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3|Gravitational waves from
spectator Gauge­flation

Abstract: We investigate the viability of inflation with a spectator sec-
tor comprised of non-Abelian gauge fields coupled through a higher order
operator. We dub this model “spectator Gauge-flation”. We study the
predictions for the amplitude and tensor tilt of chiral gravitational waves
and conclude that a slightly red-tilted tensor power spectrum is preferred
with nT = −O(0.01). As with related models, the enhancement of chiral
gravitational waves with respect to the single-field vacuum gravitational
wave background is controlled by the parameter γ = g2Q2/H2, where g
is the gauge coupling, H is the Hubble scale and Q is the VEV of the
SU(2) sector. The requirement that the SU(2) is a spectator sector leads
to a maximum allowed value for γ, thereby constraining the possible am-
plification. In order to provide concrete predictions, we use an α-attractor
T-model potential for the inflaton sector. Potential observation of chi-
ral gravitational waves with significantly tilted tensor spectra would then
indicate the presence of additional couplings of the gauge fields to axions,
like in the spectator axion-SU(2) model, or additional gauge field operators.

Keywords: physics of the early universe, inflation, primordial gravita-
tional waves, gravitational waves and CMBR polarization.
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3.1 Introduction

Inflation provides an elegant solution for the horizon and flatness prob-
lems, as well as a mechanism for producing density fluctuations in very
good agreement with the latest observational tests. Typically, scalar fields
play a major role in inflationary model-building since they do not spoil the
homogeneity and isotropy of the background cosmology. However, models
of particle physics generically include also gauge fields and their presence
in the inflationary epoch may significantly influence cosmological predic-
tions. Scalar perturbations that are produced during inflation are tightly
constrained by observations [220], while the primordial tensor modes (gen-
erated as primordial gravitational waves) are still not detected. The primor-
dial Stochastic Gravitational Wave Background (SGWB) is a unique test
of the physics of the very early Universe, that could provide signatures of
the particle content and the energy scale of inflation. Nowadays, the search
for primordial gravitational waves (GWs) is mainly focused [221, 222] on
the parity-odd polarization pattern in the CMB the B-modes. A correct
interpretation of B-mode measurements strongly relies on understanding
their production mechanism.

One intriguing scenario is GW generation by gauge fields. Gauge field
tensor modes can experience a tachyonic growth in one of their polar-
izations, leading to production of chiral GWs. In addition to chirality,
produced GWs may be significantly red or blue tilted and non-Gaussian.
One of the very-well known models of inflation, where non-Abelian gauge
fields generate accelerated expansion, is the Gauge-flation model that was
originally proposed in Refs. [74, 75]. Gauge-flation is related to Chromo-
Natural inflation [223] that contains an axion coupled to SU(2) gauge fields.
Gauge-flation can be formally obtained from chromo-natural inflation af-
ter integrating out an axion field near the minimum of the axion potential
[76, 224–226]. The original formulation of both models is ruled out by
Planck observations [227–230]. However, both models can be made con-
sistent with current CMB bounds if the gauge symmetry is spontaneously
broken by a Higgs sector [231, 232]. Interestingly Higgsed gauge-flation and
Higgsed Chromo-natural inflation give somewhat different predictions for
the shape of the produced GW spectrum.

Recent interest in potentially distinguishable signatures from the stan-
dard vacuum fluctuations by future B-mode experiments, like LiteBIRD,
has led to a number of generalizations of gauge-field-driven GW models.
In particular considering a spectator axion sector coupled to non-abelian
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gauge fields has significantly opened up the parameter space [233–237]. It
was recently demonstrated [238] that Chromo-Natural inflation as a spec-
tator sector for the scalar single-field inflation can be in agreement with the
current data, while at the same time generating potentially distinguishable
observable signatures for the tensor modes. In Ref. [239] it was shown
that in spectator Chromo-Natural inflation, depending on the choice of the
axion potential, all three possible tensor tilts may be generated: flat, red
and blue. In addition to that, peaked or oscillating GW spectra are also
possible for well-motivated axion potentials. Since in Gauge-flation there is
much less freedom due to the absence of the axion field, a question arises:
what are the possible GW spectra arising from a spectator Gauge-flation
sector?

In this work we demonstrate the viability of the spectator Gauge-flation
scenario, study its predictions and limitations and also provide a compari-
son with predictions of related models. The paper is organised as follows:
In Section 3.2 we introduce the framework for non-Abelian gauge field infla-
tion and then embed it as a spectator sector for scalar single-field inflation.
In Section 3.3 we discuss the necessary conditions for the SU(2) sector to
be subdominant, as compared to the inflaton sector. This ensures that
the scalar fluctuations will be dominated by the inflaton sector and can be
made to agree with the observational constraints, for example by consider-
ing an α-attractor inflationary potential. Keeping the non-Abelian sector
subdominant leads to an upper bound for the amplitude enhancement of
the tensor power spectra. In Section 3.4 we discuss predictions for the pri-
mordial tensor tilt and it’s dependence on the parameters of the theory.
We use a well-known α-attractor model as the inflaton sector, since it can
provide an arbitrarily low amount of vacuum-generated GWs (at least in
principle), while at the same time obeying the constraints for the scalar
fluctuations. We conclude in Section 3.5.

3.2 Framework

3.2.1 The model

In this section we describe the theory of Gauge-flation and its embedding
as a spectator sector for inflation. The Gauge-flation action is given by
[74, 75]

S =

∫
d4x
√
−det(gµν)

[
M2

Pl
2
R− 1

4
F a
µνF

aµν +
κ

96

(
F a
µνF̃

aµν
)2]

, (3.1)
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where R is the space-time Ricci scalar, F a
µν = ∂µA

a
ν − ∂νA

a
µ − gϵabcAb

µA
c
ν is

the field strength of an SU(2) gauge fieldAa
µ, F̃ aµν = ϵµνρσF a

ρσ/
(
2
√
−det(gµν)

)
its dual (where ϵµναβ is the antisymmetric tensor and ϵ0123 = 1), κ > 0 is
a parameter with dimension M−4

pl and g is the gauge field coupling.
We will work with the FLRW metric

ds2 = −dt2 + a(t)2δijdx
idxj , (3.2)

where i, j indicate the spatial directions. An isotropic solution for the
background is given by the following configuration of the gauge field

Aa
0 = 0, (3.3)

Aa
i = δai a(t)Q(t) (3.4)

and it has been shown to be an attractor solution [75]. For this ansatz the
closed system of equations for the vacuum expectation value (VEV) of the
gauge field Q(t) and the Hubble parameter H(t) is given by

M2
PlḢ = −

(
(Q̇+HQ)2 + g2Q4

)
(3.5)

M2
PlH

2 =
1

2

(
(Q̇+HQ)2 + g2Q4 + κg2Q4(Q̇+HQ)2

)
, (3.6)(

1 + κg2Q4
) (
Q̈+ 3HQ̇+ ḢQ

)
+ 2g2Q3

(
1 + κQ̇2

)
+ 2H2Q = 0, (3.7)

where an overdot denotes a derivative with respect to cosmic time t.
We now introduce a scalar field φ(t) with a potential V (φ) that is re-

sponsible for driving inflation and consider the Gauge-flation terms as a
spectator sector, i.e.

