Universiteit

w4 Leiden
The Netherlands

Enlightening the primordial dark ages
larygina, O.

Citation
Iarygina, O. (2021, November 3). Enlightening the primordial dark ages. Casimir
PhD Series. Retrieved from https://hdl.handle.net/1887/3238935

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3238935

License:

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3238935

47

Part 1

Multi-field inflation
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2 Shift-symmetric orbital infla-
ftion

Abstract: We present a new class of two-field inflationary attractor mod-
els, known as ‘shift-symmetric orbital inflation’, whose behaviour is strongly
multi-field but whose predictions are remarkably close to those of single-
field inflation. In these models, the field space metric and potential are
such that the inflaton trajectory is along an ‘angular’ isometry direction
whose ‘radius’ is constant but arbitrary. As a result, the radial (isocur-
vature) perturbations away from the trajectory are exactly massless and
they freeze on superhorizon scales. These models are the first exact real-
ization of the ‘ultra-light isocurvature’ scenario, previously described in the
literature, where a combined shift symmetry emerges between the curva-
ture and isocurvature perturbations and results in primordial perturbation
spectra that are entirely consistent with current observations. Due to the
turning trajectory, the radial perturbation sources the tangential (curva-
ture) perturbation and makes it grow linearly in time. As a result, only
one degree of freedom (i.e. the one from isocurvature modes) is responsi-
ble for the primordial observables at the end of inflation, which yields the
same phenomenology as in single-field inflation. In particular, isocurvature
perturbations and local non-Gaussianity are highly suppressed here, even
if the inflationary dynamics is truly multi-field. We comment on the gen-
eralization to models with more than two fields.

Keywords: multi-field inflation, cosmological perturbation theory.
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2.1 Introduction

Single field slow roll inflation is the leading explanation for the observa-
tions through the CMB [53] that primordial perturbations are very close to
Gaussian and adiabatic, yet embedding it in an ultraviolet complete the-
ory such as string theory is notoriously difficult. Moduli fields arising from
string compactifications require stabilizing to realize single field inflation
[126], and large field excursions test the validity of using four dimensional
effective theoriesH.

In the usual understanding, light fields during inflation may lead to
isocurvature perturbations and local non-Gaussianity tightly constrained
by current observations. However, it has been suggested recently that in-
flation with non-stabilized light fields on an axion-dilaton system can be
compatible with the latest CMB data [61, 69, 95, 195-198]. In particu-
lar, it was pointed out in [69] that, when the perturbations orthogonal
to the trajectory are massless but efficiently coupled to the inflaton, the
isocurvature modes are dynamically suppressed. This is the “ultra-light
isocurvature” scenario.

In this paper we provide for the first time a family of exact models
of inflation in which the multi-field effects are significant, but the phe-
nomenology remains similar to single field inflation. The models combine
two ingredients: First, the inflaton trajectory proceeds along an isometry
direction of the field space, so it is Orbital Inflation in the sense of [72, 73].
This ensures time independence of the coupling between the radial and
tangential inflationary perturbations. Second, the trajectory can have an
arbitrary radius (within some range described below), and a constant radius
is proven to be a neutrally stable attractor. Hence, isocurvature perturba-
tions become exactly massless. The two ingredients, combined, guarantee
that the sourcing of the curvature perturbation is sustained over many e-
folds of inflationary expansion. The action for the perturbations inherits
a symmetry between background solutions that is not manifest in the po-
tential or in the Lagrangian. We show that, at the end of inflation, only
the isocurvature degree of freedom is responsible for the generation of pri-
mordial observables, but perturbations still remain adiabatic and Gaussian.
We call this scenario shift-symmetric orbital inflation.

Crucially this scenario provides a new direction to explore inflation and

The recent swampland debate highlights the importance of finding viable scenarios
for inflation that are not strictly single-field. See, for instance, the discussion in [41] as
compared to [48, 219]
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a potential resolution to some of the problems faced by the embedding
of inflation in string theory. That is, in the construction of inflationary
models wherein every modulus is stabilized except for the inflaton, one
could be missing less restrictive realizations of inflation compatible with
current observational constraints. We set h = ¢ = 1 and the reduced
Planck mass M, = (87G)~1/2 = 1, where G is Newton’s constant.

