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Abstract

The Brauer–Manin obstruction is a concept which has been very effective in finding
counter-examples to the Hasse principle, that is, sets of polynomial equations which have
solutions in every completion of the rational numbers but have no rational solutions. The
standard way of calculating the Brauer–Manin obstruction involves listing all the p-adic
solutions to some accuracy, at finitely many primes p; this is a process which may be
time-consuming. The result described in this article shows that, at some primes, we do
not need to list all p-adic solutions, but only those lying over a closed subset; and, at
other primes, we need only to list solutions modulo p.

1. Introduction

The Brauer–Manin obstruction was introduced by Manin [12, 13] to explain why some
systems of algebraic equations over the rational numbers Q, while having solutions ev-
erywhere locally, fail to have global solutions. The obstruction is based on the Brauer
group of the associated variety [see 8]. If we denote by V (AQ) the set of adelic points of
the variety V , then we may define

V (AQ)B :=
{
(xv) ∈ V (AQ)

∣∣ ∑
v

invv A(xv) = 0 for all A in B
}

to be the set of adelic points orthogonal to a subset B of the Brauer group Br V , the sum
here being taken over all places v of Q. Manin’s observation was that, by a standard result
in class field theory, any rational points must be contained in V (AQ)Br V , through the
usual diagonal inclusion of Q in AQ. The point is that V (AQ)Br V is sometimes amenable
to computation, giving a potential way to prove the non-existence of rational points on
V .

One class of varieties on which one can often compute the Brauer–Manin obstruction
is that of surfaces with finitely generated Picard group. This article is primarily aimed at
computing the obstruction on such surfaces, though the results are true in a wider context.
This class includes rational varieties such as cubic surfaces [16], pencils of Severi–Brauer
varieties [3], intersections of two quadrics [4, 5] and some pencils of curves of genus 1 [6].
For some of these surfaces, it is known that the Brauer–Manin obstruction is the only
obstruction to the existence of rational points: in those cases, computing the obstruction
gives a definite answer to the question of whether there exist any rational points on the
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surface. The Brauer–Manin obstruction has also recently been used to obtain interesting
results on curves [7].

In this article we address the problem of evaluating the obstruction associated to a
given Azumaya algebra A. That is, we wish to compute the set V (AQ)A. The usual
method for this is as follows. We consider the local invariant function

V (Qv) → Q/Z : x 7→ invv A(x)

separately for each v. For all but finitely many v, depending on V and A, this function
is zero. At each remaining place, the function is continuous, hence locally constant. By
listing all the points of V (Qv) to sufficient accuracy, we can evaluate the local invariant
everywhere. We then combine this information to obtain V (AQ)A.

However, listing all points on V (Qv) to sufficient accuracy to compute the local in-
variant at each is a time-consuming process. The result proved in this article drastically
reduces the amount of work needed to compute the Brauer–Manin obstruction. We as-
sume that the Azumaya algebra is split by a finite extension of the base field – that is,
it belongs to the so-called algebraic Brauer group Br1(V ). The reduction of V modulo p

falls into one or more irreducible components, which we assume to be reduced.
Suppose that A is split by an unramified extension of Qv; then we prove that, at

most points P of V (Qp) lying above only one component, the invariant depends only on
which component that is. This means that the listing of points is now only needed on
the intersections of distinct components, and possibly on the non-regular subschemes of
components. In this case, the arguments leading to this result are very similar to those
described by Harari [10, Section 2.4].

At primes where the splitting extension is tamely ramified, we show that this approach
also gives a very useful result: at most of the points, it is enough to know the point modulo
p in order to calculate the invariant there.

Theorem 1. Let X be a smooth complete variety over Qp and A an Azumaya algebra
on X split by a finite Galois extension K/Qp. Fix a proper model X/Zp of X and let

q : X(Qp) → X (Fp)

be the reduction map. Let Y be an irreducible component of multiplicity 1 of the special
fibre X̃. Then there exists a dense open subset U of Y such that

• if K/Qp is unramified, then invpA is constant on q−1U(Fp);
• if K/Qp is tamely ramified, then invpA is constant on q−1{x}, for each x ∈ U(Fp).