S =

∫
d4x
√

−det(gµν)
[
M2

Pl
2
R− 1

2
(∂φ)2 − V (φ)− 1

4
F a
µνF

aµν +
κ

96

(
F a
µνF̃

aµν
)2]

.

(3.8)
Up to gravitational interactions the dynamics of the inflaton sector is com-
pletely decoupled from the dynamics of the gauge field. This allows the
inflaton field φ(t) to be responsible for the predictions for scalar fluctua-
tions. At the same time the gravitational waves generated by the gauge
field sector can lead to observable signatures in the tensor power spectra.
In this paper we will not consider scalar fluctuations and refer to Ref. [233]
where scalar fluctuations were studied for a related model, where the spec-
tator sector involved an axion coupled to an SU(2) field through a Chern-
Simons term (which we call spectator Chromo-natural inflation). A recent
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analysis of scalar fluctuations, including non-linear effects, can be found in
Refs. [240, 241]. We expect that the bounds on tensor modes arising from
the spectator nature of the Gauge-flation sector will result in subdominant
density fluctuations from it. We will thus focus our attention solely on the
tensor sector, leading to the production of GW’s.

Using the ansatz of Eq. (3.4) the background system of equations in the
presence of the inflaton field changes to

M2
PlḢ = −

(
(Q̇+HQ)2 + g2Q4

)
− 1

2
φ̇2, (3.9)

M2
PlH

2 =
1

3

(
1

2
φ̇2 + V (φ)

)
+

1

2

(
(Q̇+HQ)2 + g2Q4 + κg2Q4(Q̇+HQ)2

)
,

(3.10)(
1 + κg2Q4

) (
Q̈+ 3HQ̇+ ḢQ

)
+ 2g2Q3

(
1 + κQ̇2

)
+ 2H2Q = 0, (3.11)

φ̈+ 3Hφ̇+ Vφ(φ) = 0, (3.12)

where Vφ(φ) = ∂V (φ)/∂φ. The standard Hubble slow roll parameters are
defined as

ϵ = − Ḣ

H2
, η = − Ḧ

2HḢ
= ϵ− ϵ̇

2ϵH
. (3.13)

The slow-roll parameter ϵ contains contributions from the scalar (inflaton)
and the gauge field (spectator) sectors. The various contributions can be
written as

ϵ = ϵφ + ϵQE
+ ϵQB

, (3.14)

where

ϵφ =
φ̇2

2M2
PlH

2
, ϵQE

=
(Q̇+HQ)2

M2
PlH

2
, ϵQB

=
g2Q4

M2
PlH

2
. (3.15)

Throughout this work we assume – and check – that the inflaton field
φ(t) dominates the energy budget of the theory. This translates into the
conditions ϵφ ≫ ϵQ, where ϵQ = ϵQE

+ ϵQB
, and hence ϵ ≃ ϵφ. Despite this

regime of interest, we keep the analytic part of our analysis as general as
possible and clearly state the approximations wherever they are necessary
for making analytical progress.

Although the inflationary era is dominated by φ(t), in the same way as
in the original Gauge-flation approach we will assume that the gauge field
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also slow-rolls together with the inflaton field1. Hence for the later analysis
we define

δ = − Q̇

HQ
, γ =

g2Q2

H2
. (3.16)

We will require δ ≪ 1 to ensure that the gauge field slow-rolls long enough,
to secure the needed amount of e-folds for inflation. The parameter γ is
a characteristic quantity of the model. It was shown in Ref. [227] that for
γ < 2 the scalar perturbations are tachyonically unstable. We thus restrict
our analysis to the stable region with γ > 2. For the tensor sector this
parameter characterises the enhancement of one of the polarizations for
the tensor perturbation with respect to the gravitational wave background
coming from the inflaton sector. So far there were no theoretical upper
bounds on this parameter, only the observational constraints coming from
the tensor-to-scalar ratio r. As we will see in the next subsection, for spec-
tator Gauge-flation there exists an upper bound γmax which is determined
solely from the self-consistency of the theory and the slow-roll conidtions.
For a given set of parameters g, ϵ and H, the upper bound on γ allows for
an estimation of the maximal enhancement for the tensor power spectra
and thus a theoretical upper bound on r.

3.2.2 Background parameters

In this subsection we will collect all the expressions for the background
parameters that will be relevant for the tensor power spectra computation.
To start with, there are two equivalent ways to write down the first slow-roll
parameter in terms of background quantities. The first one follows directly
from Eqs. (3.9) and (3.13), i.e.

ϵ =
1

M2
Pl
Q2
(
(1− δ)2 + γ

)
+ ϵφ. (3.17)

Another way is to use the combination Ḣ+2H2, which through Eqs. (3.9),
(3.10) leads to

ϵ = 2− κg2Q6

M2
Pl

(1− δ)2 +
1

3
ϵφ −Υ . (3.18)

1A fast-rolling spectator gauge-flation sector can also lead to GW production. How-
ever, some fine-tuning is required to bring it in the observable window. We thus do not
pursue this regime further.
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We have defined

Υ =
2V

3M2
PlH

2
, (3.19)

which is determined by the scalar field inflation potential and can be taken
to be approximately constant for slow-roll models of inflation. From Eqs. (3.13)
and (3.17) we derive the second slow-roll parameter

η =
Q2

M2
Pl

(
(1− δ)2 + (1− δ)

δ̇

ϵH
+ γ

δ

ϵ

)
+ δ − ϵφ

ϵ
(δ − ηφ) , (3.20)

with ηφ = − φ̈
Hφ̇ . An alternative derivation follows from Eqs. (3.13) and

(3.18)

η = ϵ− (2−Υ− (ϵ− 1

3
ϵφ))

(
δ̇

Hϵ(1− δ)
+

3δ

ϵ

)
− ϵφ

3

(
1− ηφ

ϵ

)
+

+
2

3

(
ϵφVφ
φ̇Hϵ

+
V

H2M2
Pl

)
.

(3.21)

Up to now the above equations are exact. If the inflaton is assumed to
dominate the total energy budget, Eq. (3.20) leads to η ≃ ϵφ

ϵ ηφ. Substitut-
ing that into Eq. (3.21) and neglecting2 δ̇

H(1−δ) , we find

δ ≃ ϵ

3(2−Υ− (ϵ− 1
3ϵφ))

(
ϵ− 2

3

ϵφ
ϵ
ηφ − ϵφ

3
+ Υ

(
1− ϵφ

ϵ

))
, (3.22)

where we have used ϵV =
M2

Pl
2

(
Vφ

V

)2
≃ ϵφ and φ̇ = −HMPl

√
2ϵφ is chosen

to be negative without loss of generality.
In addition to that, Eqs. (3.16) and (3.18) we find

κ =
1

H2γQ2

(1− δ)2 + γ

(1− δ)2
2−

(
ϵQ + 2

3ϵφ +Υ
)

ϵQ
. (3.23)

Moreover, from Eq. (3.17) one may derive the relation that will help to
eliminate MPl from the equations

MPl = Q

√
(1− δ)2 + γ

ϵQ
, (3.24)

2The arguments for neglecting this term are discussed in Ref. [75]. We numerically
checked the validity of this approximation
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where ϵQ is the first slow-roll parameter for the gauge field sector, i.e.
ϵQ = ϵQE

+ ϵQB
. The relations above with the inflaton sector set to zero

coincide with relations obtained in Ref. [227], which provides a consistency
check for our analysis. Eq. (3.22) was derived strictly under the assumption
of a dominant inflaton sector and thus does not reduce to the gauge-flation
result for ϵϕ → 0, which is not true for all equations before it, which are
exact and hence applicable to any gauge-flation scenario, with or without
a separate inflaton sector.

