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Magic-angle spinning NMR spectra of samples containing di-
ute spin-1

2 pairs display broadenings or splittings when a rota-
ional resonance condition is satisfied, meaning that a small inte-
er multiple of the spinning frequency matches the difference in
he two isotropic shift frequencies. We show experimental rota-
ional resonance NMR spectra of a 13C2-labeled retinal which are
n qualitative disagreement with existing theory. We propose an
xplanation of these anomalous rotational spectra involving resid-
al heteronuclear couplings between the 13C nuclei and the neigh-
oring 1H nuclei. These couplings strongly influence the rotational
esonance 13C spectrum, despite the presence of a strong radiofre-
uency decoupling field at the 1H Larmor frequency. We model
he residual heteronuclear couplings by differential transverse
elaxation of the 13C single-quantum coherences. We present a
uperoperator theory of the phenomenon and describe a numerical
lgorithm for rapid Liouville space simulations in periodic sys-
ems. Good agreement with experimental results is obtained by
sing a biexponential transverse relaxation model for each spin
ite. © 1999 Academic Press

Key Words: magic-angle spinning; rotational resonance; super-
perators; COMPUTE; heteronuclear decoupling.

I. INTRODUCTION

Nuclear spin transitions may be driven by mechanical r
ion of a solid sample. This process is particularly efficien
ell-defined values of the sample rotation frequencyvr, called

he rotational resonances(RR) (1–17). The phenomenon h
een investigated most thoroughly for the case of dilute
f spins-12 in nonequivalent molecular sites, in the presenc
agic-angle spinning (MAS) (18, 19). Prominent rotation

esonance phenomena are observed at the conditionsvD
iso 5

v r, where the difference in isotropic chemical shift frequ
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ies is denotedvD
iso, and n is a small integer, called th

otational resonance order (1–17).
Rotational resonance has two main effects on the nu

pin dynamics: (i) spectral broadenings and splittings an
ccelerated exchange of Zeeman magnetization bet
earby molecular sites. Both effects may be used to est
istances between nuclear spins, and hence, provide mol
tructural information. Rotational resonance is widely use
his purpose in biological solid-state NMR (10–17).

Many applications of rotational resonance concern pairs o13C
pins, introduced into organic molecules by specific isotopi
eling. The13C2-labeled molecules are often diluted in a matrix
nlabeled material, in order to isolate them from each other, o

imescale of the NMR experiment. In addition, a strong
ecoupling field is usually applied at the Larmor frequenc
bundant spins, such as protons. Under these conditions
enerally assumed that the13C pairs represent isolated 2-sp12
ystems, with simple and predictable spin dynamics.
The dynamics of the coupled spin pairs are readily simu

umerically (20–23). In many cases, all of the parameter
he spin Hamiltonian are known to a good approximat
ncluding the chemical shift anisotropies and their orientati
his usually allows good agreement to be obtained betw
imulations and experimental results. For example, in a d
nt paper (8), we present results on a13C2-labeled retina
ample at a rather low magnetic field of 4.702 T. The obse
otational resonance spectra are in good quantitative agre
ith simulations for isolated 2-spin-1

2 pairs.
Surprisingly, this good agreement doesnot persist at highe
agnetic fields. As shown below, the13C MAS NMR spectra
f the same13C2-labeled retinal sample at a field of 9.402
isplay strong and qualitative disagreement with the pre

ions of standard rotational resonance theory.
This is disconcerting. The agenda of using solid-state N

or molecular structural studies would be at risk if the spect
f a well-controlled model system were in serious discrep
ith theory.
In this paper, we propose that the RR spectral anomalie

aused by heteronuclear interactions between the13C pairs and
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380 HELMLE ET AL.
he abundant protons. In some cases, the model of iso
pin-12 pairs breaks down significantly, even in the presenc
strong proton decoupling field. This breakdown of the

ated spin-12 pair model is typically observed at high static fie
nd at high sample rotation frequencies. However, some
les display significant anomalies even under much m
onditions, as shown at the end of this paper.
It is important to realize that RR spectra are much m

ensitive to decoupling imperfections than spectra take
otational resonance. When the rotational resonance con
s not satisfied, incomplete1H decoupling is associated w

inor spectral perturbations, such as broad peak bases,
re easily overlooked. At rotational resonance, on the o
and, even minor decoupling imperfections may lead to st
erturbations of the entire13C NMR spectrum.
A full understanding of RR13C spectra is therefore in
ately linked to the problem of heteronuclear decouplin

otating solids—a complex subject in its own right (24–32). In
he current paper, we employ two highly simplified repres
ations of the heteronuclear decoupling problem, which
hosen because they allow a relatively simple treatment o

13C2 spin dynamics.
In the differential transverse relaxation(DTR) model, the

esidual 1H–13C couplings are assumed to give rise to ex
ential transverse relaxation of the single-quantum13C coher-
nces. The exponential decay constants are in general dif

or the two 13C spin sites, reflecting the different local pro
nvironments. As shown below, thedifferential in the trans
erse relaxation rates proves to be particularly significant.
TR model provides a reasonable qualitative explanatio

he observed13C spectra at rotational resonance. However
TR model fails to provide a consistent treatment of the13C
pectra, both on and off RR.
The DTR model may be improved by taking into account

onexponentiality of the transverse13C relaxation, which tend
o become increasingly prominent as the static magnetic
nd sample rotation frequency are increased. In themultiple
ifferential transverse relaxation(MDTR) model, the nonex
onential decay of the13C single-quantum coherences is m
led by superposing the results of two (or more) separate
alculations. The MDTR model has been chosen since it i
implest model which allows the incorporation of nonexpon
ial relaxation effects into the Liouville–von Neumann form
sm. As will be shown, it is capable of good quantitat
greement between experiment and simulation, both on an
otational resonance.

The rest of this paper is organized as follows. In Sectio
e present experimental RR peakshape anomalies for the
le of 13C2-labeled retinal. In Section III, we present the the
f the RR peakshapes within the DTR and MDTR models.

ncludes a Liouville-space theory of single-quantum co
nces at rotational resonance, which provides analytica
ressions for the DTR peakshapes, under suitable appro

ions. We show that it is possible to attain consistent agree
ed
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etween experiment and numerical simulations within
ramework of the MDTR model. In Section IV, we pres
lternative explanations for the observed RR peakshape a
lies and give our reasons for rejecting them. In Section V
iscuss the implications of these results for RR methodo
nd for solid-state NMR in general. In the Appendix,
escribe a general COMPUTE algorithm for rapid Liouvi
pace simulations of powder-average spectra.

II. EXPERIMENTAL PEAKSHAPE ANOMALIES

Most of the experiments discussed in this paper concer
ompound 11,20-13C2-all-E-retinal, which has the molecul
tructure and labeling scheme shown in Fig. 1. The dist
etween the C11 and C20 sites, as determined by X-ray

raction (33), is 0.2966 0.001 nm.
The 13C2-labeled sample was prepared by known routes34)

rom 99% 13C-labeled starting materials. The labeled ret
as recrystallized fromn-pentane at220°C, together with
onlabeled all-E-retinal, in a molar ratio of 15:85. We refer

his diluted13C2-labeled sample asI.
In a recent paper (8), we present13C rotational resonanc

pectra ofI in a magnetic field of 4.702 T and show go
greement between experimental peakshapes and stand

ational resonance theory. Here, we examine the behavioI
t a higher magnetic field.
Figure 2a shows two regions of the NMR spectrum ofI at a
agnetic field of 9.402 T. The spectrum was taken at a spin

requency ofvr/2p 5 12.192 kHz, which satisfies then 5 1 RR
ondition. The decoupler field corresponded to a proton nut
requency of 82 kHz. The spectrum shows two strong broad p
rom the 13C labels, plus a number of smaller sharp peaks
aturally occurring13C spins in the rest of the molecule and
nlabeled matrix. The positions of these peaks coincide with

ound in the spectrum of unlabeled all-E-retinal, obtained unde
dentical conditions, which is shown in Fig. 2b.

A large number of isotopomers contribute to the spectru
ig. 2a. Apart from the deliberately introduced 11,20-13C-

sotopomer, there are numerous13C1 and 13C3 isotopomer
rising from the natural incidence of13C nuclei. It may be
hown that the spectral contribution from the 11,20-13C-iso-
opomer is isolated, to a very good approximation, by
racting the natural abundance spectrum from the spec
f I, multiplied by a suitable scaling factor, as shown in Fig.
Expanded views of the peaks are shown in Fig. 9d). To a

FIG. 1. Molecular structure and labeling scheme of 11,20-13C2-all-E-
etinal. The13C spins are indicated by asterisks.
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381ANOMALOUS ROTATIONAL RESONANCE SPECTRA
pproximation, this spectrum shows contributions from o
he 11,20-13C2-isotopomer. The detailed arguments suppor
he validity of this subtraction procedure are lengthy
traightforward and are not given here. One must take
ccount rotational resonance effects in some of the13C3 isoto-
omers, as well as possible variations in the labeling leve

he C11 and C20 sites.
The spectrum of the 11,20-13C2-isotopomer may be sim

ated using the methods described in Ref. (5). The result is
hown in Fig. 2d. This simulation employed Lorentzian p
roadening, corresponding to a peakwidth of 36.0 Hz
orresponds to the width at half height of the C20 p
easured at a spinning frequency of 10.000 kHz, i.e., we

otational resonance). The simulated spectrum is in se
isagreement with the experimental spectrum shown in Fig
he most glaring discrepancy is found for the most shie
eak, attributed to the C20 site. The simulation predicts a c
plitting of this peak, while the experiment reveals no s
plitting, only a tent-like structure.
The simulation of the C11 peak is in closer agreement

he experimental result. However, even here, there are
iscrepancies. The experimental C11 peak has a broade

FIG. 2. 13C spectra of all-E-retinal, at then 5 1 rotational resonanc
ondition (B0 5 9.402 T andvr/2p 5 12.192 kHz). Unmodulated proto
ecoupling was used. The decoupler field corresponded to a proton nu

requency of 82 kHz. The spectral regions near the C11 and C20 cente
re shown. (a) Spectrum of sampleI. (b) Spectrum of unlabeled all-E-retinal.
c) Subtraction of (b) from (a), with weighting factors adjusted to minimize
isible natural abundance peaks. (d) Conventional simulation of (c),
ransverse relaxation rate constantsr 11 5 r 20 5 113 s21. Other simulation
arameters are given in Ref. (69). The experiments were performed o
RUKER AMX-400 spectrometer using a 4-mm zirconia rotor.
y
g
t
to

of

k
is
,
ff
us
c.
d
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h

h
me
ase

han the simulated peak. The dip in the center of the C11
s slightly deeper than that predicted by the simulation. T

inor discrepancies prove to be significant.
The spectrum ofI appears to be quite normal when

pinning frequency is not close to a rotational resona
igure 3a shows the13C spectrum at a spinning frequency

r/2p 5 10.000 kHz, with the same decoupler field as in
a. After subtraction of the natural abundance backgr
Fig. 3b), the spectral peaks of both labeled sites are r
arrow, as shown in Fig. 3c. The peak widths at half maxim
re 40.1 Hz for the C11 site and 36.0 Hz for the C20
lthough the general form of the peaks is unremarkable
11 peak does have a slightly broad base. Expanded vie

he peaks are shown in Fig. 10d.
Verdegem and co-workers (13) studied anomalous RR sp

ra for a series of labeled retinals, at a field of 9.402 T. In
ases, they found spectra of a similar form, with the l
hielded peak split and the more-shielded peak unsplit.
nalyzed the splittings of the less-shielded peak and sh

hat there was a good empirical relationship between the
ings and the dipole–dipole couplings, as calculated from
-ray structure. The split C11 peak could be described q

atively using standard RR simulations assuming isolated13C2

pin pairs. However, it was not possible to explain the an
lous form of the more-shielded peaks.

