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1. Introduction

Let V be a complete nonsingular projective surface defined over an algebraic
number field k, such that the Picard variety of V is trivial and Pic(V̄ ) is torsion-
free. Since our main interest is in necessary conditions for V (k) not to be empty, we
shall further assume that V (kv) is non-empty for every completion kv of k. We do
not assume that V̄ is rational, and indeed the case which primarily interests us is
when V is a K3 surface. Our objective is to describe effective ways of computing the
Brauer–Manin obstructions to the existence of points on V defined over k. Write

Br0(V ) = {Ker(Br(V ) −→ Br(V̄ ))}/{Im(Br(k) −→ Br(V ))};

then it is known that Br0(V ) is isomorphic to H1(k,Pic(V̄ )), though to the best of
our knowledge there is in general no known algorithm for computing either Br0(V )
or this isomorphism. It is generally believed that Br0(V ) contains all the information
about the Brauer group Br(V ) which is useful in this context. Most of this paper is
concerned with computing groups isomorphic to Br0(V ), and with describing in terms
of these groups the Brauer–Manin obstructions coming from elements of Br0(V ).
All non-étale cohomology in this paper is continuous; thus cohomology groups for

Gal(k̄/k) are the limits of the corresponding groups for Gal(K/k) as K runs through
finite Galois extensions of k. The exact sequence

Br(k) −→ H2(k, k̄(V )∗) −→ H2(k, k̄(V )∗/k̄∗) −→ H3(k, k̄∗) (1)

forms part of the long exact sequence derived from

0 −→ k̄∗ −→ k̄(V )∗ −→ k̄(V )∗/k̄∗ −→ 0,

and H2(k, k̄(V )∗) classifies simple algebras on V with centre k(V ) which split over
k̄. Tate [2] has shown that H3(k, k̄∗) = 0 when k is an algebraic number field; and
Lemma 2 below will enable us to identify those elements of H2(k, k̄(V )∗/k̄∗) which
come from Azumaya algebras on V/k. They form a subgroup which we shall call
H2
Az(k, k̄(V )∗/k̄∗), and this subgroup is precisely the kernel of the natural map

H2(k, k̄(V )∗/k̄∗) −→ H2(k,Div(V̄ )).

Here k̄(V )∗/k̄∗ is isomorphic to the group of principal divisors on V defined over k̄;
we shall as usual denote this isomorphism by f �→ (f ).
In Section 2 we introduce the group H2

Az(k, k̄(V )∗/k̄∗) and show how to calculate it.
It is isomorphic to H1(k,Pic(V̄ )) and therefore to Br0(V ); and its elements correspond
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2 Martin Bright and Sir Peter Swinnerton–Dyer

in an obvious way to those classes of Azumaya algebras which split over k̄, so that
it is a good intermediary for computing the Brauer–Manin obstruction. In Section 3
we discuss the associated Azumaya algebras and the Brauer–Manin obstructions. If
A is an Azumaya algebra on V defined over k, we write Av =A⊗kkv for each place
v of k. We remind the reader that the Brauer–Manin condition for solubility of V in
k is that there exists a point

∏
Pv in

∏
V (kv) such that∑

v

invAv(Pv) = 0

for every Azumaya algebra A on V defined over k.
The general theory which underlies much of this paper depends on the existence of

lifting processes of the following kind. Let G, H be commutative groups and f :G→H

a homomorphism. Let h be an element of H; then a lifting process obtains an element
g in G such that h= f (g). Sometimes the general theory will show (usually in a
non-constructive way) that such a g exists; at other times the existence of g will be
an open question. To make the process computable is to provide algorithms which
decide whether such g exist, and if so which exhibit at least some of them. Such
an algorithm will usually be designed so that its primary aim is to find some g

provided any such exist; if it terminates without finding any g, it will follow that
no such g exists. Usually (and in all the cases which occur in this paper) the key
step will be to exhibit a finitely generated subgroup G0⊂G depending on h such
that if h= f (g) is possible at all, then it is possible with g in G0. Typically, G will be
associated with the algebraic closure k̄ and it will therefore not be possible to express
it in a form amenable to computation; but G0 will be similarly associated with an
explicitly determined finite Galois extension K/k and will therefore be computable.
The simplest examples of this are Theorems 2 and 3, and Theorem 1 is almost of the
same kind. If we have such a G0, let g1, . . . , gn be a base for G0 and write

g = m1g1 + · · · +mngn

where the mi are in Z. The condition which we have to satisfy is

h = m1f (g1) + · · · +mnf (gn),

which is equivalent to a finite set of linear equations and congruences in the mi.
Solving these is routine even if n is quite large.
We shall suppose that we are given both V and Pic(V̄ ). Obtaining Pic(V̄ ) from V

in an effective way seems to be a number-theoretic problem to which in general no
algorithmic answer is yet known. (The critical step in one approach to the problem can
be found in [8]. If the Birch/Swinnerton–Dyer conjecture is true, then this approach
provides an algorithmwhich solves the problem; but the algorithm is so laborious that
one could not contemplate actually using it.) However, if we only know a subgroup
P ⊂Pic(V̄ ) which is mapped to itself by Gal(k̄/k), then we can give natural meanings
to the pseudo-Brauer group associated with P and the Brauer–Manin obstruction
associated with this group; and these can be computed by means of the algorithms
described in this paper. One particularly interesting case is when we are given a
fibration of V and P is generated by the absolutely irreducible components of the
curves in this fibration. There is now a natural map

H1(k, P ) −→ H1(k,Pic(V̄ ))
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Computing the Brauer–Manin obstructions 3

whose image is isomorphic to the vertical part of Br0(V ) in the sense of [4]; and if we
apply to H1(k, P ) the algorithm which obtains the Brauer–Manin obstruction from
H1(k,Pic(V̄ )), we obtain the vertical part of the Brauer–Manin obstruction.
As far as possible we have denoted elements of Pic(V̄ ) by α or β, elements of

Div(V̄ ) by a or b, elements of k̄(V )∗ by x or y and elements of k̄(V )∗/k̄∗ by ξ, η or ζ.
These last can be identified with principal divisors; if so, they are enclosed in round
brackets.
For clarity, results which belong to the general theory are called lemmas; those

which underlie the algorithms are called theorems. Thus the lemmas are related to or
identical with what is already known; the most comprehensive account can be found
in [3]. But the theorems may well be new.

