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Part II

Reheating in curved field
spaces
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4|Universality and scaling in
multi­field preheating

Abstract: We explore preheating in multi-field models of inflation in which
the field-space metric is a highly curved hyperbolic manifold. One broad
family of such models is called α-attractors, whose single-field regimes have
been extensively studied in the context of inflation and supergravity. We
focus on a simple two-field generalization of the T -model, which has re-
ceived renewed attention in the literature. Krajewski et al. concluded,
using lattice simulations, that multi-field effects can dramatically speed-up
preheating. We recover their results and further demonstrate that signifi-
cant analytical progress can be made for preheating in these models using
the WKB approximation and Floquet analysis. We find a simple scaling
behavior of the Floquet exponents for large values of the field-space cur-
vature, that enables a quick estimation of the T -model reheating efficiency
for any large value of the field-space curvature. In this regime we further
observe and explain universal preheating features that arise for different
values of the potential steepness. In general preheating is faster for larger
negative values of the field-space curvature and steeper potentials. For very
highly curved field-space manifolds preheating is essentially instantaneous.

Keywords: multi-field preheating, inflation.
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4.1 Introduction

Inflation remains the leading paradigm for the very early universe, provid-
ing an elegant solution to the horizon and flatness problems of big bang
cosmology [27, 28]. However, the biggest success of inflation is undoubt-
edly that it provides a framework for computing the primordial density
fluctuations that can be observed as temperature variations of the Cosmic
Microwave Background Radiation (CMB) and that provide the seeds for
structure formation.

The recent results from the Planck satellite [53] are the latest in a
long line of experiments, starting in 1989 with COBE, trying to constrain
the characteristics of the primordial power spectrum through measuring the
spectral index of scalar fluctuations (ns). Attempts to measure the running
of the spectral index αs and the tensor to scalar ratio r have resulted so far
only in placing upper bounds on both. While large-field models of inflation
are tightly constrained and the simplest ones, like quadratic inflation, are
practically ruled out, large families of models are still compatible with the
data, providing predictions that match those of the Starobinsky model [251]

ns = 1− 2

N∗
, r =

12α

N2
∗

(4.1)

where N∗ is the time in e-folds where the CMB modes exit the horizon dur-
ing inflation. The two main families of models that provide the observables
of Eq. (4.1) are models with non-minimal coupling to gravity [154, 155]
(sometimes called ξ-attractors1) and models with hyperbolic field-space ge-
ometry, also called α-attractors [50–52, 61]. Higgs inflation [156, 157] is
an example of the former. For the Starobinsky model and ξ-attractors,
α = 1 in Eq. (4.1), hence the prediction for the tensor mode amplitude
is fixed. For α-attractors, the parameter α corresponds to the curvature
of the field-space, as we will see, hence the tensor power is suppressed for
highly curved field-space manifolds [50–52]. At some level, the unifying fea-
ture of all these approaches can be attributed to a singularity in the kinetic
sector [254]. We will focus only on α-attractors, drawing similarities and
differences with the other observationally related models when necessary.

While a lot of theoretical and phenomenological work on inflation has
focused on single-field scenarios, realistic models of high-energy particle

1It is worth noting that in the Palatini formulation of gravity the behavior and
predictions of ξ-attractor models change significantly, as is discussed for example in
Refs. [252, 253].
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physics typically include many distinct scalar fields at high energies [255–
259]. Furthermore, multiple fields with a curved field-space manifold (see
e.g. [69, 95, 260–267]) can display a variety of effects, including non-gaussianities,
isocurvature modes, imprints from heavy fields during turns in field space,
curvature fluctuations from ultra-light entropy modes, as well as geomet-
ric destabilization of the inflationary trajectory [54, 55, 268, 313]. Several
models that lead to the predictions of Eq. (4.1) display strong single field
attractors [61, 154, 157] that persist during and after inflation. In particu-
lar, the multi-field analysis of α-attractors has become an interesting topic
recently [61, 65, 66, 269–271].

During inflation, the inflaton field dominates the total energy density
budget. However, the universe must be in a radiation dominated stage
before Big Bang Nucleosynthesis (BBN), in order to produce the observed
abundance of light elements [280–282] (see e.g. Refs. [273, 283–286] for
recent reviews). The period during which the energy density locked in
the inflaton condensate is transferred to radiation modes is called reheat-
ing. While inflation is tightly constrained by measurements of the CMB
and Large Scale Structure [272–279], the period after inflation and before
Big Bang Nucleosynthesis (BBN), provides far fewer observational handles,
due to the very short length-scales involved. This is due to the fact that
most dynamics during reheating takes place at sub-horizon scales, following
causality arguments, hence it does not leave an imprint on larger scales, like
the CMB2. Furthermore, the thermalization processes that have to occur
before BBN wash out many of the “fingerprints” of reheating. Despite its
inherent complexity, knowledge of the reheating era is essential, in order
to relate inflationary predictions to present-day observations. The evolu-
tion history of the universe determines the relation between the times of
horizon-crossing and re-entry of primordial fluctuations [161, 287–294]. Fur-
themore, preheating in multi-field models of inflation can alter the evolution
of cosmological observables [93, 295–300].

The reheating era can proceed either through perturbative decay of the
inflaton, or through non-perturbative processes, such as parametric and
tachyonic resonance, also called preheating (see e.g. [133, 144, 149] and
Ref. [118] for a review). A recent paper [160] used lattice simulations to
compute the preheating behavior of a specific two-field realization of the
T-model, a member of the α-attractor family [301]. In this paper we use

2While this is true for most models, there are well motivated cases where reheating
can excite super-horizon modes and thus affect CMB observables. This does not occur
for the α-attractor models that we are examining and we will not be discussing it further.
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linear analysis to recover and interpret the results of Ref. [160] and examine
their dependence on the potential steepness and field-space curvature. We
find that the Floquet charts for a specific value of the potential steepness
collapse into a single “master diagram” for small values of α when plotted
against axes properly rescaled by the field-space curvature. Even for differ-
ent potential parameters, the scaling behavior of the Floquet charts persists,
albeit in an approximate rather than exact form. Overall we find slightly
faster preheating for steeper potentials and for models with stronger field-
space curvature. An important conclusion is that, in the limit of highly
curved manifolds, preheating occurs almost instantaneously regardless of
the exact form of the T-model potential. This is important for connecting
the predictions of α-attractors to CMB observations.

The structure of the paper is as follows. In Section 4.2 we describe the
model and study its background evolution, both during and after inflation.
In Section 4.3 we review the formalism for computing fluctuations in multi-
field models with non-trivial field-space metric. We also specify the form
of the potential and analyze the resulting particle production using semi-
analytic arguments, the WKB approximation and Floquet theory. Section
4.4 generalizes our results to different potentials. We conclude in Section
4.5.

4.2 Model
We consider a model consisting of two interacting scalar fields on a hyper-
bolic manifold of constant negative curvature. The specific Lagrangian cor-
responds to a two-field extension of the well-known T-model, as described
in detail in Appendix 4A and Ref. [160], and can be written as

L = −1

2

(
∂µχ∂

µχ+ e2b(χ)∂µϕ∂
µϕ
)
− V (ϕ, χ) , (4.2)

where b(χ) = log (cosh(βχ)). The corresponding two-field potential is

V (ϕ, χ) =M4

(
cosh(βϕ) cosh(βχ)− 1

cosh(βϕ) cosh(βχ) + 1

)n

(cosh(βχ))2/β
2

, (4.3)

where β =
√

2/3α and M4 = αµ23. For χ = 0 the potential becomes

V (ϕ, 0) =M4
(
(tanh(βϕ/2))2

)n
=M4 tanh2n(β|ϕ|/2). (4.4)

3In this Chapter the parameter α corresponds to α̃ from Chapter 3.
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The background equation of motion for ϕ(t) at χ(t) = 0 is

ϕ̈+ 3Hϕ̇+
2
√
2M4n√
3α

csch
(√

2

3α
|ϕ|

)
tanh2n

(
|ϕ|√
6α

)
= 0. (4.5)

We rescale the inflaton field ϕ and the parameter α by the reduced Planck
mass as ϕ = ϕ̃MPl and α = α̃M2

Pl. Finally, we rescale time by µ, leading to

d2ϕ̃

d(µt)2
+ 3

H

µ

dϕ̃

d(µt)
+

2
√
2α̃ n√
3

csch
(√

2

3α̃
|ϕ̃|

)
tanh2n

(
|ϕ̃|√
6α̃

)
= 0, (4.6)

where (
H

µ

)2

=
1

3

1
2

(
dϕ̃

d(µt)

)2

+ α̃ · tanh2n

(
|ϕ̃|√
6α̃

) . (4.7)

In Ref. [160] an alternative rescaling of time was implicitly used, which we
describe in Appendix 4C.

