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Abstract. The double rami�ation yle satis�es a basi multi-

pliative relation DRCa ·DRCb = DRCa ·DRCa+b over the lous of

ompat-type urves, but this relation fails in the Chow ring of the

moduli spae of stable urves. We restore this relation over the mod-

uli spae of stable urves by introduing an extension of the double

rami�ation yle to the small b-Chow ring (the olimit of the Chow

rings of all smooth blowups of the moduli spae). We use this to give

evidene for the onjetured equality between the (twisted) double

rami�ation yle and a yle Pd,k
g (A) desribed by the seond author

in [JPPZ17℄.
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1 Introduction

Given integers a1, . . . , an summing to zero, one de�nes the double rami�ation

yle DRCa in the moduli spae Mg,n of smooth urves by pulling bak the

unit setion of the universal jaobian along the setion indued by the divisor

∑

i ai[xi], where the xi are the tautologial setions of the universal urve.

This lass has been extended over the whole of Mg,n by work of Li-Graber-

Vakil [Li01℄, [Li02℄, [GV05℄ (extending work of Hain [Hai13℄ and Grushevsky-

Zakharov [GZ14b℄). An alternative onstrution of the same yle was reently
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546 David Holmes, Aaron Pixton, and Johannes Schmitt

given by the �rst author [Hol17℄. Yet another approah, using the ompati�ed

Jaobians from [KP17℄, was given by the �rst author together with Kass and

Pagani in [HKP18℄, though we will not use the latter in this paper.

A basi multipliative relation holds between the double rami�ation yles

over the lous of urves of ompat-type, namely

DRCa ·DRCb = DRCa ·DRCa+b (1)

for all vetors a, b of rami�ation data. In setion 8 we show by means of an

example that this relation fails to hold in the Chow ring ofMg,n, and moreover

that this annot be orreted by making a di�erent hoie of extension of the

yle.

The aim of this paper is to restore the relation (1) over the whole ofMg,n by

working in the (small) b-Chow ring bCHQ(Mg,n), de�ned as the olimit of the

Chow rings of all smooth blowups ofMg,n (see setion 4). The transition maps

are given by pullbak of yles; the relation to Shokurov's notion of b-divisor
([Sho96℄, [Sho03℄) is disussed further in setion 4. Using results of [Hol17℄,

we onstrut extensions bDRCa of the double rami�ation yle in the small

b-Chow ring bCHQ(Mg,n) with two fundamental properties:

Theorem 1.1. The pushforward of bDRCa to the Chow ring of Mg,n oin-

ides with the standard extension of the double rami�ation yle DRCa (as

onstruted in [Li01℄, [Li02℄, and [GV05℄, or equivalently in [Hol17℄).

Theorem 1.2. The relation bDRCa · bDRCb = bDRCa · bDRCa+b holds in the

small b-Chow ring bCHQ(Mg,n).

This result holds also for the ω⊗k
-twisted version of the double rami�ation

yle, with essentially the same proof.

Note that the pushforward map from small b-Chow ring bCHQ(Mg,n) to the

Chow ring CHQ(Mg,n) is not a ring homomorphism, so these results do not

imply multipliativity of the DRC in CHQ(Mg,n).
The relation (1) is extremely natural, and we might speulate that its failure

to hold in the Chow group ofMg,n suggests that this is not the most natural

setting in whih to onsider the double rami�ation yle. Perhaps the b-Chow
version of the double rami�ation yle is the more fundamental objet, or at

least a shadow thereof?

Conjeture 1.4 of [Hol17℄ predits that the yle DRCa in CHQ(Mg,n) oin-
ides with a yle 2−gPg,k

g (A) onstruted by the seond named author; more

details are given in setion 6. For k = 0 this follows from the main theorem

of [JPPZ17℄, but it is open for higher k. In proposition 6.3 we verify this

onjeture on the lous of ompat-type urves.

In setion 7 we show that the multipliativity relation eq. (1) holds in the

Chow ring of the lous of treelike urves � urves whose dual graph has yles

of length at most 1. In partiular, if the onjetured equality between DRCa

and 2−gPg,k
g (A) holds true, then in turn the yle Pg,k

g (A) must also satisfy this
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Multiplicativity of the Double Ramification Cycle 547

multipliativity relation on the lous of treelike urves. In proposition 7.2 we

give a diret, ombinatorial proof of this multipliativity relation for Pg,k
g (A),

providing evidene for the onjetural equality between DRCa and 2−gPg,k
g (A).
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Notation and setup

We write →֒ for open immersions and  for losed immersions. We work over

a �eld of harateristi zero, so that we an assume resolution of singularities.

See setion 9 for an approah that works in arbitrary harateristi.

