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Magic- angle spinning NMR spectra of samples containing di-
lute spin-3 pairs display broadenings or splittings when a rota-
tional resonance condition is satisfied, meaning that a small inte-
ger multiple of the spinning frequency matches the difference in
the two isotropic shift frequencies. We show experimental rota-
tional resonance NMR spectra of a *C,-labeled retinal which are
in qualitative disagreement with existing theory. We propose an
explanation of these anomalous rotational spectra involving resid-
ual heteronuclear couplings between the **C nuclei and the neigh-
boring 'H nuclei. These couplings strongly influence the rotational
resonance “C spectrum, despite the presence of a strong radiofre-
quency decoupling field at the 'H Larmor frequency. We model
the residual heteronuclear couplings by differential transverse
relaxation of the **C single-quantum coherences. We present a
superoperator theory of the phenomenon and describe a numerical
algorithm for rapid Liouville space simulations in periodic sys-
tems. Good agreement with experimental results is obtained by
using a biexponential transverse relaxation model for each spin
site.  © 1999 Academic Press

Key Words: magic-angle spinning; rotational resonance; super-
operators; COMPUTE; heteronuclear decoupling.

I. INTRODUCTION

cies is denotedws®, and n is a small integer, called the
rotational resonance ordet-{17).

Rotational resonance has two main effects on the nucle
spin dynamics: (i) spectral broadenings and splittings and (i
accelerated exchange of Zeeman magnetization betwe
nearby molecular sites. Both effects may be used to estime
distances between nuclear spins, and hence, provide molect
structural information. Rotational resonance is widely used fc
this purpose in biological solid-state NMRQ—17).

Many applications of rotational resonance concern paird®f
spins, introduced into organic molecules by specific isotopic le
beling. The™*C,-labeled molecules are often diluted in a matrix of
unlabeled material, in order to isolate them from each other, on tl
timescale of the NMR experiment. In addition, a strong RF
decoupling field is usually applied at the Larmor frequency o
abundant spins, such as protons. Under these conditions, it
generally assumed that tHéC pairs represent isolated 2-sgin-
systems, with simple and predictable spin dynamics.

The dynamics of the coupled spin pairs are readily simulate
numerically 0—23). In many cases, all of the parameters i
the spin Hamiltonian are known to a good approximation
including the chemical shift anisotropies and their orientation:
This usually allows good agreement to be obtained betwee

Nuclear spin transitions may be driven by mechanical rotgimulations and experimental results. For example, in a diffe
tion of a solid sample. This process is particularly efficient &t paper (8), we present results on**&,-labeled retinal
well-defined values of the sample rotation frequencycalled  sample at a rather low magnetic field of 4.702 T. The observe
the rotational resonance¢RR) (1-17). The phenomenon hasotational resonance spectra are in good quantitative agreem
been mvestlgated most thoroughly for the case of dilute paifgth simulations for isolated 2-spihpairs.
of Splns§ in noneqUIvalent molecular S|teS in the presence of Surpr|s|ng|y, this good agreement doss pers|st at h|gher
magic-angle spinning (MAS)18, 19). Prominent rotational magnetic fields. As shown below, thi&C MAS NMR spectra

resonance phenomena are observed at the condiéghs=

of the same®C,-labeled retinal sample at a field of 9.402 T

nw,, where the difference in isotropic chemical shift frequeryisplay strong and qualitative disagreement with the predic

tions of standard rotational resonance theory.
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for molecular structural studies would be at risk if the spectrur
of a well-controlled model system were in serious discrepanc
with theory.
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the abundant protons. In some cases, the model of isolated 20
spin4 pairs breaks down significantly, even in the presence of 11
a strong proton decoupling field. This breakdown of the iso- A VN No

lated sping pair model is typically observed at high static fields
and at high sample rotation frequencies. However, some sam-
ples display significant anomalies even under much milderriG. 1. Molecular structure and labeling scheme of 11'ZD-all-E-
conditions, as shown at the end of this paper. retinal. The**C spins are indicated by asterisks.
It is important to realize that RR spectra are much more
sensitive to decoupling imperfections than spectra taken off
rotational resonance. When the rotational resonance conditlmetween experiment and numerical simulations within th
is not satisfied, incompletéH decoupling is associated withframework of the MDTR model. In Section IV, we present
minor spectral perturbations, such as broad peak bases, whitthrnative explanations for the observed RR peakshape ano
are easily overlooked. At rotational resonance, on the othaies and give our reasons for rejecting them. In Section V, w
hand, even minor decoupling imperfections may lead to strodgscuss the implications of these results for RR methodolog
perturbations of the entirfC NMR spectrum. and for solid-state NMR in general. In the Appendix, we
A full understanding of RR™C spectra is therefore inti- describe a general COMPUTE algorithm for rapid Liouville-
mately linked to the problem of heteronuclear decoupling Bpace simulations of powder-average spectra.
rotating solids—a complex subject in its own rigBd(32). In
the current paper, we employ two highly simplified represen- 1. EXPERIMENTAL PEAKSHAPE ANOMALIES
tations of the heteronuclear decoupling problem, which are
chosen because they allow a relatively simple treatment of theMost of the experiments discussed in this paper concern tl
C, spin dynamics. compound 11,20°C,-all-E-retinal, which has the molecular
In the differential transverse relaxatiofDTR) model, the structure and labeling scheme shown in Fig. 1. The distan
residual 'H-"C couplings are assumed to give rise to expdetween the C11 and C20 sites, as determined by X-ray di
nential transverse relaxation of the single-quantd@coher- fraction (33), is 0.296+ 0.001 nm.
ences. The exponential decay constants are in general differerthe **C,-labeled sample was prepared by known rous (
for the two °C spin sites, reflecting the different local protorfrom 99% “*C-labeled starting materials. The labeled retina
environments. As shown below, thigfferential in the trans- was recrystallized frorm-pentane at—20°C, together with
verse relaxation rates proves to be particularly significant. Thenlabeled alE-retinal, in a molar ratio of 15:85. We refer to
DTR model provides a reasonable qualitative explanation thfis diluted *°C,-labeled sample als
the observed’C spectra at rotational resonance. However, theIn a recent paper8], we present’C rotational resonance
DTR model fails to provide a consistent treatment of ti@ spectra ofl in a magnetic field of 4.702 T and show good
spectra, both on and off RR. agreement between experimental peakshapes and standarc
The DTR model may be improved by taking into account th@tional resonance theory. Here, we examine the behavibr o
nonexponentiality of the transver§€ relaxation, which tends at a higher magnetic field.
to become increasingly prominent as the static magnetic fieldFigure 2a shows two regions of the NMR spectrum et a
and sample rotation frequency are increased. Inntidtiple magnetic field of 9.402 T. The spectrum was taken at a spinnir
differential transverse relaxatio(MDTR) model, the nonex- frequency ofw,/27w = 12.192 kHz, which satisfies the= 1 RR
ponential decay of th€C single-quantum coherences is modeondition. The decoupler field corresponded to a proton nutatic
eled by superposing the results of two (or more) separate DTiRquency of 82 kHz. The spectrum shows two strong broad pea
calculations. The MDTR model has been chosen since it is tiem the °C labels, plus a number of smaller sharp peaks fror
simplest model which allows the incorporation of nonexponenaturally occurring™C spins in the rest of the molecule and the
tial relaxation effects into the Liouville—von Neumann formalunlabeled matrix. The positions of these peaks coincide with tho.
ism. As will be shown, it is capable of good quantitativdound in the spectrum of unlabeled &lretinal, obtained under
agreement between experiment and simulation, both on andidéntical conditions, which is shown in Fig. 2b.
rotational resonance. A large number of isotopomers contribute to the spectrum i
The rest of this paper is organized as follows. In Section Fig. 2a. Apart from the deliberately introduced 11,20-
we present experimental RR peakshape anomalies for the s&uotopomer, there are numerot¥C, and “°C; isotopomers
ple of °C,-labeled retinal. In Section I, we present the theorgrising from the natural incidence ofC nuclei. It may be
of the RR peakshapes within the DTR and MDTR models. Thifhown that the spectral contribution from the 11;XD-iso-
includes a Liouville-space theory of single-quantum cohetepomer is isolated, to a very good approximation, by suk
ences at rotational resonance, which provides analytical @sacting the natural abundance spectrum from the spectru
pressions for the DTR peakshapes, under suitable approxirafl, multiplied by a suitable scaling factor, as shown in Fig. 2c
tions. We show that it is possible to attain consistent agreeméBkpanded views of the peaks are shown in Fig. 9d). To a goc
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C11 C20 than the simulated peak. The dip in the center of the C11 pe:
is slightly deeper than that predicted by the simulation. Thes
minor discrepancies prove to be significant.

The spectrum ofl appears to be quite normal when the
spinning frequency is not close to a rotational resonanc
Figure 3a shows th&C spectrum at a spinning frequency of
/27 = 10.000 kHz, with the same decoupler field as in Fig

2a. After subtraction of the natural abundance backgrour
(Fig. 3b), the spectral peaks of both labeled sites are rath
narrow, as shown in Fig. 3c. The peak widths at half maximur
are 40.1 Hz for the C11 site and 36.0 Hz for the C20 site
Although the general form of the peaks is unremarkable, th
C11 peak does have a slightly broad base. Expanded views
the peaks are shown in Fig. 10d.

Verdegem and co-workerg3) studied anomalous RR spec-
tra for a series of labeled retinals, at a field of 9.402 T. In al
cases, they found spectra of a similar form, with the less
shielded peak split and the more-shielded peak unsplit. The

analyzed the splittings of the less-shielded peak and show

that there was a good empirical relationship between the spl

(w/2m) / kHz tings and the dipole—dipole couplings, as calculated from tt
- _ , X-ray structure. The split C11 peak could be described qual
FI(_B_. 2. 7C spectra of all-Eretinal, at then = 1 rotational resonance tatively using standard RR simulations assuming iSOléﬁ@Q

condition B, = 9.402 T andw,/2m = 12.192 kHz). Unmodulated proton . ) . .

decoupling was used. The decoupler field corresponded to a proton nutafigin pairs. However, it was not possible to explain the anon

frequency of 82 kHz. The spectral regions near the C11 and C20 centerbaaltsus form of the more-shielded peaks.

are shown. (a) Spectrum of samplégb) Spectrum of unlabeled al-retinal.