4.2.1 Single­field background motion

We start by analyzing the background motion of the ϕ and χ fields, in order
to identify the regime of effectively single-field motion and describe CMB
constraints on the model parameters. We initially assume that χ(t) = 0 at
background level, which is indeed a dynamical attractor, as we will show
later. Eq. (4.6) in the slow-roll approximation and for ϕ̃/

√
α̃ ≫ 1, which

holds during inflation, becomes

3H
˙̃
ϕ+

4
(√

2αn
)

√
3

e−
√
2ϕ̃/

√
3α̃ ≃ 0, (4.8)

where H/µ ≃
√
α̃/3, leading to

˙̃
ϕ = −4

√
2n

3
e−

√
2ϕ̃/

√
3α̃, (4.9)

N =
3α̃

8n
e

√
2
3α̃

ϕ̃
. (4.10)

The slow-roll parameters become

ϵ ≡ − Ḣ

H2
=

16n2

3α̃
e−2

√
2ϕ̃/

√
3α̃ ≃ 3α̃

4N2
(4.11)

η ≡ ϵ̇

ϵH
≃ 2

N
. (4.12)
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Figure 4.1: Upper panels: The rescaled background field at the end of inflation ϕend/
√
α

as a function of n (left) and α (right). Lower panels: The rescaled Hubble parameter at the
end of inflation Hend/

√
α as a function of n (left) and α (right). The Hubble parameter is

measured in units of µ. Color coding is as follows:
Left: α = 10−5, 10−4, 10−3, 10−2, 10−1 (blue, red, green, brown and black respectively).
Right: n = 1, 1.5, 2, 2.5, 3, 5 (blue, red, green, brown, orange and black respectively).

The end of inflation defined as ϵ = 1, based on the slow-roll analysis, occurs
at

ϕ̃end√
α̃

=

√
3

2
√
2

(
log 16

3
+ 2 logn− log α̃

)
. (4.13)

The last term in Eq. (4.13) is subdominant for small α̃ and can be safely
ignored, leading to ϕ̃end/

√
α̃ ≃ 0.6(1.7 + 2 logn). Even though the slow-roll

approximation fails near the end of inflation, the scaling ϕ̃end/
√
α̃ = O(1)

is valid over the whole range of potential parameters α and n that we
considered, as shown in Fig. 4.1. The Hubble scale at ϵ = 1 is

H2
end
µ2

=
1

2
α̃ · tanh2n

(
ϕ̃end√
6α̃

)
∼ 1

4
α̃, (4.14)

where the numerical factor in the last equality of Eq. (4.14) is fitted from
the bottom right panel of Fig. 4.1.
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The tensor-to-scalar ratio for single-field motion is

r = 16ϵ ≃ 12
α̃

N2
. (4.15)

In general r = α × O(10−3) for modes that exit the horizon at N ∼ 55
e-folds before the end of inflation. The dimensionless power spectrum of
the (scalar) density perturbations is measured to be

As ≃ 2× 10−9 . (4.16)

Using the expression for the scalar power spectrum from single field slow-
roll inflation

As =
H2

8π2M2
Plϵ

, (4.17)

and the value of the Hubble scale at the plateau of the potential H2 ≃
α̃µ2/3, it is straightforward to see that µ ∼ 10−5MPl. Hence the scale
of µ fixes the amplitude of the scalar power spectrum, independent of α
and n. By using µ to re-scale time, it is trivial to connect the preheating
calculations performed in the present work to observational constraints on
the potential parameters.

4.2.2 Initial condition dependence

It can be easily seen that the potential of Eq. (4.3) exhibits a minimum at
χ = 0 for all values of ϕ. However, the approach to this potential “valley” is
important and could in principle leave observational signatures, if it occurs
close to the time at which the CMB-relevant scales leave the horizon.

Fig. 4.2 shows the transition to the single-field trajectory for n = 3/2
and α = 0.001. The initial conditions are ϕ0 = χ0, chosen such that there
would be 60 e-folds of inflation for χ0 = 0. We see two distinct stages of
inflation: initially ϕ(t) remains almost constant and χ(t) follows a slow-
roll motion until it reaches the minimum χ = 0. Then, after a sharp turn
in field-space, the field ϕ(t) follows a slow-roll motion towards the global
minimum of the potential, while χ stays exponentially close to zero. Hence
to a good approximation, the whole inflationary era is separated into two
sequential periods of distinct single-field motion.

Starting from a wide range of initial conditions ϕ0 ≡ ϕ(0) and χ0 ≡ χ(0),
we see that the system generically follows the two-stage evolution shown in
Fig. 4.2, proceeding along χ(t) = 0 during the last stage of inflation and
during the post-inflationary oscillations. Figure 4.3 shows the transition
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Figure 4.2: Left: A characteristic evolution for ϕ (blue), χ (red) and H (black-dashed) for
n = 3/2 and α̃ = 0.001, showing the approach to χ(t) = 0. The initial conditions are chosen
as ϕ0 = χ0 and ϕ̇0 = χ̇0 = 0. Right: The three-dimensional plot of the trajectory on the
potential. The two effectively single-field stages are easily visible: ϕ(t) ≃ const. followed by
χ(t) ≃ 0.
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Figure 4.3: Left: A contour plot in the ϕ0 ≡ ϕ(0) and χ0 ≡ χ(0) plane for n = 3/2 and
α̃ = 0.001, showing the total number of e-folds of inflation. The initial velocities are chosen
as ϕ̇0 = χ̇0 = 0. The red-dashed line shows the initial conditions that lead to 60 e-folds of
inflation. We see that the total number of e-folds are predominately controlled by ϕ0. Right:
A contour plot in the ϕ0 and χ0 plane for n = 3/2 and α̃ = 0.001, showing the number of
e-folds from the beginning of inflation until the χ = 0 attractor is reached. As expected, the
number of e-folds along ϕ ≃ ϕ0 are mostly determined by χ0. We see that the initial stage
of inflation along ϕ ≃ ϕ0 lasts far less than the second stage of inflation along χ = 0, hence
it will not leave any observational imprints for non fine-tuned initial conditions.
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to the single-field motion along χ = 0 for broad conditions, constrained to
provide more than 60 e-folds of inflation. Beyond the fact that the single
field trajectory along χ(t) = 0 is a dynamical attractor for the generalized
two-field T-model, its predictions are robust with respect to χ0. As shown in
Fig. 4.3, the number of e-folds along the second stage χ(t) = 0 is much larger
than the number of e-folds along the first stage ϕ(t) = const. The range
of values {ϕ0, χ0} that place the turn-rate spike (the transition between
the two single-field motions) at the observable window 50 ≲ N∗ ≲ 60 is
very narrow, requiring delicate fine-tuning. Hence the generic observational
prediction of these models for the CMB is that of usual single-field α-
attractors. This behavior can be understood analytically. Considering the
number of e-folds along a single-field trajectory we get

N =

∫
H dt =

∫
H

ϕ̇
dϕ (4.18)

As a quick estimate of the number of e-folds we can use ∆N1 ∼ (H/|χ̇|)∆χ ∼
(H/|χ̇|)χ0 during the first stage and ∆N2 ∼ (H/|ϕ̇|)∆ϕ ∼ (H/|ϕ̇|)ϕ0 dur-
ing the second stage of inflation. Assuming that the Hubble scale does not
change much during inflation

N1

N2
∼
∣∣∣∣ χ̇ϕ̇
∣∣∣∣ χ0

ϕ0
(4.19)

Fig. 4.4 shows the ratio |ϕ̇/χ̇| as a function of ϕ for several values of χ0.
We see that for large values of ϕ0, required to give a sufficient number of
e-folds of inflation, |χ̇| = O(10)|ϕ̇|, hence N1 = O(0.1)N2 for typical values
of {ϕ0, χ0}. While there is potentially interesting phenomenology from the
turning trajectories, it is absent for generically chosen initial conditions.
Since we are only interested in the preheating behavior of the two-field
T-model, we will not pursue this subject further here.