2. The Brauer group

Let Γ be a positive divisor on V , defined and irreducible over a given Galois
extension K of k. If a is an element of Div(V ⊗ K), we can write

a =
∑

niΓi + a
′

where Γi runs through the divisors conjugate to Γ over k and the support of a′

does not contain any of the Γi. We shall call
∑

niΓi the Γ-component of a. Because
K(V )∗/K∗ can be identified with the group of principal divisors on V ⊗ K, we
can in particular define the Γ-component of an element of K(V )∗/K∗; it will lie
in Div(V ⊗ K) but in general not in K(V )∗/K∗. This enables us to define the Γ-
components of cochains with values in Div(V ⊗ K) or K(V )∗/K∗. The operation
of taking Γ-components clearly commutes with the coboundary operator d. By the
fundamental equation

gm(g1, g2) = m(gg1, g2)− m(g, g1g2) + m(g, g1) (2)

for 2-cocycles, if the support of a 2-cocycle m with values in Div(V ⊗K) orK(V )∗/K∗

contains g−1Γ for some g in Gal(K/k) then it also contains Γ; so the condition that
the support of m does not contain Γ is equivalent to the condition that the support
of m does not contain Γ or any of its conjugates over k. A similar property and proof
hold for 1-cocycles. Moreover, all this extends to the tensor products of Div(V ⊗ K)
and K(V )∗/K∗ with Q.
Let S0 be a finite subset of Div(V̄ ) satisfying the following conditions:

(i) the images of the elements of S0 generate Pic(V̄ );
(ii) if S0 contains a then it contains ga for every g in Gal(k̄/k).

Let S1 ⊃ S0 be a finite subset of Div(V̄ ) satisfying the additional condition:

(iii) if b is any element of Div(V̄ ) then there is an a in the Z-module spanned by
S1 such that b is linearly equivalent to a and a is defined over the least field of
definition for b which contains k.

By replacing each element of S0 by the absolutely irreducible components of its
support, and similarly for S1, we can further suppose that every element of S0 or S1
is an absolutely irreducible positive divisor. Having done this, we choose once for all
a finite Galois extension K0 of k which is a field of definition for each divisor in S0;
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4 Martin Bright and Sir Peter Swinnerton–Dyer

we shall see shortly that S1 can be so chosen that K0 is also a field of definition for
each divisor in S1. From now on, S0,S1 and K0 will always have this meaning and
the additional property just stated.
The construction of S0 is straightforward provided one knows Pic(V̄ ). To construct

S1 we proceed as follows. For each field L such that k ⊂ L ⊂ K0, choose a finite subset
S of Div(V ⊗ L) whose images generate Pic(V ⊗ L). To obtain S1 we adjoin to S0
all conjugates over k of the elements of the sets S thus chosen. (This process can be
tidied up; but even the most natural choice of S0 may require the adjunction of some
additional elements.)
Since V is everywhere locally soluble, for L as above every element of Pic(V̄ ) which

is fixed by Gal(k̄/L) lies in Pic(V ⊗L). For let α in Pic(V̄ ) be fixed by Gal(k̄/L). If π
is the class of an ample divisor on V , then nπ +α is an effective divisor class provided
n is large enough; and in this case the positive divisors in nπ +α are classified by the
points of some variety W defined over L. Since V is everywhere locally soluble, so is
W ; and hence W is soluble in L because it is Severi–Brauer.

Lemma 1. Let G be a finite group and M a torsion-free G-module. Let g �→m(g) be
a 1-cocycle on G with values in M , and let M0⊂M be a G-submodule which contains
every m(g). Then m= dµ for some µ in M0⊗Q.

Proof. Write µ=−{
∑

g inG m(g)}/[G]; then m(g1) = g1µ−µ follows from the cocycle
rule

m(g1) = m(g1g)− g1m(g)

by summing over all g in G. �

We shall usually only be interested in the class of m in H1(G, M ). Since µ1 and µ2
give the same m if and only if µ1−µ2 is fixed under G, they give the same class in
H1(G, M ) if and only if

µ1 − µ2 is in M + (M ⊗Q)G.

In particular, we can regard a class in H1(G, M ) as being determined by an element
of M ⊗ (Q/Z); and this element is fixed by G and is determined up to the image of
an arbitrary element of (M ⊗Q)G.

Corollary 1. Let K be a Galois extension of k; then

H1(Gal(K/k),Div(V ⊗ K)) = 0.

Proof. Let m be a 1-cocycle on Gal(K/k) with values in Div(V ⊗ K). If K/k is
finite, there is an element µ in (Div(V ⊗K))⊗Q such that m= dµ. Let Γ be a positive
divisor on V defined and irreducible over K, and let m0, µ0 be the Γ-components of
m and µ. Write µ0 =

∑
aiΓi where the sum is taken over the distinct conjugates of Γ

over k and the ai are in Q. Then m0(g) =
∑

i(aj − ai)Γi where j = j(i, g) is such that
gΓj =Γi. For every pair i, j there is at least one such g; so all the ai −aj are integers.
Choose a so that each ai − a is an integer, and write µ1 =

∑
(ai − a)Γi; thus µ1 is in

Div(V ⊗ K) and dµ1 = dµ0 =m0 because
∑
Γi is fixed by Gal(K/k). Summing the µ1

over a complete set of non-conjugate K-irreducible divisors in the support of m, we
obtain µ in Div(V ⊗ K) such that m= dµ. The general case now follows because we
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Computing the Brauer–Manin obstructions 5

are using continuous cohomology, so that H1(Gal(K/k),Div(V ⊗ K)) is the direct
limit of the H1(Gal(L/k),Div(V ⊗ L)) for finite Galois extensions L/k with L⊂K.

Corollary 2. Let K0 be as above, and let K be a Galois extension of k such that
K ⊃K0. Then the inflation map

H1(Gal(K0/k),Pic(V̄ )) −→ H1(Gal(K/k),Pic(V̄ ))

is an isomorphism.