(c) Subtraction of (b) from (a), with weighting factors adjusted to minimize the

visible natural abundance peaks. (d) Conventional simulation of (c), using
transverse relaxation rate constantg = r,, = 113 s*. Other simulation

c11 C20
parameters are given in Ref6q). The experiments were performed on a
BRUKER AMX-400 spectrometer using a 4-mm zirconia rotor.
approximation, this spectrum shows contributions from only a
the 11,20°°C,-isotopomer. The detailed arguments supporting
the validity of this subtraction procedure are lengthy but

straightforward and are not given here. One must take into
account rotational resonance effects in some of'i@g isoto-

pomers, as well as possible variations in the labeling levels of b
the C11 and C20 sites.
The spectrum of the 11,20€,-isotopomer may be simu-

lated using the methods described in Ré&). (The result is
shown in Fig. 2d. This simulation employed Lorentzian peak
broadening, corresponding to a peakwidth of 36.0 Hz (this

C
corresponds to the width at half height of the C20 peak,
measured at a spinning frequency of 10.000 kHz, i.e., well off
rotational resonance). The simulated spectrum is in serious “
disagreement with the experimental spectrum shown in Fig. 2c. it e
The most glaring discrepancy is found for the most shielded 25 -15 100 110
peak, attributed to the C20 site. The simulation predicts a clean (w/27) / kHz

splitting of this peak, while the experiment reveals no such
FIG. 3. ™C spectra of all-Eetinal at 9.402 T, well off then = 1

splitting, only a tent-like structure.
pTh g. |yt' fthe C11 Kis | | t .[%tational resonance conditiom{27 = 10.000 kHz). The decoupler condi-
e SIﬂ"_IU ation or the peakx Is In closer agreement wi ns were identical to those in Fig. 2. (a) Spectrum of sarhple) Spectrum
the experimental result. However, even here, there are sOff@niabeled alE-retinal. (c) Subtraction of (b) from (a), with weighting

discrepancies. The experimental C11 peak has a broader basers adjusted to minimize the visible natural abundance peaks.
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11l. PEAKSHAPE THEORY framesR andL at the time origint = 0, defined as the start
. . of NMR signal acquisition. In nonsynchronized experiments
Spin Interactions the anglea g, takes random values from transient to transient
Spin Hamiltonian. Details of the spin-pair Hamiltonian in The negative sign in Eq. [4] is consistent with the Euler angl

a rotating solid were given befor8)( The basic equations areconvention mentioned above. In the ca:}of exact magic-ang
repeated here to correct some sign errors and to take iSRNNING the angi@q is equal to arctanv 2.

account the sense of the Larmor frequen8y)( Chemical shift interactions. The chemical shift tensor of a
The high-field Hamiltonian for two homonuclear spins ~ sitej is defined by the three principal valugs, &,,, and3d.,
nonequivalent molecular sit¢sandk may be written and the Euler angleQty = {apu, Brw, Yeu} SPecifying the
relative orientation of the CSA principal axis frarfRgand the
H =%+ Ko+ Wy, [1] molecular frame. The symbélrefers consistently tdeshield-

ing. By convention, the principal values (and hence the prin

where %; and %, represent the one-spin interactions, aiig ci?al axes) are assigned through), — 5 >_|5’xx_50— 51'150| =
represents the interaction between the spins. These interactionwe~ 81", Where the isotropic chemical shift & = 3{5;,
+

aniso

8l, + 8.}. The chemical shift anisotropg;"* and asym-

% = S metry parameter; are defined through/" = 8, — 6;* and
] 1~z n = (Si/y _ 810()/6]-6\”'50.
K = 0, S, For site j, the isotropic chemical shift frequency in the

rotating reference frame is defined through
%jk = %A + %B, [2]

. . .. . wJ!SO = wos}so — Wrepy [5]
with the two spin=spin Iinteraction terms

where o, is the signed spectrometer reference frequenc
¥a = 0225,5¢ given by

Hp = wg2{S'S, + S S;}. 3 .
® B2 Sk pk [ ] Wyef = _(Slgny)wcarrien [6]
The Larmor frequencies of the spins in sifegand k are . . .
denoted byw, and w,. The spin-spin coupling is denoted by'ﬂndwcamer is the (positive) angular frequency of the RF carriel
two termsw, and ws, which are specified below. wave (35). The Larmor frequency of the nuclear spins in th
Reference frames.Define a three-dimensional referenc%‘ailii ?;; given by, = —yB,, wherey is the magnetogyric
frameM which is fixed with respect to the molecule, another The e.riodicall modulated Larmor frequencies and
reference fram& which is fixed with respect to the rotor, and P y 9 P @k

a further reference framle which is fixed with respect to the are conveniently written as Fourier series, for example,
external magnetic field. Theaxis of frameM is defined to be

parallel with the vector joining the molecular sifeandk, the 2
z-axis of frameR is defined to be parallel to the rotor axis, and w = >, o™expimot}, [7]
the z-axis of framelL is defined to be parallel to the static m=-2

magnetic field. The relative orientation of two reference
frames, for examplé&/ and R, may be specified by an Eulerwith the Fourier coefficients
angle tripletQ yr = { aur, Bur: Yur}, defined according to the

convention in Ref. 36). (M) — ,is05 4 [AanisoR im0 142
W= @ 2 Fexpl{ —im dn, . 8
A powder sample contains a large number of molecules with ' ) 7™ LAT™Inexpl-imagjdno(Bro)- (8]

a uniform distribution of orientation@ ,,z. The observed NMR ) ) ] o
signal is an average of signals over all possible values of th8€ chemical shift anisotropy tensor of sjtés transformed

three Euler angles s, Bur, and yus. from the principal axis frame to the rotor-fixed frame througt
For a sample rotating at constant angular freques@bout  SUCCESSIVE?; — M — R transformations according to
an axis subtending an angfg, with the external magnetic
field, the Euler anglexg, is given by [AZR = > [A*P.D2, (Qhy) D2 n(Que).  [9]
m’, m'
ARL = a(F)eL — wfd, (4]

The components of the CSA tensor of sjtein its own

where the anglexy, describes the relative orientation of theprincipal axis frame, are given in frequency units by
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[AjaniSOJEZ — [Afnim]liz — _6—1/2nj8fnisow0 |1> _ | + %’ +%
aniso| P _ aniso| P _
[/\J j‘—l [/\{ ﬂ +1 0 |2> =:|_+ %, __%
[/\?nsﬂg — 6?n5%00 [101 ) .
3 =1-3% +2
Similar equations apply for sitk.
H=1-% -» [15]

Spin-spin interactions. The two components of the spin—

spin coupling are periodic and may be written as Fourier Serieﬁéese state functions are simultaneous eigenfunctions of t

, individual z-angular momenta of the two spins:
N

— (m)
(OF E wp expliimo,t} Sz'mj’ my) = mi|mi’ mg

m=-2
) S<Z| mj! mk> = mk|mj1 mk>' [16]
— (m)
@8 mgz wg"expimod}, [11] The spin-pair Hamiltonian may be expressed in this basis as
4 X 4 matrix:
0+ 0t wp
_1 W — Wt W, wg
¥ =3 wg —w; + w0~ o, [17]
—w] — 0T wa
where the Fourier coefficients are given by Superoperator Theory

m aniso R 042 In order to explain the anomalous RR peakshapes, it
" = myduo + [ARTmexp{ —ima tdio( Br) necessary to extend the model of isolated $ppairs. There
" = 2733 8m — [ATIRexp{—imap}d2(Br). [12] are many possible ways to do this. For example, one cou
include some additional spins, such as the nearest prot
Here J,  is the isotropic part of the indirect dipo|e_neighbors, in the theoretical treatment. However, rigorous ca
dipole coupling @-coupling), and P\jak"iS(’]g are the com- culations of this kind are problematic, since the real sampl
ponents of the spin—spin coupling anisotropy in the rotogontains an essentially infinite network of coupled protons
fixed frame. If the anisotropid-coupling and molecular While accurate numerical calculations rapidly become intrac
motion are negligible, the rotor-frame components are givéable for more than a few additional spins. In this article, we

by take into account the residual couplings to the proton netwol
by including dissipative terms in the spin dynamics. This
[AT™]R = b, D2 (Qye), [13] Provides a reasonable phenomenological model of the expe

mental behavior, while retaining the essential simplicity of the
where the through-space spin—spin coupling constant is eqal’ffp'n% system. _ L
to The simplest model of imperfect proton decoupling is calle
the differential transverse relaxation moddlhe residual con-
tact of the**C with the 'H spins is parameterized by two rate
by = — 4 13 [14] constants for exponential relaxation, denotedndr,. These
™ Tk rate constants are the inverses of the corresponding transve
relaxation time constant$,. The different proton environ-
andry is the internuclear distance. ments of the coupledC spins are emulated by allowing these
Hilbert space basis. Itis convenient to choose an orthonor+ate constants to be unequal. One expects that the rate const:
mal basis spanned by the following spin-pair state functiongor **C spins in different types of molecular sites conform tc
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the rough scheme quaternaty methyl < methene< meth- The following definitions establish the Liouville operator
ylene. The high rate constant for methylene carbons conforspace:
to the empirical observation thatC spins in such sites are

“hard to decouple”—presumably because e&chhas a large Q) = Q,
through-space coupling to two protons, which have a large
through-space coupling with each other. The low rate constant (Q = Qi

for methyl *°C spins is associated with the generally rapid
thermal jump motion around the local threefold axis, which
reduces the effective heteronuclear and homonuclear cou- . .
plings. The Liouville-von Neumann equation may be rewritten as

The DTR rate constants may also include other sourcesftigt-order, homogeneous, differential equation,
transverse relaxation, such as modulation of i@ spin in-
teractions by molecular motion. However, additional relaxation d N
mechanisms are expected to be unimportant in the experimen- dt lp) = Llp), [21]
tal system studied here.

The DTR rT1]3C)de| _has t_he advantage of S'mP“C'ty' The dX/?/here the generator of the superoperator evolution (“Liouvil
namics of the™C spin pairs may be treated using a SUPerop- s i

. . - . . lan”) is given by

erator formalism, withouexplicit consideration of the proton
spins. Nevertheless, it should be stressed that, at some point, it A . N
is necessary to discuss how the two relaxation rate constants L=—igc°™"+ T, [22]
and r, depend on the heteronuclear dipolar couplings, the
proton decoupler field, the sample rotation frequency, and thfd %™ is the Hamiltonian commutation superoperator, de
static magnetic field. We return to this point below. fined as

Liouvillian. The simultaneous influence of coherent and .
incoherent interactions may be treated using the Liouville—von #eomMQy) = |[%, Qul). [23]
Neumann equation,

(QQ)) = TrH{QIQ.}- (20]

Operator basis. A suitable basis for Liouville space is
provided by the set of all shift and projection operators ger
%p — i[%, o] + Tp. (g erated by pairs of state$1) . . . |4)}:

Cis = [r){(s]. [24]
where the spin density operator for a given molecular orienta-
tion is denoteg andT is the relaxation superoperator, includit is easily verified that this 16-dimensional operator basis i
ing thermal polarization terms37-39). This equation is valid orthonormal. We will call these operators “coherence oper:
if the fluctuating interactions are sufficiently small compared #@rs” and the basis the “coherence basis.” “Population oper.
the inverse of their own correlation times (the “Redfield limittors” such ad1)(1| are included in this basis.
(40)). The coherence operators are eigenoperators under comr

In the present context, the Redfield conditions are satisfieddtion with the totalz-angular momenturs,,
the local fields produced by the proton spins fluctuate very
rapidly. These rapid local field fluctuations are generated by
the proton decoupler field, which rapidly rotates the proton
spin polarizations and the strong interactions of the protons
with each other. The use of the Liouville—von Neumann equ¥here the eigenvalue, is called the coherence orderl( 42).
tion implies that the decay of th&C transverse magnetizationThe relevant coherence orders are
components is exponential, or equivalently, that i@ spec-

S¢™Cr) = [[S, Cisl) = Pl Cro), [25]

tral peakshapes are Lorentzian, in the absence of rotational P1s= +2
resonance effects.