Finally, from Eqs. (3.16) and (3.17) we find that for δ ≪ 1

1− ϵφ
ϵ

≃ H2

M2
Plg

2ϵ
γ(γ + 1). (3.25)

From Eq. (3.25) we obtain γ as a function of ϵ and ϵφ

γ ≃ −1

2
+

1

2

√
1 + 4M2

Pl
g2ϵ

H2

(
1− ϵφ

ϵ

)
. (3.26)

The dependence of γ on ϵφ/ϵ is shown in Fig. (3.1). Since 0 < ϵφ < ϵ, the
right hand side of Eq. (3.25) is in the range 0 < H2

M2
Plg

2ϵ
γ(γ+1) < 1. Hence,

the maximum value of the parameter γ is

γmax = −1

2
+

1

2

√
1 + 4M2

Pl
g2ϵ

H2
. (3.27)

The result of Eq. (3.27) is obtained without the requirement ϵ ≃ ϵφ and
is rather generic. One can see that the parameter γ cannot be chosen
arbitrarily high any more, but reaches its maximal value given by Eq. (3.27)
due to the restrictions of the theory. The maximum value of γ is achieved
when the energy budget is completely controlled by the gauge sector, i.e.
when ϵφ

ϵ ≪ 1, meaning that ϵ is dominated by ϵQ. In the spectator case
ϵ ≃ ϵφ, and γ is limited to a smaller range of values, with a magnitude
that depends only on g (with fixed H and ϵ). Interestingly enough, this
allows us to find the minimum allowed value of the gauge coupling gmin
for spectator Gauge-flation. Simply from the stability condition of scalar
perturbations3 γmax > 2 we obtain

gmin >

√
6

MPl ϵ
H. (3.28)

3For γmax < 2 scalar perturbations experience a tachyonic instability, see [227] for a
detailed discussion.
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We can estimate the value of gmin by relating H and ϵ to the amplitude
of the scalar power spectrum Pζ = H2

8π2M2
Plϵ

≃ 2.2 × 10−9, since we assume
that the scalar power spectrum is dominated by the fluctuations in the in-
flaton sector. This results in gmin ≃ 4π

√
3Pζ ≃ 0.001. Then γmax may

be estimated as γmax ≃ −1
2 + 1

2

√
1 + g2

2π2Pζ
≃ 15 for g = 6.5 × 10−3. The

dependence of γmax on the value of g is shown in Fig. (3.1). A comple-
mentary method for computing the maximum allowed tensor amplification
based on the back-reaction of the produced spin-2 particles was presented
in Ref. [242].

g=10-2

g=6.5*10-3

g=10-3
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m
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Figure 3.1: Left: The dependence of γ on ϵφ/ϵ for g = 10−3, 6.5× 10−3, 10−2 (blue-solid,
orange-dashed and green-dotted lines respectively) and H = 1.9 × 10−6Mpl, ϵ = 2 × 10−5.
The dot-dashed grey line shows the lower bound for the parameter, γ = 2. Right: The
dependence of γmax on the gauge coupling g for the same values of H and ϵ as on the left
plot. The star represents the value of g = 6.5×10−3 that we use in our numerical simulations
in the subsequent sections, unless stated otherwise.

3.3 Viability of spectator Gauge­flation

In this section we will show the viability of the spectator Gauge-flation.
We will consider and discuss the most important dynamics on the example
of an α-attractor potential for the inflaton field. To ensure that the gauge
sector of Eq. (3.8) is a spectator sector, the energy density of the gauge
fields must be subdominant to that of the inflaton

ρφ ≫ ρQE
, ρQB

, ρQκ , (3.29)
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where the definitions for the energy densities are given as [74]

ρφ =
1

2
φ̇2 + V (φ), (3.30)

ρQE
=

3

2
(Q̇+HQ)2, (3.31)

ρQB
=

3

2
g2Q4, (3.32)

ρQκ =
3

2
κg2Q4(Q̇+HQ)2. (3.33)

A similar condition must hold for the first slow-roll quantity ϵ

ϵφ ≫ ϵQE , ϵQB
, (3.34)

meaning that the Hubble evolution is dominated by the rolling of the infla-
ton field (see eq. (3.15)). The above inequalities can be re-cast as relations
between the VEVs of the inflaton and gauge fields

1

2
φ̇2 ≫(Q̇+HQ)2, (3.35)

1

2
φ̇2 ≫g2Q4, (3.36)

1

2
φ̇2 + V (φ) ≫3

2
(Q̇+HQ)2 (3.37)

1

2
φ̇2 + V (φ) ≫3

2
g2Q4, (3.38)

1

2
φ̇2 + V (φ) ≫3

2
κg2Q4(Q̇+HQ)2. (3.39)

Let us note that for spectator Chromo-natural inflation precisely the same
inequalities of Eq. (3.37) and (3.38) should hold, in addition to an inequality
for the axion field χ(t), i.e. 1

2
φ̇2 + V (φ) ≫ 1

2
χ̇2 + U(χ) that replaces

Eq. (3.39) since the κ-term can be thought as the analogue of the axion
potential in Chromo-natural inflation.

From Eqs. (3.35) – (3.39) one may see that ϵφ ≫ ϵQE , ϵQB
implies ρφ ≫

ρQE
, ρQB

, as well as ρφ ≫ ρQκ , if κ is not too large. Hence, Eqs. (3.37) and
(3.38) as well as Eq. (3.39) hold automatically when Eqs. (3.35) and (3.36)
are satisfied. Therefore we will focus on showing the allowed parameter
ranges to satisfy ϵφ ≫ ϵQE , ϵQB

, i.e. Eqs. (3.35) and (3.36), and confirm
our findings with numerical simulations.

For illustrative purposes we will consider an α-attractor model for the
inflaton sector [50, 243–245]. It is known that the universal predictions for



3.3 Viability of spectator Gauge-flation 75

the spectral index ns and tensor-to-scalar ratio r are in agreement with the
latest Planck data [220]. They are parametrised solely by the dimensionless
coupling α̃ and the number of e-folds N∗ before the end of inflation when
the CMB modes exit the horizon during inflation, i.e.

ns = 1− 2

N∗
, r =

12α̃

N2
∗
. (3.40)

The α-attractor T-model potential is given by

V (ϕ) = α̃µ̃2M2
Pl

(
(tanh(β̃ϕ/2))2

)n
, (3.41)

where the parameters of the potential are chosen to be

β̃ =
√

2/3α̃, n = 3/2, α̃ = 0.1, µ̃2 = 1.08× 10−10M2
Pl, (3.42)

and are used for numerical simulations in this section. For the gauge sector
we use4

g = 6.5× 10−3, κ = 1.733× 1020M−4
Pl ,

Q̇0/M
2
pl = −10−10, Q0/Mpl = 7× 10−4, 10−3, 1.5× 10−3,

(3.43)

where Q0, Q̇0 are initial value and initial velocity respectively for the gauge
field VEV.