Proof. Suppose first thatK/k is finite. Consider the set of coboundaries dα of those
elements α in (Pic(V̄ ))⊗Q which are such that dα has values in Pic(V̄ ). This set can
be identified both with the set of 1-cocycles on Gal(K/k) with values in Pic(V̄ ) and
with the corresponding set for Gal(K0/k). The general case follows as in the proof of
Corollary 1. There is an alternative proof by means of the inflation-restriction exact
sequence. �

An argument similar to that of Lemma 1 shows that every 2-cocycle m(g1, g2) on
G with values in M has the form dµ for some µ: g �→µ(g) with values in M ⊗Q. For
we need only write

µ(g) =

{ ∑
g′inG

m(g, g′)

}/
[G] (3)

and apply the cocycle rule (2); summing (2) over all g2 we obtain

gµ(g1) = µ(gg1)− µ(g) + m(g, g1).

Lemma 2. Let K be a Galois extension of k and let C be an element of
H2(Gal(K/k), K(V )∗/K∗); then the following five properties are equivalent:
(i) let T be a finite set of positive divisors on V , each defined and irreducible over K.
Then there is an element ξ in C whose Γ-component is 0 for each Γ in T ;

(ii) let Γ be a positive divisor on V , defined and irreducible over K. Then there is an
element ξ in C whose Γ-component is 0;

(iii) let {P1, . . . , Pn} be any finite set of points on V , not necessarily defined over K or
even over k̄. Then there is an element ξ in C whose support does not contain any
of the Pi;

(iv) let P be a point on V , not necessarily defined over K or even over k̄. Then there is
an element ξ in C whose support does not contain P ;

(v) C is in the kernel of the natural map

H2(Gal(K/k), K(V )∗/K∗) −→ H2(Gal(K/k),Div(V ⊗ K)).

Proof. Suppose first that K/k is finite.
(v)⇒ (i) and (iii). Suppose that C satisfies (v) and let ξ1 be any element of C. The

divisor (ξ1) is the coboundary da1 of a 1-cochain a1 with values in Div(V ⊗K). Let a′1
be another 1-cochain with values in Div(V ⊗K), such that a′1(g) is linearly equivalent
to the corresponding a1(g) for each g in Gal(K/k). If we are trying to prove (i), we
further require that the support of each a′1(g) contains no divisor conjugate over k
to any of the divisors in T . Let η be a 1-cochain with values in K(V )∗/K∗ such that
the divisor (η(g)) = a1(g)− a′1(g). Then ξ = ξ1− dη is in C and its divisor is da′1, which
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6 Martin Bright and Sir Peter Swinnerton–Dyer

satisfies (i). If instead we are trying to prove (iii), we need to partition the points Pi

into three subsets:
(a) those which are defined over k̄;
(b) those which have transcendence degree 1 over k̄; the locus of any such Pi over

k̄ is an absolutely irreducible curve Γi defined over k̄;
(c) those which have transcendence degree greater than 1 over k̄, and which

therefore do not lie on any curve defined over k̄.
The additional requirement on the a′1(g) will now be that their supports do not
contain any point conjugate over k to any of the Pi which are of the first kind, and
do not contain any curve conjugate over k to the Γi associated with the points Pi of
the second kind. The rest of the argument is essentially the same as before.
(iii)⇒ (i). Let Γi run through all the conjugates over k of all the elements of T ,

and for each i choose a point Pi on Γi. If the support of ξ does not contain Pi it
cannot contain Γi. Again, if Γ is as in (ii) and (iv) holds, we choose any P on Γ. By
(iv) there is an element ξ in C whose support does not contain Γ. But we have already
seen that if the support of ξ does not contain Γ then it does not contain any of the
conjugates of Γ. Hence (iv)⇒ (ii).
(i)⇒ (ii) and (iii)⇒ (iv) are trivial.
(ii)⇒ (v). Suppose that C satisfies (ii) and let ξ0 be an element of C. Let Γ be a

positive divisor in the support of ξ0, defined and irreducible over K, and use (ii) to
choose ξ in C with Γ-component 0. The divisor (ξ0)− (ξ) is a coboundary with values
in Div(V ⊗K); suppose it is da where a is a 1-cochain with values in Div(V ⊗K), and
let a1 be the Γ-component of a. Then da1 is the Γ-component of (ξ0)− (ξ) and hence
also of (ξ0). Carry out this process for a maximal set of non-conjugate divisors in the
support of ξ0, defined and irreducible overK. Let a0 be the sum of the corresponding
a1; then a0 is a 1-cochain with values in Div(V ⊗ K) such that (ξ0) = da0.
The general case of the Lemma now follows because we are dealing with continu-

ous cohomology, so that the cohomology groups in (v) are the direct limits of the
corresponding H2(Gal(L/k), ·) for finite Galois extensions L/k with L⊂K. �

Let K be any Galois extension of k, and let H2
Az(Gal(K/k), K(V )∗/K∗) denote the

subgroup of H2(Gal(K/k), K(V )∗/K∗) consisting of those C which have the properties
listed in Lemma 2. Applying (v) and the triviality of H1(Gal(K/k),Div(V ⊗ K)) to
the long exact sequence derived from

0 −→ K(V )∗/K∗ −→ Div(V ⊗ K) −→ Pic(V̄ ) −→ 0 (4)

we obtain an isomorphism

δ : H1(Gal(K/k),Pic(V̄ )) −→ H2
Az(Gal(K/k), K(V )∗/K∗) (5)

and in the particular case K = k̄ an isomorphism

H1(k,Pic(V̄ )) −→ H2
Az(k, k̄(V )∗/k̄∗). (6)

It follows from Corollary 2 to Lemma 1 that the right-hand side of (5) is independent
of K provided that K ⊃K0. For computational purposes it is clearly advisable to
take K to be as small as possible — that is, to take K =K0. However, for nota-
tional purposes we shall take K = k̄. In contrast with the classical isomorphism
H1(k,Pic(V̄ ))�Br0(V ), the isomorphism (6) is easily computable. For let A be an
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Computing the Brauer–Manin obstructions 7

element of H1(k,Pic(V̄ )) and take any α in A. To obtain δA we first lift α back to a
1-cochain a with values in Div(V̄ ). Since dα=0, da is principal; and δA is defined to
be the class of da in H2(k, k̄(V )∗/k̄∗). That δA is in H2