For us, `urve' means proper, �at, �nitely presented, with redued onneted

nodal geometri �bres, andMg,n denotes the usual Deligne-Mumford-Knudsen

ompati�ation of the moduli stak of smooth urves of genus g with n disjoint

ordered marked setions. We write Cg,n/Mg,n for the universal urve, xi for
the setions, and ω for the relative dualising sheaf. We let Jg,n = Pic0

Cg,n/Mg,n

denote the universal generalized jaobian (a semiabelian sheme, the �brewise

onneted omponent of the identity in PicC/M, parametrizing line bundles of

degree 0 on every irreduible omponent of the �bres of Cg,n overMg,n).

2 Extending the double ramification cycle

Here we reall brie�y the onstrution of the extension of the double ram-

i�ation yle given in [Hol17℄. Given g, n ≥ 0 with 2g − 2 + n > 0 and

integers a = (a1, . . . , an, k) with

∑

i ai = k(2g − 2), we de�ne a setion

σa = [ω⊗k (−
∑

i aixi)] of Jg,n over Mg,n (whih does not in general extend

over the whole ofMg,n).

Let f : X → Mg,n be a proper birational morphism from a regular stak (a

`regular modi�ation'). The setion σa is then de�ned on some dense open of

X . We write X̊ for the largest open of X on whih this rational map an be

extended to a morphism, and σX
a : X̊ → J for the extension.

We de�ne the double rami�ation lous DRLX
a  X̊ to be the shemati pull-

bak of the unit setion of Jg,n along σX
a , and the double rami�ation yle

DRCX
a to be the yle-theoreti pullbak, as a yle supported on DRLX

a . Now

the morphism X̊ →Mg,n is rarely proper, but we have:
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Theorem 2.1 ([Hol17℄, theorem 1.1). In the direted system of all regular

modi�ations of Mg,n, those X suh that DRLX
a → Mg,n is proper form a

o�nal system.

Now DRCX
a is supported on DRLX

a , so when the morphism DRLX
a →Mg,n is

proper we an take the pushforward of DRCX
a to Mg,n. Writing πX∗ DRCX

a

for the resulting yle onMg,n, we have:

Theorem 2.2 ([Hol17℄, theorem 1.2). The net πX∗ DRCX
a is eventually on-

stant in the Chow ring CHQ(Mg,n). We denote the limit by DRCa.

In the ase k = 0 it is shown in [Hol17℄ that this lass DRCa oinides with

the lass onstruted by Li, Graber, and Vakil.

3 Multiplicativity lemma

Let S be a regular Deligne-Mumford stak, and G/S a smooth separated group

sheme

3

with unit setion e. Given σ ∈ G(S) a setion, we de�ne

Lσ = σ∗e

as a losed substak of S, and

Cσ = σ∗[e]

as a yle lass supported on Lσ.

Lemma 3.1 (Multipliativity lemma). Let π : G → S be as above, and let σ,
τ ∈ G(S) be two setions. Then we have

Lσ ×S Lτ = Lσ ×S Lσ+τ (2)

as losed substaks of S, and

Cσ · Cτ = Cσ · Cσ+τ (3)

as yles supported on Lσ ×S Lτ .

Proof. Note that the set-theoreti version of eq. (2) is trivial. We give only the

argument for eq. (3); that for eq. (2) is similar but easier. In the diagram

G G×S G G

S

i m

(σ,τ)
σ+τ

3

By this we mean a smooth separated morphism G → S representable by shemes, whih

is a group objet in the ategory of morphisms to S, i.e. whih omes together with S-

morphisms m : G ×S G → G, i : G → G, e : S → G satisfying the usual ompatibility

relations of groups.
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where i = (e ◦ π, id), we have equalities of yles supported on Lσ ∩ Lτ :

σ∗[e] · (σ + τ)∗[e] = (σ, τ)∗i∗[G] · (σ, τ)
∗(m∗[e])

= (σ, τ)∗
(

i∗[G] ·m
∗[e]

)

(projetion formula) = (σ, τ)∗i∗

(

[G] · i∗m∗[e]
)

= (σ, τ)∗i∗i
∗m∗[e]

= (σ, τ)∗[(e, e)]

= σ∗[e] · τ∗[e].

A natural appliation of this lemma is to the double rami�ation yle. Here

the base S is given by Mg,n, and G = Jg,n is the jaobian of the universal

urve. Then for any vetor of integers a = (a1, . . . , an, k) with
∑

i ai = k(2g−2)
we have the setion σa = [ω⊗k (−

∑

i aixi)] of Jg,n, and the double rami�ation

yle onMg,n is given by pulling bak the unit setion along σa, i.e.