2.2 A toy model

To illustrate the idea, we first consider the following Lagrangian in flat field
space with polar coordinates (illustrated in Fig. @)

L= % [%(00)* + (9p)?] — %m <92 — ;}) (2.1)

The potential has a monodromy in the angular coordinate, and although it
is unbounded at p — 0, inflation only takes place in the physically consistent
regime where V' (p,#) > 0. Moreover, as shown in the perturbation analysis
below, our study is restricted to radii that cannot be too small. Therefore,
we only care about the local form of the potential close to the inflationary
trajectory, which we assume is captured well by (@) In general, it is
difficult to solve the background equations analytically in such a system.
However, this model has the following exact neutrally stable solutions at
any radius
. 2m

The Friedmann equation becomes H? = m?2#?/6 on the attractor, where H
is the Hubble parameter, and the first slow-roll parameter is € = —H JH? =

. This trajectory is nongeodesic in field space, with turning effects that

depend on the radius k of the trajectory. Note that here k = pg but, if the
field space geometry is curved, x will be a more general function of pg.
The situation is reminiscent of circular orbits in a spherically symmetric
gravitational field, where the centripetal force stabilizes the radial direction,
and the inflaton can circle at any radius with the corresponding angular
velocity. For the field system on the cosmological background, only the
isometric circular orbits appear, and we need to break the shift symmetry
of # in the potential to overcome the Hubble friction. We can label each
solution by a continuous parameter ¢ with the corresponding map

2\/
Pec = po+¢, (92) a_(f% (2.3)
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Figure 2.1: The toy model potential V(p, ) given in (a) together with a typical inflationary
trajectory indicated with the solid black line.

where the prime / denotes a derivative with respect to efolds d/dN =
d/(Hdt). This transformation identifies all the trajectories in (é) and
hints at the existence of a shift symmetry for the perturbations. In flat
gauge, the isocurvature perturbation o is associated with dp and the curva-
ture perturbation R with ﬁae, which equals % ) (92) in this toy model.
To find the effect of the transformation on the perturbations, we split
p = po+ o and (92)/ = (0(2))/ (1 —7R’). This allows us to determine how a
small ¢ changes o and R’. In the long wavelength limit every transformed
set of perturbations (o, R.) provide a new solution to the equations of
motion. This is because homogeneous perturbations map background so-
lutions onto each other. Therefore, we expect the following symmetry for
linearized perturbations

2
oc—o+c¢, R —-R +=c (2.4)
K

Given the shift symmetry of o, the isocurvature perturbation is expected
to be massless and freeze after horizon-exit. Meanwhile, the symmetry also
indicates that R has a growing solution that is dictated by the constant o
on superhorizon scales.

To get an intuitive notion of the perturbations behavior, we employ
the N formalism [199-203]. From the Friedmann equation and the exact
solution (P.9), the number of efolds until the end of inflation is N = p26?/4—
1/2. The curvature perturbation at the end of inflation is

2N,
(pd6)« + 75,0*, (2.5)
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where (pdf). and 0p, are field fluctuations with typical amplitude 5* at
horizon-exit of the k., mode. This yields the following power spectrum of

curvature perturbations

H? (1 4N?

Here the first contribution has an adiabatic origin, just like in the single-field
models, and the second term corresponds to the conversion from isocur-
vature to curvature modes on superhorizon scales. When the radius of
the trajectory is_small enough, namely 8¢, < k2 < 8¢,N2 ~ 4N, the
second term in (R.0) dominates. Then the final power spectrum becomes
Pr(ky) ~ H2N2/(n%k?), which is generated by one single degree of freedom
— the isocurvature mode.

2.3 Shift-symmmetric orbital inflation

To construct generic models with the above properties, we begin with
an axion-dilaton system in a non-trivial field manifold (6, p) with kinetic
term K = —1 (f(p)9,00"0 + 9,p0"p). This field space, of curvature R =
fg /21— f,p/ f, arises generically from UV completions of inflation in quan-
tum gravity or from an effective field theory (EFT) viewpoint. To realize
shift-symmetric orbital inflation, we assume the inflationary trajectory to
be isometric, i.e. along the 6 direction at any (constant) radius in field
space. The potential can be derived by generalizing the Hamilton-Jacobi
formalism [200, 204-206] to a two-field system (See Appendix 2A). It has

the general form
2

V =3H? - 2£, (2.7)
fp)
where H is a function of 6 only, Hy = dH/df and f(p) > 0. The model
(El]) is recovered for H o 6 and f(p) = p?, corresponding to a flat field
space parametrized by polar coordinates. This non-linear system admits
exact solutions

p = Po- (2.8)

Thus the inflaton moves in an orbit of constant radius, as ensured by the
Hamilton-Jacobi formalism. As in the toy model, this trajectory is not
along a geodesic. Here the tangent and normal vectors to the trajectory
are 7% =1/y/f(1,0) and N* = (0,1), and the radius of the turning trajec-
tory is a constant given by k = 2f/f,. It follows that all these trajectories
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are neutrally stable: a small perturbation orthogonal to a given orbital tra-
jectory will bring us to one of the neighbouring trajectories (See Appendix
2B).

