1+ over the Cu2+ form, and an
increase inE° is observed. The loop replacement causes an
increase in the midpoint potential19 of 64 mV at pH 8.5 (see

Figure 3). Moreover, the pKa for the titrateable histidine has
dropped in CD5 (see Figure 3).20,21 The dissociation of the
ligand histidine could be observed in the CD5 variant by
monitoring the chemical shifts of its Cδ2 and Cε1 protons as a
function of pH. They titrate with a pKa of 5.7.22

E°(pH)) E°(high pH)+ RT
nF
ln (1+

[H+]

Ka
red) (1)

The conclusion from this work is that the loop replacement
has resulted in a stable, perfectly redox competent protein. Its
spectroscopic features resemble neither those of amicyanin nor
those of plastocyanin but instead show a striking similarity with
the features as published for pseudoazurin (not reproduced).23,24

While the lengths of the ligand loops of plastocyanin and
pseudoazurin are similar (see Table 1), clearly this length, as
the present example shows, cannot be the only feature that
determines the active site characteristics. Further loop exchange
experiments, dealing with among others the azurins, are in
progress.
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Figure 2. Visible spectra (298 K) in 50 mM HEPES buffer at pH 7.0
and the X-band (8.98 GHz) EPR spectra (77 K) in 50 mM HEPES
buffer (plus an equal volume of 87% glycerol) at pH 7.0 of wild-type
and the CD5 mutant of amicyanin.

Figure 3. Variation in the reduction potential (E°) with pH (I ) 0.10
M, NaCl) of wild-type (9) and the CD5 mutant (×) of amicyanin. All
of the values are referrenced to the NHE at 22°C, and the line shown
for the wild-type data is the fit to eq 1. Values obtained from titrations
of the CD5 mutant with [Fe(CN)6]3- (see refs 20 and 21) are also shown
([).
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