DRCa = Cσa

in the notation of lemma 3.1. We thus obtain from lemma 3.1 the relation

DRCa ·DRCb = DRCa ·DRCa+b (4)

in CH2g
Q (Mg,n), after pushing forward from the intersetion of the orrespond-

ing double rami�ation loi. However, this relation is uninteresting as both

sides vanish for g ≥ 1 (and are equal to 1 for g = 0). Indeed, it was shown by

Hain in [Hai13℄ that the double rami�ation yles are tautologial (for details

see setion 6). But the tautologial ring ofMg,n vanishes in degree at least g
by [Ion02℄, so the two sides of eq. (4) vanish for g ≥ 1 sine they are of degree

2g.
Over the lous of ompat type (or more generally treelike) urves, the double

rami�ation yle an be de�ned in the same way, and the same proof shows

that multipliativity holds here; more details are given in setion 7. Moreover,

on these loi the relation is not vauous, as shown in setion 8. However, the

same setion shows that this multipliativity relation does not extend over the

whole ofMg,n; in the next setion, we introdue the b-Chow ring, and in the

setion after we extend the double rami�ation yle to the b-Chow ring and

show that multipliativity does hold there.

4 The b-Chow ring

The group of b-divisors on a sheme X was introdued by Shokurov [Sho96℄,

[Sho03℄ as the limit of the divisor groups of all blowups of X , with transition

maps given by proper pushforward. One an de�ne a (large) b-Chow group
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in the same way, as the limit over all blowups with transition maps given by

pushforward, but note that it does not have a natural ring struture. The small

b-Chow group is de�ned below as the olimit of Chow groups over smooth

blowups, with transition maps given by pullbak of yles. It is naturally a

subgroup of the large b-Chow group, and importantly it arries a natural ring

struture (desribed below), so we refer to it as the (small) b-Chow ring.

Let S be an irreduible noetherian algebrai stak. We write Bl(S) for the

ategory whose objets are proper birational morphisms X → S, relatively
representable by algebrai spaes, and with X regular, and where the mor-

phisms are morphisms over S. Taking Chow rings and pullbaks gives a new

ategory CHQ(Bl(S)), whose objets are the Q-Chow rings of the objets of

Bl(S), and where morphisms are given by pullbaks (whih makes sense be-

ause everything is regular). We de�ne the b-Chow ring of S to be the olimit

of this system of rings:

bCHQ(S) = colimCHQ(Bl(S)).

The ategory CHQ(Bl(S)) is �ltered ([Sta13, Tag 04AX℄); the only non-trivial

thing to hek is that, for two objets X/S and Y/S in Bl(S), there exists

Z/S ∈ Bl(S) dominating X and Y . Let U ⊆ S be some dense open where

X → S and Y → S are isomorphisms, and let Z ′/S denote the shemati

image of U in the �bre produt X ×S Y . Then Z ′/S is proper, birational,

relatively representable and dominates X and Y , but need not be regular.

However, by [Tem12℄ it admits a resolution by blowing up; we take Z to be

suh a resolution. For a �ltered olimit we an give a muh more onrete

desription on the level of sets:

bCHQ(S) =




⊔

X∈Bl(S)

CHQ(X)



 / ∼

where for elements x ∈ CHQ(X) and y ∈ CHQ(Y ), we say x ∼ y if and only if

there exists Z ∈ Bl(S) and S-morphisms f : Z → X , g : Z → Y , with

f∗x = g∗y.

To multiply elements x and y, we again �nd a Z ∈ Bl(S) mapping to both X
and Y , and form the intersetion produt after pullbak to this Z.

5 Multiplicativity of the double ramification cycle in the b-
Chow ring

Given a = (a1, . . . , an, k) with
∑

i ai = k(2g−2), we �rst de�ne the extension of
the orresponding double rami�ation yle to bDRCa in bCHQ(Mg,n). Taking

the standard extension to the Chow ring of Mg,n and pulling bak is not the

right approah � for example, the multipliativity relation will fail. Instead

Documenta Mathematica 24 (2019) 545–562
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we look at the onstrution in setion 2. Reall that for a modi�ation X →
Mg,n we write X̊ →֒ X for the largest open to whih σa extends. We de�ne

DRLX
a  X̊ by pulling bak the unit setion sheme-theoretially, and DRCX

a

as a yle lass on DRLX
a by pulling bak in Chow.

Let X be regular and suh that DRLX
a is proper overMg,n. Write i : DRLX

a →

X for the inlusion, whih is a losed immersion. Then we de�ne DRCX
a =

i∗ DRCX
a as an element of bCHQ(Mg,n). Reall from setion 2 that the X

with DRLX
a proper overMg,n form a o�nal system among all modi�ations

X , yielding a net of DRCX
a in bCHQ(Mg,n).

Lemma 5.1. The net of DRCX
a in bCHQ(Mg,n) is eventually onstant.

Proof. This argument is a simpler version of the proof of [Hol17, theorem 6.3℄.

The limiting value an be obtained by taking X a regular ompati�ation of

the stakM♦
g,n onstruted in [lo.it.℄.

Definition 5.2. We de�ne bDRCa in bCHQ(Mg,n) as the limit of the above

net.