The evolution of the spin density operator in the presence of P24 = Pas= P12 = P1z= +1
Redfield-regime relaxation may be analyzed using superopera-
tors 37). Define a set of basis operatdds which are or- P11= P22 = P33 = Pas = P23 = P32 = 0

thonormal in the sense
Paz=Paz= P21 =Par= —1

TH{QIQu} = du.- [19] Par = —2. [26]
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Hamiltonian commutation superoperatorin the absence a 4
of applied RF fields, the high-field truncated Hamiltonian
commutes with the totat-angular momentum operator, 12
—_— P
Sm™ge) = 0. [27] \j
[
As shown in the Appendix to Ref7], this property enforces
the selection rule b
|4
(Crs|%comn1 CLIV) = O If pI’S 7& puv- [28] i
o . . 2 T
This implies that the Hamiltonian commutation superoperator
is block-diagonal in the coherence basis: I
2 comm FIG. 4. Coherence transfer processes in the 2-$giystem. The rotational
+2 R motion drives transitions between stai@s and |3), leading to transfer of
comm amplitude between coherencs,) and |Cs,) (block a) and between coher-

§€ comm ences/C,;) and|C,s) (block b).

7o comm
I

§€comm:
HET momentum along the field. For a spirpair, only the two
central eigenstatef) and |3) participate in the rotor-driven
spin dynamics. It follows that the coherene, = |2)(1| may
be converted into a coheren€a, = |3)(1/, but not into any
other (—1)-quantum coherence and not into a coherence of a

(29]

where the bIocI@‘ﬁComm has dimension X 1, the bIock?)‘ti’Comm
has dimension 4x 4, the bIock%gOmrn has dimension 6< 6, other order (see Fig. 4).
and so on. The matrix representations of the superoperator block

Coherences of order1 are observable by quadrature des,comm and%comm are given by
tection (35). Since this article only concerns the directly ob-*
served NMR spectrum, our attention may be restricted to the

block #°™™. The behavior of the zero-quantum block has been Ca0) |1C31)
studied in detail elsewherd, Gpeomm _ [~ Pk T @A 208 [32]
The matrix representation of the Hamiltonian commutation 2 3 wg —w; — wp
superoperator is readily calculated using the property
A and
(Carl 7™ Ce) = Tr{[b)(al[ ¥, |c)(d[]}
i i Ca) [
= HacOpa — HapOac: [30] . —w, + w, —Lwg
Jepemm = ; ot o [33]
Since the Hamiltonian operatof_is block-diagonal in the 2@ ] A

basis of Eq. [15], the 4 4 block 71" is block-diagonal in

the coherence basis. The two<22 blocks are denote

comm Relaxation superoperator.In a high magnetic field, the

and % comm,

secular approximation allows block-diagonalization of the re
laxation superoperator according to the total angular mome

- tum of the coherences along the field
%;omm 0 )
m

e °op :( - [31]

The basis operators for tf#€;°"" block are {C,,), |C,,)}, while -

the basis operators for tH#;"™" block are {|C,), |C..)}. I'= To | : [34]
This block-diagonalization has a clear physical interpreta- I,

tion: Since no RF fields are applied, and the spinning frequency r.,

is small compared to the Larmor frequency, the sample rotation

only drives transitions between states with very similar eneis before, the bIocIF+2 is a 1X 1 matrix, the bIockF+1 isa

gies, and hence with the same value for the total spin angulax 4 matrix, the blockl“o is a 6 X6 matrix, and so on.
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In the DTR model, the 4< 4 bIocklA“,1 may be written where the propagatdr, solves the differential equation

d . I
|C?‘l) ICs) [Cud) [Ca2) aVa(t, 0) = Ly(t)V.J(t, 0)
Tk
P, = S , [35] V.0, 0) =1, [40]
-1 and the unity operator for the subspace is
wherer; is the dephasing rate constant of coherences associ- 1,=|Cy1)(C| +|Cs1)(Cail. [41]
ated with spins in sit¢, andr, is the dephasing rate constant 2 2 s
of coherences associated with spins in &iteThe inverse of Analogous equations apply 1,
these coherence dephasing rate constants are the transverse
relaxation time constant, of spins in the corresponding sites.

The omission of the other elementsiof, corresponds to the at Ve(t, 0) = Lo(DVi(t, 0)
neglect of cross-relaxation between t€ spins. This assumes R .
that there is negligible molecular motion changing the direction or Vi(0, 0) = 1,, [42]

magnitude of the internucledC—C vector. In addition, the use

of only two different relaxation rate constants in Eq. [35] implie¥here

the neglect of cross-correlation between fluctuating chemical shift A

anisotropy and dipolar coupling interactiom3); 1,=[C43)(Cad +]Ca2) (Cadl- [43]
With these assumptions, the Liouvillian for the 1)-quan-

tum coherences of the spin pair ensemble factorizes into

independent blocks, calldd, andL,, given by

t\;l;lge solution of these equations allows the determination of tt
trajectories of the (—1)-quantum coherences and hence t
observed NMR signal.

L, _ig,?ggomm + T, Analytical Peakshapes

Average Liouvillian theory. All matrix elements of_, are

and

operatorp(0) at timet = 0. The (—1)-quantum coherences at
timet = 0 may be specified using the subspace kets

periodically time-dependent. We now use average Liouvillial
) [36] theory B7-39) to obtain an approximate analytical solution fo
the spectrum. Floquet theory could also be uset-49.
Exactnth-order rotational resonance{’ = o* — o° =
Nw,) is now assumed. For simplicity, chemical shift anisotropy
R R is ignored, and the spin—spin couplings and transverse rela
Ly= —i#e™+ Iy ation rates are considered to be small compared to the sam
rotation frequency. More general cases may be handled by t
numerical simulation algorithm described in the Appendix.
) . [37]  The evolution in the “a” block of the-{1)-quantum subspace
is described first. The Liouvilliai, is divided into two parts,

(_rk+|(wk+wA) _l%(DB

B _rk+ i((,!)k_(l)A) +|%(UB
hat th i le is ch i i ~ - ~,
Suppose that the spin ensemble is characterized by a density L=0%+10, [44]

chosen to have the matrix representations

_ P21(0)> |:g
LRI it
T4 i _1 0
B p43(0)> _ r+i(ow+ wsr— 3nNw,)
(0 = <P42(0) : [38] 0 —F+i(®+ wp+ inw)
After an intervalt, these coherences will have evolved into the [45]

state defined by

and
Ip(1)a = V4(t, 0)[p(0))a (

M —lwg
lp(1)s = Vy(t, 0)[p(0))s, [39] a2 )

_in _rA

[46]
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These equations employ the notation

I‘AZI‘J-—rk

o =30+ o). [47]
Note that the differential relaxation rate constanimay have
either sign. X

The subspace propagatdg over the interval{; 0) may be
written as a product of two propagators,

V.(t, 0) = VO(t, 0)V.(t, 0), [48]
which obey the differential equations
d (/0 i 0 (70
avﬁ(t’ 0) = La(H)VL(t, 0)
V90, 0)=1, [49]
and
d = a =
CTva(ta O) = La(t)va(ty 0)
t
v.,0,0)=1,. [50]
The interaction frame Liouvillian is
L.(0) = Vo, 0) a0V, 0). [51]

Sincglig is diagonal in the basis|C,;), |Cs,)}, the prop-
agatorVj is easy to evaluate:

Vt, 0) = exp{(—F — i inw)t + i($(t, 0) + da(t, 0))}

X [Co0)(Cyyf + exp{(—F + i 3nw)t

+i(d(t, 0) + Palt, 0)}HCs)(Cal,  [52]
where the dynamic phases are
Pa(t, 0) =J dt’ wa(t’)
&LmzdeMW [53]

For exact magic-angle-spinning, small
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plings, and small CSA, these phase functions may be appro
imated

(bA(t, O) = 7T‘]Jkt

o(t, 0) = &%, [54]

where ®*° = }w® + o°) is the mean isotropic shift fre-
quency of the two spins. The approximations in Eq. [54
correspond to neglect of the sideband pattern generated by
dipolar coupling and the chemical shift anisotropy.

The interaction frame Liouvillian is given by

0

—iwgexpfinw,t}

_1 Fa
(1) = %( —iwgexp{—nw,t}

v

). s

which is periodic, with periodr, = |27/w,|. The interaction
frame propagator over multiples of the perigds given by the

effective LiouvillianL,,

V.(N7, 0) = explL.N7}, [56]

whereN is an integer (37-39). The effective Liouvillian may
be written in terms of a Magnus expansion

L=l@+Ll@+- -, [57]
where the terms are given by
[w- Trlj dt L.()
0
~ Tr t2 ~ ~
LY = (ZTr)lf dtzf dt; [La(ta), La(ty)], [58]

0 0

as in average Hamiltonian theor$q-51).