We will define the subscheme U as follows:

• if K/Qp is unramified, U consists of those points on Y which are regular as points
of X ;

• if K/Qp is ramified, U consists of the smooth points of Y .

It may be possible, by looking more closely at the geometry of X, to take a larger U

than that defined here.

2. Proof of Theorem 1

If X is a variety over Qp and K/Qp a finite field extension, then XK denotes the base
extension of X to K. Similarly, if X is a scheme over Zp, then XK denotes the base
extension of X to OK .
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If X is any scheme, then DivX denotes the group of Cartier divisors on X . Let Y be
a reduced closed subscheme of X ; then DivY X denotes the subgroup of Cartier divisors
whose support is contained in Y . There is an exact sequence

0 → DivY X → DivX → Div(X \ Y )

in which the rightmost map is in general not surjective. In particular, we will apply this
when Y is the special fibre of X ; in that case, the notation Div′ X will be used for the
subgroup of Cartier divisors supported on the special fibre. The exact sequence becomes

0 → Div′ X → DivX → Div X.

We now state a hypothesis which will be satisfied by all the schemes we will consider.

Condition (*). X is an integral Noetherian separated scheme over Zp such that
(i) the generic fibre X is a smooth variety;
(ii) the special fibre X̃ is integral;
(iii) the sequence

H2(K/Qp,Div′ XK) → H2(K/Qp,DivXK) → H2(K/Qp,Div XK) (2·1)

is exact.

In particular, the sequence (2·1) is exact if XK is regular, for then DivXK is equal to
the Weil divisor group and the sequence splits as a direct sum.

The scheme X which we will be studying to prove Theorem 1 is constructed as follows:
take the given proper model for X over Zp, and then remove from the special fibre
everything outside the open set U . This gives a scheme over Zp which is regular, and so
satisfies Condition (*). For, if K/Qp is unramified, then the morphism XK → X is étale
and therefore the inverse image on XK of a regular point on X is again regular [see 9,
I, 9.2]. On the other hand, suppose that K/Qp is ramified but instead that U = X̃ is
smooth over Fp; then X is smooth over Zp and so XK is smooth over OK [9, II, 1.3]. As
OK is regular, it follows that XK is regular [9, II, 3.1].

If X is a scheme which is Noetherian, separated, integral and regular in codimen-
sion 1, then DivX is a subgroup of the group Z1X of Weil divisors [see 11, II, 6.11.2].
This will be true in particular for schemes satisfying Condition (*). For all codimension-
one subschemes of the generic fibre certainly have regular local rings; the only other
codimension-one subscheme is the special fibre, which has a local ring generated by p, so
is also regular.

The proof of Theorem 1 consists of the following steps.
(i) We will look at the map

H2(K/Qp, k(XK)×) → H2(K/Qp,DivXK) (2·2)

and show that an algebra whose image is 0 under this map, when evaluated at a
point, gives rise to a 2-cocycle with values in O×K .

(ii) We will show that every Azumaya algebra on X is equivalent to a constant algebra
plus an algebra giving 0 under the map (2·2).

It is only a short argument to proceed from these results to the theorem.

2·1. The divisor map on Azumaya algebras

Let X be a smooth, irreducible variety over Qp. Let RX and DX denote the sheaves of
rational functions and Cartier divisors respectively. Any Azumaya algebra on X can
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be represented by an element of H2(X,RX) which maps to 0 in H2(X,DX). If A
is an Azumaya algebra split by a finite field extension K/Qp, then a stronger state-
ment is true: A is represented by an element of H2(K/Qp, k(XK)×) which maps to 0 in
H2(K/Qp,Div XK). This follows from the Hochschild–Serre spectral sequence and the
fact that H1(X,DX) = 0.

Now let X be our model of X over Zp satisfying Condition (*). Let Br(XK/X) denote
the subgroup of Br X consisting of algebras which split over the extension K/Qp. Since
the sequence (2·1) is exact, the map (2·2) gives rise to a map

φK : Br(XK/X) → H2(K/Qp,Div′ XK).