Theorem 1.1 now follows formally from [Hol17, �6℄, so it remains to prove

theorem 1.2.

Theorem 5.3. Choose a = (a1, . . . , an, k) with
∑

i ai = k(2g−2), and similarly

hoose b = (b1, . . . , bn, k
′). Then in bCHQ(Mg,n) we have

bDRCa · bDRCb = bDRCa · bDRCa+b . (5)

Proof. Choose X →Mg,n so that DRLX
a →Mg,n is proper and so that DRCX

a

equals the limiting value bDRCa in bCHQ(Mg,n). Choose a orresponding Y
for b, and let Z be a regular modi�ation admitting morphisms to X and Y
over Mg,n (this exists sine the ategory Bl(Mg,n) is �ltered). It su�es to

hek eq. (5) in the Chow ring of Z.
Let Z̊a →֒ Z be the largest open where σa extends, and similarly de�ne Z̊b and

Z̊a+b. Writing Z̊ = Z̊a ∩ Z̊b, we see that σa+b is also de�ned on Z̊; it is given
by σa + σb. Hene we have

Z̊ = Z̊a ∩ Z̊b ⊆ Z̊a+b,

and a similar argument shows

Z̊a ∩ Z̊a+b ⊆ Z̊b. (6)

Now it is lear that

DRLZ
a ∩DRLZ

b ⊆ Z̊a ∩ Z̊b = Z̊,
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and similarly we have

DRLZ
a ∩DRLZ

a+b ⊆ Z̊a ∩ Z̊a+b ⊆ Z̊a ∩ Z̊b = Z̊,

where the middle relation omes from eq. (6). The theorem now follows diretly

from lemma 3.1 applied to the universal jaobian Jg,n pulled bak to Z.

6 Relation to the cycle Pd,k
g (A)

In this and the next setion we onsider the onnetion between the lasses

DRCa ∈ CHg
Q(Mg,n) and the tautologial yle lass Pd,k

g (A) introdued by

the seond author in [JPPZ17℄. For this we �rst reall some notation from

[lo.it.℄.

Fix an integer k ≥ 0 and an integer vetor A = (A1, . . . , An) with
∑n

i=1Ai =
k(2g − 2 + n). Note that there is a natural bijetion of suh vetors A and

vetors a = (a1, . . . , an) with
∑n

i=1 ai = k(2g − 2) by setting

(A1, . . . , An) = (a1 + k, . . . , an + k);

we will use this identi�ation in what follows.

Fix also a degree d ≥ 0, then given this data, in [JPPZ17, Setion 1.1℄ a

tautologial yle lass

Pd,k
g (A) ∈ CHd

Q(Mg,n)

is de�ned as an expliit sum in terms of deorated boundary strata. The main

result of [JPPZ17℄ is that for k = 0, d = g this formula omputes the double

rami�ation yle orresponding to the partition A. More preisely, they prove

DRg(A) = 2−gPg,0
g (A),

where DRg(A) is the double rami�ation yle assoiated to A via the Gromov-

Witten theory of `rubber P1
'.

From [Hol17, onjeture 1.4℄ we reall

Conjecture 6.1. For all k we have

DRCa = 2−gPg,k
g (A)

as elements of CHg
Q(Mg,n).

Remark 6.2. Conjeture 6.1 holds when k = 0. Indeed, when k = 0 we know

by [Hol17, theorem 1.3℄ that DRCa = DRg(A), whih ombined with the main

result of [JPPZ17℄ yields the result.

We now show that onjeture 6.1 holds for all k if we restrit to the lous of

urves of ompat type.

Proposition 6.3. On the lousMct
g,n of ompat type urves we have an equal-

ity

DRCa = 2−gPg,k
g (A) ∈ CHg

Q(M
ct
g,n). (7)
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Proof. The proof runs via the following hain of equalities in CHg
Q(M

ct
g,n).

DRCa
a)
= σ∗

a[e]
b)
= σ∗

a

θg

g!
=

1

g!

(

σ∗
aθ
)g c)

=
1

2gg!

(
P 1,k
g (A)

)g d)
= 2−gPg,k

g (A).

To start, equality a) follows from the de�nition of the double rami�ation

yle and the fat that the universal jaobian overMct
g,n is an abelian sheme,

hene any setions overMg,n are guaranteed to extend (uniquely) overMct
g,n.

Equality b) omes by pulling bak the obvious relation on the universal abelian

variety, whih has already been observed by various authors, see for instane

[GZ14a℄.

Now the pullbak (in ohomology) of the theta divisor under σa has been

omputed by Hain in [Hai13℄. In standard notation for the tautologial lasses

inMct
g,n, Hain's result reads as follows: in H

2(Mct
g,n) we have

σ∗
aθ = −

k2

2
κ1 +

1

2

n∑

j=1

(aj + k)2ψj −
1

2

∑

g′,P

(aP − (2g′ − 1)k)2δPg′ . (8)

Here P runs over subsets of {1, . . . , n}, aP =
∑

i∈P ai, and the last sum should

be interpreted as inluding eah boundary divisor δPg′ = δP
c

g−g′ exatly one.

