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1

1|Introduction

“I... a universe of atoms, an atom in the universe.”

Richard P. Feynman



2 Introduction

1.1 The very early universe cosmology

Since ancient times people have been observing the sky and asking philo-
sophical and theological questions: “Where do we come from?”, “How was
our world created?”. From those times science has made a huge progress and
nowadays, with the help of precision measurements and observations within
the theoretical approaches of modern cosmology, humanity has learned a lot
about space-time and our Universe. Below we briefly outline the most im-
portant stages of this development, based mainly on Refs. [1–3]. Through-
out the introduction we use natural units h̄ = c = 1 and the reduced Planck
mass defined by Mpl = (8πG)−1/2.

1.1.1 Cosmological ideas prior to inflation

The breakthrough in modern cosmology started from Albert Einstein with
the appearance of the Theory of General Relativity in 1915 [5]. It merged
the geometry of space-time and the energy-momentum tensor of matter into
a single equation, providing an accurate description of gravitation that has
been tested and confirmed by many experiments to date. Despite the fact
that matter changes the geometry of the space-time, on the very large scales
our Universe appears to be flat, homogeneous and isotropic. The most
general solution for such universe was found independently by Friedmann,
Lemaître, Robertson, Walker (FLRW) [6–10] in the 1920s and 1930s, that
is given by the metric

ds2 = −dt2 + a(t)2
(
dr2 + r2(dθ2 + sin2 θdϕ2)

)
, (1.1)

where a(t) is the scale factor which describes the expansion or contraction of
the universe. In particular, the expansion rate is parametrised by the Hub-
ble parameter H(t) ≡ ȧ(t)

a(t) . Historically, Lemaître was the first who in 1927
suggested that the universe could be traced back in time to an originating
single point, which he called the “primeval atom”. The first attempt to
observe the expansion of the universe was done by Slipher [11] in 1912, who
noticed the shift of spectral lines of galaxies. However, he did not relate this
to the actual expansion of the universe, but rather with “island universes”
outside our Milky Way. Much later, Hubble and Humason [12, 13] com-
bined their own galaxy distance measurements with Slipher’s measurements
of redshifts and found that galaxies are moving away at speeds proportional
to their distance. Lemaître understood that this is caused by the expan-
sion of spacetime. Nowadays this velocity-distance relation is called as the
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Hubble–Lemaître law
v ≃ Hd, (1.2)

which established the expansion of the universe as a commonly accepted
scientific fact.

Now, for the FLRW metric the energy-momentum tensor is of the form
of the energy-momentum tensor of a perfect fluid, with a pressure p and
energy density ρ. From Einstein equations Friedmann derived the evolution
equations for the homogeneous and isotropic case, that are of the following
form

3M2
plH

2 = ρ, (1.3)

M2
plḢ = −1

2
(ρ+ p) , (1.4)

and called Friedmann equations. With known p and ρ it is possible to find
the corresponding scale factor, which allows us to trace back the expansion
history of the universe. Extrapolating the cosmic expansion backwards in
time leads to the idea that the Universe had a finite age and started from
a hot and dense state, that gave rise to the hot Big Bang theory.

In 1948 Gamov [14] suggested that light elements (namely deuterium,
helium, and lithium) were produced at the times when the Universe was
hot enough for nucleosynthesis, that is now called Big Bang Nucleosynthe-
sis (BBN). As the Universe cooled down due to its expansion, protons and
electrons combined to form neutral hydrogen atoms, initiating the recom-
bination epoch. Since Thomson scattering of photons on free electrons was
not efficient any more, the universe became transparent to photons and
they could travel freely, i.e. decoupled. This thought led Gamov to the
realization that some relic radiation should be present since those times,
which we call now the cosmic microwave background (CMB). In the same
year [15] Alpher and Herman estimated the present day temperature of
the relic radiation to be T ∼ 5K. Remarkably, that CMB was first de-
tected by accident, by Penzias and Wilson [16] in 1965, during radiometer
calibrations that they used for satellite communication experiments at Bell
Telephone Laboratories. This was a sensational discovery of radiation, that
was emitted about thirteen and a half billion years ago, only a few hun-
dred thousand years after the Big Bang, long before stars or galaxies ever
formed. In 1978 they received the Nobel Prize in Physics for this discovery.

The formation of galaxies remained an open question. Already in 1946
Lifshitz [17] calculated that the amplitude of density perturbations grows
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too slowly. To form galaxies, the right level of primordial density inho-
mogeneities was required: too small leads to the absence of galaxies, too
large means having different structure than the observed one. Later, in
1967 Sachs and Wolfe [18] showed that the inhomogeneities may be poten-
tially visible as small variations in the temperature of CMB in different
directions on the sky. In 1992 the Cosmic Background Explorer (COBE)
satellite confirmed this prediction with the detection of the CMB back-
ground radiation [19, 20] with an average temperature of T ∼ 2.7K and
temperature variations of order 10−5, that reflect the presence of small
density inhomogeneities required for structure formation.

Despite the stunning successes of the hot Big Bang theory, supported
by measurements of the CMB and observations of Hubble’s Law together
with predictions for the relative abundances of light elements during BBN
[21–23], several problems remained unsolved. The first one is the horizon
problem. Within the Big Bang cosmology, distinct patches of the CMB
were not in causal contact at recombination. However, the observations
show the isotropy in the CMB temperature across the entire sky and it is
unclear why the causally-disconnected patches share similar physical prop-
erties. In addition to that, from the CMB data the geomety of the universe
appears to be nearly flat. To satisfy within the Big Bang theory today’s
observed values, extremely flat initial conditions would be required. This
fine-tuning forms the flatness problem. Finally, the origin of primordial
fluctuations that seed all the structure remains unknown. In Section 1.2 we
will show how the framework of cosmic inflation deals with the aforemen-
tioned problems.

1.2 Inflation

The main idea of the inflationary scenario is that the very early universe
could be in an unstable vacuum-like state with high energy density and
equation of state p = −ρ that drives extremely rapid exponential expan-
sion prior to the standard Big Bang evolution. After inflation ends, the vac-
uum energy is transformed into thermal energy in the form of the Standard
Model particles, initiating the radiation dominated phase of the Universe.
The transition from the phase of accelerated expansion to the thermal uni-
verse is called reheating, and will be described in detail in Sec. 1.3. Because
of the exponential expansion, distant points on the CMB become causally
connected and any initial curvature stretches to be nearly flat. That solves
both the horizon and flatness problems. In addition to that, inflation also
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explains the origin of structure in the universe, producing quantum density
fluctuations that expanded during inflation, forming the higher density re-
gions that condensed over the next several hundred million years into stars,
galaxies and us.

Historically, the space that expands exponentially with a scale factor
a(t) ∼ a0 e

Ht, with H being the Hubble parameter, was first described in
1917 by de Sitter in [24, 25], even before Friedmann’s solutions. However,
for a long time its physical meaning remained unclear and it was used mostly
for developing quantum field theory in curved space. The possibility of an
exponential expansion during the early stages of the universe’s evolution,
although for superdense baryonic matter, was first considered by Gliner in
[26]

In 1980 Guth [27] for the first time proposed a solution to the horizon
and flatness problems by introducing the exponential expansion (inflation)
of the universe trapped in a supercooled metastable vacuum state ϕ = 0.
Inflation was associated with the phase transition to a stable state ϕ0 ̸= 0,
and was accompanied by bubble nucleation via quantum tunneling. Bubble-
wall collisions were responsible for reheating the universe, however collisions
of the very large bubbles were destroying the homogeneity and isotropy
after the end of inflation. This scenario was subsequently named as “old
inflation”.

The solution to this problem was introduced by Linde and indepen-
dently by Albrecht and Steinhardt in [28, 29] and called the “new inflation”
or “slow-roll inflation” scenario. In the new approach the supercooled state
and tunneling out of a false vacuum state was not required any more, but
instead inflation occurred when a scalar field ϕ was slowly rolling down
its potential V (ϕ). The reheating era this time happens not because of
bubble wall collisions, but via creation of elementary particles by damped
oscillations of the classical field near the minimum of its potential.

1.2.1 Slowroll inflation

The idea that inflation may be driven by a scalar field has revolutionized
the whole cosmological community. Since inflationary dynamics is highly
dependent on the underlying inflationary potential V (ϕ), a big variety of
models have been already developed to date 1. It is a challenge of the
present-day cosmology to distinguish and falsify among all of them. Below
we will describe the conditions on the potential that would enable inflation

1This may also be an effective description of some ultraviolet complete theory.
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to happen.
Before we proceed, let us first outline the general conditions required for

inflation to occur. To start with, the accelerated expansion ä > 0 requires

ä

a
= H2(1− ϵH) > 0, (1.5)

where the parameter ϵH is called the first Hubble slow-roll parameter and
defined as

ϵH ≡ − Ḣ

H2
. (1.6)

The inequality (1.5) implies that to ensure the accelerated expansion, ϵH
should be in the range 0 < ϵH < 1. In the limit ϵH → 0 the Hubble
parameter H = const and hence the space-time becomes de Sitter space
ds2 = −dt2 + e2Htdx2. In order for inflation to end, the space-time has
to deviate from a perfect de Sitter space. However, for small and finite
ϵH ≪ 1 de Sitter space remains a good approximation, that’s why slow-
roll inflation is often called a quasi-de Sitter period. To sum up, inflation
requires ϵH < 1, while the slow-roll inflation ϵH ≪ 1.

To solve the horizon and flatness problems, inflation has to last long
enough. The current estimate is between 50 and 60 e-folds 2. This condition
is ensured by introducing the second Hubble slow-roll parameter 3

ηH ≡ ϵ̇

ϵH
(1.7)

and the requirement |ηH | ≪ 1. The above condition guarantees that the
change of ϵH per Hubble time is small and therefore inflation can persist.

Finally, we can discuss what microscopic physics can lead to the condi-
tions ϵH ≪ 1 and |ηH | ≪ 1. We start from the general form of the action
for the inflaton field ϕ(t, x) with a canonical kinetic term and a potential
V (ϕ), minimally coupled to gravity, that is given by

S =

∫
d4x

√
−g

[
M2

pl
2
R− 1

2
∂µϕ∂

µϕ− V (ϕ)

]
, (1.8)

2Both problems are solved when the observable universe was smaller than the comoving
Hubble radius at the beginning of inflation (a0H0)

−1 < (aiHi)
−1. This restricts the

number of e-folds of inflation to Ntot = ln(ae/ai) > 64 + ln(TR/10
15Gev), with TR

being the reheating temperature. The number Ntot is smaller for the lower reheating
temperature.

3Alternatively it may be defined as ηH = − 1
2

Ḧ

ḢH
.
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where R is the Ricci scalar curvature of the space-time. The homogeneity
and isotropy of the background implies the inflaton field depends only on
time, i.e. ϕ = ϕ(t). For the FLRW space-time its dynamics is governed by
equations of motion

ϕ̈+ 3Hϕ̇+ Vϕ = 0, (1.9)

with Vϕ = dV
dϕ , together with two Friedmann equations

3M2
plH

2 =
1

2
ϕ̇2 + V, (1.10)

Ḣ = − ϕ̇2

2M2
pl
. (1.11)

With the above equations, the slow-roll parameters may be written in terms
of the scalar field and its potential as

ϵH =
3
2 ϕ̇

2

1
2 ϕ̇

2 + V
, ηH = 2

ϕ̈

Hϕ̇
+ 2ϵH . (1.12)

To satisfy ϵH ≪ 1 and |ηH | ≪ 1, one may see that the kinetic energy of
the inflaton field has to be negligible in comparison to the potential one,
as well as the field acceleration has to be small. This explains the name
slow-roll approximation, which is defined as

ϕ̇2 ≪ V, ϕ̈≪ Hϕ̇. (1.13)

The left inequality in (1.13) ensures that the Hubble parameter is nearly
constant Ḣ ≪ H2, leading to the quasi-exponential expansion with a ∼ eHt.
The right inequality allows one to neglect the acceleration term in (1.9)
that assures long enough inflation. Slow-roll inflation is an attractor in the
phase space (ϕ, ϕ̇), which means that non-slow roll initial trajectories will
very quickly converge to those that follow (1.13), as shown in Figure 1.1.
For the review see for instance Ref. [30–32].

Comparing (1.10) - (1.11) with Friedmann equations (1.3) - (1.4), one
may immediately find the energy density ρ = 1

2 ϕ̇
2 + V (ϕ) and pressure

p = 1
2 ϕ̇

2−V (ϕ) expressed in terms of the scalar field and its potential. In the
slow-roll approximation this leads to the equation of state w = p/ρ ≈ −1.

Alternatively, slow-roll conditions may be written in terms of the po-
tential as

ϵV ≡
M2

pl
2

(
∂ϕV

V

)2

≪ 1, |ηV | ≡M2
pl
|∂2ϕϕV |
V

≪ 1, (1.14)
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Figure 1.1: Attractor solutions for m2ϕ2 potential with m = 0.2Mpl in ϕ − ϕ̇ plane in
units of Mpl = 1. Solid curves are attractor solutions, that at large field values asymptote to
ϕ̇ = ±

√
2/3m and at small field values converge to the origin. Dotted curves show numerical

solutions for random initial values. The top right plot is a zoom-in into the area around the
origin. This figure is an adaptation of the one, presented in [31].

which are called potential slow-roll parameters. For single field models of
inflation and in the slow-roll regime, the potential and the Hubble slow-roll
parameters are related as

ϵV ≈ ϵH , ηV = 2ϵH − 1

2
ηH . (1.15)

However, in a broader class of models, including multi-field inflation, when
the inflationary trajectory does not follow the gradient flow of the potential,
their relation is much more involved, if possible at all 4.

1.2.2 Inflation beyond singlefield approximation

Single field inflation is the leading framework for the early universe physics
that sets the initial conditions and primordial density fluctuations in accor-
dance with observations. However, the energy scale of the very early uni-
verse may be as high as 1015 GeV 5 and could contain multiple scalar fields
that may participate in inflationary dynamics. Moreover, UV-complete the-
ories typically lead to effective field theory descriptions with many distinct

4In multi-field inflation there is no good definition of ηV .
5The precise magnitude is unknown and this number should be taken as a reference

value only.
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fields, in flat as well as curved field-space geometries. This motivates the
multi-field description of inflation, that we will outline below based on the
covariant formalism described by van Tent et al in Refs. [33–37].

The general form of the action for multi-field inflation is given by

S =

∫
d4x

√
−g

[
M2

pl
2
R− 1

2
GIJ(ϕ)g

µν∂µϕ
I∂νϕ

J − V (ϕ)

]
, (1.16)

where GIJ(ϕ) is the field-space metric and V (ϕ) is a multi-field potential
for scalar fields ϕI , with I = 1 . . . n, with n being the number of fields. The
background solution ϕI0(t) may be found from the following equations of
motion

Dtϕ̇
I
0 + 3Hϕ̇I0 + GIJV,J = 0, 3H2 =

1

2
ϕ̇20 + V, (1.17)

where ϕ̇0 =
√

GIJ ϕ̇I0ϕ̇
J
0 is the proper field velocity and Dt is a covariant

derivative whose action on an arbitrary vector AI is defined as DtA
I ≡

ȦI +ΓI
JK ϕ̇

JAK . Here ΓI
JK are the Christoffel symbols associated with the

metric GIJ(ϕ). In the multi-filed case the inflationary trajectory is a line
in multi-dimensional space, non-geodesic in general. At each point along
the trajectory unit vectors tangent and normal to the trajectory may be
defined as

T I ≡ ϕ̇I

ϕ̇0
, NI ≡ − 1

|DtT |
DtT

I . (1.18)

Next, the rate of turning (or simply, the angular velocity) of the inflationary
trajectory is defined as

Ω ≡ −NIDtT
I . (1.19)

The background equations of motion can be now projected into the tangent
and normal directions and written in the following form

ϕ̈0 + 3Hϕ̇0 + VT = 0, VN = ϕ̇0Ω, (1.20)

with VT = T IVI and VN = N IVI , such that the gradient of the potential
is written as VI = TIVT + NIVN . For Ω = 0 the field dynamics reduces
to the single field description and the background motion is geodesic. In
general, however, Ω ̸= 0, which may bring potentially observable physical
signatures, such as features in the primordial power spectra [36], that can
also lead to generation of primordial black holes and gravitational waves,
see recent works on this topic [38–40] and references therein.
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Non-zero turn rate also distinguishes the potential and Hubble slow roll
parameters in the multi-field case. The potential first slow-roll parameter
in the multiple-field case may be defined as [41]

ϵV ≡ 1

2

V IVI
V 2

. (1.21)

It follows [41, 42] that two alternative definitions of first slow-roll parame-
ters in multi-field inflation now are related as

ϵV = ϵH

(
1 +

Ω2

9H2

)
, (1.22)

which clearly shows how different ϵV and ϵH are in case of a non-zero turn
rate.

1.2.2.1 Mutifield inflation vs Swampland conjectures

The discussion regarding ultraviolet (UV) complete theories may lead to
the absolutely legitimate question: can inflation be embedded into a full
quantum theory of gravity? There are two ways to talk about this prob-
lem. The first one is the so-called top-down approach, which takes some UV
complete theory, like string M- or F-theory in higher dimensional space and
via compactification to four-dimensional space-time conclude which com-
mon features do the effective field theories (EFT) share. The second way
is to follow the bottom-up approach, the essence of which is to start with
a four-dimensional EFT coupled to gravity and identify the consistency
criteria that quantum gravity sets. Recently, Vafa in [43] introduced con-
sistency criteria named swampland conjectures. Before this work there were
other studies in this direction, however they have not gained so much at-
tention. For the recent reviews on the subject see Refs. [44–47]. The
swampland represents the space of quantum field theories which are incom-
patible with quantum gravity, opposite to the landscape, which includes
compatible EFTs with possible UV completions. The two conjectures di-
rectly question the possibility of a UV embedding for single-field inflation
[48]. We will briefly discuss them below 6, taking into account also the
recent investigations mentioned above.

Two necessary conditions that low energy four dimensional EFT, ob-
tained from string theory compactifications, conjectured to satisfy are:

6This is an active research direction nowadays and we present here the state of the
art of 2021.
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• Swampland distance conjecture. Quantum gravity effects sets a max-
imum distance in field space beyond which the low energy description
is not valid any more

∆ϕ < Mpl∆, (1.23)

where ∆ ∼ O(1).

• Swampland de Sitter conjecture. The potential of the four-dimensional
EFT should be steep enough to satisfy

Mpl
|∇V |
V

⩾ c or min(∇i∇jV ) ⩽ −c′V
M2

pl
(1.24)

where c, c′ ∼ O(1).

While the swampland distance conjecture is in a mild tension with single-
field inflation, the de Sitter conjecture has far more dramatic implications.
As we have seen in Sec. 1.2.1, the first slow-roll parameters should satisfy
ϵH ≃ ϵV ≪ 1, which automatically constrains the inflationary potential to
be flat, in order for slow-roll inflation to happen. This is in tension with the
requirement (1.24) and satisfying simultaneously ∆ ∼ O(1), c, c′ ∼ O(1).
Hence, if the criteria are true, this questions the existence of flat directions
in the potential or de Sitter minima, and therefore all single field inflation
models.

However, this is not the case for multi-field inflation. As was shown in
[41], when the inflationary trajectory is non-geodesic and has a non-zero
turning rate, it is possible to simultaneously satisfy both aforementioned
swampland conjectures. Because of the relation (1.22), it is possible to have
successful inflation with both ϵH ≪ 1 and ϵV ∼ O(1) when Ω2/H2 ≫ 1.
In addition to that, there is a lower bound on the turning rate Ω to satisfy
the second conjecture and agree with CMB observations.

It is worth mentioning, that the rigorousness of swampland conjectures
is still debated in the scientific community. Despite this, it is an important
step towards a better understanding of the UV completion of inflationary
cosmology and EFTs in general.

1.2.2.2 Inflation in curved fieldspace

Besides discussions about the shape of the inflationary potential V (ϕ), for
multi-field inflation there is also a freedom in the choice of the field-space
metric GIJ(ϕ) that is defined in the action (1.16).
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A revival of interest in curved field-space geometries was initiated by
Kallosh and Linde, with the development of their inflationary α-attractor
model [49–52]. Following the top-down approach discussed in the previ-
ous section, this class of models originate from supergravity theories with
a special choice of the Kähler potential and superpotential. The hyper-
bolic geometry, that is inherited by the theory, provides the exponential
stretching for the inflationary potentials, creating flat plateaus ideal for
slow-roll inflation. Because any initial potential is stretched exponentially,
the α-attractor model provides universal predictions for the scalar spectral
index and tensor-to-scalar ratio, that so far are in the very good agree-
ment with the latest observational constraints [53]. It is remarkable that,
because of the UV nature, this model is intrinsically a multi-field model
of inflation. In Chapter 4 we will present a comprehensive analysis of the
reheating process for the two-field α-attractors and demonstrate the sig-
nificance of the curved field-space geometry for efficient transition to the
radiation-dominated state of the universe.

A number of research works has followed after the appearance of α-
attractors. In particular, it was shown that the negative curvature of
the field space manifold may lead to tachyonic instabilities that destabi-
lize inflationary trajectories. This phenomenon was called the geometrical
destabilization of inflation [54–58]. Such instability may be catastrophic
for inflation, since huge instabilities may terminate it too early, however is
beneficial for reheating as will be discussed in more detail in the Part II of
the thesis. Another possible evolution scenario with a non-trivial field-space
manifold where the inflaton field orbits to the bottom of its potential, was
introduced in [59] and called hyperinflation. It has drawn a lot of atten-
tion and was followed by various developments in the context of non-trivial
field-space geometries and multi-field inflation [60–68].

One particular class of multi-field inflationary models was developed in
[69–73] and is called the ultra-light isocurvature scenario. In these models,
the perturbations orthogonal to the inflationary trajectory are massless,
but efficiently coupled to the inflaton. They freeze on superhorizon scales
and source the tangential (curvature) perturbation, that results in the pri-
mordial observables at the end of inflation having a similar phenomenology
as in the single-field case. The first exact realization of the ultra-light
isocurvature scenario is called shift-symmetric orbital inflation and will be
discussed in Chapter 2.
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1.2.3 Gauge fields during inflation

Gauge fields are unavoidable ingredients of any realistic field theory. For
instance, in the Standard Model the strong, electromagnetic, and weak in-
teractions are described by a non-Abelian gauge theory with the symmetry
group U(1)×SU(2)×SU(3), with the total amount of twelve gauge bosons
that include the photon, three weak boson and eight gluons.

Typically, scalar fields are the main characters of inflationary frame-
works, however gauge fields can also drive isotropic inflation 7. In [74, 75]
it was shown that gauge fields minimally coupled to gravity with a La-
grangian of the form

L = L (gµν , Fµν) =
M2

Pl
2
R+ LG (Fµν) , (1.25)

may lead to inflationary solutions. Here FA
µν = ∂µA

A
ν −∂νAA

µ−gfABCAB
µA

C
ν

is the field strength of the gauge field, g is the gauge coupling and fABC

are structure constants with gauge indices A = 1, 2, . . . , dimG of the gauge
group G. The generators are denoted as TA with the standard normaliza-
tion [TA, TB] = ifABCTC and Tr(TATB) = 1

2δ
AB. Above LG (Fµν) is a

general diffeomorphism- and gauge-invariant Lagrangian that may contain
powers of Fµν , where the space-time indices are summed up via the met-
ric gµν or the Levi-Civita tensor ϵµνρσ, and gauge indices are summed by
taking the trace. The change under the local gauge transformation with
U ∈ G is defined as

Aµ −→ A′
µ = − i

g
U−1∂µU + U−1AµU, (1.26)

Fµν −→ F ′
µν = U−1FµνU. (1.27)

In this set-up the choice of the non-Abelian gauge group is crucial. In
the Abelian case, in order to preserve the rotational symmetry of the flat
FLRW background, only the time-component of a vector gauge field may
be non-zero and depend solely on time due to homogeneity. Hoverer, such
a choice leads to a pure gauge configuration, since it implies the vanishing
field strength of the gauge field. By contrast, the choice of non-Abelian
gauge group allows us to keep spatial components Ai non-zero and at the
same time preserve rotational symmetry. To understand this, first let us
note that the time component A0 may be always set to zero by fixing a
gauge to a temporal gauge, i.e. there is always U = U(t) such that A′

µ = 0.
7This section in mainly based on [76].
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This fixes the gauge freedom up to space-time independent global gauge
transformations. The remaining global gauge transformations may be used
to preserve the rotational invariance, since due to gauge transformations
(1.26) two fields are related as (Ai)G = U−1AµU ≡G Ai, with constant
U ∈ G. It is known that upon spatial rotations A → (Ai)R = RijAj .
Hence, the rotational symmetry is preserved if the background configuration
is chosen such that AR = AG. Since any non-Abelian gauge group has an
SU(2) subgroup, the gauge group G may be chosen to be SU(2) or SO(3)
without loss of generality.

To sum up, a rotationally invariant and homogeneous background is
achieved via the ansatz

Aa
0 = 0, (1.28)

Aa
i = δai a(t)Q(t), (1.29)

where a(t) is a scale factor and Q(t) is a vacuum expectation value (VEV)
of the gauge field. In this ansatz the gauge group G is chosen to be SU(2)
and, hence, A ≡ a = 1, 2, 3.

Now let us come back to (1.25) and see that together with (1.28),(1.29)
it may indeed lead to inflationary solutions, i.e. to achieve simultaneously
ρ + 3p < 0 and ρ > 0. The simplest possible choice for LG (Fµν) would
be the Yang-Mills lagrangian, i.e. LG (Fµν) = −1

4
F a
µνF

aµν . However, in
the Yang-Mills theory ρ + 3p = 2ρ > 0, which have the equation of state
of radiation. Another choice is to consider higher terms in F a

µνF
bµν , but

the conditions to obtain accelerated expansion are not easily satisfied there
[77–84]. The way out is to involve terms with ϵµνρσ. The first possibility
would be F ∧ F ∝ ϵµνρσF a

µνF
a
ρσ, which is a total derivative and does not

contribute to the energy momentum tensor. Hence, the simplest non-trivial
choice appears to be (F ∧ F )2 = 1

4(ϵ
µνρσF a

µνF
a
ρσ)

2, which leads to p = −ρ
and hence satisfies the desired criteria.

Taking into account the aforementioned arguments, Refs. [74, 75] pro-
posed the Gauge-flation action of the form

S =

∫
d4x
√
−det(gµν)

[
M2

Pl
2
R− 1

4
F a
µνF

aµν +
κ

384

(
ϵµνρσF a

µνF
a
ρσ

)2]
,

(1.30)
where κ > 0 is a parameter of the theory with dimension M−4

pl . The energy-
momentum tensor is given by

Tµν ≡ −2√
−det(gµν)

δ
(√

−det(gµν)L
)

δgµν
= 2

δL
δF a

σ
µ
F a

σν + gµνL, (1.31)
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which for a homogeneous and isotropic configuration takes the form of the
energy-momentum tensor of a perfect fluid. From the above action it follows
that

ρ = ρYM + ρκ, p =
1

3
ρYM − ρκ, (1.32)

where ρYM stands for the energy density contribution from the Yang-Mills
part of the action and ρκ from the (F ∧F )2. When ρκ ≫ ρYM, the equation
of state w ≈ −1 which indicates the desired phase of accelerated expansion.

In [74–76, 85] it was shown that the action (1.30) indeed leads to an
attractor solution and the isotropic background is stable with regard to the
initial anisotropies and choice of initial conditions.

Despite of the beautiful idea of incorporating gauge fields as inflatons,
the Gauge-flation model does not match the observational constraints. It
turns out that it is impossible to satisfy simultaneously the bounds for
the tensor-to-scalar ratio and scalar spectral tilt. However, the search for
alternative gravitational wave production mechanisms initiated renewal of
interest in models that involve gauge fields. These, based on [86], will be
discussed in more detail in Chapter 3.

1.2.4 Observations

To extract observables from the inflationary epoch, in 1980-1990s Bardeen,
Kodama, Sasaki, Mukhanov et al [87–91] developed the cosmological per-
turbation theory. We will briefly outline how quantum perturbations that
originate during inflation generate the temperature anisotropies in the CMB
as well as produce gravitational waves.

1.2.4.1 Perturbation theory

The small perturbations of the metric and the energy-momentum tensor
may be written as 8

gµν(t, x) = ḡµν(t) + δgµν(t, x),

Tµν(t, x) = T̄µν(t) + δTµν(t, x),
(1.33)

where ḡµν is the background flat FLRW metric (1.1) and T̄µν(t) the homo-
geneous and isotropic energy-momentum tensor. Here µ = 0, 1, 2, 3 denote
the space-time indices. It is convenient to perform a scalar-vector-tensor

8This Section is based mainly on [4].



16 Introduction

(SVT) decomposition of the perturbations, then the perturbed space-time
metric takes the form

ds2 = −(1 + 2A)dt2 − 2a(t)Bidx
idt+ a2(t)(δij + hij)dx

idxj , (1.34)

where i, j = 1, 2, 3 label the spatial directions. Here the 3-vector Bi may
be written as a combination of the gradient of a scalar and a divergenceless
vector Bi = ∂iB + B̂i with ∂iB̂i = 0, and the rank-2 symmetric tensor
hij may de decomposed into a scalar, vector and tensor as hij = 2Cδij +
2∂⟨i∂j⟩E+2∂(iÊj)+ Êij with divergenceless vector Êi that satisfy ∂iÊi = 0

and a divergenceless and traceless tensor perturbation Êij with ∂iÊij = 0,
Êi

i = 0 and

∂⟨i∂j⟩E ≡
(
∂i∂j −

1

3
δij∇2

)
E,

∂(iÊj) ≡
1

2

(
∂iÊj + ∂jÊi

)
.

(1.35)

Hence, perturbations decompose into scalars: A,B,C,E; vectors: B̂i, Êi;
tensors: Êij , which have 4+4+2 degrees of freedom (d.o.f.) respectively.
Invariance of the theory under the coordinate transformations removes 4
more d.o.f., leading to only 6 physical d.o.f. At linear order the Einstein
equations for scalars, vectors and tensors do not mix and hence can be
studied separately. This is why the SVT decomposition is useful. Vector
perturbations quickly decay with the expansion of the universe and not
produced at all in standard single-field inflationary models. Therefore, we
will focus only on the description of scalar and tensor perturbations in the
forthcoming sections.

Before we proceed further, let us note that the metric perturbations in
(1.34) depend on the choice of coordinate system, i.e. are gauge dependent,
and hence are not uniquely defined. This problem was resolved by Bardeen
[87], who introduced special combinations of metric perturbations that do
not change under coordinate transformations. Gauge invariant variables
are called the Bardeen variables and defined as

Ψ ≡ A+H(B − E′) + (B − E′)′, Φ̂i ≡ B̂i − Ê′
i,

Φ ≡ −C +
1

3
∇2E −H(B − E′), Êij ,

(1.36)

which for convenience are written in conformal time dτ ≡ dt/a(t) with the
conformal Hubble rate H = a′/a. These variables cannot be removed by a
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gauge transformation. Two more gauge-invariant quantities that combine
metric and matter perturbations are called curvature perturbations

ζ = −C +
1

3
∇2E +Hδρ

ρ̄′
,

R = −C +
1

3
∇2E −H(v +B),

(1.37)

where vi = ∂iv is the bulk velocity, that appears from the perturbed energy-
momentum tensor, in particular T i

0 = (ρ̄ + p̄)vi. In case of the adiabatic
fluctuations, ζ and R become constant and coincide with each other on the
scales where the physical wavelength is larger than the comoving horizon.
As we will see in the next section, they play a major role in describing
scalar perturbations from inflation.

Another possibility to deal with the gauge-dependence is to fix the
gauge, i.e. set two of the four scalar metric perturbations to zero: B =
E = 0 in the Newtonian gauge, C = E = 0 in the spatially-flat gauge and
A = B = 0 in synchronous gauge.

1.2.4.2 Scalar perturbations in single fieldinflation

Let us start by describing 9 the scalar fluctuations for the single field infla-
tionary action (1.8) by perturbing the matter inflaton field as

ϕ(t, x) = ϕ̄(t) + δϕ(t, x), (1.38)

where ϕ̄(t) is a solution to the background equations of motion. The cou-
pling of the inflaton perturbations δϕ to the metric depends on the gauge
choice. We fix the gauge to the spatially flat one, meaning that A and
B are related to the inflaton fluctuations through the Einstein equations.
Solving the Einstein equations together with the equations of motion of
the perturbed field, leads to the linear equation of motion for the gauge-
invariant perturbations. Introducing variables f ≡ a δϕ and z ≡ aϕ̄′

H and
going to Fourier space results in the Mukhanov-Sasaki equation for the mode
functions

f ′′k +

(
k2 − z′′

z

)
fk = 0. (1.39)

This is the master equation for inflationary perturbations. It is valid on all
scales, exact (does not assume the slow-roll approximation) and contains
the coupling between matter and metric fluctuations. This equation has the

9More detailed analysis may be found for instance in Refs. [3, 4, 92].
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form of the harmonic oscillator equation with a time-dependent frequency
ω2(k, τ) = k2 − z′′

z . With the knowledge of the second order action for
the Fourier components of the inflaton perturbations, the quantization of
the theory is performed in complete analogy with the quantum harmonic
oscillator problem. The quantisation of the field f is implemented as

f̂(τ, x) =
1

(2π)3

∫
d3k

[
fk(τ)âk(t)e

−ikx + fk(τ)
∗â†ke

ikx
]
, (1.40)

where â†k, âk are creation and annihilation operators that satisfy the canon-
ical commutation relations.

Next we can get back to the analysis of solutions of the Mukhanov-
Sasaki equation. For k ≫ |z′′/z|, the frequency is constant and proportional
to the wave number k, which leads to the oscillating solutions that match
the Bunch-Davies vacuum in the asymptotic past lim

τ→−∞
fk = e−ikτ

√
2k

. Since
z′′

z ≈ 2H2 during slow-roll, it is a measure of the comoving horizon H−1.
Therefore, the regime above corresponds to k ≫ H, which denotes the sub-
Hubble scales. With time the comoving Hubble scale shrinks, and modes at
some moment in time cross and exit it. The relation k ≪ H distinguishes
the super-Hubble scales, on which the frequency ω(k, τ) becomes imaginary.
In this regime there is a growing fk ∝ z and a decaying solution fk ∝
z−2 for perturbation modes. The growing solution is the relevant one for
observations 10. It implies that the gauge-invariant curvature perturbation
defined in (1.37) is conserved on super-Hubble scales, specifically

Rk = −H
ϕ̄′
δϕk = −fk

z
= const. (1.41)

In particular, in the slow-roll approximation the solution of (1.39) is given
by

fk(τ) =

√
π

2

√
−τH(1)

ν (−kτ), with ν ≡ 3

2
+ ϵH +

1

2
ηH . (1.42)

where H(1)
ν is the Hankel function of the first kind.

The next step is to find the quantum statistics for the operator f̂ . The
expectation value of it is zero ⟨0|f̂ |0⟩ = 0, but the variance is not and is
given by

⟨|f̂ |2⟩ ≡ ⟨|f̂(τ, 0)f̂(τ, 0)|0⟩ =
∫
d ln k k

3

2π2
|fk(τ)|2. (1.43)

10Decaying mode can be relevant in some multi-field set-ups.