4.2.3 Geometrical destabilization

A novel phenomenon that manifests itself in scalar field systems on a nega-
tively curved manifold is “geometrical destabilization” [54], where the pres-
ence of a negative field-space Ricci term can turn a stable direction into
an unstable one. The study of the effective mass for the ϕ and χ fluc-
tuations will be performed in Section 4.3. In order to check the stability
of the single-field trajectory, it suffices to use the effective super-horizon
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Figure 4.4: Left: The field velocities ϕ̇(t) (blue) and χ̇(t) (red) for the example of Fig. 4.2.
We see that the initial stage of inflation along ϕ = const. proceeds with a much larger velocity
than the one associated with α-attractors, hence it will generate fewer e-folds. Right: The
ratio of the typical velocities |ϕ̇/χ̇| as a function of the inflaton field ϕ0 for different values
of the field amplitude χ0. We see that for the ϕ field values needed to generate sufficient
e-folds of inflation the typical χ velocity is larger than the typical ϕ velocity.

isocurvature mass

m2
χ,eff = Vχχ(χ = 0)− 1

2

4

3α
ϕ̇2 =

=

(
2 tanh2n

(
|ϕ(t)|√
6
√
α

)(
3α+ 2n coth

(√
2
3
ϕ(t)

√
α

)
csch

(√
2
3
ϕ(t)

√
α

)))
3

− 2ϕ̇(t)2

3α
(4.20)

During inflation and using the slow-roll conditions, we get

m2
χ,eff = 2α

(
1 +

1

2N

)
(4.21)

which is positive. However, close to the end of inflation the slow-roll ap-
proximation fails and the result cannot be trusted. Hence the model under
study is safe against geometrical destabilization effects during inflation.
The effective mass of isocurvature fluctuations can become negative after
the end of inflation, but this falls under the scope of tachyonic preheating,
as will be discussed in Section 4.3. Figure 4.5 shows the isocurvature ef-
fective mass-squared during the last e-folds of inflation, showing that it is
indeed positive until very close to the end, hence no Geometrical Destabi-
lization will occur4. However Fig. 4.5 shows that all computations, either

4Recently Ref. [65] showed the existence of yet another possible evolution for α-
attractor models, angular inflation, where the background motion proceeds along the
boundary of the Poincare disk. We did not see this behavior arise in the context of the
two-field T-model studied here, even for highly curved manifolds.
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Figure 4.5: The super-horizon isocurvature effective mass-squared m2
χ,eff given in Eq. (4.20)

for several values of α and n. In particular α̃ = 0.0001 and n = 3/2 (blue), α̃ = 0.001 and
n = 3/2 (red), α̃ = 0.01 and n = 3/2 (green), α̃ = 0.001 and n = 1 (brown), α̃ = 0.001 and
n = 10 (black). The dotted parts show the negative part of m2

χ,eff. The three curves that
correspond to α̃ = 0.001 are visually indistinguishable. The orange line shows the slow-roll
expression of Eq. (4.21) for α̃ = 0.001. We see that the single field trajectory along χ = 0 is
safe against geometric destabilization effects until close to the end of inflation.

using linear analysis as the ones performed here, or full lattice simulations
like in Ref. [160], must be initialized more than an e-fold before the end of
inflation, where the effective isocurvature mass-squared is positive and the
connection to the Bunch Davies vacuum is possible.

4.2.4 Post­inflationary background oscillations

In order to study the post-inflationary background evolution of the inflaton
field ϕ(t), it is convenient to work in terms of the rescaled field variable
δ ≡ ϕ̃/

√
α̃ and re-write the equation of motion for the inflaton field ϕ as

δ̈ + 3Hδ̇ + µ2
2
√
2

3
n · csch

(√
2

3
|δ|

)
tanh2n

(
1√
6
|δ|
)

= 0 (4.22)

where (
H

µ

)2

=
α̃

3

[
1

2

(
dδ

d(µt)

)2

+ tanh2n

(
|δ|√
6

)]
(4.23)

The field re-scaling leads to δ = O(1) at the end of inflation and during
preheating. We see that the evolution of δ, if one neglects the Hubble drag
term, does not depend on α. This is reminiscent of non-minimally coupled
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Figure 4.6: Upper panels: The background period T as a function of α (left) and n (right).
Lower panels: The ratio of the background frequency ω = 2π/T to the Hubble scale at the
end of inflation Hend as a function of α (left) and n (right). Color-coding follows Fig. 4.1,
specifically:
Left: α = 10−5, 10−4, 10−3, 10−2, 10−1 (blue, red, green, brown and black respectively).
Right: n = 1, 1.5, 2, 2.5, 3, 5 (blue, red, green, brown, orange and black respectively)

models of inflation, where the background equation of motion approaches
one “master equation”, when properly normalized, and thus the background
motion is self-similar for large values of the non-minimal coupling ξ. In
reality the background evolution has a mild dependence on α, arising from
the (very weak) dependence of δend on α, which is shown in Fig. 4.1. Fig. 4.6
shows the period of background oscillations, if we neglect the Hubble drag
and initialize the oscillation at δinit = ϕend/

√
α. We see that the period

T ∼ 10. More importantly, there is a significant separation of scales between
the background oscillation frequency ω = 2π/T and the Hubble scale. The
relation can be roughly fitted as ω/Hend ∼ 1/

√
α̃. This shows that there

are more background oscillations per Hubble time (or per e-fold) for smaller
values of α̃, hence for highly curved field-space manifolds.
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4.3 Tachyonic resonance

4.3.1 Fluctuations

The covariant formalism that must be used to study the evolution of fluc-
tuations in models comprised of multiple scalar fields on a curved manifold
has been developed and presented in Refs. [37, 266], described in detail in
Ref. [136] and extensively used in Refs. [302–304] for studying preheating
in multi-field inflation with non-minimal couplings to gravity. The gauge-
invariant perturbations obey

D2
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J

]
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where the mass-squared matrix is given by
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and RI
LMJ is the Riemann tensor constructed from GIJ(φ

K). For the
model at hand, where the background motion is restricted along the χ = 0
direction, the field-space structure simplifies significantly GIJ(χ = 0) = δIJ
and ΓI

JK = 0, hence all covariant derivatives become partial derivatives
and the quantization of the fluctuations proceeds as usual. This is not
the case for other parametrizations of the field-space, or other background
trajectories, where GIJ ̸= δIJ , and one would have to use the field-space
vielbeins to properly quantize the system, as done for example in Ref. [136].

We rescale the perturbations as QI(xµ) → XI(xµ)/a(t) and work in
terms of conformal time, dη = dt/a(t). This allows us to write the quadratic
action in a form that resembles Minkowski space, which makes their quan-
tization straightforward. The quadratic action becomes
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6
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)
(4.27)

and R is the space-time Ricci scalar. The energy density of the two fields
in momentum-space becomes
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where we used the equation of motion for the second equality and defined
the effective frequency-squared as

[ω2
k(η)]IJ = k2δIJ +MIJ (4.29)

We promote the fields XI to operators X̂I and expand X̂ϕ and X̂χ in sets
of creation and annihilation operators and associated mode functions

X̂I =

∫
d3k

(2π)3/2

[
uI(k, η)âeik·x + uI∗(k, η)â†e−ik·x

]
. (4.30)

and we define uϕ ≡ v and uχ ≡ z. Since the modes decouple on a single-field
background with vanishing turn-rate, the equations of motion are

∂2ηvk + ω2
ϕ(k, η)vk ≃ 0 , ωϕ(k, η)

2 = k2 + a2m2
eff,ϕ ,

∂2ηzk + ω2
χ(k, η)zk ≃ 0 , ωχ(k, η)

2 = k2 + a2m2
eff,χ .

(4.31)

The effective masses of the two types of fluctuations, along the background
motion and perpendicular to it, consist of four distinct contributions [136]:

m2
eff,I = m2

1,I +m2
2,I +m2

3,I +m2
4,I , (4.32)

with5
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(4.33)

The various component of the effective mass-squared arises from a different
source:

• m2
1,I is the usual effective mass term derived from the curvature of

the potential around the minimum.

• m2
2,I comes from the geometry of field-space and has no analogue in

models with a trivial field space.
5Note that no summation implied over the index I = ϕ, χ. This corrects an expression

in the published paper.
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• m2
3,I arises due to the presence of coupled metric perturbations by

considering linear fluctuations in the metric as well as in the fields.
This contribution vanishes in the limit of infinitely rigid space-time.

• m2
4,I encodes the curvature of space-time.