Under the condition$wg7,| < 1 and|r,7,| < 1, which are
well-satisfied under ordinary circumstances, the Magnus e
pansion may be truncated at the first term, and the requireme
that Eq. [56] only applies over integer multiples of the modu
lation period may be relaxed. The interaction frame propagat
may then be written

\:/a(t, 0) = exp{f Dt} [59]

where the matrix representation of the average Liouvillian is

- rA —iw(n)*
L9=%(4w9 o ), [60]

Fa
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and o’ is the resonant Fourier component of the spin—spimhere
interaction, as given in Eq. [12]. Note that’ is time-

(1) = (QopdaVa(t, 0)[p(0))a 67
independent, ] Sa(t) = (QovdaVal(t, 0)|p(0)) [67]
The solutign for the propagatdf, is completed by a diago- 5,4
nalization oﬂ:Aa in order to solve Eq. [59], followed by mul- R
tiplication by V2, according to Eq. [48]. The result is So(t) = (QopdpVs(t, 0)|p(0))p. [68]
.t 0) = exp{—Tt} [ ey (t)(R coshi Rt + r,sinh} Rt) +H o * e/ (t)sinhi Rt 61
ar v R —iwf’e/ (t)sinh; Rt g"(t)(R coshi Rt — r,sinh3 Rt) [61]
using the notation The observation “bras” in the two relevant subspaces are
e’ (t) = expli(w® = 73t} (Qopda = (i, 1), [69]
e (1) = expli(0® = mJ)t} and
R2=r3 - |od|2 [62]
(QObe = (Ia I)v [70]
An analogous treatment of the|d,,), |C.;)} subspace
yields the result expressed in the appropriate basis sets.
it 0) = exp{—Tt} [ e (t)(coshi Rt + r,sinh3 Rt) —iwM* e, (t)sinhiRt 63
TR +iw{e/ (t)sinh Rt g (t)(R coshs Rt — r,sinhiRt)/ [63]

Signal detection. The quadrature-detected NMR signal Coherence transfer signals.The rotation of the sample
may be written drives coherence transfer between the spin sites during t
signal detection process. We now examine the effect of th
R process on the spectrum.
s(t) = (Qad V(t, 0)[p(0)), [64] Suppose that the spin density operator at the beginning of t
detection period (defined ds= 0) has the form

where

p(0) ~ =S,. [71]
(Qond = i(S7], (65]

This initial state could be produced by frequency-selectiv
ignoring the receiver phase shift85). Since the two (—1)- €xcitation, or selective cross-polarization, of the spins injsite
quantum subspaces are dynamically independent, this mayTii€ initial spin density operator in Eq. [71] may be written
written

1
S(t) — Sa(t) + Sb(t), [66] P(O) = z C31 + Z C42 - Z C13 - z C24, [72]
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indicating a superposition of twe-(1)-quantum and two{1)- and
guantum coherences.

i ()%

The (+1)-quantum coherences may be ignored if no further _j_x ) = — lwg o _ 3 )t — Ftlsinh: Rt
pulses are applied. The initial kets in the twe 1)-quantum S 2R expli(wi” = mJ)t — Ttjsinhz Rt.
subspaces are [81]

J—]

The “direct” signalss;” ands,” contain frequencies close to

_ the precession frequency of spins in sjteise., the frequency of
p(0)%= 2i (1) the spin coherences directly excited at the beginning of the d
tection period. Theoherence transfer signal§$ands, ™, on the
1p(0))}, = i (0) (73] other hand, contain frequencies close to the precession frequel
2i\1)” of spins in sites, which were not magnetized at the start of the

detection period. These spin magnetizations were generated o
ireg the detection period by mechanical transfer of coherence fro
sitesj to sitesk. The mechanical coherence transfer process lea
to the appearance of NMR signal in spectral regions which are f
from those directly excited by the preparation pulse sequence.
‘ o _ The direct signals,” ands},” are identical, except for a
sh(t) = sL(t) + si™(b), [74]  frequency displacement by tdecoupling. The indirect signals
si”“ands), " are also displaced in frequency by theoupling,
where but have opposite signs. The coherence transfer signals can
out if the J-coupling is unresolved.

From Eq. [12], the phase of the coherence transfer signe

where the superscript indicates the selective preparation
transverse magnetization of spins in sifes
The a subspace signal in this situation is therefore

si7(t) = 3(CailaVa(t, 0)|Capa [75]  depends on the molecular orientational angig: and the
initial sample rotation angles, according to
and
arg{Wg])(aMR, Bwrs YR ¥ = N(ywr + agL)- [82]
i—k(t) = 1 y
sL7(t) = 3 (CaefaVal(t, 0)|Cap)a [76] If the initial density operator has the orientation-independer
) form given in Eq. [73], then the coherence transfer signal
These expressions evaluate to disappear for powder samples. The signals also disappear
unsynchronized experiments on spinning oriented samples,
sh(t) = zexpli(w® + 7wt — Tt} extensive signal averaging is performed.
Coherence transfer signals have recently been observed exy
% (cosh% Rt — s sinh} Rt) [77] imentally on gspinning _single crystal BC,-labeled glycine%2). .
R A recent interpretation of the Floquet theory of NMR in

rotating solids employs coherent eigenfunctions of the macr
and scopic rotational angular momentuds). This formalism sug-
gests an intriguing physical description of the coherence tran
fer signals, in terms of amplitude transfer between spati

i (% . .
_ iw .
SI=K(t) = ZE;? expli(w® + mI,)t — FtisinhiRt. [78] rotational coherence a_nd spin coherence. _
Carousel average signals.If the sample is a powder, the
observed signal has contributions from all possible moleculz
The corresponding subspace signals are orientational anglestyg, Bur, and yys. In this section, we

consider the sum of signals from molecules with fixed value

of ayr and Byr but all possible values ofys. Such orienta-

tional subsets have been called “carousels” because the sut

members have spin interactions which follow an identica

with cyclic trajectory as the sample is rotated, but at shifted time
(22, 53). The carousel average signal is defined as

sh(t) = sb (1) + sp(0), [79]

sh(t) = sexpli(w® — 7wt — Tt}

X (COSh% Rt— % sinh} Rt) [80] (s(t)), = (2m) o fo dywr S(t, Qugr). [83]
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The powder average signal is a superposition of contributiolrs these equations, the rotational resonance splittiRgis
from separate carousels with different valuesxgf, andB,s. defined through

Let us now assume that the initial transverse spin magneti-
zation is excited in a frequency-independent fashion, using, for wi=—R2=|o{|?- 3. [89]
example, a strongr/2 pulse applied to thermal equilibrium

_magnetization_or by nonselective Hartmann_—Hahn cros_s—kpolﬁ{—the regime of slow differential dephasing, is a real number.
ization (54). Since the coherence transfer sigsgiSands; The NMR spectrum is obtained by Fourier transformation o
vanish upon carousel averaging, we only take into account tthe . A

. . - i . . thé time-domain signal,
direct signalss,” and sy, . The carousel average signal is

given by a superposition of the four “direct” signals,

(s(t)), = (s7(t) + sh(t) + sk7(t) + sE7X(1).  [84] S(w) = f dt st)exp{— wt}. [90]
0
For simplicity, assume that th&coupling is small, so that

thea andb contributions coincide. The carousel-average NMRy, o carousel-average spectrum may therefore be written
signal is given by

o ool cost Rt ™ s (S(@)), = a.%(0; 0, 1) + 2 L(w; 07,1
(s(t)), = exp{(iow* — r)t}(cosm Rt — R sinh3 Rt) ta Ple 0l )+ a, L0 o, F),
o _ ra [91]
+ exp{(iwi° — )t} coshs Rt + R sinhiRt].
85 where the Lorentzian lineshape function is
This is a convenient form for the exploration of the signal char- .o _

> , . . Fw; ', A) = : - [92]

acteristics as a function of the coupling and relaxation parameters. A (o — o)

Two regimes of this equation may be identified, depending
on the value oR, as defined in Eq. [62]. If the resonant Fourieln this regime, the spectrum consists of the superposition
component of the dipolar coupling$” exceeds in magnitude four Lorentzian functions, with complex amplitudas or a_
the transverse relaxation differentral, then the factoR is an  and identical peakwidthst2 The center frequencies of the
imaginary number. This is called the regimestéw differen- four Lorentzians are given by the isotropic shift frequencie
tial damping.If the relaxation differentiaf , is larger than the »* and w;°, plus or minus half the rotational resonance
resonant part of the coupling, then the fad®is real. This is  splitting wr.
called the regime ofast differential dampingThe cross-over  |n the limiting case of identical transverse relaxation rate
between these two regimes occurs attbelescence pointn  r; = r,, all four peak amplitudes are real and equal. The
which the relaxation differential, has the same magnitude asotational resonance splitting is equal to the magnitude of
the resonant Fourier component of the dipolar couplid.  the resonant dipolar componefw{’|. The real part of the
1. Slow differential damping|r.| < |o{"]). The carousel NMR spectrum consists of four absorption Lorentzian peaks, .

average NMR signal may be written the frequencies|* = 3 wg and w° + 3 wg, With peakwidths
. ] given in rads® by 2r; = 2r,. The same result is obtained by
(s(t)), = a.exp{(io]” — Tt} + a_exp{(io; — Nt} a naive analysis in which relaxation is neglected during th
+ a_exp{(io, — Nt} + a.exp{(io, — Nt} main body of the calculation and added afterward by imposin

an exponential decay (5). The treatment given in R&f.i$
[86] therefore correct in the case of equal transverse relaxation ra
for spins in the two sites.

using the notation In the more general situation of, # 0, the current treat-
r ment and that given in Ref5) give different results. Figure 5
a.=j3 ( 1+ A) [87] shows the composition of the spectrum in the casé> w,°
WR

andr; + || > r, > r;. Sincea, anda_ are complex
numbers, the real part of the spectrum consists of a supery
sition of absorption and dispersion Lorentzians. The admixtut
= 0w+ Lo of dispersion modes causes constructive interference arou
_ the isotropic shift frequency of sifg but destructive interfer-
Wi = 0P Fog. [88] ence around the isotropic shift frequency of $itéThe result-

and
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center positions of all four peaks coincide with the isotropic
shift frequencies, indicating that the rotational resonance spili
ting is completely quenched in this regime. Two of the foul
peaks have widthsr2, while the other two have widthsr2.
Figure 6 shows the composition of the spectrum in the cas
o* > o’ andr, > r; + |of|. The spectral region around
the isotropic shift frequencw;* consists of a strong narrow
Lorentzian superposed on a weak negative broad Lorentzie
Near w°, a negative narrow Lorentzian and a positive broa
Lorentzian are superposed. The net result is qualitatively sir

e A f ilar to that in Fig. 5, with a narrow peak at the frequenas’

r : . ' ' ' and a broad split peak at the frequenay’.
-1500 -1000 -500 500 1000 1500

aA" b
¢

o7

If the relaxation differentiat, is reversed in sign, then the
narrow unsplit peak and the broad split peak exchange po:
(@/2r) / Hz il it p it p gep
FIG.5. (a—d) The four components of the real part of the spect®(®), Figure 7 shows how the spectrum progresses from the ca

in the slow differential dephasing regime. (e, f) The total spectrum. Thef slow differential dephasing to the case of fast differentia
left-hand plots show the spectral region near the isotropic shift frequencyqtéphasing as one of the relaxation rates is increased. T
site k; the right-hand plots show the spectral region near the isotropic ShIJSOtI’OpiC shift frequencies are ordereﬁ" > o The Spectrall

kK *

IS0,
iso

frequency of sitg. The parameters awe;*/2m = 1000 Hz;w/27 = —1000 ]
Hz;r, = 250 sS4 1, = 900 s |w{/27| = 75 Hz. peak near the frequency;” is therefore called below the