1.2 Inflation 19

The dimensionless power spectra for mode functions is defined as

∆2
f (k, τ) ≡

k3

2π2
|fk(τ)|2, (1.44)

which leads to the power spectra for δϕ fluctuations

∆2
δϕ(k, τ) =

∆2
f (k, τ)

a2(τ)
≈
(
H(t)

2π

)2 ∣∣∣∣
k=aH

. (1.45)

Finally, we have all the necessary ingredients to relate the fluctuations
in the inflaton field to observable fluctuations after inflation. Since the cur-
vature perturbation freezes on super-Hubble scales, it is a perfect quantity
to provide this link. The dimensionless power spectrum ∆2

R(k) is defined
by

⟨RkRk′⟩ = (2π)3δ(3)(k + k′)PR(k), ∆2
R(k) =

k3

2π2
PR(k). (1.46)

Therefore, the power spectrum of R can be computed via the power spec-
trum of δϕ, evaluated at the horizon crossing k = aH, which results into

∆2
R(k) =

(
H
˙̄ϕ

)2

∆2
δϕ =

1

8π2ϵH

H2

M2
pl

∣∣∣∣
k=aH

. (1.47)

Even though during the slow-roll inflation both ϵH(t) and H(t) depend on
time very mildly, they have different values when different modes cross the
horizon. This introduces a source of scale dependence, which is captured
by the parameter named as the scalar spectral index and defined as

ns − 1 ≡
d ln∆2

R(k)

d ln k , ∆2
R(k) = As(k∗)

(
k

k∗

)ns−1

, (1.48)

where As(k∗) is the amplitude of the scalar power spectrum at the pivot
scale k∗, at which the reference scale exit the horizon. The scalar spectral
index may be written in terms of the slow-roll parameters as

ns = 1− 2ϵH − ηH . (1.49)

Currently the observations show deviation from scale-invariance at 5.6σ
confidence level [53] with values ns = 0.9603± 0.0073 for k∗ = 0.05Mpc−1,
which is a direct measurement of time dependence during the inflationary
dynamics 11.

11Assuming inflation is the right explanation.
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The higher order correlation functions reflect non-Gaussian initial con-
ditions (IC’s) that are associated with primordial non-Gaussianity. Here
IC’s refer to those created by inflation, that will be subsequently stretched
to macroscopic scales, become classical and provide seeds for the cosmic
structure. Within linear perturbation theory, an initial Gaussian proba-
bility distribution will not change throughout the evolution, meaning that
the amplitude of perturbations will have Gaussian shape around the mean
value. Higher order correlations then test the deviations from the Gaussian
distribution of the IC’s of perturbations. Whereas the two-point correla-
tion function probes a free theory, the three-point function is associated
with non-linear interactions and hence encodes the particle content and
the interactions during inflation. The primordial bispectrum is the Fourier
transform of the three-point correlation function of curvature perturbation,
defined as

⟨Rk1Rk2Rk3⟩ = (2π)3δ(3)(k1 + k2 + k3)
(2π2)2

(k1k2k3)2
BR(k1, k2, k3). (1.50)

Because of the homogeneity of the background, the momentum three-
vectors add up to zero and hence form a triangle. Depending on the shape
of this triangle, the signal will also change. Typically, the most commonly
studied are equilateral, local and folded shapes. The amplitude of the non-
Gaussianity is defined in equilateral configuration (k1 = k2 = k3) as

fNL(k) ≡
5

18

BR(k, k, k)

∆4
R(k)

, (1.51)

which allows one to express the bispectrum as

BR(k1, k2, k3) ≡
18

5
fNL × S(x2, x3)×∆4

R(k), (1.52)

where x2 ≡ k2/k1, x3 ≡ k3/k1 and S(x2, x3) is the shape function. The
current constraint from CMB observations on the amplitude of local non-
Gaussianity is f local

NL = −0.9± 5.1.

1.2.4.3 Scalar perturbations with multiple fields

Similarly as in the single-field case, the perturbations δϕI(xµ) to the back-
ground field trajectories φI(t) ≡ ϕI0(t) may be written as

ϕI(xµ) = φI(t) + δϕI(xµ), (1.53)
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where I runs through the number of fields in the underlying theory. The
perturbations may be combined into the gauge-invariant Mukhanov-Sasaki
variable [88, 91, 93, 94]

QI ≡ δϕI +
ϕ̇I

H
ψ. (1.54)

Then, from the background equations of motion (1.17), one finds the equa-
tion of motion for perturbations QI in the form

D2
tQ

I + 3HDtQ
I +

[
k2

a2
δIJ +MI

J

]
QJ = 0, (1.55)

with the mass-squared matrix defined by

MI
J ≡ GIK (DJDKV )−RI

LMJ φ̇
Lφ̇M − 1

M2
pla

3
Dt

(
a3

H
φ̇I φ̇J

)
. (1.56)

Here the first term is the analogue of the Hessian of the potential, calculated
in a curved field space defined by the field metric GIJ(φK). The second con-
tribution resembles the right-hand side of the geodesic deviation equation,
where RI

LMJ is the Riemann tensor calculated from the field-space metric
GIJ(φ

K). Hence it indicates how two distinct trajectories in field space
approach or recede from each other. This term is a unique consequence of
the non-trivial field geometry and is identically zero in single-field models
or models with canonical kinetic terms. Finally, the third term encodes the
kinematic effects, such as turns in the field trajectory.

In the case with multiple fields it is convenient to classify the scalar
perturbations in two types: the adiabatic (curvature) perturbations that are
tangential to the inflationary trajectory and the isocurvature perturbations,
that are orthogonal to it. Let us focus on the case with two fields and
project the perturbations along the tangent T I and normal directions N I ,
defined in Section 1.2.2. Then the second order action for curvature R and
isocurvature σ perturbations is given by [69]

S2 =

∫
d4xa3

[
ϵH

(
Ṙ − 2Ω√

2ϵH
σ

)2

− ϵH
a2

(∂iR)2 +
1

2

(
σ̇2 − 1

a2
(∂iσ)

2

)
− 1

2
µ2σ2

]
,

(1.57)
where Ω is the turning rate of the trajectory defined in (1.19) and µ is the
mass of the isocurvature mode that can be written as

µ2 = VNN + ϵHRH2 + 3Ω2. (1.58)
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Here VNN = N INJ∇I∇JV is the analogue of the Hessian of the potential
and R is the Ricci scalar computed from the field-space metric GIJ . From
(1.57) one can see that if the turn rate Ω is non-zero, the curvature and
isocurvature perturbations get coupled. This is an important property of
multi-field inflationary models. Depending on the magnitude of µ with
regard to the Hubble scale H, multi-field models may be divided into three
different cases. The case when µ ≫ H corresponds to the regime with
heavy fields. They may be integrated out that leads to the effective single-
field theory with a reduced sound speed [36, 95–98]. Another regime with
µ ∼ O(H) corresponds to the quasi-single field regime and was studied in
[99–101]. The regime µ≪ H corresponds to the case with light isocurvature
fields, that was extensively studied within the curvaton scenario [102, 103].

The case with µ2 = 0, however, is special. In this case the above action
is invariant under the shift of both Ṙ and σ. This ensures that σ behaves
as a massless perturbation on super-Hubble scales and acts as a constant
source for the curvature perturbation. Such situation will be discussed in
detail in Chapter 2 of the thesis. We will also get back to the general
discussion of multi-field perturbations in Part II of the thesis in Section
1.3.3, with further focus on the reheating era.

1.2.4.4 Tensor modes

After 100 years from the discovery of Einstein’s General Relativity theory,
the LIGO/VIRGO collaboration [104–109] announced the direct observa-
tion of gravitational waves (GW), which opened the era of GW astronomy.
In addition to astronomical observations, GW interferometers allow us to
directly probe the physics of the early Universe via the stochastic grav-
itational wave background (SGWB). The latter differs considerably from
the gravitational waves coming from binary inspirals and burst events or
continuous periodic gravitational waves that originate from pulsars. The
signal from such events is coming from a specific direction, whereas the
SGWB, similarly to the CMB, is uniform in all directions. Remarkably, its
potential observation (as well as the absence of this observation) would give
unique information about the physics of the early Universe, in particular
the energy scale of inflation which is encoded in the Hubble parameter.

The GWs originate from tensor perturbations of the FRW metric (1.34)

ds2 = −dt2 + a(t)2 (δij + hij) dx
idxj , (1.59)

where the perturbation hij is symmetric, trace-free and transverse.
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From the perturbed Einstein equations

Ḡµν + δGµν = 8πG
(
T̄µν + δTµν

)
, (1.60)

it follows that the equation of motion for tensor perturbation in Fourier
space appears in the form (see for instance [110, 111])

ḧij + 3Hḣij + k2hij = 16πGΠTT
ij , (1.61)

where ΠTT
ij is the transverse-traceless part of the anisotropic stress tensor.

In standard slow-roll single field inflationary models the anisotropic stress
tensor is identically zero and amplification of the tensor vacuum metric fluc-
tuations occurs because of the exponential expansion during inflation. It is
convenient to align the z-axis with the momentum of the mode k⃗ = (0, 0, k)
and write hij in terms of the two polarization modes of the gravitational
wave

Mpl
2
ahij ≡

1√
2

f+ f× 0
f× −f+ 0
0 0 0

 . (1.62)

Such parametrization reduces the equation of motion (1.61) to two copies
of the equation of motion (1.39) with z′′

z = a′′

a for massless scalar fields f+
and f×. Hence, for each mode f+, f× the computation is performed exactly
in the same way as for the case of scalar perturbations. The tensor power
spectrum is then simply a rescaling of (1.45) by a factor 2 ×

(
2

Mpl

)2
that

accounts for the sum of two polarizations and the normalization in (1.62)
respectively. Hence, the tensor power spectrum results in

∆2
t (k) =

2H2

π2M2
pl

∣∣∣∣
k=aH

. (1.63)

As before the scale dependence is captured via the tensor spectral index
that is defined as

nt ≡
d ln∆2

t (k)

d ln k , ∆2
t (k) = At(k∗)

(
k

k∗

)nt

, (1.64)

and may be written in terms of the slow roll parameters as

nt = −2ϵH . (1.65)
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Therefore, the tensor tilt is a direct measure of ϵH . Observational con-
straints on the amplitude of tensor perturbations are usually expressed in
terms of the tensor-to-scalar ratio

r ≡ At

As
, (1.66)

which via the slow-roll parameter is written as r = 16ϵH . It in turn pro-
vides the consistency relation for single field inflation models r = −8nt. Its
violation would be a signal of physics beyond the standard single-field ap-
proach. Currently nt is constrained to be slightly red tilted and r < 0.056
at 95% confidence level by Planck 2018 results [53].

Therefore, inflation provides an irreducible SGWB. Observational con-
straints, however, lead to a very small amplitude of the GW power spectra.
Denoting by ΩGW to be today’s GW fractional energy density per loga-
rithmic wave-number interval, its amplitude at CMB scales is of order at
most ΩGW ∼ 10−15. So small values are potentially detectable only for
the next-to-next-generation of space-based observatories, for instance Big
Bang Observatory (BBO) [112] or Deci-hertz Interferometer Gravitational
wave Observatory (DECIGO) [113], as well as large surveys of stars such as
Gaia [114, 115] and the upgrade THEIA (Telescope for Habitable Exoplan-
ets and Interstellar/Intergalactic Astronomy)[116], see Figure 1.2. That
is why there is a broad interest in alternative or complementary scenarios
that could produce the stochastic GWs background at different levels, that
are more likely to be detected during the next two decades.

One possibility to significantly enhance GW production within the in-
flationary framework, is the presence of a non-zero source term. In the
early universe there are several possible sources for ΠTT

ij , coming from

• gauge fields,

• scalar field gradients,

• bulk fluid motion,

• gradients of second order scalar perturbations,

as well as other possibilities not listed here.
Another option is to break the space-time symmetries during inflation,

the so-called space-reparametrization. In this case the graviton can acquire
a mass which leads to the enhancement of tensor spectra at small scales,
implying a blue tensor tilt. In addition to that, the brief but strong violation
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Figure 1.2: The sensitivity curves for different gravitational wave detectors, taken from [117].

of the slow-roll conditions may lead to a bump in the power spectra of
scalar fluctuations, which imprints on ΩGW. If the bump is big enough (at
least 107 larger than its CMB value), this can also lead to the formation
of primordial black holes. Besides inflation, the SGWB may be generated
during (p)reheating. The non-perturbative particle production together
with the non-linear-dynamics produce the GW background, which is unlike
the one coming from inflation and has a peaked power-spectrum at very
high-frequencies f ∼ 1010Hz [118]. Another possible cosmological origin for
the SGWB may be cosmic strings, first order phase transitions and pre Big
Bang models. From the astrophysical side, the SGWB may be generated
for instance by binary black holes, binary neutron stars, other binary star
systems, pulsars, magnetars and supernovae. For comprehensive reviews on
cosmological backgrounds of gravitational waves and discussions of possible
astrophysical sources see Ref. [119, 120] and references therein.

Now, the question arises: how to distinguish the cosmological origin of
GWs from the astrophysical one? There are several “smoking guns” for the
cosmological origin of SGWB, such as a non-Gaussian signal (the signal
from astrophysical origin is Gaussian), chirality, anisotropy (intrinsic or
induced) and a rich profile of GW power spectrum.

In Chapter 3 we will discuss the theoretical limitations on the chi-
ral gravitational wave production sourced by spectator non-Abelian gauge
fields during inflation, that can significantly enhance the tensor-to scalar
ratio r while keeping the scalar spectral index ns within the observational
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bounds.

1.2.5 Upcoming experiments

One of the main goals in observational cosmology nowadays is to detect
the primordial tensor fluctuations. Possible direction is polarization mea-
surement of CMB. At the level of a few micro Kelvin the CMB is linearly
polarized due to Thomson scattering of photons off free electrons just before
decoupling. It was first observed by the Degree Angular Scale Interferom-
eter (DASI) in 2002 [121] and was confirmed by many other experiments.
The main idea of upcoming experiments is that scalar perturbations can
only create polarization patterns of a particular type, parallel or perpendic-
ular to the wave vector k⃗, that are called E-modes. If, in addition to that, a
gravitational wave background is present, it would create an extra stretch-
ing of spacetime, which induces a polarization pattern that is rotated by a
45-degree angle and is called the B-mode polarization. Such polarization
pattern cannot be produced by scalar fluctuations and hence, provides a
unique signature of primordial gravitational waves. In addition to that, in
some models with parity breaking, like Gauge-flation and Chromo-Natural
inflation, gauge field tensor modes experience a transient growth in one of
their polarizations, hence leading to production of chiral GWs. They could
be potentially distinguishable from the standard vacuum fluctuations in fu-
ture experiments, like CMB Stage-4 [122] and LiteBIRD [123], which aim
to probe the tensor sector to values r ≃ 0.001.

Furthermore, CMB spectral distortions experiments like PIXIE, Su-
perPIXIE, Voyage 2050, 10×Voyage 2050 (see [124] for a recent review
and references therein) aim to probe 10 e-folds of inflation further, that
are not visible for CMB anisotropy measurements. Spectral distortions of
the CMB spectrum occur because of dissipation of density perturbations
through photon diffusion in the early universe, which is also called Silk
damping. Such measurements will provide a unique test for departures
from scale-invariance that, depending on the outcome, would support or
disfavour a simple single-field inflationary scenario.

1.2.6 Open problems

Inflation nowadays is the leading framework for the early universe cosmol-
ogy, that solves the horizon and flatness problems, and can produce density
fluctuations that match the latest observational constraints. However, there
are still some theoretical challenges that we outline below.
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Since there is no UV complete theory of the early universe yet, inflation
is an effective description that is valid until some cut-off scale Λ < Mpl.
Then the question should be asked: can the physics above this cut-off affect
the low-energy dynamics during inflation? It turns out that corrections may
affect the flatness of the potential. In particular, important corrections are
of the form [125, 126]

∑
n cnV (ϕ) ϕ

2n

Λ2n , where cn are dimensionless Wilson
coefficients of order one. The major effect from these corrections is coming
from the dimension-six operator ∆V = c1V (ϕ) ϕ

2

Λ2 . When the inflaton value
is smaller than the cut-off scale ϕ ≪ Λ, the correction is small ∆V ≪ V ,
however the second slow-roll parameter ηV ≪ 1 gets significantly altered
by this correction

∆ηV =
M2

pl
V

(∆V )
′′ ≈ 2c1

(
Mpl
Λ

)2

> 1, (1.67)

for c1 ∼ 1 and Λ ≲Mpl. This issue is called the eta problem, that is present
in most slow-roll models of inflation. One possible resolution is the presence
of a shift symmetry for the inflaton field ϕ → ϕ + c, which is the case in
natural inflation [127].

The second problem is the problem of initial conditions for inflation,
since it requires some fine-tuning of initial values for selected dynamics,
see Ref. [128]. It includes the overshoot problem, meaning that for big
initial velocities of the inflaton field, the flat region of the potential where
inflation should happen may be overshot. It typically happens in small-field
inflationary models, where field excursions ∆ϕ are small in comparison to
Mpl. There the Hubble friction is not strong enough to decelerate the
inflaton field. This is not the case for large-field models, where the Hubble
friction is strong and leads to inflationary attractor solutions.

In addition to that, it was shown that inflation is past-geodesically
incomplete [129–131], therefore some other physics is required to describe
the past boundary of the inflating region of space-time, that is also called
the singularity problem. This is resolved in alternatives to cosmological
inflation, the so-called Bouncing cosmologies. In such models the universe
never reaches a singularity, but instead undergoes a phase of contraction,
that is followed by a bounce and a further expansion, that may repeat
several times, see [132] for a review. Bouncing cosmologies have other
problems, which, however, we will not pursue here.

Coming back to the inflationary framework and summing up its open
problems, the legitimate questions arise: what happened before inflation
has started or did inflation start at the top of the potential or somewhere
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else? This questions are challenging and we hope that they will be answered
in the forthcoming theoretical explorations.

1.3 Reheating

After the universe expanded at least e55 times, inflation has to end. Because
of the enormous exponential expansion, the temperature of the universe
also dropped considerably. However, in order for BBN to happen and meet
the observable abundances of light elements, the universe has to be in a
radiation-dominated state. This is the first and foremost motivation to
assume, that between inflation and BBN, there was one more transition
period that is called reheating. Below we outline the physics of this era,
based mainly on Refs. [118, 133–136].

1.3.1 Reheating vs preheating

The necessity of the reheating mechanism was already clear after the first
appearance of Guth’s theory of inflation [27], which however lacked a “grace-
ful exit”, since collision of bubble walls does not lead to a thermal, homo-
geneous and isotropic universe. This was naturally resolved in the new
inflation scenario proposed by Linde [28], where the reheating process was
happening via the background oscillations of the inflaton field near the
minimum of its potential. Historically, it was first described in 1982 per-
turbatively in works by Dolgov & Linde [137] and Abbott, Fahri & Wise
[138] for the new inflation scenario. Soon after that new works devoted to
reheating for various inflationary scenarios [139–142] started to appear.

The evolution of the inflaton field during the period of oscillations af-
ter inflation, see Figure 1.3, was described through the phenomenological
equation

ϕ̈+ 3H(t)ϕ̇+ Γtot ϕ̇+ Vϕ = 0, (1.68)
where Γtot is the total decay width of the inflaton to daughter fields, which
is calculated via quantum field theory (QFT) methods. The solution for
ϕ(t) approaches the oscillatory regime and may be parametrised by

ϕ(t) = Φ(t) sin (f(t) t) , (1.69)

where Φ(t) is the decreasing amplitude and f(t) is the frequency of oscil-
lations. The amplitude decays because of particle production as well as
expansion of space. It may be written in the form

Φ(t) = Φ0e
− 1

2
Γtotte−

1
2

∫
3H dt, (1.70)
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Figure 1.3: Top panel: The illustration of the inflation and reheating eras, as well as oscilla-
tions of the inflaton field ϕ around the minima of its potential V (ϕ), depending on the number
of e-folds N from the start of inflation. The grey grid line in the ϕ − N inset corresponds
to the moment of the end of inflation. The shaded grey region illustrates the perturbations
during inflation that are visible in the CMB.
Bottom panel: Evolution of the Hubble radius (aH)−1 (solid blue curve) and a representa-
tive fluctuation with comoving wave number k∗ (solid grey line) in time. The red dashed
line represents the present horizon size. RD and MD stand for the radiation dominated and
matter dominated eras respectively. The scale factor a(N∗) corresponds to the scale factor
evaluated at the moment of horizon crossing of the representative mode, which happened at
N∗ e-folds starting from the beginning of inflation. Knowledge of N∗ is crucial for the accu-
rate determination of the CMB predictions, as will be discussed in detail in Section 1.3.4.1.
Scale factors aend, aBBN, aeq correspond to the moment of the end of inflation, start of the
BBN and to the moment of matter and radiation equality respectively. The question mark
symbolizes the unknown expansion history of the universe during the reheating era.

the precise values of which depend on the shape of the inflationary potential
around its minimum. For instance, for a quadratic potential V = 1

2m
2ϕ2

the oscillation amplitude equals Φ(t) ∼ a−3/2(t) exp(−Γtott/2) and the fre-
quency coincides with the inflaton mass f(t) = m.

In general, the equation of state of the reheating era highly depends
on the shape of the potential near its origin. For polynomial behaviour
V ∝ |ϕ|2n, where n is not necessarily an integer number, however with the
restriction n > 1/2 to ensure a non-singular first derivative at the minimum,
the equation of state is given by [143]

⟨w⟩ ≈ n− 1

n+ 1
. (1.71)
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This leads to a matter-dominated reheating era with w = 0 for quadratic
potentials n = 1 and radiation-domination w = 1/3 for n = 2. The require-
ment n > 1/2 always leads to w > −1/3, which means that oscillations
around minima of potential in any case lead to a decelerating stage of ex-
pansion. As we will see in Section 1.3.4.1, knowledge of the equation of state
for the reheating era is crucial in order to provide accurate predictions for
CMB observables.

However, such description appears to be incomplete. First of all, the
perturbative description fails for large coupling constants which may eas-
ily emerge in the very early universe due to high energy scales. Secondly,
in such description particle production becomes efficient when H ≲ Γtot,
which is typically achieved only in a couple of e-folds after the end of in-
flation and may lead to a prolonged reheating era, that could change infla-
tionary predictions and also affect BBN. The last and, perhaps, the most
important reason is that it does not take into account the collective effects
of the Bose condensate. Since the inflaton field at the end of inflation is
a coherent wave, a condensate with a large occupation number of inflaton
quanta that oscillate with the same phase around the minimum of its po-
tential, the particle production should be described as a collective process.
Due to large occupation numbers, the condensate itself may be treated as
a classical field, however this is not the case for the decay products where
a quantum description is required. Bose condensation effects may lead to
exponential increase in particle production, that is impossible to capture
via the perturbative analysis. This was realised by Traschen and Bran-
denberger in [144] and developed further in works by Dolgov & Kirilova,
Shtanov and Kofman et al in [133, 145–149]. In these works it was pro-
posed that reheating can proceed through non-perturbative processes, i.e.
via parametric or tachyonic resonances. In the aforementioned and subse-
quent investigations, including lattice simulations [150], it turned out that
in many inflationary models the first stages of reheating were dominated
by the parametric resonance, hence in order to distinguish this stage from
the slow perturbative description it was named preheating. Despite of this,
the perturbative treatment is still used in the final stages of the reheating
era, to complete the transfer of energy after the shut down of a resonance.

To better understand the essence of preheating, let us consider the static
universe approximation, i.e. H(t) = 0. Without specifying the interaction
term for now, let χ be the daughter scalar field that is produced via inflaton
oscillations. As discussed above, χ should be treated as a quantum field and
considered as a fluctuation to the classical oscillating inflaton background.
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In the Heisenberg representation it is written as

χ̂(t,x) = 1

(2π)3

∫
d3k

(
âkχk(t)e

−ikx + â†kχ
∗
ke

ikx
)
. (1.72)

Fluctuations start to evolve from their vacuum state, since inflation washed
out all possible initial particle densities to negligible values. Then, the
equation of motion for each mode k in the static universe approximation
may be written in the form

χ̈k + ω2(k, t)χk = 0, (1.73)

which describes an oscillator with a time-dependent and periodic frequency.
In particular, for the trilinear model where the interaction between the
inflaton field ϕ and the daughter scalar field χ is given by Vϕ,χ = m2ϕ2/2+
m2

χχ
2/2+σϕχ2, the frequency is equal to ω2(k, t) = k2+m2

χ+2σϕ(t), with
mχ being the mass of χ. The equation (1.73) for a periodic ω(k, t) is known
as Hill’s equation, which, according to the Floquet theorem [151], admits
the general solution

χk(t) = eµktPk+(t) + e−µktPk−(t). (1.74)

Here Pk±(t) = Pk±(t + T ) are periodic with period T . The quantity µk
is called the Floquet exponent. If the real part of the Floquet exponent
is non-zero, the mode function χk experiences an exponential growth and
parametric resonance happens. In addition to that, if ω(k, t) is a harmonic
function, Hill’s equation may be reduced to the Mathieu equation

χ′′
k + (Ak − 2q cos 2z)χk = 0, (1.75)

where the prime derivative corresponds to “a new time coordinate z”. For
instance, in the trilinear model Ak = 4(k2 +m2

χ)/m
2, q = 4σΦ(t)/m2, z =

mt/2. Then the number density of created particles will be given by

nk ∼ |χk|2 = e2µkz. (1.76)

The stability and instability regions of the Mathieu equation are very well
known [152], which allows us to determine regions in parameter space where
modes experience the exponential amplification that leads to the bursts in
particle production, see Figure 1.4.
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Figure 1.4: Instability chart of the Mathieu equation. Here Ak is the constant offset and q is
the amplitude of oscillations in the Mathieu equation (1.75). Regions in blue correspond to
the stability bands, while yellow correspond to the instability bands with values of the Floquet
exponent R(µk) > 0 shown at the bar legend on the right.

1.3.2 Narrow and broad resonance

It is well known [152] that the Mathieu equation (1.75) has two different
regimes of the parametric resonance: narrow and broad resonances. As
could be guessed from its name, a narrow resonance occurs only in some
narrow bands Ak ≃ l2, with l = 1, 2, . . ., for small oscillation amplitudes,
meaning for |q| ≪ 1 (for Ak > 0), see Figure 1.4. Hence, only a very narrow
range of modes with corresponding wave-numbers ∆k get exponentially
excited, while modes with the remaining wave numbers stay in the vacuum
state and can be produced through perturbative decays. Such resonance
eventually stops because of two reasons. The first reason is the decay of
the oscillation amplitude Φ(t) that in turn determines the behaviour of
the parameter q and the Floguet exponent µk. According to (1.70), Φ(t)
decays because of both perturbative decay as well as the expansion of space.
Hence, the narrow parametric resonance will stop when the perturbative
decay becomes efficient. The second reason is that the physical momenta
redshift as kphys = k/a, hence initially resonant bands ∆k will very quickly
redshift away and the narrow resonance will eventually finish.

A broad resonance happens when the amplitude of oscillations is large.
This corresponds to the regime |q| ≳ 1. In this case a broad, continuous
range of modes with wave numbers k get excited and thus the broad reso-
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Figure 1.5: Illustration of the violation of the adiabaticity condition. The blue solid curve
shows the frequency ω2(k, t), while the red dot-dashed line illustrates the violation of the
adiabaticity condition (1.77) at points with ω2(k, t) = 0.

nance is much more efficient than the narrow one. The particle production
happens in bursts, at the points of maximum acceleration of the inflaton
field when the adiabaticity condition is violated, i.e. when∣∣∣∣ ω̇(k, t)ω2(k, t)

∣∣∣∣≫ 1. (1.77)

The adiabaticity condition violation (1.77) holds when the interaction term
inside ω2(k, t) vanishes, which happens twice per period, making the parti-
cle production rate to be comparable to the inflaton period of oscillations
T , see Figure 1.5. Let us note that for the narrow resonance the adia-
baticity condition is satisfied all the time, because the oscillation ampli-
tude is small and hence the oscillation frequency is approximately constant
ω2(k, t) ≈ k2 = const and particle production happens continuously.

It turns out that physics of the broad parametric resonance reduces
to the partial waves scattering off successive inverted parabolic potentials.
To understand better why this is the case, let us write down solutions to
the (1.73) when the adiabaticity condition is satisfied, i.e. in the Wentzel–
Kramers–Brillouin (WKB) approximation

χk(t) =
αk(t)√
2ω(k, t)

e−i
∫
ω(k,t)dt +

βk(t)√
2ω(k, t)

ei
∫
ω(k,t)dt, (1.78)

where αk(0) = 1, βk(0) = 0 are the Bogolyubov coefficients. The occupa-
tion numbers are then expressed as

nk(t) = |βk(t)|2. (1.79)
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Let us define the points tj where the frequency ω2(k, t) has a minimum
and the adiabaticity condition is violated. We may expand the frequency
of oscillations around tj as

ω2(k, t) = ω2(k, tj) + ω2′′(k, tj)(t− tj)
2 + · · · , (1.80)

with ω2′′(k, tj) =
dω2(k,t)

dt

∣∣∣∣
t=tj

. In terms of new variables that are defined
as

η̃ ≡
(
2ω2′′(k, tj)

)1/4
(t− tj), κ̃2 ≡ ω2(k, tj)√

2ω2′′(k, tj)
, (1.81)

the evolution equation for the mode functions (1.73) may be rewritten in
the form

d2χk

dη̃2
+

(
κ̃2 +

η̃2

4

)
χk = 0. (1.82)

This is the Schrödinger equation for a wave function scattering in an in-
verted parabolic potential with solutions being the parabolic cylinder func-
tions W (κ̃2,±η̃). Hence, indeed, the broad resonance problem is replaced
by the partial waves scattering on inverted parabolic potentials.

Before tj the WKB approximation is valid, hence the solution for mode
functions is given by (1.78) with the Bogolyubov coefficients αj

k, β
j
k. After

the scattering at tj has already happened, the wave χk(t) again takes the
form of (1.78) but now with αj+1

k , βj+1
k . The relation between ingoing and

outgoing waves may be found via the relation for the Bogolyubov coeffi-
cients, that are expressed through the reflection Rk and transmission Dk

coefficients as (
αj+1
k e−iθjk

βj+1
k e+iθjk

)
=

(
1
Dk

R∗
k

D∗
k

Rk
Dk

1
D∗

k

)(
αj
ke

−iθjk

βjke
+iθjk

)
, (1.83)

where θjk =
∫ tj
0 ω(k, t)dt is the accumulated phase until the jth scattering.

To satisfy the properties of the Bogolyubov coefficients, the reflection and
transmission coefficients satisfy the usual relation |Rk|2 + |Dk|2 = 1. As-
suming the daughter field χk was in the vacuum state at the beginning, its
occupation numbers after (j + 1) scatterings may be written as

nj+1
k =

∣∣∣∣∣Rj
k

Dj
k

∣∣∣∣∣ (njk + 1)

∣∣∣∣∣ 1

Dj
k

∣∣∣∣∣
2

njk + 2

∣∣∣∣∣ Rj
k

Dj
kD

j∗
k

∣∣∣∣∣
√
njk(n

j
k + 1) cos(θjk +∆θjk),

(1.84)
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with ∆θjk = arg(Rj
kα

j
kβ

j∗
k ).

Let us briefly describe the properties of the result (1.84). As was al-
ready mentioned before, the occupation numbers grow as a step-like func-
tion of time, staying constant between successive scatterings, because there
the oscillation amplitude is approximately constant. In addition to that,
such behaviour of occupation numbers cannot be captured perturbatively,
since (1.84) depends on the coupling as ∼ e−1/g, and hence becomes non-
analytical at g = 0, with g being some coupling constant. For njk ≫ 1
the occupation number of created particles grows exponentially because of
the effects of the Bose-Einstein statistics. In that case from (1.84) we find
nj+1
k = e2µ

j
knjk and the Floquet exponent µjk may be expressed as

µjk = ln

∣∣∣∣∣∣1 + |Rj
k|e

i(θjk+∆θjk)√
1− |Rj

k|2

∣∣∣∣∣∣ . (1.85)

Because of the presence of the accumulated phase θjk +∆θjk, the incoming
and outgoing waves may add up constructively or destructively. This leads
to a particular band structure in Floquet charts.

The analysis above was performed in the static universe approximation.
In most cases the expansion of the universe may be taken into account by
changing the variables to Xk(t) = f [a(t)]χk(t), where f [a(t)] is a function
of the scale factor a(t), which leads to the equation of motion for the mode
functions of the form

Ẍk +
[
ω2(k, t) + ∆

]
Xk = 0, (1.86)

where the dot derivative is taken with respect to cosmic time t. Here ∆
depends on the scale factor a(t) and may be interpreted as an additional
phase. In some cases this phase that is coming from the expansion of the
universe may exactly compensate the phase acquired in a scattering, leading
to the destructive interference and decrease in the number of particles in
that mode. This leads to the stochastic evolution of the particle number
and is known as stochastic preheating. The general condition for significant
particle production is the requirement that the growth rate of fluctuations
is much larger than the rate of expansion, that is written as

|Re(µk)|
H

≫ 1. (1.87)
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1.3.3 Multifield preheating

In this section we will discuss the physics of preheating in multi-field models
with non-trivial field-space manifolds. Similarly to the single-field case
presented above, the primary question for investigation is the evolution
of fluctuations. For multiple field case such formalism was developed and
applied in [34, 35, 37, 136, 153].

1.3.3.1 Perturbations and mass scales

To start with, the perturbations δϕI(xµ) to the background field trajectories
φI(t) may be written in the form of the gauge-invariant Mukhanov-Sasaki
variable QI ≡ δϕI + ϕ̇I

H ψ that satisfies the equation of motion (1.55) with
the mass-squared matrix MI

J defined in (1.56), as was discussed in Sec-
tion 1.2.4.3. The next step is the quantisation procedure and analysis of
resulting perturbations, which is rather cumbersome even for the two field
case. Below we will outline this procedure and focus on the case involving
two scalar fields that converge to the single-field attractor along geodesic,
which is the main topic of the Part II of the thesis.

To perform the quantisation, it is convenient to introduce another set
of variables QI(xµ) → XI(xµ)/a(t) and change cosmic time to conformal
time dτ = dt/a(t). Next we need to quantize the fields XI . In the two-field
case, let us define the fields as ϕ and χ, hence the corresponding operators
X̂ϕ and X̂χ for the general case of the field-space metric may be written as
[136]

X̂ϕ(xµ) =

∫
d3k

(2π)3/2

[(
vke

ϕ
1 âk + cke

ϕ
2 b̂k

)
eikx +

(
v∗ke

ϕ
1 â

†
k + c∗ke

ϕ
2 b̂

†
k

)
e−ikx

]
,

(1.88)

X̂χ(xµ) =

∫
d3k

(2π)3/2

[(
yke

χ
1 âk + zke

χ
2 b̂k

)
eikx +

(
y∗ke

χ
1 â

†
k + z∗ke

χ
2 b̂

†
k

)
e−ikx

]
,

(1.89)

where â,b̂k, â†k, b̂
†
k are creation and annihilation operators, vk, ck, yk, zk are

associated mode functions, and e I
a with I = ϕ, χ, a = 1, 2 are components

of the vielbein in the field space, defined as

δbce I
b (τ)e

J
c (τ) = GIJ(τ). (1.90)

For such general case of the field-space metric, the resulting equations for
the mode functions appear to be in the form of two systems of two coupled
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equations where vk couples with yk, and ck with zk:(
v′′k + ω2

ϕ(k, τ)vk
)
e ϕ
1 = −a2Mϕ

χyke
χ
1 ,

(
c′′k + ω2

ϕ(k, τ)ck
)
e ϕ
2 = −a2Mϕ

χzke
χ
2 ,(

y′′k + ω2
χ(k, τ)yk

)
e χ
1 = −a2Mχ

ϕvke
ϕ
1 ,

(
z′′k + ω2

χ(k, τ)zk
)
e χ
2 = −a2Mχ

ϕcke
ϕ
2 .