FIG. 3. 13C spectra of all-E-retinal at 9.402 T, well off then 5 1
otational resonance condition (vr/2p 5 10.000 kHz). The decoupler con
ions were identical to those in Fig. 2. (a) Spectrum of sampleI. (b) Spectrum
f unlabeled all-E-retinal. (c) Subtraction of (b) from (a), with weighti

actors adjusted to minimize the visible natural abundance peaks.
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III. PEAKSHAPE THEORY

pin Interactions

Spin Hamiltonian. Details of the spin-pair Hamiltonian
rotating solid were given before (5). The basic equations a

epeated here to correct some sign errors and to take
ccount the sense of the Larmor frequency (35).
The high-field Hamiltonian for two homonuclear spins-1

2 in
onequivalent molecular sitesj andk may be written

* 5 * j 1 *k 1 * jk, [1]

here *j and *k represent the one-spin interactions, and*jk

epresents the interaction between the spins. These interactio

* j 5 v jSjz

*k 5 vkSkz

* jk 5 *A 1 *B, [2]

ith the two spin–spin interaction terms

*A 5 vA2SjzSkz

*B 5 vB
1
2 $Sj

1Sk
2 1 Sj

2Sk
1%. [3]

The Larmor frequencies of the spins in sitesj and k are
enoted byv j andv k. The spin–spin coupling is denoted

wo termsvA andvB, which are specified below.

Reference frames.Define a three-dimensional referen
rameM which is fixed with respect to the molecule, anot
eference frameR which is fixed with respect to the rotor, a

further reference frameL which is fixed with respect to th
xternal magnetic field. Thez-axis of frameM is defined to b
arallel with the vector joining the molecular sitesj andk, the
-axis of frameR is defined to be parallel to the rotor axis, a
he z-axis of frameL is defined to be parallel to the sta
agnetic field. The relative orientation of two refere

rames, for exampleM and R, may be specified by an Eul
ngle tripletVMR 5 { aMR, bMR, gMR}, defined according to th
onvention in Ref. (36).
A powder sample contains a large number of molecules
uniform distribution of orientationsVMR. The observed NMR

ignal is an average of signals over all possible values o
hree Euler anglesaMR, bMR, andgMR.

For a sample rotating at constant angular frequencyvr about
n axis subtending an anglebRL with the external magnet
eld, the Euler angleaRL is given by

aRL 5 a RL
0 2 v rt, [4]

here the anglea 0 describes the relative orientation of
RL
to

are

r

th

e

ramesR andL at the time origint 5 0, defined as the sta
f NMR signal acquisition. In nonsynchronized experime

he angleaRL
0 takes random values from transient to transi

he negative sign in Eq. [4] is consistent with the Euler a
onvention mentioned above. In the case of exact magic-
pinning the anglebRL is equal to arctan=2.

Chemical shift interactions. The chemical shift tensor of
ite j is defined by the three principal valuesd xx

j , d yy
j , andd zz

j ,
nd the Euler anglesVPM

j 5 { aPM
j , bPM

j , gPM
j } specifying the

elative orientation of the CSA principal axis framePj and the
olecular frame. The symbold refers consistently todeshield

ng. By convention, the principal values (and hence the p
ipal axes) are assigned throughud zz

j 2 d j
isou . ud xx

j 2 d j
isou $

d yy
j 2 d j

isou, where the isotropic chemical shift isd j
iso 5 1

3 { d xx
j

d yy
j 1 d zz

j }. The chemical shift anisotropyd j
aniso and asym

etry parameterh j are defined throughd j
aniso 5 d zz

j 2 d j
iso and

j 5 (d yy
j 2 d xx

j )/d j
aniso.

For site j , the isotropic chemical shift frequency in t
otating reference frame is defined through

v j
iso 5 v0d j

iso 2 v ref, [5]

here vref is the signed spectrometer reference freque
iven by

v ref 5 2~signg!vcarrier, [6]

ndvcarrier is the (positive) angular frequency of the RF car
ave (35). The Larmor frequency of the nuclear spins in
eld B0 is given byv 0 5 2gB0, whereg is the magnetogyri
atio (35).

The periodically modulated Larmor frequenciesv j and v k

re conveniently written as Fourier series, for example,

v j 5 O
m522

12

v j
~m!exp$imv rt%, [7]

ith the Fourier coefficients

v j
~m! 5 v j

isodm0 1 @Aj
aniso# m

Rexp$2ima RL
0 %dm0

2 ~bRL!. [8]

he chemical shift anisotropy tensor of sitej is transformed
rom the principal axis frame to the rotor-fixed frame thro
uccessivePj 3 M 3 R transformations according to

@Aj
aniso# m

R 5 O
m0, m9

@Aj
aniso# m0

P D m0m9
2 ~V PM

j ! D m9m
2 ~VMR!. [9]

he components of the CSA tensor of sitej , in its own
rincipal axis frame, are given in frequency units by
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@Aj
aniso# 22

P 5 @Aj
aniso# 12

P 5 2621/ 2h jd j
anisov0

@Aj
aniso# 21

P 5 @Aj
aniso# 11

P 5 0

@Aj
aniso# 0

P 5 d j
anisov0. [10]

imilar equations apply for sitek.

Spin–spin interactions. The two components of the spi
pin coupling are periodic and may be written as Fourier se

vA 5 O
m522

12

v A
~m!exp$imv rt%

vB 5 O
m522

12

v B
~m!exp$imv rt%, [11]

here the Fourier coefficients are given by

v A
~m! 5 pJjkdm0 1 @Ajk

aniso# m
Rexp$2ima RL

0 %dm0
2 ~bRL!

v B
~m! 5 2pJjkdm0 2 @Ajk

aniso# m
Rexp$2ima RL

0 %dm0
2 ~bRL!. [12]

ere Jjk is the isotropic part of the indirect dipole
ipole coupling (J-coupling), and [Ajk

aniso] m
R are the com

onents of the spin–spin coupling anisotropy in the ro
xed frame. If the anisotropicJ-coupling and molecula
otion are negligible, the rotor-frame components are g
y

@Ajk
aniso# m

R 5 bjkD 0m
2 ~VMR!, [13]

here the through-space spin–spin coupling constant is
o

bjk 5 2
m0

4p

g 2\

r jk
3 [14]

nd r jk is the internuclear distance.

Hilbert space basis. It is convenient to choose an orthon
al basis spanned by the following spin-pair state functio

* 5 1
2 1

v j 1 vk 1 vA

v j 2 vk 1 v
vB
s:

-

n

al

:

u1& 5 u 1 1
2, 1 1

2&

u2& 5 u 1 1
2, 2 1

2&

u3& 5 u 2 1
2, 1 1

2&

u4& 5 u 2 1
2, 2 1

2& [15]

hese state functions are simultaneous eigenfunctions o
ndividual z-angular momenta of the two spins:

Sjzumj, mk& 5 mjumj, mk&

Skzumj, mk& 5 mkumj, mk&. [16]

he spin-pair Hamiltonian may be expressed in this basis
3 4 matrix:

uperoperator Theory

In order to explain the anomalous RR peakshapes,
ecessary to extend the model of isolated spin-1

2 pairs. There
re many possible ways to do this. For example, one c

nclude some additional spins, such as the nearest p
eighbors, in the theoretical treatment. However, rigorous
ulations of this kind are problematic, since the real sam
ontains an essentially infinite network of coupled prot
hile accurate numerical calculations rapidly become in

able for more than a few additional spins. In this article,
ake into account the residual couplings to the proton net
y including dissipative terms in the spin dynamics. T
rovides a reasonable phenomenological model of the ex
ental behavior, while retaining the essential simplicity of
-spin-12 system.
The simplest model of imperfect proton decoupling is ca

hedifferential transverse relaxation model.The residual con
act of the13C with the 1H spins is parameterized by two ra
onstants for exponential relaxation, denotedr j and r k. These
ate constants are the inverses of the corresponding tran
elaxation time constantsT2. The different proton environ
ents of the coupled13C spins are emulated by allowing the

ate constants to be unequal. One expects that the rate con
or 13C spins in different types of molecular sites conform

vB

2v j 1 vk 2 vA

2v j 2 vk 1 vA

2 . [17]
A
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384 HELMLE ET AL.
he rough scheme quaternary, methyl , methene, meth-
lene. The high rate constant for methylene carbons conf
o the empirical observation that13C spins in such sites a
hard to decouple”—presumably because each13C has a larg
hrough-space coupling to two protons, which have a l
hrough-space coupling with each other. The low rate con
or methyl 13C spins is associated with the generally ra
hermal jump motion around the local threefold axis, wh
educes the effective heteronuclear and homonuclear
lings.
The DTR rate constants may also include other sourc

ransverse relaxation, such as modulation of the13C spin in-
eractions by molecular motion. However, additional relaxa
echanisms are expected to be unimportant in the exper

al system studied here.
The DTR model has the advantage of simplicity. The

amics of the13C spin pairs may be treated using a supe
rator formalism, withoutexplicit consideration of the proto
pins. Nevertheless, it should be stressed that, at some p
s necessary to discuss how the two relaxation rate constar j

nd r k depend on the heteronuclear dipolar couplings,
roton decoupler field, the sample rotation frequency, an
tatic magnetic field. We return to this point below.

Liouvillian. The simultaneous influence of coherent
ncoherent interactions may be treated using the Liouville–
eumann equation,

d

dt
r 5 2i @*, r# 1 Ĝr, [18]

here the spin density operator for a given molecular orie
ion is denotedr andĜ is the relaxation superoperator, inclu
ng thermal polarization terms (37–39). This equation is val
f the fluctuating interactions are sufficiently small compare
he inverse of their own correlation times (the “Redfield lim
40)).

In the present context, the Redfield conditions are satisfi
he local fields produced by the proton spins fluctuate
apidly. These rapid local field fluctuations are generate
he proton decoupler field, which rapidly rotates the pro
pin polarizations and the strong interactions of the pro
ith each other. The use of the Liouville–von Neumann e

ion implies that the decay of the13C transverse magnetizati
omponents is exponential, or equivalently, that the13C spec
ral peakshapes are Lorentzian, in the absence of rota
esonance effects.

The evolution of the spin density operator in the presenc
edfield-regime relaxation may be analyzed using supero

ors (37). Define a set of basis operatorsQu which are or
honormal in the sense

Tr$Qu
†Qv% 5 duv. [19]
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he following definitions establish the Liouville opera
pace:

uQu! 5 Qu

~Quu 5 Qu
†

~QuuQv! 5 Tr$Qu
†Qv%. [20]

he Liouville–von Neumann equation may be rewritten a
rst-order, homogeneous, differential equation,

d

dt
ur! 5 L̂ur!, [21]

here the generator of the superoperator evolution (“Liou
ian”) is given by

L̂ 5 2i*̂ comm1 Ĝ, [22]

nd*̂comm is the Hamiltonian commutation superoperator,
ned as

*̂ commuQu! 5 u@*, Qu#!. [23]

Operator basis. A suitable basis for Liouville space
rovided by the set of all shift and projection operators g
rated by pairs of states {u1& . . . u4&}:

Crs 5 ur &^su. [24]

t is easily verified that this 16-dimensional operator bas
rthonormal. We will call these operators “coherence op

ors” and the basis the “coherence basis.” “Population op
ors” such asu1&^1u are included in this basis.