2.4 Analysis of perturbations

In flat gauge, the comoving curvature perturbation R is defined as the
projection of the field perturbation along the inflationary trajectory R =
\/%Eéqﬁa, and the isocurvature perturbation o corresponds to the orthog-
onal projection o = N ;d¢% Then for generic multi-field models, the

quadratic action of perturbations takes the following form [69]
1 . 2H \?
S — 5/d‘lxa‘g [26 <R 0) +6% —pPo® 4 ...
K

where ellipses stand for the gradient terms —(9;0)% — 2¢(9;R)?. The in-
teraction between curvature and isocurvature modes is given by the term
a’(8¢H /r)Ro. To guarantee perturbative analysis we require that v/8e/k <
1 [69, 07]. The mass of entropy perturbations is defined as u? = Viyy +
eH? (R +6/ /-@2), where the first term is obtained from the standard Hessian
of the potential Vin = NN? (Vy, — ¢, Ve), the second and third terms
correspond to the field space curvature and turning contributions respec-
tively.

For shift-symmetric orbital inflation, we expect the isocurvature pertur-
bations to be exactly massless, as in the toy model, and this is confirmed by
using (@) to show p? = 0. This implies that the quadratic action (@) has
the combined shift symmetry (R.4), as in the toy model. The power spectra
of perturbations in the massless limit can be directly estimated from the
coupled evolution of perturbations [69]. When p = 0, the linearized system
simplifies in the superhorizon limit, yielding

2 H
R} = —0, 0:—*,
k K,k K 27

, (2.9)

(2.10)

where * denotes evaluation at the time of horizon crossing. That is, on
superhorizon scales the isocurvature perturbation quickly becomes a con-
stant, and it sources the growth of R. At the end of inflation, the primor-
dial curvature perturbation can be expressed as Ry = R.+2N.0y/k, where
the first term is the curvature perturbation amplitude at horizon-exit, and
the second term comes from the isocurvature source. Thus these two con-
tributions are uncorrelated with each other, and the dimensionless power
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spectrum for R is given by

2

H
Pr= g5 (1+0), (2.11)
T2 €y

where C = SE*N*Q / K2 represents the contribution from isocurvature modes.
This result agrees with the 6 N calculation for the toy model given in (@)
The full calculation via the in-in formalism gives the same answer up to
subleading corrections [69]. Note that the power spectrum is completely
determined by the isocurvature perturbations if C > 1, which corresponds
to trajectories with a small radius x or, equivalently, significant turning
effects with 8¢, < k2 < 86*Nf. Thus at the end of inflation, curvature
perturbations are highly enhanced compared to the ones at horizon-exit.
Meanwhile, the isocurvature power spectrum for S = o/ V/2¢ remains un-

changed as Ps = %. Therefore, the amplitude of the isocurvature per-
turbation is dynamically suppressed, i.e. Ps/Pr ~ 1/C < 1. The details
of how Ps # 0 can generate isocurvature components in the CMB are
rather model-dependent, and one cannot automatically claim that a sup-
pressed ratio Ps/Pg is compatible with observations. However, if R and S
contributed similarly to the curvature and isocurvature components in the
CMB, the result is compatible with current constraints.

2.5 Phenomenology

inflation. For any positive C, from ), the tensor-to-scalar ratio can be
expressed as r = 16¢,/(1 4+ C), and the scalar spectral index is ny — 1 =
dnbr — ¢, — . + (dC/dN)/(1 + C), where we used dlnk = dN. Note
that %]X;‘ = —1, since N, counts the number of efolds backwards. These
predictions depend on the function H(#). As in single field inflation, this
function determines how slow-roll parameters € and 7 = €’/e scale with N,.