Az(k, k̄(V )∗/k̄∗) follows from (v)
of Theorem 2.
To define δ−1 we proceed as follows. Let C be a class in H2

Az(k, k̄(V )∗/k̄∗) and let ξ
be an element of C; then (ξ) is the coboundary of a 1-cochain a with values in Div(V̄ ),
and a maps to a 1-cochain α with values in Pic(V̄ ). But the coboundary dα is the
image of da, so that dα vanishes by the exactness of (4). Hence α is a 1-cocycle. It is
trivial to check that the class of α only depends on C and that the map C �→A thus
induced is the inverse of the connecting homomorphism (6).
The only step which might cause computational difficulties here is the construction

of a from ξ. But if Γ is an absolutely irreducible positive divisor on V̄ , the coboundary
of the Γ-component of a is just the Γ-component of da. Hence we can delete from
a its Γ-components for all Γ outside the support of ξ. In other words, we can take
a=

∑
niΓi for some ni, where the sum is over all absolutely irreducible Γi in the

support of ξ. Hence we can use the process described in the Introduction to find a.
A further simplification is provided by the following Theorem.

Theorem 1. Each class C in H2
Az(k, k̄(V )∗/k̄∗) contains a 2-cocycle ξ whose support

is contained in S0.

Proof. Let ξ′ be a 2-cocycle in C, and suppose that the support of ξ′ contains an
absolutely irreducible divisor Γ which is not in S0. By (i) of Lemma 2, there is a
2-cocycle ξ′′ in C whose support does not contain Γ or any of its conjugates over k.
Since ξ′/ξ′′ is a coboundary, it has the form dη for some 1-cochain η with values in
k̄(V )∗/k̄∗. If we identify η with a 1-cochain whose values are principal divisors, we
can write

(η(g1)) =
∑

ng(g1) · gΓ + a(g1)

where the ng(g1) are in Z, the sum is taken over all distinct conjugates gΓ of Γ and
the a(g1) are divisors whose supports do not contain Γ or any of its conjugates. Now
let c be a divisor linearly equivalent to Γ and with support in S0. Then b defined by

b(g1) =
∑

ng(g1) · g(Γ− c)

is a 1-cochain whose values are principal divisors, and it contains the samemultiple of
each gΓ as (η(g1)) does. Hence db contains the same multiple of each gΓ as dη = (ξ′/ξ′′)
does, and the support of db is contained in the union of S0 and all the gΓ. Thus
(ξ′)− db is in C; and its support is a subset of the set derived from the support of ξ′

by deleting all the gΓ and adjoining S0. Repeating this process finitely many times,
we obtain a 2-cycle in C whose support is contained in S0. �

The 2-cochains ξ for Gal(K0/k) with values in K0(V )�/K�
0 and support in S0

are specified by [K0 : k]2[S0] integer-valued parameters; so we can find the set of
all such ξ which are actually 2-cocycles. What interests us is which of them lie
in some class of H2

Az(Gal(K0/k), K0(V )�/K�
0 ) — that is, which of them have im-

ages with values in Div(V ⊗ K0) which are actually coboundaries. To compute
H2
Az(Gal(K0/k), K0(V )�/K�

0 ) in this way we must find out which such ξ are themselves
coboundaries. How to do this is considered in the next paragraph. But in fact we
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8 Martin Bright and Sir Peter Swinnerton–Dyer

do not need to implement these constructions; for in view of the isomorphism (6) we
can obtain H2

Az(k, k̄(V )∗/k̄∗) from H1(k,Pic(V̄ )). If we ensure that every element of
Pic(V̄ ) lifts back to a divisor with support contained in S0, then the representatives of
the classes C which we obtain will automatically have the property in the Theorem.
Computing the set of those ξ with support in S0 which are actually coboundaries

appears to present some difficulties, because the coboundary formula

ξ(g, g1) = gη(g1) · η(g)/η(gg1) (7)

does not appear to imply that we can choose the support of η to be in S0. But
this difficulty can be overcome by working in S1 rather than in S0. As the following
Theorem shows, to find all the ξ with support in S0 which lie in the trivial class of
H2
Az(k, k̄(V )∗/k̄∗), we can further restrict a to be principal.

Theorem 2. Let C be a class in H2
Az(k, k̄(V )∗/k̄∗) and ξ an element of C with support

in S1. Then the divisor (ξ) has the form da where a is a 1-cochain with values in Div(V̄ )
and support in S1. If C is the trivial class, then ξ = dη where η is a 1-cochain with values
in k̄(V )∗/k̄∗ and support in S1.

Proof. By Lemma 2, (ξ) is a coboundary da0 where a0 is a 1-cochain with values in
Div(V̄ ). Let Γ be an absolutely irreducible curve which is in the support of a0 but is
not in S1, and let

∑
ni(g)Γi be the Γ-component of a0(g), where Γi runs through the

distinct conjugates of Γ over k. Choose hi in Gal(k̄/k) so that Γi = hiΓ. Let L be the
least field of definition for Γ which contains k. By the definition of S1, we can find
a divisor b in the Z-module spanned by S1 which is linearly equivalent to Γ and is
defined over L. The Γ-component of da0 = ξ vanishes, so that∑

i

{ni(g2) · g1hi + (ni(g1)− ni(g1g2))hi}Γ = 0

for all g1, g2 in Gal(k̄/k). This is equivalent to

nj(g2) + ni(g1)− ni(g1g2) = 0

for all i, g1, g2, where j is determined by the condition that the action of hj on Γ is
the same as that of g1hi. But this means that the action of hj on L, and hence also
on b, is the same as that of g1hi. Thus∑

i

{ni(g2) · g1hi + (ni(g1)− ni(g1g2))hi}(Γ− b) = 0

for all g1, g2. This is the same as saying that the 1-cochain

g �−→
∑

ni(g)hi(Γ− b) (8)

has zero coboundary. Hence we can subtract the 1-cochain (8) from a0 without
affecting the truth of the equation (ξ) = da0. In this way we eliminate from the
support of a0 all the conjugates of Γ without bringing in any new divisors which are
outside the Z-module spanned by S1. Repeating this process, we eventually reduce
to an a0 of the form required. Since the right-hand side of (8) is a principal divisor,
the argument also proves the last sentence of the Theorem. �
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Computing the Brauer–Manin obstructions 9