The coherence operators are eigenoperators under co
ation with the totalz-angular momentumSz,

Ŝz
commuCrs! 5 u@Sz, Crs#! 5 prsuCrs!, [25]

here the eigenvalueprs is called the coherence order (41, 42).
he relevant coherence orders are

p14 5 12

p24 5 p34 5 p12 5 p13 5 11

p11 5 p22 5 p33 5 p44 5 p23 5 p32 5 0

p42 5 p43 5 p21 5 p31 5 21

p 5 22. [26]
41
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Hamiltonian commutation superoperator.In the absenc
f applied RF fields, the high-field truncated Hamilton
ommutes with the totalz-angular momentum operator,

Ŝz
commu*! 5 0. [27]

s shown in the Appendix to Ref. (7), this property enforce
he selection rule

~Crsu*̂ commuCuv! 5 0 if prs Þ puv. [28]

his implies that the Hamiltonian commutation superoper
s block-diagonal in the coherence basis:

*̂ comm5 1
*̂ 12

comm

*̂ 11
comm

*̂ 0
comm

*̂ 21
comm

*̂ 22
comm

2 ,

[29]

here the block*̂12
comm has dimension 13 1, the block*̂11

comm

as dimension 43 4, the block*̂0
comm has dimension 63 6,

nd so on.
Coherences of order21 are observable by quadrature

ection (35). Since this article only concerns the directly
erved NMR spectrum, our attention may be restricted to
lock *̂21

comm. The behavior of the zero-quantum block has b
tudied in detail elsewhere (7).
The matrix representation of the Hamiltonian commuta

uperoperator is readily calculated using the property

~Cabu*̂ commuCcd! 5 Tr$ub&^au@*, uc&^du#%

5 *acdbd 2 *dbdac. [30]

ince the Hamiltonian operator* is block-diagonal in th
asis of Eq. [15], the 43 4 block *̂21

comm is block-diagonal in
he coherence basis. The two 23 2 blocks are denoted*̂ a

comm

nd*̂ b
comm:

*̂ 21
comm5 S *̂ a

comm 0

0 *̂ b
commD . [31]

he basis operators for the*̂ a
comm block are {uC21), uC31)}, while

he basis operators for the*̂ b
comm block are {uC43), uC42)}.

This block-diagonalization has a clear physical interpr
ion: Since no RF fields are applied, and the spinning frequ
s small compared to the Larmor frequency, the sample rot
nly drives transitions between states with very similar e
ies, and hence with the same value for the total spin an
r

-
-
e
n

n

-
cy
n

r-
lar

omentum along the field. For a spin-1
2 pair, only the two

entral eigenstatesu2& and u3& participate in the rotor-drive
pin dynamics. It follows that the coherenceC21 5 u2&^1u may
e converted into a coherenceC31 5 u3&^1u, but not into any
ther (21)-quantum coherence and not into a coherence o
ther order (see Fig. 4).
The matrix representations of the superoperator bl

ˆ
a
comm and*̂ b

comm are given by

*̂ a
comm5

uC21! uC31!

S2vk 2 vA
1
2 vB

1
2 vB 2v j 2 vA

D [32]

nd

*̂ b
comm5

uC43! uC42!

S2vk 1 vA 21
2 vB

21
2 vB 2v j 1 vA

D . [33]

Relaxation superoperator.In a high magnetic field, th
ecular approximation allows block-diagonalization of the
axation superoperator according to the total angular mo
um of the coherences along the field

Ĝ 5 1
Ĝ12

Ĝ11

Ĝ0

Ĝ21

Ĝ22

2 . [34]

s before, the blockĜ12 is a 13 1 matrix, the blockĜ11 is a
3 4 matrix, the blockĜ is a 6 36 matrix, and so on.

FIG. 4. Coherence transfer processes in the 2-spin-1
2 system. The rotation

otion drives transitions between statesu2& and u3&, leading to transfer o
mplitude between coherencesuC21) and uC31) (block a) and between cohe
ncesuC42) and uC43) (block b).
0
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In the DTR model, the 43 4 block Ĝ21 may be written

Ĝ21 5

uC21! uC31! uC43! uC42!

1
2r k

2r j

2r k

2r j

2 , [35]

herer j is the dephasing rate constant of coherences as
ted with spins in sitej , andr k is the dephasing rate const
f coherences associated with spins in sitek. The inverse o

hese coherence dephasing rate constants are the tran
elaxation time constantsT2 of spins in the corresponding site

The omission of the other elements ofĜ21 corresponds to th
eglect of cross-relaxation between the13C spins. This assum

hat there is negligible molecular motion changing the directio
agnitude of the internuclear13C–13C vector. In addition, the us
f only two different relaxation rate constants in Eq. [35] imp

he neglect of cross-correlation between fluctuating chemica
nisotropy and dipolar coupling interactions (43).
With these assumptions, the Liouvillian for the (21)-quan-

um coherences of the spin pair ensemble factorizes into
ndependent blocks, calledL̂ a and L̂ b, given by

L̂a 5 2i*̂ a
comm1 Ĝa

5 S2r k 1 i ~vk 1 vA! 2i 1
2 vB

2i 1
2 vB 2r j 1 i ~v j 1 vA!D [36]

nd

L̂b 5 2i*̂ b
comm1 Ĝb

5 S2r k 1 i ~vk 2 vA! 1i 1
2 vB

1i 1
2 vB 2r j 1 i ~v j 2 vA!D . [37]

Suppose that the spin ensemble is characterized by a d
peratorr(0) at timet 5 0. The (21)-quantum coherences

ime t 5 0 may be specified using the subspace kets

ur~0!!a 5 Sr21~0!
r31~0!D

ur~0!!b 5 Sr43~0!
r42~0!D . [38]

fter an intervalt, these coherences will have evolved into
tate defined by

ur~t!!a 5 V̂a~t, 0!ur~0!!a

ur~t!! 5 V̂ ~t, 0!ur~0!! , [39]
b b b
ci-

erse

r

ift

o

sity
t

here the propagatorV̂a solves the differential equation

d

dt
V̂a~t, 0! 5 L̂a~t!V̂a~t, 0!

V̂a~0, 0! 5 1̂a, [40]

nd the unity operator for the subspace is

1̂a5uC21!~C21u1uC31!~C31u. [41]

nalogous equations apply toV̂b:

d

dt
V̂b~t, 0! 5 L̂b~t!V̂b~t, 0!

V̂b~0, 0! 5 1̂b, [42]

here

1̂b5uC43!~C43u1uC42!~C42u. [43]

he solution of these equations allows the determination o
rajectories of the (21)-quantum coherences and henc
bserved NMR signal.

nalytical Peakshapes

Average Liouvillian theory. All matrix elements ofL̂ a are
eriodically time-dependent. We now use average Liouvi

heory (37–39) to obtain an approximate analytical solution
he spectrum. Floquet theory could also be used (44–48).

Exactnth-order rotational resonance (vD
iso 5 v j

iso 2 v k
iso 5

v r) is now assumed. For simplicity, chemical shift anisotr
s ignored, and the spin–spin couplings and transverse r
tion rates are considered to be small compared to the s
otation frequency. More general cases may be handled b
umerical simulation algorithm described in the Appendix
The evolution in the “a” block of the (21)-quantum subspa

s described first. The LiouvillianL̂a is divided into two parts,

L̂a 5 L̂ a
0 1 L̂9a, [44]

hosen to have the matrix representations

L̂ a
0

5 S2r# 1 i ~v# 1 vA 2 1
2 nv r! 0

0 2r# 1 i ~v# 1 vA 1 1
2 nv r!

D
[45]

nd

L̂9 5 1 r D 2ivB . [46]
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These equations employ the notation

r# 5 1
2 ~r j 1 r k!

r D 5 r j 2 r k

v# 5 1
2 ~v j 1 vk!. [47]

ote that the differential relaxation rate constantr D may have
ither sign.
The subspace propagatorV̂a over the interval (t, 0) may be
ritten as a product of two propagators,

V̂a~t, 0! 5 V̂a
0~t, 0!V̂̃a~t, 0!, [48]

hich obey the differential equations

d

dt
V̂a

0~t, 0! 5 L̂ a
0~t!V̂a

0~t, 0!

V̂a
0~0, 0! 5 1̂a [49]

nd

d

dt
V̂̃a~t, 0! 5 L̂̃a~t!V̂̃a~t, 0!

V̂̃a~0, 0! 5 1̂a. [50]

he interaction frame Liouvillian is

L̂̃a~t! 5 V̂a
0~t, 0! 21L̂9a~t!V̂a

0~t, 0!. [51]

Since L̂ a
0 is diagonal in the basis {uC21), uC31)}, the prop-

gatorV̂a
0 is easy to evaluate:

V̂a
0~t, 0! 5 exp$~2r# 2 i 1

2 nv r!t 1 i ~f# ~t, 0! 1 fA~t, 0!!%

3 uC21!~C21u 1 exp$~2r# 1 i 1
2 nv r!t

1 i ~f# ~t, 0! 1 fA~t, 0!!%uC31!~C31u, [52]

here the dynamic phases are

fA~t, 0! 5 E
0

t

dt9vA~t9!

f# ~t, 0! 5 E
0

t

dt9v# ~t9!. [53]

or exact magic-angle-spinning, small through-space
 u-

lings, and small CSA, these phase functions may be ap
mated

fA~t, 0! > pJjkt

f# ~t, 0! > v# isot, [54]

here v# iso 5 1
2(v j

iso 1 v k
iso) is the mean isotropic shift fre

uency of the two spins. The approximations in Eq.
orrespond to neglect of the sideband pattern generated
ipolar coupling and the chemical shift anisotropy.
The interaction frame Liouvillian is given by

L̂̃a~t! 5 1
2 S r D 2ivBexp$inv rt%

2ivBexp$2inv rt% 2r D
D , [55]

hich is periodic, with periodtr 5 u2p/vru. The interaction
rame propagator over multiples of the periodtr is given by the

ffective Liouvillian L#̂ a,

V̂̃a~Nt r, 0! 5 exp$L#̂ aNt r%, [56]

hereN is an integer (37–39). The effective Liouvillian m
e written in terms of a Magnus expansion

L#̂ a 5 L#̂ a
~1! 1 L#̂ a

~2! 1 · · · , [57]

here the terms are given by

L#̂ a
~1! 5 t r

21 E
0

tr

dt L̂̃a~t!

L#̂ a
~2! 5 ~2t r!