In general m2
3,χ = 0 = m2

2,ϕ, since the coupled metric fluctuations described
by m2

3,I only affect the adiabatic modes δϕ, while the field-space curvature
described by m2

2,I only affects the isocurvature modes6 δχ. In our case,
both m2

3,I and m2
4,I are subdominant for highly curved field spaces α̃≪ 1,

as can be seen from the various scalings of the terms in Eq. (4.32)

m2
1,ϕ ∼ µ2

m2
3,ϕ ∼ µ2

√
α̃

m2
4,ϕ = m2

4,χ ∼ µ2α̃

(4.34)

The small value of m2
4,I is one further indication that fluctuations behave

almost as if they were in flat spacetime. These scalings agree very well
with numerical evaluations for a large range of α̃, as shown in Fig. 4.7. A
closer analysis of scaling relations for m2

eff,χ, will be performed in Section
4.3.2. Meanwhile, within the single-field attractor along χ = 0, the energy
densities for adiabatic and isocurvature perturbations take the simple form
[136]

ρ
(ϕ)
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)
|vk|2

]
,

ρ
(χ)
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[
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(
k2 + a2m2

eff,χ
)
|zk|2

]
,

(4.35)

where we thus approximate the two effective masses as

m2
eff,ϕ ≃ Vϕϕ(χ = 0) (4.36)

m2
eff,χ ≃ Vχχ(χ = 0) +

1

2
Rϕ̇2 (4.37)

where R = −4/3α is the field space Ricci curvature scalar and we dropped
the subdominant terms. We must keep in mind thatQϕ ∼ vk/a(t) andQχ ∼
zk/a(t). We measure particle production with respect to the instantaneous
adiabatic vacuum [285]. The initial conditions for preheating can be read

6The terms “adiabatic” and “isocurvature” refer to fluctuations along and perpendic-
ular to the background trajectory respectively.
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Figure 4.7: The absolute values of the non-zero components of m2
eff,ϕ, (left to right: m2

1,ϕ,
m2

2,ϕ/
√
α and m2

3,ϕ/α) properly rescaled to showcase the scalings of Eq. (4.34) for n = 3/2
and α̃ = 10−2, 10−3, 10−4 (black, red and blue respectively). The fact that all curves within
each panel have similar values at the end of inflation is a numerical validation of the scalings
shown in Eq. (4.34). The curves on the left and middle panels for t > 0 are generated
through using a moving average window on the values of |m2

{2,3},ϕ|. Without this smoothing
the curves would exhibit large oscillations and hence would overlap and be very hard to
distinguish. The information lost is not important, since at this point we are interested in the
scaling properties of the effective mass components, not their exact form.

off from Eq. (4.31), using the WKB approximation and starting during
inflation, when the effective mass is positive

vinit
k =

1√
2ωϕ(k, η)

e
−i

∫ η
η0

ωϕ(k,η
′)dη′ (4.38)

zinit
k =

1√
2ωχ(k, η)

e
−i

∫ η
η0

ωχ(k,η′)dη′ (4.39)

In the far past a(η) → 0, hence {ωϕ(k, η), ωχ(k, η)} → k, which makes
the solutions of Eqs. (4.38) and (4.39) match to the Bunch-Davies vacuum
during inflation.

Since we will be performing the computations in cosmic time, we write
the equations of motion for the two types of fluctuations. The fluctuation
equation for the ϕ field (adiabatic direction) is

Q̈ϕ + 3HQ̇ϕ +

[
k2

a2
+ Vϕϕ

]
Qϕ = 0 (4.40)

where we neglected the term arising from the coupled metric fluctuations,
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that is proportional to M−2
Pl . We again rescale time by µ giving us

d2Qϕ

d(µt)2
+ 3

H

µ

dQϕ

d(µt)
+

[
(k/µ)2

a2
+
Vϕϕ
µ2

]
Qϕ = 0 (4.41)

where the potential-dependent term of the effective frequency is

Vϕϕ
µ2

=
√
α̃
d2

dϕ̃2

[
tanh2n

(
|ϕ̃|√
6α̃

)]
(4.42)

The results for the isocurvature modes δχ or Qχ are similar

d2Qχ

d(µt)2
+ 3

H

m

dQχ

d(µt)
+

[
(k/µ)2

a2
+
Vχχ
µ2

+
1

2

(
dϕ

d(µt)

)2

R

]
Qχ = 0 (4.43)

The last term in the above equation is the Riemann contribution to the
effective mass-squared ω2

χ

m2
2,χ = −Rχ

ϕϕχϕ̇
2 = − 2

3α
ϕ̇2 =

1

2
Rϕ̇2 . (4.44)

Since the self-resonance of δϕ modes in these models has been extensively
studied (see for example Ref. [305]), we will focus our attention on δχ
fluctuations, which can undergo tachyonic excitation, which is generally
more efficient than parametric amplification. Also the excitation of δχ
modes is a truly multi-field phenomenon that depends crucially on the
field-space geometry.

4.3.2 Effective frequency

We examine in detail the effective frequency-squared for the δχ fluctuations,
ω2
χ(k, t). For simplicity we will focus on the case of n = 3/2, which matches

the potential used in the lattice simulations presented in Ref. [160]. The
generalization of our results for other potentials is discussed in Section 4.4.

In the top left panel of Fig. 4.8 we see the evolution of the background
field ϕ(t), rescaled as δ(t) = ϕ(t)/

√
α after the end of inflation and we take

t = 0 as the end of inflation. We see that inflation ends at ϕ(t)/
√
α ≃ 3 for

all three cases considered here, consistent with Fig. 4.1. The main difference
is both the frequency of oscillation and the decay of the amplitude of the
background for different values of α.

The maximum tachyonically excited wavenumber for the various cases
under consideration is kmax ≃ 0.87µ for α̃ = 10−2, kmax ≃ 1.04µ for
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Figure 4.8: The rescaled background field (top left) ϕ/
√
α as a function of time for

α̃ = 10−2, 10−3, 10−4 (blue, red-dashed and black-dotted respectively). The other three
plots correspond to the isocurvature effective frequency-squared for the maximal marginally
amplified wavenumber kmax (black-dotted), along with (k/a)2 (green), the potential contri-
bution (red) and the tachyonic Riemann term (blue).
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α̃ = 10−3 and kmax ≃ 1.11µ for α̃ = 10−4. So we can say7 that kmax ≃ µ
for all values of α̃ ≪ 1. Furthermore, we see that background motion cor-
responding to larger values of α̃ shows greater damping. This is consistent
with the observation that Hend ∼

√
α̃, hence the Hubble damping term is

smaller for highly curved field-space manifolds.
Examining the tachyonic contribution to ω2

χ(k), a very simple scaling
emerges

1

2
Rϕ̇2 = −1

2
αδ̇2

4

3α
= −2

3
δ̇2 = O(1) (4.45)

This is again consistent with Fig. 4.8, especially as the value of α̃ gets
smaller.

Since the tachyonic contribution to the effective mass-squared is similar
for models with different values of α̃, the tachyonic amplification of the
relevant mode-functions after each oscillation will be also similar. Fig. 4.9
shows the evolution of ω2

min and kmax for each subsequent tachyonic region.
It is worth emphasizing that ω2

min is determined solely by the corresponding
minimum (maximum negative) value of m2

2,χ. The maximum negative value
of m2

2,χ occurs when |ϕ̇| is maximized, or equivalently when ϕ = 0. At this
point, the potential can be Taylor-expanded as

V (ϕ = 0, χ) ≈ M4

4n
β2n|χ|2n . (4.46)

For n > 1 the effective mass component vanishes for χ = 0. In particular
for n = 3/2 the effective mass component becomes ∂2χV (ϕ = 0, χ) ∼ |χ|,
as shown in Fig. 4.8. The case of n = 1 is different and we consider it in
Section 4.4. We see that both the maximum (negative) contribution ofm2

2,χ,
as well as the range of tachyonically excited wavenumbers decrease faster for
larger values of α̃, or less curved field-space manifolds. This can be traced
back to the dependence of the Hubble scale on the field-space curvature,
which scales as H ∝

√
α̃. Hence in the first e-fold, or within the first

Hubble-time after inflation, lower values of α̃ will result in a larger number
of tachyonic bursts and hence a larger overall amplification. Furthermore,
a larger Hubble term for larger values of α̃ will result in a faster red-shifting
of the background field amplitude δ(t), resulting in a faster suppression of
the parametric resonance, in line with Fig. 4.8.