Now letK/k be a finite Galois extension. We saw just before Lemma 2 that we can
describe any 2-cocycle ξ on Gal(K/k) with values inK(V )∗/K∗ by a 1-cochain η with
values in (K(V )∗/K∗)⊗Q. Because our cohomology is continuous, this extends to
any Galois extension K/k and in particular to k̄/k. With the obvious identifications,
η is independent of the choice ofK. By (3), if the support of ξ is contained in S0 then
so is the support of η. A cochain η with values in (k̄(V )∗/k̄∗)⊗Q and coboundary
dη = ξ is determined up to a 1-cocycle with values in (k̄(V )∗/k̄∗) ⊗ Q. Applying
Lemma 1 to any such 1-cocycle, it is actually the coboundary of an element ζ
in (k̄(V )∗/k̄∗) ⊗ Q. In particular, the class C of ξ is trivial if and only if ξ is the
coboundary of a 1-cocycle η′ with values in k̄(V )∗/k̄∗. This is the same as saying that
if η is given by (3) then there exists ζ in (k̄(V )∗/k̄∗)⊗Q such that η/dζ has values in
k̄(V )∗/k̄∗. In view of Theorem 2, we can require the support of ζ to lie in S1.
Suppose now that η is a 1-cochain with values in (k̄(V )∗/k̄∗)⊗Q such that dη takes

values in k̄(V )∗/k̄∗. The following criterion for the class of dη to lie in H2
Az(k, k̄(V )∗/k̄∗)

is based on (ii) of Theorem 2; there are similar but less useful tests based on each of
(i), (iii) and (iv).

Lemma 3. Let η be a 1-cochain with values in (k̄(V )∗/k̄∗)⊗Q such that its coboundary
ξ = dη has values in k̄(V )∗/k̄∗. Then the class of ξ is in H2

Az(k, k̄(V )∗/k̄∗) if and only
if η has the following property: if Γ is any absolutely irreducible positive divisor on V̄ ,
there is an element ζ in (k̄(V )∗/k̄∗)⊗Q such that the image of η− dζ as a 1-cochain with
values in (k̄(V )∗/k̄∗)⊗ (Q/Z) has Γ-component 0.

Proof. Suppose first that the class of ξ is inH2
Az(k, k̄(V )∗/k̄∗). Using (ii) of Lemma 2,

choose ξ1 in the class of ξ so that the Γ-component of ξ1 vanishes. Let K be a finite
Galois extension of k over which ξ, η and ξ1 are all defined, and let η1 be obtained
from ξ1 by means of (3); then η and η1 determine the same class in H2

Az(k, k̄(V )∗/k̄∗),
so that η/η1 = η0dζ for some ζ in (k̄(V )∗/k̄∗)⊗Q and some 1-cochain η0 with values
in k̄(V )∗/k̄∗. The image of η/dζ as a 1-cochain with values in (k̄(V )∗/k̄∗)⊗ (Q/Z) is
the same as that of η/(η0dζ) = η1, so it has Γ-component 0.
Conversely, suppose that η has the property in the Lemma. Then we can lift the

image of η/dζ as a 1-cochain with values in (k̄(V )∗/k̄∗) ⊗ (Q/Z) to a 1-cochain η1
with values in (k̄(V )∗/k̄∗) ⊗ Q and Γ-component 0. Write η/(η1dζ) = η0, so that η0
has values in k̄(V )∗/k̄∗; then dη1 = dη/dη0 is a 2-cocycle which lies in the same class
in H2

Az(k, k̄(V )∗/k̄∗) as ξ = dη. Hence this class satisfies (ii) of Lemma 2. �

We have seen that we can describe the classes C in H2
Az(k, k̄(V )∗/k̄∗) and M in

H1(k,Pic(V̄ )) by means of 1-cochains η with values in (k̄(V )∗/k̄∗)⊗Q and elements
α in (Pic(V̄ ))⊗Q respectively. It is useful to be able to describe the isomorphism (6)
in terms of η and α.
To obtain α from η we proceed as follows. By Lemma 2, (dη) is a coboundary;

so there is a 1-cochain a with values in Div(V̄ ) such that a − (η) is a 1-cocycle with
values in (Div(V̄ ))⊗Q. By Lemma 1, there is an element a1 of (Div(V̄ ))⊗Q such that
da1 + (η) has values in Div(V̄ ); and it is a1 rather than a which we compute. Since the
image of a is in M, so is that of a− (η); so we can take α to be the image of a1 in
(Pic(V̄ ))⊗Q. By Theorem 1, we can require the support of ξ and hence also of η to
be in S0, and by Theorem 2 we can require the support of a and therefore of a1 to be
in S1; hence a1 is computable.
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10 Martin Bright and Sir Peter Swinnerton–Dyer

To obtain η from α we first lift α back to an element a1 in (Div(V̄ )) ⊗ Q with
support in S0; then we can take η to have divisor −da1.

3. Central simple algebras over k(V)

There are in the literature two descriptions of the isomorphism between the group
of equivalence classes of central simple algebras over a field L and the cohomology
group H2(L, L̄∗). The one which we use is based on that given by Deuring ([6, chapter
V]) and Albert ([1, chapter V]), because it is the more convenient for computation; the
other can be found in Serre [7, chapter X, section 5]. Fortunately, Deuring’s process
works on any central simple algebra. We do not have to start by finding an equivalent
division algebra — a process indeed which we only know how to implement by going
through this isomorphism.
Let K/k be a finite Galois extension and A a central simple algebra with centre

k(V ) such that A contains K(V ) and splits over it. We write

G = Gal(K/k) = Gal(K(V )/k(V )).