21 E
0

tr

dt2 E
0

t2

dt1 @ L̂̃a~t2!, L̂̃a~t1!#, [58]

s in average Hamiltonian theory (49–51).
Under the conditionsuvBt ru ! 1 andur Dt ru ! 1, which are

ell-satisfied under ordinary circumstances, the Magnus
ansion may be truncated at the first term, and the require

hat Eq. [56] only applies over integer multiples of the mo
ation period may be relaxed. The interaction frame propag

ay then be written

V̂̃a~t, 0! > exp$L#̂ a
~1!t%, [59]

here the matrix representation of the average Liouvillian

L#̂ ~1! 5 1
r D 2iv B

~n!*
, [60]
a 2 S2iv B

~n! 2r D
D
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nd vB
(n) is the resonant Fourier component of the spin–

nteraction, as given in Eq. [12]. Note thatL#̂ a
~1! is time-

ndependent.
The solution for the propagatorV̂a is completed by a diago

alization ofL#̂ a in order to solve Eq. [59], followed by mu
iplication by V̂a

0, according to Eq. [48]. The result is

sing the notation

ej
6~t! 5 exp$i ~v j

iso 6 pJjk!t%

ek
6~t! 5 exp$i ~v k

iso 6 pJjk!t%

R2 5 r D
2 2 uv B

~n!u 2. [62]

An analogous treatment of the {uC42), uC43)} subspace
ields the result

Signal detection. The quadrature-detected NMR sig
ay be written

s~t! 5 ~QobsuV̂~t, 0!ur~0!!, [64]

here

~Qobsu 5 i ~S2u, [65]

gnoring the receiver phase shifts (35). Since the two (21)
uantum subspaces are dynamically independent, this m
ritten

s~t! 5 sa~t! 1 sb~t!, [66]

V̂a~t, 0! >
exp$2r# t%

R Sek
1~t!~R cosh1

2 Rt 1 r D

2iv B
~n!ej

1~t!sinh1
2

V̂b~t, 0! >
exp$2r# t%

R Sek
2~t!~cosh1

2 Rt 1 r Dsi

1iv B
~n!ej

2~t!sinh1
2

n

be

here

sa~t! 5 ~QobsuaV̂a~t, 0!ur~0!!a [67]

nd

sb~t! 5 ~QobsubV̂b~t, 0!ur~0!!b. [68]

he observation “bras” in the two relevant subspaces are

~Qobsua 5 ~i , i !, [69]

nd

~Qobsub 5 ~i , i !, [70]

xpressed in the appropriate basis sets.

Coherence transfer signals.The rotation of the samp
rives coherence transfer between the spin sites durin
ignal detection process. We now examine the effect of
rocess on the spectrum.
Suppose that the spin density operator at the beginning

etection period (defined ast 5 0) has the form

r~0! , 2Sjy. [71]

his initial state could be produced by frequency-selec
xcitation, or selective cross-polarization, of the spins in sj .
he initial spin density operator in Eq. [71] may be writte

r~0! 5
1

2i
C31 1

1

2i
C42 2

1

2i
C13 2

1

2i
C24, [72]

h1
2 Rt! 1iv B

~n!* ek
1~t!sinh1

2 Rt

t ej
1~t!~R cosh1

2 Rt 2 r Dsinh1
2 Rt!D [61]

1
2 Rt! 2iv B

~n!* ek
2~t!sinh1

2 Rt

ej
2~t!~R cosh1

2 Rt 2 r Dsinh1
2 Rt!D . [63]
sin

R

nh

Rt
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ndicating a superposition of two (21)-quantum and two (11)-
uantum coherences.
The (11)-quantum coherences may be ignored if no fu

ulses are applied. The initial kets in the two (21)-quantum
ubspaces are

ur~0!! a
j 5

1

2i S0
1D

ur~0!! b
j 5

1

2i S0
1D , [73]

here the superscript indicates the selective preparatio
ransverse magnetization of spins in sitesj .

The a subspace signal in this situation is therefore

sa
j ~t! 5 sa

j3j~t! 1 sa
j3k~t!, [74]

here

sa
j3j~t! 5 1

2 ~C31uaV̂a~t, 0!uC31!a [75]

nd

sa
j3k~t! 5 1

2 ~C21uaV̂a~t, 0!uC31!a. [76]

hese expressions evaluate to

sa
j3j~t! 5 1

2 exp$i ~v j
iso 1 pJjk!t 2 r# t%

3 Scosh1
2 Rt 2

r D

R
sinh1

2 RtD [77]

nd

sa
j3k~t! 5

iv B
~n!*

2R
exp$i ~v k

iso 1 pJjk!t 2 r# t%sinh1
2 Rt. [78]

he correspondingb subspace signals are

sb
j ~t! 5 sb

j3j~t! 1 sb
j3k~t!, [79]

ith

sb
j3j~t! 5 1

2 exp$i ~v j
iso 2 pJjk!t 2 r# t%

3 Scosh1
2 Rt 2

r D

R
sinh1

2 RtD [80]
r

of

nd

sb
j3k~t! 5 2

iv B
~n!*

2R
exp$i ~v k

iso 2 pJjk!t 2 r# t%sinh1
2 Rt.

[81]

The “direct” signalssa
j3j andsb

j3j contain frequencies close
he precession frequency of spins in sitesj, i.e., the frequency o
he spin coherences directly excited at the beginning of th
ection period. Thecoherence transfer signals sa

j3k andsb
j3k, on the

ther hand, contain frequencies close to the precession freq
f spins in sitesk, which were not magnetized at the start of
etection period. These spin magnetizations were generate

ng the detection period by mechanical transfer of coherence
itesj to sitesk. The mechanical coherence transfer process
o the appearance of NMR signal in spectral regions which a
rom those directly excited by the preparation pulse sequen

The direct signalssa
j3j and sb

j3j are identical, except for
requency displacement by theJ-coupling. The indirect signa
a
j3k andsb

j3k are also displaced in frequency by theJ-coupling,
ut have opposite signs. The coherence transfer signals c
ut if the J-coupling is unresolved.
From Eq. [12], the phase of the coherence transfer sig

epends on the molecular orientational anglegMR and the
nitial sample rotation angleaRL

0 according to

arg$v B
~n!~aMR, bMR, gMR!* % 5 n~gMR 1 a RL

0 !. [82]

f the initial density operator has the orientation-indepen
orm given in Eq. [73], then the coherence transfer sig
isappear for powder samples. The signals also disappe
nsynchronized experiments on spinning oriented sampl
xtensive signal averaging is performed.
Coherence transfer signals have recently been observed

mentally on a spinning single crystal of13C2-labeled glycine (52).
A recent interpretation of the Floquet theory of NMR

otating solids employs coherent eigenfunctions of the ma
copic rotational angular momentum (48). This formalism sug
ests an intriguing physical description of the coherence t

er signals, in terms of amplitude transfer between sp
otational coherence and spin coherence.

Carousel average signals.If the sample is a powder, th
bserved signal has contributions from all possible molec
rientational anglesaMR, bMR, and gMR. In this section, w
onsider the sum of signals from molecules with fixed va
f aMR andbMR but all possible values ofgMR. Such orienta
ional subsets have been called “carousels” because the
embers have spin interactions which follow an iden

yclic trajectory as the sample is rotated, but at shifted t
22, 53). The carousel average signal is defined as

^s~t!&g 5 ~2p! 21 E
0

2p

dgMR s~t, VMR!. [83]
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he powder average signal is a superposition of contribu
rom separate carousels with different values ofaMR andbMR.

Let us now assume that the initial transverse spin mag
ation is excited in a frequency-independent fashion, using
xample, a strongp/2 pulse applied to thermal equilibriu
agnetization or by nonselective Hartmann–Hahn cross-p

zation (54). Since the coherence transfer signalssa
j3k andsb

j3k

anish upon carousel averaging, we only take into accoun
irect signalssa

j3j and sb
j3j . The carousel average signal

iven by a superposition of the four “direct” signals,

^s~t!&g 5 ^sa
j3j~t! 1 sb

j3j~t! 1 sa
k3k~t! 1 sb

k3k~t!&. [84]

For simplicity, assume that theJ-coupling is small, so tha
hea andb contributions coincide. The carousel-average N
ignal is given by

^s~t!&g 5 exp$~iv j
iso 2 r#!t%Scosh1

2 Rt 2
r D

R
sinh1

2 RtD
1 exp$~iv k

iso 2 r#!t%Scosh1
2 Rt 1

r D

R
sinh1

2 RtD .

[85]

his is a convenient form for the exploration of the signal c
cteristics as a function of the coupling and relaxation param
Two regimes of this equation may be identified, depen

n the value ofR, as defined in Eq. [62]. If the resonant Fou
omponent of the dipolar couplingvB

(n) exceeds in magnitud
he transverse relaxation differentialr D, then the factorR is an
maginary number. This is called the regime ofslow differen
ial damping.If the relaxation differentialr D is larger than th
esonant part of the coupling, then the factorR is real. This is
alled the regime offast differential damping.The cross-ove
etween these two regimes occurs at thecoalescence point,in
hich the relaxation differentialr D has the same magnitude

he resonant Fourier component of the dipolar couplingvB
(n).

1. Slow differential damping(ur Du , uvB
(n)u). The carouse

verage NMR signal may be written

^s~t!&g 5 a1exp$~iv j
1 2 r#!t% 1 a2exp$~iv j

2 2 r#!t%

1 a2exp$~iv k
1 2 r#!t% 1 a1exp$~iv k

2 2 r#!t%,

[86]

sing the notation

a6 5 1
2 S1 6 i

r D

vR
D [87]

nd

v j
6 5 v j

iso 6 1
2 vR

v k
6 5 v k

iso 6 1
2 vR. [88]
s

ti-
or

r-

he

-
rs.
g

n these equations, the rotational resonance splittingvR is
efined through

v R
2 5 2R2 5 uv B

~n!u 2 2 r D
2 . [89]

n the regime of slow differential dephasing,vR is a real numbe
The NMR spectrum is obtained by Fourier transformatio

he time-domain signal,

S~v! 5 E
0

`

dt s~t!exp$2ivt%. [90]

he carousel-average spectrum may therefore be written

^S~v!&g 5 a1+~v; v j
1, r#! 1 a2+~v; v j

2, r#!

1 a2+~v; v k
1, r#! 1 a1+~v; v k

2, r#!,

[91]

here the Lorentzian lineshape function is

+~v; v9, l! 5
1

l 1 i ~v 2 v9!
. [92]

n this regime, the spectrum consists of the superpositio
our Lorentzian functions, with complex amplitudesa1 or a2

nd identical peakwidths 2r#. The center frequencies of t
our Lorentzians are given by the isotropic shift frequen

j
iso and v k

iso, plus or minus half the rotational resonan
plitting vR.
In the limiting case of identical transverse relaxation r

j 5 r k, all four peak amplitudes are real and equal.
otational resonance splittingvR is equal to the magnitude
he resonant dipolar componentuvB

(n)u. The real part of th
MR spectrum consists of four absorption Lorentzian peak

he frequenciesv j
iso 6 1

2 vR andv k
iso 6 1

2 vR, with peakwidths
iven in rads21 by 2r j 5 2r k. The same result is obtained
naive analysis in which relaxation is neglected during
ain body of the calculation and added afterward by impo
n exponential decay (5). The treatment given in Ref. (5) is

herefore correct in the case of equal transverse relaxation
or spins in the two sites.

In the more general situation ofr D Þ 0, the current trea
ent and that given in Ref. (5) give different results. Figure

hows the composition of the spectrum in the casev j
iso . v k

iso

nd r j 1 uvB
(n)u . r k . r j . Since a1 and a2 are complex

umbers, the real part of the spectrum consists of a sup
ition of absorption and dispersion Lorentzians. The admix
f dispersion modes causes constructive interference a

he isotropic shift frequency of sitej , but destructive interfe
nce around the isotropic shift frequency of sitek. The result
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ng spectrum shows a relatively narrow peak around the
uencyv j

iso and a broad split peak aroundv k
iso.

2. Fast differential damping(ur Du . uvB
(n)u). In this regime

he carousel average NMR signal is

^s~t!&g 5 b2exp$~iv j
iso 2 r 2!t% 1 b1exp$~iv j

iso 2 r 1!t%

1 b1exp$~iv k
iso 2 r 2!t% 1 b2exp$~iv k

iso 2 r 1!t%,

[93]

here

b6 5 1
2 S1 6

r D

RD [94]

nd

r 6 5 r# 6 1
2 R. [95]

he quantityR is a real number in the regime of fast diff
ntial dephasing.
After Fourier transformation, the signal takes the form

^S~v!&g 5 b2+~v; v j
iso, r 2! 1 b1+~v; v j

iso, r 1!