Deduing equality ) in ohomology then follows by an elementary veri�ation

using the de�nition of P1,k
g (A) from [JPPZ17, Setion 1.1℄. To lift this to an

equality in Chow, we want to show that the yle lass map CH1
Q(M

ct
g,n) →

H2(Mct
g,n) is injetive. Now it is lassial that CH1

Q(Mg,n) ∼= H2(Mg,n). Sine

Mct
g,n is the omplement of the divisor ∆irr ⊂Mg,n of irreduible nodal urves,

we have CH1
Q(M

ct
g,n) = CH1

Q(Mg,n)/Q·[∆irr] by the exision exat sequene for
Chow groups. For the analogous result in ohomology, note that the inlusion of

the open setMct
g,n ⊆Mg,n with omplement∆irr indues a long exat sequene

for ohomology with ompat support. For d = dimCMg,n = 3g − 3 + n we

look at the following piee of this sequene

· · · → H2d−2
c (Mct

g,n)→ H2d−2(Mg,n)→ H2d−2(∆irr)→ · · · ,

where we note that Mg,n and ∆irr are ompat, so ompatly supported o-

homology agrees with usual ohomology. Taking the dual and using Poinaré

duality, we have an exat sequene

H2(Mct
g,n)←− H

2(Mg,n)←− H
0(∆irr) = Q · [∆irr],

where we use that ∆irr is onneted. This implies that we have an injetion

H2(Mg,n)/Q · [∆irr] →֒ H2(Mct
g,n), but

H2(Mg,n)/Q · [∆irr] ∼= CH1
Q(Mg,n)/Q · [∆irr] ∼= CH1

Q(M
ct
g,n).

This proves equality ) in Chow.
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Finally, equality d) follows from the fat that onMct
g,n we have an equality of

mixed-degree lasses

exp(P1,k
g (A)) =

∑

d≥0

Pd,k
g (A) ∈ CH∗

Q(M
ct
g,n). (9)

This equality is a ombinatorial statement; it is a speialization of the more

general lemma 7.3 whih we will prove in the next setion.

7 Restricting to treelike curves

In this setion we fous on the lous of treelike urves � these are stable urves

whose graph is a tree with any number of self-loops attahed (equivalently, all

non-disonneting edges are self-loops, or all yles in the graph have length

≤ 1). We write Mtl
g,n for this lous; it is open in Mg,n, and learly ontains

the ompat-type lousMct
g,n.

Over the lous of treelike urves, the universal jaobian Jg,n is not proper (and

its tori rank an be arbitrarily large). However, it is still a Néron model of its

generi �bre in the sense of [Hol19℄ � this follows easily from the main theorem

of [lo.it.℄, sine all yles in the graph have length at most 1. In partiular,

this implies that the setion σa over Mg,n extends uniquely to Jg,n over the

whole ofMtl
g,n.

In fat, Mtl
g,n an be uniquely haraterised as the largest open ofMg,n suh

that every étale-loal setion of the universal jaobian overMg,n extends. In-

deed, if C is a non-treelike point then there exists a yle of irreduible ompo-

nents γ of C of length greater than 1. Choose an étale neighbourhood U of C
in Mg,n, and setions p and q in Cg,n(U) passing through distint irreduible

omponents of γ. Write Ů for the pullbak of Mg,n to U . Then the formula

[OCg,n
(p − q)] de�nes a setion in Jg,n(Ů) whih annot extend over U . The

quik way to see this is to observe that there does not exist a tropial rational

funtion on the graph Γ of C whose divisor has multidegree equal to that of

[OCg,n
(p−q)]. More expliitly, we an apply lemma 4.3 of [Hol17℄, and see that

there does not exist a weighting on the deorated graph Γ whih is ompatible

with the thikness (1, . . . , 1) (see [lo.it.℄ setion 3 for this notation).

Reall that DRCa is the extension of the double rami�ation yle to the Chow

ring ofMg,n as onstruted in setion 2.

Lemma 7.1. In CHg
Q(M

tl
g,n) we have the equality

DRCa = σ∗
a[e] (10)

and in CH2g
Q (Mtl

g,n) we have

DRCa ·DRCb = DRCa ·DRCa+b. (11)
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Proof. Sine the setion σa extends to Jg,n over Mtl
g,n, the blowups used to

extend the setion may be assumed to be isomorphisms overMtl
g,n; more pre-

isely, the o�nal system in setion 5 an be hosen so that all of the birational

morphisms X → Mg,n are isomorphisms over Mtl
g,n. This proves (10), and

(11) then follows from theorem 5.3, or diretly from lemma 3.1.