To each σ in G there corresponds an element uσ�0 in A such that

(σx)uσ = uσx for all x in K(V ); (9)

uσ is determined up to left multiplication by an element of K(V )∗, and the uσ form
a base for A regarded as a K(V )-vector space. Let y(σ, τ ) in K(V )∗ be determined
for each σ, τ , in G by

uσuτ = y(σ, τ )uστ ; (10)

then the associative law inA holds if and only if σ, τ �→ y(σ, τ ) defines a 2-cocycle with
values in K(V )∗. Varying the uσ changes this cocycle by an arbitrary coboundary;
so the pair A, K determines a class in H2(G, K(V )∗). Conversely, given K/k we can
in this way derive an algebra A from any class in H2(G, K(V )∗) by means of the
composition rules (9) and (10).
The sequence

H2(G, K∗) −→ H2(G, K(V )∗) −→ H2(G, K(V )∗/K∗)

is exact; so on taking limits as K tends to k̄ the process above provides a way of
implementing the isomorphism

Br(k(V ))/Br(k) −→ H2(k, k̄(V )∗/k̄∗) (11)

and more particularly the isomorphism

Br(V )/Br(k) −→ H2
Az(k, k̄(V )∗/k̄∗). (12)

(The reason why it is useful to be able to implement (11) as well as (12) is that some
Azumaya algebras on V are best described as corestrictions of algebras which are not
themselves Azumaya.) Implementing the inverse isomorphism is more complicated.
The difficulty lies in lifting a 2-cocycle with values in k̄(V )∗/k̄∗ to a 2-cocycle with
values in k̄(V )∗; once we have done this, we can use the argument in the previous
paragraph. We do not know whether a class in H2(G, K(V )∗/K∗) can always be
lifted to a class in H2(G, K(V )∗); but this is certainly possible in the most interesting
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Computing the Brauer–Manin obstructions 11
case, as the following Lemma and Corollary show. The Lemma is contained in the
Corollary, but for historical reasons we have stated and proved it separately.

Lemma 4. Let C be a class in H2(G, K(V )∗/K∗) and ξ an element of C. If V (k) is not
contained in the support of ξ then ξ can be lifted to a 2-cocycle with values in K(V )∗.

Proof. Suppose we lift the elements ξ(g1, g2) of ξ back to elements x(g1, g2) ofK(V )∗

in any manner; then the difference of the two sides of (2) will lift back to

y(g, g1, g2) =
gx(g1, g2) · x(g, g1g2)
x(gg1, g2) · x(g, g1)

. (13)

These are lifts to K(V )∗ of the identity in K(V )∗/K∗, so all these expressions lie in
K∗. We have to choose the x(g1, g2) so that each of these expressions is equal to 1.
Now let P be a point of V (k) not in the support of ξ, and choose the x(g1, g2) so that
each of them has value 1 at P . Then the same is true of all the gx, and hence also
of every expression (13). The last sentence of the Lemma now follows from (iv) of
Lemma 2.

Corollary. Let C be a class in H2(G, K(V )∗/K∗) and ξ an element of C. If V
contains a 0-cycle of degree 1 defined over k then ξ can be lifted to a 2-cocycle with values
in K(V )∗.

Proof. If the hypothesis holds, standard arguments show that V contains a 0-cycle
of degree 1 defined over k, no point of which lies in the support of ξ. Denote this
0-cycle by

∑
Pi−

∑
Qj . We follow the proof of the Lemma, except that we normalize

the x(g1, g2) by imposing the condition that∏
x(Pi)

/∏
x(Qj) = 1

instead of the condition in the proof of the Lemma. �

Of course this Lemma does not usually help us to carry out the lifting; but it shows
that there are really two problems to consider, of which the first is much the more
important:

(i) Determine whether a given 2-cocycle ξ with values in K(V )∗/K∗ can be lifted
to a 2-cocycle x with values in K(V )∗, and if so exhibit such a lifting.

(ii) Given ξ as above, exhibit a finite normal extension L/k with L ⊃ K such that
ξ can be lifted to a 2-cocycle x with values in L(V )∗.

As to the second problem, we remark only that it is possible to derive from [2, chapter
VII, section 4] a recipe for such an extension L/K, depending only on k andK, such
that every class in H2(G, K(V )∗/K∗) can be lifted to a class in H2(Gal(L/k), L(V )∗).
Once L is known, the actual lifting can be carried out by the same algorithm (with
L for K) which we use to solve the first problem. But the algorithm for obtaining L
is clumsy, and the L which it yields may well be far larger than is really necessary.
It is therefore fortunate that the solution of the second problem will seldom if ever
be needed; for if we discover that the answer to the first problem is negative, it will
follow that V (k) is almost empty and we are likely to lose interest in V .
As we saw in the proof of Lemma 4, if we obtain x by lifting the elements of ξ

to elements of K(V )∗ in any manner, the expressions y(g, g1, g2) given by (13) are
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12 Martin Bright and Sir Peter Swinnerton–Dyer

constants; and in view of the formula for them, they describe the coboundary of
a 2-cochain with values in K(V )∗. Hence they describe a 3-cocycle with values in
K∗. The most general lift of ξ is to elements x/b where b is a 2-cochain with values
in K∗; and x/b is a 2-cocycle if and only if y = db. Thus our problem is equivalent
to determining whether a given 3-cocycle with values in K∗ is the coboundary of a
2-cochain b with values in K∗. The first step is as follows.

Theorem 3. Let a be a 3-cocycle with values in K∗; then one can construct a finite set
B of primes in K such that if a= db, where b is a 2-cochain with values in K∗, then we
can choose b to be in D

∗
B.

Proof. We choose B to satisfy the following conditions:
(i) every element of a lies in D

∗
B;

(ii) B contains all the primes ramified in K/k;
(iii) the primes in B generate the ideal class group of K;
(iv) if P is in B then so are all its conjugates over k;
(v) let H be any cyclic subgroup of Gal(K/k) and L the fixed field of H. If p is a

prime in L which is inert in K/L, then there is an ideal q in L which lies in the
same ideal class as p and is such that conormK/Lq is in the group generated
by the primes in B and is not divisible by any prime which ramifies in K/L.