1 b1+~v; v k
iso, r 2! 1 b2+~v; v k

iso, r 1!.

[96]

he spectrum is again a superposition of four Lorent
eaks. The spectral amplitudes are real, so that the real p

he spectrum contains only absorption mode contributions

FIG. 5. (a–d) The four components of the real part of the spectrumS(v),
n the slow differential dephasing regime. (e, f) The total spectrum.
eft-hand plots show the spectral region near the isotropic shift frequen
ite k; the right-hand plots show the spectral region near the isotropic
requency of sitej . The parameters arev j

iso/2p 5 1000 Hz;v k
iso/2p 5 21000

z; r j 5 250 s21; r k 5 900 s21; uvB
(n)/ 2pu 5 75 Hz.
e-

n
t of
he

enter positions of all four peaks coincide with the isotro
hift frequencies, indicating that the rotational resonance
ing is completely quenched in this regime. Two of the f
eaks have widths 2r 2, while the other two have widths 2r 1.
Figure 6 shows the composition of the spectrum in the

j
iso . v k

iso and r k . r j 1 uvB
(n)u. The spectral region aroun

he isotropic shift frequencyv j
iso consists of a strong narro

orentzian superposed on a weak negative broad Loren
earv k

iso, a negative narrow Lorentzian and a positive br
orentzian are superposed. The net result is qualitatively

lar to that in Fig. 5, with a narrow peak at the frequencyv j
iso

nd a broad split peak at the frequencyv k
iso.

If the relaxation differentialr D is reversed in sign, then th
arrow unsplit peak and the broad split peak exchange

ion.
Figure 7 shows how the spectrum progresses from the

f slow differential dephasing to the case of fast differen
ephasing as one of the relaxation rates is increased

sotropic shift frequencies are orderedv j
iso . v k

iso. The spectra
eak near the frequencyv j

iso is therefore called below th
right-hand peak,” while the spectral peak near the freque

k
iso is called the “left-hand peak.” In the plot shown,

ight-hand transverse relaxation rater j is held fixed, while the
eft-hand rater k is progressively increased, starting from
ase of no relaxation differentialr j 5 r k and ending up at th
xtreme differential caser k @ r j 1 uvB

(n)u. Plots a and b are
he slow differential dephasing regime, while plots d–f ar
he fast differential dephasing regime. Plot c is at the co
ence point, for whichur Du 5 uvB

(n)u.

FIG. 6. (a–d) The four components of the real part of the spectrumS(v)
n the fast differential dephasing regime. (e, f) The total spectrum.
eft-hand plots show the spectral region near the isotropic shift frequen
ite k; the right-hand plots show the spectral region near the isotropic
requency of sitej . The vertical scale in plots a–e are expanded by a fact
; the vertical scale in plot b is expanded by a factor of 10. The paramete

j
iso/2p 5 1000 Hz;v k

iso/2p 5 21000 Hz; r j 5 250 s21; r k 5 2000 s21;
v (n)/ 2pu 5 75 Hz.
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392 HELMLE ET AL.
Figure 7a shows four resolved Lorentzians, of equal wid
ith a rotational resonance splitting corresponding to the
nant dipolar Fourier componentuvB

(n)u. As the decay rat
ssociated with theleft-hand peak rk is increased, the splittin
n the right-hand peakgradually collapses, and all pea
roaden. At the coalescence pointur j 2 r ku 5 uvB

(n)u (Fig. 7c),
he rotational resonance splitting disappears on the right-
eak, although the splitting persists on the left-hand peak
When the rater k is increased further, the left-hand pe

ecomes broader, while the right-hand peak becomes narr
or very large decay ratesr k, the left-hand peak essentia
anishes, while the width of the right-hand peak is redu
ntil it attains the limiting value 2r j set by the correspondin
ecay rate constant.
The integrals of both spectral peaks are constant throug

his progression.
The behavior of the right-hand spectral peak in Fig

esembles the case of two-site chemical exchange (55–58).
ndeed, the mathematical forms of the rotational reson
eakshapes and the symmetrical two-site exchange
hapes are identical. The behavior of the left-hand peak, o
ther hand, is more unusual. Related effects have bee
erved for strongly coupled two-spin systems in isotropic
ids, in the presence of rapid transverse relaxation of one o
oupled sites (56–60). The phenomena described in this pa
re more striking because rotational resonance induces “s

FIG. 7. Rotational resonance spectra as a function of one of the trans
elaxation rates. In all plots, the parameters are given byv j

iso/2p 5 1000 Hz;

k
iso/2p 5 21000 Hz; r j 5 250 s21; uvB

(n)/ 2pu 5 75 Hz. The transvers
elaxation rate constant of the left-hand peakr k is increased from top to botto
n the figure. (a)r k 5 250 s21; (b) r k 5 500 s21; (c) r k 5 721 s21; (d) r k 5
000 s21; (e) r k 5 2000 s21; (f) r k 5 5000 s21. Plot c is at the coalescen
oint.
s,
s-

nd

er.

d

ut

7

ce
ak
he
b-
-
he
r
ng

oupling,” even when the isotropic shift frequencies are wi
eparated.
The process sketched in Fig. 7 may be interpreted as a

f self-decoupling by rapid transverse relaxation.This is an
nusual NMR phenomenon. It was observed many years a

he liquid-state NMR of coupled spin systems which ar
hemical exchange with paramagnetic species (60).
Transverse self-decoupling should not be confused

imilar phenomena involving longitudinal relaxation. For
mple, rapid spin–lattice relaxation of a coupling partne
ell-known to cause collapse of the spin–spin splitting. T
as been termed “scalar relaxation of the second kind
bragam (61). This mechanism is independent of thetrans-
erserelaxation of the coupling partner.
Another related effect involves decoupling byrapid cross-

elaxationof the coupling partner with one or more additio
pins. In solid-state NMR, self-decoupling arises when
oupling partner is involved in a rapid exchange of longitud
pin magnetization with homonuclear coupling partners62–
7). In solution NMR, longitudinal cross-relaxation of
oupling partner has been shown to cause a partial collap
pectral splittings (68). These phenomena should be str
istinguished from the transverse self-decoupling phenom
escribed in this paper, which does not require magnetiz
xchange or cross-relaxation.

TR Powder Simulations

The analytical expressions given above ignore chemical
nisotropy andJ-couplings and only involve an average o

he single Euler anglegMR. We have performed realistic spe
ral calculations by using a variant of the COMPUTE algori
20–23) to integrate the Liouville equations of motion, E
40] and [42], including all relevant spin interactions. A
cription of the L-COMPUTE algorithm, suitable for Liouvi
pace calculations, is given in the Appendix.
Figure 8 shows some realistic L-COMPUTE simulation

1,20-13C2-all-E-retinal at then 5 1 rotational resonance in
agnetic field of 9.402 T. These simulations are full pow
verages, using the estimated chemical shift and spin cou
arameters specified in Ref. (69). The simple DTR model
sed in these simulations. The C11 and C20 sites are ass
ifferent transverse relaxation rate constantsr 11 andr 20, which
re assumed to be uniform for the whole sample and inde
ent of orientation.
The simulations shown in Fig. 8 have the same value for 20,

hile the value ofr 11 increases on progressing down the fig
he other simulation parameters are described in Ref. (69).
Note that the increase in the C11 transverse relaxation

11 has the most dramatic effect on the C20 peak. At rapid
elaxation rates, the C20 peak loses the rotational reson
plitting and assumes a tent-like shape. At the same time
ase of the C11 peak is broadened, and the splitting bec
lightly deeper. These phenomena are qualitatively simil
he experimental results in Fig. 2c.

rse



a
t a fu
e po
s oth
a ctr
p

t. I
o nta
s at
p
s ion
r by
f

M

tio
o x-
a c b
t e
r . 3
i

m
m fre

i ntial
d xpo-
n ex-
p tion
m hed
e e
a cou-
p spin
d ffect
t ged,
i

tion
m omo-
d nn
e ge-
n

erse
r two
s erse
r
d

der-
a and
y work
o o be
s alita-
t

ero-
n spin-
n de-
c cies,
d field
a ob-
s pairs,
w cies
c di-
t g
e

-
o ng
R isot-
r order
r

ical
m ling.

e
N
p pling
e bun-
d a-
m atrix
t
r are
s

1,2
1

t
t ven
(
(

393ANOMALOUS ROTATIONAL RESONANCE SPECTRA
The qualitative agreement between these calculations
he experimental RR spectrum is encouraging. However,
xplanation must pass a more rigorous test. It should be
ible to use the same parameters to explain the spectra b
nd off rotational resonance. In particular, the narrow spe
eaks off rotational resonance must be explicable.
The simple DTR model does not quite pass this tes

rder to obtain good agreement with the experime
pectrum at rotational resonance, one must use a relax
arameterr k for the C11 site equal to;250 s21. When the
imulations are run with the same parameters off rotat
esonance, the result is a C11 peak which is too broad
actor of around 2.

DTR Model

The weak point in the DTR formulation is the representa
f the residual1H–13C interactions by an oversimplified rela
tion model. The treatment may be made more realisti

aking into account the nonexponentiality of the13C transvers
elaxation. The slightly broad base of the C11 peak in Fig
s experimental evidence of this nonexponentiality.

Abragam (61) has shown that in dipolar coupled syste
olecular motion causes a transition from a Gaussian-like

FIG. 8. Simulated powder average rotational resonance spectra of 1
3C2-all-E-retinal. The simulation parameters are given in Ref. (69). The
ransverse relaxation rate constant for the C20 site is equal tor 20 5 126 s21

hroughout. The transverse relaxation rate constant for the C11 site is gi
a) r 11 5 126 s21; (b) r 11 5 157 s21; (c) r 11 5 189 s21; (d) r 11 5 220 s21;
e) r 11 5 251 s21.
nd
ll
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al
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nduction decay (in the case of slow motion) to an expone
ecay (in the case of fast motion). Some models of none
ential relaxation in the intermediate regime were also
lored (61). In polymer science, nonexponential relaxa
odels such as the Kohlrausch–Williams–Watts “stretc
xponential” are widely used (70). These models might b
pplicable to the problem of imperfect heteronuclear de
ling, since it may be argued, at least qualitatively, that
iffusion within the abundant spin system has a similar e

o molecular motion; the spin polarizations are exchan
nstead of the molecular positions.

It is difficult to apply these more sophisticated relaxa
odels to the present problem, since they cannot be acc
ated within the framework of the Liouville–von Neuma
quation (Eq. [18]), which is linear, first-order, and homo
eous.
In this paper, we take the nonexponentiality of the transv

elaxation into account in a crude way. The results of
eparate DTR calculations, using different pairs of transv
elaxation rates, are superimposed. We call this themultiple
ifferential transverse relaxation model.
Our choice of this model is dictated by practical consi

tions—it is the simplest model which is nonexponential
et which may be readily simulated. Nevertheless, recent
n the decoupling problem suggests that there may als
ome theoretical basis for this approach, at least on a qu
ive level.