“right-hand peak,” while the spectral peak near the frequenc
wy’ is called the “left-hand peak.” In the plot shown, the

ing spectrum shows a relatively narrow peak around the fréght-hand transverse relaxation ratds held fixed, while the

quencyw;® and a broad split peak arours)®. left-hand rater is progressively increased, starting from the
2. Fast differential damping|r.| > |w{]). In this regime, case of no relaxation differentia] = r, and ending up at the
the carousel average NMR signal is extreme differential casg, > r; + |o{"|. Plots a and b are in

the slow differential dephasing regime, while plots d—f are ir

(s(t)), = b_exp{(iw* — r )t} + b, exp{(iv{* - r.)t} the fast differential dephasing regime. Plot ¢ is at the coale

o o cence point, for whichr,| = |w{].
+ boexp{(iwg°® — r )t} + b_exp{(iwy° — r)t},

(93]

K j
where a x2 b x10
b+=%(1ir$> [94] o T
and c N d
r.=7+1iR [95]

The quantityR is a real number in the regime of fast differ- e ey f
ential dephasing. , , : . . .
After Fourier transformation, the signal takes the form -1500 -1000 -500 500 1000 1500

(S(w)), = b_L(w; ©=, 1) + b, L(0; 0, 1.) (@/2m) / Hz

J L}
. iso . iso FIG. 6. (a—d) The four components of the real part of the spect®(a@)
+ b E(w; 0 1) + b-Z(0] 0 1y). in the fast differential dephasing regime. (e, f) The total spectrum. Th
[96] left-hand plots show the spectral region near the isotropic shift frequency «
site k; the right-hand plots show the spectral region near the isotropic shi

Th t . . it ff L tzi frequency of sitg. The vertical scale in plots a—e are expanded by a factor o
€ spectrum IS again a Superposition or ‘Tour Loren Zlaé?the vertical scale in plot b is expanded by a factor of 10. The parameters &
peaks. The spectral amplitudes are real, so that the real par,®f = 1000 Hz; w27 = —1000 Hz;r, = 250 s r, = 2000 s*

the spectrum contains only absorption mode contributions. Tl&’/27| = 75 Hz.
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k j coupling,” even when the isotropic shift frequencies are widel
separated.
a A ﬂ The process sketched in Fig. 7 may be interpreted as a fol
of self-decoupling by rapid transverse relaxatiorhis is an
unusual NMR phenomenon. It was observed many years ago

b AN the liquid-state NMR of coupled spin systems which are ir
chemical exchange with paramagnetic spect.(

c Transverse self-decoupling should not be confused wit

A similar phenomena involving longitudinal relaxation. For ex-

ample, rapid spin—lattice relaxation of a coupling partner i
d Q well-known to cause collapse of the spin—spin splitting. Thi

has been termed “scalar relaxation of the second kind”
Abragam (61). This mechanism is independent of tiia@s-

e / E verserelaxation of the coupling partner.

Another related effect involves decoupling gpid cross-

f JL relaxationof the coupling partner with one or more additional

spins. In solid-state NMR, self-decoupling arises when th

1500 1000  -500 500 1000 1500 coupling partner is involved in a rapid exchange of longitudina
spin magnetization with homonuclear coupling partné&a—(

(w/2m) / Hz 67). In solution NMR, longitudinal cross-relaxation of the

FIG.7. Rotational resonance spectra as a function of one of the transveRQUPIING partner has been shown to cause a partial collapse
relaxation rates. In all plots, the parameters are givemy2= = 1000 Hz; Spectral splittings (68). These phenomena should be stronc
w2 = —1000 Hz;r; = 250 s |wf’/27| = 75 Hz. The transverse distinguished from the transverse self-decoupling phenomen

relaxation rate constant of the left-hand pegls increased from top to bottom qescribed in this paper, which does not require magnetizatic
in the figure. (@Y, = 250 s*; (b)r, =500 s (c)r, =721 s (d)r = exchanae or cross-relaxation
1000 s*; (e)r, = 2000 s*; (f) r, = 5000 s™. Plot c is at the coalescence 9 )

point. DTR Powder Simulations

The analytical expressions given above ignore chemical sh
Figure 7a shows four resolved Lorentzians, of equal widthanisotropy and-couplings and only involve an average over
with a rotational resonance splitting corresponding to the rese single Euler angles. We have performed realistic spec-
onant dipolar Fourier componefi$’|. As the decay rate tral calculations by using a variant of the COMPUTE algorithn
associated with thieft-hand peak yis increased, the splitting (20-23) to integrate the Liouville equations of motion, Egs
on the right-hand peakgradually collapses, and all peakq440] and [42], including all relevant spin interactions. A de-
broaden. At the coalescence pdint— r,| = |w$’| (Fig. 7c), scription of the L-COMPUTE algorithm, suitable for Liouville
the rotational resonance splitting disappears on the right-hamhce calculations, is given in the Appendix.
peak, although the splitting persists on the left-hand peak. Figure 8 shows some realistic L-COMPUTE simulations o
When the rater, is increased further, the left-hand peal1,20-°C,-all-E-retinal at then = 1 rotational resonance in a
becomes broader, while the right-hand peak becomes narroweagnetic field of 9.402 T. These simulations are full powde
For very large decay ratas, the left-hand peak essentiallyaverages, using the estimated chemical shift and spin coupli
vanishes, while the width of the right-hand peak is reducgzhrameters specified in Re69). The simple DTR model is
until it attains the limiting value € set by the correspondingused in these simulations. The C11 and C20 sites are assigr

decay rate constant. different transverse relaxation rate constantsandr ,,, which
The integrals of both spectral peaks are constant throughaw assumed to be uniform for the whole sample and indepe
this progression. dent of orientation.

The behavior of the right-hand spectral peak in Fig. 7 The simulations shown in Fig. 8 have the same value fgr
resembles the case of two-site chemical excha®de-38). while the value of ;; increases on progressing down the figure
Indeed, the mathematical forms of the rotational resonan€he other simulation parameters are described in R&). (
peakshapes and the symmetrical two-site exchange peakote that the increase in the C11 transverse relaxation re
shapes are identical. The behavior of the left-hand peak, on thehas the most dramatic effect on the C20 peak. At rapid C1
other hand, is more unusual. Related effects have been odlaxation rates, the C20 peak loses the rotational resonar
served for strongly coupled two-spin systems in isotropic ligplitting and assumes a tent-like shape. At the same time, t
uids, in the presence of rapid transverse relaxation of one of theese of the C11 peak is broadened, and the splitting becorn
coupled sites (56—-6§0The phenomena described in this papeslightly deeper. These phenomena are qualitatively similar |
are more striking because rotational resonance induces “straéing experimental results in Fig. 2c.
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C20 induction decay (in the case of slow motion) to an exponenti
decay (in the case of fast motion). Some models of nonexp
nential relaxation in the intermediate regime were also e»
plored (61). In polymer science, nonexponential relaxatio
models such as the Kohlrausch—Williams—Watts “stretche
exponential” are widely usedrQ). These models might be
applicable to the problem of imperfect heteronuclear decot
pling, since it may be argued, at least qualitatively, that spi
diffusion within the abundant spin system has a similar effec

to molecular motion; the spin polarizations are exchange
instead of the molecular positions.
It is difficult to apply these more sophisticated relaxatior

models to the present problem, since they cannot be accon
dated within the framework of the Liouville—von Neumann
equation (Eq. [18]), which is linear, first-order, and homoge
neous.

In this paper, we take the nonexponentiality of the transvers
relaxation into account in a crude way. The results of tw
separate DTR calculations, using different pairs of transver:
relaxation rates, are superimposed. We call thisrthatiple
differential transverse relaxation model.

(w/2r) / kHz Our choice of this model is dictated by practical consider

FIG. 8. Simulated powder average rotational resonance spectra of 11,?6!0ns__lt is the SlmplpfSt m0de| which is nonexponential an

1C,-all-E-retinal. The simulation parameters are given in ReR)( The Yetwhich may be readily simulated. Nevertheless, recent wo
transverse relaxation rate constant for the C20 site is equabte 126 s* on the decoupling problem suggests that there may also
throughout. The transverse relaxation rate constant for the C11 site is givergyme theoretical basis for this approach, at least on a quali
(@ry, =126 3’11; 0)ry =157s% () ry, =189 st (d)ry, = 220 s tive level.
(€)ru = 251" A number of workers have examined the problem of heterc
nuclear spin decoupling in the presence of magic-angle spi
%%ia-‘g (24-32). It is widely recognized that heteronuclear de
d

22 -8 10.0 104

The qualitative agreement between these calculations
the experimental RR spectrum is encouraging. However, a f
explanation must pass a more rigorous test. It should be POS
sible to use the same parameters to explain the spectra botr%

and off rotational resonance. In particular, the narrow spect ere the application of a RF field to one of the spin specie

peaks off rotational resonance must be explicable. causes a strongecouplingeffect, if a rotary resonance condi-

The simple I.:)TR model does not qglte pass this .test. {gl:tn is satisfied 29, 30). Normally, this first-order recoupling
order to - obtain _good agreement with the experiment ect occurs in the presence of rather weak RF fields.
spectrum at rotational resonance, one mustluse a relaxatlop{ecemly’ Ernst and co-workerg1) investigatedsecond-
pgramgterrk for the Cl.l site equal 10-250 s~. When th? order recouplingeffects which occur in the presence of strong
simulations are run W!th the same para.met.ers off rotatlor]§|: fields. These authors identified the chemical shift aniso
resonance, the result is a C11 peak which is too broad bXO?)y of the irradiated spins as a mechanism of second-ord
factor of around 2. recoupling. The treatment predicts-e 00-Hz splitting for the
C peaks of magnetically isolated CH groups, under typice
MDTR Model magic-angle spinning conditions and strong proton decouplin
Broadenings of this magnitude are rarely observed irttbe
The weak point in the DTR formulation is the representatiodMR of typical organic materials. Ernst and co-workerd)
of the residuafH-"C interactions by an oversimplified relax-pointed out that in most cases, the second-order recoupli
ation model. The treatment may be made more realistic bjfects are quenched by rapid spin diffusion among the abu
taking into account the nonexponentiality of tHE transverse dant spins. The partially decouplédC peak shapes of ada-
relaxation. The slightly broad base of the C11 peak in Fig. 3santane could be explained by using a kinetic exchange mat
is experimental evidence of this nonexponentiality. to model the'H—"H spin diffusion process6{). This is a
Abragam (61) has shown that in dipolar coupled systemglatively simple case, in which none of the interactions ar
molecular motion causes a transition from a Gaussian-like freongly anisotropic.