(1.91)

Here MI
J defined in (1.56) and

ω2
ϕ(k, τ) ≡ k2 + a2(Mϕ

ϕ − 1

6
R),

ω2
χ(k, τ) ≡ k2 + a2(Mχ

χ − 1

6
R).

(1.92)

We will focus our attention on the case where at the beginning of re-
heating the background motion is geodesic. Without loss of generality
this assumes the attractor solution along χ = 0, which may be always
achieved upon rotation ϕI → ϕI

′ , see [136] for the detailed discussion.
This behaviour is common in models of inflation with non-minimal cou-
pling to gravity that are called ξ-attractors [154, 155] and include Higgs
inflation [156, 157], and models with hyperbolic field-space geometry, like
α-attractors [50–52, 61]. With such a choice the cross-terms in GIJ and
MI

J vanish and the field space vielbein becomes diagonal

e I
a →

(
e ϕ
1 0
0 e χ

2

)
, (1.93)

with e ϕ
2 ∼ e χ

1 ∼ 0, e ϕ
1 e

ϕ
1 ≃ Gϕϕ, e χ

2 e
χ
2 ≃ Gχχ and GϕϕGϕϕ = GχχGχχ =

1 + O(χ2). Because Mϕ
χ ∼ Mχ

ϕ ∼ 0 the source term in (1.91) is zero,
that decouples mode functions vk and zk, while setting the remaining two
to zero ck ∼ yk ∼ 0. Therefore, the equations for scalar mode functions
reduce to the familiar case of two independent harmonic oscillator equations
with time-dependent frequency

∂2τϕk + ω2
ϕ(k, τ)ϕk ≃ 0, ω2

ϕ(k, τ) ≡ k2 + a2m2
eff,ϕ(τ),

∂2τχk + ω2
χ(k, τ)χk ≃ 0, ω2

χ(k, τ) ≡ k2 + a2m2
eff,χ(τ).

(1.94)

Here, we have denoted mode functions as vk ≡ ϕk and zk ≡ χk to indicate
the clear relation with each field perturbation. The effective masses for
each fluctuation have four different contributions:

m2
eff,I = m2

1,I +m2
2,I +m2

3,I +m2
4,I , (1.95)
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with I = ϕ, χ. Different terms are defined as

m2
1,ϕ ≡ GϕK (DϕDKV ) ,

m2
2,ϕ ≡ −Rϕ

LMϕφ̇
Lφ̇M ,

m2
3,ϕ ≡ − 1

M2
pla

3
δϕKδ

J
ϕ Dt

(
a3

H
φ̇Kφ̇J

)
,

m2
4,ϕ ≡ −1

6
R = (ϵ− 2)H2 ,

(1.96)

with identical contributions to m2
eff,χ but with ϕ ↔ χ. Here m2

1,I is the
Hessian of the potential in a curved field space defined by the field metric
GIJ . The second term m2

2,I demonstrates the geodesic deviation of the two
trajectories caused by the non-trivial field-space geometry. The third term
m2

3,I encodes turning of the trajectory and the last contribution m2
4,I shows

the changes in the background space-time via the presence of the space-time
curvature R.

For the particular choice of the two-field α-attractor model [158, 159],
with the attractor solution along χ = 0, effective masses simplify to

m2
eff,ϕ ≃ Vϕϕ(χ = 0) (1.97)

m2
eff,χ ≃ Vχχ(χ = 0) +

1

2
Rϕ̇2, (1.98)

where the field space Ricci curvature scalar R is parametrised by the di-
mensionless parameter α as R = −4/3α. From here one can see that m2

eff,ϕ
is always positive, since it is determined by the Hessian of the potential
near the minimum Vϕϕ(χ = 0) > 0. It means that the inflaton field ϕ
in some regions of parameter space may preheat through the parametric
resonance described in detail in Section 1.3.1. However, for χ perturba-
tions and m2

eff,χ, the situation is different. In the case of α-attractors, the
field space is a negatively curved manifold and hence the Ricci curvature
scalar always takes negative values. It means that, depending on the in-
terplay between the potential Vχχ and curvature 1

2Rϕ̇
2 terms, the effective

mass m2
eff,χ may take both positive and negative values. If m2

eff,χ becomes
negative, the perturbations of the χ field rapidly experience exponential
amplification caused by the tachyonic resonance and the system quickly
reaches the radiation-dominated equation of state w ≃ 1/3, as was shown
in lattice simulations [160].

Remarkably, the instability bands are easily parametrised by the one
parameter α that determines the value of the field space curvature, as well
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as observational predictions such as the tensor-to-scalar ratio. In particular,
the term 1

2Rϕ̇
2 ∝ − 1

α

( √
α

O(1)

)2
= −O(1) stays almost the same and does

not react to the changes in the field curvature from different values of α.
However, this is not the case for the Hessian of the potential Vχχ. First of
all, the potential term does not scale so uniformly with α and, in addition to
that, the cases with symmetric and asymmetric potentials appear to be very
different. Here we refer to the symmetry/asymmetry of the potential near
its minimum, that is relevant for classification of the reheating behaviour.

Let us start with describing the case with symmetric two-field α -
attractor potential. For such a choice, for any value of α ≲ 10−4 and
the potential steepness n, the curvature term (1.98) always dominates over
the Hessian of the potential. For any wave number that is smaller than
a maximally amplified wave number kmax, determined by ω2

χ(kmax, τ) = 0,
the effective frequency ω2

χ(kmax, τ) is negative, which leads to the tachyonic
resonance.

Instead, the choice of asymmetric potentials distinguishes two distinct
sub-cases. The first one corresponds to massive fields, meaning that around
the global minimum at ϕ = χ = 0 the Hessian of the potential Vχχ > 0,
which happens for potentials with steepness n = 1. For higher potential
steepness n > 1 the potential gradient Vχχ = 0, and hence corresponds to
the case with massless fields.

The massless field case leads to the dominance of the negative field
space curvature contribution over the positive potential one in (1.98). This
results in a negative effective mass square m2

eff,χ < 0 and the outbreak of
tachyonic resonance, starting at values α ≈ 10−3.

By contrast, for massive fields the potential contribution always dom-
inates over the field curvature term, making m2

eff,χ > 0. Hence, in such
case both perturbations of ϕ and χ fields may be amplified via parametric
resonance, while more efficient tachyonic resonance does not happen. It
turns out that for massive potentials and bigger values of α (or equiva-
lently smaller field-space curvatures), the parametric resonance is stronger
for δϕ perturbations than for δχ in comparison to the case with symmetric
potentials. This happens at values α ≈ 10−3 where the same model with
symmetric potential and any potential steepness does not reheat at all.

Therefore, the two-field α -attractor model with asymmetric potential
reheats efficiently in a region of parameter space which is absolutely inef-
ficient when the symmetric potential is chosen. This is the crucial finding,
since, as will be discussed in Section 1.2.4, inefficient reheating may lead to
a prolonged matter-dominated phase after inflation, change the time when
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Figure 1.6: The illustration of stages of the reheating era.

CMB modes exit the horizon and thus shift CMB predictions. The com-
plete analysis of scaling properties and their universality that determine
the preheating efficiency is discussed in Chapter 4. It is followed by an
extensive investigation of the symmetry properties for the two-field infla-
tionary potentials and their implications for the duration of the reheating
era, presented in Chapter 5 of the thesis.

1.3.4 Observational signatures from the reheating era

The preheating process, outlined above, does not describe the complete
transition of the universe to the thermal state, as illustrated in Figure
1.6. Instead, it is followed by the non-linear regime, during which various
non-trivial field configurations may be formed, such as oscillons, Q-balls,
solitons and topological defects, like domain walls and metastable global
cosmic strings. After the non-linear phase the turbulent scaling occurs,
which is characterized by a slow transfer of energy to both ultraviolet and
infrared modes, and completed by the process of thermalization, which
brings all degrees of freedom into kinetic and chemical equilibrium and the
spectrum to a thermal distribution.

There are several complications in extracting observational constraints
for the reheating era. First of all, the details of dynamics on subhorizon
scales is hidden by later, non-linear evolution of cosmic structure on short
scales. Hence, it is not possible to extract the effect on the curvature per-
turbation from the CMB. Secondly, the thermalization process completely
washes away the details of the earlier stages of the reheating era. Nev-
ertheless, there are some very important observational implications of the
reheating era, that we will outline below.
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1.3.4.1 CMB predictions and reheating

The first indirect manifestation is related to the expansion history of the
universe during the reheating era. As was discussed in Section 1.3.1 and, in
particular, shown by the equation (1.71), there is a high uncertainty in the
equation of state w during reheating. It is extremely important, since the
expansion history highly influences the CMB predictions, as it changes the
time of mapping of the inflationary perturbation modes from the horizon
exit to its re-entry, see Figure 1.3. It was shown [161] that the number of
e-folds N∗ from the end of inflation to the pivot scale k∗ = a∗H∗, where the
modes cross the horizon, is related to the expansion history of the universe
as follows

k∗
a0H0

= e−N∗ aend
areh

areh
aeq

H∗
Heq

aeqHeq
a0H0

, (1.99)

where the subscripts “∗, end, reh, eq, 0” denote that quantities are evaluated
at the pivot scale, at the end of inflation, at the end of reheating, at the
moment when radiation and matter densities are equal and at the present
moment of time respectively. This relation may be further rewritten [162,
163] (see also Ref. [135] for more detailed discussion) as

N∗ = 66.89−ln k∗
a0H0

+
1

4
ln V 2

∗
M4

plρend
+

1

12
ln

 1

gth

(
ρth
ρend

) 1−3w̄int
1+w̄int

 , (1.100)

where ρth, gth are the energy density and the number of relativistic de-
grees of freedom respectively at thermalization and V∗ is the inflationary
potential at the pivot point, defined by V∗ = V∗({qi}, ϕ∗) where {qi} are
the parameters entering the inflaton potential V = V ({qi}, ϕ). The mean
equation of state w̄int > −1/3 between the end of inflation and complete
thermalization is defined as

w̄int ≡
∫ tth

tend

w(t)dt

tth − tend
. (1.101)

One of the parameters in the potential may be fixed from the measured
amplitude of scalar perturbations As. Hence, from (1.100), it turns out
that N∗ may be parametrised by the following set of parameters

N∗ = N∗

(
{qi − 1}, As, ρ

1−3w̄int
1+w̄int

th /gth

)
. (1.102)

In turn, the N∗ parametrises the CMB observables as

ns = ns(N∗, {qi − 1}), r = r(N∗, {qi − 1}). (1.103)



42 Introduction

Figure 1.7: 68% and 95% confidence level regions for ns and r from Planck, together with
theoretical predictions of inflationary models [53].

Currently, every figure that confronts model-dependent inflationary pre-
dictions with Planck constraints for ns and r, contains the theoretical un-
certainty in N∗, since its precise value is not known and is typically set to
50 and 60 e-folds. This uncertainty is so big, that takes nearly one half of
the 1σ contour in ns − r plane, see Figure 1.7. Therefore, knowledge of
the equation of state w̄int, as well as the energy scale ρth and the time of
thermalization ath which is specified by gth, are crucial for the accurate de-
termination of N∗ and correct comparison of inflationary predictions with
the CMB observations.

The development of the Effective Field Theory of preheating would help
to provide an easy determination of the reheating efficiency together with
the number of e-folds N∗, leading to reducing the error bars in the ns − r
plane. This would allow us to rule out many inflationary models that, be-
cause of huge uncertainties, still match the Planck constraints. In Chapter
4, 5 we identify the important mass scales that control the tachyonic growth
of fluctuations and determine the resonance efficiency, taking a first step
towards an Effective Field Theory description of preheating in hyperbolic
manifolds.

1.3.4.2 Stochastic gravitational wave background from reheating

The idea that non-linear processes during the reheating era can generate a
stochastic gravitational wave background was first studied in [164] and fur-
ther developed in subsequent works [165–176]. The GW background coming
from reheating is generated from the classical evolution of inhomogeneities
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on sub-horizon scales, whereas the origin of the inflationary background
is purely quantum, as was discussed in Section 1.2.4.4. That is why the
power spectra from reheating appear to be peaked, unlike the almost scale-
invariant tensor spectra from single field inflation. The peak frequency may
be determined by the scale where the inflaton condensate is substantially
fragmented (or destroyed). This happens when the back-reaction effects
become important. The peak frequency f0 of the gravitational energy den-
sity ΩGW per logarithmic frequency interval depends on the wave number
and the Hubble scale as follows f0 ∝ k√

MplH
[167, 177]. Typically k ∝ H,

hence the peak frequency is equal to [118, 135]

f0 ∼ β−1

√
Hbr
Mpl

× 4× 1010Hz, ΩGW ∼ 10−6β2, (1.104)

where Hbr is the Hubble rate at back-reaction. The constant factor β is
usually of the value 10−2 − 10−3 and is estimated from a linear analysis of
the instabilities. This leads to typical frequencies f0 ∼ 1010 − 1011Hz and
amplitudes of the GW energy density ΩGW ∼ 10−10 − 10−12, which is far
from the observable ranges of contemporary GW detectors, that can mea-
sure frequencies at most f0 ∼ 103−104Hz, see Figure 1.2. For smaller values
of Hbr, the peak frequency moves towards the observable range, however
the smallness of the GW amplitude ΩGW leaves it currently inaccessible to
direct detection.

1.3.4.3 Baryon asymmetry and relics

When the particle energies in the expanding universe become too small
to create new pairs, almost all particles and antiparticles annihilate each
other. However, a small amount of matter does not annihilate and leads to
the remnant matter density that is observable today. This is the essence
of the baryon asymmetry problem. Baryon asymmetry may be defined as
the ratio between the difference of baryon nB and antibaryon nB̄ number
density to the photon number density nγ

τ ≡ nb
nγ

≈ 6× 10−10, (1.105)

where nb = nB−nB̄ and nγ ∼ nB+nB̄. This asymmetry has no explanation
within the Standard Model (SM) and is one of the observational signatures
of physics beyond it [178].
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Hence, to explain the baryon asymmetry there should be new physics,
that should meet Sakharov’s conditions [179]: (i) non-conservation of the
baryon number, (ii) violation of C and CP invariance; (iii) deviation from
thermal equilibrium. Since during the reheating era particles are produced
non-perturbatively and out of thermal equilibrium, with off-shell processes
during the thermalisation stage, the reheating era is of a particular interest
for a better understanding of the baryon asymmetry problem. In various
studies [180–188] it was shown that indeed the non-linear dynamics during
reheating can highly influence the generation of the baryon asymmetry.

In addition to that, the non-linear dynamics of reheating can lead to
fragmentation of the inflaton condensate and to the formation of stable lo-
calized configurations. Some of these configurations, such as oscillons, can
stay stable for millions of inflaton oscillations and as a result lead to a pro-
longed matter-dominated phase after inflation that may alter observational
predictions and also delay BBN. In addition to that, oscillon formation may
generate features in tensor power spectra at specific wavenumbers, as was
discussed in [189]. Large inhomogeneities can also form primordial black
holes, that would induce a matter-dominated expansion history during the
reheating era. Moreover, self-interactions may lead to nongravitational dark
matter structure growth resulting in compact halos, leading to several ob-
servational signatures [190]. Last but not least, the reheating era may play
an important role in primordial magnetogenesis [191–194].

1.4 Work in this thesis

This thesis consists of two parts. Part I investigates inflation with multiple
fields together with emerging observational consequences for scalar and ten-
sor power spectra. Part II is focused on multi-field reheating, its efficiency
and duration in curved field-space manifolds.

• Part I. Multi-field inflation.
Chapter 2: introduces for the first time a model for inflation with
light fields on an axion-dilaton system, with a new type of exact
multi-field inflationary attractor that is true for both flat and curved
field-space manifolds. Despite the fact that the inflaton trajectory is
strongly turning, the isometry in the field space protects the dynamics
of coupled inflationary perturbations, keeping the phenomenology to
be single- field-like with negligible non-Gaussianity, as favoured by
observations.
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This chapter is based on [70]:
A. Achúcarro, E. J. Copeland, O. Iarygina, G. A. Palma, D. G. Wang
and Y. Welling, Shift-Symmetric Orbital Inflation: single field or
multi-field?, Phys. Rev. D 102, no.2, 021302 (2020), [arXiv:1901.03657].

Chapter 3: investigates the viability of inflation with a spectator non-
Abelian gauge field sector. We studied the theoretical restrictions for
gravitational wave production dictated by the requirements for the
gauge field to be in the spectator sector, as well as from the physics
of the gauge sector itself. Such requirements result in the constraints
for the amplitude and tensor tilt for chiral gravitational waves, and
hence restrict the enhancement of the gravitational wave background
with respect to the one coming from vacuum fluctuations.
This chapter is based on [86]:
O. Iarygina and E. I. Sfakianakis, Gravitational waves from spectator
Gauge-flation, [arXiv:2105.06972].

• Part II. Reheating in curved field spaces.
Chapter 4: analytically demonstrates a competition between field-
space and potential contributions that change the dynamics, dura-
tion and observable predictions of reheating for the multi-field α-
attractors. We find universal scaling relations that allow for an easy
estimate of the preheating efficiency for highly curved field geome-
tries. Identification of important mass scales that control the tachy-
onic growth of fluctuations enables our work to take a first step to-
wards an Effective Field Theory description of preheating in hyper-
bolic manifolds.
This chapter is based on [158]:
O. Iarygina, E. I. Sfakianakis, D. G. Wang and A. Achúcarro, Uni-
versality and scaling in multi-field α-attractor preheating, JCAP 06,
027 (2019), [arXiv:1810.02804].

Chapter 5: provides an extensive study of the preheating behaviour
for symmetric and asymmetric potentials about the minimum. We
demonstrate the existence of a region in parameter space, where the
symmetric and asymmetric multi-field α-attractors are explicitly not
the same: one preheats and one does not. This leads to a different
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cosmic history for the two models, with one possibly exhibiting a long
matter-dominated phase, and a shift in the observational predictions
for ns and r.
This chapter is based on [159]:
O. Iarygina, E. I. Sfakianakis, D. G. Wang and A. Achúcarro, Multi-
field inflation and preheating in asymmetric α-attractors, [arXiv:2005.00528].
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Part I

Multi-field inflation
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2|Shiftsymmetric orbital infla
tion

Abstract: We present a new class of two-field inflationary attractor mod-
els, known as ‘shift-symmetric orbital inflation’, whose behaviour is strongly
multi-field but whose predictions are remarkably close to those of single-
field inflation. In these models, the field space metric and potential are
such that the inflaton trajectory is along an ‘angular’ isometry direction
whose ‘radius’ is constant but arbitrary. As a result, the radial (isocur-
vature) perturbations away from the trajectory are exactly massless and
they freeze on superhorizon scales. These models are the first exact real-
ization of the ‘ultra-light isocurvature’ scenario, previously described in the
literature, where a combined shift symmetry emerges between the curva-
ture and isocurvature perturbations and results in primordial perturbation
spectra that are entirely consistent with current observations. Due to the
turning trajectory, the radial perturbation sources the tangential (curva-
ture) perturbation and makes it grow linearly in time. As a result, only
one degree of freedom (i.e. the one from isocurvature modes) is responsi-
ble for the primordial observables at the end of inflation, which yields the
same phenomenology as in single-field inflation. In particular, isocurvature
perturbations and local non-Gaussianity are highly suppressed here, even
if the inflationary dynamics is truly multi-field. We comment on the gen-
eralization to models with more than two fields.

Keywords: multi-field inflation, cosmological perturbation theory.

Based on:
A. Achúcarro, E. J. Copeland, O. Iarygina, G. A. Palma, D. G. Wang and Y. Welling
Shift-Symmetric Orbital Inflation: single field or multi-field?
Phys. Rev. D 102, no.2, 021302 (2020), [arXiv:1901.03657].
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2.1 Introduction

Single field slow roll inflation is the leading explanation for the observa-
tions through the CMB [53] that primordial perturbations are very close to
Gaussian and adiabatic, yet embedding it in an ultraviolet complete the-
ory such as string theory is notoriously difficult. Moduli fields arising from
string compactifications require stabilizing to realize single field inflation
[126], and large field excursions test the validity of using four dimensional
effective theories1.

In the usual understanding, light fields during inflation may lead to
isocurvature perturbations and local non-Gaussianity tightly constrained
by current observations. However, it has been suggested recently that in-
flation with non-stabilized light fields on an axion-dilaton system can be
compatible with the latest CMB data [61, 69, 95, 195–198]. In particu-
lar, it was pointed out in [69] that, when the perturbations orthogonal
to the trajectory are massless but efficiently coupled to the inflaton, the
isocurvature modes are dynamically suppressed. This is the “ultra-light
isocurvature” scenario.

In this paper we provide for the first time a family of exact models
of inflation in which the multi-field effects are significant, but the phe-
nomenology remains similar to single field inflation. The models combine
two ingredients: First, the inflaton trajectory proceeds along an isometry
direction of the field space, so it is Orbital Inflation in the sense of [72, 73].
This ensures time independence of the coupling between the radial and
tangential inflationary perturbations. Second, the trajectory can have an
arbitrary radius (within some range described below), and a constant radius
is proven to be a neutrally stable attractor. Hence, isocurvature perturba-
tions become exactly massless. The two ingredients, combined, guarantee
that the sourcing of the curvature perturbation is sustained over many e-
folds of inflationary expansion. The action for the perturbations inherits
a symmetry between background solutions that is not manifest in the po-
tential or in the Lagrangian. We show that, at the end of inflation, only
the isocurvature degree of freedom is responsible for the generation of pri-
mordial observables, but perturbations still remain adiabatic and Gaussian.
We call this scenario shift-symmetric orbital inflation.

Crucially this scenario provides a new direction to explore inflation and

1The recent swampland debate highlights the importance of finding viable scenarios
for inflation that are not strictly single-field. See, for instance, the discussion in [41] as
compared to [48, 219]
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a potential resolution to some of the problems faced by the embedding
of inflation in string theory. That is, in the construction of inflationary
models wherein every modulus is stabilized except for the inflaton, one
could be missing less restrictive realizations of inflation compatible with
current observational constraints. We set h̄ = c = 1 and the reduced
Planck mass Mp ≡ (8πG)−1/2 = 1, where G is Newton’s constant.

2.2 A toy model
To illustrate the idea, we first consider the following Lagrangian in flat field
space with polar coordinates (illustrated in Fig. 2.1)

L =
1

2

[
ρ2(∂θ)2 + (∂ρ)2

]
− 1

2
m2

(
θ2 − 2

3ρ2

)
. (2.1)

The potential has a monodromy in the angular coordinate, and although it
is unbounded at ρ→ 0, inflation only takes place in the physically consistent
regime where V (ρ, θ) > 0. Moreover, as shown in the perturbation analysis
below, our study is restricted to radii that cannot be too small. Therefore,
we only care about the local form of the potential close to the inflationary
trajectory, which we assume is captured well by (2.1). In general, it is
difficult to solve the background equations analytically in such a system.
However, this model has the following exact neutrally stable solutions at
any radius

ρ = ρ0, θ̇ = ±
√

2

3

m

ρ20
. (2.2)

The Friedmann equation becomes H2 = m2θ2/6 on the attractor, where H
is the Hubble parameter, and the first slow-roll parameter is ϵ ≡ −Ḣ/H2 =
2

ρ20θ
2 . This trajectory is nongeodesic in field space, with turning effects that

depend on the radius κ of the trajectory. Note that here κ = ρ0 but, if the
field space geometry is curved, κ will be a more general function of ρ0.

The situation is reminiscent of circular orbits in a spherically symmetric
gravitational field, where the centripetal force stabilizes the radial direction,
and the inflaton can circle at any radius with the corresponding angular
velocity. For the field system on the cosmological background, only the
isometric circular orbits appear, and we need to break the shift symmetry
of θ in the potential to overcome the Hubble friction. We can label each
solution by a continuous parameter c with the corresponding map

ρc = ρ0 + c,
(
θ2c
)′
=

(
θ20
)′

(1 + c/κ)2
, (2.3)
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Figure 2.1: The toy model potential V (ρ, θ) given in (2.1) together with a typical inflationary
trajectory indicated with the solid black line.

where the prime ′ denotes a derivative with respect to efolds d/dN =
d/(Hdt). This transformation identifies all the trajectories in (2.2) and
hints at the existence of a shift symmetry for the perturbations. In flat
gauge, the isocurvature perturbation σ is associated with δρ and the curva-
ture perturbation R with ρ√

2ϵ
δθ, which equals 1

4ρ
2δ
(
θ2
)

in this toy model.
To find the effect of the transformation on the perturbations, we split
ρ = ρ0 + σ and

(
θ2
)′

=
(
θ20
)′
(1−R′). This allows us to determine how a

small c changes σ and R′. In the long wavelength limit every transformed
set of perturbations (σc,R′

c) provide a new solution to the equations of
motion. This is because homogeneous perturbations map background so-
lutions onto each other. Therefore, we expect the following symmetry for
linearized perturbations

σ → σ + c, R′ → R′ +
2

κ
c. (2.4)

Given the shift symmetry of σ, the isocurvature perturbation is expected
to be massless and freeze after horizon-exit. Meanwhile, the symmetry also
indicates that R has a growing solution that is dictated by the constant σ
on superhorizon scales.

To get an intuitive notion of the perturbations behavior, we employ
the δN formalism [199–203]. From the Friedmann equation and the exact
solution (2.2), the number of efolds until the end of inflation isN = ρ2θ2/4−
1/2. The curvature perturbation at the end of inflation is

R(k∗) = δN ≃ 1√
2ϵ∗

(ρδθ)∗ +
2N∗
κ
δρ∗, (2.5)
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where (ρδθ)∗ and δρ∗ are field fluctuations with typical amplitude H∗
2π at

horizon-exit of the k∗ mode. This yields the following power spectrum of
curvature perturbations

PR(k∗) ≃
H2

∗
4π2

(
1

2ϵ∗
+

4N2
∗

κ2

)
. (2.6)

Here the first contribution has an adiabatic origin, just like in the single-field
models, and the second term corresponds to the conversion from isocur-
vature to curvature modes on superhorizon scales. When the radius of
the trajectory is small enough, namely 8ϵ∗ ≪ κ2 ≪ 8ϵ∗N

2
∗ ≈ 4N∗, the

second term in (2.6) dominates. Then the final power spectrum becomes
PR(k∗) ≃ H2

∗N
2
∗ /(π

2κ2), which is generated by one single degree of freedom
– the isocurvature mode.

2.3 Shiftsymmetric orbital inflation
To construct generic models with the above properties, we begin with
an axion-dilaton system in a non-trivial field manifold (θ, ρ) with kinetic
term K = −1

2 (f(ρ)∂µθ∂
µθ + ∂µρ∂

µρ). This field space, of curvature R =
f2ρ/2f

2−fρρ/f , arises generically from UV completions of inflation in quan-
tum gravity or from an effective field theory (EFT) viewpoint. To realize
shift-symmetric orbital inflation, we assume the inflationary trajectory to
be isometric, i.e. along the θ direction at any (constant) radius in field
space. The potential can be derived by generalizing the Hamilton-Jacobi
formalism [200, 204–206] to a two-field system (See Appendix 2A). It has
the general form

V = 3H2 − 2
H2

θ

f(ρ)
, (2.7)

where H is a function of θ only, Hθ ≡ dH/dθ and f(ρ) > 0. The model
(2.1) is recovered for H ∝ θ and f(ρ) = ρ2, corresponding to a flat field
space parametrized by polar coordinates. This non-linear system admits
exact solutions

θ̇ = −2
Hθ

f
, ρ = ρ0. (2.8)

Thus the inflaton moves in an orbit of constant radius, as ensured by the
Hamilton-Jacobi formalism. As in the toy model, this trajectory is not
along a geodesic. Here the tangent and normal vectors to the trajectory
are T a = 1/

√
f(1, 0) and N a = (0, 1), and the radius of the turning trajec-

tory is a constant given by κ = 2f/fρ. It follows that all these trajectories
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are neutrally stable: a small perturbation orthogonal to a given orbital tra-
jectory will bring us to one of the neighbouring trajectories (See Appendix
2B).

2.4 Analysis of perturbations
In flat gauge, the comoving curvature perturbation R is defined as the
projection of the field perturbation along the inflationary trajectory R =
1√
2ϵ
Taδϕa, and the isocurvature perturbation σ corresponds to the orthog-

onal projection σ = Naδϕ
a. Then for generic multi-field models, the

quadratic action of perturbations takes the following form [69]

S(2) =
1

2

∫
d4xa3

[
2ϵ

(
Ṙ − 2H

κ
σ

)2

+ σ̇2 − µ2σ2 + . . .

]
, (2.9)

where ellipses stand for the gradient terms −(∂iσ)
2 − 2ϵ(∂iR)2. The in-

teraction between curvature and isocurvature modes is given by the term
a3(8ϵH/κ)Ṙσ. To guarantee perturbative analysis we require that

√
8ϵ/κ≪

1 [69, 207]. The mass of entropy perturbations is defined as µ2 ≡ VNN +
ϵH2

(
R+ 6/κ2

)
, where the first term is obtained from the standard Hessian

of the potential VNN ≡ N aN b (Vab − Γc
abVc), the second and third terms

correspond to the field space curvature and turning contributions respec-
tively.

For shift-symmetric orbital inflation, we expect the isocurvature pertur-
bations to be exactly massless, as in the toy model, and this is confirmed by
using (2.8) to show µ2 = 0. This implies that the quadratic action (2.9) has
the combined shift symmetry (2.4), as in the toy model. The power spectra
of perturbations in the massless limit can be directly estimated from the
coupled evolution of perturbations [69]. When µ = 0, the linearized system
simplifies in the superhorizon limit, yielding

R′
k =

2

κ
σk, σk =

H∗
2π
, (2.10)

where ∗ denotes evaluation at the time of horizon crossing. That is, on
superhorizon scales the isocurvature perturbation quickly becomes a con-
stant, and it sources the growth of R. At the end of inflation, the primor-
dial curvature perturbation can be expressed as Rk = R∗+2N∗σk/κ, where
the first term is the curvature perturbation amplitude at horizon-exit, and
the second term comes from the isocurvature source. Thus these two con-
tributions are uncorrelated with each other, and the dimensionless power
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spectrum for R is given by

PR =
H2

∗
8π2ϵ∗

(1 + C) , (2.11)

where C = 8ϵ∗N
2
∗ /κ

2 represents the contribution from isocurvature modes.
This result agrees with the δN calculation for the toy model given in (2.6).
The full calculation via the in-in formalism gives the same answer up to
subleading corrections [69]. Note that the power spectrum is completely
determined by the isocurvature perturbations if C ≫ 1, which corresponds
to trajectories with a small radius κ or, equivalently, significant turning
effects with 8ϵ∗ ≪ κ2 ≪ 8ϵ∗N

2
∗ . Thus at the end of inflation, curvature

perturbations are highly enhanced compared to the ones at horizon-exit.
Meanwhile, the isocurvature power spectrum for S ≡ σ/

√
2ϵ remains un-

changed as PS = H2
∗

8π2ϵ∗
. Therefore, the amplitude of the isocurvature per-

turbation is dynamically suppressed, i.e. PS/PR ≃ 1/C ≪ 1. The details
of how PS ̸= 0 can generate isocurvature components in the CMB are
rather model-dependent, and one cannot automatically claim that a sup-
pressed ratio PS/PR is compatible with observations. However, if R and S
contributed similarly to the curvature and isocurvature components in the
CMB, the result is compatible with current constraints.

2.5 Phenomenology
We now turn to the observational predictions of shift-symmetric orbital
inflation. For any positive C, from (2.11), the tensor-to-scalar ratio can be
expressed as r = 16ϵ∗/(1 + C), and the scalar spectral index is ns − 1 ≡
d lnPR
d ln k = −2ϵ∗ − η∗ + (dC/dN)/(1 + C), where we used d ln k = dN . Note

that ∂N∗
∂N = −1, since N∗ counts the number of efolds backwards. These

predictions depend on the function H(θ). As in single field inflation, this
function determines how slow-roll parameters ϵ and η ≡ ϵ′/ϵ scale with N∗.

For concreteness, we consider models with H ∼ θp. Solving (2.8) for
θ(N) yields2 ϵ∗ ≃ p/(2N∗) and η∗ ≃ 1/N∗. The predictions for ns and r
are therefore well approximated by

ns − 1 ≃ −p+ 1

N∗
− 4p

κ2 + 4pN∗
, r ≃ 8pκ2

N∗κ2 + 4pN2
∗
. (2.12)

2We note that for 0 < p < 1 this toy model is not well defined as θ → 0, as can be
seen in (2.7). This is not a problem as the inflationary period we are interested in occurs
before that point is reached. The true underlying potential would have to be completed
in some way. This is similar to case with say axion monodromy.
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We plot these results against the Planck 1σ and 2σ contours [53] in Fig. 2.2.
N∗ is taken to be between 50 and 60, and the radius κ2 varies between 1
and 105. The purple region is for p = 1, corresponding to the toy model
(2.1), and we also show the predictions for p = 0.5 (red region), p = 0.2
(yellow region) and p = 0.1 (green region).
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Figure 2.2: The analytical predictions (2.12) for (ns, r) compared to the Planck 1σ and 2σ
contours [53]. We show the predictions for wavenumbers which cross the horizon 50−60 efolds
before the end of inflation. The predictions for ns − r depend on the value of κ ∈ [1, 1000],
where the values (1, 2, 4, 8, 16, 32, 64, 128, 256) are depicted with thick lines (from bottom to
top).

Notice that ns and r only depend on the value of κ and are therefore
insensitive to the details of the field metric. When κ→ ∞ one recovers the
predictions of chaotic inflation with V ∝ ϕ2p. Meanwhile as κ decreases,
predictions are pushed downwards and to the left in this ns − r diagram.
Therefore, in the case of power-law potentials only for small p do the pre-
dictions remain within the Planck contours. The interesting regime here
is still the case with significant turning (small κ or C ≫ 1), where the fi-
nal power spectrum PR ≃ H2

∗N
2
∗

π2κ2 mainly has an isocurvature origin. Then
the tensor-to-scalar ratio is given by r = 2κ2/N2

∗ = 16ϵ∗/C, which is sup-
pressed. The spectral index reduces to ns − 1 = −(p + 2)/N∗ which, for
small p, lies in the sweet spot ns = 0.9649± 0.0042.