A number of workers have examined the problem of het
uclear spin decoupling in the presence of magic-angle
ing (24–32). It is widely recognized that heteronuclear
oupling becomes less effective at high spinning frequen
ue to destructive interference between the decoupling
nd the sample rotation. Particularly strong effects are
erved in systems containing isolated heteronuclear spin
here the application of a RF field to one of the spin spe
auses a strongrecouplingeffect, if a rotary resonance con
ion is satisfied (29, 30). Normally, this first-order recouplin
ffect occurs in the presence of rather weak RF fields.
Recently, Ernst and co-workers (71) investigatedsecond

rder recouplingeffects which occur in the presence of stro
F fields. These authors identified the chemical shift an

opy of the irradiated spins as a mechanism of second-
ecoupling. The treatment predicts a;100-Hz splitting for the

13C peaks of magnetically isolated CH groups, under typ
agic-angle spinning conditions and strong proton decoup
Broadenings of this magnitude are rarely observed in th13C
MR of typical organic materials. Ernst and co-workers (71)
ointed out that in most cases, the second-order recou
ffects are quenched by rapid spin diffusion among the a
ant spins. The partially decoupled13C peak shapes of ad
antane could be explained by using a kinetic exchange m

o model the1H–1H spin diffusion process (67). This is a
elatively simple case, in which none of the interactions
trongly anisotropic.
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Let us speculate on an extension of the kinetic exch
odel of Ernstet al. (67) to the case of typical strong

oupled organic solids. In these systems, the importan
1H–1H spin diffusion for good heteronuclear decoupling
een supported by a variety of experimental observations26–
8, 62–64). Consider the case of a13C spin with a stron
ipolar coupling to a single neighboring1H spin, which par

icipates in a network of couplings to other protons. This is
ituation for the C11 site in sampleI. The cross-relaxation o
he directly bonded proton with the neighboring protons
e modeled through a stochastic exchange process fo
roton between the two Zeeman statesu11

2& and u21
2&. The

olutions of such kinetic treatments have a well-known f
58): For rapid exchange between two sites, the spectra
he form of two superimposed Lorentzians, one broad and
arrow. If the exchange rate is very fast, the broad compo

s weak, and a single narrow Lorentzian survives. If the
hange rate is relatively slow, the broad component is m
rominent, and the relaxation is visibly biexponential. Th
esults hold for fast exchange rates, beyond the “coales
oint.”
This biexponential behavior is already suggestive of
DTR model of the13C transverse relaxation. Furthermo

he kinetic exchange model of decoupling suggests a pos
ationalization of the static field dependence and/or spin
requency dependence of the RR spectra.

When the static magnetic field is increased, the1H chemica
hifts and shift anisotropies become larger, in frequency u
his increases the second-order recoupling effect, whic
olves a combination of1H chemical shift anisotropies a

1H–13C dipolar interactions. In addition, the increased1H iso-
ropic chemical shift dispersion is expected to attentuate

1H–1H spin diffusion, which appears as an exchange rate i
inetic model. Furthermore, a higher static field require
orresponding increase in the spinning frequency if rotati
esonance is to be maintained. Faster spinning is also exp
o slow down the1H–1H spin diffusion. All of these effects pu
n the same direction—from the “fast exchange regime,” w
he relaxation is expected to be purely exponential, to
eighborhood of the coalescence point, where the trans
elaxation becomes strongly biexponential.

The kinetic exchange model of spin decoupling suggests
igh static magnetic fields and/or spinning frequencies ca
arkedly increased nonexponentiality of the transverse13C

elaxation.
The kinetic model sketched above is expected not to hol
ethylene (CH2) groups, in which the13C spin is strongly

oupled to two protons, which have a strong mutual ho
uclear coupling. There is experimental evidence that2
roups behave rather differently and have significantly no
onential transverse relaxation even at moderate fields
pinning frequencies (see below).
Although these arguments are speculative at present, th

eem to point toward a qualitative explanation of the13C
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otational resonance spectra, including the static field de
ence. At the moment, we have simply used the MDTR m

n an empirical fashion, adjusting the relevant paramete
btain a reasonably consistent treatment.
Some MDTR powder simulations are presented in Fig

igure 9a shows a simulated RR spectrum obtained with
lar values for the transverse relaxation rate constants o
wo sites. Since the relaxation differential is small, the r
ional resonance splitting is clearly displayed for both pe
igure 9b shows a simulated RR spectrum obtained w
trong relaxation differential for the two sites (r 11 5 503 s21;
20 5 113 s21). The C20 peak displays no RR splitting in t
ase. By superposing these two subspectra (Fig. 9c),
elative weights of 2:1, one obtains a simulation which i
ather good agreement with the experimental RR spec
Fig. 9d). The triangular form of the C20 peak is rather w
eproduced, as well as the broad base of the C11 peak.

Crucially, the same MDTR parameters provide good ag
ent with experiments off rotational resonance. Figure

hows a set of simulations and experimental spectra
pinning frequencyvr/2p 5 10.000 kHz. The simulated a
xperimental peaks have comparable widths, and the b
ase of the experimental C11 peak is reproduced well in
imulation.

FIG. 9. Rotational resonance spectra of 11,20-13C2-all-E-retinal. (a) Sim
lation using relaxation rate constants {r 11, r 20} 5 {126 s21, 113 s21}; (b)
imulation using relaxation rate constants {r 11, r 20} 5 {503 s21, 113 s21}; (c)
uperposition of simulation a (weight 0.67) and simulation b (weight 0.33
xperimental spectrum ofI, corrected for natural abundance signals.
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395ANOMALOUS ROTATIONAL RESONANCE SPECTRA
odulated Decoupling

If this explanation has any merit, then the RR spectra sh
e sensitive to modulated decoupler schemes which chan
ecoupling characteristics at high spinning frequencies.
xample, the popular TPPM scheme has been report

ncrease apparent peakintegralsas well as peak heights at hi
pinning frequencies (31). This may only be explained if
artially decoupled peaks have very broad bases which e
scape notice in the usual spectrum and which are reduc
PPM decoupling.
TPPM decoupling does indeed have a strong effect on
R peakshapes ofI. The spectrum shown in Fig. 11b w
btained at 9.402 T with TPPM proton decoupling. The pro
ecoupler field corresponded to a nutation frequency o
Hz. The phase of the decoupler field was switched betw
he values622.5° every 7ms. A barely resolved splitting
btained on the C20 peak under these conditions. We
gain able to simulate the experimental spectrum quite we
uperposing two DTR subspectra. The simulation show
ig. 11a employed the same pair of simulations as used in
a and 9b, but with weights of 6.7:1.
Increasing the amplitude of the CW decoupler field, with

ntroducing phase modulation, changed the RR peak sh
radually. However, the available decoupler level (up to

FIG. 10. Spectra for 11,20-13C2-all-E-retinal, at a spinning frequen

r/2p 5 10 kHz (well off rotational resonance). (a) Simulation using re
tion rate constants {r 11, r 20} 5 {126 s21, 113 s21}; (b) Simulation using
elaxation rate constants {r 11, r 20} 5 {503 s21, 113 s21}; (c) Superposition o
imulation a (weight 0.67) and simulation b (weight 0.33). (d) Experime
pectrum ofI, corrected for natural abundance signals.
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Hz nutation frequency) was insufficient to achieve ideal
eakshapes.

IV. ALTERNATIVE EXPLANATIONS

The above model was formulated only after conside
any other explanations, all of which we could rule out

urther experimental tests and other evidence. In this sec
e sketch briefly a number of postulated mechanisms an

easons for rejecting them.
It should be recalled that a successful explanation mu

onsistent with the following observations: (i) narrow spec
eaks are obtained off rotational resonance; (ii) the two
eaks have a very different form, with one peak split and
ther unsplit; and (iii) the RR spectra are field-dependent—

he labeled retinal, peakshape anomalies are observed at
but not at 4.702 T. This apparent field-dependence could

e a disguised dependence on the spinning frequency,
hen the magnetic field is doubled, the spinning freque
ust also be doubled to maintain the RR condition.

sotopic Impurities

Defects in the isotopic distribution, such as an excess o
20 label, could perturb the right-hand peak in Fig. 2c. T
ossibility was eliminated by mass spectroscopy and sol
MR, as well as by the absence of the RR anomalies at 4.7

ntermolecular13C–13C Interactions

In isotopically nondiluted material, homonuclear inter
ions between13C spins on different molecules are known
erturb the rotational resonance peak shapes. We elimi

his possibility by using a sample in which the13C2-labeled
olecules were diluted in nonlabeled material.
At a field of 9.402 T, the RR peak shapes of nondiluted 9

ll-E-retinal have a similar form as for the diluted sample,
ith a superimposed additional broadening. The spectru

FIG. 11. Rotational resonance spectra of 11,20-13C2-all-E-retinal, in the
resence of TPPM decoupling (experimental parameters given in the tex
uperposition of the simulation in Fig. 9a (weight 0.87) and Fig. 9b (we
.13). (b) Experimental spectrum ofI, corrected for natural abundance sign

l
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ondiluted 98% all-E-retinal at a field of 4.702 T has be
iscussed in Ref. (8).

sotropic Shift Dispersion

Rotational resonance peak shapes which disagree with
le spin-pair simulations have been reported be
11, 17, 72). However, in most of these cases, the sampl
dispersion of isotropic chemical shift values, due to impe

rystallinity, inhomogeneous hydration, or a distribution
olecular conformations. A spread in chemical shifts ca

ome of the spin pairs to be off rotational resonance, unles
wo isotropic chemical shifts are perfectly correlated (as
urs, for example, in the case of susceptibility broadening
s possible to contrive shift distribution models which rep
uce the anomalous spectral appearance shown in Fig. 2
However, in order to explain the anomalous RR peaksh

t is necessary to invoke an isotropic chemical shift distribu
hich is quite broad (about 50 Hz in frequency units). Su
hift distribution would be highly visible in the off RR spect
hich is not the case.

pinning Axis Errors

The anglebRL between the spinning axis and the static fi
hould be equal to the “magic angle” arctan=2. A misset from
his angle broadens the NMR peaks by an amount proport
o 3 cos2bRL 2 1 multiplied by the shift anisotropy. Simul
ions show that an angle misset of around 0.4° gives ris
ffects which are qualitatively similar to those shown
ig. 2c.
However, a misset spinning axis would lead to broad p

ff RR, which is not the case. This mechanism was definiti
uled out by taking a set of NMR spectra as a function
pinning axis anglebRL, bracketing the magic angle in ve
mall steps. It proved to be impossible to remove the
hape anomalies by adjusting the spinning angle.

pinning Frequency Fluctuations

The experimental spinning frequency was stabilized to a
2 Hz. Simulations show that fluctuations in the spinn

requency of this magnitude do not perturb the peak sh
ignificantly. Larger fluctuations do perturb the theoret
eak shapes, but always in such a way as to lead tosymmetrica
erturbations of the two spectral peaks (i.e., the two p
ppear as near mirror images of each other).
The experimental shapes of the two peaks are very diffe

o this explanation was rejected.

ncertain Chemical Shift Tensors

Simulations of rotational resonance spectra require kn
dge of the magnitude and orientations of the chemical
nisotropy tensors. Uncertainty in the CSA principal va
nd orientations could be a source of error.
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Simulations show that the peak shapes at then 5 1 RR are
ery insensitive to changes in the tensors. In addition, the s
eak shape changes which are induced by large modifica
f the CSA tensors are always nearly symmetrical for the
eaks, in disagreement with the observed effects.

olecular Motion

There is no evidence for significant molecular motion o
ime scale which might disturb the rotational resonance
omenon. The peak shapes off RR are very narrow. Th13C
pin–lattice relaxation time constants are long (several
nds).

onsecular Effects

There have been several reports of small effects w
nterpretation requires a correction to the usual secular for
he spin Hamiltonian in high magnetic field (73–76). Kundla
nd Lippmaa (73) analyzed rotational resonance spectra in
resence of nonsecular perturbations and predicted va
eld-dependent peak shape phenomena.
However, these nonsecular effects are only of the order

ew Hertz under the conditions described here. They are
mall to explain the observed anomalies.

ndirect Spin–Spin Coupling

The isotropicJ-coupling between the C11 and C20 spin
nown from solution NMR and is very small (less than 3 H
imulations indicate that it cannot explain the observed an
lies.
In principle, the rank 1 and rank 2 parts of the indir

pin–spin coupling should also be considered. If these t
ere very large (;100 Hz), simulations show that both co
erturb the RR spectra significantly. However, such large
irect spin–spin interactions are physically implausible.

hermore, the spectral effects are predicted to be symme
or the two peaks. In addition, this mechanism cannot exp
he field-dependence.