For concreteness, we consider models with H ~ 6P. Solving (R.§) for
O(N) yieldsE €x ~ p/(2N,) and 1, ~ 1/N,. The predictions for ns and r
are therefore well approximated by

We now turn to the observational predictions of shift-symmetric orbital
o

p+1 4p 8pr?

e~ - ~_ PR
s N. K2+ 4pN. T N.x2 1 4pN2

(2.12)

2We note that for 0 < p < 1 this toy model is not well defined as § — 0, as can be
seen in (R.7). This is not a problem as the inflationary period we are interested in occurs
before that point is reached. The true underlying potential would have to be completed
in some way. This is similar to case with say axion monodromy.
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We plot these results against the Planck 1o and 20 contours [53] in Fig. @
N, is taken to be between 50 and 60, and the radius k2 varies between 1
and 10°. The purple region is for p = 1, corresponding to the toy model
(@), and we also show the predictions for p = 0.5 (red region), p = 0.2
(yellow region) and p = 0.1 (green region).

H -~

—p=1

o1sf — =05 \
p=02 \\

\ \\
0.05 i
\ P~
=
0.00 - -
0.93 0.94 0.95 0.96 0.97 0.98 0.99
ns

Figure 2.2: The analytical predictions () for (ns,r) compared to the Planck 1o and 20
contours [53]. We show the predictions for wavenumbers which cross the horizon 50—60 efolds
before the end of inflation. The predictions for ny — r depend on the value of x € [1,1000],
where the values (1,2, 4, 8,16, 32,64, 128, 256) are depicted with thick lines (from bottom to
top).

Notice that ns and r only depend on the value of k and are therefore
insensitive to the details of the field metric. When x — 0o one recovers the
predictions of chaotic inflation with V oc ¢??. Meanwhile as s decreases,
predictions are pushed downwards and to the left in this ng — r diagram.
Therefore, in the case of power-law potentials only for small p do the pre-
dictions remain within the Planck contours. The interesting regime here
is still the case with significant turning (small x or C > 1), where the fi-

nal power spectrum Pr =~ Hﬂ’zfﬁ mainly has an isocurvature origin. Then
the tensor-to-scalar ratio is given by r = 2x2/N2 = 16¢,/C, which is sup-
pressed. The spectral index reduces to ns — 1 = —(p + 2)/N, which, for
small p, lies in the sweet spot ns = 0.9649 £ 0.0042.

Another important observable is primordial non-Gaussianity, which is
currently bounded by Planck through fi%¢ = 0.8 + 5 [208]. There are ex-
amples in the literature of how O(1) local non-Gaussianity can arise in
multi-field models, especially when the coupling between isocurvature and
curvature modes is large [99, 209-211] - see [212] for a review. There are
also examples of how small levels of non-Gaussianity can arise in multi-
field models [213-215]. However, in most cases a detailed analytic under-
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standing of the size of the non-Gaussianity is lacking because the asso-
ciated dynamics is non-linear and complicated. This is not the case in
shift-symmetric orbital inflation, where we find that we can both easily
satisfy the Planck constraint and crucially understand its origin analyti-
cally. The amplitude of local non-Gaussianity can be determined using the
0N formalism. In a generic multi-field inflation model with curved field
manifold, we have fio¢ = 2G®G*“IN, N Npq/(G®N,N,)? [209, 216], where
Gap, = diag{f(p), 1} is the field space metric, N, and Ny; are derivatives of
N with respect to the fields (0, p). To gain some analytical understanding,
here we still focus on models with H ~ 6P, where N can be expressed as
N = f(p)6?/4p —p/2. The amplitude of local non-Gaussianity then follows

5 C?  K°R
loc
=gl 2.13
where we used the relation C = 2p?/(e,x?). When s — oo, we have C — 0
and C?k%? — 0. Thus the second term in () vanishes, which leads to
the single field result fll\?ﬁ = 51, /12 as expected. The enhancement of non-
Gaussianity is possible in the intermediate regime C ~ O(1), where the
transfer from isocurvature to adiabatic modes is inefficient. In that case,
ll\?f ~ —5pR /12 can be large if the field space is highly curved.

For the interesting regime with C > 1, the NV expansion is dominated

by N, and N,,. This then leads to what, at first sight, appears as the

counterintuitive result that fll\?f is negligible and slow-roll suppressed

5N, 5 k2R
loc pp
~_——tL——p(1—— ). 2.14
NL = ¢ Z\/p2 1277 < 2 ) ( )

This is the same as happened in the calculation of the power spectrum:
the contribution to the curvature perturbation sourced by the isocurva-
ture modes dominates the final result. The bispectrum is found to be
slow-roll suppressed, just like in single field inflation, but there are small
corrections from the field space curvature, which violates Maldacena’s con-
sistency relation [217, 218]. We have recently confirmed this result via a
scaling symmetry approach in [71].