When X is proper and regular and K/Qp is unramified, the purity theorem for the
Brauer group (discussed by Grothendieck [8, III,6] and, we understand, proved by Gab-
ber) states that an Azumaya algebra A on X, split by K, extends to an Azumaya algebra
on X if and only if φK(A) = 0. In this case, evaluating A at a Qp-point of X always
gives a trivial algebra: for the evaluation map factors through Br Zp = 0.

We will relax these hypotheses and see what happens even when K/Qp is ramified.

Lemma 2. Let V → U be a finite surjective morphism of integral schemes, acted on
by a group G such that U = V/G and G = Gal(k(V )/k(U)). Let α be an element of
H2(G, k(V )×) which maps to 0 in H2(G, Div V ). Suppose that Pic V = 0. Then there
exists a cocycle cohomologous to α taking values in k[V ]×.

Proof. As Pic V = 0, the sequence of G-modules

0 → k[V ]× → k(V )× → Div V → 0

is exact. Part of the long exact sequence in cohomology is

H2(G, k[V ]×) → H2(G, k(V )×) → H2(G, Div V )

which gives the result.

Proposition 3. Let X satisfy Condition (*). Let P be a point of X(Qp) extending
to a Zp-valued point of X . Let A be an Azumaya algebra on X split by a finite Galois
extension K/Qp, and suppose that φK(A) = 0. Then A(P ) is represented by a cocycle in
Z2(K/Qp,O×K).

Proof. Let Q be the unique point of XK lying above P ; let P̃ and Q̃ be the closed
points associated to P and Q respectively. Consider the commutative diagram

O×XK ,Q̃
→ O×K

∩ ∩
O×XK ,Q

Q−→ K×

∩
k(XK)×

where the lower horizontal map is evaluation at Q, and the upper horizontal map is
evaluation at the corresponding OK-point. We will apply Lemma 2 to the covering
Spec OXK ,Q̃ → Spec OX ,P̃ . The hypotheses are satisfied because

• A is Azumaya on X, so maps to 0 in H2(K/Qp,Div XK);
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• φK(A) = 0; combined with the previous fact, this shows that A maps to 0 in
H2(K/Qp,DivXK), using the exactness of the sequence (2·1);

• Spec OXK ,Q̃ is local and so has trivial Picard group.

The conclusion is that we can represent A by a cocycle taking values in O×XK ,Q̃
; the

diagram above shows that evaluating this cocycle at Q gives a cocycle representing A(P )
which takes values in O×K .

Corollary 4. If K/Qp is unramified, then invpA(P ) = 0.

Proof. In this case, H2(K/Qp,O×K) = 0. See Serre [15, V,2].

Corollary 5. If K/Qp is tamely ramified, then invpA(P ) depends only the reduction
of P modulo p.

Proof. In this case H2(K/Qp, U
1
K) = 0, where U1

K is the group of units inOK congruent
to 1 modulo the prime ideal pK . This fact follows from the observation that U1

K is a pro-
p-group and that [K : Qp] is coprime to p. So the reduction map gives an isomorphism

H2(K/Qp,O×K) ∼= H2(K/Qp, (OK/pK)×)

through which evaluation at P factors.

2·2. The divisor map on constant algebras

In this section we will show that, under hypotheses slightly stronger than Condition
(*), any Azumaya algebra on X split by K can be made to satisfy the hypotheses of
Proposition 3 by adding a constant algebra, that is, an element of Br(K/Qp).

Proposition 6. Let X satisfy Condition (*). Let A be an Azumaya algebra on the
generic fibre X which splits in a finite Galois extension K of Qp. Suppose that X has a
Zp-point, and that either

• the special fibre of XK is irreducible; or
• XK is regular; or
• K/Qp is cyclic.

Then there exists a constant algebra B in Br(K/Qp) such that φK(A−B) = 0.

Proof. Let P be the closed point associated to the Zp-point on X . There is a unique
closed point Q of XK lying over P . Write S for Spec OXK ,Q.