For given parameters one may numerically evolve the system of Eqs. (3.9)
– (3.12) and find that, indeed, it is possible to satisfy the conditions of
Eqs. (3.29) and (3.34). Fig. (3.2) shows the evolution of the inflaton field
φ(N) and VEV of the gauge field Q(N) as a function of the number of
e-folds N . Notice that Q(N) evolves mildly with N and stays almost con-
stant. The shape of the parameter γ(N) which is defined in Eq. (3.16)
mimics the behaviour of Q(N) which is shown on Fig. (3.4). As we will
see in Section 3.4.2, the shape of γ determines the tilt of the tensor power
spectrum. Since we require that Q(N) also slow-rolls during the slow-roll of
φ(N), we expect γ(N) to be a decreasing function of time5. The evolution
of the components of ϵ and ρ is shown on Fig. (3.3). As we have seen in
our numerical simulations, for α-attractors the most restrictive condition

4The naturalness of the κ-term and its domination over all the other dimension eight
or higher contributions coming from gauge field or fermionic loops is discussed in Ref. [76].
Also note that κ−1/4 > Hinfl..

5The post-inflationary dynamics and the effect of parametric resonance [158–160] is
left for future work.
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to host a Gauge-flation sector as a spectator for inflation appears to be
the condition ϵφ ≫ ϵQB

. It is known (see e.g. Refs. [50, 158]), that for α-
attractors ϵφ ≃ 3α̃

4N2 . Hence, with the definitions of Eqs. (3.15) and (3.16),
ϵφ ≫ ϵQB

is satisfied for
3α̃

4N2
≫ γQ2

M2
Pl
. (3.44)

By fixing the parameter α̃, the number of e-folds N and the value of γ > 2,
it is easy to find the range of allowed initial values for the gauge field Q0,
in order for the non-Abelian sector to stay subdominant. One may rewrite
the condition of Eq. (3.44) using Eq. (3.16) and H2 ≃ H2

φ ≃ α̃µ̃2

3 in the
following form

3MPl
2µ̃N

≫ γ

g
. (3.45)

Similarly, the condition ϵφ ≫ ϵQE
may be written for δ ≪ 1 using Eqs. (3.15),

(3.16) as
3MPl
2µ̃N

≫
√
γ

g
. (3.46)

Indeed, we see that the condition ϵφ ≫ ϵQB
is more restrictive, which agrees

with our numerical simulations. The left-hand side of Eqs. (3.45), (3.46)
is a fixed number that is set by the number of e-folds of inflation N and
the scale µ̃, that does not depend on the parameters of the potential α̃ and
n, and is uniquely fixed from the amplitude of the power spectrum of the
scalar density perturbations. The range for allowed values for γ and g that
satisfy Eq. (3.45) is shown in Fig. 3.5.

3.4 Tensor sector
In this Section we will analyze the tensor perturbations generated by the
gauge fields. We will explicitly identify restrictions in the parameter space
coming from the inflaton sector on the gravitational wave production by
the gauge sector.

3.4.1 Tensor perturbations

In this subsection we adopt the notation of Ref. [233] for tensor perturba-
tions in the gauge field and the metric. The tensor sector consists of four
independent perturbations that are given by

δA1
µ = a(0, t+, t×, 0), δA2

µ = a(0, t×,−t+, 0),
δg11 = −δg22 = a2h+, δg12 = a2h×.

(3.47)
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Figure 3.2: Upper left: The dependence of the inflaton field φ on the e-folding number N for
the α-attractor T-model potential of Eq. (3.41) for Q0/Mpl = 7×10−4, 1×10−3, 1.5×10−3

(green-dashed, red-dotted and purple-dot-dashed lines respectively). The vertical grey grid
line shows the end of inflation. Upper right: The dependence of the gauge field VEV Q on
the e-folding number N for the same potential and color coding. The solid grey grid line
shows the end of inflation. Lower Left: The evolution of the inflaton field φ after the end
of inflation for the same parameters and color-coding. Lower right: The post-inflationary
evolution of the gauge field VEV Q for the same parameters and color-coding.
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Figure 3.3: Left: The evolution of components of the first slow-roll parameter ϵ with the
number of e-folds N for Q0/Mpl = 7 × 10−4. Right: The evolution of components of the
energy-density ρ with the number of e-folds N for the same parameters.

The plus and cross polarizations are related to the left-handed and right-
handed polarizations as

h+ =
hL + hR√

2
, h× =

hL − hR

i
√
2

,

t+ =
tL + tR√

2
, t× =

tL − tR

i
√
2

.

(3.48)
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Figure 3.4: Top left: Components ϵQB as a function of the e-folding number N for
Q0/Mpl = 7× 10−4, 1× 10−3, 1.5× 10−3 (green-dashed, red-dotted and purple-dot-dashed
lines respectively). The blue-solid, black-dashed and brown-dot-dashed and curved correspond
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Bottom row: The evolution of the parameter δ (left) and γ (right) for the same parameters
and color-coding. The solid grey grid line on the right panel shows the bound γ = 2, below
which scalar fluctuations in the theory are unstable.
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We canonically normalise them by introducing

hL,R =

√
2

Mpa
HL,R, tL,R =

1√
2a
TL,R, (3.49)

The action for canonically normalised perturbations reads

SL =
1

2

∫
dτd3k

[
∆′†

L∆
′
L +∆′†

LKL∆L −∆†
LKL∆

′
L −∆†

LΩ
2
L∆L

]
, ∆L =

(
HL

TL

)
.

(3.50)
where the expression for the right-handed sector is identical. Prime ()′ here
denotes a derivative with respect to conformal time τ . The anti-symmetric
matrix KL/R is defined through

KL/R,12 =
1

Mp

(
Q′ +

a′

a
Q

)
, (3.51)

and Ω2
L/R is symmetric, with components

Ω2
L/R,11 = k2 − 2

a′2

a2
+

3g2a2Q4

M2
p

− (aQ)′2

M2
pa

2
, (3.52)

Ω2
L/R,12 = ±k2gaQ

2

Mp
+

(aQ)′

aMp

a′

a
− 2κg2Q3

Mpa2
g2a4Q4 + a′2Q2 − a2Q′2

1 + κg2Q4
,

(3.53)

Ω2
L/R,22 = k2 ∓ 2kgaQ

[
1 + κ

g2a4Q4 + a′2Q2 − a2Q′2

a4(1 + κg2Q4)

]
+ (3.54)

+
2κg2Q2

a2
g2a4Q4 + a′2Q2 − a2Q′2

1 + κg2Q4
,

where signs refer to the left-handed or the right-handed polarization respec-
tively, which we denote by ‘‘L/R”. Now, we are going to use the background
relations obtained in Section 3.2.2 to simplify the above matrix elements
and expand them in slow-roll in order to identify limitations on the chiral
gravitational wave production, coming from the presence of the inflaton
field. It is convenient to rewrite the matrices in terms of ϵ, γ and δ. With
substitutions coming from Eqs. (3.16), (3.23) and (3.24)