V. DISCUSSION

To summarize, we propose that the anomalies in the
ional resonance13C spectra of 11,20-13C2-all-E-retinal are
aused by the following factors: (i) the13C transverse relax
tion is augmented by imperfect decoupling of abundant s
ii) this transverse relaxation is nonexponential, especial
igh spinning frequencies and/or high magnetic fields, and

he dynamics of coupled spins at rotational resonance
trongly affected by this perturbed transverse relaxation,
icularly by fast-relaxing components which easily escape
ice in a spectrum taken off rotational resonance.

These peak shape anomalies have the feature that
ecoupling imperfections for one of the coupled sites ten
erturb most strongly the peak associated with theother site.
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397ANOMALOUS ROTATIONAL RESONANCE SPECTRA
oughly speaking, rapid transverse relaxation of one o
ites takes those spins out of rotational resonance and na
he spectral peak associated with the coupled site.

We have produced a Liouville space theory of rotatio
esonance in the presence of exponential transverse relax
hich explains the qualitative features of the anomalous
hapes. Good agreement with experiment is obtained by t
nto account the nonexponentiality of the transverse relaxa

e have used a simple model in which two simulations
ifferent pairs of relaxation parameters are superposed.
These rotational resonance effects are not restricted to e

amples. Consider, for example, the RR spectrum of
1,2-13C2,

15N]-glycine, obtained from Cambridge Isotope La
ratories (Andover, MA) and used without further purificat
r recrystallization. Then 5 1 RR spectrum shown in Fig. 1
as obtained at a static magnetic field of 4.702 T, a spin

requency ofvr/2p 5 6.600 kHz, and a proton decoupler fi
orresponding to a nutation frequency of 81 kHz. The l
hielded (left-hand) spectral peak, associated with the C1
oxylate) carbons, shows a sharp central feature, which i
eproduced in the conventional RR simulation, based o
solated spin-pair model (Fig. 12b). (The15N spin is not ex
ected to perturb the13C peaks significantly, and is neglec

n the simulation.) This sharp feature may be due in pa

FIG. 12. 13C spectra of 98% [1,2-13C2,
15N]-glycine at a field of 4.702 T

n then 5 1 rotational resonance condition (vr/2p 5 6.660 kHz). The spectr
egions near the C1 and C2 centerbands are shown. (a) Spectrum o
1,2-13C2,

15N]-glycine (16 acquired transients). The spectrum was obtaine
Chemagnetics CMX-400 spectrometer, using a 4-mm zirconia roto

onventional simulation of (a), using the parameters given in Ref. (77). The
ffect of the 15N spin is ignored. (c) Liouville space spectral simulation
DTR model is used with two pairs of relaxation parameters: {r C2, r C1} 5

0.28, 0.28}3 103 s21 (weight 0.76), and {r C2, r C1} 5 {10.3, 0.28}3 103 s21

weight 0.24).
e
ws

l
ion,
ak
ng
n.
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ignals from the minor 1-13C isotopomer; however, the abu
ance of this isotopomer is too low to explain the peak c
letely. The model discussed above explains the anom

orm of the C1 peak in terms of decoupling imperfections
he C2 (methylene) site. A MDTR simulation, using the s
nteraction parameters given in Ref. (77), is shown in Fig. 12c
he general features of the experimental spectrum are r
uced qualitatively. Better agreement could presumabl
btained by adding more MDTR components and allowing
inor isotopomeric contributions.
In the case of 98% [1,2-13C2,

15N]-glycine, the RR spectra
nomalies appear even under “mild” conditions (low st
eld and low spinning frequency). We do not understand
ehavior at the moment, but it may be associated with
pecial features of spin dynamics in a CH2 group, in which two
trongly coupled protons interact with the same13C spin.
Even zinc 13C2-acetate, which is widely used as a mo

ompound for rotational resonance studies, often disp
mall spectral anomalies. It is rather usual to obtain a “bu
ear the middle of the less-shielded C1 (carboxylate) pea
xample may be found in Fig. 7e of Ref. (5). This bump ha
ometimes been attributed to isotopic impurities, but it se
ikely that this feature is really due to imperfect decoupling
he protonated C2 (methyl) site.

The treatment given here also predicts the existence o
pectral anomalies in other circumstances. For example, c
cal exchange processes, or unresolved homonuclear coup
electively accelerate the transverse relaxation of spins in
icular sites and should cause similar spectral perturbatio
otational resonance. The extreme sensitivity of the RR sp
o differential transverse relaxation may be useful for stud
uch weak broadening mechanisms.
Finally, we would like to address two further issues: (i) w

o these results mean for the quantitative application of R
olecular structure determination, and (ii) what implicati
o these results have in the wider NMR context?
Two different RR effects are commonly used in biomo

lar structural studies: longitudinal magnetization excha
nd one-dimensional RR spectra. The implications for
pectra are addressed first.
Clearly, the above conclusions imply that rotational re

ance spectra must be used with the utmost caution as a s
f molecular structural information. The spectra are sens

o details of the transverse relaxation which are not u
omplete control and which are hard to quantitate accura
quations such as Eq. [89] indicate that the spectral splitti
ensitive to the transverse relaxation differential between
oupled sites, as well as the structurally significant mag
ipole–dipole coupling.
Nevertheless, this may not rule out structural application
R spectra, at least in some cases. As emphasized abo
ost profound perturbations tend to occur on only one o

wo peaks. Verdegemet al. (13) studied the observed R
plittings in a series of labeled retinals, taking into acco

8%
n
b)
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398 HELMLE ET AL.
nly the split peak, and found a good semi-empirical rela
etween the splitting and the dipole–dipole couplings
ated from the X-ray structure. The validity of this se
mpirical approach relies on having comparable13C–1H dipo-

ar field environments for both model compound and tar
ore simulation work using the new theory is necessar
etermine whether this approach could be useful in ge
pplications.
A new method for efficient double-quantum filtering

otational resonance spectra has recently been described78).
his filtering scheme greatly reduces the spectral anomalie
ell as eliminating background signals), and may simplify
uantitative interpretation of RR spectra.
The implications of the new analysis forlongitudinal mag

etization exchangeat rotational resonance are less sev
ongitudinal magnetization transfer has been analyzed w
iouville space approach for many years (5), so the presen
ork holds few surprises in this regard. However, it app

hat even RR magnetization exchange studies must be
ttentive to thenonexponentialityof the transverse relaxatio
specially at high magnetic fields/spinning frequencies

east two exponential decay components may be need
odel the zero-quantum relaxation. Recent direct mea
ents of zero-quantum relaxation have indicated nonexpo

ial decay, in some circumstances (7).
Methods have been developed which are less sensitive

alue of the zero-quantum relaxation rate constant (9). Hope-
ully, these methods are also less sensitive to the nonexp
iality of the zero-quantum relaxation.

The theoretical analysis given above predicts the exist
f coherence transfer signals at rotational resonance. T
ignals are caused by mechanically induced coherence tr
rom one set of spins to the other during the acquisition o
MR signal. The existence of such signals is a matter
oncern, since it challenges the common assumption tha
ntegrated amplitude of a given spectral peak faithfully re
ents the magnetization of just one set of spins at the begi
f signal detection. The analysis given above shows tha
ssumption is safe. The integral of the coherence tra
ignals cancels out, and the signals themselves disappe
owder samples, in simple experimental situations.
Turning now to the wider implications, the present w

ndicates that it is very difficult, with current technolog
o dynamically isolate dilute spins from an abundant
atrix, especially in the case of high static fields and/or ma
ngle spinning frequencies. A more sophisticated theor
pin decoupling under high field/fast MAS conditions, as w
s improved decoupling methodology, is needed. The res
ontacts between dilute spins and abundant spins may
ubtle and unexpected effects on solid-state NMR spe
hich do not always correspond to a simple broadening o
MR peaks. These anomalies are expected to become
idespread as static magnetic fields and spinning freque
ontinue to increase.
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APPENDIX

The L-COMPUTE Algorithm

In this Appendix, we describe the L-COMPUTE algorit
sed for the simulations. This is an extension of
OMPUTE algorithm used for fast Hilbert space calculat
f periodic systems (20–23). Liouville space calculations r
uire a modified algorithm, since the propagators are
nitary in general.
In the discussion below, the integersj and k no longer

epresent spin site labels. They are used instead to index
nd frequency domain components, as in Ref. (20).
Suppose that the nuclear spins are subjected to a pe

iouvillian L̂(t), with periodT. This may be represented a
epeating sequence ofn piecewise time-independent Liouv
iansL̂ 1L̂ 2 . . . L̂ nL̂ 1L̂ 2 . . ., each Liouvillian being applied ov

time intervalt 5 T/n, i.e.,

L̂~t! 5 L̂ j if ~ j 2 1!t , t # jt [97]

nd

L̂ j1n 5 L̂ j. [98]

he case of continuously varying Liouvillians may be hand
y increasingn indefinitely.
The Liouville space propagator for thej th interval is denote

Ŝj 5 exp$L̂ jt%, [99]

o that the sequence of propagatorsŜj has the same periodici
s the sequence of Liouvillians,

Ŝj1n 5 Ŝj. [100]

he accumulated propagator over the firstj intervals is denote
y

Âj 5 Ŝj . . . Ŝ2Ŝ1, [101]

mplying the property

Âj1n 5 ÂjÂn. [102]

he numerical algorithm starts by diagonalizing the loc
ime-independent LiouvilliansL̂ j in order to estimate the el
ent propagatorsŜj . The matrix representations of the in

idual propagators are multiplied together to obtain the s
ccumulated propagatorsÂj and the full period propagatorÂn.
The period propagatorÂn is not unitary in general. Diago

alization ofÂn leads to a set of eigenvaluesv s, a set ofright
igenketsuQR), and a set ofleft eigenbras(QLu, defined as
s s
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399ANOMALOUS ROTATIONAL RESONANCE SPECTRA
ÂnuQs
R! 5 vsuQs

R!

~Qs
LuÂn 5 ~Qs

Luvs. [103]

he operatorsuQs
R) and (Qs

Lu are estimated in practice
umerical diagonalization ofÂn:

Ân 5 X̂V̂X̂21, [104]

here V̂ is a diagonal matrix, with elementsv s. The right
igenketsuQs

R) are the columns ofX̂, and the left eigenbra
Qs

Lu are the rows ofX̂21. In general, the set of operatorsQs
R is

ot orthogonal. The set of operatorsQs
L is also not orthogona

owever, the right eigenkets are orthogonal to the left ei
ras:

~Qr
LuQs

R! 5 Tr$Qr
L†Qs

R% 5 d rs. [105]

his makes it possible to write the unity superoperator in
ollowing way:

1̂5O
s

uQs
R!~Qs

Lu. [106]

By taking the logarithm of the eigenvaluesv s, and dividing
y the periodT, we obtain the eigenvalues of theeffective
iouvillian, denotedzs,

zs 5 T21log vs. [107]

he period propagator may then be written

Ân 5 O
s

exp$zsT%uQs
R!~Qs

Lu. [108]

he effective Liouvillian eigenvalueszs are complex numbe
n general.