The short exact sequence

0 → O×XK ,Q → k(XK)× → DivS → 0

gives rise to an exact sequence

H2(K/Qp, k(XK)×) → H2(K/Qp,DivS) → H3(K/Qp,O×XK ,Q)

of cohomology groups. Br(XK/X) is contained in this left-hand group, and its image in
the middle group factors through H2(K/Qp,Div′ XK). It follows that the bottom row of
the following commutative diagram is a complex.
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H2(K/Qp,K
×) vK−−−−→ H2(K/Qp, Z) −−−−→ H3(K/Qp,O×K)y yα

yβ

Br(XK/X) −−−−→
γ

H2(K/Qp,Div′ XK) −−−−→ H3(K/Qp,O×XK ,Q)

(2·3)

Here α is the map 1 7→ (pK), pK being the prime in K. The top row is easily seen to be
exact.

To prove the proposition, we must show that the image of αvK contains that of γ. In
fact it is enough to show that the image of α contains that of γ: for the evaluation map at
the Zp-point gives a left inverse to β and so β is injective. Some diagram-chasing shows
that any element of H2(K/Qp, Z) whose image under α lies in the image of γ must lift
to H2(K/Qp,K

×). The proof will be completed by Lemma 7.

Remark. When K/Qp is cyclic and totally ramified, the proposition is trivial: the maps
vK and γ are zero.

In the statement and proof of the following lemma, the special fibre of X will no longer
be required to be irreducible. Let Y be a component of the special fibre; then by YL we
mean the fibre product Y ×X XL.

Lemma 7. Let L/K be a finite Galois extension of local fields. Let X be an integral
scheme over OK and Y an integral component of the special fibre of X . Suppose either
that YL is irreducible, that X is regular, or that L/K is cyclic. Then the map

H2(L/K, Z) → H2(L/K,DivY XL) (2·4)

given by 1 7→ (pL) is surjective.

Proof. To save on notation, we will write DivY XL for the group of Cartier divisors on
XL which are supported on the set-theoretic inverse image of Y .

Firstly, the lemma is true when YL is irreducible. In that case, we claim that the map

Z → DivY XL : 1 7→ (pL)

is an isomorphism of Galois modules. It is easy to see that DivY XL is free on one
generator Y ′, so that (pL) = nY ′ for some integer n. The Galois action on both groups
is trivial. We must show that n = 1, and it is enough to do this separately for L/K

unramified and for L/K totally ramified. We will write π for the morphism XL → X .
When L/K is unramified,

(pL) = (π∗pK) = π∗Y ;

but, since π is étale and Y reduced, π∗Y is reduced [9, I, 9.2] and so n = 1.
When L/K is totally ramified of degree e, we have

e(pL) = (π∗pK) = π∗Y

and so π∗Y = enY ′. But π is a flat, finite map; thus en = [L : K] and so n = 1. This
completes the proof when YL is irreducible.

We will now show that the lemma is true when the group DivY XL of Cartier divisors
is replaced by the group Z1

Y XL of Weil divisors supported on Y . In particular, this proves
the lemma when XL is regular: for then these two groups coincide.
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Write G for Gal(L/K). Let Y ′ be an irreducible component of YL, and H ⊆ G the
decomposition group of the generic point of Y ′. Then the G-module Z1

Y XL is induced
from the H-module Z1

Y ′XL. For any i ≥ 0, we have the following commutative diagram.

Hi(H, Z) ∼ // Hi(H,Z1
Y ′XL)

Hi(G, Z) δ //

res

77ooooooooooo
Hi(G, IndG

H Z)
∼ //

∼

OO

Hi(G, Z1
Y XL)

∼

OO
(2·5)

Here the two vertical arrows are isomorphisms by Shapiro’s Lemma; and the top hor-
izontal arrow is an isomorphism by the argument above. The arrow labelled δ comes
from the map Z → IndG

H Z where, thinking of IndG
H Z as HomH(Z[G], Z), the image of

1 is the function which is identically 1. The composite map Z → Z1
Y XL is indeed the

map (2·4), and moreover the composite map Hi(G, Z) → Hi(H, Z) is none other than
the restriction: see Milne [14, II, 1.27].