7In the units of Appendix 4C and Ref. [160], this corresponds to kmax ≃ 1√
α
M2/MPl,

leading to kmax ≃ 33M2/MPl for α = 10−3 and kmax ≃ 100M2/MPl for α = 10−4. This
is consistent with Figure 5 of Ref. [160].
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Figure 4.9: Left: The dependence of the maximum excited wavenumber kmax on the number
of tachyonic regions for n = 3/2 and α̃ = 10−2, 10−3, 10−4 (blue, red and green respectively).
Right: The minimum (maximally negative) value of the effective frequency-squared of χ
fluctuations ω2

min as a function of the number of tachyonic regions for the same parameters
and color-coding.

4.3.3 WKB results

We use the WKB analysis as described in Ref. [306], in order to make an-
alytical progress in computing the amplification of the δχ modes during
tachyonic preheating. In contrast to Refs. [307–309], where tachyonic pre-
heating lasted for a few inflaton oscillations at most, in the present case,
multiple inflaton oscillations might be required, in order to siphon enough
energy from the inflaton into radiation modes. However, given the fact that
the Hubble time is much larger than the period of oscillations, preheating
will still be almost instantaneous in terms of the number of e-folds. Based
on ω/Hend ∼ 1/

√
α̃, we can estimate the number of background oscillations

occurring during the first e-fold of preheating to be Nosc. ∼ 0.2/
√
α̃.

We neglect the effect of the expansion of the Universe, hence taking
H = 0. This is an increasingly good approximation for smaller values of
α̃, since Hend ∼

√
α̃. Furthermore, the static universe WKB analysis will

provide a useful comparison to the Floquet analysis of Section 4.3.4. The
equation of motion for the fluctuations in the χ field becomes8

∂2t χk + ω2
χ(k, t)χk = 0 , (4.47)

where
ωχ(k, t)

2 = k2 +m2
eff,χ = k2 +m2

1,χ +m2
2,χ , (4.48)

where the components of the effective mass are given in Eq. (4.33). Fol-
lowing Ref. [306], we write the WKB form of the mode-functions before,

8For the remainder of this work we denote the fluctuations of the χ field as χk rather
than δχk for notational simplicity.
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Figure 4.10: Comparison of the real (left) and imaginary (right) parts of the WKB solution
(red line) and the numerical solution (blue dots) of the χ mode evolution in the static universe
approximation around the first tachyonic amplification burst for n = 3/2 , α̃ = 10−3 and
k = 0.8µ. We see very good agreement, except in the vicinity of the points where ω2 = 0
and the WKB solution diverges.

during and after a tachyonic transition (regions I, II and III respectively).

χI
k =

αn√
2ωk(t)

e−i
∫
ωk(t)dt +

βn√
2ωk(t)

ei
∫
ωk(t)dt

χII
k =

an√
2Ωk(t)

e−
∫
Ωk(t)dt +

bn√
2Ωk(t)

e
∫
Ωk(t)dt

χIII
k =

αn+1√
2ωk(t)

e−i
∫
ωk(t)dt +

βn+1

√
2k
ei

∫
ωk(t)dt

(4.49)

where Ω2
k(t) = −ω2

k(t). The amplification factor after the first tachyonic
region for each mode k is

Ak = e
∫ t+
t−

Ωk(t)dt (4.50)

where t± are the points at which the effective frequency vanishes, ω2
k(t±) =

Ω2
k(t±) = 0.

Fig. 4.10 shows the result of the numerical solution and the WKB result
before, during and after the first tachyonic amplification phase. We see that
the agreement is very good, hence we can use the expression of Eq. (4.50)
to estimate the growth rate of fluctuations.

As shown in Eq. (4.49), following the first tachyonic burst all modes
with wavenumbers k ⩽ kmax will be amplified. Subsequent background
oscillations will cause destructive or constructive interference, leading to
the formation of stability and instability bands, the latter exhibiting no
exponential growth. In Ref. [306] it is shown that the amplitude of the
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Figure 4.11: The Floquet exponent µk derived using the WKB approximation in Eq. (4.53).
The Floquet exponent after 1, 2, 4, 10, 50, 100 tachyonic regimes is shown (blue, red, green,
black, orange and brown-dotted respectively).

wavefunction for a mode with wavenumber k after the j’th tachyonic burst
is

|βjk|
2 = e2jAk(2 cosΘk)

2(j−1) . (4.51)

where Θk is the total phase accumulated between two consecutive tachyonic
regimes. We can define an averaged growth rate as

χk(t) ∼ eµktP (t) , (4.52)

where P (t) is a bounded (periodic) function and µk is the Floquet exponent,
as we discuss in detail in Section 4.3.4. Since there are two tachyonic regimes
for each background oscillation, the Floquet exponent µk is extracted from
Eq. (4.51) as

µk =
2

T

1

2j
log |βjk|

2 , (4.53)

where T is the background period of oscillation. As shown in Fig. 4.11,
the Floquet exponent extracted from Eqs. (4.51) and (4.53) depends on
time, albeit mildly after the first few tachyonic bursts. However, there is a
clear asymptotic regime that emerges after the background inflaton field has
undergone multiple oscillations. The asymptotic value should be compared
to the “true” Floquet exponent, which we compute in Section 4.3.4.

4.3.4 Floquet charts

Floquet theory is a powerful tool for studying parametric resonance in the
static universe approximation. The algorithm for computing Floquet charts
can be found in the literature (see for example Ref. [285]).
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We may further understand properties of the Floquet charts by exam-
ining the Fourier structure of certain field-space quantities. In the rigid-
spacetime limit, Eq. (4.47) for the isocurvature modes χk may be written
in the suggestive form

d

dt

(
χk

χ̇k

)
=

(
0 1

−(k2 +m2
eff,χ) 0

)(
χk

χ̇k

)
, (4.54)

again using m2
eff,χ = m2

1,χ+m
2
2,χ in the rigid-spacetime limit. This equation

is of the form
ẋ(t) = P(t) x(t) , (4.55)

where P(t) is a periodic matrix. The period of the background is T , but the
period of m2

eff,χ is T/2, since it depends quadratically on the background
field ϕ(t+T ) = ϕ(t) and its derivative ϕ̇(t+T ) = ϕ̇(t). In Ref. [302] a semi-
analytic method was described for computing the edges of the instability
bands at arbitrary high accuracy, by reducing the system to an algebraic
matrix equation. The truncation of the resulting matrices determines the
number of Floquet bands that can be accurately computed. In the present
work we determine the edges of the instability bands after the computation
of the full Floquet chart using Mathematica.

Fig. 4.12 shows the Floquet charts for n = 3/2 and α̃ = 10−2, 10−3, 10−4.
We can see that, when normalized appropriately with α̃, the Floquet charts
look similar, especially when it comes to the first two instability bands,
which essentially control the entirety of the parametric resonance. The
relation between Floquet charts for different values of α becomes even more
evident, when we show a few contours of the first instability bands on the
same plot. It is then obvious that for α̃ ≲ 10−3 the parametric resonance
in the static universe approximation is identical, regardless of the exact
value of the field-space curvature9. This is no surprise, since the WKB
analysis of Section 4.3.3 predicted the scaling behavior of the parametric
resonance strength for low values of α̃. The Floquet chart of Fig. 4.12
can be considered a “master diagram”, from which the Floquet chart for
arbitrary values of α̃ ≲ 0.01 can be easily read-off by using the appropriate
scaling with α̃.

Finally, Fig. 4.13 shows the comparison between the Floquet exponent
computed using the algorithm described in Ref. [285] and using the WKB
analysis. We see that the WKB analysis is able to capture the existence

9For α̃ = 10−2 the edges of the first two instability bands follow the ones exhibited by
α̃ ≪ 1, while the low-k edge of the first band shows slightly larger Floquet exponents.
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Figure 4.12: Clockwise from the top: The 3-D Floquet charts for n = 3/2 and α̃ ≡
αM−2

Pl = 10−2, 10−3, 10−4. Bottom left panel: The contour plots for µk = 0 (solid lines)
and µk = 0.1 (dashed lines). The blue, green and orange curves are for α̃ = 10−2, 10−3, 10−4

respectively.
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Figure 4.13: The (asymptotic) Floquet exponent computed using the WKB approximation
(blue solid) and the Floquet exponent computed using the numerical algorithm described in
Section 4.3.4 for n = 3/2 and α̃ = 10−3. The agreement is very good, given the inherent
limitations of the WKB approximation.

of the first two instability bands, even though the shape does not perfectly
match the fully numerical solution.