pling becomes less effective at high spinning frequencie
e to destructive interference between the decoupling fie
d the sample rotation. Particularly strong effects are ol
Ned in systems containing isolated heteronuclear spin pai
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Let us speculate on an extension of the kinetic exchange C11 C20
model of Ernstet al. (67) to the case of typical strongly
coupled organic solids. In these systems, the importance of
'H-'H spin diffusion for good heteronuclear decoupling has
been supported by a variety of experimental observati®@s ( a
28, 62—64). Consider the case ofC spin with a strong
dipolar coupling to a single neighborinig spin, which par-
ticipates in a network of couplings to other protons. This is the
situation for the C11 site in sampleThe cross-relaxation of b
the directly bonded proton with the neighboring protons may
be modeled through a stochastic exchange process for the /\/\
proton between the two Zeeman stafes) and |—3). The
solutions of such kinetic treatments have a well-known form c
(58): For rapid exchange between two sites, the spectra have
the form of two superimposed Lorentzians, one broad and one
narrow. If the exchange rate is very fast, the broad component
is weak, and a single narrow Lorentzian survives. If the ex- d
change rate is relatively slow, the broad component is more
prominent, and the relaxation is visibly biexponential. These A
results hold for fast exchange rates, beyond the “coalescence . ‘
point.” -2.2 -1.8 10.0 10.4
This biexponential behavior is already suggestive of the (@/27) / kHz
MDTR model of the*°C transverse relaxation. Furthermore,
the kinetic exchange model of decoupling suggests a possiblEIG. 9. Rotational resonance spectra of 11,20-all-E-retinal. (a) Sim-
rationalization of the static field dependence and/or spinnig%i&gﬁlfri”fsif'i"e?:)?;‘ti;??afggzt:;gf r{z(;} }= {15835;1 1111332: 11}} g
frequency dependence Of.th? RR s_pectra. . Superposition O?Simulation a(weight0.6% ar?fj simulation b (Weightb.33). (c
When the static magnetic field is increased, ‘tHechemical Experimental spectrum df corrected for natural abundance signals.
shifts and shift anisotropies become larger, in frequency units.
This increases the second-order recoupling effect, which in-

volves a combination ofH chemical shift a_nisotr(;iig_s andystational resonance spectra, including the static field depe
H——"C dipolar interactions. In addition, the increasgtiso- dence. At the moment, we have simply used the MDTR mod

tropic chemical shift dispersion is expected to attentuate t an empirical fashion, adjusting the relevant parameters -
'H-'H spin diffusion, which appears as an exchange rate in t Btain a reasonably consistent treatment

kinetic model. Furthermore, a higher static field requires a5ome MDTR powder simulations are presented in Fig. ¢
corresponding increase in the spinning frequency if rotationlz_aj .

resonance is to be maintained. Faster spinnind i igure 9a shows a simulated RR spectrum obtained with sir
: pinning is also expecfar values for the transverse relaxation rate constants of tf
to slow down théH-"H spin diffusion. All of these effects pull | i . . . O
in the same direction—from the “fast exchange regime,” whe &0 sites. Since the.rglaxfa\tlon d|ﬁer§ntlal is small, the rota
the relaxation is expected to be purely exponential, to tﬁ'@nal resonance sphtt_mg Is clearly displayed for t_)oth pe_aks
neighborhood of the coalescence point, where the transversd!"® 9b shows a simulated RR spectrum obtalnediywth
relaxation becomes strongly biexponential. strong rela>gellt|on differential for_the two sitels,{ = _5_03 S5
The kinetic exchange model of spin decoupling suggests that = 113 s ). The C20 peak displays no RR splitting in this
high static magnetic fields and/or spinning frequencies causga$€- BY superposing these two subspectra (Fig. 9c), wi
markedly increased nonexponentiality of the transvefee relative weights of 2:1, one obtains a simulation which is ir
relaxation. rather good agreement with the experimental RR spectru
The kinetic model sketched above is expected not to hold féig- 9d). The triangular form of the C20 peak is rather well
methylene (CH) groups, in which theC spin is strongly reproduced, as well as the broad base of the C11 peak.
coupled to two protons, which have a strong mutual homo- Crucially, the same MDTR parameters provide good agree
nuclear coupling. There is experimental evidence that, C#nent with experiments off rotational resonance. Figure 1
groups behave rather differently and have significantly nonestows a set of simulations and experimental spectra at
ponential transverse relaxation even at moderate fields a@minning frequencyw/27 = 10.000 kHz. The simulated and
spinning frequencies (see below). experimental peaks have comparable widths, and the bro
Although these arguments are speculative at present, theybdse of the experimental C11 peak is reproduced well in tf
seem to point toward a qualitative explanation of tH€ simulation.




ANOMALOUS ROTATIONAL RESONANCE SPECTRA 395

C11 C20 kHz nutation frequency) was insufficient to achieve ideal RF
peakshapes.

IV. ALTERNATIVE EXPLANATIONS

The above model was formulated only after considerin
many other explanations, all of which we could rule out by
further experimental tests and other evidence. In this sectio
we sketch briefly a number of postulated mechanisms and o
reasons for rejecting them.

It should be recalled that a successful explanation must |
consistent with the following observations: (i) narrow spectra
peaks are obtained off rotational resonance; (ii) the two Rl
peaks have a very different form, with one peak split and th
other unsplit; and (iii) the RR spectra are field-dependent—ic
the labeled retinal, peakshape anomalies are observed at 9.-
T but not at 4.702 T. This apparent field-dependence could al
be a disguised dependence on the spinning frequency, sir
when the magnetic field is doubled, the spinning frequenc
22 1.8 100 104 must also be doubled to maintain the RR condition.

-

e

(w/2m) / kHz Isotopic Impurities

FIG. 10. Spectra for 11,20°C -all-E-retinal, at 2 spinning frequency  peects in the isotopic distribution, such as an excess of tt
/2w = 10 kHz (well off rotational resonance). (a) Simulation using relax- ’

ation rate constantsr{,, r,} = {126 s* 113 s%: (b) Simulation using <20 .Ia'b.el, could 'pe'rturb the right-hand peak in Fig. 2c. Thi:
relaxation rate constants {;, . = {503 s, 113 s}; (c) Superposition of POssibility was eliminated by mass spectroscopy and solutic

simulation a (weight 0.67) and simulation b (weight 0.33). (d) ExperimenttlMR, as well as by the absence of the RR anomalies at 4.702
spectrum ofl, corrected for natural abundance signals.

Intermolecular®*C—"C Interactions

In isotopically nondiluted material, homonuclear interac:
tions betweenC spins on different molecules are known to
If this explanation has any merit, then the RR spectra shodrturb the rotational resonance peak shapes. We eliminat
be sensitive to modulated decoupler schemes which changetf)g possibility by using a sample in which tH&,-labeled
decoupling characteristics at high spinning frequencies. R@blecules were diluted in nonlabeled material.
example, the popular TPPM scheme has been reported t@ a field of 9.402 T, the RR peak shapes of nondiluted 989
increase apparent peakegralsas well as peak heights at higha||-E-retinal have a similar form as for the diluted sample, bu

spinning frequencies (31). This may only be explained if thgith a superimposed additional broadening. The spectrum
partially decoupled peaks have very broad bases which easily

escape notice in the usual spectrum and which are reduced by

Modulated Decoupling

TPPM decoupling. C11 C20
TPPM decoupling does indeed have a strong effect on the

RR peakshapes df The spectrum shown in Fig. 11b was

obtained at 9.402 T with TPPM proton decoupling. The proton ak A

decoupler field corresponded to a nutation frequency of 82

kHz. The phase of the decoupler field was switched between

the values+22.5° every 7us. A barely resolved splitting is b _///L

obtained on the C20 peak under these conditions. We were vhf/L B

again able to simulate the experimental spectrum quite well by
superposing two DTR subspectra. The simulation shown in
Fig. 11a employed the same pair of simulations as used in Figs. (w/2m) / kHz

9a and 9b, but with weights of 6.7:1. _ . N
Increasina the amplitude of the CW decoupler field. witho FIG. 11. Rotational resonance spectra of 1120,-all-E-retinal, in the
9 p p ! Lé)“esence of TPPM decoupling (experimental parameters given in the text). |

introducing phase modulation, changed the RR peak shag@gerposition of the simulation in Fig. 9a (weight 0.87) and Fig. 9b (weigh
gradually. However, the available decoupler level (up to 1Q0L3). (b) Experimental spectrum bfcorrected for natural abundance signals.

-2.2 -1.8 10.0 10.4
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nondiluted 98% alE-retinal at a field of 4.702 T has been Simulations show that the peak shapes atthe 1 RR are

discussed in Ref.g). very insensitive to changes in the tensors. In addition, the sm:
peak shape changes which are induced by large modificatio
Isotropic Shift Dispersion of the CSA tensors are always nearly symmetrical for the tw

Rotational resonance peak shapes which disagree with i ks, in disagreement with the observed effects.

ple spin-pair simulat.ions have been reported befof\‘ffolecular Motion

(11, 17, 72). However, in most of these cases, the sample had

a dispersion of isotropic chemical shift values, due to imperfect There is no evidence for significant molecular motion on :
crystallinity, inhomogeneous hydration, or a distribution dime scale which might disturb the rotational resonance ph
molecular conformations. A spread in chemical shifts cause@menon. The peak shapes off RR are very narrow. ‘f@e
some of the spin pairs to be off rotational resonance, unless gfén—lattice relaxation time constants are long (several se
two isotropic chemical shifts are perfectly correlated (as oends).

curs, for example, in the case of susceptibility broadening). It

is possible to contrive shift distribution models which reprgNonsecular Effects

duce the anomalous spectral appearance shown in Fig. 2¢. There have been several reports of small effects who:
_ However, in order to explain the anomalous RR peakshapggerpretation requires a correction to the usual secular form:
it is necessary to invoke an isotropic chemical shift distributiope spin Hamiltonian in high magnetic field3-76). Kundla

which is quite broad (about 50 Hz in frequency units). Suchg ippmaa 73) analyzed rotational resonance spectra in th
shift distribution would be highly visible in the off RR spectrapresence of nonsecular perturbations and predicted vario

which is not the case. field-dependent peak shape phenomena.
o ) However, these nonsecular effects are only of the order of
Spinning Axis Errors few Hertz under the conditions described here. They are tc

The angleB, between the spinning axis and the static fieldmall to explain the observed anomalies.
should be equal to the “magic angle” arctef. A misset from . . _ .
this angle broadens the NMR peaks by an amount proportionAfiréct Spin-Spin Coupling
to 3 co$Br. — 1 multiplied by the shift anisotropy. Simula-  The isotropicJ-coupling between the C11 and C20 spins i
tions show that an angle misset of around 0.4° gives rise gaown from solution NMR and is very small (less than 3 Hz).
effects which are qualitatively similar to those shown isimulations indicate that it cannot explain the observed anor
Fig. 2c. alies.