Taking i = 2 in the diagram (2·5), the restriction map is surjective: for it is the map

Hom(G, Q/Z) → Hom(H, Q/Z)

and Q/Z is injective. It follows that the map (2·4) is surjective, completing this step of
the proof.

Finally, suppose that G is cyclic. Then, for any G-module M , there is a surjective map

H0(G, M) → H2(G, M)

given by cup-product with a chosen generator of H2(G, Z). There is a commutative
diagram as follows.

H0(G, Z) ∼ //

∼

''PPPPPPPPPPPP

����

H0(G, Z1
Y XL)

����

H0(G, DivY XL)

∼
66mmmmmmmmmmmmm

����

H2(G, Z) // //

''PPPPPPPPPPPP
H2(G, Z1

Y XL)

H2(G, DivY XL)

66mmmmmmmmmmmmm

In the top half, that the horizontal map is an isomorphism comes from the case i = 0
of the diagram (2·5). Since the two other maps are injective, it follows that they are
isomorphisms.

Therefore the composition H0(G, Z) → H2(G, DivY XL) is surjective, and hence so is
the map (2·4).

2·3. Completion of the proof

We can now finish the proof of Theorem 1.

Proof of Theorem 1 Recall that the scheme X was constructed from the given model of
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X by removing all of the special fibre apart from the open subset U . By construction, the
geometric hypotheses of Proposition 6 are satisfied; and U has a Zp-point, for otherwise
the theorem is vacuous. The conclusion is that there exists an algebra B in Br(K/Qp)
such that φK(A−B) = 0.

Proposition 3 and its corollaries, applied to A−B, complete the proof.

3. Examples

3·1. Construction of an Azumaya algebra on some diagonal quartic surfaces

Let V be the diagonal quartic surface in P3 defined by the equation

a0X
4
0 + a1X

4
1 + a2X

4
2 + a3X

4
3 = 0 (3·1)

where the ai are rational integers. This is a K3 surface, hence has finitely generated Picard
group; so it is possible to apply the methods described by Bright and Swinnerton-Dyer
[1] to compute the algebraic part of the Brauer group.

When a0a1a2a3 is a square, Swinnerton-Dyer [17] describes a fibration of V over P1 in
curves of genus 1 and uses this to produce Azumaya algebras on V by lifting elements of
Br k(P1). When a0a1a2a3 is not a square, the same fibration itself defines an Azumaya
algebra aplit by Q(

√
a0a1a2a3), as described by Bright [2]. This may be summarised as

follows:

Proposition 8. Let V be the surface (3·1) and suppose that a0a1a2a3 is not a square.
Let θ denote a square root of a0a1a2a3. Then there exists a function f on V , defined over
Q, such that

(f) = D + D′ − 2Π

where D is a curve of genus 1 defined over Q(θ), D′ is its conjugate, and Π is a plane
section; and

A = (Q(θ)/Q, f)

defines a non-trivial Azumaya algebra on V .

We may assume that f can be written as a rational function on P3, such that neither
the numerator nor the denominator is divisible by any constant prime factor; this can
clearly be achieved by multiplying f by a constant factor.

Proposition 6 is very simple in this case of a quadratic extension. If Q(θ)/Q is un-
ramified at p, then it shows that our Azumaya algebra A can be made to satisfy the
conditions of Proposition 3 by maybe multiplying the function f by p. If, on the other
hand, the extension is ramified, then Proposition 6 is trivial: at any component YQ(θ) of
the special fibre, the function f has even valuation and so φQ(θ)(A) = 0.

We will now look at what happens at odd primes where V has bad reduction. We will
assume that V has points everywhere locally, and that

0 ≤ vp(ai) ≤ 3 for all i, p.

Furthermore, we may assume that no prime p divides more than two of the ai. For we
can always multiply all the ai by p and then remove fourth powers; in this way we will
always reach the stage where at most two of the ai are divisible by p, except when the
vp(ai) are all different modulo 4. But in that case the surface is not locally soluble.
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3·2. Primes dividing one coefficient

Proposition 9. Let p be an odd prime dividing precisely one of the coefficients ai.
Then

(i) the reduction of V at p is a cone over a smooth plane quartic curve C;
(ii) the reduction of f at p is the pullback of a function on C;
(iii) the vertex of the cone does not lift to a point of V (Qp).