4.3.5 Expanding Universe

There are two complications introduced by studying preheating in an ex-
panding universe: the (slow) decay of the amplitude of the background
oscillations due to the non-zero Hubble drag and the red-shifting of the
physical wavenumber kphys = kcomoving/a due to the increasing scale-factor
a(t). Both effects are comparable, so they must be studied together. While
a WKB analysis can be performed in an expanding universe [306], it must
take into account the evolution of both kphys and ϕ(t) numerically. Since
we believe that it will not add significantly to building intuition on the
model at hand, we will not pursue it here. Instead we numerically solve the
equations of motion for the χ fluctuations, working in the linear regime as
follows: The evolution for the background inflaton field and the Hubble rate
are solved numerically using Eqs. (4.22) and (4.23). We subsequently com-
pute the produced χ fluctuations driven by the background inflaton field.
The back-reaction of the produced χ fluctuations on the inflaton field or the
Hubble rate is ignored. This is a valid approximation until the energy den-
sity of the χ fluctuations becomes comparable to the background inflaton
energy density. We briefly discuss back-reaction effects in Appendix 4D. We
start our computations several e-folds before the end of inflation, in order
for the effective mass to be positive for all modes, according to Fig. 4.5 and
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Figure 4.14: The spectra of the fluctuations in the χ field |χk|2 (in arbitrary units) as a
function of the wavenumber k (in units of µ) at different times for n = 3/2 and α̃ = 10−3

(left) and α̃ = 10−4 (right). The comparison with Fig. 5 of Ref. [160] shows agreement in
the initial stages, when the linear analysis is valid. The comparison is most easily done by
considering the amplification occurring between the various time-points shown in the figures,
both here and in Ref. [160]. Note that Ref. [160] uses a different normalization for k, as
discussed in Appendix 4C. The linear analysis presented here cannot capture the re-scattering
effects leading to the broadening of the χ spectrum at late times that was observed in
Ref. [160]. The times corresponding to the various curves are shown in the legend of each
panel, measured in e-folds after the end of inflation (negative values correspond to spectra
during the last stages of inflation).

so that the WKB solutions of Eq. (4.39) provide accurate initial conditions
for our code.

Fig. 4.14 shows the spectra of the fluctuations in the χ field at different
times. We see that the band structure of the static universe Floquet charts
of Section 4.3.4 has disappeared, essentially leaving behind a region of ex-
cited modes with comoving wavenumbers that satisfy k ⩽ kmax ≈ µ. This
occurs because each mode with a specific wavenumber k redshifts through
the bands of Fig. 4.12, hence a mode with k ⩽ kmax will eventually red-
shift into the main instability band. Even though the exact band structure
is erased, the WKB analysis can still capture very well the behavior after
the first tachyonic burst. We see that the amplification factor computed in
Eq. (4.50) matches very well with the actual amplification. For small values
of α̃, where the Hubble scale is much smaller than the frequency of back-
ground oscillations, Eq. (4.50) can provide useful intuition for the behavior
of the χ fluctuations during the first few ϕ oscillations. Using Eq. (4.14)
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the maximum excited wavenumber can be immediately compared to the
Hubble scale at the end of inflation to give

kmax
Hend

≃ 2

α̃
≫ 1 (4.56)

Hence tachyonic amplification occurs predominately for sub-horizon modes,
meaning that they will behave like radiation after the end of preheating.

Fig. 4.15 shows the evolution of the energy density in the background
inflaton field ϕ and the fluctuations of the χ field. Considering a finite
amount of wavenumbers k < kUV initialized at the Bunch Davies vacuum,
we can compute their energy density at the end of inflation to be

ρχ =

∫
d3k

(2π)3
k2

1

2k
=

1

(2π)2
k4UV

4
(4.57)

This corresponds to the red-dashed line of Fig. 4.15, where we took kUV =
1.5µ. This is not a physical energy density, since these are vacuum modes.
It is however useful as a check of our numerical calculation. Using different
values of kUV leads to different early time behavior, as shown from the
green-dashed line in Fig. 4.15. As long as kUV ⩾ kmax, the exact choice
of kUV becomes irrelevant once tachyonic resonance begins and all modes
within k < kmax become exponentially amplified. Hence the blue and green-
dashed curves of Fig. 4.15, corresponding to kUV = 1.5µ and kUV = µ
respectively, become indistinguishable shortly after the end of inflation. In
is interesting to note that we find for n = 3/2 and α = 10−4 that preheating
will conclude at Nreh = 0.2, where the energy density in χ fluctuations
equals the energy density in the background field. This result agrees well
with the findings of Fig. 4 of Ref. [160], where the results of a full lattice
code are shown for the same model parameters.

4.4 Potential dependence

So far we have used the T-model potential of Eqs. (4.62) and (4.63) with
n = 3/2 as a concrete example to study in detail both analytically and
numerically. This potential has the added benefit of allowing for an easy
comparison with the full lattice simulations presented in Ref. [160]10. We

10After submission of the present manuscript, an updated version of Ref. [160] ap-
peared. This includes results for two potential types, corresponding to n = 3/2 and
n = 1, as well as two values of the field-space curvature parameter α. These match our
results, as we describe in Section 4.5.
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Figure 4.15: The energy density in the background inflaton field (black) and the χ fluctu-
ations (blue) for n = 3/2 and α̃ = 10−3 (left) and α̃ = 10−4 (right). The red-dashed lines
show the scaling a−4, which is observed by the fluctuations before the onset of the tachyonic
preheating regime. The green-dashed line on the right panel shows a calculation using a
different range of UV modes, as explained further in the main text. N = 0 marks the end of
inflation and we see that preheating concludes within a fraction of an e-fold in both cases.

now extend the analysis to arbitrary values of n, hence to the whole family
of the generalized T-model potentials. The background dynamics is sum-
marized in Figs. 4.1 and 4.6 through the dependence of Hend, ϕend and the
period of oscillation T on α̃ and n.

Fig. 4.16 shows the effective mass-squared for α̃ = 10−3 and varying n as
a function of time, both in the static universe approximation and using the
full expanding universe background solution. The former will be used for
computing the resonance structure. It is worth noting that the maximally
negative value of m2

eff,χ is larger in the expanding universe case, compared
to the static universe one. This is due to the fact that we consider the
initial conditions {ϕ0, ϕ̇0} = {ϕend, 0}. In reality, the inflaton velocity is
not zero at the end of inflation, hence the Ricci-driven component of the
effective mass, which is proportional to |ϕ̇|2 is underestimated in our static
universe calculations. One important difference between the various values
of n shown in Fig. 4.16 can be traced back to Eq. (4.46), which defines
the potential contribution of the effective mass near the point ϕ(t) = 0

or equivalently
∣∣∣ϕ̇(t)∣∣∣ = max, where the Riemann contribution m2

2,χ is
maximized. For n = 1 the potential is locally quadratic, hence describing
massive fields11. This leads to a non-zero positive contribution to the ef-

11A locally quadratic potential that becomes less steep at larger field values can also
support oscillons. It was shown in Ref. [305] that oscillons can emerge during preheating
in a single-field T-model for n = 1. Since oscillons are massive objects, a period of oscillon
domination causes the universe to acquire an equation of state of w = 0, identical to that
of a matter dominated era.
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Figure 4.16: Left: The two main components of the effective mass squared for χ fluctuations:
the potential contribution (dashed) and the field-space Ricci contribution (dotted), along with
the sum (solid) for α̃ = 10−3 and n = 1, 3/2, 2, 3 (orange, blue, green and brown respectively).
The plot shows one period in the static universe approximation with ϕmax = ϕend.
Right: The sum m2

1,χ +m2
2,χ using the full expanding universe solution for the background

field ϕ(t). Inflation is taken to end at t = 0.

fective mass-squared for all values of time and wavenumber, thus reducing
the overall efficiency of tachyonic resonance, through reducing both Ak of
Eq. (4.50) and kmax. For n ⩾ 3/2, the potential contribution vanishes for
ϕ(t) = 0, hence the Riemann term completely determines the maximally
negative value of m2

eff,χ. Furthermore,
∣∣∣ϕ̇(t)∣∣∣

max
is found to be almost iden-

tical for all values of n. The main difference for increasing the value of n is
the increased duration of the regime where m2

1,ϕ ≈ 0. Overall, for n ⩾ 3/2
the maximum excited wavenumber kmax is the same, while the amplification
factor Ak grows, because each tachyonic burst lasts longer. This is shown
in Fig. 4.17 using both the WKB approximation, as well as by computing
the Floquet exponent numerically following Section 4.3.4. We see that for
n = 1 the WKB approximation captures only the first instability band,
while for n ⩾ 3/2 the first two instability bands are well described.