However, a misset spinning axis would lead to broad peaksin principle, the rank 1 and rank 2 parts of the indirec
off RR, which is not the case. This mechanism was definitive§pin—spin coupling should also be considered. If these tern
ruled out by taking a set of NMR spectra as a function afere very large (~100 Hz), simulations show that both coul
spinning axis anglegr., bracketing the magic angle in veryperturb the RR spectra significantly. However, such large ir
small steps. It proved to be impossible to remove the pegltect spin-spin interactions are physically implausible. Fur

shape anomalies by adjusting the spinning angle. thermore, the spectral effects are predicted to be symmetric
for the two peaks. In addition, this mechanism cannot explai
Spinning Frequency Fluctuations the field-dependence.

The experimental spinning frequency was stabilized to about
+2 Hz. Simulations show that fluctuations in the spinning
frequency of this magnitude do not perturb the peak shapesl_o summarize, we propose that the anomalies in the rot
significantly. Larger fluctuations do perturb the theoretic%l 4

3, 3, H
peak shapes, but always in such a way as to leagirfonetrical onal resonance”C spectra of 11,26°C,-all-E-retinal are

perturbations of the two spectral peaks (ie., the two pea(r‘(aused by the following factors: (i) th€C transverse relax-
appear as near mirror images of each othe.r).' ation is augmented by imperfect decoupling of abundant spin

The experimental shapes of the two peaks are very differeﬁ'l) this transverse rela_xat|on IS no_nexponent!al,_ espeually_f
) : ) igh spinning frequencies and/or high magnetic fields, and (ii
so this explanation was rejected. : . :
the dynamics of coupled spins at rotational resonance a
strongly affected by this perturbed transverse relaxation, pa
ticularly by fast-relaxing components which easily escape nc
Simulations of rotational resonance spectra require knowiee in a spectrum taken off rotational resonance.
edge of the magnitude and orientations of the chemical shiftThese peak shape anomalies have the feature that sn
anisotropy tensors. Uncertainty in the CSA principal valuetecoupling imperfections for one of the coupled sites tend t
and orientations could be a source of error. perturb most strongly the peak associated withdtteer site.

V. DISCUSSION

Uncertain Chemical Shift Tensors
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signals from the minor 13C isotopomer; however, the abun-
dance of this isotopomer is too low to explain the peak comr
pletely. The model discussed above explains the anomalo
form of the C1 peak in terms of decoupling imperfections fol
the C2 (methylene) site. A MDTR simulation, using the spir
interaction parameters given in Ref7(), is shown in Fig. 12c.
The general features of the experimental spectrum are repi
duced qualitatively. Better agreement could presumably k
obtained by adding more MDTR components and allowing fo
minor isotopomeric contributions.

In the case of 98% [1,2C,, *N]-glycine, the RR spectral
anomalies appear even under “mild” conditions (low stati
field and low spinning frequency). We do not understand thi
behavior at the moment, but it may be associated with th
special features of spin dynamics in a Ggtoup, in which two
strongly coupled protons interact with the saf@ spin.

Even zinc *C,-acetate, which is widely used as a mode
a0 2.0 0 2.0 4.0 compound for rotational resonance studies, often display

(w/2m) / kHz small specFraI anomalies. It is_ rather usual to obtain a “bumg
near the middle of the less-shielded C1 (carboxylate) peak. £

FIG. 12. *C spectra of 98% [1,2)C,, *N]-glycine at a field of 4.702 T, example may be found in Fig. 7e of Re&)( This bump has
on then = 1 rotational resonance conditioa (27 = 6.660 kHz). The spectral gometimes been attributed to isotopic impurities, but it seen

regions near the C1 and C2 centerbands are shown. (a) Spectrum of 989 . . . .
[1,2-°C,, *N]-glycine (16 acquired transients). The spectrum was obtained Ej)ﬁ@ly that this feature is really due to imperfect decoupling o

a Chemagnetics CMX-400 spectrometer, using a 4-mm zirconia rotor. ()€ Protonated C2_(methyl) site. _ _
Conventional simulation of (a), using the parameters given in R&). (The The treatment given here also predicts the existence of R

effect of the™N spin is ignored. (c) Liouville space spectral simulation. Aspectral anomalies in other circumstances. For example, che

MDTR model is ;Jsid with two pairs of relaxation parameters;{r c.} ~ ical exchange processes, or unresolved homonuclear couplin

E\?\;;Z'h?'gg};; 10°s ™" (weight 0.76), and{ca i} = {10.3, 028} 10°S™  go10tively accelerate the transverse relaxation of spins in p:
ticular sites and should cause similar spectral perturbations
rotational resonance. The extreme sensitivity of the RR spect

Roughly speaking, rapid transverse relaxation of one of thedifferential transverse relaxation may be useful for studyin

sites takes those spins out of rotational resonance and narrewsh weak broadening mechanisms.

the spectral peak associated with the coupled site. Finally, we would like to address two further issues: (i) what

We have produced a Liouville space theory of rotationalo these results mean for the quantitative application of RR |
resonance in the presence of exponential transverse relaxatinalecular structure determination, and (ii) what implication:
which explains the qualitative features of the anomalous pedd these results have in the wider NMR context?
shapes. Good agreement with experiment is obtained by takingwo different RR effects are commonly used in biomolec:
into account the nonexponentiality of the transverse relaxatiaar structural studies: longitudinal magnetization exchang
We have used a simple model in which two simulations witand one-dimensional RR spectra. The implications for RI
different pairs of relaxation parameters are superposed. spectra are addressed first.

These rotational resonance effects are not restricted to exoti€learly, the above conclusions imply that rotational resc
samples. Consider, for example, the RR spectrum of 98%nce spectra must be used with the utmost caution as a sou
[1,2-°C,, *N]-glycine, obtained from Cambridge Isotope Labef molecular structural information. The spectra are sensitiv
oratories (Andover, MA) and used without further purificatioo details of the transverse relaxation which are not unde
or recrystallization. The@ = 1 RR spectrum shown in Fig. 12acomplete control and which are hard to quantitate accuratel
was obtained at a static magnetic field of 4.702 T, a spinnifijuations such as Eq. [89] indicate that the spectral splitting
frequency ofw, /27 = 6.600 kHz, and a proton decoupler fieldsensitive to the transverse relaxation differential between tt
corresponding to a nutation frequency of 81 kHz. The lesseupled sites, as well as the structurally significant magnet
shielded (left-hand) spectral peak, associated with the C1 (cdipole—dipole coupling.
boxylate) carbons, shows a sharp central feature, which is nolNevertheless, this may not rule out structural applications
reproduced in the conventional RR simulation, based on BRR spectra, at least in some cases. As emphasized above,
isolated spin-pair model (Fig. 12b). (TH&N spin is not ex- most profound perturbations tend to occur on only one of th
pected to perturb th&C peaks significantly, and is neglectedwo peaks. Verdegenet al. (13) studied the observed RR
in the simulation.) This sharp feature may be due in part gplittings in a series of labeled retinals, taking into accour
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only the split peak, and found a good semi-empirical relation APPENDIX

between the splitting and the dipole—dipole couplings esti-

mated from the X-ray structure. The validity of this semi- The L-COMPUTE Algorithm

empirical approach relies on having compara@-"H dipo- |, s Appendix, we describe the L-COMPUTE algorithm

lar field environments for both model compound and targglseq for the simulations. This is an extension of the

More simulation work using the new theory is necessary ©o\mpyTE algorithm used for fast Hilbert space calculation:

determine whether this approach could be useful in ge”effi"periodic systems20—23). Liouville space calculations re-

applications. o . quire a modified algorithm, since the propagators are n
A new method for efficient double-quantum filtering O'Lnitary in general

rotational resonance spectra has recently been descid (|, the discussion below. the integefsand k no longer

This filtering scheme greatly reduces the spectral anomalies n@ﬁresent spin site labels. They are used instead to index ti

well as eliminating background signals), and may simplify the frequency domain components, as in R26)

quantitative interpretation of RR spectra. Suppose that the nuclear spins are subjected to a perio
The implications of the new analysis fangitudinal mag- | joyiliian {(t), with periodT. This may be represented as a

netization exchangat rotational resonance are less SeVelfsneating sequence af piecewise time-independent Liouvil-
Longitudinal magnetization transfer has been analyzed Witnignsf_ll:z L0, each Liouvillian being applied over
Liouville space approach for many yeats),(so the present a time intervahn = T/n | e

work holds few surprises in this regard. However, it appears
that even RR magnetization exchange studies must be more
attentive to thenonexponentialityf the transverse relaxation,
especially at high magnetic fields/spinning frequencies. At
least two exponential decay components may be needed®
model the zero-quantum relaxation. Recent direct measure- . ~
ments of zero-quantum relaxation have indicated honexponen- Lisn=1L;. [98]
tial decay, in some circumstanced).(

Methods have been developed which are less sensitive to T case of continuously varying Liouvillians may be handles
value of the zero-quantum relaxation rate constatlope- by increasingn indefinitely.
fully, these methods are also less sensitive to the nonexponenkhe Liouville space propagator for thi interval is denoted
tiality of the zero-quantum relaxation.