Q′ → −aQHδ , a′ → a2H , κ→ 1

H2γQ2

(1− δ)2 + γ

(1− δ)2
2−

(
ϵQ + 2

3ϵφ +Υ
)

ϵQ
,

(3.55)

Mp → Q

√
(1− δ)2 + γ

ϵQ
, g → √

γ
H

Q
, (3.56)
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we find exact expressions for the matrices given by

KL/R,12 =
aH

√
ϵQ√

(1− δ)2 + γ
(1− δ), (3.57)

Ω2
L/R,11 = k2 − a2H2 (1− δ)2(2 + ϵQ) + γ(2− 3ϵQ)

(1− δ)2 + γ
, (3.58)

Ω2
L/R,12 = ±aHk

2
√
γϵQ√

(1− δ)2 + γ
− a2H2

√
ϵQ√

(1− δ)2 + γ
·

·
[

(2γ2 + 3γ(1− δ))(2−Υ− (ϵQ + 2/3ϵφ))+

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))
+ (3.59)

+
(1− δ)3(2−Υ− 2ϵQ − 2/3ϵφ + 2δ(2−Υ− (ϵQ + 2/3ϵφ)))

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))

]
,

Ω2
L/R,22 = k2 ∓ 2aHk

1
√
γ
·

·
[

(2γ2 + (1− δ)3(1 + δ))(2−Υ− (ϵQ + 2/3ϵφ))

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))
+ (3.60)

+
γ(1− δ)(3(2−Υ)− δ(2−Υ− 2/3ϵφ)− 2ϵ)

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))

]
+

+2a2H2 (2−Υ− (ϵQ + 2/3ϵφ))(γ
2 + 2(1− δ)γ + (1 + δ)(1− δ)3)

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))
.

Now, we substitute ϵQ and δ from Eq. (3.22), i.e.

ϵQ → ϵ−ϵφ , δ → ϵ

3(2−Υ− (ϵ− 1
3ϵφ))

(
ϵ− 2

3

ϵφ
ϵ
ηφ − ϵφ

3
+ Υ

(
1− ϵφ

ϵ

))
(3.61)

and expand the matrix elements in slow roll with ϵ ≪ 1 and ϵφ ≪ 1. The
lowest order in slow-roll quantities is

√
ϵ, where we obtain

KL/R,12 ≃ aH

√
ϵ√

1 + γ
C1(ϵφ), (3.62)

Ω2
L/R,11 ≃ k2 − 2a2H2, (3.63)

Ω2
L/R,12 ≃

(
±2kaH

√
γϵ

√
1 + γ

− a2H2 1 + 2γ√
1 + γ

√
ϵ

)
C1(ϵφ), (3.64)

Ω2
L/R,22 ≃ k2 ∓ 2kaH

1
√
γ
[1 + 2γ + C2(ϵφ)] + 2a2H2 [1 + γ + C2(ϵφ)] ,

(3.65)
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where we introduced the “correction” coefficients

C1(ϵφ) =

√
1− ϵφ

ϵ
, (3.66)

C2(ϵφ) = − ϵ

2−Υ

(
1− ϵφ

ϵ

)
+O (ϵ) . (3.67)

Notice that when the inflaton field dominates the energy budget, Eq. (3.10)
leads to Υ ∼ 2. Hence the second correction can be ϵ

2−Υ

(
1− ϵφ

ϵ

)
∼

√
ϵ

and is not negligible any more. For the case ϵφ = 0 and Υ = 0, matrix
elements reduce to the case of pure Gauge-flation and agree with the results
obtained in Ref. [233]. The absolute value of the corrections C1(ϵφ) and
C2(ϵφ) depend on the fraction of energy stored in the inflaton field, i.e.
ϵφ/ϵ. There is an interesting “tug of war” between two different effects
here.

• Since 1 − ϵφ/ϵ = ϵQ/ϵ, GW production by the gauge sector requires
ϵφ/ϵ to deviate somewhat from unity.

• The requirement that the gauge-sector does not affect the dynamics
of inflation and the generation of density fluctuations is encoded in
ϵφ ≫ ϵQ or ϵQ/ϵ≪ 1.

Both requirements, the dominance of the inflaton sector and significant GW
production by the gauge sector, can be simultaneously satisfied, but limit
the available parameter space.

The equation of motion for tensor perturbations follows from Eq. (3.50)
and may be written in the form

∆′′
L + 2KL∆

′
L + (K ′

L +Ω2
L)∆L = 0, (3.68)

and similarly for the right-handed sector. To leading order in
√
ϵ and

neglecting interactions with the gravitational wave sector, the equation of
motion for the gauge field perturbation reads

∂2τTL +Ω2
L,22TL = 0. (3.69)

Substituting the matrix Ω2
L,22 explicitly with τ = − 1

aH we get

∂2τTL +

(
k2 − 2k

−τ
1 + 2γ + C2(ϵφ)√

γ
+

2 (1 + γ + C2(ϵφ))

τ2

)
TL = 0. (3.70)
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Now, we may define z = 2ikτ and

ν̂ =
2 (1 + 2γ + C2(ϵφ))√

γ
= −2iα̂, (3.71)

µ̂ = 2 (1 + γ + C2(ϵφ)) =
1

4
− β̂2, (3.72)

in order to rewrite Eq. (3.70) in the form of the Whittaker equation

∂2zTL +

(
−1

4
+
α̂

z
+

1
4 − β̂2

z2

)
TL = 0. (3.73)

It can be solved with the Whittaker functions

TL,0(k, τ) = AkMα̂,β̂(2ikτ) +BkWα̂,β̂(2ikτ), (3.74)

with Mα̂,β̂(2ikτ) and Wα̂,β̂(2ikτ) being the Whittaker M and W functions.
Here the subscript 0 indicates that we neglected interactions with the grav-
itational wave sector. In the asymptotic past x ≡ −kτ → ∞, the solution
approaches the Bunch-Davies vacuum, i.e.

TL,0(k, τ) →
1√
2k
eix. (3.75)

Asymptotic expansions for the Whittaker functions in this limit are also
well-known, hence the constants Ak and Bk in (3.74) are given by [232]

Ak =
1√
2k

Γ
(
−α̂+ β̂ + 1

2

)
(2i)−α̂Γ

(
2β̂ + 1

) , (3.76)

Bk =
1√
2k

Γ
(
−α̂+ β̂ + 1

2

)
Γ
(
α̂+ β̂ + 1

2

) 2α̂iβ̂+1(−i)α̂−β̂. (3.77)

Next, we find that metric tensor modes to leading order in
√
ϵ satisfy

the following equation of motion in the x-variable

∂2xHL+

(
1− 2

x2

)
HL =

√
ϵC1(ϵφ)√
1 + γ

(
2

x
∂xTL +

(
2γ

x2
−

2
√
γ

x

)
TL

)
. (3.78)

Using the Born approximation, one may find the solution of Eq. (3.78) in
series of

√
ϵ

HL = HL,0 +HL,s, (3.79)
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where HL,0 is the homogeneous solution of the free equation of motion, and
HL,s is inhomogeneous part that is sourced by the gauge filed perturba-
tion TL. The homogeneous solution matches the Bunch-Davies vacuum at
asymptotic past and is given by

HL,0 =
1√
2k

(
1 +

i

x

)
eix. (3.80)