In exhibiting a suitable B, the only potential difficulty comes with the final condition.
But since K/L is abelian, we can describe those p in any assigned ideal class of L
which are inert in K/L by congruence conditions; and if there are any such for a
particular ideal class, we need only adjoin to B the conorm of one of them. However,
this is very crude, and for the algorithm which follows the proof of the Theorem it
is desirable to make B as small as possible. Thus in practice one chooses B in a more
sophisticated way, though still subject to the five conditions above.
The rest of the proof is very similar to that of Theorem 2. Let P be a prime in K

which is not in B but which occurs in the factorization of some element of b. Let H
be the inertia group of P and L the fixed field of H. Since P is unramified in K/k,
H is cyclic and P=conormK/Lp for some prime p in L. Choose a in L as in the final
condition on B, and write ap−1 = (c) with c in L∗. We now define an operation b �→ b̂;
we should think of this as finding the component of P and its conjugates in b and
replacing them by corresponding expressions formed from a. Let the gi be such that
giH runs through the cosets of H in G. For a given element of the 2-cochain b, let∏
(giP)ni be that product of conjugates of P which exactly divides it; and denote

by b̂ the 2-cochain with values in K∗ whose elements are the
∏
(gic)ni . Thus b̂ is

independent of the choice of the gi and db̂= â with the analogous definition of â. But
â is trivial because no conjugate of P appears in a. We can therefore replace b by
bb̂ without changing its coboundary; and by doing so we have removed P and its
conjugates from the set of primes outside B at which some element of b is a non-
unit, without adding any new primes to this set. Repeating this operation for each
of a maximal non-conjugate set of such primes, we ensure that any element of b is
in D

∗
B. �

Once we have this Theorem, the process described in the Introduction enables us
to find b if it exists, and in particular to determine whether a= db for some 2-cochain
b with values in K∗.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004104007571
Downloaded from https://www.cambridge.org/core. Library African Studies Centre, on 10 Nov 2021 at 08:40:31, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004104007571
https://www.cambridge.org/core


Computing the Brauer–Manin obstructions 13
Nevertheless, this process is somewhat tedious, as is the process of making explicit

the Brauer–Manin obstruction corresponding to a given Azumaya algebra expressed
as a 2-cocycle. The second step reduces to finding the local invariants of the algebra
at the places of bad reduction. Detailed instructions for doing this can be found in
[7, chapter XIII, section 3]. The process described there is algorithmic, but it would
be very complicated to program. One is therefore led to ask if there is a subset of
algebras which admit a simpler description than by means of a 2-cocycle with values
in k̄(V )∗ and for which the calculations of local invariants can also be simplified. There
is indeed such a set: at the least it contains all sums of corestrictions of quaternion
algebras, and subject to a subsidiary condition we can use cyclic algebras instead of
quaternion algebras.
We first describe quaternion algebras, which are the case [G] = 2 in the construction

at (10). Write G= {1, σ} and let K = k(
√

c) where c is in k. We can choose u1 = 1,
so that y(σ, 1) = y(1, σ) = y(1, 1) = 1; thus the algebra is completely determined by
y(σ, σ) =u2σ, and the cocycle law is equivalent to the statement that y(σ, σ) is in
k(V )∗. The orthodox notation is to write this algebra as (c, y), where y = y(σ, σ); but
because we wish to regard quaternion algebras as a special case of cyclic algebras,
we shall in this paper denote this algebra by Z2(c, y).
Next suppose that G is a cyclic group of order n > 1; the case n=2 is the one

which we have just discussed. Fix a generator σ of G; then we can take uσν = (uσ)ν

for 1 � ν < n and the algebra is completely determined by un
σ = y, which must lie in

k(V )∗. The associated 2-cocycle is given by

y(σµ, σν) =
{

y if µ + ν � n,

1 if µ + ν < n,
(14)

where 0�µ, ν <n. Such algebras are called cyclic; if we denote the algebra just
defined by Z(K/k, σ, y) then Z(y1) and Z(y2) are isomorphic if and only if y1/y2 is a
norm forK(V )/k(V ), and Z(y1)⊗Z(y2) is similar to Z(y1y2). Suppose moreover that
k contains the nth roots of unity. Then K has the form k(c1/n) for some c in k∗, and
we can denote the algebra Z(K/k, σ, y) above by Zn(c, ζ, y), where ζ is the primitive
nth root of unity such that σc1/n = ζc1/n. This is consistent with the notation for
quaternion algebras introduced in the previous paragraph.
The algebras constructed in this way are in general not Azumaya; for one of them

to be so, it needs to have good reduction at each absolutely irreducible component
of the support of (y). Instead we need to consider finite sums A=

∑
Z(Ki/k, σi, yi)

or for simplicity

A =
∑

Zni
(ci, ζi, yi). (15)

In view of Theorems 1 and 2 and the construction used in the proof of Lemma 1,
we can restrict ourselves to the case when every yi has support in S1. Let aj run
through the absolutely irreducible components of S1 and write (yi) =

∑
nijaj . Then

the condition that A should have good reduction on aj is that
∏

c
nij /ni

i should be in
the least field of definition for aj which contains k; and A is Azumaya if this holds
for all aj . But sums (15) will usually be insufficiently general; instead we expect to
have to consider sums (16) which involve corestrictions.
The use of the corestriction operator (which extends the trace) also often simplifies

the description of a central simple algebra; so we remind the reader of the general
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14 Martin Bright and Sir Peter Swinnerton–Dyer

description, at least in codimensions 0, 1 and 2. But when they are applicable, a
better alternative is to use the projection formulae, for which see [7, p. 212].
Let G, H be finite groups such that H ⊂G, and let M be a G-module; for each

r � 0 the corestriction is a certain homomorphism
cores: Hr(H, M ) −→ Hr(G, M ).