The theoretical analysis given above predicts the existence 3 = exp{l:jT}, [99]
of coherence transfer signals at rotational resonance. These
signals are caused by mechanically induced coherence tranggethat the sequence of propagafarbas the same periodicity
from one set of spins to the other during the acquisition of thg the sequence of Liouvillians,
NMR signal. The existence of such signals is a matter for
concern, since it challenges the common assumption that the S+n = s [100]
integrated amplitude of a given spectral peak faithfully repre-
sents the magnetization of just one set of spins at the beginniﬂge
of signal detection. The analysis given above shows that tr%g
assumption is safe. The integral of the coherence trans
signals cancels out, and the signals themselves disappear for R
powder samples, in simple experimental situations. A=S...55, [101]

Turning now to the wider implications, the present work _
indicates that it is very difficult, with current technology,'mleng the property
to dynamically isolate dilute spins from an abundant spin R L
matrix, especially in the case of high static fields and/or magic- Aiin= AA.. [102]
angle spinning frequencies. A more sophisticated theory of
spin decoupling under high field/fast MAS conditions, as wellhe numerical algorithm starts by diagonalizing the locally
as improved decoupling methodology, is needed. The residtiale-independent Liouvillianiij in order to estimate the ele-
contacts between dilute spins and abundant spins may hawvent propagatoré;,-. The matrix representations of the indi-
subtle and unexpected effects on solid-state NMR spectvagdual propagators are multiplied together to obtain the set ¢
which do not always correspond to a simple broadening of thecumulated propagatoﬁ@ and the full period propagat,,.
NMR peaks. These anomalies are expected to become mor&he period propagatoh, is not unitary in general. Diago-
widespread as static magnetic fields and spinning frequenaiedization ofA, leads to a set of eigenvalues a set ofright
continue to increase. eigenketdQY), and a set ofeft eigenbragQ:|, defined as

Ly =L f(j-Dr<t=ijr [97]

accumulated propagator over the firisttervals is denoted
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An|QsR) =v{QFY) and may be written as discrete Fourier series, with Fourie
L ) coefficients denoted® and 8%
(QslA, = (Qslve [103]
n/2
The operatordQf) and (Q;] are estimated in practice by el= > ekexpfi2mjkin}
numerical diagonalization oh,: k=—n/2+1
n/2
A, = XVX, [104] gl=>  %expli2mjk/n}. [111]

k=-n/2+1

where V is a diagonal matrix, with elements,. The right ) ) - .

eigenkets|QF) are the columns oK, and the left eigenbras Numen_cally, the Fourier _co_efﬁuents_s are calculated by
(Q!| are the rows oK *. In general, the set of operatd@s is evaluating the sets of periodic factoég, followed by a fast
not orthogonal. The set of operatds is also not orthogonal. Fourier transform. A similar calculation is performed to eval-

However, the right eigenkets are orthogonal to the left eigenate the Fourier coefficien® from the terms:, _
bras: If the initial density operator and observable operator fulfill

certain conditions (excitation—detection symmetry), it is pos
LQR) = THQY“QR = 5,.. 105] Sible to derive the coefficient®! from €. directly, saving
(QrlQ2) {Qr1Qs} = s [105] much calculation time2?2).

This makes it possible to write the unity superoperator in theThe NMR signal at time point = = is given by

following way:

s(j) = (QudA[p(0)). [112]
1= R)(QY]. 106
% Q)(Q] [106] By inserting a unity superoperator, this may be expressed &
By taking the logarithm of the eigenvalues and dividing s(j7) = 2 (QudAIQD(Q5[p(0))
by the periodT, we obtain the eigenvalues of thedfective s
Liouvillian, denotedz,, _ E %B1¢ %explz.j}. [113]
z,= T tlog v.. [107]

By employing the Fourier expansion @f., we get
The period propagator may then be written

X s(j7) = 2 2 akexp{(io — r9j7} [114]
A, = 2 exp{zT}HQN(QY. [108] s«

where
The effective Liouvillian eigenvalues are complex numbers

in general. ak= skgo
Suppose that the initial density operator corresponds to the s
superket|p(0)) and the observable operator to the superbra .
(Qud- It proves to be convenient to introduce the following ws=Im{z} + -
excitation and detection coefficients:
As= —Re{zy}. [115]

€L = (Q:{A} p(0))expl+ zj} _ _ o
. - . This equation shows that each effective Liouvillian eigenvalu
DL = (Qupd Al Q) expl —zij 7} [109]  z contributes a manifold of sidebands to the spectrum, spaced
frequency by the inverse of the modulation perios/ 2 The
These are calculated for time points= 1, 2 .. .n within one  complex amplitude of each sideband is givenay The center
period by straightforward matrix/vector multiplications. Bothrequency of the manifold? is the imaginary part of the eigen-

sets of coefficients are periodic value z.. All peaks in the same manifold have the same pea
_ _ width, specified by\, which is given by minus the real part nf
L =¢. All of these parameters are readily calculated numerically.

_ _ For a powder average simulation, the spectrum must &
DL =D [110] summed over a large number of molecular orientatifng.
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As shown below, the anghg,,x may be handled separately, but Q[ p]) = ALOJIQS[O])
this still leaves the integration overyr and . In practice, ) ) Ao 1
this is done by dividing the complex plane into a two-dimen- (QsLpll = (QsLOI{AL . [117]

sional grid of desired resolution, with one axis representing the

peak halfwidthsA, and the other axis representing the peakhe excitation and detection factors for the cyclically permute
frequenciesot. For each molecular orientation, the amplitudesequence are therefore

as, frequenciesnt, and peak halfwidths , are evaluated for

all eigenvalue indices and sideband indicds Each complex gl — (OL AP -1 500) ) exp! 42, i
amplitudesa’ is added to the grid point which is nearest to the Pl (QS_[ PIAI") e (0D exptizjr)
(frequency, peak width) coordinateof, A,). The complete = €L"[0]exp{-zp7} [118]

amplitude matrix is built up by repeating the calculation for all

eigenvalue and sideband indices and all molecular orientatioggd
Each slice through the matrix of complex amplitudes, taken

parallel to the frequency axis, represents a set of peaks with i _ - R .

different frequencies but identical widths. Each of these slices 9] = (Qud{A]"| QT PDexp{ 2]}

is converted into a subspectrum by (i) inverse Fourier trans- = % PY[0]exp{—zpT} [119]

formation, (ii) multiplication by an exponential decay function

with a decay rate appropriate to the peak width parameter  the NMR signal for the cyclically permuted sequence at tim

that slice, and (iii) forward Fourier transformation. Repetitiop — jr may therefore be written

of the calculation for all slices and summation of the subspectra

yields the total powder average spectrum. The conversion of

the two-dimensional amplitude matrix into a spectrum is only stP(jr) = 2 DU plé L plexplzj
performed when the entire powder average is complete. If °

many orientations are involved, this step does not represent a = 2 PPH[0]€ P [0]explzjT}. [120]
large fraction of the total computational time. s

We now turn to the special treatment of the Euler angjg

Several groups have shown that the average over the EWer sing the Fourier series expansions of the excitation ar

angle yyz may be handled implicitly in the Hilbert spaceyetection factors, one obtains the NMR signal for the cyclicall
COMPUTE algorithm (21-23). The reduction of the powdesermuted sequence,

average to a two-angle integration leads to an increase in
computation speed by a factor of at least 5 in most cases. We . . .
shovs below thgt L—CéMPUTE allows a similar acceleration. stP(jn = 2 X afplexp{(ivs — At} [121]
If RF fields are absent, a change in the Euler anglg is sk
equivalent to a cyclic permutation of the periodic Liouvillian. ) .
The average ovey, is therefore aarousel averagever all  With the sideband amplitudes
cyclic permutations of the periodic perturbati@®( 53). In the
discussion belowy,r averaging is expressed in terms of an al pl = > 84 0]ek[0]expli2m(k + k') p/n}. [122]
average over the cyclic permutation index K
Suppose thay elementd_; . . . [, are moved from the front
to the back of the periodic sequence of Liouvillians. Thifjote that the sideband frequencie$ and peak widths\, are
cyclically permuted sequence is denoted Ipy [n the follow-  ynaffected by the cyclic permutation.
ing discussion. The accumulated propagators for the permutedthe NMR signal may be averaged implicitly over all cyclic
and nonpermuted sequences are related through permutationsp. Denoting this carousel average by anglec
brackets, the NMR signal is

Alpl — A0l fA[ON -1
AT = ApsitAgTh (s(im) = 3 S (@Yexp{ios — A)jr},  [123]
AL = ADADYAL) 2, [116] o

where

The cyclic permutation does not change the eigenvalyed

the period propagator. The right eigenkets and left eigenbras, n

on the other hand, are modified by the cyclic permutation, (@ =n"1> ap]=s640]e;0]. [124]
according to p=1
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The last line is exact ih is sufficiently large. This equation 10. Perform a fast Fourier transform on the sets of numbe
implies that theyys-averaged sideband amplitudes are okg! to obtain the Fourier coefficients:.

tained by combining the excitation and detection sidebandl1l. In the case of excitation—detection symmetry (see Re
amplitudeseX and 8¢ in complementary pairs. An explicit (22)), derive the detection coefficiend§ from the excitation
integration overy, is unneccessary. This is a generalizatiopoefficientses. In the general case, calculate the set of dete
of the Hilbert space resul2(-23). tion coefficients% separately using Eg. [109] and perform a

To calculate the full powder average, the calculation Becond fast Fourier transform to obtaif
repeated for a set ofiyg and Bye values. The resulting 12. Calculate the set ofs-averaged complex amplitudes
two-dimensional matrix of complex amplitudes is handled 48<) by multiplying the numbers; and e, “ according to Eq.
described before. [124].

The result in Eq. [124] does not rely on a particular rela- 13. Add the complex amplitude;) to the two-dimensional
tionship of the initial density operator and the observabfMplitude matrix, at the coordinates defined by the frequen
operator. However, application of this result is restricted tgs and peak width,, as given in Eq. [115]. Repeat for each
problems in which a change ifx is equivalent to a cyclic Sideband index and each eigenvalue index S
permutation of the spin system Liouvillian. This is correct if 14- Repeat steps 4-13 for the other blocks of the Liouvilliar
resonant radiofrequency fields are absent or in the presence of>: Repeat steps 2-14 for all pairs of Euler angtes{ Sur}-

a time-independent RF field. Apart from RR calculations, this 16- Convert the two-dimensional amplitude matrix into &
result should be useful for calculating powder MAS spectra ﬁpectrum. F|r§t initialize the s_pectrum to zero. Then perform_a
the presence of chemical exchang¥,(79). The effect of inverse Fourier transformatlon on ea_ch row of the matrix
unresolved homonuclear couplings could also be modeled rgyltlply by an exponential decay function, perform a forwarc

Liouville space calculations including irreversible damping di urier transforme:ctlonr,]and add to 'Fh;adspectrgmd_;or each rc?
the transverse coherences. the rate constant for the exponential decay is different an

To summarize, the L-COMPUTE algorithm, incorporatin%iven by the peak width coordinake Add together the spectra
implicit averaging over the angle,r, involves the following enerated by all rows.

steps: Code for L-COMPUTE simulations of RR spectra may be
downloaded from the internet site www.fos.su-sefl.
1. Initialize the matrix of complex amplitudes, and the fre-

guency domain spectrum, to zero. _ ACKNOWLEDGMENTS
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3. If the Liouvillian is bIock-diagonaI handle the b|OCk§he Goran Gustafsson Foundation for Research in Natural Sciences and M
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computational efficiencyn should be an integer power of 2.
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