The sourced piece of the solution may be written as

HL,s =

√
ϵC1(ϵφ)√
1 + γ

∫ x

dx′
(

2

x′
∂x′ +

(
2γ

x′2
−

2
√
γ

x′

))
G(x, x′)TL,0(x

′),

(3.81)
where G(x, x′) is the Green’s function. We can follow the same steps as in
Refs. [229, 231, 232] and find that the late-time solution for the left-handed
gravitational wave is given by

HL =
Hx

MPl
√
k3
u1(x)+2

√
2

H

MPlk
Bk

2
√
ϵC1(ϵφ)√
1 + γ

(I1 +
√
γI2 − γI3) , (3.82)

which contains a free and a sourced part of the solution. Here we have
defined

u1(x) ≡
(
1 +

i

x

)
eix. (3.83)

The terms I1, I2, I3 are coming from the integrals in Eq. (3.81) and ex-
pressed as

I1 =

(
µ̂2 − 2iµ̂ν̂ + 2µ̂− 2ν̂2

)
sec(πβ̂) sinh(−iπα̂)Γ(α̂)

2µ̂(µ̂+ 2)
(3.84)

−
π2
(
µ̂2 + 2iµ̂ν̂ + 2µ̂− 2ν̂2

)
sec(πβ̂)csch(−iπα̂)

2µ̂(µ̂+ 2)Γ(α̂+ 1)Γ(−α̂− β̂ + 1
2)Γ(−α̂+ β̂ + 1

2)
, (3.85)

I2 =
π sec(πβ̂)Γ(−α̂)

2Γ(−α̂− β̂ + 1
2)Γ(−α̂+ β̂ + 1

2)
− π sec(πβ̂)Γ(1− α̂)

µ̂Γ(−α̂− β̂ + 1
2)Γ(−α̂+ β̂ + 1

2)

+
πµ̂ sec(πβ̂)− iπν̂ sec(πβ̂)

2µ̂Γ(1− α̂)
, (3.86)

I3 =
π2 (µ̂+ iν̂) sec(πβ̂)csch(−iπα̂)

µ̂(µ̂+ 2)Γ(α̂)Γ(−α̂− β̂ + 1
2)Γ(−α̂+ β̂ + 1

2)
+
π (ν̂ + iµ̂) sec(πβ̂)
µ̂(µ̂+ 2)Γ(−α̂)

.

(3.87)
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The homogeneous solution for the gauge field perturbation TL,0 is an ex-
cellent approximation, since it breaks down for x ≲ 0.1, which does not
influence gravitational wave modes which are sourced around horizon cross-
ing x ≃ 1. Indeed, we see that the late-time solution of Eq. (3.82) is in a
remarkable agreement with full numerical simulations, as seen on Fig. 3.6.
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Figure 3.6: Left: Tachyonic growth of the left-polarized gauge field mode-function TL around
the time of horizon crossing x = 1 for γ = 5, 12, 15 (blue solid, orange dashed and green
dot-dashed lines respectively), H/Mpl = 1.9∗10−6 and g = 6.5∗10−3. Right: Enhancement
of the left-polarized GW mode-function HL, sourced by the gauge field mode-function TL for
the same parameters and color coding. Stars represent the approximate late-time solutions
given by Eq. (3.82).

The right-hand polarized gravitational waves do not get enhanced and
are given by the usual vacuum value

HR(x) =
Hx

MPl
√
k3
u1(x). (3.88)

Finally, the power spectra for left-handed modes can be written as

P 2
L(k) =

H2

2π2M2
Pl

+
16kH2

π2M2
Pl

ϵC2
1 (ϵφ)

1 + γ
|Bk|2 |I1 +

√
γI2 − γI3|2 . (3.89)

The power spectra for right-handed modes is

P 2
R(k) =

H2

2π2M2
Pl
. (3.90)

The total tensor power spectrum is given by

PT (k) = 2P 2
L(k) + 2P 2

R(k), (3.91)

which in the limit ϵ→ ϵφ, i.e. C1(ϵφ) → 0, reduces to the single scalar field
result

PT,φ(k) =
2H2

π2M2
Pl
, (3.92)
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Finally, we can define the chirality parameter as

∆χ =
P 2
L − P 2

R

P 2
L + P 2

R

. (3.93)

Its behaviour is shown on Fig. 3.7. We see that sufficient enhancement of
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Figure 3.7: The chirality parameter ∆χ as a function of γ for α̃ = 1, 0.1, 0.01 (blue solid,
orange dashed and green dot-dashed lines respectively) for H/Mpl = 1.9 ∗ 10−6, g = 6.5 ∗
10−3. Stars represent γ = 5, 12, 15 used in Fig. (3.6).

one of the polarizations occurs for γ ≳ 8 for the given set of parameters
(H = 1.9 × 10−6Mpl, ϵ = 10−5, g = 6.5 × 10−3). For these parameters
γmax ≃ 15.

3.4.2 Tensor tilt

In this subsection we will discuss the shape of the tensor power spectrum
generated in the spectator Gauge-flation model, characterized by the tensor
tilt nT . In Ref. [239], it was shown that the spectator Chromo-natural
inflation model, depending on the choice of the axion potential, supports
both flat, red and blue tilted tensor spectra. Thus, our primary interest
is to investigate if spectator Gauge-flation may generate all three possible
tilts in realistic physical set-ups. The tensor tilt for Eq. (3.92) is given by
nT = −2ϵ∗, where ϵ is evaluated at t = t∗ that defines time of horizon
crossing for a mode with the wave number k∗ = a(t∗)H. Below we will
focus on the tilt for the sourced part only.

The power spectra of sourced gravitational waves from Eqs. (3.89) and
(3.91) are given by

PT,s(k) =
32kH2

π2M2
Pl

ϵC2
1 (ϵφ)

1 + γ
|Bk|2 |I1 +

√
γI2 − γI3|2 . (3.94)
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We are going to proceed as follows: first we rewrite Eq. (3.94) in terms of
γ(t), restoring its time-dependence, and then re-express P 2

T,s(k) in terms of
γ(k). This allows us to calculate the tensor tilt.

The time evolution of the vacuum expectation value of the gauge field
Q(t) may be written as

Q(t) = Q(t∗) + Q̇(t∗)(t− t∗), (3.95)

with t∗ being the time of horizon crossing. From here it follows that

Q(t)

Q(t∗)
= 1− δ∗H(t− t∗), (3.96)

where δ∗ = − Q̇(t∗)
HQ(t∗)

. This gives the time dependence of the parameter γ(t),
i.e.