Another important observable is primordial non-Gaussianity, which is
currently bounded by Planck through f loc

NL = 0.8 ± 5 [208]. There are ex-
amples in the literature of how O(1) local non-Gaussianity can arise in
multi-field models, especially when the coupling between isocurvature and
curvature modes is large [99, 209–211] - see [212] for a review. There are
also examples of how small levels of non-Gaussianity can arise in multi-
field models [213–215]. However, in most cases a detailed analytic under-
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standing of the size of the non-Gaussianity is lacking because the asso-
ciated dynamics is non-linear and complicated. This is not the case in
shift-symmetric orbital inflation, where we find that we can both easily
satisfy the Planck constraint and crucially understand its origin analyti-
cally. The amplitude of local non-Gaussianity can be determined using the
δN formalism. In a generic multi-field inflation model with curved field
manifold, we have f loc

NL = 5
6G

abGcdNaNcNbd/(G
abNaNb)

2 [209, 216], where
Gab = diag{f(ρ), 1} is the field space metric, Na and Nab are derivatives of
N with respect to the fields (θ, ρ). To gain some analytical understanding,
here we still focus on models with H ∼ θp, where N can be expressed as
N = f(ρ)θ2/4p−p/2. The amplitude of local non-Gaussianity then follows

f loc
NL =

5

12
η∗

[
1− C2

(1 + C)2
κ2R
2

]
, (2.13)

where we used the relation C = 2p2/(ϵ∗κ
2). When κ → ∞, we have C → 0

and C2κ2 → 0. Thus the second term in (2.13) vanishes, which leads to
the single field result f loc

NL = 5η∗/12 as expected. The enhancement of non-
Gaussianity is possible in the intermediate regime C ∼ O(1), where the
transfer from isocurvature to adiabatic modes is inefficient. In that case,
f loc

NL ∼ −5pR/12 can be large if the field space is highly curved.
For the interesting regime with C ≫ 1, the δN expansion is dominated

by Nρ and Nρρ. This then leads to what, at first sight, appears as the
counterintuitive result that f loc

NL is negligible and slow-roll suppressed

f loc
NL ≃ 5

6

Nρρ

N2
ρ

=
5

12
η∗

(
1− κ2R

2

)
. (2.14)

This is the same as happened in the calculation of the power spectrum:
the contribution to the curvature perturbation sourced by the isocurva-
ture modes dominates the final result. The bispectrum is found to be
slow-roll suppressed, just like in single field inflation, but there are small
corrections from the field space curvature, which violates Maldacena’s con-
sistency relation [217, 218]. We have recently confirmed this result via a
scaling symmetry approach in [71].

2.6 Discussions

We have proposed a class of multi-field inflationary models that demon-
strate a new type of attractor trajectory along the isometry direction in
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field space. Here the isocurvature modes become massless and freeze on
superhorizon scales. Moreover, when the turning effects become signifi-
cant, the curvature perturbations keep growing after horizon-exit and thus
isocurvature modes are dynamically suppressed. As a consequence, these
multi-field models yield the single-field-like phenomenology favored by ob-
servations.

Additional isocurvature perturbations will either decay if they are mas-
sive or freeze if they are light. Therefore, although our computations were
done in a simple two-field setting, we expect the conclusions will continue
to hold in multi-field extensions with more than two fields, provided that
the number of additional light isocurvature fields is not too large.

One counterintuitive result of shift-symmetric orbital inflation is the
negligible amount of local non-Gaussianity. Here the isocurvature degree
of freedom can be the dominant contribution to the bispectrum, but in
such cases fNL is slow-roll suppressed. This unusual result teaches us
a generic lesson: that in multi-field models, even if the isocurvature-to-
adiabatic conversion is very efficient, the resulting non-Gaussianity can
still be suppressed. A large coupling between curvature and isocurvature
modes enhances the transfer of non-Gaussianity, but for this transfer to
generate large non-Gaussianity, one needs sizable self-interactions affecting
the isocurvature field during horizon crossing [99, 207]. In this class of sce-
narios, however, the shift symmetry along the radial direction (2.4) has a
role in suppressing the self-interactions of the isocurvature field (see [71]).
Therefore, it is perfectly fine to study multi-field models with significant
and sustained turning trajectories, without worrying about generating large
non-Gaussianity.

Our model has important implications on the realization of inflation in
UV-complete theories. Contrary to what is usually assumed, and as em-
phasized in [69], it is not always necessary to stabilize all compactification
moduli, or to have a large mass hierarchy between the inflaton and other
fields. The most problematic effects usually associated with multi-field ef-
fects – the generation of isocurvature perturbations and non-Gaussianity
at unacceptable levels – cancel each other in the shift-symmetric orbital
scenario. From an EFT point of view this can be traced back to the effect
of derivative interactions among the curvature and isocurvature perturba-
tions that are absent in single-field inflation. These are unavoidable on
curved trajectories and curved field spaces and, therefore, ubiquitous in
string compactifications.
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2.7 Appendix 2A: HamiltonJacobi Formalism

Here we apply the Hamilton-Jacobi formalism [200, 204–206] to derive the
potential for shift-symmetric orbital inflation, replacing the potential as an
input function with the Hubble parameter H(ϕ) which leads directly to the
inflation dynamics.

Friedmann’s second equation yields

Ḣ = ϕ̇Hϕ = − ϕ̇
2

2
−→ −2Hϕ = ϕ̇ . (2.15)

leading to the Hamilton-Jacobi form of the first Friedmann equation

V = 3H2 − 2H2
ϕ , (2.16)

with all functions now being explicitly dependent on ϕ. Therefore, if H(ϕ)
is known, so is V (ϕ).

For the multi-field case, we simply generalise, ϕ → ϕa, so equations
(2.15) and (2.16) become

Ḣ = ϕ̇aHa = − ϕ̇
aϕ̇bGab

2
−→ Ha = −Gabϕ̇

b

2
. (2.17)

and
3H2 = V + 2HaHa. (2.18)

which we use to construct the generic potentials for shift-symmetric orbital
inflation. The important requirement here is that the inflaton trajectory
is along the isometry direction at any radius. Thus for the field space
(θ, ρ) with metric Gab = diag{f(ρ), 1}, the inflaton should move in the θ
direction for any value of ρ. For this behaviour, equation (2.18) simplifies
to 3H2 = V +2

H2
θ

f(ρ) . Therefore, we conclude that our two-field inflationary
model has a potential of the following form

V = 3H(θ)2 − 2
H2

θ

f(ρ)
. (2.19)

2.8 Appendix 2B: Stability Analysis
Here we demonstrate the neutral stability of the exact solutions. We have
seen that there is a continuous set of orbital solutions parametrized by ρ0
and that normal perturbations move us freely between these ‘attractors’, so
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the system is not stable in the usual sense. The property we need to prove
is that small perturbations shift us to another inflationary solution ρ̇ = 0.

Each attractor solution

θ̇ = −2
Hθ

f
, ρ = ρ0

corresponds to a point in the (ρ̇, θ̇) plane. These points are all different
and lie on a curve, therefore the stability of this system is non-trivial to
prove analytically. If we simply perturb the field equations we will find
zero eigenvalues associated with the perturbations that move us between
attractors. Moreover, it is not obvious how to find variables such that
the linearized system of perturbations becomes diagonal. Introducing the
variables

x(θ, ρ, θ′, ρ′) ≡ fH
Hθ
θ′ − 2 f

fρ
ρ′ + 2, (2.20)

y(θ, ρ, θ′, ρ′) ≡ fH
Hθ
θ′ + 2 , (2.21)

z(θ, ρ) ≡ fH2

H2
θ
− 2/3 , (2.22)

here a prime denotes a derivative with respect to the number of efolds
(..)′ = d

dN (..). Remember that H = H(θ) and f = f(ρ). Our definition of
stability now amounts to the presence of a fixed point at (x, y) = (0, 0).

For H ∼ θ the potential in (2.19) satisfies the following scaling relation

θVθ − 2
f

fρ
Vρ = 2V. (2.23)

This ensures that the equations for x and y diagonalize at the linear level,
and below we prove linear stability for the models H ∼ θ, although it
applies to any power law H ∼ θn and more general models.

Linear stability analysis

In terms of x, y, ρ and z, the field equations and second Friedmann equation
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become

x′ + (3− ϵ)x+

(
2
(

f
fρ

)
ρ
− g(θ)

)
(ρ′)2 (2.24)

+2(z+2/3)
z g(θ) (ϵ− ϵ0) = 0,

y′ + (3− ϵ)y + 2
z

(
−1

3 (ρ
′)2 − 1

2y
2 + 2y

)
(2.25)

−g(θ) (ρ′)2 + 2(z+2/3)
z g(θ) (ϵ− ϵ0) = 0,

z′ = 2(y − 2) (1− g(θ)) +
(
fρ
f

)2
y−x
2

(
z + 2

3

)
, (2.26)

ρ′ =
fρ
f

y−x
2 , (2.27)

ϵ = 1
2
(y−2)2

z+2/3 +
f2
ρ

f2
(x−y)2

8 , (2.28)

where ϵ0 = 2
z+2/3 . All the terms in brackets are combined to be manifestly

zero on the attractor, and we have introduced the model specific function
g(θ) ≡ HHθθ

H2
θ

. Note that g(θ) is in general a function of z and ρ, but it
reduces to a constant in the case when we have a power law H(θ) ∼ θn,
and it is zero for n = 1.

In terms of the four variables, shift-symmetric Orbital Inflation is given
by (x, y, z′, ρ′) = (0, 0,−4(1−g(θ)), 0). To prove it is the attractor we must
show (y, ρ′) = (0, 0) is a fixed point. Note that the friction term is very
large during inflation. We can already see that without the friction the
system would be unstable, so we now establish whether the friction term is
in fact large enough to make the system stable.

Linearly perturbing around (y, ρ′) = (0, 0) with ϵ = 2
z+2/3 yields

δx′ +
(
3− 2

z+2/3

)
δx− 4g(θ)

z δy = 0, (2.29)

δy′ +
(
3− 2

z+2/3 + 4(1−g(θ))
z

)
δy = 0, (2.30)

δz′ = 2(1− g(θ))δy +
(
fρ
f

)2
δy−δx

2

(
z + 2

3

)
, (2.31)

δρ′ =
fρ
f

δy−δx
2 . (2.32)

For constant g(θ) below we explicitly prove stability. For a general g(θ)
we express it in terms of z and ρ and integrate the equations numerically.
However, we expect the system to be stable. If (1 − g(θ)) takes values of
order 1 and does not vary too rapidly, then z will take large values during
inflation and behave smoothly as well. In that case we see from (2.29) and
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(2.30) that δx′ and δy′ are dominated by the friction terms −3δx and −3δy
respectively. Therefore, we expect both of them to decay like e−3N . Finally
(2.32) then implies that we quickly converge to the fixed point.

Power law inflation H ∼ θn

In the case of power law inflation with 1 − g(θ) = 1
n , using z = z0 − 4

nN ,
we can solve (2.30) and (2.29) yielding

δx = δx0

(
2+3z0
2+3z

)n/2
e−3N + δy0

4(n−1)N
n

(
2+3z0
2+3z

)n/2
e−3N ,

δy = δy0
z
z0

(
2+3z0
2+3z

)n/2
e−3N , (2.33)

which in (2.32) demonstrates that (y, ρ′) = (0, 0) is a fixed point. This
proves stability for power law inflation.

Linearized equations in the slowroll parameters

We can write the linearized perturbation equations in terms of the slow-roll
parameters ϵ and η

ϵ =
2H2

θ

fH2
, η ≡ ϵ̇

Hϵ
= −4Hθθ

fH
+

4

f

(
Hθ

H

)2

. (2.34)

In particular, the model specific function g(θ) becomes

g(θ) = (2ϵ− η)

√
f

8ϵ
. (2.35)

We see that g(θ) is not necessarily positive, but it will be small if both the
slow-roll approximation and the condition η ≪

√
ϵ hold true. The linearized

equations (2.29) – (2.32) are then given by

δx′ + (3− ϵ) δx− 2ϵ−η
1−ϵ/3

√
ϵf
2 δy = 0, (2.36)

δy′ +

(
3− ϵ+ 1

1−ϵ/3

(
2ϵ− (2ϵ− η)

√
ϵf
2

))
δy = 0,

δz′ = 2

(
1− (2ϵ− η)

√
f
8ϵ

)
δy +

(
fρ
f

)2
δy−δx

ϵ ,

δρ′ =
fρ
f

δy−δx
2 .
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In the slow-roll approximation δx and δy are therefore exponentially de-
caying

δx ≈ δx0e
−3N , (2.37)

δy ≈ δy0e
−3N . (2.38)

Looking at the equation for δz we find that a sufficient condition for stability
is that e−3N/ϵ goes to zero exponentially fast. This requires η < 3, which
is automatically satisfied assuming the slow-roll approximation η ≪ 1. In
addition, ϵ cannot be arbitrarily small.
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Abstract: We investigate the viability of inflation with a spectator sec-
tor comprised of non-Abelian gauge fields coupled through a higher order
operator. We dub this model “spectator Gauge-flation”. We study the
predictions for the amplitude and tensor tilt of chiral gravitational waves
and conclude that a slightly red-tilted tensor power spectrum is preferred
with nT = −O(0.01). As with related models, the enhancement of chiral
gravitational waves with respect to the single-field vacuum gravitational
wave background is controlled by the parameter γ = g2Q2/H2, where g
is the gauge coupling, H is the Hubble scale and Q is the VEV of the
SU(2) sector. The requirement that the SU(2) is a spectator sector leads
to a maximum allowed value for γ, thereby constraining the possible am-
plification. In order to provide concrete predictions, we use an α-attractor
T-model potential for the inflaton sector. Potential observation of chi-
ral gravitational waves with significantly tilted tensor spectra would then
indicate the presence of additional couplings of the gauge fields to axions,
like in the spectator axion-SU(2) model, or additional gauge field operators.
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3.1 Introduction

Inflation provides an elegant solution for the horizon and flatness prob-
lems, as well as a mechanism for producing density fluctuations in very
good agreement with the latest observational tests. Typically, scalar fields
play a major role in inflationary model-building since they do not spoil the
homogeneity and isotropy of the background cosmology. However, models
of particle physics generically include also gauge fields and their presence
in the inflationary epoch may significantly influence cosmological predic-
tions. Scalar perturbations that are produced during inflation are tightly
constrained by observations [220], while the primordial tensor modes (gen-
erated as primordial gravitational waves) are still not detected. The primor-
dial Stochastic Gravitational Wave Background (SGWB) is a unique test
of the physics of the very early Universe, that could provide signatures of
the particle content and the energy scale of inflation. Nowadays, the search
for primordial gravitational waves (GWs) is mainly focused [221, 222] on
the parity-odd polarization pattern in the CMB the B-modes. A correct
interpretation of B-mode measurements strongly relies on understanding
their production mechanism.

One intriguing scenario is GW generation by gauge fields. Gauge field
tensor modes can experience a tachyonic growth in one of their polar-
izations, leading to production of chiral GWs. In addition to chirality,
produced GWs may be significantly red or blue tilted and non-Gaussian.
One of the very-well known models of inflation, where non-Abelian gauge
fields generate accelerated expansion, is the Gauge-flation model that was
originally proposed in Refs. [74, 75]. Gauge-flation is related to Chromo-
Natural inflation [223] that contains an axion coupled to SU(2) gauge fields.
Gauge-flation can be formally obtained from chromo-natural inflation af-
ter integrating out an axion field near the minimum of the axion potential
[76, 224–226]. The original formulation of both models is ruled out by
Planck observations [227–230]. However, both models can be made con-
sistent with current CMB bounds if the gauge symmetry is spontaneously
broken by a Higgs sector [231, 232]. Interestingly Higgsed gauge-flation and
Higgsed Chromo-natural inflation give somewhat different predictions for
the shape of the produced GW spectrum.

Recent interest in potentially distinguishable signatures from the stan-
dard vacuum fluctuations by future B-mode experiments, like LiteBIRD,
has led to a number of generalizations of gauge-field-driven GW models.
In particular considering a spectator axion sector coupled to non-abelian
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gauge fields has significantly opened up the parameter space [233–237]. It
was recently demonstrated [238] that Chromo-Natural inflation as a spec-
tator sector for the scalar single-field inflation can be in agreement with the
current data, while at the same time generating potentially distinguishable
observable signatures for the tensor modes. In Ref. [239] it was shown
that in spectator Chromo-Natural inflation, depending on the choice of the
axion potential, all three possible tensor tilts may be generated: flat, red
and blue. In addition to that, peaked or oscillating GW spectra are also
possible for well-motivated axion potentials. Since in Gauge-flation there is
much less freedom due to the absence of the axion field, a question arises:
what are the possible GW spectra arising from a spectator Gauge-flation
sector?

In this work we demonstrate the viability of the spectator Gauge-flation
scenario, study its predictions and limitations and also provide a compari-
son with predictions of related models. The paper is organised as follows:
In Section 3.2 we introduce the framework for non-Abelian gauge field infla-
tion and then embed it as a spectator sector for scalar single-field inflation.
In Section 3.3 we discuss the necessary conditions for the SU(2) sector to
be subdominant, as compared to the inflaton sector. This ensures that
the scalar fluctuations will be dominated by the inflaton sector and can be
made to agree with the observational constraints, for example by consider-
ing an α-attractor inflationary potential. Keeping the non-Abelian sector
subdominant leads to an upper bound for the amplitude enhancement of
the tensor power spectra. In Section 3.4 we discuss predictions for the pri-
mordial tensor tilt and it’s dependence on the parameters of the theory.
We use a well-known α-attractor model as the inflaton sector, since it can
provide an arbitrarily low amount of vacuum-generated GWs (at least in
principle), while at the same time obeying the constraints for the scalar
fluctuations. We conclude in Section 3.5.

3.2 Framework

3.2.1 The model

In this section we describe the theory of Gauge-flation and its embedding
as a spectator sector for inflation. The Gauge-flation action is given by
[74, 75]

S =

∫
d4x
√
−det(gµν)

[
M2

Pl
2
R− 1

4
F a
µνF

aµν +
κ

96

(
F a
µνF̃

aµν
)2]

, (3.1)
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where R is the space-time Ricci scalar, F a
µν = ∂µA

a
ν − ∂νA

a
µ − gϵabcAb

µA
c
ν is

the field strength of an SU(2) gauge fieldAa
µ, F̃ aµν = ϵµνρσF a

ρσ/
(
2
√
−det(gµν)

)
its dual (where ϵµναβ is the antisymmetric tensor and ϵ0123 = 1), κ > 0 is
a parameter with dimension M−4

pl and g is the gauge field coupling.
We will work with the FLRW metric

ds2 = −dt2 + a(t)2δijdx
idxj , (3.2)

where i, j indicate the spatial directions. An isotropic solution for the
background is given by the following configuration of the gauge field

Aa
0 = 0, (3.3)

Aa
i = δai a(t)Q(t) (3.4)

and it has been shown to be an attractor solution [75]. For this ansatz the
closed system of equations for the vacuum expectation value (VEV) of the
gauge field Q(t) and the Hubble parameter H(t) is given by

M2
PlḢ = −

(
(Q̇+HQ)2 + g2Q4

)
(3.5)

M2
PlH

2 =
1

2

(
(Q̇+HQ)2 + g2Q4 + κg2Q4(Q̇+HQ)2

)
, (3.6)(

1 + κg2Q4
) (
Q̈+ 3HQ̇+ ḢQ

)
+ 2g2Q3

(
1 + κQ̇2

)
+ 2H2Q = 0, (3.7)

where an overdot denotes a derivative with respect to cosmic time t.
We now introduce a scalar field φ(t) with a potential V (φ) that is re-

sponsible for driving inflation and consider the Gauge-flation terms as a
spectator sector, i.e.

S =

∫
d4x
√

−det(gµν)
[
M2

Pl
2
R− 1

2
(∂φ)2 − V (φ)− 1

4
F a
µνF

aµν +
κ

96

(
F a
µνF̃

aµν
)2]

.

(3.8)
Up to gravitational interactions the dynamics of the inflaton sector is com-
pletely decoupled from the dynamics of the gauge field. This allows the
inflaton field φ(t) to be responsible for the predictions for scalar fluctua-
tions. At the same time the gravitational waves generated by the gauge
field sector can lead to observable signatures in the tensor power spectra.
In this paper we will not consider scalar fluctuations and refer to Ref. [233]
where scalar fluctuations were studied for a related model, where the spec-
tator sector involved an axion coupled to an SU(2) field through a Chern-
Simons term (which we call spectator Chromo-natural inflation). A recent
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analysis of scalar fluctuations, including non-linear effects, can be found in
Refs. [240, 241]. We expect that the bounds on tensor modes arising from
the spectator nature of the Gauge-flation sector will result in subdominant
density fluctuations from it. We will thus focus our attention solely on the
tensor sector, leading to the production of GW’s.

Using the ansatz of Eq. (3.4) the background system of equations in the
presence of the inflaton field changes to

M2
PlḢ = −

(
(Q̇+HQ)2 + g2Q4

)
− 1

2
φ̇2, (3.9)

M2
PlH

2 =
1

3

(
1

2
φ̇2 + V (φ)

)
+

1

2

(
(Q̇+HQ)2 + g2Q4 + κg2Q4(Q̇+HQ)2

)
,

(3.10)(
1 + κg2Q4

) (
Q̈+ 3HQ̇+ ḢQ

)
+ 2g2Q3

(
1 + κQ̇2

)
+ 2H2Q = 0, (3.11)

φ̈+ 3Hφ̇+ Vφ(φ) = 0, (3.12)

where Vφ(φ) = ∂V (φ)/∂φ. The standard Hubble slow roll parameters are
defined as

ϵ = − Ḣ

H2
, η = − Ḧ

2HḢ
= ϵ− ϵ̇

2ϵH
. (3.13)

The slow-roll parameter ϵ contains contributions from the scalar (inflaton)
and the gauge field (spectator) sectors. The various contributions can be
written as

ϵ = ϵφ + ϵQE
+ ϵQB

, (3.14)

where

ϵφ =
φ̇2

2M2
PlH

2
, ϵQE

=
(Q̇+HQ)2

M2
PlH

2
, ϵQB

=
g2Q4

M2
PlH

2
. (3.15)

Throughout this work we assume – and check – that the inflaton field
φ(t) dominates the energy budget of the theory. This translates into the
conditions ϵφ ≫ ϵQ, where ϵQ = ϵQE

+ ϵQB
, and hence ϵ ≃ ϵφ. Despite this

regime of interest, we keep the analytic part of our analysis as general as
possible and clearly state the approximations wherever they are necessary
for making analytical progress.

Although the inflationary era is dominated by φ(t), in the same way as
in the original Gauge-flation approach we will assume that the gauge field
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also slow-rolls together with the inflaton field1. Hence for the later analysis
we define

δ = − Q̇

HQ
, γ =

g2Q2

H2
. (3.16)

We will require δ ≪ 1 to ensure that the gauge field slow-rolls long enough,
to secure the needed amount of e-folds for inflation. The parameter γ is
a characteristic quantity of the model. It was shown in Ref. [227] that for
γ < 2 the scalar perturbations are tachyonically unstable. We thus restrict
our analysis to the stable region with γ > 2. For the tensor sector this
parameter characterises the enhancement of one of the polarizations for
the tensor perturbation with respect to the gravitational wave background
coming from the inflaton sector. So far there were no theoretical upper
bounds on this parameter, only the observational constraints coming from
the tensor-to-scalar ratio r. As we will see in the next subsection, for spec-
tator Gauge-flation there exists an upper bound γmax which is determined
solely from the self-consistency of the theory and the slow-roll conidtions.
For a given set of parameters g, ϵ and H, the upper bound on γ allows for
an estimation of the maximal enhancement for the tensor power spectra
and thus a theoretical upper bound on r.

3.2.2 Background parameters

In this subsection we will collect all the expressions for the background
parameters that will be relevant for the tensor power spectra computation.
To start with, there are two equivalent ways to write down the first slow-roll
parameter in terms of background quantities. The first one follows directly
from Eqs. (3.9) and (3.13), i.e.

ϵ =
1

M2
Pl
Q2
(
(1− δ)2 + γ

)
+ ϵφ. (3.17)

Another way is to use the combination Ḣ+2H2, which through Eqs. (3.9),
(3.10) leads to

ϵ = 2− κg2Q6

M2
Pl

(1− δ)2 +
1

3
ϵφ −Υ . (3.18)

1A fast-rolling spectator gauge-flation sector can also lead to GW production. How-
ever, some fine-tuning is required to bring it in the observable window. We thus do not
pursue this regime further.
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We have defined

Υ =
2V

3M2
PlH

2
, (3.19)

which is determined by the scalar field inflation potential and can be taken
to be approximately constant for slow-roll models of inflation. From Eqs. (3.13)
and (3.17) we derive the second slow-roll parameter

η =
Q2

M2
Pl

(
(1− δ)2 + (1− δ)

δ̇

ϵH
+ γ

δ

ϵ

)
+ δ − ϵφ

ϵ
(δ − ηφ) , (3.20)

with ηφ = − φ̈
Hφ̇ . An alternative derivation follows from Eqs. (3.13) and

(3.18)

η = ϵ− (2−Υ− (ϵ− 1

3
ϵφ))

(
δ̇

Hϵ(1− δ)
+

3δ

ϵ

)
− ϵφ

3

(
1− ηφ

ϵ

)
+

+
2

3

(
ϵφVφ
φ̇Hϵ

+
V

H2M2
Pl

)
.

(3.21)

Up to now the above equations are exact. If the inflaton is assumed to
dominate the total energy budget, Eq. (3.20) leads to η ≃ ϵφ

ϵ ηφ. Substitut-
ing that into Eq. (3.21) and neglecting2 δ̇

H(1−δ) , we find

δ ≃ ϵ

3(2−Υ− (ϵ− 1
3ϵφ))

(
ϵ− 2

3

ϵφ
ϵ
ηφ − ϵφ

3
+ Υ

(
1− ϵφ

ϵ

))
, (3.22)

where we have used ϵV =
M2

Pl
2

(
Vφ

V

)2
≃ ϵφ and φ̇ = −HMPl

√
2ϵφ is chosen

to be negative without loss of generality.
In addition to that, Eqs. (3.16) and (3.18) we find

κ =
1

H2γQ2

(1− δ)2 + γ

(1− δ)2
2−

(
ϵQ + 2

3ϵφ +Υ
)

ϵQ
. (3.23)

Moreover, from Eq. (3.17) one may derive the relation that will help to
eliminate MPl from the equations

MPl = Q

√
(1− δ)2 + γ

ϵQ
, (3.24)

2The arguments for neglecting this term are discussed in Ref. [75]. We numerically
checked the validity of this approximation
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where ϵQ is the first slow-roll parameter for the gauge field sector, i.e.
ϵQ = ϵQE

+ ϵQB
. The relations above with the inflaton sector set to zero

coincide with relations obtained in Ref. [227], which provides a consistency
check for our analysis. Eq. (3.22) was derived strictly under the assumption
of a dominant inflaton sector and thus does not reduce to the gauge-flation
result for ϵϕ → 0, which is not true for all equations before it, which are
exact and hence applicable to any gauge-flation scenario, with or without
a separate inflaton sector.

Finally, from Eqs. (3.16) and (3.17) we find that for δ ≪ 1

1− ϵφ
ϵ

≃ H2

M2
Plg

2ϵ
γ(γ + 1). (3.25)

From Eq. (3.25) we obtain γ as a function of ϵ and ϵφ

γ ≃ −1

2
+

1

2

√
1 + 4M2

Pl
g2ϵ

H2

(
1− ϵφ

ϵ

)
. (3.26)

The dependence of γ on ϵφ/ϵ is shown in Fig. (3.1). Since 0 < ϵφ < ϵ, the
right hand side of Eq. (3.25) is in the range 0 < H2

M2
Plg

2ϵ
γ(γ+1) < 1. Hence,

the maximum value of the parameter γ is

γmax = −1

2
+

1

2

√
1 + 4M2

Pl
g2ϵ

H2
. (3.27)

The result of Eq. (3.27) is obtained without the requirement ϵ ≃ ϵφ and
is rather generic. One can see that the parameter γ cannot be chosen
arbitrarily high any more, but reaches its maximal value given by Eq. (3.27)
due to the restrictions of the theory. The maximum value of γ is achieved
when the energy budget is completely controlled by the gauge sector, i.e.
when ϵφ

ϵ ≪ 1, meaning that ϵ is dominated by ϵQ. In the spectator case
ϵ ≃ ϵφ, and γ is limited to a smaller range of values, with a magnitude
that depends only on g (with fixed H and ϵ). Interestingly enough, this
allows us to find the minimum allowed value of the gauge coupling gmin
for spectator Gauge-flation. Simply from the stability condition of scalar
perturbations3 γmax > 2 we obtain

gmin >

√
6

MPl ϵ
H. (3.28)

3For γmax < 2 scalar perturbations experience a tachyonic instability, see [227] for a
detailed discussion.
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We can estimate the value of gmin by relating H and ϵ to the amplitude
of the scalar power spectrum Pζ = H2

8π2M2
Plϵ

≃ 2.2 × 10−9, since we assume
that the scalar power spectrum is dominated by the fluctuations in the in-
flaton sector. This results in gmin ≃ 4π

√
3Pζ ≃ 0.001. Then γmax may

be estimated as γmax ≃ −1
2 + 1

2

√
1 + g2

2π2Pζ
≃ 15 for g = 6.5 × 10−3. The

dependence of γmax on the value of g is shown in Fig. (3.1). A comple-
mentary method for computing the maximum allowed tensor amplification
based on the back-reaction of the produced spin-2 particles was presented
in Ref. [242].
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Figure 3.1: Left: The dependence of γ on ϵφ/ϵ for g = 10−3, 6.5× 10−3, 10−2 (blue-solid,
orange-dashed and green-dotted lines respectively) and H = 1.9 × 10−6Mpl, ϵ = 2 × 10−5.
The dot-dashed grey line shows the lower bound for the parameter, γ = 2. Right: The
dependence of γmax on the gauge coupling g for the same values of H and ϵ as on the left
plot. The star represents the value of g = 6.5×10−3 that we use in our numerical simulations
in the subsequent sections, unless stated otherwise.

3.3 Viability of spectator Gaugeflation

In this section we will show the viability of the spectator Gauge-flation.
We will consider and discuss the most important dynamics on the example
of an α-attractor potential for the inflaton field. To ensure that the gauge
sector of Eq. (3.8) is a spectator sector, the energy density of the gauge
fields must be subdominant to that of the inflaton

ρφ ≫ ρQE
, ρQB

, ρQκ , (3.29)
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where the definitions for the energy densities are given as [74]

ρφ =
1

2
φ̇2 + V (φ), (3.30)

ρQE
=

3

2
(Q̇+HQ)2, (3.31)

ρQB
=

3

2
g2Q4, (3.32)

ρQκ =
3

2
κg2Q4(Q̇+HQ)2. (3.33)

A similar condition must hold for the first slow-roll quantity ϵ

ϵφ ≫ ϵQE , ϵQB
, (3.34)

meaning that the Hubble evolution is dominated by the rolling of the infla-
ton field (see eq. (3.15)). The above inequalities can be re-cast as relations
between the VEVs of the inflaton and gauge fields

1

2
φ̇2 ≫(Q̇+HQ)2, (3.35)

1

2
φ̇2 ≫g2Q4, (3.36)

1

2
φ̇2 + V (φ) ≫3

2
(Q̇+HQ)2 (3.37)

1

2
φ̇2 + V (φ) ≫3

2
g2Q4, (3.38)

1

2
φ̇2 + V (φ) ≫3

2
κg2Q4(Q̇+HQ)2. (3.39)

Let us note that for spectator Chromo-natural inflation precisely the same
inequalities of Eq. (3.37) and (3.38) should hold, in addition to an inequality
for the axion field χ(t), i.e. 1

2
φ̇2 + V (φ) ≫ 1

2
χ̇2 + U(χ) that replaces

Eq. (3.39) since the κ-term can be thought as the analogue of the axion
potential in Chromo-natural inflation.

From Eqs. (3.35) – (3.39) one may see that ϵφ ≫ ϵQE , ϵQB
implies ρφ ≫

ρQE
, ρQB

, as well as ρφ ≫ ρQκ , if κ is not too large. Hence, Eqs. (3.37) and
(3.38) as well as Eq. (3.39) hold automatically when Eqs. (3.35) and (3.36)
are satisfied. Therefore we will focus on showing the allowed parameter
ranges to satisfy ϵφ ≫ ϵQE , ϵQB

, i.e. Eqs. (3.35) and (3.36), and confirm
our findings with numerical simulations.

For illustrative purposes we will consider an α-attractor model for the
inflaton sector [50, 243–245]. It is known that the universal predictions for
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the spectral index ns and tensor-to-scalar ratio r are in agreement with the
latest Planck data [220]. They are parametrised solely by the dimensionless
coupling α̃ and the number of e-folds N∗ before the end of inflation when
the CMB modes exit the horizon during inflation, i.e.

ns = 1− 2

N∗
, r =

12α̃

N2
∗
. (3.40)

The α-attractor T-model potential is given by

V (ϕ) = α̃µ̃2M2
Pl

(
(tanh(β̃ϕ/2))2

)n
, (3.41)

where the parameters of the potential are chosen to be

β̃ =
√

2/3α̃, n = 3/2, α̃ = 0.1, µ̃2 = 1.08× 10−10M2
Pl, (3.42)

and are used for numerical simulations in this section. For the gauge sector
we use4

g = 6.5× 10−3, κ = 1.733× 1020M−4
Pl ,

Q̇0/M
2
pl = −10−10, Q0/Mpl = 7× 10−4, 10−3, 1.5× 10−3,

(3.43)

where Q0, Q̇0 are initial value and initial velocity respectively for the gauge
field VEV.

For given parameters one may numerically evolve the system of Eqs. (3.9)
– (3.12) and find that, indeed, it is possible to satisfy the conditions of
Eqs. (3.29) and (3.34). Fig. (3.2) shows the evolution of the inflaton field
φ(N) and VEV of the gauge field Q(N) as a function of the number of
e-folds N . Notice that Q(N) evolves mildly with N and stays almost con-
stant. The shape of the parameter γ(N) which is defined in Eq. (3.16)
mimics the behaviour of Q(N) which is shown on Fig. (3.4). As we will
see in Section 3.4.2, the shape of γ determines the tilt of the tensor power
spectrum. Since we require that Q(N) also slow-rolls during the slow-roll of
φ(N), we expect γ(N) to be a decreasing function of time5. The evolution
of the components of ϵ and ρ is shown on Fig. (3.3). As we have seen in
our numerical simulations, for α-attractors the most restrictive condition

4The naturalness of the κ-term and its domination over all the other dimension eight
or higher contributions coming from gauge field or fermionic loops is discussed in Ref. [76].
Also note that κ−1/4 > Hinfl..

5The post-inflationary dynamics and the effect of parametric resonance [158–160] is
left for future work.
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to host a Gauge-flation sector as a spectator for inflation appears to be
the condition ϵφ ≫ ϵQB

. It is known (see e.g. Refs. [50, 158]), that for α-
attractors ϵφ ≃ 3α̃

4N2 . Hence, with the definitions of Eqs. (3.15) and (3.16),
ϵφ ≫ ϵQB

is satisfied for
3α̃

4N2
≫ γQ2

M2
Pl
. (3.44)

By fixing the parameter α̃, the number of e-folds N and the value of γ > 2,
it is easy to find the range of allowed initial values for the gauge field Q0,
in order for the non-Abelian sector to stay subdominant. One may rewrite
the condition of Eq. (3.44) using Eq. (3.16) and H2 ≃ H2

φ ≃ α̃µ̃2

3 in the
following form

3MPl
2µ̃N

≫ γ

g
. (3.45)

Similarly, the condition ϵφ ≫ ϵQE
may be written for δ ≪ 1 using Eqs. (3.15),

(3.16) as
3MPl
2µ̃N

≫
√
γ

g
. (3.46)

Indeed, we see that the condition ϵφ ≫ ϵQB
is more restrictive, which agrees

with our numerical simulations. The left-hand side of Eqs. (3.45), (3.46)
is a fixed number that is set by the number of e-folds of inflation N and
the scale µ̃, that does not depend on the parameters of the potential α̃ and
n, and is uniquely fixed from the amplitude of the power spectrum of the
scalar density perturbations. The range for allowed values for γ and g that
satisfy Eq. (3.45) is shown in Fig. 3.5.