Proof. Statement (i) is obvious. For statement (ii), consider the divisor of f , which is
made up of curves of genus at most 1. The reduction of this modulo p will still be a union
of curves of genus at most 1. By the Riemann-Hurwitz formula, the map from each of
these components to the base curve C must be constant.

For statement (iii), suppose without loss of generality that p divides a0. Then any lift
of the vertex to Qp is equivalent modulo p to (1 : 0 : 0 : 0). So

vp(a1X
4
1 + z2X

4
2 + a3X

4
3 ) ≥ 4

but vp(a0X
4
0 ) < 4, so the point does not lie on V (Qp).

In particular, the reduction of V at p is irreducible. Proposition 6 takes a very simple
form: having removed any factors of p from the numerator and denominator of the rational
function f , we have ensured that Proposition 3 applies.

Corollary 10. If an odd prime p divides precisely one of the ai, and does so to an
even power, then invpA(x) = 0 for all x ∈ V (Qp).

Proof. In this case, Q(θ)/Q is unramified at p. Combine Proposition 9 with Corol-
lary 4.

Corollary 11. If an odd prime p divides precisely one of the ai, and does so to an
odd power, then to evaluate A on V (Qp) it suffices to evaluate f at the points of C(Fp).

Proof. In this case, Q(θ)/Q is tamely ramified at p. Combine Proposition 9 with Corol-
lary 5.

Remark. In this case, the divisor cut out by f on the curve C is divisible by 2 in Div C.
Before evaluating f at each point of C(Fp), we should first check whether that divisor is
in fact twice a principal divisor – if it is, then the reduction of f is a constant multiplied
by a square and so invpA is constant on V (Qp).

As an example, consider the surface

9X4
0 + 10X4

1 = 12X4
2 + 13X4

3 . (3·2)

The construction described above gives the Azumaya algebra A = (Q(
√

390)/Q, f) where

f =
15X2

0 + 12X2
2 + 13X2

3

X2
0

.

At p = 5, the equation reduces to that of a cone over a plane quartic curve. The extension
is tamely ramified. To evaluate inv5A at a point, we look to see whether the value of the
function (12X2

2 + 13X2
3 )/X2

0 is square or non-square modulo 5. It turns out that both
square and non-square values occur, and therefore there is no Brauer–Manin obstruction
on the variety (3·2). The same happens at p = 13.
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3·3. Primes dividing two coefficients

Let p be an odd prime dividing precisely two of the coefficients ai. Then the reduction
of V at p consists of four planes intersecting in a common line L. In this case, several
different things can happen depending on the Galois structure of the four planes and
whether f has zeros or poles on any of them.

On the surface (3·2) introduced above, the reduction at p = 3 is the union of four planes:
two defined over F3, and the other two quadratic conjugates. The extension Q(

√
390)/Q

is ramified at 3. The function defining the Azumaya algebra reduces to (X3/X0)2, which
is invertible and square on each of those planes, and hence inv3A is 0 except possibly on
the line X1 = X3 = 0 where the planes meet.

On the surface

X4
0 + 13X4

1 = 3X4
2 + 13X4

3 , (3·3)

the construction gives the Azumaya algebra A = (Q(
√

3)/Q, f) where

f =
−3X2

0 − 26X2
1 + 12X2

2 + 13X2
3

X2
0

.

At 13, the surface (3·3) reduces to four planes, each defined over F13. The function f is
identically zero (with multiplicity 1) on two of those planes but not on the other two.
Since the extension is unramified at 13, we deduce that inv13A is 0 at points of V (Q13)
lying above one of the planes where f is not zero. At points lying above the other two
planes, we deduce that inv13A is equal to inv13(Q(

√
3)/Q, 13) = 1/2. We obtain no

information about any points of V (Q13) lying above the line L.
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