2.6 Discussions

We have proposed a class of multi-field inflationary models that demon-
strate a new type of attractor trajectory along the isometry direction in
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field space. Here the isocurvature modes become massless and freeze on
superhorizon scales. Moreover, when the turning effects become signifi-
cant, the curvature perturbations keep growing after horizon-exit and thus
isocurvature modes are dynamically suppressed. As a consequence, these
multi-field models yield the single-field-like phenomenology favored by ob-
servations.

Additional isocurvature perturbations will either decay if they are mas-
sive or freeze if they are light. Therefore, although our computations were
done in a simple two-field setting, we expect the conclusions will continue
to hold in multi-field extensions with more than two fields, provided that
the number of additional light isocurvature fields is not too large.

One counterintuitive result of shift-symmetric orbital inflation is the
negligible amount of local non-Gaussianity. Here the isocurvature degree
of freedom can be the dominant contribution to the bispectrum, but in
such cases fni, is slow-roll suppressed. This unusual result teaches us
a generic lesson: that in multi-field models, even if the isocurvature-to-
adiabatic conversion is very efficient, the resulting non-Gaussianity can
still be suppressed. A large coupling between curvature and isocurvature
modes enhances the transfer of non-Gaussianity, but for this transfer to
generate large non-Gaussianity, one needs sizable self-interactions affecting
the isocurvature field during horizon crossing [99, 207]. In this class of sce-
narios, however, the shift symmetry along the radial direction (R.4) has a
role in suppressing the self-interactions of the isocurvature field (see [71]).
Therefore, it is perfectly fine to study multi-field models with significant
and sustained turning trajectories, without worrying about generating large
non-Gaussianity.

Our model has important implications on the realization of inflation in
UV-complete theories. Contrary to what is usually assumed, and as em-
phasized in [69], it is not always necessary to stabilize all compactification
moduli, or to have a large mass hierarchy between the inflaton and other
fields. The most problematic effects usually associated with multi-field ef-
fects — the generation of isocurvature perturbations and non-Gaussianity
at unacceptable levels — cancel each other in the shift-symmetric orbital
scenario. From an EFT point of view this can be traced back to the effect
of derivative interactions among the curvature and isocurvature perturba-
tions that are absent in single-field inflation. These are unavoidable on
curved trajectories and curved field spaces and, therefore, ubiquitous in
string compactifications.
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2.7 Appendix 2A: Hamilton-Jacobi Formalism

Here we apply the Hamilton-Jacobi formalism [200, 204-206] to derive the
potential for shift-symmetric orbital inflation, replacing the potential as an
input function with the Hubble parameter H(¢) which leads directly to the
inflation dynamics.
Friedmann’s second equation yields
¢’ :

leading to the Hamilton-Jacobi form of the first Friedmann equation
V =3H” - 2H, (2.16)

with all functions now being explicitly dependent on ¢. Therefore, if H(¢)
is known, so is V(o).
For the multi-field case, we simply generalise, ¢ — ¢%, so equations

(l‘215l) and (bld) become

ia b ib
690G Gud

H=¢°H, = —
¢ 2 2

(2.17)

and
3H? =V +2H"H,. (2.18)

which we use to construct the generic potentials for shift-symmetric orbital
inflation. The important requirement here is that the inflaton trajectory
is along the isometry direction at any radius. Thus for the field space
(0, p) with metric G4, = diag{f(p),1}, the inflaton should move in the 6

direction for any value of p. For this behaviour, equation () simplifies

2
to3H?2 =V + 2%. Therefore, we conclude that our two-field inflationary
model has a potential of the following form

_ 2 _ o970
V = 3H(0) 250 (2.19)

2.8 Appendix 2B: Stability Analysis

Here we demonstrate the neutral stability of the exact solutions. We have
seen that there is a continuous set of orbital solutions parametrized by pg
and that normal perturbations move us freely between these ‘attractors’, so
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the system is not stable in the usual sense. The property we need to prove
is that small perturbations shift us to another inflationary solution p = 0.