3.4 Tensor sector
In this Section we will analyze the tensor perturbations generated by the
gauge fields. We will explicitly identify restrictions in the parameter space
coming from the inflaton sector on the gravitational wave production by
the gauge sector.

3.4.1 Tensor perturbations

In this subsection we adopt the notation of Ref. [233] for tensor perturba-
tions in the gauge field and the metric. The tensor sector consists of four
independent perturbations that are given by

δA1
µ = a(0, t+, t×, 0), δA2

µ = a(0, t×,−t+, 0),
δg11 = −δg22 = a2h+, δg12 = a2h×.

(3.47)
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Figure 3.2: Upper left: The dependence of the inflaton field φ on the e-folding number N for
the α-attractor T-model potential of Eq. (3.41) for Q0/Mpl = 7×10−4, 1×10−3, 1.5×10−3

(green-dashed, red-dotted and purple-dot-dashed lines respectively). The vertical grey grid
line shows the end of inflation. Upper right: The dependence of the gauge field VEV Q on
the e-folding number N for the same potential and color coding. The solid grey grid line
shows the end of inflation. Lower Left: The evolution of the inflaton field φ after the end
of inflation for the same parameters and color-coding. Lower right: The post-inflationary
evolution of the gauge field VEV Q for the same parameters and color-coding.
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Figure 3.3: Left: The evolution of components of the first slow-roll parameter ϵ with the
number of e-folds N for Q0/Mpl = 7 × 10−4. Right: The evolution of components of the
energy-density ρ with the number of e-folds N for the same parameters.

The plus and cross polarizations are related to the left-handed and right-
handed polarizations as

h+ =
hL + hR√

2
, h× =

hL − hR

i
√
2

,

t+ =
tL + tR√

2
, t× =

tL − tR

i
√
2

.

(3.48)
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Figure 3.4: Top left: Components ϵQB as a function of the e-folding number N for
Q0/Mpl = 7× 10−4, 1× 10−3, 1.5× 10−3 (green-dashed, red-dotted and purple-dot-dashed
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the given set of parameters. Top right: Components ρκ and their dependence on N for Q0

and color-coding. The very top curves correspond to ρφ and are practically indistinguishable.
Bottom row: The evolution of the parameter δ (left) and γ (right) for the same parameters
and color-coding. The solid grey grid line on the right panel shows the bound γ = 2, below
which scalar fluctuations in the theory are unstable.
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We canonically normalise them by introducing

hL,R =

√
2

Mpa
HL,R, tL,R =

1√
2a
TL,R, (3.49)

The action for canonically normalised perturbations reads

SL =
1

2

∫
dτd3k

[
∆′†

L∆
′
L +∆′†

LKL∆L −∆†
LKL∆

′
L −∆†

LΩ
2
L∆L

]
, ∆L =

(
HL

TL

)
.

(3.50)
where the expression for the right-handed sector is identical. Prime ()′ here
denotes a derivative with respect to conformal time τ . The anti-symmetric
matrix KL/R is defined through

KL/R,12 =
1

Mp

(
Q′ +

a′

a
Q

)
, (3.51)

and Ω2
L/R is symmetric, with components

Ω2
L/R,11 = k2 − 2

a′2

a2
+

3g2a2Q4

M2
p

− (aQ)′2

M2
pa

2
, (3.52)

Ω2
L/R,12 = ±k2gaQ

2

Mp
+

(aQ)′

aMp

a′

a
− 2κg2Q3

Mpa2
g2a4Q4 + a′2Q2 − a2Q′2

1 + κg2Q4
,

(3.53)

Ω2
L/R,22 = k2 ∓ 2kgaQ

[
1 + κ

g2a4Q4 + a′2Q2 − a2Q′2

a4(1 + κg2Q4)

]
+ (3.54)

+
2κg2Q2

a2
g2a4Q4 + a′2Q2 − a2Q′2

1 + κg2Q4
,

where signs refer to the left-handed or the right-handed polarization respec-
tively, which we denote by ‘‘L/R”. Now, we are going to use the background
relations obtained in Section 3.2.2 to simplify the above matrix elements
and expand them in slow-roll in order to identify limitations on the chiral
gravitational wave production, coming from the presence of the inflaton
field. It is convenient to rewrite the matrices in terms of ϵ, γ and δ. With
substitutions coming from Eqs. (3.16), (3.23) and (3.24)

Q′ → −aQHδ , a′ → a2H , κ→ 1

H2γQ2

(1− δ)2 + γ

(1− δ)2
2−

(
ϵQ + 2

3ϵφ +Υ
)

ϵQ
,

(3.55)

Mp → Q

√
(1− δ)2 + γ

ϵQ
, g → √

γ
H

Q
, (3.56)
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we find exact expressions for the matrices given by

KL/R,12 =
aH

√
ϵQ√

(1− δ)2 + γ
(1− δ), (3.57)

Ω2
L/R,11 = k2 − a2H2 (1− δ)2(2 + ϵQ) + γ(2− 3ϵQ)

(1− δ)2 + γ
, (3.58)

Ω2
L/R,12 = ±aHk

2
√
γϵQ√

(1− δ)2 + γ
− a2H2

√
ϵQ√

(1− δ)2 + γ
·

·
[

(2γ2 + 3γ(1− δ))(2−Υ− (ϵQ + 2/3ϵφ))+

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))
+ (3.59)

+
(1− δ)3(2−Υ− 2ϵQ − 2/3ϵφ + 2δ(2−Υ− (ϵQ + 2/3ϵφ)))

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))

]
,

Ω2
L/R,22 = k2 ∓ 2aHk

1
√
γ
·

·
[

(2γ2 + (1− δ)3(1 + δ))(2−Υ− (ϵQ + 2/3ϵφ))

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))
+ (3.60)

+
γ(1− δ)(3(2−Υ)− δ(2−Υ− 2/3ϵφ)− 2ϵ)

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))

]
+

+2a2H2 (2−Υ− (ϵQ + 2/3ϵφ))(γ
2 + 2(1− δ)γ + (1 + δ)(1− δ)3)

(2−Υ− 2/3ϵφ)(1− δ)2 + γ(2−Υ− (ϵQ + 2/3ϵφ))
.

Now, we substitute ϵQ and δ from Eq. (3.22), i.e.

ϵQ → ϵ−ϵφ , δ → ϵ

3(2−Υ− (ϵ− 1
3ϵφ))

(
ϵ− 2

3

ϵφ
ϵ
ηφ − ϵφ

3
+ Υ

(
1− ϵφ

ϵ

))
(3.61)

and expand the matrix elements in slow roll with ϵ ≪ 1 and ϵφ ≪ 1. The
lowest order in slow-roll quantities is

√
ϵ, where we obtain

KL/R,12 ≃ aH

√
ϵ√

1 + γ
C1(ϵφ), (3.62)

Ω2
L/R,11 ≃ k2 − 2a2H2, (3.63)

Ω2
L/R,12 ≃

(
±2kaH

√
γϵ

√
1 + γ

− a2H2 1 + 2γ√
1 + γ

√
ϵ

)
C1(ϵφ), (3.64)

Ω2
L/R,22 ≃ k2 ∓ 2kaH

1
√
γ
[1 + 2γ + C2(ϵφ)] + 2a2H2 [1 + γ + C2(ϵφ)] ,

(3.65)
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where we introduced the “correction” coefficients

C1(ϵφ) =

√
1− ϵφ

ϵ
, (3.66)

C2(ϵφ) = − ϵ

2−Υ

(
1− ϵφ

ϵ

)
+O (ϵ) . (3.67)

Notice that when the inflaton field dominates the energy budget, Eq. (3.10)
leads to Υ ∼ 2. Hence the second correction can be ϵ

2−Υ

(
1− ϵφ

ϵ

)
∼

√
ϵ

and is not negligible any more. For the case ϵφ = 0 and Υ = 0, matrix
elements reduce to the case of pure Gauge-flation and agree with the results
obtained in Ref. [233]. The absolute value of the corrections C1(ϵφ) and
C2(ϵφ) depend on the fraction of energy stored in the inflaton field, i.e.
ϵφ/ϵ. There is an interesting “tug of war” between two different effects
here.

• Since 1 − ϵφ/ϵ = ϵQ/ϵ, GW production by the gauge sector requires
ϵφ/ϵ to deviate somewhat from unity.

• The requirement that the gauge-sector does not affect the dynamics
of inflation and the generation of density fluctuations is encoded in
ϵφ ≫ ϵQ or ϵQ/ϵ≪ 1.

Both requirements, the dominance of the inflaton sector and significant GW
production by the gauge sector, can be simultaneously satisfied, but limit
the available parameter space.

The equation of motion for tensor perturbations follows from Eq. (3.50)
and may be written in the form

∆′′
L + 2KL∆

′
L + (K ′

L +Ω2
L)∆L = 0, (3.68)

and similarly for the right-handed sector. To leading order in
√
ϵ and

neglecting interactions with the gravitational wave sector, the equation of
motion for the gauge field perturbation reads

∂2τTL +Ω2
L,22TL = 0. (3.69)

Substituting the matrix Ω2
L,22 explicitly with τ = − 1

aH we get

∂2τTL +

(
k2 − 2k

−τ
1 + 2γ + C2(ϵφ)√

γ
+

2 (1 + γ + C2(ϵφ))

τ2

)
TL = 0. (3.70)
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Now, we may define z = 2ikτ and

ν̂ =
2 (1 + 2γ + C2(ϵφ))√

γ
= −2iα̂, (3.71)

µ̂ = 2 (1 + γ + C2(ϵφ)) =
1

4
− β̂2, (3.72)

in order to rewrite Eq. (3.70) in the form of the Whittaker equation

∂2zTL +

(
−1

4
+
α̂

z
+

1
4 − β̂2

z2

)
TL = 0. (3.73)

It can be solved with the Whittaker functions

TL,0(k, τ) = AkMα̂,β̂(2ikτ) +BkWα̂,β̂(2ikτ), (3.74)

with Mα̂,β̂(2ikτ) and Wα̂,β̂(2ikτ) being the Whittaker M and W functions.
Here the subscript 0 indicates that we neglected interactions with the grav-
itational wave sector. In the asymptotic past x ≡ −kτ → ∞, the solution
approaches the Bunch-Davies vacuum, i.e.

TL,0(k, τ) →
1√
2k
eix. (3.75)

Asymptotic expansions for the Whittaker functions in this limit are also
well-known, hence the constants Ak and Bk in (3.74) are given by [232]

Ak =
1√
2k

Γ
(
−α̂+ β̂ + 1

2

)
(2i)−α̂Γ

(
2β̂ + 1

) , (3.76)

Bk =
1√
2k

Γ
(
−α̂+ β̂ + 1

2

)
Γ
(
α̂+ β̂ + 1

2

) 2α̂iβ̂+1(−i)α̂−β̂. (3.77)

Next, we find that metric tensor modes to leading order in
√
ϵ satisfy

the following equation of motion in the x-variable

∂2xHL+

(
1− 2

x2

)
HL =

√
ϵC1(ϵφ)√
1 + γ

(
2

x
∂xTL +

(
2γ

x2
−

2
√
γ

x

)
TL

)
. (3.78)

Using the Born approximation, one may find the solution of Eq. (3.78) in
series of

√
ϵ

HL = HL,0 +HL,s, (3.79)
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where HL,0 is the homogeneous solution of the free equation of motion, and
HL,s is inhomogeneous part that is sourced by the gauge filed perturba-
tion TL. The homogeneous solution matches the Bunch-Davies vacuum at
asymptotic past and is given by

HL,0 =
1√
2k

(
1 +

i

x

)
eix. (3.80)

The sourced piece of the solution may be written as

HL,s =

√
ϵC1(ϵφ)√
1 + γ

∫ x

dx′
(

2

x′
∂x′ +

(
2γ

x′2
−

2
√
γ

x′

))
G(x, x′)TL,0(x

′),

(3.81)
where G(x, x′) is the Green’s function. We can follow the same steps as in
Refs. [229, 231, 232] and find that the late-time solution for the left-handed
gravitational wave is given by

HL =
Hx

MPl
√
k3
u1(x)+2

√
2

H

MPlk
Bk

2
√
ϵC1(ϵφ)√
1 + γ

(I1 +
√
γI2 − γI3) , (3.82)

which contains a free and a sourced part of the solution. Here we have
defined

u1(x) ≡
(
1 +

i

x

)
eix. (3.83)

The terms I1, I2, I3 are coming from the integrals in Eq. (3.81) and ex-
pressed as

I1 =

(
µ̂2 − 2iµ̂ν̂ + 2µ̂− 2ν̂2

)
sec(πβ̂) sinh(−iπα̂)Γ(α̂)

2µ̂(µ̂+ 2)
(3.84)

−
π2
(
µ̂2 + 2iµ̂ν̂ + 2µ̂− 2ν̂2

)
sec(πβ̂)csch(−iπα̂)

2µ̂(µ̂+ 2)Γ(α̂+ 1)Γ(−α̂− β̂ + 1
2)Γ(−α̂+ β̂ + 1

2)
, (3.85)

I2 =
π sec(πβ̂)Γ(−α̂)

2Γ(−α̂− β̂ + 1
2)Γ(−α̂+ β̂ + 1

2)
− π sec(πβ̂)Γ(1− α̂)

µ̂Γ(−α̂− β̂ + 1
2)Γ(−α̂+ β̂ + 1

2)

+
πµ̂ sec(πβ̂)− iπν̂ sec(πβ̂)

2µ̂Γ(1− α̂)
, (3.86)

I3 =
π2 (µ̂+ iν̂) sec(πβ̂)csch(−iπα̂)

µ̂(µ̂+ 2)Γ(α̂)Γ(−α̂− β̂ + 1
2)Γ(−α̂+ β̂ + 1

2)
+
π (ν̂ + iµ̂) sec(πβ̂)
µ̂(µ̂+ 2)Γ(−α̂)

.

(3.87)
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The homogeneous solution for the gauge field perturbation TL,0 is an ex-
cellent approximation, since it breaks down for x ≲ 0.1, which does not
influence gravitational wave modes which are sourced around horizon cross-
ing x ≃ 1. Indeed, we see that the late-time solution of Eq. (3.82) is in a
remarkable agreement with full numerical simulations, as seen on Fig. 3.6.
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Figure 3.6: Left: Tachyonic growth of the left-polarized gauge field mode-function TL around
the time of horizon crossing x = 1 for γ = 5, 12, 15 (blue solid, orange dashed and green
dot-dashed lines respectively), H/Mpl = 1.9∗10−6 and g = 6.5∗10−3. Right: Enhancement
of the left-polarized GW mode-function HL, sourced by the gauge field mode-function TL for
the same parameters and color coding. Stars represent the approximate late-time solutions
given by Eq. (3.82).

The right-hand polarized gravitational waves do not get enhanced and
are given by the usual vacuum value

HR(x) =
Hx

MPl
√
k3
u1(x). (3.88)

Finally, the power spectra for left-handed modes can be written as

P 2
L(k) =

H2

2π2M2
Pl

+
16kH2

π2M2
Pl

ϵC2
1 (ϵφ)

1 + γ
|Bk|2 |I1 +

√
γI2 − γI3|2 . (3.89)

The power spectra for right-handed modes is

P 2
R(k) =

H2

2π2M2
Pl
. (3.90)

The total tensor power spectrum is given by

PT (k) = 2P 2
L(k) + 2P 2

R(k), (3.91)

which in the limit ϵ→ ϵφ, i.e. C1(ϵφ) → 0, reduces to the single scalar field
result

PT,φ(k) =
2H2

π2M2
Pl
, (3.92)
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Finally, we can define the chirality parameter as

∆χ =
P 2
L − P 2

R

P 2
L + P 2

R

. (3.93)

Its behaviour is shown on Fig. 3.7. We see that sufficient enhancement of
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Figure 3.7: The chirality parameter ∆χ as a function of γ for α̃ = 1, 0.1, 0.01 (blue solid,
orange dashed and green dot-dashed lines respectively) for H/Mpl = 1.9 ∗ 10−6, g = 6.5 ∗
10−3. Stars represent γ = 5, 12, 15 used in Fig. (3.6).

one of the polarizations occurs for γ ≳ 8 for the given set of parameters
(H = 1.9 × 10−6Mpl, ϵ = 10−5, g = 6.5 × 10−3). For these parameters
γmax ≃ 15.

3.4.2 Tensor tilt

In this subsection we will discuss the shape of the tensor power spectrum
generated in the spectator Gauge-flation model, characterized by the tensor
tilt nT . In Ref. [239], it was shown that the spectator Chromo-natural
inflation model, depending on the choice of the axion potential, supports
both flat, red and blue tilted tensor spectra. Thus, our primary interest
is to investigate if spectator Gauge-flation may generate all three possible
tilts in realistic physical set-ups. The tensor tilt for Eq. (3.92) is given by
nT = −2ϵ∗, where ϵ is evaluated at t = t∗ that defines time of horizon
crossing for a mode with the wave number k∗ = a(t∗)H. Below we will
focus on the tilt for the sourced part only.

The power spectra of sourced gravitational waves from Eqs. (3.89) and
(3.91) are given by

PT,s(k) =
32kH2

π2M2
Pl

ϵC2
1 (ϵφ)

1 + γ
|Bk|2 |I1 +

√
γI2 − γI3|2 . (3.94)
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We are going to proceed as follows: first we rewrite Eq. (3.94) in terms of
γ(t), restoring its time-dependence, and then re-express P 2

T,s(k) in terms of
γ(k). This allows us to calculate the tensor tilt.

The time evolution of the vacuum expectation value of the gauge field
Q(t) may be written as

Q(t) = Q(t∗) + Q̇(t∗)(t− t∗), (3.95)

with t∗ being the time of horizon crossing. From here it follows that

Q(t)

Q(t∗)
= 1− δ∗H(t− t∗), (3.96)

where δ∗ = − Q̇(t∗)
HQ(t∗)

. This gives the time dependence of the parameter γ(t),
i.e.

γ(t) = γ∗

(
Q(t)

Q(t∗)

)2

= γ∗ (1− δ∗H(t− t∗))
2 ≃ γ∗

(
1 + 2

H(t− t∗)

∆N

)
,

(3.97)

with γ∗ = g2Q2(t∗)
H2 , ∆N = −1/δ∗. Using H(t− t∗) = ln(k/k∗) we can write

γ(k) as

γ(k) ≃ γ∗

(
1 + 2

ln(k/k∗)
∆N

)
≃ γ∗e

(
2 ln(k/k∗)

∆N

)
. (3.98)

To start with, using |Γ(12 + ib)|
2 = π

cosh(πb) one can rewrite |Bk|2 defined
in Eq. (3.76) in terms of γ(t) as

|Bk|2 =
1

2k
e
3π

(
1+2γ√

γ

)
e−π

√
7+8γ 1 + e

−π
(√

7+8γ+
2(1+2γ)√

γ

)
1 + e

−π
(√

7+8γ− 2(1+2γ)√
γ

) . (3.99)

Next, from Eq. (3.17) for δ ≪ 1 one can find

ϵC2
1 (ϵφ) = ϵQ ≃ H2

g2M2
Pl
γ(1 + γ). (3.100)

The term γI3 generates the main contribution in Eq. (3.94), hence we will
neglect smaller contributions coming from I1,

√
γI2. In terms of γ we find

γ2 |I3|2 = γ2
π (1 + 2γ)(1 + γ(1 + γ)(5 + γ))

γ3/2(1 + γ)2(2 + γ)2
e
−π

(√
7+8γ− 1+2γ√

γ

)
. (3.101)
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Putting everything together, the sourced tensor power spectrum becomes

PT,s(k) ≃
16H4

π2g2M4
Pl
γ e

3π
(

1+2γ√
γ

)
e−π

√
7+8γ 1 + e

−π
(√

7+8γ+
2(1+2γ)√

γ

)
1 + e

−π
(√

7+8γ− 2(1+2γ)√
γ

) |γI3|2 ,

(3.102)

where |γI3|2 is given by Eq. (3.101). Next, one may expand

√
7 + 8γ =

√
7 + 8γ∗ +

8γ∗√
7 + 8γ∗∆N

ln
(
k

k∗

)
− 32γ2∗

(7 + 8γ∗)3/2(∆N)2
ln2

(
k

k∗

)
,

(3.103)
1 + 2γ
√
γ

=
1 + 2γ∗√

γ∗
+

2γ∗ − 1
√
γ∗∆N

ln
(
k

k∗

)
− γ∗ − 3/2

√
γ∗(∆N)2

ln2

(
k

k∗

)
. (3.104)

We will not write the final expression for PT,s(k) in terms of γ∗, k, k∗ since it
is rather cumbersome, but may be easily written from the above expressions.
Instead, we will focus on the tensor tilt. As usual, the tensor power spectra
may be written in the form

PT,s(k) = AT (γ∗)

(
k

k∗

)nT,s

, (3.105)

with the tensor tilt is given by

nT,s =
d lnPT,s(k)

d ln k =− δ∗ [3 + 4π
2γ∗ − 1
√
γ∗

− 16π
γ∗√

7 + 8γ∗

− 2γ∗(−8− 39γ∗ − 57γ2∗ − 23γ3∗ + γ4∗)

(1 + γ∗)(2 + γ∗)(1 + 2γ∗)(1 + 5γ∗ + 6γ2∗ + γ3∗)

− π

8γ∗√
7+8γ∗

+ 22γ∗−1√
γ∗

1 + e
π
(√

7+8γ∗+2 1+2γ∗√
γ∗

) + π

8γ∗√
7+8γ∗

− 22γ∗−1√
γ∗

1 + e
π
(√

7+8γ∗−2 1+2γ∗√
γ∗

) ],
(3.106)

where we neglected corrections O
(
δ2∗
)

and ignored the time-dependence of
H. For α-attractors, as well as other plateau models, this is a very good
approximation. The complicated expression above may be written via a
simple fitting formula

nT,s ≃ −δ∗
(
3 + 1.225π

2γ∗ − 1
√
γ∗

− 3.612π
γ∗√

7 + 8γ∗

)
≃ −δ∗ (2.85 + 3.68

√
γ∗) .

(3.107)
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Hence, we may conclude that if Q(t) is a decreasing function of time, then
δ(t) defined in Eq. (3.16) leads to δ∗ being positive. Therefore, as follows
from Eq. (3.107), a red-tilted power spectrum is generated. If, on the
contrary, Q(t) increases in time, δ(t) is negative, which sources a blue-
tilted spectrum. We can sum up the relation of Q(t) to nT in the following
table

Q(t) ↘ ⇒ Q̇(t) < 0 ⇒ δ > 0 ⇒ nT < 0 red tilt,
Q(t) ↗ ⇒ Q̇(t) > 0 ⇒ δ < 0 ⇒ nT > 0 blue tilt.

(3.108)

All the results shown in Section 3.3 contain Q(t) as a decreasing function
of time, leading to red-tilted tensor spectra. Finally, Eq. (3.91) leads to the
tensor-to-scalar ratio r

r =
PT

Pζ
. (3.109)

The left panel of Fig. 3.8 shows the enhancement of the tensor-to-scalar
ratio r and its dependence on γ for the α-attractor potential of Eq. (3.41)
with n = 3/2 and α̃ = 10, 1, 0.1, 0.01. We see that for small γ, we recover the
single field α-attractor result r = 16ϵ with ϵ → ϵφ ≃ 3α̃

4N2 . Further increas-
ing r requires decreasing the gauge coupling g. However this is severely
restricted by Eqs. (3.28) and (3.45), meaning that we cannot increase r
significantly above what is show on Fig. 3.8. The right panel of Fig. 3.8
shows the correlation of Eq. (3.107) and r using Eq. (3.22). We see that
0 > nT ≳ −0.04 and larger r correlates with more red-tilted spectra.

Before we proceed to a brief overview of related models and compari-
son with our results on spectator gauge-flation, it is worth discussing the
conditions for a red-tilted spectrum. It was shown in Ref. [76] that the
original gauge-flation model can lead (at the background level) to both de-
creasing and growing functions of Q(t), depending on the initial conditions.
Trajectories starting close to the slow-roll attractor lead to a decreasing
Q(t). Trajectories that start far from the slow roll attractor in Ref. [76]
were shown to undergo a brief period of ϵ > 1, followed by a slow-roll in-
flationary phase with Q(t) increasing in time. The latter behavior required
different ranges of κ and g.

We were able to recover this general trend in our spectator model, at
the cost of altering the parameter space of the model. In particular, to
produce a growing Q(t) and a correspondingly blue-tilted GW spectrum,
we need to increase the value of κ. This leads to an increase in ρκ, which
is bounded from above by the requirement ρκ ≪ ρφ. Furthermore, γ is
reduced for these trajectories, suppressing GW production by the spectator
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sector. In order to increase GW production, we need to increase g, which
cannot be done arbitrarily. Such a realization of spectator gauge-flation is
given in Appendix 3A. Our numerical tests have shown the existence of such
solutions, but at the same time an increased level of parameter fine-tuning is
needed to achieve them, at least in the context of an α-attractor inflationary
sector. We will consider the red-tilted GW spectra as a “generic” prediction
of spectator gauge-flation, keeping in mind the ability of these models to
evade this prediction for proper choices of parameters and initial conditions.
We leave an exhaustive parameter search for a variety of inflationary sectors
for future work.
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Figure 3.8: Left: The tensor-to-scalar ratio r as a function of γ for g = 6.5 × 10−3 and
α̃ = 1, 0.1, 0.01, 0.001 (blue solid, orange dashed, green dotted and red dot-dashed lines
respectively). The horizontal black-dotted curve shows the observational upper limit on r.
Right: The tensor-to-scalar ratio r versus tensor tilt nT for the same parameters and color
coding. We can see the range of nT and the clear departure from the single field consistency
relation nT = −r/8 (solid black curve).

3.4.3 Comparison with related models

The model presented here is part of a larger family of inflationary models,
where the existence of a non-abelian sector leads to the generation of chiral
GWs. We can distinguish between the original models, where the SU(2)
or axion−SU(2) sectors are responsible for inflation and the generation
of both scalar and tensor modes, and the spectator models, where the
inflaton sector is decoupled from the non-abelian spectator sector. Gauge-
flation and Chromo-natural inflation, along with their Higgsed variants, fit
in the first category, while spectator Chromo-natural inflation and spectator
Gauge-flation make up the second category.

While the original Chromo-natural inflation and Gauge-flation mod-
els are ruled out by observations, their Higgsed counterparts provide pre-
dictions compatible with CMB observations for some part of parameter
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space. Interesting features arise from the correlation of the resulting tensor
to scalar ratio r and tensor spectral tilt nT . For Higgsed gauge-flation,
Ref. [232] showed a negative correlation between the two quantities. For
n ≲ 0.01 a blue-tilted spectrum is preferred. Hence Higgsed gauge-flation
and spectator gauge-flation (with an α-attractor inflationary sector) tend
to provide opposite predictions for the sign of nT .

Higgsed chromo-natural inflation has an interesting space of predictions
for nT and r. For smaller values of r < 0.01, the correlation between r
and nT is also mostly negative. However the possible range of values for
nT is much larger, ranging between −0.2 < nT < 0.05 for the parameter
scan presented in Ref. [231]. This means that the possible range of values
for Higgs Chromo-Natural inflation is significantly larger than that of our
realization of spectator Gauge-flation (see Fig. 3.8) for red and blue tilted
spectra alike.

Next, we wish to compare the present model to spectator Chromo-
natural inflation, in which an axion−SU(2) spectator sector is added to an
otherwise dominant inflaton. The existence of an axion potential V (χ) leads
for significant diversity in the form of the tensor power spectrum. Ref. [239]
showed the emergence of a blue or red-tilted spectrum for monomial po-
tential V (χ) ∝ |χ|p, where the tensor tilt scales as nT ∝ (p − 1). A linear
potential leads to an exactly scale-invariant tensor spectrum. In principle,
small deviations from p = 1 can lead to an arbitrarily small tensor tilt. How-
ever, this requires a rather fine-tuned axion potential. If instead we look
at p = 1/2 and p = 3/2 we can see that nT ≃ 0.04 and nT ≃ −0.07 respec-
tively. Concave potentials lead to blue-tilted spectra, which are generically
not produced in our model of spectator Gauge-flation. On the other hand,
convex potentials lead to red-tilted spectra, but for p > 3/2 the spectral
tilt will be nT ≲ O(0.1), which is outside the predictions shown in Fig. 3.8.

Finally, Ref. [246] studied an axion-inflaton field coupled to an SU(2)
gauge field, where the VEV of the latter is not large enough to affect the
background inflationary dynamics. Despite being subdominant, the pres-
ence of the gauge field can lead to the enhancement of GW’s and the corre-
sponding violation of the Lyth bound. The resulting tensor tilt nT exhibits
oscillations in time and asymptotes to zero at late times.

3.5 Summary and discussion

In this work we have explored the phenomenology of Gauge-flation as a
spectator sector during inflation. We have uncovered significant parameter
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restrictions, arising both from the physics of the gauge sector as well as from
the requirements that the gauge sector be subdominant to the inflationary
sector. Most importantly, these requirements lead to significant constraints
on the parameter γ, which controls the amount of GW enhancement.

By identifying the inflationary sector with the well-known T-model of
α-attractors, we showed that a spectator gauge-flation sector can increase
the tensor-to-scalar ratio by two orders of magnitude. The resulting tensor
spectral index nT is controlled by the evolution of the gauge field vacuum
expectation valueQ(t), being red ifQ is a decreasing function of time during
inflation and blue otherwise. The majority of our numerical simulations
resulted in red-tilted GW spectra with −0.04 ≲ nT < 0.

Our work presents an interesting generalization of gauge-flation, while
opening up exciting possibilities for future work. While α-attractors provide
a simple implementation of the inflationary sector, inflationary models that
contain two or more distinct phases of inflation, like double inflation, side-
tracked inflation and angular inflation, can help alleviate the parameter
constraints of our current implementation and produce distinct GW fea-
tures either at large or small scales. Furthermore, inflationary models with
non-Abelian gauge fields can have interesting consequences for baryogenesis
and dark matter production [247–250], leading to correlated observables.

Furthermore, the original choice of the higher-order term for gauge-
flation was based on the requirement for a vacuum energy-like equation of
state w ≃ −1, required for driving inflation. Using an SU(2) sector as
a spectator sector opens up the possibility of introducing more non-linear
terms, since the requirement of w ≃ −1 is lifted. It is interesting to explore
the phenomenology of gauge-flation with other non-linear terms, dictated
solely by the underlying symmetries, and their possible GW signatures. We
leave this exploration for future work.

3.6 Appendix 3A: Bluetilted GW spectrum

As shown in Eq. (3.108), the dynamics of Q(t) controls the sign of the tensor
tilt nT . Here we present a realization where Q(t) is an increasing function
of time on the example of α-attractor model, similarly as in Section 3.3, for
the same parameters of Eq. (3.42) for the potential, but with α̃ = 1. The
parameters we use for the gauge sector are

g = 1.7× 10−2, κ = 1021M−4
pl ,

Q̇0/M
2
pl = 10−10, Q0/Mpl = 6× 10−4, 8× 10−4, 1.18× 10−3.

(3.110)
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Figure 3.9: Left: The dependence of the inflaton field φ on the e-folding number N for the
the α-attractor T-model potential of Eq. (3.41) for Q0/Mpl = 6×10−4, 8×10−4, 1.18×10−3

(green-dashed, red-dotted and purple-dot-dashed lines respectively). Right: The dependence
of the gauge field VEV Q on the e-folding number N for the same potential and color coding.
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lines respectively). The blue-solid, black-dashed and brown-dot-dashed and curved correspond
to ϵφ for Q0/Mpl = 6 × 10−4, 8 × 10−4, 1.18 × 10−3 respectively. Top right: Components
ρκ and their dependence on N for the same Q0 and color-coding. The very top curves
correspond to ρφ and are practically indistinguishable. Bottom row: The evolution of the
parameter δ (left) and γ (right) for the same parameters and color-coding. The solid grey
grid line on the right panel shows the bound γ = 2, below which scalar fluctuations in the
theory are unstable.
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Figure 3.11: The chirality parameter ∆χ as a function of γ for α̃ = 1, H/Mpl = 6 ∗ 10−6

and g = 1.7 ∗ 10−2. In the allowed region γ ≲ 7, the chirality parameter is small.

Our numerical simulations show that in order for Q(t) to increase with
time, one has to impose higher values of the parameter κ in comparison
with those used in Section 3.3. Because of the conditions of Eqs. (3.33) and
(3.39), this highly constrains the values of the allowed Q0 and g, and hence
via Eq. (3.16) limits the allowed range for the parameter γ that controls
the enhancement of chiral gravitational waves.

Fig. 3.9 shows the evolution of the inflaton field φ and the vacuum
expectation value of the gauge field Q with the e-folding number N , that
behave similarly to those discussed in Section 3.3, but with Q being a
slowly increasing function of time. In such case δ becomes negative, as
shown in Fig. 3.10. However, one may see from the top right panel of the
Fig. 3.10, that further increase of Q0 will violate the condition ρφ ≫ ρQκ .
Hence for the parameters of Eq. (3.110), we compute the maximum γ ≃ 7.
From Fig. 3.7 we can see that for this value the chirality parameter is only
∆χ ≃ 0.05, hence no significant production of sourced gauge fields has
taken place. While this does not preclude the existence of a realization of
this model, leading to significant r and nT > 0, it demonstrates that this
requires some level of parameter fine-tuning.
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Part II

Reheating in curved field
spaces
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4|Universality and scaling in
multifield preheating

Abstract: We explore preheating in multi-field models of inflation in which
the field-space metric is a highly curved hyperbolic manifold. One broad
family of such models is called α-attractors, whose single-field regimes have
been extensively studied in the context of inflation and supergravity. We
focus on a simple two-field generalization of the T -model, which has re-
ceived renewed attention in the literature. Krajewski et al. concluded,
using lattice simulations, that multi-field effects can dramatically speed-up
preheating. We recover their results and further demonstrate that signifi-
cant analytical progress can be made for preheating in these models using
the WKB approximation and Floquet analysis. We find a simple scaling
behavior of the Floquet exponents for large values of the field-space cur-
vature, that enables a quick estimation of the T -model reheating efficiency
for any large value of the field-space curvature. In this regime we further
observe and explain universal preheating features that arise for different
values of the potential steepness. In general preheating is faster for larger
negative values of the field-space curvature and steeper potentials. For very
highly curved field-space manifolds preheating is essentially instantaneous.

Keywords: multi-field preheating, inflation.

Based on:

O. Iarygina, E. I. Sfakianakis, D. G. Wang and A. Achúcarro
Universality and scaling in multi-field α-attractor preheating.
JCAP 06, 027 (2019), [arXiv:1810.02804].
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4.1 Introduction

Inflation remains the leading paradigm for the very early universe, provid-
ing an elegant solution to the horizon and flatness problems of big bang
cosmology [27, 28]. However, the biggest success of inflation is undoubt-
edly that it provides a framework for computing the primordial density
fluctuations that can be observed as temperature variations of the Cosmic
Microwave Background Radiation (CMB) and that provide the seeds for
structure formation.