The lasses Pg,k
g also satisfy multipliativity onMtl

g,n:

Proposition 7.2. Let A, B be vetors of n integers with

∑
Ai = ka(2g−2+n)

and

∑
Bi = kb(2g − 2 + n) for some ka, kb ∈ Z. Then the equality

P
g,ka

g (A) · P
g,kb

g (B) = P
g,ka

g (A) · P
g,ka+kb

g (A+B) (12)

holds in CH2g
Q (Mtl

g,n).

The onsisteny of this multipliativity with that of lemma 7.1 provides evi-

dene for onjeture 6.1.

There are two key ingredients in the proof of proposition 7.2. The �rst is the

basi odimension g + 1 relation

Pg+1,k
g (A) = 0 ∈ CHg+1

Q (Mg,n) (13)

proved in [CJ18, Theorem 5.4℄. The seond is the following ombinatorial

lemma:

Lemma 7.3. Let Pk
g(A)

treelike

denote the mixed-degree lass in the Chow ring

of the lous of treelike urves

Pk
g(A)

treelike :=
∑

d≥0

Pd,k
g (A) ∈ CH∗

Q(M
tl
g,n).

Then there exists a mixed-degree lass ∆ ∈ CH∗
Q(M

tl
g,n) (not depending on A

or k) along with a divisor-valued quadrati form Q(A) ∈ CH1
Q(M

tl
g,n) suh that

Pk
g(A)

treelike = exp(Q(A))∆.

Before heking lemma 7.3, we use it to prove proposition 7.2:

Proof of proposition 7.2. Using lemma 7.3 we an rewrite the odimension g+1
relation eq. (13) for a vetor A+ C as

[exp(Q(A+ C))∆]g+1 = 0,

where [X ]d denotes the odimension d part of a mixed-degree lass X .

This relation is an equality of polynomials in the A and C variables, so it will

still hold if we restrit to the part of degree 1 in C. This gives

[exp(Q(A))∆]g · (Q(A+ C)−Q(A)−Q(C)) = 0.
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Changing variables with C = A+2B, using the fat that Q is a quadrati form,

and dividing by 2, we arrive at the relation

[exp(Q(A))∆]g · (Q(A+B)−Q(B)) = 0.

Now, the mixed-degree lass exp(Q(A+B))− exp(Q(B)) is learly divisible by
the divisor lass Q(A+B)−Q(B), so we have the relation

[exp(Q(A))∆]g[(exp(Q(A+B))− exp(Q(B)))∆]g = 0.

Then applying lemma 7.3 again gives the desired multipliativity statement.

Proof of lemma 7.3. This lemma is essentially a ombinatorial statement about

the de�nition of the lasses Pd,k
g (A) in [JPPZ17, Setion 1.1℄ along with the

multipliation formula for tautologial lasses given in [GP03, Appendix A,

eq. (11)℄. In the general ase, Pd,k
g (A) is a sum over deorated (by ψ and

κ lasses) dual graphs Γ of a ombinatorial oe�ient times the tautologial

lass orresponding to Γ. The ombinatorial oe�ient is de�ned by taking the

r-onstant term of a polynomial in r de�ned by summing over ertain balaned

`weightings mod r' of the half-edges of Γ.

In our ase, we an assume that the graph Γ is treelike and the ombinatorial

oe�ients then beome signi�antly simpler: the only weights that are allowed

to vary are those in loops of the graph, and these weights are subjet only to

the ondition that the weights on the two sides of a loop must sum to zero mod

r. The result is that the oe�ient assoiated to a graph Γ fators as a produt

of the ontributions from the loops and the ontributions from the non-loops.

Moreover, it is easily seen that if Γ is treelike then there is a unique way to

pik two disjoint subsets E1, E2 of the set of edges of Γ suh that Γ beomes

a tree when E1 is ontrated and beomes a single vertex with loops attahed

when E2 is ontrated: we must have that E1 is the set of loops and E2 is the

set of non-loop edges.

These two fats about treelike graphs and their ombinatorial oe�ients along

with the graph re�nement formula for multipliation in the tautologial ring

[GP03, Appendix A℄ have the following onsequene: the entire (mixed-degree)

lass fators as

Pk
g(A)

treelike = Pk
g(A)

tree · Pk
g(A)

loops,

where the three lasses are, respetively, the full lass on the lous of treelike

urves, the sum of those terms with Γ a tree, and the sum of those terms where

Γ has exatly one vertex and where there are no κ deorations on the vertex

and no ψ deorations on any legs (but possibly on loops).

Moreover, the �nal lass above does not atually depend on the vetor A; we
set

∆ := Pk
g(A)

loops.
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We do not need to know anything more about ∆ for our purposes, but an

expliit formula an easily be obtained:

∆ =

g
∑

l=0

(−1)l

2l · l!
(ξl)∗

l∏

i=1




∑

d≥0

B2d+2

(d+ 1)!
(ψn+2i−1 + ψn+2i)

d



 ,

where ξl : Mg−l,n+2l → Mg,n glues the last l pairs of points together and

B2d+2 are Bernoulli numbers.