The case which concerns us in this paper is when K/k is a finite Galois extension
and � is a field such that K ⊃ �⊃ k. Now G=Gal(K/k) and H =Gal(K/�), and the
elements of M are defined over K.
Let g1, . . . , gn be representatives of the left cosets of H in G. For r=0,

H0(H, M ) =MH and the corestriction is defined to be the trace map (norm map
ifM is multiplicative)m �→

∑n
i=1 gim. When r=1, a class in H1(H, M ) is represented

by a 1-cocycle h �→ mh. The corresponding class in H1(G, M ) is that represented by
g �→ m′

g wherem′
g is defined as follows. For each i with 1� i� n there exist j = j(i, g)

with 1� j � n and h=h(i, g) in H such that ggi = gjh; then m′
g =

∑n
i=1 gjmh. When

r=2, a class in H2(H, M ) is represented by a 2-cocycle h1, h2 �→mh1,h2 . For each i
define j and h′′ by g′′gi = gjh

′′ and then define k and h′ by g′gj = gkh
′. The corres-

ponding class in H2(G, M ) is represented by g1, g2 �→m′
g1,g2

where

m′
g′,g′′ =

n∑
i=1

gkmh′,h′′ .

If we replace the sum by a product, these formulae are useful both whenM =K(V )∗

and when M =K(V )∗/K∗.
The natural description of an element of Br0(V ) is as an element of

H2
Az(k, k̄(V )∗/k̄∗), so that it is described by means of a 2-cocycle on Gal(k̄/k) with

values in k̄(V )∗/k̄∗. But this is not the most convenient description for computational
purposes, both because it is rather bulky and for other reasons. Instead we can use
the formula (3) to lift this cocycle to a 1-cochain with values in (k̄(V )∗/k̄∗)⊗Q and
then use the process in the penultimate paragraph of Section 2 to lift this cochain
back to an element of Pic(V̄ )⊗Q. We obtain the same result if we first lift the ele-
ment of H2

Az(k, k̄(V )∗/k̄∗) back to an element of H1(k,Pic(V̄ )) in the way described
just before Theorem 1, and then lift this back to an element of Pic(V̄ )⊗Q by means
of Lemma 1.
It will often happen that the element of H2

Az(k, k̄(V )∗/k̄∗) is the corestriction of an
element of H2(�, k̄(V )∗/k̄∗) where � is a finite extension of k, or the sum of several such
corestrictions. As the example in [9, section 6] shows, we cannot necessarily expect
the underlying elements of H2(�, k̄(V )∗/k̄∗) to lie in H2

Az(�, k̄(V )
∗/k̄∗). In practice,

such an expression is probably only useful when these underlying algebras are cyclic.
So we would like a method for deciding whether a given Azumaya algebra A can be
written as a sum of corestrictions of cyclic algebras

A =
∑

cores�i /kZni
(ci, ζi, yi) (16)

where now ci is in �i, yi is in �i(V )∗, �i contains the nith roots of unity and the field
Li = �i(ni

√
ci). Note that if this is possible at all, it is likely that it can be done in more

than one way. Unfortunately we do not know how to find the set of all representations
(16) of a given Azumaya algebra A; but what we can do is to write down all the sums
of this kind which are equal to some Azumaya algebra on V over k. It would be
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convenient if we could lift the individual summands back to elements of Pic(V̄ ⊗Q)
and then add the result together; but this does not seem to be possible.
As in (15), write (yi) =

∑
nijaj where aj runs through the absolutely irredu-

cible components of S1. The condition for A to have good reduction on aj is that∏
norm�i /k(c

nij /ni

i ) should be in the least field of definition for aj which contains k;
and A is Azumaya if this holds for all aj . We can assume that every �i is contained
in K0; for we can replace �i by �i �K0 and yi by its norm for �i/(�i �K0). For each of
the finitely many such �i, we choose yi in �i(V )∗ with support in S1; since the effect
of multiplying this yi by elements of �∗i or by nith powers of elements of �i(V )∗ will
be trivial, there are only finitely many choices for the yi. We then choose ci in �∗i so
that in the notation above∏

norm�i /k

(
c
nij /ni

i

)
is in the appropriate field for each j. (17)

We have not tried to implement this process; and in our view, finding the repres-
entation (16) is best done by hand rather than by computer. In practice, it is our
impression that any relevent sums like the right-hand side of (16) will force them-
selves on our attention, and the real question is which of them are equal. We can for
example show that the two apparently quite different Brauer–Manin obstructions
described in [9, section 6] are actually the same.
For what follows, it is necessary to normalize the maps Br(kv)→Q/Z for finite

places v; here the choice of sign differs from one author to another. (See [7, p. 167].)
In this paper we follow Serre [7, chapter X, section 5]. For the description (16) to be
useful, we need a straightforward way of computing the local invariants invvA(Pv) of
(16) at v-adic points Pv on V . To do this computationally we extend the functions yi

in the notation of (16) from V to the ambient space. If we choose a point P defined
over k (but not necessarily lying on V ) which is close enough to Pv in the v-adic
topology, then invvA(Pv) = invvA(P ).
It is known that the local invariant invvA(Pv) is trivial for all Pv in V (kv) unless v

is a bad place of k. In this context the bad places consist of

(i) the infinite places,
(ii) the primes which divide any ni,
(iii) the primes below a prime of �i at which ci is not a unit or yi has bad reduction

for some i,
(iv) the primes at which V has bad reduction.

The calculation of invvA(Pv) at a bad place v is often made easier by using the
following lemma, in which (i) is a variant of [5, proposition 1·1·2] and (ii) can be
extracted from [7, chapters XII to XIV]. A definition of the nth-power residue
symbol can be found, for example, in [7], at the beginning of chapter XIV, section 2.
It involves the choice of a primitive nth root of unity, and for (ii) below to hold this
must be chosen to be the same ζ as appears in the left hand side of (18).
It is enough to consider the individual terms in (16).

Lemma 5. (i) Let � be a finite extension of k and A a central simple algebra defined
over �. Let v be a place of k. Then

invv

(
cores�/kA

)
=

∑
invwA,

where the sum is taken over all places w of � above v.
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16 Martin Bright and Sir Peter Swinnerton–Dyer

(ii) Let � be a field containing the nth roots of unity, and let c′, c′′ be elements of �∗ and
v a place of �. Then

invvZn(c′, ζ, c′′) = b/n, (c′, c′′)v = ζb (18)

for some b in Z, where the bracket on the right is the nth-power residue symbol.
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