The recent results from the Planck satellite [53] are the latest in a
long line of experiments, starting in 1989 with COBE, trying to constrain
the characteristics of the primordial power spectrum through measuring the
spectral index of scalar fluctuations (ns). Attempts to measure the running
of the spectral index αs and the tensor to scalar ratio r have resulted so far
only in placing upper bounds on both. While large-field models of inflation
are tightly constrained and the simplest ones, like quadratic inflation, are
practically ruled out, large families of models are still compatible with the
data, providing predictions that match those of the Starobinsky model [251]

ns = 1− 2

N∗
, r =

12α

N2
∗

(4.1)

where N∗ is the time in e-folds where the CMB modes exit the horizon dur-
ing inflation. The two main families of models that provide the observables
of Eq. (4.1) are models with non-minimal coupling to gravity [154, 155]
(sometimes called ξ-attractors1) and models with hyperbolic field-space ge-
ometry, also called α-attractors [50–52, 61]. Higgs inflation [156, 157] is
an example of the former. For the Starobinsky model and ξ-attractors,
α = 1 in Eq. (4.1), hence the prediction for the tensor mode amplitude
is fixed. For α-attractors, the parameter α corresponds to the curvature
of the field-space, as we will see, hence the tensor power is suppressed for
highly curved field-space manifolds [50–52]. At some level, the unifying fea-
ture of all these approaches can be attributed to a singularity in the kinetic
sector [254]. We will focus only on α-attractors, drawing similarities and
differences with the other observationally related models when necessary.

While a lot of theoretical and phenomenological work on inflation has
focused on single-field scenarios, realistic models of high-energy particle

1It is worth noting that in the Palatini formulation of gravity the behavior and
predictions of ξ-attractor models change significantly, as is discussed for example in
Refs. [252, 253].
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physics typically include many distinct scalar fields at high energies [255–
259]. Furthermore, multiple fields with a curved field-space manifold (see
e.g. [69, 95, 260–267]) can display a variety of effects, including non-gaussianities,
isocurvature modes, imprints from heavy fields during turns in field space,
curvature fluctuations from ultra-light entropy modes, as well as geomet-
ric destabilization of the inflationary trajectory [54, 55, 268, 313]. Several
models that lead to the predictions of Eq. (4.1) display strong single field
attractors [61, 154, 157] that persist during and after inflation. In particu-
lar, the multi-field analysis of α-attractors has become an interesting topic
recently [61, 65, 66, 269–271].

During inflation, the inflaton field dominates the total energy density
budget. However, the universe must be in a radiation dominated stage
before Big Bang Nucleosynthesis (BBN), in order to produce the observed
abundance of light elements [280–282] (see e.g. Refs. [273, 283–286] for
recent reviews). The period during which the energy density locked in
the inflaton condensate is transferred to radiation modes is called reheat-
ing. While inflation is tightly constrained by measurements of the CMB
and Large Scale Structure [272–279], the period after inflation and before
Big Bang Nucleosynthesis (BBN), provides far fewer observational handles,
due to the very short length-scales involved. This is due to the fact that
most dynamics during reheating takes place at sub-horizon scales, following
causality arguments, hence it does not leave an imprint on larger scales, like
the CMB2. Furthermore, the thermalization processes that have to occur
before BBN wash out many of the “fingerprints” of reheating. Despite its
inherent complexity, knowledge of the reheating era is essential, in order
to relate inflationary predictions to present-day observations. The evolu-
tion history of the universe determines the relation between the times of
horizon-crossing and re-entry of primordial fluctuations [161, 287–294]. Fur-
themore, preheating in multi-field models of inflation can alter the evolution
of cosmological observables [93, 295–300].

The reheating era can proceed either through perturbative decay of the
inflaton, or through non-perturbative processes, such as parametric and
tachyonic resonance, also called preheating (see e.g. [133, 144, 149] and
Ref. [118] for a review). A recent paper [160] used lattice simulations to
compute the preheating behavior of a specific two-field realization of the
T-model, a member of the α-attractor family [301]. In this paper we use

2While this is true for most models, there are well motivated cases where reheating
can excite super-horizon modes and thus affect CMB observables. This does not occur
for the α-attractor models that we are examining and we will not be discussing it further.
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linear analysis to recover and interpret the results of Ref. [160] and examine
their dependence on the potential steepness and field-space curvature. We
find that the Floquet charts for a specific value of the potential steepness
collapse into a single “master diagram” for small values of α when plotted
against axes properly rescaled by the field-space curvature. Even for differ-
ent potential parameters, the scaling behavior of the Floquet charts persists,
albeit in an approximate rather than exact form. Overall we find slightly
faster preheating for steeper potentials and for models with stronger field-
space curvature. An important conclusion is that, in the limit of highly
curved manifolds, preheating occurs almost instantaneously regardless of
the exact form of the T-model potential. This is important for connecting
the predictions of α-attractors to CMB observations.

The structure of the paper is as follows. In Section 4.2 we describe the
model and study its background evolution, both during and after inflation.
In Section 4.3 we review the formalism for computing fluctuations in multi-
field models with non-trivial field-space metric. We also specify the form
of the potential and analyze the resulting particle production using semi-
analytic arguments, the WKB approximation and Floquet theory. Section
4.4 generalizes our results to different potentials. We conclude in Section
4.5.

4.2 Model
We consider a model consisting of two interacting scalar fields on a hyper-
bolic manifold of constant negative curvature. The specific Lagrangian cor-
responds to a two-field extension of the well-known T-model, as described
in detail in Appendix 4A and Ref. [160], and can be written as

L = −1

2

(
∂µχ∂

µχ+ e2b(χ)∂µϕ∂
µϕ
)
− V (ϕ, χ) , (4.2)

where b(χ) = log (cosh(βχ)). The corresponding two-field potential is

V (ϕ, χ) =M4

(
cosh(βϕ) cosh(βχ)− 1

cosh(βϕ) cosh(βχ) + 1

)n

(cosh(βχ))2/β
2

, (4.3)

where β =
√

2/3α and M4 = αµ23. For χ = 0 the potential becomes

V (ϕ, 0) =M4
(
(tanh(βϕ/2))2

)n
=M4 tanh2n(β|ϕ|/2). (4.4)

3In this Chapter the parameter α corresponds to α̃ from Chapter 3.
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The background equation of motion for ϕ(t) at χ(t) = 0 is

ϕ̈+ 3Hϕ̇+
2
√
2M4n√
3α

csch
(√

2

3α
|ϕ|

)
tanh2n

(
|ϕ|√
6α

)
= 0. (4.5)

We rescale the inflaton field ϕ and the parameter α by the reduced Planck
mass as ϕ = ϕ̃MPl and α = α̃M2

Pl. Finally, we rescale time by µ, leading to

d2ϕ̃

d(µt)2
+ 3

H

µ

dϕ̃

d(µt)
+

2
√
2α̃ n√
3

csch
(√

2

3α̃
|ϕ̃|

)
tanh2n

(
|ϕ̃|√
6α̃

)
= 0, (4.6)

where (
H

µ

)2

=
1

3

1
2

(
dϕ̃

d(µt)

)2

+ α̃ · tanh2n

(
|ϕ̃|√
6α̃

) . (4.7)

In Ref. [160] an alternative rescaling of time was implicitly used, which we
describe in Appendix 4C.

4.2.1 Singlefield background motion

We start by analyzing the background motion of the ϕ and χ fields, in order
to identify the regime of effectively single-field motion and describe CMB
constraints on the model parameters. We initially assume that χ(t) = 0 at
background level, which is indeed a dynamical attractor, as we will show
later. Eq. (4.6) in the slow-roll approximation and for ϕ̃/

√
α̃ ≫ 1, which

holds during inflation, becomes

3H
˙̃
ϕ+

4
(√

2αn
)

√
3

e−
√
2ϕ̃/

√
3α̃ ≃ 0, (4.8)

where H/µ ≃
√
α̃/3, leading to

˙̃
ϕ = −4

√
2n

3
e−

√
2ϕ̃/

√
3α̃, (4.9)

N =
3α̃

8n
e

√
2
3α̃

ϕ̃
. (4.10)

The slow-roll parameters become

ϵ ≡ − Ḣ

H2
=

16n2

3α̃
e−2

√
2ϕ̃/

√
3α̃ ≃ 3α̃

4N2
(4.11)

η ≡ ϵ̇

ϵH
≃ 2

N
. (4.12)
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Figure 4.1: Upper panels: The rescaled background field at the end of inflation ϕend/
√
α

as a function of n (left) and α (right). Lower panels: The rescaled Hubble parameter at the
end of inflation Hend/

√
α as a function of n (left) and α (right). The Hubble parameter is

measured in units of µ. Color coding is as follows:
Left: α = 10−5, 10−4, 10−3, 10−2, 10−1 (blue, red, green, brown and black respectively).
Right: n = 1, 1.5, 2, 2.5, 3, 5 (blue, red, green, brown, orange and black respectively).

The end of inflation defined as ϵ = 1, based on the slow-roll analysis, occurs
at

ϕ̃end√
α̃

=

√
3

2
√
2

(
log 16

3
+ 2 logn− log α̃

)
. (4.13)

The last term in Eq. (4.13) is subdominant for small α̃ and can be safely
ignored, leading to ϕ̃end/

√
α̃ ≃ 0.6(1.7 + 2 logn). Even though the slow-roll

approximation fails near the end of inflation, the scaling ϕ̃end/
√
α̃ = O(1)

is valid over the whole range of potential parameters α and n that we
considered, as shown in Fig. 4.1. The Hubble scale at ϵ = 1 is

H2
end
µ2

=
1

2
α̃ · tanh2n

(
ϕ̃end√
6α̃

)
∼ 1

4
α̃, (4.14)

where the numerical factor in the last equality of Eq. (4.14) is fitted from
the bottom right panel of Fig. 4.1.
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The tensor-to-scalar ratio for single-field motion is

r = 16ϵ ≃ 12
α̃

N2
. (4.15)

In general r = α × O(10−3) for modes that exit the horizon at N ∼ 55
e-folds before the end of inflation. The dimensionless power spectrum of
the (scalar) density perturbations is measured to be

As ≃ 2× 10−9 . (4.16)

Using the expression for the scalar power spectrum from single field slow-
roll inflation

As =
H2

8π2M2
Plϵ

, (4.17)

and the value of the Hubble scale at the plateau of the potential H2 ≃
α̃µ2/3, it is straightforward to see that µ ∼ 10−5MPl. Hence the scale
of µ fixes the amplitude of the scalar power spectrum, independent of α
and n. By using µ to re-scale time, it is trivial to connect the preheating
calculations performed in the present work to observational constraints on
the potential parameters.

4.2.2 Initial condition dependence

It can be easily seen that the potential of Eq. (4.3) exhibits a minimum at
χ = 0 for all values of ϕ. However, the approach to this potential “valley” is
important and could in principle leave observational signatures, if it occurs
close to the time at which the CMB-relevant scales leave the horizon.

Fig. 4.2 shows the transition to the single-field trajectory for n = 3/2
and α = 0.001. The initial conditions are ϕ0 = χ0, chosen such that there
would be 60 e-folds of inflation for χ0 = 0. We see two distinct stages of
inflation: initially ϕ(t) remains almost constant and χ(t) follows a slow-
roll motion until it reaches the minimum χ = 0. Then, after a sharp turn
in field-space, the field ϕ(t) follows a slow-roll motion towards the global
minimum of the potential, while χ stays exponentially close to zero. Hence
to a good approximation, the whole inflationary era is separated into two
sequential periods of distinct single-field motion.

Starting from a wide range of initial conditions ϕ0 ≡ ϕ(0) and χ0 ≡ χ(0),
we see that the system generically follows the two-stage evolution shown in
Fig. 4.2, proceeding along χ(t) = 0 during the last stage of inflation and
during the post-inflationary oscillations. Figure 4.3 shows the transition
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Figure 4.2: Left: A characteristic evolution for ϕ (blue), χ (red) and H (black-dashed) for
n = 3/2 and α̃ = 0.001, showing the approach to χ(t) = 0. The initial conditions are chosen
as ϕ0 = χ0 and ϕ̇0 = χ̇0 = 0. Right: The three-dimensional plot of the trajectory on the
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Figure 4.3: Left: A contour plot in the ϕ0 ≡ ϕ(0) and χ0 ≡ χ(0) plane for n = 3/2 and
α̃ = 0.001, showing the total number of e-folds of inflation. The initial velocities are chosen
as ϕ̇0 = χ̇0 = 0. The red-dashed line shows the initial conditions that lead to 60 e-folds of
inflation. We see that the total number of e-folds are predominately controlled by ϕ0. Right:
A contour plot in the ϕ0 and χ0 plane for n = 3/2 and α̃ = 0.001, showing the number of
e-folds from the beginning of inflation until the χ = 0 attractor is reached. As expected, the
number of e-folds along ϕ ≃ ϕ0 are mostly determined by χ0. We see that the initial stage
of inflation along ϕ ≃ ϕ0 lasts far less than the second stage of inflation along χ = 0, hence
it will not leave any observational imprints for non fine-tuned initial conditions.
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to the single-field motion along χ = 0 for broad conditions, constrained to
provide more than 60 e-folds of inflation. Beyond the fact that the single
field trajectory along χ(t) = 0 is a dynamical attractor for the generalized
two-field T-model, its predictions are robust with respect to χ0. As shown in
Fig. 4.3, the number of e-folds along the second stage χ(t) = 0 is much larger
than the number of e-folds along the first stage ϕ(t) = const. The range
of values {ϕ0, χ0} that place the turn-rate spike (the transition between
the two single-field motions) at the observable window 50 ≲ N∗ ≲ 60 is
very narrow, requiring delicate fine-tuning. Hence the generic observational
prediction of these models for the CMB is that of usual single-field α-
attractors. This behavior can be understood analytically. Considering the
number of e-folds along a single-field trajectory we get

N =

∫
H dt =

∫
H

ϕ̇
dϕ (4.18)

As a quick estimate of the number of e-folds we can use ∆N1 ∼ (H/|χ̇|)∆χ ∼
(H/|χ̇|)χ0 during the first stage and ∆N2 ∼ (H/|ϕ̇|)∆ϕ ∼ (H/|ϕ̇|)ϕ0 dur-
ing the second stage of inflation. Assuming that the Hubble scale does not
change much during inflation

N1

N2
∼
∣∣∣∣ χ̇ϕ̇
∣∣∣∣ χ0

ϕ0
(4.19)

Fig. 4.4 shows the ratio |ϕ̇/χ̇| as a function of ϕ for several values of χ0.
We see that for large values of ϕ0, required to give a sufficient number of
e-folds of inflation, |χ̇| = O(10)|ϕ̇|, hence N1 = O(0.1)N2 for typical values
of {ϕ0, χ0}. While there is potentially interesting phenomenology from the
turning trajectories, it is absent for generically chosen initial conditions.
Since we are only interested in the preheating behavior of the two-field
T-model, we will not pursue this subject further here.

4.2.3 Geometrical destabilization

A novel phenomenon that manifests itself in scalar field systems on a nega-
tively curved manifold is “geometrical destabilization” [54], where the pres-
ence of a negative field-space Ricci term can turn a stable direction into
an unstable one. The study of the effective mass for the ϕ and χ fluc-
tuations will be performed in Section 4.3. In order to check the stability
of the single-field trajectory, it suffices to use the effective super-horizon
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Figure 4.4: Left: The field velocities ϕ̇(t) (blue) and χ̇(t) (red) for the example of Fig. 4.2.
We see that the initial stage of inflation along ϕ = const. proceeds with a much larger velocity
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ratio of the typical velocities |ϕ̇/χ̇| as a function of the inflaton field ϕ0 for different values
of the field amplitude χ0. We see that for the ϕ field values needed to generate sufficient
e-folds of inflation the typical χ velocity is larger than the typical ϕ velocity.

isocurvature mass

m2
χ,eff = Vχχ(χ = 0)− 1

2

4

3α
ϕ̇2 =

=

(
2 tanh2n

(
|ϕ(t)|√
6
√
α

)(
3α+ 2n coth

(√
2
3
ϕ(t)

√
α

)
csch

(√
2
3
ϕ(t)

√
α

)))
3

− 2ϕ̇(t)2

3α
(4.20)

During inflation and using the slow-roll conditions, we get

m2
χ,eff = 2α

(
1 +

1

2N

)
(4.21)

which is positive. However, close to the end of inflation the slow-roll ap-
proximation fails and the result cannot be trusted. Hence the model under
study is safe against geometrical destabilization effects during inflation.
The effective mass of isocurvature fluctuations can become negative after
the end of inflation, but this falls under the scope of tachyonic preheating,
as will be discussed in Section 4.3. Figure 4.5 shows the isocurvature ef-
fective mass-squared during the last e-folds of inflation, showing that it is
indeed positive until very close to the end, hence no Geometrical Destabi-
lization will occur4. However Fig. 4.5 shows that all computations, either

4Recently Ref. [65] showed the existence of yet another possible evolution for α-
attractor models, angular inflation, where the background motion proceeds along the
boundary of the Poincare disk. We did not see this behavior arise in the context of the
two-field T-model studied here, even for highly curved manifolds.
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Figure 4.5: The super-horizon isocurvature effective mass-squared m2
χ,eff given in Eq. (4.20)

for several values of α and n. In particular α̃ = 0.0001 and n = 3/2 (blue), α̃ = 0.001 and
n = 3/2 (red), α̃ = 0.01 and n = 3/2 (green), α̃ = 0.001 and n = 1 (brown), α̃ = 0.001 and
n = 10 (black). The dotted parts show the negative part of m2

χ,eff. The three curves that
correspond to α̃ = 0.001 are visually indistinguishable. The orange line shows the slow-roll
expression of Eq. (4.21) for α̃ = 0.001. We see that the single field trajectory along χ = 0 is
safe against geometric destabilization effects until close to the end of inflation.

using linear analysis as the ones performed here, or full lattice simulations
like in Ref. [160], must be initialized more than an e-fold before the end of
inflation, where the effective isocurvature mass-squared is positive and the
connection to the Bunch Davies vacuum is possible.

4.2.4 Postinflationary background oscillations

In order to study the post-inflationary background evolution of the inflaton
field ϕ(t), it is convenient to work in terms of the rescaled field variable
δ ≡ ϕ̃/

√
α̃ and re-write the equation of motion for the inflaton field ϕ as

δ̈ + 3Hδ̇ + µ2
2
√
2

3
n · csch

(√
2

3
|δ|

)
tanh2n

(
1√
6
|δ|
)

= 0 (4.22)

where (
H

µ

)2

=
α̃

3

[
1

2

(
dδ

d(µt)

)2

+ tanh2n

(
|δ|√
6

)]
(4.23)

The field re-scaling leads to δ = O(1) at the end of inflation and during
preheating. We see that the evolution of δ, if one neglects the Hubble drag
term, does not depend on α. This is reminiscent of non-minimally coupled
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Figure 4.6: Upper panels: The background period T as a function of α (left) and n (right).
Lower panels: The ratio of the background frequency ω = 2π/T to the Hubble scale at the
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specifically:
Left: α = 10−5, 10−4, 10−3, 10−2, 10−1 (blue, red, green, brown and black respectively).
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models of inflation, where the background equation of motion approaches
one “master equation”, when properly normalized, and thus the background
motion is self-similar for large values of the non-minimal coupling ξ. In
reality the background evolution has a mild dependence on α, arising from
the (very weak) dependence of δend on α, which is shown in Fig. 4.1. Fig. 4.6
shows the period of background oscillations, if we neglect the Hubble drag
and initialize the oscillation at δinit = ϕend/

√
α. We see that the period

T ∼ 10. More importantly, there is a significant separation of scales between
the background oscillation frequency ω = 2π/T and the Hubble scale. The
relation can be roughly fitted as ω/Hend ∼ 1/

√
α̃. This shows that there

are more background oscillations per Hubble time (or per e-fold) for smaller
values of α̃, hence for highly curved field-space manifolds.
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4.3 Tachyonic resonance

4.3.1 Fluctuations

The covariant formalism that must be used to study the evolution of fluc-
tuations in models comprised of multiple scalar fields on a curved manifold
has been developed and presented in Refs. [37, 266], described in detail in
Ref. [136] and extensively used in Refs. [302–304] for studying preheating
in multi-field inflation with non-minimal couplings to gravity. The gauge-
invariant perturbations obey

D2
tQ

I + 3HDtQ
I +

[
k2

a2
δIJ +MI

J

]
QJ = 0, (4.24)

where the mass-squared matrix is given by

MI
J ≡ GIK (DJDKV )−RI

LMJ φ̇
Lφ̇M − 1

M2
pla

3
Dt

(
a3

H
φ̇I φ̇J

)
(4.25)

and RI
LMJ is the Riemann tensor constructed from GIJ(φ

K). For the
model at hand, where the background motion is restricted along the χ = 0
direction, the field-space structure simplifies significantly GIJ(χ = 0) = δIJ
and ΓI

JK = 0, hence all covariant derivatives become partial derivatives
and the quantization of the fluctuations proceeds as usual. This is not
the case for other parametrizations of the field-space, or other background
trajectories, where GIJ ̸= δIJ , and one would have to use the field-space
vielbeins to properly quantize the system, as done for example in Ref. [136].

We rescale the perturbations as QI(xµ) → XI(xµ)/a(t) and work in
terms of conformal time, dη = dt/a(t). This allows us to write the quadratic
action in a form that resembles Minkowski space, which makes their quan-
tization straightforward. The quadratic action becomes

S
(X)
2 =

∫
d3xdη

[
−1

2
ηµνδIJ∂µX

I∂νX
J − 1

2
MIJX

IXJ

]
, (4.26)

where
MIJ = a2

(
MIJ − 1

6
δIJR

)
(4.27)

and R is the space-time Ricci scalar. The energy density of the two fields
in momentum-space becomes

ρ
(X)
k =

1

2
δIJ∂ηX

I
k∂ηX

J
k+

1

2
[ω2

k(η)]IJX
I
kX

J
k =

1

2
δIJ
[
∂ηX

I
k∂ηX

J
k − (∂2ηX

I)XJ
]

(4.28)
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where we used the equation of motion for the second equality and defined
the effective frequency-squared as

[ω2
k(η)]IJ = k2δIJ +MIJ (4.29)

We promote the fields XI to operators X̂I and expand X̂ϕ and X̂χ in sets
of creation and annihilation operators and associated mode functions

X̂I =

∫
d3k

(2π)3/2

[
uI(k, η)âeik·x + uI∗(k, η)â†e−ik·x

]
. (4.30)

and we define uϕ ≡ v and uχ ≡ z. Since the modes decouple on a single-field
background with vanishing turn-rate, the equations of motion are

∂2ηvk + ω2
ϕ(k, η)vk ≃ 0 , ωϕ(k, η)

2 = k2 + a2m2
eff,ϕ ,

∂2ηzk + ω2
χ(k, η)zk ≃ 0 , ωχ(k, η)

2 = k2 + a2m2
eff,χ .

(4.31)

The effective masses of the two types of fluctuations, along the background
motion and perpendicular to it, consist of four distinct contributions [136]:

m2
eff,I = m2

1,I +m2
2,I +m2

3,I +m2
4,I , (4.32)

with5

m2
1,I ≡ GIK (DIDKV ) ,

m2
2,I ≡ −RI

LMI φ̇
Lφ̇M ,

m2
3,I ≡ − 1

M2
pla

3
δIKδ

J
I Dt

(
a3

H
φ̇Kφ̇J

)
,

m2
4,I ≡ −1

6
R = (ϵ− 2)H2 .

(4.33)

The various component of the effective mass-squared arises from a different
source:

• m2
1,I is the usual effective mass term derived from the curvature of

the potential around the minimum.

• m2
2,I comes from the geometry of field-space and has no analogue in

models with a trivial field space.
5Note that no summation implied over the index I = ϕ, χ. This corrects an expression

in the published paper.
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• m2
3,I arises due to the presence of coupled metric perturbations by

considering linear fluctuations in the metric as well as in the fields.
This contribution vanishes in the limit of infinitely rigid space-time.

• m2
4,I encodes the curvature of space-time.

In general m2
3,χ = 0 = m2

2,ϕ, since the coupled metric fluctuations described
by m2

3,I only affect the adiabatic modes δϕ, while the field-space curvature
described by m2

2,I only affects the isocurvature modes6 δχ. In our case,
both m2

3,I and m2
4,I are subdominant for highly curved field spaces α̃≪ 1,

as can be seen from the various scalings of the terms in Eq. (4.32)

m2
1,ϕ ∼ µ2

m2
3,ϕ ∼ µ2

√
α̃

m2
4,ϕ = m2

4,χ ∼ µ2α̃

(4.34)

The small value of m2
4,I is one further indication that fluctuations behave

almost as if they were in flat spacetime. These scalings agree very well
with numerical evaluations for a large range of α̃, as shown in Fig. 4.7. A
closer analysis of scaling relations for m2

eff,χ, will be performed in Section
4.3.2. Meanwhile, within the single-field attractor along χ = 0, the energy
densities for adiabatic and isocurvature perturbations take the simple form
[136]

ρ
(ϕ)
k =

1

2

[
|v′k|2 +

(
k2 + a2m2

eff,ϕ
)
|vk|2

]
,

ρ
(χ)
k =

1

2

[
|z′k|2 +

(
k2 + a2m2

eff,χ
)
|zk|2

]
,

(4.35)

where we thus approximate the two effective masses as

m2
eff,ϕ ≃ Vϕϕ(χ = 0) (4.36)

m2
eff,χ ≃ Vχχ(χ = 0) +

1

2
Rϕ̇2 (4.37)

where R = −4/3α is the field space Ricci curvature scalar and we dropped
the subdominant terms. We must keep in mind thatQϕ ∼ vk/a(t) andQχ ∼
zk/a(t). We measure particle production with respect to the instantaneous
adiabatic vacuum [285]. The initial conditions for preheating can be read

6The terms “adiabatic” and “isocurvature” refer to fluctuations along and perpendic-
ular to the background trajectory respectively.
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Figure 4.7: The absolute values of the non-zero components of m2
eff,ϕ, (left to right: m2

1,ϕ,
m2

2,ϕ/
√
α and m2

3,ϕ/α) properly rescaled to showcase the scalings of Eq. (4.34) for n = 3/2
and α̃ = 10−2, 10−3, 10−4 (black, red and blue respectively). The fact that all curves within
each panel have similar values at the end of inflation is a numerical validation of the scalings
shown in Eq. (4.34). The curves on the left and middle panels for t > 0 are generated
through using a moving average window on the values of |m2

{2,3},ϕ|. Without this smoothing
the curves would exhibit large oscillations and hence would overlap and be very hard to
distinguish. The information lost is not important, since at this point we are interested in the
scaling properties of the effective mass components, not their exact form.

off from Eq. (4.31), using the WKB approximation and starting during
inflation, when the effective mass is positive

vinit
k =

1√
2ωϕ(k, η)

e
−i

∫ η
η0

ωϕ(k,η
′)dη′ (4.38)

zinit
k =

1√
2ωχ(k, η)

e
−i

∫ η
η0

ωχ(k,η′)dη′ (4.39)

In the far past a(η) → 0, hence {ωϕ(k, η), ωχ(k, η)} → k, which makes
the solutions of Eqs. (4.38) and (4.39) match to the Bunch-Davies vacuum
during inflation.

Since we will be performing the computations in cosmic time, we write
the equations of motion for the two types of fluctuations. The fluctuation
equation for the ϕ field (adiabatic direction) is

Q̈ϕ + 3HQ̇ϕ +

[
k2

a2
+ Vϕϕ

]
Qϕ = 0 (4.40)

where we neglected the term arising from the coupled metric fluctuations,
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that is proportional to M−2
Pl . We again rescale time by µ giving us

d2Qϕ

d(µt)2
+ 3

H

µ

dQϕ

d(µt)
+

[
(k/µ)2

a2
+
Vϕϕ
µ2

]
Qϕ = 0 (4.41)

where the potential-dependent term of the effective frequency is

Vϕϕ
µ2

=
√
α̃
d2

dϕ̃2

[
tanh2n

(
|ϕ̃|√
6α̃

)]
(4.42)

The results for the isocurvature modes δχ or Qχ are similar

d2Qχ

d(µt)2
+ 3

H

m

dQχ

d(µt)
+

[
(k/µ)2

a2
+
Vχχ
µ2

+
1

2

(
dϕ

d(µt)

)2

R

]
Qχ = 0 (4.43)

The last term in the above equation is the Riemann contribution to the
effective mass-squared ω2

χ

m2
2,χ = −Rχ

ϕϕχϕ̇
2 = − 2

3α
ϕ̇2 =

1

2
Rϕ̇2 . (4.44)

Since the self-resonance of δϕ modes in these models has been extensively
studied (see for example Ref. [305]), we will focus our attention on δχ
fluctuations, which can undergo tachyonic excitation, which is generally
more efficient than parametric amplification. Also the excitation of δχ
modes is a truly multi-field phenomenon that depends crucially on the
field-space geometry.

4.3.2 Effective frequency

We examine in detail the effective frequency-squared for the δχ fluctuations,
ω2
χ(k, t). For simplicity we will focus on the case of n = 3/2, which matches

the potential used in the lattice simulations presented in Ref. [160]. The
generalization of our results for other potentials is discussed in Section 4.4.

In the top left panel of Fig. 4.8 we see the evolution of the background
field ϕ(t), rescaled as δ(t) = ϕ(t)/

√
α after the end of inflation and we take

t = 0 as the end of inflation. We see that inflation ends at ϕ(t)/
√
α ≃ 3 for

all three cases considered here, consistent with Fig. 4.1. The main difference
is both the frequency of oscillation and the decay of the amplitude of the
background for different values of α.

The maximum tachyonically excited wavenumber for the various cases
under consideration is kmax ≃ 0.87µ for α̃ = 10−2, kmax ≃ 1.04µ for
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Figure 4.8: The rescaled background field (top left) ϕ/
√
α as a function of time for

α̃ = 10−2, 10−3, 10−4 (blue, red-dashed and black-dotted respectively). The other three
plots correspond to the isocurvature effective frequency-squared for the maximal marginally
amplified wavenumber kmax (black-dotted), along with (k/a)2 (green), the potential contri-
bution (red) and the tachyonic Riemann term (blue).
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α̃ = 10−3 and kmax ≃ 1.11µ for α̃ = 10−4. So we can say7 that kmax ≃ µ
for all values of α̃ ≪ 1. Furthermore, we see that background motion cor-
responding to larger values of α̃ shows greater damping. This is consistent
with the observation that Hend ∼

√
α̃, hence the Hubble damping term is

smaller for highly curved field-space manifolds.
Examining the tachyonic contribution to ω2

χ(k), a very simple scaling
emerges

1

2
Rϕ̇2 = −1

2
αδ̇2

4

3α
= −2

3
δ̇2 = O(1) (4.45)

This is again consistent with Fig. 4.8, especially as the value of α̃ gets
smaller.

Since the tachyonic contribution to the effective mass-squared is similar
for models with different values of α̃, the tachyonic amplification of the
relevant mode-functions after each oscillation will be also similar. Fig. 4.9
shows the evolution of ω2

min and kmax for each subsequent tachyonic region.
It is worth emphasizing that ω2

min is determined solely by the corresponding
minimum (maximum negative) value of m2

2,χ. The maximum negative value
of m2

2,χ occurs when |ϕ̇| is maximized, or equivalently when ϕ = 0. At this
point, the potential can be Taylor-expanded as

V (ϕ = 0, χ) ≈ M4

4n
β2n|χ|2n . (4.46)

For n > 1 the effective mass component vanishes for χ = 0. In particular
for n = 3/2 the effective mass component becomes ∂2χV (ϕ = 0, χ) ∼ |χ|,
as shown in Fig. 4.8. The case of n = 1 is different and we consider it in
Section 4.4. We see that both the maximum (negative) contribution ofm2

2,χ,
as well as the range of tachyonically excited wavenumbers decrease faster for
larger values of α̃, or less curved field-space manifolds. This can be traced
back to the dependence of the Hubble scale on the field-space curvature,
which scales as H ∝

√
α̃. Hence in the first e-fold, or within the first

Hubble-time after inflation, lower values of α̃ will result in a larger number
of tachyonic bursts and hence a larger overall amplification. Furthermore,
a larger Hubble term for larger values of α̃ will result in a faster red-shifting
of the background field amplitude δ(t), resulting in a faster suppression of
the parametric resonance, in line with Fig. 4.8.

7In the units of Appendix 4C and Ref. [160], this corresponds to kmax ≃ 1√
α
M2/MPl,

leading to kmax ≃ 33M2/MPl for α = 10−3 and kmax ≃ 100M2/MPl for α = 10−4. This
is consistent with Figure 5 of Ref. [160].
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Figure 4.9: Left: The dependence of the maximum excited wavenumber kmax on the number
of tachyonic regions for n = 3/2 and α̃ = 10−2, 10−3, 10−4 (blue, red and green respectively).
Right: The minimum (maximally negative) value of the effective frequency-squared of χ
fluctuations ω2

min as a function of the number of tachyonic regions for the same parameters
and color-coding.

4.3.3 WKB results

We use the WKB analysis as described in Ref. [306], in order to make an-
alytical progress in computing the amplification of the δχ modes during
tachyonic preheating. In contrast to Refs. [307–309], where tachyonic pre-
heating lasted for a few inflaton oscillations at most, in the present case,
multiple inflaton oscillations might be required, in order to siphon enough
energy from the inflaton into radiation modes. However, given the fact that
the Hubble time is much larger than the period of oscillations, preheating
will still be almost instantaneous in terms of the number of e-folds. Based
on ω/Hend ∼ 1/

√
α̃, we can estimate the number of background oscillations

occurring during the first e-fold of preheating to be Nosc. ∼ 0.2/
√
α̃.

We neglect the effect of the expansion of the Universe, hence taking
H = 0. This is an increasingly good approximation for smaller values of
α̃, since Hend ∼

√
α̃. Furthermore, the static universe WKB analysis will

provide a useful comparison to the Floquet analysis of Section 4.3.4. The
equation of motion for the fluctuations in the χ field becomes8

∂2t χk + ω2
χ(k, t)χk = 0 , (4.47)

where
ωχ(k, t)

2 = k2 +m2
eff,χ = k2 +m2

1,χ +m2
2,χ , (4.48)

where the components of the effective mass are given in Eq. (4.33). Fol-
lowing Ref. [306], we write the WKB form of the mode-functions before,

8For the remainder of this work we denote the fluctuations of the χ field as χk rather
than δχk for notational simplicity.



4.3 Tachyonic resonance 117

0 2 4 6 8 10 12

-4

-2

0

2

4

t

R
e[
χ
k
]

0 2 4 6 8 10 12

-4

-2

0

2

4

t

Im
[χ
k
]

Figure 4.10: Comparison of the real (left) and imaginary (right) parts of the WKB solution
(red line) and the numerical solution (blue dots) of the χ mode evolution in the static universe
approximation around the first tachyonic amplification burst for n = 3/2 , α̃ = 10−3 and
k = 0.8µ. We see very good agreement, except in the vicinity of the points where ω2 = 0
and the WKB solution diverges.

during and after a tachyonic transition (regions I, II and III respectively).

χI
k =

αn√
2ωk(t)

e−i
∫
ωk(t)dt +

βn√
2ωk(t)

ei
∫
ωk(t)dt

χII
k =

an√
2Ωk(t)

e−
∫
Ωk(t)dt +

bn√
2Ωk(t)

e
∫
Ωk(t)dt

χIII
k =

αn+1√
2ωk(t)

e−i
∫
ωk(t)dt +

βn+1

√
2k
ei

∫
ωk(t)dt

(4.49)

where Ω2
k(t) = −ω2

k(t). The amplification factor after the first tachyonic
region for each mode k is

Ak = e
∫ t+
t−

Ωk(t)dt (4.50)

where t± are the points at which the effective frequency vanishes, ω2
k(t±) =

Ω2
k(t±) = 0.