γ(t) = γ∗

(
Q(t)

Q(t∗)

)2

= γ∗ (1− δ∗H(t− t∗))
2 ≃ γ∗

(
1 + 2

H(t− t∗)

∆N

)
,

(3.97)

with γ∗ = g2Q2(t∗)
H2 , ∆N = −1/δ∗. Using H(t− t∗) = ln(k/k∗) we can write

γ(k) as

γ(k) ≃ γ∗

(
1 + 2

ln(k/k∗)
∆N

)
≃ γ∗e

(
2 ln(k/k∗)

∆N

)
. (3.98)

To start with, using |Γ(12 + ib)|
2 = π

cosh(πb) one can rewrite |Bk|2 defined
in Eq. (3.76) in terms of γ(t) as

|Bk|2 =
1

2k
e
3π

(
1+2γ√

γ

)
e−π

√
7+8γ 1 + e

−π
(√

7+8γ+
2(1+2γ)√

γ

)
1 + e

−π
(√

7+8γ− 2(1+2γ)√
γ

) . (3.99)

Next, from Eq. (3.17) for δ ≪ 1 one can find

ϵC2
1 (ϵφ) = ϵQ ≃ H2

g2M2
Pl
γ(1 + γ). (3.100)

The term γI3 generates the main contribution in Eq. (3.94), hence we will
neglect smaller contributions coming from I1,

√
γI2. In terms of γ we find

γ2 |I3|2 = γ2
π (1 + 2γ)(1 + γ(1 + γ)(5 + γ))

γ3/2(1 + γ)2(2 + γ)2
e
−π

(√
7+8γ− 1+2γ√

γ

)
. (3.101)
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Putting everything together, the sourced tensor power spectrum becomes

PT,s(k) ≃
16H4

π2g2M4
Pl
γ e

3π
(

1+2γ√
γ

)
e−π

√
7+8γ 1 + e

−π
(√

7+8γ+
2(1+2γ)√

γ

)
1 + e

−π
(√

7+8γ− 2(1+2γ)√
γ

) |γI3|2 ,

(3.102)

where |γI3|2 is given by Eq. (3.101). Next, one may expand

√
7 + 8γ =

√
7 + 8γ∗ +

8γ∗√
7 + 8γ∗∆N

ln
(
k

k∗

)
− 32γ2∗

(7 + 8γ∗)3/2(∆N)2
ln2

(
k

k∗

)
,

(3.103)
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We will not write the final expression for PT,s(k) in terms of γ∗, k, k∗ since it
is rather cumbersome, but may be easily written from the above expressions.
Instead, we will focus on the tensor tilt. As usual, the tensor power spectra
may be written in the form

PT,s(k) = AT (γ∗)

(
k

k∗

)nT,s

, (3.105)

with the tensor tilt is given by
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where we neglected corrections O
(
δ2∗
)

and ignored the time-dependence of
H. For α-attractors, as well as other plateau models, this is a very good
approximation. The complicated expression above may be written via a
simple fitting formula

nT,s ≃ −δ∗
(
3 + 1.225π

2γ∗ − 1
√
γ∗

− 3.612π
γ∗√

7 + 8γ∗

)
≃ −δ∗ (2.85 + 3.68

√
γ∗) .

(3.107)
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Hence, we may conclude that if Q(t) is a decreasing function of time, then
δ(t) defined in Eq. (3.16) leads to δ∗ being positive. Therefore, as follows
from Eq. (3.107), a red-tilted power spectrum is generated. If, on the
contrary, Q(t) increases in time, δ(t) is negative, which sources a blue-
tilted spectrum. We can sum up the relation of Q(t) to nT in the following
table

Q(t) ↘ ⇒ Q̇(t) < 0 ⇒ δ > 0 ⇒ nT < 0 red tilt,
Q(t) ↗ ⇒ Q̇(t) > 0 ⇒ δ < 0 ⇒ nT > 0 blue tilt.

(3.108)

All the results shown in Section 3.3 contain Q(t) as a decreasing function
of time, leading to red-tilted tensor spectra. Finally, Eq. (3.91) leads to the
tensor-to-scalar ratio r

r =
PT

Pζ
. (3.109)

The left panel of Fig. 3.8 shows the enhancement of the tensor-to-scalar
ratio r and its dependence on γ for the α-attractor potential of Eq. (3.41)
with n = 3/2 and α̃ = 10, 1, 0.1, 0.01. We see that for small γ, we recover the
single field α-attractor result r = 16ϵ with ϵ → ϵφ ≃ 3α̃

4N2 . Further increas-
ing r requires decreasing the gauge coupling g. However this is severely
restricted by Eqs. (3.28) and (3.45), meaning that we cannot increase r
significantly above what is show on Fig. 3.8. The right panel of Fig. 3.8
shows the correlation of Eq. (3.107) and r using Eq. (3.22). We see that
0 > nT ≳ −0.04 and larger r correlates with more red-tilted spectra.

Before we proceed to a brief overview of related models and compari-
son with our results on spectator gauge-flation, it is worth discussing the
conditions for a red-tilted spectrum. It was shown in Ref. [76] that the
original gauge-flation model can lead (at the background level) to both de-
creasing and growing functions of Q(t), depending on the initial conditions.
Trajectories starting close to the slow-roll attractor lead to a decreasing
Q(t). Trajectories that start far from the slow roll attractor in Ref. [76]
were shown to undergo a brief period of ϵ > 1, followed by a slow-roll in-
flationary phase with Q(t) increasing in time. The latter behavior required
different ranges of κ and g.

We were able to recover this general trend in our spectator model, at
the cost of altering the parameter space of the model. In particular, to
produce a growing Q(t) and a correspondingly blue-tilted GW spectrum,
we need to increase the value of κ. This leads to an increase in ρκ, which
is bounded from above by the requirement ρκ ≪ ρφ. Furthermore, γ is
reduced for these trajectories, suppressing GW production by the spectator
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sector. In order to increase GW production, we need to increase g, which
cannot be done arbitrarily. Such a realization of spectator gauge-flation is
given in Appendix 3A. Our numerical tests have shown the existence of such
solutions, but at the same time an increased level of parameter fine-tuning is
needed to achieve them, at least in the context of an α-attractor inflationary
sector. We will consider the red-tilted GW spectra as a “generic” prediction
of spectator gauge-flation, keeping in mind the ability of these models to
evade this prediction for proper choices of parameters and initial conditions.
We leave an exhaustive parameter search for a variety of inflationary sectors
for future work.
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Figure 3.8: Left: The tensor-to-scalar ratio r as a function of γ for g = 6.5 × 10−3 and
α̃ = 1, 0.1, 0.01, 0.001 (blue solid, orange dashed, green dotted and red dot-dashed lines
respectively). The horizontal black-dotted curve shows the observational upper limit on r.
Right: The tensor-to-scalar ratio r versus tensor tilt nT for the same parameters and color
coding. We can see the range of nT and the clear departure from the single field consistency
relation nT = −r/8 (solid black curve).

3.4.3 Comparison with related models

The model presented here is part of a larger family of inflationary models,
where the existence of a non-abelian sector leads to the generation of chiral
GWs. We can distinguish between the original models, where the SU(2)
or axion−SU(2) sectors are responsible for inflation and the generation
of both scalar and tensor modes, and the spectator models, where the
inflaton sector is decoupled from the non-abelian spectator sector. Gauge-
flation and Chromo-natural inflation, along with their Higgsed variants, fit
in the first category, while spectator Chromo-natural inflation and spectator
Gauge-flation make up the second category.

While the original Chromo-natural inflation and Gauge-flation mod-
els are ruled out by observations, their Higgsed counterparts provide pre-
dictions compatible with CMB observations for some part of parameter
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space. Interesting features arise from the correlation of the resulting tensor
to scalar ratio r and tensor spectral tilt nT . For Higgsed gauge-flation,
Ref. [232] showed a negative correlation between the two quantities. For
n ≲ 0.01 a blue-tilted spectrum is preferred. Hence Higgsed gauge-flation
and spectator gauge-flation (with an α-attractor inflationary sector) tend
to provide opposite predictions for the sign of nT .