For the remaining fator Pk
g(A)

tree

, we laim that

Pk
g(A)

tree = exp([Pk
g(A)

tree]1). (14)

Then we an take

Q(A) := [Pk
g(A)

tree]1,

whih expliitly is given by the same formula as Hain's formula eq. (8) (multi-

plied by 2 and interpreted as divisors on the lous of treelike urves) and thus

is a quadrati form in A.
It remains to hek eq. (14) using the multipliation formula of [GP03, Ap-

pendix A℄. Suppose that for i = 1, . . . , k, δPi
gi are boundary divisor lasses for

separating nodes, so eah suh lass orresponds to a graph with two verties

onneted by a single edge along with a distribution of the total genus g and

markings between the two verties (suh that one has genus gi and marking

Pi). If we multiply all of these k divisor lasses together, the multipliation

formula in this ase says that the result is a sum over the following data: a

tree Γ along with a distribution of genus and markings between the verties of

Γ and a sequene of edges e1, . . . , ek in Γ (possibly with repetition) suh that

1. the division of genus and markings aross the two sides of edge ei agree
with the division in δPi

gi ;

2. every edge of Γ appears at least one in the sequene e1, . . . , ek.

Repeated edges ei give rise to ψ lasses along that edge.

Computing the right side of eq. (14) (the exponential of a divisor lass) by using

the above proedure to multiply divisor lasses together then gives preisely the

sum over trees appearing in the de�nition of Pk
g(A)

tree

.

8 Failure of multiplicativity in the Chow ring of Mg,n

Sine both sides of eq. (12) make sense in the Chow ring ofMg,n, it is natural

to ask whether the multipliativity stated in proposition 7.2 might hold not

just on the lous of treelike urves but on the entire spae of stable urves. In

this setion we present an expliit example where this desired equality fails and

in fat argue that there an be no other extension of the yles DRCa from
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Mct
g,n that would make the equality hold. In other words, multipliativity is

really a feature of the (small) b-Chow ring and not of the standard Chow ring.

Let g = 1, k = 0 and onsider the two partitions a = (2, 4,−6), b = (−3,−1, 4)
of 0. Let DRCa, DRCb, DRCa+b ∈ CH1

Q(M1,3) be the orresponding dou-

ble rami�ation yles. By proposition 6.3 these agree with the orresponding

P1
1(A), whih an be omputed as expliit tautologial lasses. Using an im-

plementation of the tautologial ring by the seond author one an hek that

the multipliativity fails inside the Chow group ofM1,3, i.e.

DRCa ·DRCb 6= DRCa ·DRCa+b ∈ CH2
Q(M1,3). (15)

What is true however is that the di�erene of the two sides in eq. (15) is a linear

ombination of the lasses of the three irreduible omponents ofM1,3 \M
tl
1,3.

In other words, eq. (15) beomes an equality one we restrit to the lousMtl
1,3

of treelike urves, as proved in proposition 7.2. Moreover, atually both sides

of eq. (15) give nontrivial elements of CH2
Q(M

tl
1,3). In partiular, this shows

that for the above example the two sides of the multipliativity statement in

the (small) b-Chow ring are also nontrivial. This gives an indiation that the

multipliativity whih holds in the b-Chow ring is not the onsequene of some

trivial vanishing (like both sides of the equality being zero, for instane).

Now one �nal hope for multipliativity on Mg,n ould be that the yles

DRCa, DRCb, DRCa+b are not the right extension of the orresponding Abel-

Jaobi pullbaks σ∗
a[e], σ

∗
b [e], σ

∗
a+b[e] ∈ CH1

Q(M
ct
1,3) on the lous of ompat type

urves. However, the omplementM1,3 \M
ct
g,n is exatly given by the bound-

ary divisor ∆irr generially parametrising irreduible nodal urves. Hene any

suh extensions must have the form

D̃RCa = DRCa + λa ·∆irr,

D̃RCb = DRCb + λb ·∆irr,

D̃RCa+b = DRCa+b + λa+b ·∆irr.

Using that ∆2
irr = 0 we ompute

D̃RCa · (D̃RCb − D̃RCa+b)

=DRCa · (DRCb − DRCa+b)
︸ ︷︷ ︸

I1

+(λb − λa+b)DRCa ·∆irr
︸ ︷︷ ︸

I2

+ λa ∆irr · (DRCb −DRCa+b)
︸ ︷︷ ︸

I3

.

However, it an be heked by omputer that the three elements I1, I2, I3 ∈
CH2

Q(M1,3) are linearly independent. Therefore there is no way to hoose

λa, λb, λa+b to have the D̃RC satisfy multipliativity in the Chow ring ofMg,n;

we only have multipliativity in the (small) b-Chow ring or on the open lous

of treelike urves.
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9 Logarithmic version

We work with �ne and saturated log strutures in the sense of Fontaine-Illusie,

using Olsson's generalisation to staks [Ols01℄. We put a log struture onMg,n

as in Kato [Kat96℄.