If one tries to plot the three dimensional Floquet diagrams using the field
rescaling ϕ0/

√
α, which was used in Fig. 4.12, no unifying pattern emerges.

The proper scaling however is ϕ0/ϕend, since the comparison must begin at
the background field value present at the end of inflation. Using this field
rescaling, we can see in Fig. 4.18 and more clearly in Fig. 4.19 that the
edges of the instability bands for ϕ0 = ϕend are almost identical for n ⩾ 3/2
and significantly higher than the case of n = 1. Also, the overall Floquet
exponents exhibited are larger for larger values of n, as expected from the
behavior of the effective frequency-squared shown in Fig. 4.16.

Starting from Bunch-Davies initial conditions during inflation, specifi-
cally initializing our computations at Ninit ≃ −4, we evolved the fluctua-
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Figure 4.17: Left: The asymptotic Floquet exponent (dashed) and the Floquet exponent
after the first tachyonic burst (solid) using the WKB approximation for n = 1, 3/2, 2, 3
(orange, blue, green and brown respectively). Right: The asymptotic Floquet exponent using
the WKB method (dashed) and using the algorithm of Section 4.3.4 (solid). The agreement
is remarkable given the limitations of the WKB approximation.

Figure 4.18: Clockwise from top left: The Floquet charts for α = 10−3 and n = 1, 3/2, 2, 3



4.4 Potential dependence 127

Figure 4.19: The contour plots for µk = 0 (solid lines) and µk = 0.1 (dashed lines) for
α̃ = 10−3 and n = 1, 3/2, 2, 3 (orange, blue, green and brown respectively). The colored
dots on the top denote the right edges of the first and second instability bands. We can see
that the edges of the bands for n ⩾ 3/2 are almost overlapping, while the range of excited
wavenumbers for n = 1 is significantly smaller.
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Figure 4.20: The time required (in e-folds) for the transfer of the entire inflaton energy
density into modes of the χ field as a function of the field-space curvature parameter α for
n = 1, 3/2, 2, 3 (orange, blue, green and brown respectively). The black point shows the
parameters used in Ref. [160]. The linear no-backreaction approximation is used. We see
that preheating is essentially instantaneous for α ≲ 10−4M2

Pl.

tions in the χ field on the single-field ϕ background, taking into account the
expansion of the universe and working in the linear regime, hence neglect-
ing any mode-mode coupling and back-reaction effects. Fig. 4.20 shows the
time needed for the complete transfer of energy from the χ background field
to χ radiation modes12. For n = 1 and α ≳ 10−3M2

Pl preheating did not
complete through this channel. Overall we see faster preheating for larger
values of n, hence steeper potentials. However the differences are dimin-
ishing for highly curved field-space manifolds, practically disappearing for
α ≲ 10−4M2

Pl, where preheating occurs almost instantaneously.

4.5 Summary and Discussion

In the present work we studied preheating in a two-field generalization of the
T-model, which is part of the larger family of α-attractors, characterized
by a field-space manifold of constant negative curvature. We focused on
the production of non-inflaton particles, since inflaton self-resonance in the
single-field T-model has been extensively studied (e.g. Ref. [305]), finding

12An updated version of Ref. [160] includes simulations for {α̃, n} =
{10−3, 3/2}, {10−4, 3/2}, {10−4, 1} exhibiting complete preheating at Nreh ≈ 0.7, 0.15, 0.2
respectively, which match the values shown in Fig. 4.20 for these parameter values.
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reheating to complete within a few e-folds for n ̸= 1 and oscillon formation
leading to a prolonged matter-dominated phase for n = 1.

We examined the possibility of multi-field effects arising during infla-
tion and found a strong single-field attractor along a straight background
trajectory χ = 0. In order for multi-field effects to produce observable sig-
natures, like “ringing” patterns on the CMB, the initial conditions have to
be extremely fine-tuned, which makes such an event unlikely. The strong
single-field inflationary attractor ensures that preheating will also occur
around a single-field background, at least during the initial stage, when
back-reaction effects can be safely ignored. Different multi-field potentials
on hyperbolic manifolds might support genuinely multi-field background
trajectories, leading to significantly different preheating dynamics. This
remains an intriguing possibility worth further study.

We found that most key preheating quantities rely crucially on the field-
space curvature parameter α, in fact exhibiting simple scaling behaviors.
The Hubble scale at the end of inflation scales as Hend ∼

√
α and is largely

independent of the potential steepness, a characteristic trait of α-attractors.
However the period of background oscillations does not involve α, meaning
that more background oscillations “fit” in the first e-fold after inflation for
higher values of the field-space curvature (low values of α). The maximum
amplified wavenumber is roughly constant for all values of α and potential
steepness parameter n, with the exception of n = 1, where kmax is smaller
by about 25%.

Since the frequency of background oscillations is much larger than the
Hubble scale at the end of inflation, the static universe is an increasingly
good approximation for larger values of the field-space curvature. This
makes Floquet theory a useful tool for understanding preheating in the
two-field T -model. We found that when plotting the Floquet charts for a
specific value of the potential steepness parameter n using the wavenumber
and the background field amplitude rescaled by

√
α, all Floquet charts

collapse into a single “master diagram” for small values of α.
This scaling behavior of the Floquet charts persists even for different

potentials within the T-model. In the case of varying n the background
field must be normalized by the field value at the end of inflation ϕend
in order for the Floquet chart scaling behavior to appear. As expected,
the scaling between Floquet charts of different potentials is not exact, but
similarities are enough to explain the similar preheating behavior shown
in Fig. 4.20. There we see that preheating lasts longer for larger values
of α and smaller values of n, while recovering the results of Ref. [160] for
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n = 3/2 and α̃ = 10−4M2
Pl, n = 3/2 and α̃ = 10−3M2

Pl, as well as for n = 1
and α̃ = 10−4M2

Pl.
While observing reheating is difficult due to the inherently small length

scales involved, knowledge of the duration of reheating is essential to cor-
rectly match the CMB modes to the exact point during inflation when they
left the horizon [161]. Expanding on the lattice simulations of Ref. [160]
we showed that preheating in the two-field T-model is essentially instanta-
neous for highly curved field-space manifolds, regardless of the exact form
of the potential. This reduces the uncertainty of the predictions of this
class of models for the scalar spectral index ns. Unfortunately the low
values of α required for the onset of instantaneous preheating makes the
observation of tensor modes in these models unlikely even with the CMB
Stage 4 experiments, since the resulting tensor-to-scalar ratio is too small
r < 10−4.

The scaling behavior found in T -model preheating does not guarantee
that similar effects will arise in other α-attractor models. Our results can
be applied to study preheating in broader classes of multi-field inflation-
ary models with hyperbolic field-space manifolds. We leave an exhaustive
analysis for future work.

4.6 Appendix 4A: Generalization of the T­model

A simple generalization of the T -model [160, 301] is given by the super-
potential

WH =
√
αµS F (Z) (4.58)

and Kähler potential

KH =
−3α

2
log
[

(1− ZZ̄)2

(1− Z2)(1− Z̄2)

]
+ SS̄ . (4.59)

Using the relation between the Kähler potential and the superpotential

Z =
T − 1

T + 1
(4.60)

and choosing
F (Z) = Zn (4.61)

we get

KH =
−3α

2
log
[
(T + T̄ )2

4T T̄

]
+ SS̄ (4.62)
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and
WH =

√
αµS

(
T − 1

T + 1

)n

. (4.63)

as in Ref. [301]. The potential follows to be of the form

V = αµ2
(
ZZ̄
)n((1− Z2)(1− Z̄2)

(1− ZZ̄)2

)3α/2

. (4.64)

One can use multiple field-space bases to describe these models. The choice

Z = tanh
(
ϕ+ iθ√

6α

)
(4.65)

was used in Ref. [301], leading to the kinetic term

Lkin =
1

2
Gϕϕ ∂µϕ∂

µϕ+
1

2
Gθθ ∂µθ ∂

µθ (4.66)

with
Gϕϕ = Gθθ =

1

cos2
(√

2
3αθ
) (4.67)

and the two-field potential

V (ϕ, θ) = αµ2

cosh
(√

2
3αϕ

)
− cos

(√
2
3αθ
)

cosh
(√

2
3αϕ

)
+ cos

(√
2
3αθ
)


n(
cos
(√

2

3α
θ

))−3α

.