Fig. 4.10 shows the result of the numerical solution and the WKB result
before, during and after the first tachyonic amplification phase. We see that
the agreement is very good, hence we can use the expression of Eq. (4.50)
to estimate the growth rate of fluctuations.

As shown in Eq. (4.49), following the first tachyonic burst all modes
with wavenumbers k ⩽ kmax will be amplified. Subsequent background
oscillations will cause destructive or constructive interference, leading to
the formation of stability and instability bands, the latter exhibiting no
exponential growth. In Ref. [306] it is shown that the amplitude of the
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Figure 4.11: The Floquet exponent µk derived using the WKB approximation in Eq. (4.53).
The Floquet exponent after 1, 2, 4, 10, 50, 100 tachyonic regimes is shown (blue, red, green,
black, orange and brown-dotted respectively).

wavefunction for a mode with wavenumber k after the j’th tachyonic burst
is

|βjk|
2 = e2jAk(2 cosΘk)

2(j−1) . (4.51)

where Θk is the total phase accumulated between two consecutive tachyonic
regimes. We can define an averaged growth rate as

χk(t) ∼ eµktP (t) , (4.52)

where P (t) is a bounded (periodic) function and µk is the Floquet exponent,
as we discuss in detail in Section 4.3.4. Since there are two tachyonic regimes
for each background oscillation, the Floquet exponent µk is extracted from
Eq. (4.51) as

µk =
2

T

1

2j
log |βjk|

2 , (4.53)

where T is the background period of oscillation. As shown in Fig. 4.11,
the Floquet exponent extracted from Eqs. (4.51) and (4.53) depends on
time, albeit mildly after the first few tachyonic bursts. However, there is a
clear asymptotic regime that emerges after the background inflaton field has
undergone multiple oscillations. The asymptotic value should be compared
to the “true” Floquet exponent, which we compute in Section 4.3.4.

4.3.4 Floquet charts

Floquet theory is a powerful tool for studying parametric resonance in the
static universe approximation. The algorithm for computing Floquet charts
can be found in the literature (see for example Ref. [285]).
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We may further understand properties of the Floquet charts by exam-
ining the Fourier structure of certain field-space quantities. In the rigid-
spacetime limit, Eq. (4.47) for the isocurvature modes χk may be written
in the suggestive form

d

dt

(
χk

χ̇k

)
=

(
0 1

−(k2 +m2
eff,χ) 0

)(
χk

χ̇k

)
, (4.54)

again using m2
eff,χ = m2

1,χ+m
2
2,χ in the rigid-spacetime limit. This equation

is of the form
ẋ(t) = P(t) x(t) , (4.55)

where P(t) is a periodic matrix. The period of the background is T , but the
period of m2

eff,χ is T/2, since it depends quadratically on the background
field ϕ(t+T ) = ϕ(t) and its derivative ϕ̇(t+T ) = ϕ̇(t). In Ref. [302] a semi-
analytic method was described for computing the edges of the instability
bands at arbitrary high accuracy, by reducing the system to an algebraic
matrix equation. The truncation of the resulting matrices determines the
number of Floquet bands that can be accurately computed. In the present
work we determine the edges of the instability bands after the computation
of the full Floquet chart using Mathematica.

Fig. 4.12 shows the Floquet charts for n = 3/2 and α̃ = 10−2, 10−3, 10−4.
We can see that, when normalized appropriately with α̃, the Floquet charts
look similar, especially when it comes to the first two instability bands,
which essentially control the entirety of the parametric resonance. The
relation between Floquet charts for different values of α becomes even more
evident, when we show a few contours of the first instability bands on the
same plot. It is then obvious that for α̃ ≲ 10−3 the parametric resonance
in the static universe approximation is identical, regardless of the exact
value of the field-space curvature9. This is no surprise, since the WKB
analysis of Section 4.3.3 predicted the scaling behavior of the parametric
resonance strength for low values of α̃. The Floquet chart of Fig. 4.12
can be considered a “master diagram”, from which the Floquet chart for
arbitrary values of α̃ ≲ 0.01 can be easily read-off by using the appropriate
scaling with α̃.

Finally, Fig. 4.13 shows the comparison between the Floquet exponent
computed using the algorithm described in Ref. [285] and using the WKB
analysis. We see that the WKB analysis is able to capture the existence

9For α̃ = 10−2 the edges of the first two instability bands follow the ones exhibited by
α̃ ≪ 1, while the low-k edge of the first band shows slightly larger Floquet exponents.
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Figure 4.12: Clockwise from the top: The 3-D Floquet charts for n = 3/2 and α̃ ≡
αM−2

Pl = 10−2, 10−3, 10−4. Bottom left panel: The contour plots for µk = 0 (solid lines)
and µk = 0.1 (dashed lines). The blue, green and orange curves are for α̃ = 10−2, 10−3, 10−4

respectively.
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Figure 4.13: The (asymptotic) Floquet exponent computed using the WKB approximation
(blue solid) and the Floquet exponent computed using the numerical algorithm described in
Section 4.3.4 for n = 3/2 and α̃ = 10−3. The agreement is very good, given the inherent
limitations of the WKB approximation.

of the first two instability bands, even though the shape does not perfectly
match the fully numerical solution.

4.3.5 Expanding Universe

There are two complications introduced by studying preheating in an ex-
panding universe: the (slow) decay of the amplitude of the background
oscillations due to the non-zero Hubble drag and the red-shifting of the
physical wavenumber kphys = kcomoving/a due to the increasing scale-factor
a(t). Both effects are comparable, so they must be studied together. While
a WKB analysis can be performed in an expanding universe [306], it must
take into account the evolution of both kphys and ϕ(t) numerically. Since
we believe that it will not add significantly to building intuition on the
model at hand, we will not pursue it here. Instead we numerically solve the
equations of motion for the χ fluctuations, working in the linear regime as
follows: The evolution for the background inflaton field and the Hubble rate
are solved numerically using Eqs. (4.22) and (4.23). We subsequently com-
pute the produced χ fluctuations driven by the background inflaton field.
The back-reaction of the produced χ fluctuations on the inflaton field or the
Hubble rate is ignored. This is a valid approximation until the energy den-
sity of the χ fluctuations becomes comparable to the background inflaton
energy density. We briefly discuss back-reaction effects in Appendix 4D. We
start our computations several e-folds before the end of inflation, in order
for the effective mass to be positive for all modes, according to Fig. 4.5 and
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Figure 4.14: The spectra of the fluctuations in the χ field |χk|2 (in arbitrary units) as a
function of the wavenumber k (in units of µ) at different times for n = 3/2 and α̃ = 10−3

(left) and α̃ = 10−4 (right). The comparison with Fig. 5 of Ref. [160] shows agreement in
the initial stages, when the linear analysis is valid. The comparison is most easily done by
considering the amplification occurring between the various time-points shown in the figures,
both here and in Ref. [160]. Note that Ref. [160] uses a different normalization for k, as
discussed in Appendix 4C. The linear analysis presented here cannot capture the re-scattering
effects leading to the broadening of the χ spectrum at late times that was observed in
Ref. [160]. The times corresponding to the various curves are shown in the legend of each
panel, measured in e-folds after the end of inflation (negative values correspond to spectra
during the last stages of inflation).

so that the WKB solutions of Eq. (4.39) provide accurate initial conditions
for our code.

Fig. 4.14 shows the spectra of the fluctuations in the χ field at different
times. We see that the band structure of the static universe Floquet charts
of Section 4.3.4 has disappeared, essentially leaving behind a region of ex-
cited modes with comoving wavenumbers that satisfy k ⩽ kmax ≈ µ. This
occurs because each mode with a specific wavenumber k redshifts through
the bands of Fig. 4.12, hence a mode with k ⩽ kmax will eventually red-
shift into the main instability band. Even though the exact band structure
is erased, the WKB analysis can still capture very well the behavior after
the first tachyonic burst. We see that the amplification factor computed in
Eq. (4.50) matches very well with the actual amplification. For small values
of α̃, where the Hubble scale is much smaller than the frequency of back-
ground oscillations, Eq. (4.50) can provide useful intuition for the behavior
of the χ fluctuations during the first few ϕ oscillations. Using Eq. (4.14)



4.4 Potential dependence 123

the maximum excited wavenumber can be immediately compared to the
Hubble scale at the end of inflation to give

kmax
Hend

≃ 2

α̃
≫ 1 (4.56)

Hence tachyonic amplification occurs predominately for sub-horizon modes,
meaning that they will behave like radiation after the end of preheating.

Fig. 4.15 shows the evolution of the energy density in the background
inflaton field ϕ and the fluctuations of the χ field. Considering a finite
amount of wavenumbers k < kUV initialized at the Bunch Davies vacuum,
we can compute their energy density at the end of inflation to be

ρχ =

∫
d3k

(2π)3
k2

1

2k
=

1

(2π)2
k4UV

4
(4.57)

This corresponds to the red-dashed line of Fig. 4.15, where we took kUV =
1.5µ. This is not a physical energy density, since these are vacuum modes.
It is however useful as a check of our numerical calculation. Using different
values of kUV leads to different early time behavior, as shown from the
green-dashed line in Fig. 4.15. As long as kUV ⩾ kmax, the exact choice
of kUV becomes irrelevant once tachyonic resonance begins and all modes
within k < kmax become exponentially amplified. Hence the blue and green-
dashed curves of Fig. 4.15, corresponding to kUV = 1.5µ and kUV = µ
respectively, become indistinguishable shortly after the end of inflation. In
is interesting to note that we find for n = 3/2 and α = 10−4 that preheating
will conclude at Nreh = 0.2, where the energy density in χ fluctuations
equals the energy density in the background field. This result agrees well
with the findings of Fig. 4 of Ref. [160], where the results of a full lattice
code are shown for the same model parameters.

4.4 Potential dependence

So far we have used the T-model potential of Eqs. (4.62) and (4.63) with
n = 3/2 as a concrete example to study in detail both analytically and
numerically. This potential has the added benefit of allowing for an easy
comparison with the full lattice simulations presented in Ref. [160]10. We

10After submission of the present manuscript, an updated version of Ref. [160] ap-
peared. This includes results for two potential types, corresponding to n = 3/2 and
n = 1, as well as two values of the field-space curvature parameter α. These match our
results, as we describe in Section 4.5.
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Figure 4.15: The energy density in the background inflaton field (black) and the χ fluctu-
ations (blue) for n = 3/2 and α̃ = 10−3 (left) and α̃ = 10−4 (right). The red-dashed lines
show the scaling a−4, which is observed by the fluctuations before the onset of the tachyonic
preheating regime. The green-dashed line on the right panel shows a calculation using a
different range of UV modes, as explained further in the main text. N = 0 marks the end of
inflation and we see that preheating concludes within a fraction of an e-fold in both cases.

now extend the analysis to arbitrary values of n, hence to the whole family
of the generalized T-model potentials. The background dynamics is sum-
marized in Figs. 4.1 and 4.6 through the dependence of Hend, ϕend and the
period of oscillation T on α̃ and n.

Fig. 4.16 shows the effective mass-squared for α̃ = 10−3 and varying n as
a function of time, both in the static universe approximation and using the
full expanding universe background solution. The former will be used for
computing the resonance structure. It is worth noting that the maximally
negative value of m2

eff,χ is larger in the expanding universe case, compared
to the static universe one. This is due to the fact that we consider the
initial conditions {ϕ0, ϕ̇0} = {ϕend, 0}. In reality, the inflaton velocity is
not zero at the end of inflation, hence the Ricci-driven component of the
effective mass, which is proportional to |ϕ̇|2 is underestimated in our static
universe calculations. One important difference between the various values
of n shown in Fig. 4.16 can be traced back to Eq. (4.46), which defines
the potential contribution of the effective mass near the point ϕ(t) = 0

or equivalently
∣∣∣ϕ̇(t)∣∣∣ = max, where the Riemann contribution m2

2,χ is
maximized. For n = 1 the potential is locally quadratic, hence describing
massive fields11. This leads to a non-zero positive contribution to the ef-

11A locally quadratic potential that becomes less steep at larger field values can also
support oscillons. It was shown in Ref. [305] that oscillons can emerge during preheating
in a single-field T-model for n = 1. Since oscillons are massive objects, a period of oscillon
domination causes the universe to acquire an equation of state of w = 0, identical to that
of a matter dominated era.
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Figure 4.16: Left: The two main components of the effective mass squared for χ fluctuations:
the potential contribution (dashed) and the field-space Ricci contribution (dotted), along with
the sum (solid) for α̃ = 10−3 and n = 1, 3/2, 2, 3 (orange, blue, green and brown respectively).
The plot shows one period in the static universe approximation with ϕmax = ϕend.
Right: The sum m2

1,χ +m2
2,χ using the full expanding universe solution for the background

field ϕ(t). Inflation is taken to end at t = 0.

fective mass-squared for all values of time and wavenumber, thus reducing
the overall efficiency of tachyonic resonance, through reducing both Ak of
Eq. (4.50) and kmax. For n ⩾ 3/2, the potential contribution vanishes for
ϕ(t) = 0, hence the Riemann term completely determines the maximally
negative value of m2

eff,χ. Furthermore,
∣∣∣ϕ̇(t)∣∣∣

max
is found to be almost iden-

tical for all values of n. The main difference for increasing the value of n is
the increased duration of the regime where m2

1,ϕ ≈ 0. Overall, for n ⩾ 3/2
the maximum excited wavenumber kmax is the same, while the amplification
factor Ak grows, because each tachyonic burst lasts longer. This is shown
in Fig. 4.17 using both the WKB approximation, as well as by computing
the Floquet exponent numerically following Section 4.3.4. We see that for
n = 1 the WKB approximation captures only the first instability band,
while for n ⩾ 3/2 the first two instability bands are well described.

If one tries to plot the three dimensional Floquet diagrams using the field
rescaling ϕ0/

√
α, which was used in Fig. 4.12, no unifying pattern emerges.

The proper scaling however is ϕ0/ϕend, since the comparison must begin at
the background field value present at the end of inflation. Using this field
rescaling, we can see in Fig. 4.18 and more clearly in Fig. 4.19 that the
edges of the instability bands for ϕ0 = ϕend are almost identical for n ⩾ 3/2
and significantly higher than the case of n = 1. Also, the overall Floquet
exponents exhibited are larger for larger values of n, as expected from the
behavior of the effective frequency-squared shown in Fig. 4.16.

Starting from Bunch-Davies initial conditions during inflation, specifi-
cally initializing our computations at Ninit ≃ −4, we evolved the fluctua-
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Figure 4.17: Left: The asymptotic Floquet exponent (dashed) and the Floquet exponent
after the first tachyonic burst (solid) using the WKB approximation for n = 1, 3/2, 2, 3
(orange, blue, green and brown respectively). Right: The asymptotic Floquet exponent using
the WKB method (dashed) and using the algorithm of Section 4.3.4 (solid). The agreement
is remarkable given the limitations of the WKB approximation.

Figure 4.18: Clockwise from top left: The Floquet charts for α = 10−3 and n = 1, 3/2, 2, 3



4.4 Potential dependence 127

Figure 4.19: The contour plots for µk = 0 (solid lines) and µk = 0.1 (dashed lines) for
α̃ = 10−3 and n = 1, 3/2, 2, 3 (orange, blue, green and brown respectively). The colored
dots on the top denote the right edges of the first and second instability bands. We can see
that the edges of the bands for n ⩾ 3/2 are almost overlapping, while the range of excited
wavenumbers for n = 1 is significantly smaller.
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Figure 4.20: The time required (in e-folds) for the transfer of the entire inflaton energy
density into modes of the χ field as a function of the field-space curvature parameter α for
n = 1, 3/2, 2, 3 (orange, blue, green and brown respectively). The black point shows the
parameters used in Ref. [160]. The linear no-backreaction approximation is used. We see
that preheating is essentially instantaneous for α ≲ 10−4M2

Pl.

tions in the χ field on the single-field ϕ background, taking into account the
expansion of the universe and working in the linear regime, hence neglect-
ing any mode-mode coupling and back-reaction effects. Fig. 4.20 shows the
time needed for the complete transfer of energy from the χ background field
to χ radiation modes12. For n = 1 and α ≳ 10−3M2

Pl preheating did not
complete through this channel. Overall we see faster preheating for larger
values of n, hence steeper potentials. However the differences are dimin-
ishing for highly curved field-space manifolds, practically disappearing for
α ≲ 10−4M2

Pl, where preheating occurs almost instantaneously.

4.5 Summary and Discussion

In the present work we studied preheating in a two-field generalization of the
T-model, which is part of the larger family of α-attractors, characterized
by a field-space manifold of constant negative curvature. We focused on
the production of non-inflaton particles, since inflaton self-resonance in the
single-field T-model has been extensively studied (e.g. Ref. [305]), finding

12An updated version of Ref. [160] includes simulations for {α̃, n} =
{10−3, 3/2}, {10−4, 3/2}, {10−4, 1} exhibiting complete preheating at Nreh ≈ 0.7, 0.15, 0.2
respectively, which match the values shown in Fig. 4.20 for these parameter values.
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reheating to complete within a few e-folds for n ̸= 1 and oscillon formation
leading to a prolonged matter-dominated phase for n = 1.

We examined the possibility of multi-field effects arising during infla-
tion and found a strong single-field attractor along a straight background
trajectory χ = 0. In order for multi-field effects to produce observable sig-
natures, like “ringing” patterns on the CMB, the initial conditions have to
be extremely fine-tuned, which makes such an event unlikely. The strong
single-field inflationary attractor ensures that preheating will also occur
around a single-field background, at least during the initial stage, when
back-reaction effects can be safely ignored. Different multi-field potentials
on hyperbolic manifolds might support genuinely multi-field background
trajectories, leading to significantly different preheating dynamics. This
remains an intriguing possibility worth further study.

We found that most key preheating quantities rely crucially on the field-
space curvature parameter α, in fact exhibiting simple scaling behaviors.
The Hubble scale at the end of inflation scales as Hend ∼

√
α and is largely

independent of the potential steepness, a characteristic trait of α-attractors.
However the period of background oscillations does not involve α, meaning
that more background oscillations “fit” in the first e-fold after inflation for
higher values of the field-space curvature (low values of α). The maximum
amplified wavenumber is roughly constant for all values of α and potential
steepness parameter n, with the exception of n = 1, where kmax is smaller
by about 25%.

Since the frequency of background oscillations is much larger than the
Hubble scale at the end of inflation, the static universe is an increasingly
good approximation for larger values of the field-space curvature. This
makes Floquet theory a useful tool for understanding preheating in the
two-field T -model. We found that when plotting the Floquet charts for a
specific value of the potential steepness parameter n using the wavenumber
and the background field amplitude rescaled by

√
α, all Floquet charts

collapse into a single “master diagram” for small values of α.
This scaling behavior of the Floquet charts persists even for different

potentials within the T-model. In the case of varying n the background
field must be normalized by the field value at the end of inflation ϕend
in order for the Floquet chart scaling behavior to appear. As expected,
the scaling between Floquet charts of different potentials is not exact, but
similarities are enough to explain the similar preheating behavior shown
in Fig. 4.20. There we see that preheating lasts longer for larger values
of α and smaller values of n, while recovering the results of Ref. [160] for
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n = 3/2 and α̃ = 10−4M2
Pl, n = 3/2 and α̃ = 10−3M2

Pl, as well as for n = 1
and α̃ = 10−4M2

Pl.
While observing reheating is difficult due to the inherently small length

scales involved, knowledge of the duration of reheating is essential to cor-
rectly match the CMB modes to the exact point during inflation when they
left the horizon [161]. Expanding on the lattice simulations of Ref. [160]
we showed that preheating in the two-field T-model is essentially instanta-
neous for highly curved field-space manifolds, regardless of the exact form
of the potential. This reduces the uncertainty of the predictions of this
class of models for the scalar spectral index ns. Unfortunately the low
values of α required for the onset of instantaneous preheating makes the
observation of tensor modes in these models unlikely even with the CMB
Stage 4 experiments, since the resulting tensor-to-scalar ratio is too small
r < 10−4.

The scaling behavior found in T -model preheating does not guarantee
that similar effects will arise in other α-attractor models. Our results can
be applied to study preheating in broader classes of multi-field inflation-
ary models with hyperbolic field-space manifolds. We leave an exhaustive
analysis for future work.

4.6 Appendix 4A: Generalization of the Tmodel

A simple generalization of the T -model [160, 301] is given by the super-
potential

WH =
√
αµS F (Z) (4.58)

and Kähler potential

KH =
−3α

2
log
[

(1− ZZ̄)2

(1− Z2)(1− Z̄2)

]
+ SS̄ . (4.59)

Using the relation between the Kähler potential and the superpotential

Z =
T − 1

T + 1
(4.60)

and choosing
F (Z) = Zn (4.61)

we get

KH =
−3α

2
log
[
(T + T̄ )2

4T T̄

]
+ SS̄ (4.62)
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and
WH =

√
αµS

(
T − 1

T + 1

)n

. (4.63)

as in Ref. [301]. The potential follows to be of the form

V = αµ2
(
ZZ̄
)n((1− Z2)(1− Z̄2)

(1− ZZ̄)2

)3α/2

. (4.64)

One can use multiple field-space bases to describe these models. The choice

Z = tanh
(
ϕ+ iθ√

6α

)
(4.65)

was used in Ref. [301], leading to the kinetic term

Lkin =
1

2
Gϕϕ ∂µϕ∂

µϕ+
1

2
Gθθ ∂µθ ∂

µθ (4.66)

with
Gϕϕ = Gθθ =

1

cos2
(√

2
3αθ
) (4.67)

and the two-field potential

V (ϕ, θ) = αµ2

cosh
(√

2
3αϕ

)
− cos

(√
2
3αθ
)

cosh
(√

2
3αϕ

)
+ cos

(√
2
3αθ
)


n(
cos
(√

2

3α
θ

))−3α

.

(4.68)
We instead choose the basis used in Ref. [160], which can be derived from
Eq. (4.65) by performing the transformation

cos
(√

2

3α
θ

)
=

1

cosh
(√

2
3αχ

) . (4.69)

This leads to the kinetic term (4.2)

Lkin =
1

2
∂µχ∂

µχ+
1

2
cosh2

(√
2

3α
χ

)
∂µϕ∂

µϕ , (4.70)

and potential (4.3)

V (ϕ, χ) = αµ2
(

cosh(βϕ) cosh(βχ)− 1

cosh(βϕ) cosh(βχ) + 1

)n

(cosh(βχ))2/β
2

, (4.71)
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where β =
√

2/3α.
This choice of the field-space basis allows an easier comparison between

our work and Ref. [160] and simple equations of motion, both for the back-
ground as well as for the fluctuations. This comes at a price, namely the
illusion that the two field-space directions are inherently different, one of
them even being canonically normalized. However, as can be seen in Ap-
pendix 4B, this basis describes a field-space with a constant curvature at
every point.

4.7 Appendix 4B: FieldSpace quantities for hyper
bolic space

The kinetic term for the two-field model at hand is written as

L =
1

2
GIJ∂µϕ

I∂µϕJ , (4.72)

where {ϕ1, ϕ2} ≡ {ϕ, χ}. In the basis used the non-zero field-space quanti-
ties are

• The metric

Gϕϕ = e2b(χ) = e2 log(cosh(βχ)) = cosh2(βχ) , Gχχ = 1 (4.73)

• The inverse metric

Gϕϕ = e−2b(χ) = e−2 log(cosh(βχ)) = sech2(βχ) , Gχχ = 1 (4.74)

• The Christoffel symbols

Γϕ
χϕ = β tanh(βχ) , Γχ

ϕϕ = −1

2
β sinh(2βχ) (4.75)

• The Riemann tensor

Rϕ
χϕχ = −β2 , Rϕ

χχϕ = β2 , Rχ
ϕϕχ = β2 cosh2(βχ) , Rχ

ϕχϕ = −β2 cosh2(βχ)
(4.76)

• The Ricci tensor

Rϕϕ = −β2 cosh2(βχ) , Rχχ = −β2 (4.77)
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• Finally, the Ricci scalar

R = −2β2 = − 4

3α
, (4.78)

where we used
β =

√
2

3α
. (4.79)

4.8 Appendix 4C: Alternative time parametrization

For completeness and ease of comparison with Ref. [160] we present a differ-
ent rescaling prescription. Specifically in Ref. [160] the field-space curvature
is rescaled using the reduced Planck mass as α = M2

Plα̃ and the equation
of motion for the background field becomes

¨̃
ϕ+ 3H

˙̃
ϕ+

(
M2

MPl

)2 √
6n√
α̃

csch


√

3
2 ϕ̃√
α

 tanh2n


√

3
2 |ϕ̃|

2
√
α

 = 0 . (4.80)

Time is then rescaled by m ≡M2/MPl, leading to the equation

d2ϕ̃

d(mt)2
+ 3H̃

dϕ̃

d(mt)
+

√
6n√
α̃

csch


√

3
2 ϕ̃√
α

 tanh2n


√

3
2 |ϕ̃|

2
√
α

 = 0 , (4.81)

where H̃ = H/m. The relevant plots, Floquet exponents and comoving
wavenumbers in Ref. [160] are presented and measured in units of M2/MPl.

The Hubble scale is

H̃2 =
1

3

1
2

(
dϕ̃

d(mt)

)2

+ tanh2n

(
|ϕ̃|√
6α̃

) .
The fluctuation equations with this definition of time become

d2Qϕ

d(mt)2
+ 3

H

m

dQϕ

d(mt)
+

[
(k/m)2

a2
+
Vϕϕ
m2

]
Qϕ = 0 , (4.82)

d2Qϕ

d(mt)2
+ 3

H

m

dQϕ

d(mt)
+

[
(k/m)2

a2
+
Vϕϕ
m2

]
Qϕ = 0 (4.83)

with
Vϕϕ
m2

=
d2

dϕ̃2

[
tanh2n

(
|ϕ̃|√
6α̃

)]
. (4.84)
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The ratio of the two mass-scales that can be used to normalize time and
wave-numbers is

m

µ
=

√
α̃ , (4.85)

making the comparison of our linear results with the full lattice simulations
of Ref. [160] straightforward.

4.9 Appendix 4D: Backreaction
Since the present work is focused on extracting semi-analytical arguments,
based on the WKB approximation, it is worth examining some back-reaction
effects more closely. There are several sources of back-reaction and the only
way to accurately describe their combined effects is through lattice simu-
lations, as done for the system under study in Ref. [160]. On a qualitative
level, we can distinguish various back-reaction effects:

• Mode-mode mixing: This refers to non-linear mixing between the
modes δχk and usually leads to a power cascade towards the UV.
Mode-mode mixing is required for thermalization and is outside of
the scope of linear theory. Even in lattice simulations, proper study
of thermalization processes usually requires even more UV modes than
are usually available.

• Induced δϕ fluctuations due to δχ modes scattering off the inflaton
condensate ϕ.

• Siphoning energy off the inflaton condensate and acting as a extra
drag term for the inflaton motion ϕ(t), thus suppressing background
oscillations.

We will focus on estimating the last term, as it is the one that can damp
the background motion and thus suppress tachyonic preheating13.
The full equation of motion for the ϕ field is

ϕ̈+ Γϕ
χϕχ̇ϕ̇+ 3Hϕ̇+ GϕϕV,ϕ = 0 (4.86)

In order to estimate the terms arising from the back-reaction of the pro-
duced χ particles, we Taylor expand all terms involving χ and use a Hartree-
type approximation to substitute all quadratic quantities with their average

13Thermalization can affect Bose enhancement by altering the produced δχk spectrum,
but it typically operates close to or after the point of complete preheating. Since we only
intend to estimate back-reaction effects, we will not discuss it further.
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value

χ2 → ⟨χ2⟩ =
∫

d3k

(2π)3
|δχk|2 (4.87)

χχ̇ → ⟨χχ̇⟩ =
∫

d3k

(2π)3
δχk · ˙δχ∗

k . (4.88)

The background equation of motion for the inflaton ϕ thus becomes

ϕ̈+ 3Hϕ̇+ GϕϕV,ϕ = −β2⟨χχ̇⟩ϕ̇+∆V ⟨χ2⟩V,ϕ (4.89)

where ∆V arises from expanding Gϕϕ and V,ϕ around χ = 0. The term in
the equation of motion involving ⟨χχ̇⟩ arises from the Christoffel symbol and
acts as an extra drag term, whereas ∆V can be thought of as an extra force.
Fig. 4.21 shows the potential term GϕϕV,ϕ along with the back-reaction
contributions to the equations of motion for the case of α̃ = 0.001 and
n = 3/2. We see that the back-reaction terms only become important close
to the point of complete preheating, defined as ρϕ = ρδχ. This means that
during the last inflaton oscillation(s) before complete preheating is achieved,
the background inflaton motion will be suppressed due to the produced
modes. This has the potential of quenching the resonance and causing the
stop of χ particle production. However tachyonic resonance is usually very
robust, since –as we described using the WKB analysis– as long as the
inflaton velocity is non-zero, the hyperbolic metric will lead to a tachyonic
instability of δχk. A careful numerical investigation of tachyonic resonance,
albeit in another context, can be found in Ref. [308], where lattice results
were compared to linear calculations, like the ones presented here. It was
shown that for the case where the linear calculations pointed to complete
tachyonic preheating after a few inflaton oscillations, lattice simulations led
to very similar results. The lattice simulations of Ref. [160] indeed point to a
decay of the inflaton condensate and complete preheating, but an evolution
of ϕ(t) identical to the back-reaction-free case up until very close to that
point. Hence linear analysis can successfully capture the initial growth of
δχ fluctuations and provide strong indications for parameter choices that
allow for complete preheating.
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Figure 4.21: The magnitude of the inflaton potential term |V,ϕ| (blue) and the two back-
reaction terms BR1 ≡ |β2⟨χχ̇⟩ϕ̇| (green) and BR2 ≡ ∆V ⟨χ2⟩|V,ϕ| (red) for α̃ = 0.001
and n = 3/2. The vertical line at N = 0.7 corresponds to the time of complete preheating,
according to Fig. 4.15. We see that back-reaction effects only become important close to the
point of complete preheating and they do not affect the early time dynamics, as expected.
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5|Preheating with asymmetric
multifield potentials

Abstract: We analyze and compare the multi-field dynamics during infla-
tion and preheating in symmetric and asymmetric models of α-attractors,
characterized by a hyperbolic field-space manifold. We show that the gen-
eralized (asymmetric) E- and (symmetric) T-models exhibit identical two-
field dynamics during inflation for a wide range of initial conditions. The
resulting motion can be decomposed in two approximately single-field seg-
ments connected by a sharp turn in field-space. The details of preheat-
ing can nevertheless be different. For the T-model one main mass-scale
dominates the evolution of fluctuations of the spectator field, whereas for
the E-model, a competing mass-scale emerges due to the steepness of the
potential away from the inflationary plateau, leading to different contri-
butions to parametric resonance for small and large wave-numbers. Our
linear multi-field analysis of fluctuations indicates that for highly curved
manifolds, both the E- and T-models preheat almost instantaneously. For
massless fields this is always due to efficient tachyonic amplification of the
spectator field, making single-field results inaccurate. Interestingly, there
is a parameter window corresponding to r = O(10−5) and massive fields,
where the preheating behavior is qualitatively and quantitatively different
for symmetric and asymmetric potentials. In that case, the E-model can
completely preheat due to self-resonance for values of the curvature where
preheating in the T-model is inefficient. This provides a first distinguish-
ing feature between models that otherwise behave identically, both at the
single-field and multi-field level. Finally, we discuss how one can describe
multi-field preheating on a hyperbolic manifold by identifying the relevant
mass-scales that control the growth of inflaton and spectator fluctuations,
which can be applied to any α-attractor model and beyond.

Keywords: inflation, reheating, asymmetry.
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Based on:
O. Iarygina, E. I. Sfakianakis, D. G. Wang and A. Achúcarro

Multi-field inflation and preheating in asymmetric α-attractors.
[arXiv:2005.00528].

5.1 Introduction
Our understanding of the early universe is largely based on two observation-
ally constrained phases: inflation and big-bang nucleosynthesis (BBN). In-
flation remains the leading framework for physics of the very early universe
because it provides an elegant solution for the horizon and flatness problems
[27, 28] as well as a mechanism to seed quantum fluctuations which is in ex-
cellent agreement with the latest observational tests [53] for a wide range of
models. At the same time, BBN is based on the detailed information about
nuclear reactions and provides predictions for the light-element abundances
[310]. So far the theoretical predictions of BBN match observations to very
high accuracy. On the other hand, the reheating process that provides an
exit from inflation and transition to the thermal state of the universe, which
is required for BBN, is far less explored or constrained. The duration of
reheating determines the moment of transition to the radiation dominated
era, hence it can affect BBN and shift the time at which CMB-relevant
scales left the horizon during inflation, thereby altering inflationary predic-
tions. Therefore, a detailed knowledge of the reheating physics is crucial
in the era of precision cosmology, in order to reduce theoretical uncertain-
ties and provide a smooth link between the theory and present (or future)
observational data.

Since the energy scale of the early universe is expected to be very high
(over or close to E1/4 ∼ 1016Gev), the universe may be populated with
multiple scalar fields which could participate in inflation and affect the
relevant dynamics. Therefore, despite the simplicity of single-field models,
there is strong motivation to study multi-field effects and their predictions.
Recent work has revealed an abundance of models with strong turns in
the inflationary trajectory [59–62, 65, 67, 68, 70, 311–313]. Multi field
models of this sort have been shown to possess strong dynamical single-field
attractors, which are of a different nature compared to usual single-field
inflation. In fact these novel attractors lead to large turn-rate, possibly
seeding large non-Gaussianity. Given the theoretical motivation and the
multi-field “surprises” that have been revealed to occur during inflation in
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some cases, it is essential to extend inflationary models to include multiple
fields. In particular, focusing on two-fields can provide a breadth of novel
phenomena, while allowing us to build intuition and easily visualize the
dynamics.

Due to the huge number of inflationary models, it is hardly possible
to state universal (model independent) physical predictions for the various
observables. In the last few years a broad class of inflationary theories
have been discovered, that can be grouped under the name of “cosmo-
logical attractors”. This includes conformal attractors [49, 314], universal
attractors with non-minimal coupling to gravity [154, 315] and α-attractors
[50, 66, 243–245]. This class of models brings together a lot of well-known
inflationary models such as the Starobinsky model [251], the GL model
[316, 317], and Higgs inflation [156, 318]. All of the models have different
setups, yet give very close cosmological predictions for the important ob-
servables. It is thus important that we clarify the twofold meaning of the
term “attractor” in the context of inflation. For most multi-field models,
the term attractor is used to describe a specific trajectory in field space,
toward which the inflationary evolution will flow, regardless of the initial
conditions within a certain basin of attraction. For the “cosmological at-
tractors” [49, 50, 154, 156, 243–245, 251, 314–318], the term is not mainly
used to describe a dynamical attractor in field space, but denotes the fact
that in some parameter regime, the observables will “flow” to a specific
value, which is then largely insensitive to the exact parameter values. In
particular for the scalar spectral index ns and the tensor-to-scalar ratio r,
α-attractors and related models give

ns = 1− 2

N∗
, r =

12α

N2
∗
, (5.1)

where N∗ is the time in e-folds before the end of inflation, where modes
first exit the horizon during inflation and α is a dimensionless parameter
that –in some models– encodes the field-space curvature1. For N∗ ≳ 55,
the cosmological attractor predictions lead to very good agreement with
the observational data. These models can be further used to link inflation
to the dark energy (cosmological constant) problem [319] and aspects of
supersymmetry breaking [320]. Frequent use of the term “α-attractors” is
made to describe single-field systems with plateau potentials, usually of the
form V ∝

∣∣1− e−ϕ/Λ
∣∣2n or V ∝ |tanh(ϕ/Λ)|2n, leading to the predictions of

1It is interesting to note, that two-field α-attractors with α = O(1) can lead to the
predictions of Eq. (5.1) without possessing a dynamical single-field attractor [61].
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Eq. (5.1). However the flattening of the potential is merely a by-product of
a more general feature of α-attractors: hyperbolic field-space manifolds. As
we further demonstrate in the present work, the presence of a second field
is crucial for the full dynamics of α-attractors during preheating and must
be considered to properly extract the predictions of these models, making
the single field analysis generally insufficient.