A logarithmic analogue in arbitrary characteristic

Until now we have restrited to harateristi zero in order to be able to apply

Hironaka's resolution of singularities, to show that every modi�ation ofMg,n

an be dominated by a regular one - more preisely we use Temkin's funtorial

resolution [Tem12℄, so that we an apply it to staks. This implies that the

ategory Bl(Mg,n) is �ltered, giving us a very expliit desription of the olimit

bCHQ(Mg,n).
In positive harateristi the analogue of Hironaka's resolution is not known.

However, it follows from the proof of [Hol17, Lemma 6.1℄ that in our setting we

an restrit to modi�ations X → Mg,n whih are log blowups (in partiular

log étale overMg,n). Sine Mg,n is log regular, suh a modi�ation is again

log regular, and we an use results of Gabber, Illusie and Temkin to show

that a suitable ategory of blowups is �ltered. In the remainder of this setion

we will explain how to use these ideas to generalise our results to arbitrary

harateristi.

From now on we work over a �eld k of any harateristi. First we desribe the
translation of setion 5 into the logarithmi setting. We write Bllog(Mg,n) for
the ategory of log blowups X → Mg,n whose underlying staks are regular;

morphisms are taken overMg,n.

Lemma 9.1. The ategory Bllog(Mg,n) is �ltered.

Proof. Let X/Mg,n and Y/Mg,n be objets in Bllog(Mg,n), and let Z ′
denote

their �bre produt in the ategory of �ne and saturated log shemes overMg,n;

note that Z ′ → Mg,n is again a log blowup. Now log blowups are log étale,

hene Z ′
is log étale over the log regular stak Mg,n, and hene Z ′

is log

regular. It remains to hek that Z ′
has a log blowups whih is regular. Now

[IT14, Theorem 3.4.9℄ gives a resolution algorithm for log regular log shemes,

whih is in partiular funtorial for strit étale morphisms. SineMg,n admits

a strit étale over by log shemes the same is true for Z ′
(by base-hange),

so we apply funtorial resolution to eah path of suh a over, and glue by

funtoriality.

We de�ne the logarithmi b-Chow ring bCHlog,Q(Mg,n) of Mg,n to be the

olimit over X ∈ Bllog(Mg,n) of the Chow rings CHQ(X), with transition

maps given by pullbak. By lemma 9.1 this admits a simple presentation as in

setion 4.

Fix a = (a1, . . . , an, k) as usual. Given X ∈ Bllog(Mg,n) we de�ne X̊ to be

the largest open to whih σa extends, and de�ne DRLX
a and DRCX

a by the
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same formulae as in setion 5, by pulling bak the unit setion in Jg,n either

as a sheme or as a yle. Again we need to hek that those X with DRLX
a

proper over Mg,n form a o�nal system; this does not follow immediately

from theorem 2.1 as it is not lear that those X an be hosen to be log

blowups, but does follow from [Hol17, Lemma 6.1 and Theorem 6.3℄, ombined

with resolution of singularities for log regular staks [IT14, Theorem 3.4.9℄.

The same referenes show again that the net DRCX
a is eventually onstant in

bCHQ,log(Mg,n), yielding a well-de�ned lass bDRCa,log ∈ bCHQ,log(Mg,n).

Theorem 9.2. Choose a = (a1, . . . , an, k) with
∑

i ai = k(2g−2), and similarly

hoose b = (b1, . . . , bn, k
′). Then in bCHQ,log(Mg,n) we have

bDRCa,log · bDRCb,log = bDRCa,log · bDRCa+b,log . (16)

Proof. By lemma 9.1 we an hoose Z ∈ Bllog(Mg,n) dominating bothM�
a and

M�
b . The logarithmi strutures play no further role, and we proeed exatly

as in the proof of theorem 5.3.

The Chow ring of the valuativisation

Following [Kat89℄, the valuativisation of a log sheme or stak is the limit

of all the log blowups; this does not exist as a sheme (or stak), but does

exist as either a loally ringed spae or a pro-sheme over Mg,n. The loga-

rithmi b-Chow ring de�ned above an then be viewed as the Chow ring of

the valuativisation, .f. [SST18℄. In [lo.it.℄ a derived equivalene is on-

struted between the valuativisation and a ertain in�nite root stak ofMg,n.

We hope that this derived equivalene might shed some light on the relation

between the �rst author's onstrution in [Hol14℄ of a universal Néron-model-

admitting stak, and Chiodo's work [Chi15℄. More generally, it might realise

our bDRC ∈ bCHQ(Mg,n) as a shadow of some more re�ned derived objet.
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