(4.68)
We instead choose the basis used in Ref. [160], which can be derived from
Eq. (4.65) by performing the transformation

cos
(√

2

3α
θ

)
=

1

cosh
(√

2
3αχ

) . (4.69)

This leads to the kinetic term (4.2)

Lkin =
1

2
∂µχ∂

µχ+
1

2
cosh2

(√
2

3α
χ

)
∂µϕ∂

µϕ , (4.70)

and potential (4.3)

V (ϕ, χ) = αµ2
(

cosh(βϕ) cosh(βχ)− 1

cosh(βϕ) cosh(βχ) + 1

)n

(cosh(βχ))2/β
2

, (4.71)
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where β =
√

2/3α.
This choice of the field-space basis allows an easier comparison between

our work and Ref. [160] and simple equations of motion, both for the back-
ground as well as for the fluctuations. This comes at a price, namely the
illusion that the two field-space directions are inherently different, one of
them even being canonically normalized. However, as can be seen in Ap-
pendix 4B, this basis describes a field-space with a constant curvature at
every point.

4.7 Appendix 4B: Field­Space quantities for hyper­
bolic space

The kinetic term for the two-field model at hand is written as

L =
1

2
GIJ∂µϕ

I∂µϕJ , (4.72)

where {ϕ1, ϕ2} ≡ {ϕ, χ}. In the basis used the non-zero field-space quanti-
ties are

• The metric

Gϕϕ = e2b(χ) = e2 log(cosh(βχ)) = cosh2(βχ) , Gχχ = 1 (4.73)

• The inverse metric

Gϕϕ = e−2b(χ) = e−2 log(cosh(βχ)) = sech2(βχ) , Gχχ = 1 (4.74)

• The Christoffel symbols

Γϕ
χϕ = β tanh(βχ) , Γχ

ϕϕ = −1

2
β sinh(2βχ) (4.75)

• The Riemann tensor

Rϕ
χϕχ = −β2 , Rϕ

χχϕ = β2 , Rχ
ϕϕχ = β2 cosh2(βχ) , Rχ

ϕχϕ = −β2 cosh2(βχ)
(4.76)

• The Ricci tensor

Rϕϕ = −β2 cosh2(βχ) , Rχχ = −β2 (4.77)
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• Finally, the Ricci scalar

R = −2β2 = − 4

3α
, (4.78)

where we used
β =

√
2

3α
. (4.79)

4.8 Appendix 4C: Alternative time parametrization

For completeness and ease of comparison with Ref. [160] we present a differ-
ent rescaling prescription. Specifically in Ref. [160] the field-space curvature
is rescaled using the reduced Planck mass as α = M2

Plα̃ and the equation
of motion for the background field becomes

¨̃
ϕ+ 3H

˙̃
ϕ+

(
M2

MPl

)2 √
6n√
α̃

csch


√

3
2 ϕ̃√
α

 tanh2n


√

3
2 |ϕ̃|

2
√
α

 = 0 . (4.80)

Time is then rescaled by m ≡M2/MPl, leading to the equation

d2ϕ̃

d(mt)2
+ 3H̃

dϕ̃

d(mt)
+

√
6n√
α̃

csch


√

3
2 ϕ̃√
α

 tanh2n


√

3
2 |ϕ̃|

2
√
α

 = 0 , (4.81)

where H̃ = H/m. The relevant plots, Floquet exponents and comoving
wavenumbers in Ref. [160] are presented and measured in units of M2/MPl.

The Hubble scale is

H̃2 =
1

3

1
2

(
dϕ̃

d(mt)

)2

+ tanh2n

(
|ϕ̃|√
6α̃

) .
The fluctuation equations with this definition of time become

d2Qϕ

d(mt)2
+ 3

H

m

dQϕ

d(mt)
+

[
(k/m)2

a2
+
Vϕϕ
m2

]
Qϕ = 0 , (4.82)

d2Qϕ

d(mt)2
+ 3

H

m

dQϕ

d(mt)
+

[
(k/m)2

a2
+
Vϕϕ
m2

]
Qϕ = 0 (4.83)

with
Vϕϕ
m2

=
d2

dϕ̃2

[
tanh2n

(
|ϕ̃|√
6α̃

)]
. (4.84)
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The ratio of the two mass-scales that can be used to normalize time and
wave-numbers is

m

µ
=

√
α̃ , (4.85)

making the comparison of our linear results with the full lattice simulations
of Ref. [160] straightforward.

4.9 Appendix 4D: Back­reaction
Since the present work is focused on extracting semi-analytical arguments,
based on the WKB approximation, it is worth examining some back-reaction
effects more closely. There are several sources of back-reaction and the only
way to accurately describe their combined effects is through lattice simu-
lations, as done for the system under study in Ref. [160]. On a qualitative
level, we can distinguish various back-reaction effects:

• Mode-mode mixing: This refers to non-linear mixing between the
modes δχk and usually leads to a power cascade towards the UV.
Mode-mode mixing is required for thermalization and is outside of
the scope of linear theory. Even in lattice simulations, proper study
of thermalization processes usually requires even more UV modes than
are usually available.

• Induced δϕ fluctuations due to δχ modes scattering off the inflaton
condensate ϕ.

• Siphoning energy off the inflaton condensate and acting as a extra
drag term for the inflaton motion ϕ(t), thus suppressing background
oscillations.

We will focus on estimating the last term, as it is the one that can damp
the background motion and thus suppress tachyonic preheating13.
The full equation of motion for the ϕ field is

ϕ̈+ Γϕ
χϕχ̇ϕ̇+ 3Hϕ̇+ GϕϕV,ϕ = 0 (4.86)

In order to estimate the terms arising from the back-reaction of the pro-
duced χ particles, we Taylor expand all terms involving χ and use a Hartree-
type approximation to substitute all quadratic quantities with their average

13Thermalization can affect Bose enhancement by altering the produced δχk spectrum,
but it typically operates close to or after the point of complete preheating. Since we only
intend to estimate back-reaction effects, we will not discuss it further.
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value

χ2 → ⟨χ2⟩ =
∫

d3k

(2π)3
|δχk|2 (4.87)

χχ̇ → ⟨χχ̇⟩ =
∫

d3k

(2π)3
δχk · ˙δχ∗

k . (4.88)

The background equation of motion for the inflaton ϕ thus becomes

ϕ̈+ 3Hϕ̇+ GϕϕV,ϕ = −β2⟨χχ̇⟩ϕ̇+∆V ⟨χ2⟩V,ϕ (4.89)

where ∆V arises from expanding Gϕϕ and V,ϕ around χ = 0. The term in
the equation of motion involving ⟨χχ̇⟩ arises from the Christoffel symbol and
acts as an extra drag term, whereas ∆V can be thought of as an extra force.
Fig. 4.21 shows the potential term GϕϕV,ϕ along with the back-reaction
contributions to the equations of motion for the case of α̃ = 0.001 and
n = 3/2. We see that the back-reaction terms only become important close
to the point of complete preheating, defined as ρϕ = ρδχ. This means that
during the last inflaton oscillation(s) before complete preheating is achieved,
the background inflaton motion will be suppressed due to the produced
modes. This has the potential of quenching the resonance and causing the
stop of χ particle production. However tachyonic resonance is usually very
robust, since –as we described using the WKB analysis– as long as the
inflaton velocity is non-zero, the hyperbolic metric will lead to a tachyonic
instability of δχk. A careful numerical investigation of tachyonic resonance,
albeit in another context, can be found in Ref. [308], where lattice results
were compared to linear calculations, like the ones presented here. It was
shown that for the case where the linear calculations pointed to complete
tachyonic preheating after a few inflaton oscillations, lattice simulations led
to very similar results. The lattice simulations of Ref. [160] indeed point to a
decay of the inflaton condensate and complete preheating, but an evolution
of ϕ(t) identical to the back-reaction-free case up until very close to that
point. Hence linear analysis can successfully capture the initial growth of
δχ fluctuations and provide strong indications for parameter choices that
allow for complete preheating.
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Figure 4.21: The magnitude of the inflaton potential term |V,ϕ| (blue) and the two back-
reaction terms BR1 ≡ |β2⟨χχ̇⟩ϕ̇| (green) and BR2 ≡ ∆V ⟨χ2⟩|V,ϕ| (red) for α̃ = 0.001
and n = 3/2. The vertical line at N = 0.7 corresponds to the time of complete preheating,
according to Fig. 4.15. We see that back-reaction effects only become important close to the
point of complete preheating and they do not affect the early time dynamics, as expected.