Higgsed chromo-natural inflation has an interesting space of predictions
for nT and r. For smaller values of r < 0.01, the correlation between r
and nT is also mostly negative. However the possible range of values for
nT is much larger, ranging between −0.2 < nT < 0.05 for the parameter
scan presented in Ref. [231]. This means that the possible range of values
for Higgs Chromo-Natural inflation is significantly larger than that of our
realization of spectator Gauge-flation (see Fig. 3.8) for red and blue tilted
spectra alike.

Next, we wish to compare the present model to spectator Chromo-
natural inflation, in which an axion−SU(2) spectator sector is added to an
otherwise dominant inflaton. The existence of an axion potential V (χ) leads
for significant diversity in the form of the tensor power spectrum. Ref. [239]
showed the emergence of a blue or red-tilted spectrum for monomial po-
tential V (χ) ∝ |χ|p, where the tensor tilt scales as nT ∝ (p − 1). A linear
potential leads to an exactly scale-invariant tensor spectrum. In principle,
small deviations from p = 1 can lead to an arbitrarily small tensor tilt. How-
ever, this requires a rather fine-tuned axion potential. If instead we look
at p = 1/2 and p = 3/2 we can see that nT ≃ 0.04 and nT ≃ −0.07 respec-
tively. Concave potentials lead to blue-tilted spectra, which are generically
not produced in our model of spectator Gauge-flation. On the other hand,
convex potentials lead to red-tilted spectra, but for p > 3/2 the spectral
tilt will be nT ≲ O(0.1), which is outside the predictions shown in Fig. 3.8.

Finally, Ref. [246] studied an axion-inflaton field coupled to an SU(2)
gauge field, where the VEV of the latter is not large enough to affect the
background inflationary dynamics. Despite being subdominant, the pres-
ence of the gauge field can lead to the enhancement of GW’s and the corre-
sponding violation of the Lyth bound. The resulting tensor tilt nT exhibits
oscillations in time and asymptotes to zero at late times.

3.5 Summary and discussion

In this work we have explored the phenomenology of Gauge-flation as a
spectator sector during inflation. We have uncovered significant parameter



3.6 Appendix 3A: Blue-tilted GW spectrum 91

restrictions, arising both from the physics of the gauge sector as well as from
the requirements that the gauge sector be subdominant to the inflationary
sector. Most importantly, these requirements lead to significant constraints
on the parameter γ, which controls the amount of GW enhancement.

By identifying the inflationary sector with the well-known T-model of
α-attractors, we showed that a spectator gauge-flation sector can increase
the tensor-to-scalar ratio by two orders of magnitude. The resulting tensor
spectral index nT is controlled by the evolution of the gauge field vacuum
expectation valueQ(t), being red ifQ is a decreasing function of time during
inflation and blue otherwise. The majority of our numerical simulations
resulted in red-tilted GW spectra with −0.04 ≲ nT < 0.

Our work presents an interesting generalization of gauge-flation, while
opening up exciting possibilities for future work. While α-attractors provide
a simple implementation of the inflationary sector, inflationary models that
contain two or more distinct phases of inflation, like double inflation, side-
tracked inflation and angular inflation, can help alleviate the parameter
constraints of our current implementation and produce distinct GW fea-
tures either at large or small scales. Furthermore, inflationary models with
non-Abelian gauge fields can have interesting consequences for baryogenesis
and dark matter production [247–250], leading to correlated observables.

Furthermore, the original choice of the higher-order term for gauge-
flation was based on the requirement for a vacuum energy-like equation of
state w ≃ −1, required for driving inflation. Using an SU(2) sector as
a spectator sector opens up the possibility of introducing more non-linear
terms, since the requirement of w ≃ −1 is lifted. It is interesting to explore
the phenomenology of gauge-flation with other non-linear terms, dictated
solely by the underlying symmetries, and their possible GW signatures. We
leave this exploration for future work.

3.6 Appendix 3A: Blue­tilted GW spectrum

As shown in Eq. (3.108), the dynamics of Q(t) controls the sign of the tensor
tilt nT . Here we present a realization where Q(t) is an increasing function
of time on the example of α-attractor model, similarly as in Section 3.3, for
the same parameters of Eq. (3.42) for the potential, but with α̃ = 1. The
parameters we use for the gauge sector are

g = 1.7× 10−2, κ = 1021M−4
pl ,

Q̇0/M
2
pl = 10−10, Q0/Mpl = 6× 10−4, 8× 10−4, 1.18× 10−3.

(3.110)
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Figure 3.9: Left: The dependence of the inflaton field φ on the e-folding number N for the
the α-attractor T-model potential of Eq. (3.41) for Q0/Mpl = 6×10−4, 8×10−4, 1.18×10−3

(green-dashed, red-dotted and purple-dot-dashed lines respectively). Right: The dependence
of the gauge field VEV Q on the e-folding number N for the same potential and color coding.
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Figure 3.10: Top left: Components ϵQB as a function of the e-folding number N for
Q0/Mpl = 6×10−4, 8×10−4, 1.18×10−3 (green-dashed, red-dotted and purple-dot-dashed
lines respectively). The blue-solid, black-dashed and brown-dot-dashed and curved correspond
to ϵφ for Q0/Mpl = 6 × 10−4, 8 × 10−4, 1.18 × 10−3 respectively. Top right: Components
ρκ and their dependence on N for the same Q0 and color-coding. The very top curves
correspond to ρφ and are practically indistinguishable. Bottom row: The evolution of the
parameter δ (left) and γ (right) for the same parameters and color-coding. The solid grey
grid line on the right panel shows the bound γ = 2, below which scalar fluctuations in the
theory are unstable.
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Figure 3.11: The chirality parameter ∆χ as a function of γ for α̃ = 1, H/Mpl = 6 ∗ 10−6

and g = 1.7 ∗ 10−2. In the allowed region γ ≲ 7, the chirality parameter is small.

Our numerical simulations show that in order for Q(t) to increase with
time, one has to impose higher values of the parameter κ in comparison
with those used in Section 3.3. Because of the conditions of Eqs. (3.33) and
(3.39), this highly constrains the values of the allowed Q0 and g, and hence
via Eq. (3.16) limits the allowed range for the parameter γ that controls
the enhancement of chiral gravitational waves.

Fig. 3.9 shows the evolution of the inflaton field φ and the vacuum
expectation value of the gauge field Q with the e-folding number N , that
behave similarly to those discussed in Section 3.3, but with Q being a
slowly increasing function of time. In such case δ becomes negative, as
shown in Fig. 3.10. However, one may see from the top right panel of the
Fig. 3.10, that further increase of Q0 will violate the condition ρφ ≫ ρQκ .
Hence for the parameters of Eq. (3.110), we compute the maximum γ ≃ 7.
From Fig. 3.7 we can see that for this value the chirality parameter is only
∆χ ≃ 0.05, hence no significant production of sourced gauge fields has
taken place. While this does not preclude the existence of a realization of
this model, leading to significant r and nT > 0, it demonstrates that this
requires some level of parameter fine-tuning.