Each attractor solution

corresponds to a point in the (p,6) plane. These points are all different
and lie on a curve, therefore the stability of this system is non-trivial to
prove analytically. If we simply perturb the field equations we will find
zero eigenvalues associated with the perturbations that move us between
attractors. Moreover, it is not obvious how to find variables such that
the linearized system of perturbations becomes diagonal. Introducing the
variables

_ fH
2(0,p,0,0) =410 — 2;ipp' + 2, (2.20)
y(0,p,0,p) =o' +2, (2.21)
20,p) =1 93, (2.22)
6

here a prime denotes a derivative with respect to the number of efolds
(..)) = % (..). Remember that H = H(#) and f = f(p). Our definition of
stability now amounts to the presence of a fixed point at (x,y) = (0,0).

For H ~ 6 the potential in () satisfies the following scaling relation

OV — 2Ly Zov (2.23)

fo?
This ensures that the equations for x and y diagonalize at the linear level,

and below we prove linear stability for the models H ~ 6, although it
applies to any power law H ~ 6™ and more general models.

Linear stability analysis

In terms of x, y, p and z, the field equations and second Friedmann equation
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become
o+ (3 )z + (2 (fip)p - g(e)> (r')? (2.24)
+HE2E(0) (e — ) =0,

Y+ B-ay+2(=5) - P+ 2) (2.25)

—9(0) (o))" + 229 (9) (e — e0) = 0,

2
=2y —2) (1-g(0) + (%) 552 (2 +2), (2.26)
o=tz (2.27)
22 | @

e= 10D Ll (2.28)
where €y = T22/3 All the terms in brackets are combined to be manifestly

zero on the attractor, and we have introduced the model specific function
g(0) = % Note that g(#) is in general a function of z and p, but it
0

reduces to a constant in the case when we have a power law H(0) ~ 6",
and it is zero for n = 1.

In terms of the four variables, shift-symmetric Orbital Inflation is given
by (z,y,2',p") = (0,0,—4(1—g(h)),0). To prove it is the attractor we must
show (y,p’) = (0,0) is a fixed point. Note that the friction term is very
large during inflation. We can already see that without the friction the
system would be unstable, so we now establish whether the friction term is
in fact large enough to make the system stable.

Linearly perturbing around (y, p’) = (0,0) with € = %2/3 yields
o'+ (3 - Z+22/3) o — 2995y — o, (2.29)
8y’ + ( 27 + 15 9(9))) 8y =0, (2.30)
52 = 2(1 — ¢(0))5y + (—f') bybe (4 2), (2.31)
op = fpouor (2.32)

For constant g(f) below we explicitly prove stability. For a general g(6)
we express it in terms of z and p and integrate the equations numerically.
However, we expect the system to be stable. If (1 — g(#)) takes values of
order 1 and does not vary too rapidly, then z will take large values during
inflation and behave smoothly as well. In that case we see from () and
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() that 02’ and dy’ are dominated by the friction terms —3dx and —3dy
respectively. Therefore, we expect both of them to decay like e 3V. Finally
(@) then implies that we quickly converge to the fixed point.

Power law inflation H ~ 0™

In the case of fower law inflation with 1 — g(f) = 1, using z = 29 — %N,

we can solve (R.30) and () yielding

ox = dxg (221%2:0) e 3N 4 5y0(”T) (22125:),2,;)) e=3N.

n/2
oy = oy (%) e, (2.33)

which in () demonstrates that (y,p’) = (0,0) is a fixed point. This
proves stability for power law inflation.
Linearized equations in the slow-roll parameters

We can write the linearized perturbation equations in terms of the slow-roll
parameters € and 7

(2.34)

€= —5 =— 7

2Hj & _ AHyp 4 Hy\®
fH2 "THe T T fH T

In particular, the model specific function g(f) becomes

g(0) = (2¢ — 77)\/1 ) (2.35)

We see that g(€) is not necessarily positive, but it will be small if both the
slow-roll approximation and the condition 7 < /€ hold true. The linearized
equations (@) - () are then given by

6x' 4 (3 —€) oz — 2:/’7?,\/ oy =0, (2.36)

5y'+<3—e+ =73 (26 (26—n)ﬁ>>5y:0,
2
5z =2 <1 — (26 — U)\/éf) Sy + <J}7p> 51/;51’

(5[)/ _ %(53/;590'
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In the slow-roll approximation dx and dy are therefore exponentially de-
caying

dx ~ dxge 3N, (2.37)
Sy ~ dyge 3. (2.38)

Looking at the equation for §z we find that a sufficient condition for stability
is that e 3" /e goes to zero exponentially fast. This requires 7 < 3, which
is automatically satisfied assuming the slow-roll approximation n < 1. In
addition, € cannot be arbitrarily small.