Suppose that the initial density operator corresponds t
uperketur(0)) and the observable operator to the supe
Qobsu. It proves to be convenient to introduce the follow
xcitation and detection coefficients:

% s
j 5 ~Qs

Lu$Âj%
21ur~0!!exp$1 zsjt%

$ s
j 5 ~QobsuÂjuQs

R!exp$2zsjt%. [109]

hese are calculated for time pointsj 5 1, 2 . . .n within one
eriod by straightforward matrix/vector multiplications. B
ets of coefficients are periodic

% s
j1n 5 % s

j

$ s
j1n 5 $ s

j [110]
n-

e

he
a

nd may be written as discrete Fourier series, with Fo
oefficients denotede s

k andd s
k:

% s
j 5 O

k52n/ 211

n/ 2

e s
kexp$i2pjk/n%

$ s
j 5 O

k52n/ 211

n/ 2

d s
k exp$i2pjk/n%. [111]

umerically, the Fourier coefficientse s
k are calculated b

valuating the sets of periodic factors% s
j , followed by a fas

ourier transform. A similar calculation is performed to ev
ate the Fourier coefficientsd s

k from the terms$ s
j .

If the initial density operator and observable operator fu
ertain conditions (excitation–detection symmetry), it is p
ible to derive the coefficients$ s

j from % s
j directly, saving

uch calculation time (22).
The NMR signal at time pointt 5 jt is given by

s~ jt! 5 ~QobsuÂjur~0!!. [112]

y inserting a unity superoperator, this may be expresse

s~ jt! 5 O
s

~QobsuÂjuQs
R!~Qs

Lur~0!!

5 O
s

$ s
j % s

0exp$zs jt%. [113]

y employing the Fourier expansion of$ s
j , we get

s~ jt! 5 O
s

O
k

as
kexp$~iv s

k 2 ls! jt% [114]

here

as
k 5 d s

k% s
0

v s
k 5 Im$ zs% 1

2pk

T

ls 5 2Re$zs%. [115]

his equation shows that each effective Liouvillian eigenv
s contributes a manifold of sidebands to the spectrum, spac
requency by the inverse of the modulation period 2p/T. The
omplex amplitude of each sideband is given byas

k. The cente
requency of the manifoldvs

0 is the imaginary part of the eige
alue zs. All peaks in the same manifold have the same p
idth, specified byls, which is given by minus the real part ofzs.
ll of these parameters are readily calculated numerically.
For a powder average simulation, the spectrum mus

ummed over a large number of molecular orientationsV .
MR
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400 HELMLE ET AL.
s shown below, the anglegMR may be handled separately, b
his still leaves the integration overaMR andbMR. In practice
his is done by dividing the complex plane into a two-dim
ional grid of desired resolution, with one axis representing
eak halfwidthsl s, and the other axis representing the p

requenciesv s
k. For each molecular orientation, the amplitu

s
k, frequenciesv s

k, and peak halfwidthsl s are evaluated fo
ll eigenvalue indicess and sideband indicesk. Each comple
mplitudesas

k is added to the grid point which is nearest to
frequency, peak width) coordinate (v s

k, l s). The complete
mplitude matrix is built up by repeating the calculation for
igenvalue and sideband indices and all molecular orienta
Each slice through the matrix of complex amplitudes, ta

arallel to the frequency axis, represents a set of peaks
ifferent frequencies but identical widths. Each of these s

s converted into a subspectrum by (i) inverse Fourier tr
ormation, (ii) multiplication by an exponential decay funct
ith a decay rate appropriate to the peak width parameterl for

hat slice, and (iii) forward Fourier transformation. Repeti
f the calculation for all slices and summation of the subsp
ields the total powder average spectrum. The conversio
he two-dimensional amplitude matrix into a spectrum is o
erformed when the entire powder average is complet
any orientations are involved, this step does not repres

arge fraction of the total computational time.
We now turn to the special treatment of the Euler anglegMR.

everal groups have shown that the average over the
ngle gMR may be handled implicitly in the Hilbert spa
OMPUTE algorithm (21–23). The reduction of the pow
verage to a two-angle integration leads to an increa
omputation speed by a factor of at least 5 in most cases
how below that L-COMPUTE allows a similar accelerati
If RF fields are absent, a change in the Euler anglegMR is

quivalent to a cyclic permutation of the periodic Liouvillia
he average overgMR is therefore acarousel averageover all
yclic permutations of the periodic perturbation (22, 53). In the
iscussion below,gMR averaging is expressed in terms of
verage over the cyclic permutation indexp.
Suppose thatp elementsL̂ 1 . . . L̂ p are moved from the fron

o the back of the periodic sequence of Liouvillians. T
yclically permuted sequence is denoted by [p] in the follow-
ng discussion. The accumulated propagators for the perm
nd nonpermuted sequences are related through

Â j
@ p# 5 Âp1j

@0# $Âp
@0#% 21

Ân
@ p# 5 Âp

@0#Ân
@0#$Âp

@0#% 21. [116]

he cyclic permutation does not change the eigenvaluesv s of
he period propagator. The right eigenkets and left eigen
n the other hand, are modified by the cyclic permuta
ccording to
-
e

k
s

l
s.

n
ith
s

s-

ra
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y
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t a

ler

r
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e
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ed

s,
,

uQs
R@ p#! 5 Âp

@0#uQs
R@0#!

~Qs
L@ p#u 5 ~Qs

L@0#u$Âp
@0#% 21. [117]

he excitation and detection factors for the cyclically perm
equence are therefore

% s
j @ p# 5 ~Qs

L@ p#u$Â j
@ p#% 21ur~0!!exp$1zs jt%

5 % s
p1j@0#exp$2zspt% [118]

nd

$ s
j @ p# 5 ~Qobsu$Â j

@ p#uQs
R@ p#!exp$2zs jt%

5 $ s
p1j@0#exp$2zspt% [119]

he NMR signal for the cyclically permuted sequence at
5 jt may therefore be written

s@ p#~ jt! 5 O
s

$ s
j @ p#% s

0@ p#exp$zs jt%

5 O
s

$ s
p1j@0#% s

p@0#exp$zs jt%. [120]

y using the Fourier series expansions of the excitation
etection factors, one obtains the NMR signal for the cyclic
ermuted sequence,

s@ p#~ jt! 5 O
s

O
k

as
k@ p#exp$~iv s

k 2 ls! jt%, [121]

ith the sideband amplitudes

as
k@ p# 5 O

k9

d s
k@0#e s

k9@0#exp$i2p~k 1 k9! p/n%. [122]

ote that the sideband frequenciesv s
k and peak widthsl s are

naffected by the cyclic permutation.
The NMR signal may be averaged implicitly over all cyc

ermutationsp. Denoting this carousel average by ang
rackets, the NMR signal is

^s~ jt!& 5 O
s

O
k

^as
k&exp$~iv s

k 2 ls! jt%, [123]

here

^as
k& 5 n21 O

p51

n

as
k@ p# > d s

k@0#e s
2k@0#. [124]
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401ANOMALOUS ROTATIONAL RESONANCE SPECTRA
he last line is exact ifn is sufficiently large. This equatio
mplies that thegMR-averaged sideband amplitudes are
ained by combining the excitation and detection sideb
mplitudese s

k and d s
k in complementary pairs. An explic

ntegration overgMR is unneccessary. This is a generaliza
f the Hilbert space result (21–23).
To calculate the full powder average, the calculatio

epeated for a set ofaMR and bMR values. The resultin
wo-dimensional matrix of complex amplitudes is handled
escribed before.
The result in Eq. [124] does not rely on a particular r

ionship of the initial density operator and the observ
perator. However, application of this result is restricte
roblems in which a change ingMR is equivalent to a cycli
ermutation of the spin system Liouvillian. This is correc
esonant radiofrequency fields are absent or in the presen
time-independent RF field. Apart from RR calculations,

esult should be useful for calculating powder MAS spectr
he presence of chemical exchange (47, 79). The effect o
nresolved homonuclear couplings could also be modele
iouville space calculations including irreversible damping

he transverse coherences.
To summarize, the L-COMPUTE algorithm, incorporat

mplicit averaging over the anglegMR, involves the following
teps:

1. Initialize the matrix of complex amplitudes, and the
uency domain spectrum, to zero.
2. Select a pair of molecular orientational anglesaMR and

MR.
3. If the Liouvillian is block-diagonal, handle the bloc

eparately. Steps 4–13 below refer to each individual blo
4. Set up the series of LiouvilliansL̂ j atn time points within

ne rotor period. In the case of spin-pair RR calculations,
orresponds to evaluating Eq. [36] or Eq. [37] for a se
venly spaced time points within one rotor period. For maxim
omputational efficiency,n should be an integer power of
5. Diagonalize each LiouvillianL̂ j , and estimate the set

ropagatorsŜj through Eq. [99].
6. Multiply the propagatorsŜj together to obtain the acc
ulated propagatorsÂj , including the period propagatorÂn

Eq. [101]).
7. Diagonalize the period propagatorÂn to obtain the eig

nvaluesv s and right eigenketsuQs
R). Form a matrixX̂ with

olumns given by the right eigenkets. Take the inverse of
atrix to obtainX̂21. The left eigenbras (Qs

Lu are given by th
ows of X̂21.

8. Take the logarithm of the complex numbersv s and divide
y the periodT to obtain the effective Liouvillian eigenvalu
s (Eq. [107]).
9. For each eigenvaluezs, use the eigenkets and eigenb

o calculate the set of excitation coefficients% s
j , with j 5

. . . n (Eq. [109]).
-
d

s

s

-
e
o

of
s
n

by
f

-

.

is
f

is

s

10. Perform a fast Fourier transform on the sets of num
s
j to obtain the Fourier coefficientse s

k.
11. In the case of excitation–detection symmetry (see

22)), derive the detection coefficientsd s
k from the excitation

oefficientse s
k. In the general case, calculate the set of de

ion coefficients$ s
j separately using Eq. [109] and perform

econd fast Fourier transform to obtaind s
k.

12. Calculate the set ofgMR-averaged complex amplitud
as

k& by multiplying the numbersd s
k ande s

2k according to Eq
124].

13. Add the complex amplitudêas
k& to the two-dimensiona

mplitude matrix, at the coordinates defined by the frequ
s
k and peak widthl s, as given in Eq. [115]. Repeat for ea

ideband indexk and each eigenvalue indexs.
14. Repeat steps 4–13 for the other blocks of the Liouvil
15. Repeat steps 2–14 for all pairs of Euler angles {aMR, bMR}.
16. Convert the two-dimensional amplitude matrix int

pectrum. First initialize the spectrum to zero. Then perform
nverse Fourier transformation on each row of the ma

ultiply by an exponential decay function, perform a forw
ourier transformation, and add to the spectrum. For each

he rate constant for the exponential decay is different a
iven by the peak width coordinatel. Add together the spect
enerated by all rows.

ode for L-COMPUTE simulations of RR spectra may
ownloaded from the internet site www.fos.su.se/;mhl.
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