It is worth mentioning that, despite α-attractor models being in a great
agreement with the Planck 2018 data, there is still the strong inverse de-
pendence on N∗ in Eq. (5.1). Therefore, the uncertainties from the duration
of reheating are becoming increasingly important as more data are being
gathered. In particular, the latest Planck release [53] has shown a slight
tension (depending on the exact data sets that are being combined) between
the measured value of ns and the α-attractor predictions for N∗ ≃ 50.

In this paper we focus specifically on α-attractor models, which are
characterized by a hyperbolic field-space geometry with the constant neg-
ative curvature determined by the parameter α. There have been several
constructions of α-attractor models, but two of the earliest ones, which are
still considered the prototypical workhorses, are T- and E-models. In the
single-field limit, they represent potentials that are respectively symmetric
and antisymmetric around the minimum. By construction, α-attractors
are two-field models, since they are constructed by specific choices of the
superpotential and Kähler potential in N = 1 supergravity models of a
complex scalar field, corresponding to an axion-dilaton system (see Ap-
pendix 5A). The effects of two-field dynamics in T-model preheating has
received attention recently using both numerical [160] and semi-analytical
techniques [158]. Here, we complement our analysis of the symmetric two-
field T-model, by examining a class of generalized E-model potentials [321],
in which the inflaton potential is asymmetric with respect to the origin,
which is also the global minimum of the potential. We explore differences
and similarities in the inflationary dynamics, the duration and the under-
lying mechanism of preheating for symmetric and asymmetric potentials.

We find interesting two-field dynamics during inflation, leading to a
single-field attractor in which the second field (spectator) is stabilized at
its minimum. Interestingly, the similarities of the T- and E-model during
inflation go beyond the existence of a strong single-field attractor with a
large basin of attraction. In fact, we show that the full two-field dynamics of
the two models is identical, up to slow-roll corrections. Given the existence
of a strong single field attractor, we have analyzed the excitation of fluctu-
ations in the inflaton and spectator field, the latter driven by a tachyonic
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instability due to the negatively curved field-space manifold. By analyz-
ing the preheating efficiency of the E-model, we find qualitative differences
with similar studies of the related T-model. In particular, the parametric
resonance of inflaton fluctuations is significantly more enhanced in the E-
model, as compared to the T-model. Furthermore, for 10−4 ≲ α ≲ 10−3,
preheating is efficient for the E-model, but not the T-model. This presents
the first example of a difference between these two α-attractor models and
can lead to different predictions for CMB observables.

This work is organized as follows. In Section 5.2 we introduce a gen-
eralization of the E-model, with an inflaton ϕ and spectator field χ, and
study the background motion with a detailed comparison to the T-model.
We find that during inflation, the approach to the single-field attractor of
the E- and T-models is identical, up to slow-roll corrections. In order to as-
sess the strength of the single-field attractor and treat the two fields on the
same footing, regardless of the intricacies of the specific parametrization
on the curved field-space manifold, we evaluated the background evolution
with initial conditions chosen to lie on several iso-potential surfaces. The
resulting motion can be viewed as approximately single-field trajectories
joined by a sharp tun in field-space, followed by a brief period of transient
oscillations. Section 5.3 provides an overview of the fluctuation analysis
for the case of multiple fields. We focus on the parametric excitation of χ
fluctuations –since the corresponding parametric resonance for ϕ fluctua-
tions has been studied in the literature and is weaker for most parameters
of interest– and extensively study separate contributions to the effective
frequency that affect particle production. In Section 5.4 we use Floquet
theory to study particle production and invoke the various mass-scales to
explain the differences between the T- and E-model results. We numerically
compute the transfer of energy to radiative degrees of freedom in the linear
approximation, neglecting mode-mode coupling and backreaction. We fo-
cus on the n = 1 case, where the system close to the minimum is described
as consisting of interacting massive particles, and compare the preheating
efficency of the T- and E-model. In Section 5.5 we conclude and provide
an outlook for further studies.

5.2 Model and inflationary dynamics

Having studied the preheating behaviour of the generalized two-field T-
model in Chapter 4, we move to the corresponding generalization of the
E-model. The T- and E- model can be viewed as the prototypical examples



142 Preheating with asymmetric multi-field potentials

of symmetric and asymmetric α-attractors. Analyzing them can help us
build the toolbox and intuition needed to analyze any current or future
α-attractor scenario that possesses a late-time single-field attractor. As
before, we consider a model consisting of two interacting scalar fields on
a hyperbolic manifold of constant negative curvature. The specific super-
gravity construction can be found in Appendix 5A, leading to the two field
Lagrangian

L = −1

2

(
∂µχ∂

µχ+ e2b(χ)∂µϕ∂
µϕ
)
− V (ϕ, χ) , (5.2)

where b(χ) = log (cosh(βχ)) and β =
√
2/3α. But now the corresponding

two-field potential is

V (ϕ, χ) = αµ2
(
1− 2e−βϕ

cosh (βχ)
+ e−2βϕ

)n

(cosh(βχ))2/β
2

. (5.3)

For χ = 0 the potential becomes

V (ϕ, 0) = αµ2
[(

1− e−βϕ(t)
)2]n

, (5.4)

which is a simple one-parameter family of the single-field E-model described
in Ref. [321].

The background equations of motion for ϕ(t) at χ(t) = 0 are

ϕ̈+ 3Hϕ̇+ 2

√
2

3

√
αn
[(
e−βϕ − 1

)2]n
eβϕ − 1

= 0 (5.5a)

3H2 =
1

2

(
dϕ

dt

)2

+ α

[(
1− e−βϕ

)2]n
= 0 (5.5b)

where we rescaled the field ϕ by MPl, time t by µ and the curvature pa-
rameter α by M2

Pl, as in Chapter 4. We lift tildes for rescaled quantities
(which were used in Chapter 4) for the simplicity of notation. Hence with
these conventions the Hubble scale is measured in units of µ. The same is
true for the comoving wavenumbers, as we will see in Section 5.3.

5.2.1 Singlefield background motion

Eqs. (5.5) can be simplified during slow-roll inflation, for ϕ≫
√
α

3Hϕ̇+
2
√
2√
3

√
αne−βϕ ≃ 0 , 3H2 ≃ α

M2
Pl
µ2 (5.6)
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where we explicitly wrote the dimensions of the various quantities in the
equation of the Hubble scale. These equations are almost identical to the
ones that govern the inflationary behaviour of the T-model discussed in
Chapter 4, and can be solved analogously

ϕ̇ ≃ −2
√
2n

3
e−βϕ , N =

3α

4n
eβϕ. (5.7)

One may notice a factor of 2 difference in comparison to the case of the
T-model. This leads to the slow-roll quantities

ϵ ≡ − Ḣ

H2
≃ 3α

4N2
, η ≡ ϵ̇

ϵH
≃ 2

N
(5.8)

and in turn to the tensor-to-scalar ratio

r = 16ϵ =
12α

N2
. (5.9)

As expected, the results for the slow-roll parameters and Hubble scale
during single-field inflation are identical for the generalized T- and E-
models. Following the breakdown of the slow-roll analysis close to ϵ = 1,
inflation can be shown to end at ϕend = O(1)

√
α and the corresponding

Hubble scale to be H2
end ∼ O(1)αµ2. From the amplitude of the scalar

power spectrum

As =
H2

8πM2
Plϵ

≃ 2× 10−9 (5.10)

we extract the mass-scale µ ≃ 6 × 10−6MPl for N = 55 e-folds. Note that
this scale is the same for the T model described in Chapter 4.

Comparison with the T model, which has a potential

VT (ϕ, χ = 0) = αµ2
[
tanh2

(
βϕ

2

)]n
(5.11)

leads to the same functions of ϵ(N) and η(N), but a slightly different func-
tion of ϕ(N). In particular

ϕT (N) ≃ ϕ(N) +
log(2)
β

(5.12)

where ϕT and ϕ correspond to the slow-roll expressions for the T- and E-
model respectively, for the same parameters α and n. Fig. 5.1 shows that
Eq. (5.12) holds very well, even for relating ϕend between the T- and E-
models. Furthermore, the Hubble scale at the end of inflation scales as
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Figure 5.1: Left: The rescaled value of the inflaton field at the end of inflation ϕend/
√
α

as a function of α for n = 1, 1.5, 2, 2.5, 3, 5 (blue, red, green, brown, orange and black
respectively). The solid curves correspond to the E-model potential of Eq. (5.4), while the
dotted ones correspond to ϕend for the T-model potential of Eq. (5.11) shifted vertically by
log(2)/β according to Eq. (5.12). We see that the values of ϕend are similar for the T- and
E-models and scale as ϕend ∝

√
α for small α. Right: The rescaled Hubble scale at the end

of inflation Hend/
√
α for the same parameters and color-coding. The upper / lower curves

correspond to the T- and E-model respectively. The parameter α is measured in units of
M2

Pl, while ϕ is measured in units of MPl and the Hubble scale is measured in units of µ.
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Figure 5.2: Left: The period of background oscillations of the inflaton field (in units of
µ−1) for H = 0 and ϕmax = ϕend as a function of α for n = 1, 1.5, 2, 2.5, 3, 5 (blue, red,
green, brown, orange and black respectively). The solid curves correspond to the period of
the E-model, while the dotted ones correspond to the period of the T-model divided by 2. We
see that the period of the T-model is twice that of the E-model to a high degree of accuracy.
Both frequencies are largely insensitive to changes in α. Right: The frequency of background
oscillations ω = 2π/T divided by the Hubble scale at the end of inflation, rescaled by √

α.
The solid / dotted curves correspond to the E- and T-model respectively and the color-coding
is the same. It is evident that for small values of α, the hierarchy between the background
oscillation frequency and the Hubble scale grows as 1/

√
α.
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Hend ∼ 0.5
√
α in units of µ. The scaling is similar for the E- and T-models,

with slightly different pre-factors, as shown in Fig. 5.1.
After inflation, the background field undergoes oscillations with a decay-

ing amplitude, due to Hubble friction. In order to define a characteristic
period of oscillations, we neglect Hubble friction and set the field to its
value at the end of inflation, as given in Fig. 5.1. The results are shown in
Fig. 5.2, where both the period of oscillations T as well as the scale hier-
archy ω/Hend is shown. We see a strong hierarchy between the frequency
of background oscillations and the Hubble scale, which gets stronger for
smaller values of α (higher field-space curvature), scaling as ω ∝ Hend/

√
α.

This means that for small α the Hubble scale can be neglected, to a good
approximation, as it takes a large number of background oscillations for any
considerable red-shifting to occur. We also see that the hierarchy between
the oscillation frequency and the Hubble scale is somewhat stronger for the
T-model, hence we expect more damping of the background motion per
oscillation for the E-model. In order to understand the relation between
the period of the two models TT ≃ 2TE that can be immediately extracted
from Fig. (5.1) we take a closer look at the single-field potential of the two
models and compute one characteristic evolution for α = 10−3 and n = 1.

The T-model potential is symmetric with respect to the origin, while the
E-model potential is highly asymmetric, consisting of a flat plateau on one
side (akin to the T-model) and a steep potential “wall” on the other side.
One thus expects that the background motion will be equally asymmetric,
spending much more time near the plateau (ϕ > 0) and far less time near
the steep potential wall (ϕ < 0). This is indeed the case as shown in Fig. 5.3.
Given that the plateau behaviour is similar between the T- and E-models,
one would expect that the T-model period would be larger, almost double
that of the E-model. If one considers the difference in ϕend, the fact that
the T-model starts “higher up on the plateau” at the end of inflation, the
relation TT ≃ 2TE ends up being an excellent description of the relation
between the background motion of the two models.

A simple measure of the asymmetry of the background motion of the
E-model seen in Fig. 5.3 can be analytically captured, by computing the
ratio of the period for the positive and negative half-cycle. By neglecting
the effect of Hubble friction on the background motion, the relation of the
two maximum field values ϕ± (ϕ+ being the maximally positive value and
ϕ− the maximally negative value) are given by

1− e−βϕ+ = −1 + e−βϕ− . (5.13)
This is independent of the parameter n and is derived through simple con-
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Figure 5.3: Left: The single field potential rescaled by α for n = 1, 1.5, 2 (blue, red and green
respectively). The solid curves correspond to the E-model, while the dotted ones correspond
to the T-model. The dots / squares show ϕend for the E- and T-model respectively for
α = 10−3. Right: The rescaled background motion (ϕ/√α in blue and ϕ̇/

√
α in red) for

n = 1 and α = 10−3 for the E- and T-models (solid / dotted), by neglecting the Hubble
friction term.

servation of energy for ϕ̇± = 0. We see that the effect of α is trivially given
through the rescaling of ϕ± by

√
α. Fig. 5.4 shows that Eq. (5.13) accu-

rately captures the behaviour of the system for a wide range of parameters.
The half-period is then computed as

T± = ±
∫ ϕ±

0

1√
2(Vmax − V )

dϕ . (5.14)

Fig. 5.4 shows the ratio T−/T+ for different values of ϕ+/
√
α. As expected,

the ratio approaches unity for small field values, since the field only probes
the first (symmetric) term in a Taylor expansion V ∝ |ϕ|n. For large field-
values the asymmetry of the background motion can be very pronounced.
Furthermore, the effect of n on the period ratio is not important.

As an interesting remark, we must note that the first oscillation is larger
in amplitude than what one would naively compute by using ϕ+ = ϕend.
By including the kinetic energy at the end of inflation, Eq. (5.13) becomes

3

2

(
1− e−βϕend

)
= −1 + e−βϕ− (5.15)

for the first half-oscillation. This is especially important for low values of
α, where the Hubble scale is much smaller than the frequency of oscillation,
hence the Hubble damping per oscillation is negligible (at least initially).

In light of the difference between the background trajectories of the E-
and T-model and the highly asymmetric nature of the former, it is interest-
ing to examine the spectral content of ϕ(t) in both cases as a function of the
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Figure 5.4: Left: The relation of ϕ+ to ϕ− for {α, n} =
{10−3, 1}, {10−4, 1}, {10−3, 3/2}, {10−3, 5} (blue, red, green and black respectively).
The black solid curve shows the analytic result of Eq. (5.13). Right: The ratio of the
negative to positive half-period as a function of the rescaled field amplitude for n = 1, 3/2, 5
(blue, red and green respectively).

parameters n and α. By neglecting the Hubble drag term, the background
evolution of the inflaton field is a periodic function, and thus can be written
as a Fourier series

ϕ(t) = a0 +
∞∑
λ=1

aλ cos
(
2πλ

T
t

)
+

∞∑
λ=1

bλ sin
(
2πλ

T
t

)
(5.16)

with the Fourier coefficients

a0 =
2

T

∫ T

0
ϕ(t)dt , aλ =

2

T

∫ T

0
ϕ(t) cos

(
2πλ

T
t

)
dt , bλ = 0 (5.17)

We compute the background motion in the static universe approximation
(H = 0) by setting the initial conditions {ϕ, ϕ̇} = {ϕend, 0} at t = 0,
where ϕend is the field value at the end of inflation, and numerically solving
the Minkowski-space background equation of motion. In this context the
coefficients of the sinusoidal terms {bλ} vanish identically for both the E-
and T-model, while the Fourier series for the T-model consists of only odd
terms: {αλ} with mod (λ, 2) = 1. Fig. 5.5 shows the richer spectral content
of the E-model as opposed to the T-model.

5.2.2 Multifield effects during inflation

Similarly to the generalized T-model [158, 160, 321], the generalized E-
model exhibits a single valley along χ = 0, as shown in Fig. 5.6. Analogously
to Chapter 4, we find that by starting away from the ϕ axis, inflation will
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Figure 5.5: Left: The magnitude of the normalized Fourier coefficients |aλ/a1| for λ =
0, 2, 3, 4, 5, 6, 7, 8 (orange, brown, blue, purple, red, black, green and pink respectively) for
the E-model (solid) and the T-model (dotted) as a function of α with n = 1. Right: |aλ|
with the same color-coding as a function of n with α = 10−3. Both panels show that the
background motion of the E-model has a richer harmonic structure than that of the T-model.
For the T-model an ̸= 0 for n = 3, 5, 7 as explained in the main text.

proceed along a single-field trajectory with ϕ being effectively constant until
χ = 0. After that, inflation will proceed along the valley of the potential,
as shown in Fig. 5.6. By using the single-field slow-roll equations of motion,
we can express the field ϕ as a function of the e-folding number Nsf,ϕ on a
single-field trajectory along ϕ

V (Nsf,ϕ, χ) = αµ2

[
1− 2

cosh(βχ)
3α

4nNsf,ϕ
+

(
3α

4nNsf,ϕ

)2
]n
n cosh2/β2

(βχ)

(5.18)
By dropping the field value in favor of the e-folding number, we gain a
more intuitive understanding of the size of each term. Before proceeding,
we must stress that Nsf,ϕ is the e-folding number of a single field trajectory
with χ = 0, not the full multi-field trajectory, and it is only used as a
substitute for the field ϕ. As Fig. 5.6 shows, the sharp turn in field-space
means that the substitution of ϕ by Nsf,ϕ has physical relevance beyond its
mathematical convenience. It corresponds to the duration of inflation that
will take place after the sharp turn at χ = 0. By considering large values
of Nsf,ϕ, such that we get a large number of e-folds (55 or more) along a
single field trajectory along ϕ, we can keep the lowest order term in Nsf,ϕ,
which leads to

V (Nsf,ϕ, χ) = αµ2 cosh2/β2
(βχ)

[
1− 3α

2Nsf,ϕ
sech(βχ) +O

(
α2

N2
sf,ϕ

)]
.

(5.19)
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The next to leading order term O
(
α2/N2

sf,ϕ

)
can be dropped if

βχ < log
(
16nNsf,ϕ

3α

)
. (5.20)

We must note again that Eq. (5.19) represents a series expansion in 1/Nsf,ϕ
and holds for every value of χ, within the limits of Eq. (5.20). By applying
the same procedure to the two-field generalized T-model that was studied
in Chapter 4, we arrive at the exact same series expansion, up to and
including the term that is O

(
N−1

sf,ϕ

)
. The two potentials are different at the

level of the O
(
α2/N2

sf,ϕ

)
term. This clearly shows that the two potentials

are not only equivalent during inflation at the single-field level, leading
to the same predictions for ns and r, but that their two-field behaviour
is also identical, up to slow-roll corrections, since the potential along the
χ direction is the same up to O(N−2) = O(ϵ) terms. The equivalence
becomes increasingly better for smaller values of α. Hence the approach
to the χ = 0 attractor, which was examined in Chapter 4 for a wide range
of initial conditions, as well as the behaviour along the attractor, will be
practically indistinguishable between the two models. We must note that
the above analysis does not provide any guarantee that this equivalence will
persist during preheating, since it has been obtained by using the slow roll
analysis during the early (CMB-relevant) stages of inflation.

Both the above analysis and the more extended multi-field analysis
shown in Chapter 4, was performed in the {ϕ, χ} basis. However, for curved
field-space manifolds, the magnitude of a field value does not always cor-
respond to the physically relevant parameter. For that, we can look for
intuitive criteria to check the strength of the single-field attractor and the
two-stage structure of the inflationary trajectory shown in Fig. 5.6. One
such criterion for testing the strength of the late-time single field attractor
arises as we vary the field values on equi-potential surfaces V (ϕ, χ) = const.

Given the fact that we know the behaviour and observables of the sys-
tem, once it reaches the single field attractor at χ(t) ≃ 0, we examine the du-
ration of inflation and the position of the sharp transition between the two
single-field regimes as we fix the initial energy V (ϕ0, χ0) for ϕ̇0 = χ̇0 = 0.
We start by fixing the potential energy of the initial conditions, which cor-
responds to the left panel of Fig. 5.7. The initial potential energy is taken
to be V (ϕ0, χ0). We see that the lines are equidistant to each other before
the turn of the trajectory happens. The total number of e-folds and the
number of e-folds before the turn are sensitive to the change of initial values



150 Preheating with asymmetric multi-field potentials

� �� �� �� �� �� �� ��
���

���

���

���

���

���

�

ϕ
�χ

Figure 5.6: Left: The three-dimensional plot of the E-model potential V (ϕ, χ) given in
Eq. (5.3) for n = 3/2 and α = 0.001 along with a characteristic trajectory computed by
choosing the initial conditions ϕ0 = 1

β
log

(
4nN
3α

)
and χ0 = 1. Right: The evolution of

ϕ (blue), χ (green) for the same parameters. The brown-dashed and black-dashed curves
correspond to the T model with the same parameters and the initial conditions chosen as
χ0 = 1 and ϕ0 = 1

β
log

(
8nN
3α

)
. The red-dashed curve is ϕ for the T-model shifted vertically

by log(2)/β, following Eq. (5.12). All field values are measured in units of MPl. It is worth
noting that the blue-solid and red-dashed curves are indistinguishable, as are the green-solid
and black-dashed ones. This demonstrates the identical multi-field behavior of the T- and
E-models during inflation, that is derived in the main text.

of ϕ0 and χ0. From the right panel of the Fig. 5.7 we see that to get 60
e-folds of inflation we must have ϕ0 ≳ 1.1. With the increase of χ0 the
number of e-folds before the turn increases as well. For the equi-potential
choice of initial conditions the subtraction from the duration of inflation
the position of the turn, i.e. Nend − Nturn, is the same for all parameters
ϕ0, χ0.

Intruiging phenomenology can arise if one puts the evolution of χ(t)
into the observable range, i.e. let it evolve at least 30 e-folds before the
turn. To make it happen for α = 0.01 we have to artificially tune χ0 to be
χ0 ≈ 10, at the same time keeping ϕ0 = O(1), however for α = 0.001 both
ϕ0 and χ0 can be of the same order O(1). Using the two-field potential
of Eq. (5.3), we can compute the slow-roll quantities during the initial
phase of inflation along ϕ ≃ const. We use the fact that the field trajectory
proceeds with almost zero turn-rate, hence the projection vectors align with
the coordinate system, σ̂ϕ ≃ 0. This greatly simplifies the calculations (we
use the notation of Ref. [266]), since the motion occurs along χ, which is
a canonically normalized field. The slow roll quantities along the adiabatic



5.2 Model and inflationary dynamics 151

direction are

ϵ = − Ḣ

H2
≃
M2

Pl
2

(
Vχ
V

)2

, ησσ ≃M2
Pl
Mσσ

V
(5.21)

where the adiabatic effective mass along the χ direction is

Mσσ ≃ Gχχ(DχDχV ) = Vχχ (5.22)

It is straighforward to compute the above quantities. Interestingly they
both asymptote to a fixed value for {ϕ, χ} ≳ O(1), which reads

ϵ ≃ 3α , ησσ ≃ 2ϵ ≃ 6α (5.23)

This result is insensitive to the exact value of α and n and it is identical
for the E- and T-model. The orthogonal direction, which in this case is
the ϕ direction, controls the evolution of the isocurvature modes. It is
straightforward to check that the isocurvature effective mass in this case
is larger than the Hubble scale, hence the isocurvature modes decay. The
curvature perturbation is thus controlled by the χ fluctations that exit the
horizon during this stage, which acquire a spectral tilt

ns = 1− 6ϵ+ 2ησσ ≃ 1− 6α. (5.24)

This can be made compatible with the Planck data. However, the tensor
to scalar ratio r = 16ϵ ≃ 48α is too large, r > 0.1, for values of α that
provide the correct scalar spectral index. These results use the asymptotic
values of ϵ and ησσ and a region of (almost) zero turn rate |ω| ≪ H.
The existence of a non-zero turn rate during this first stage of inflation can
lower the tensor-to-scalar ratio (see e.g. Ref. [263]). A full calculation of the
power spectrum during the transition between the two (almost) single field
trajectories requires a more thorough investigation, possibly focusing on a
different parameter range than the ones associated with efficient preheating
(α≪ 1).

A full analysis of the initial condition dependence that defines the ob-
servables of the two-stage inflationary phase and the corresponding obser-
vational viability of two-stage α-attractor inflation is beyond the scope of
the present work. However Fig. 5.7 shows that if one wants to extract infor-
mation about the probability distribution of the inflationary trajectory and
the resulting spectral observables, one would need to choose a prior distri-
bution for the initial values of the fields (and corresponding velocities). Our
intuitive choice for choosing initial conditions through iso-potential lines,
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Figure 5.7: Left: The initial value lines for constant potential for ϕ0=1.5 and χ0=1.4 (green),
χ0=0.7 (red), χ0=0.3 (black), χ0=0 (blue) (from top curves to bottom) for n = 3/2 and
α = 0.01.
Right: The total number of e-folds (solid lines) and the number of e-folds before the sharp
turn (dashed lines) starting from the beginning of inflation for ϕ0=1.2 and χ0=19 (orange),
χ0=10 (red), χ0=8 (black), χ0=4 (blue), (from top curves to bottom) for n = 3/2 and
α = 0.01. The two horizontal thin lines correspond to 50 and 60 e-folds, hence the range
between them corresponds to the time, during which the CMB-relevant modes left the horizon.
All field values are measured in units of MPl.

shows that the choice of prior distribution is likely to affect the outcome
(see e.g. Ref. [322]). Even though the single field attractor is strong enough
to suppress multi-field signatures, the size of the part of parameter space
that would showcase them is non-trivial to compute.

5.3 Fluctuations
In principle, the analysis of fluctuations in models of inflation that involve
multiple fields on a curved manifold requires the use of a covariant formal-
ism. This has been developed for preheating in Ref. [136] and extensively
used in Refs. [302–304] for studying preheating in multi-field inflation with
non-minimal couplings to gravity. Similarly as in Chapter 4, our current
parametrization of the hyperbolic field-space manifold makes the equations
for the gauge-invariant perturbations

QI ≡ δϕI +
ϕ̇I

H
ψ (5.25)

particularly simple along the single-field attractor χ = 0. Their equations
of motion were discussed in Introduction as well as in Chapter 4, therefore
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we will not repeat the analysis here.
By rescaling the perturbations as QI(xµ) → XI(xµ)/a(t) and working

in terms of conformal time, dη = dt/a(t), we write the second order action
in a form that resembles Minkowski space

S
(X)
2 =

∫
d3xdη

[
−1

2
ηµνδIJ∂µX

I∂νX
J − 1

2
MIJX

IXJ

]
, (5.26)

where
MIJ = a2

(
MIJ − 1

6
δIJR

)
. (5.27)

This makes quantization straightforward, by promoting the fields XI to
operators X̂I and expanding X̂ϕ and X̂χ in sets of creation and annihilation
operators and associated mode functions

X̂I =

∫
d3k

(2π)3/2

[
uI(k, η)âIeik·x + uI∗(k, η)âI†e−ik·x

]
. (5.28)

Since the modes decouple on a single-field background with vanishing turn-
rate, the equations of motion are

∂2ηvk +Ω2
ϕ(k, η)vk ≃ 0 , Ω2

ϕ(k, η) = k2 + a2m2
eff,ϕ ,

∂2ηzk +Ω2
χ(k, η)zk ≃ 0 , Ω2

χ(k, η) = k2 + a2m2
eff,χ ,

(5.29)

where we defined uϕ ≡ v and uχ ≡ z. For completeness, we provide again
the definitions for components of the effective masses. The effective masses
of the two types of fluctuations, along the background motion and perpen-
dicular to it, consist in principle of four distinct contributions [136]:

m2
eff,ϕ ≡ m2

1,ϕ +m2
2,ϕ +m2

3,ϕ +m2
4,ϕ (5.30)

m2
eff,χ ≡ m2

1,χ +m2
2,χ +m2

3,χ +m2
4,χ (5.31)

each of them corresponding to a different source. Full expressions for arbi-
trary GIJ can be found for example in Ref. [136]. However using the fact
that χ = 0 and GIJ = I along the single field attractor at background level
the effective mass components become simple:

• The components m2
2,I are written as

m2
1,ϕ = Vϕϕ , m2

1,χ = Vχχ (5.32)

corresponding to the local curvature of the potential.
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• The component m2
2,ϕ vanishes identically, while

m2
2,χ =

1

2
Rϕ̇2 (5.33)

arises from the field-space curvature and has no analogue in flat field-
space models.

• The component m2
3,ϕ encodes the effects of the coupled metric per-

turbations and is written as

m2
3,ϕ = − 1

M2
Pla

3
Dt

(
a3

H
ϕ̇2
)
. (5.34)

Since the metric perturbations are only related to the adiabatic per-
turbations and cannot affect the isocurvature modes, the term m2

3,χ

vanishes identically2. Furthermore, this contribution is subdominant
for these models and parameter range of interest, as discussed in
Refs. [158, 160].

• Finally the terms
m2

4,ϕ = m2
4,χ = −1

6
R , (5.35)

where R = 6(2 − ϵ)H2 is the space-time Ricci scalar, arise from our
choice of mode-functions in a curved space-time.

It is straightforward to check that the potential components of the effective
masses scale as m2

1,I ∼ µ2, as does the field-space curvature component µ22,χ.
The coupled metric perturbations component is subdominant for α ≪ 1,
since m2

3,ϕ ∼ µ2
√
α (see Chapter 4). Finally, the term that encodes the

space-time curvature is even smaller, scaling as m2
4,I ∼ µ2α. This is rem-

iniscent of another family of plateau models, ξ-attractors, which produce
similar CMB spectra to α-attractors [136, 154, 254].

Before we proceed with preheating calculations, we must revisit the
claims made in Sections. 5.2.2 about the existence and stability of a single-
field attractor along χ = 0. The analysis made so far relies on background
quantities. However, it has been shown that negatively curved manifolds

2During inflation, the adiabatic modes are fluctuations along the background tra-
jectory and the isocurvature modes are fluctuations perpendicular to it. Due to the
existence of a single-field attractor χ = 0, the adiabatic and isocurvature modes can be
simply matched to δϕ and δχ respectively.
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can lead to unstable fluctuations during inflation and a subsequent desta-
bilization of the inflationary trajectory. After the system has settled into
the attractor at χ = 0, the effective super-horizon mass of χ fluctuations is
given by

m2
χ,eff = Vχχ(χ = 0) +

1

2
Rϕ̇2

= 2αe−2βϕ

(
e−2βϕ

(
eβϕ − 1

)2)n−1 (
eβϕ

(
eβϕ + β2n− 2

)
+ 1
)
− 2

3α
ϕ̇2.

(5.36)

By using the slow-roll equations of motion this becomes

m2
χ,eff ≃

(
2 +

1

N

)
α (5.37)

for small α and large N . This means that until close to the end of inflation,
where the slow-roll expressions break down, the χ fluctuations exhibit a
positive effective mass and are suppressed. The E-model is thus safe from
“geometric destabilization” effects during the inflationary stage along χ = 0
[54, 55], even for highly curved field-space manifolds. This arises because
the potential also depends on the curvature parameter α. We verified this
claim by numerically evaluating Eq. (5.3) for various choices of n and α.

We define the energy density in each mode as

ρδϕ(k, η) =
1

2a4
(
|∂ηvk(η)|2 +Ω2

ϕ(k, η)|vk(η)|2
)

(5.38)

ρδχ(k, η) =
1

2a4
(
|∂ηzk(η)|2 +Ω2

χ(k, η)|zk(η)|2
)

(5.39)

where we ignored interaction terms, since we are working in the linear
approximation. The expressions can be easily written in cosmic rather
than conformal time.

We focus primarily on the parametric excitation of δχ modes, since the
analysis of single field parametric resonance can be found in the literature
(see e.g. Refs. [323, 324]). For field-space manifolds with α ≳ O(10−3)
the corresponding instability factors are much smaller for δϕ as compared
to δχ, with the exception of the E-model for n = 1. Furthermore, the
analysis of ϕ fluctuations is in principle identical, with the exception that
the curvature term is missing from the effective mass. We provide further
results for the growth of ϕ and χ fluctuations in Section 5.4.3.
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5.3.1 Effective frequency

Before we proceed to construct the Floquet charts and numerically compute
the evolution of χ fluctuations, we focus on the effective mass ω2

χ and its
dependence on the parameters n and α. This will guide our intuition about
the system, so that we can recognize the interesting parameter regimes and
important factors that will ultimately determine the preheating efficiency.

We start with the Riemann component m2
2,χ, which does not depend

strongly on the potential and field-space parameters n and α

1

2
Rϕ̇2 ∼ −O(1) (5.40)

similarly to the behaviour found in the context of the T-model in Chap-
ter 4. This scaling can be simply understood as follows: the field-space
curvature is R = − 4

3α . At the same time, the time derivative ϕ̇2 has its
maximum value at the minimum of the potential ϕ = 0. Following the anal-
ysis of Section 5.2, we see that the field amplitude scales as ϕ ∼ ϕend ∼

√
α,

while the relevant oscillation time scale T is essentially independent of α
for sufficiently small α. These scalings have been numerically verified in
Figs. 5.1 and 5.2 respectively and lead to ϕ̇2 ∼ α ∼ R−1. The O(1) am-
plitude of the Riemann term in Eq. (5.40) has been numerically evaluated
and is maximized close to unity for several parameter choices, especially
for α≪ 1.

We next move to the component m2
1,χ of the effective χ mass, which is

due to the potential. This can be written for small α as

Vχχ(χ = 0) ≃ 4

3
ne−βϕ

((
1− e−βϕ

)2)n−1

. (5.41)

For n = 1, this term is simplified as V n=1
χχ (χ = 0) ≃ 4

3e
−βϕ and oscillates

between two extremum values at ϕ = ϕ± (shown in Fig. 5.4), while having
a constant, time-independent value of 4/3 when the inflaton field crosses
the origin ϕ = 0. The maximum of V n=1

χχ can be easily computed using
Eq. (5.15)

V n=1
χχ

∣∣
max,(1) ≃

2

3

(
5− 3e−βϕend

)
, (5.42)

where we neglected the effect of the Hubble drag. This is an increasingly
good approximation for small values of α. The behaviour of the δχ effective
mass is shown in Fig. 5.8 for n = 1 and several values of α ≪ 1. It is



5.3 Fluctuations 157

α=10-2 α=10-3

α=10-4

0 20 40 60 80
-1

0

1

2

3

cosmic time t

α
-
0.
5 ϕ

m1,χ
2 m2,χ

2

0 20 40 60 80
-1

0

1

2

3

4

cosmic time t

m
ef
f

2

0 20 40 60 80
-1

0

1

2

3

4

5

cosmic time t

m
ef
f

2

0 20 40 60 80

0

2

4

6

8

cosmic time t

m
ef
f

2

Figure 5.8: Top left: The rescaled background amplitude of ϕ (in units of MPl) for n = 1
and α = 10−2, 10−3, 10−4 (orange, brown-dashed and purple-dotted respectively). Top right
& bottom panels: The effective mass (in units of µ2) of the ϕ and χ fluctuations (green-
dotted and black-dashed) along with the components of m2

χ for the same parameters. The
effective mass components m2

3,ϕ and m2
4,{ϕ,χ} are not shown, because they are subdominant

for α ≪ 1.

simple to see that the Riemann term red-shifts as a−2 , while the potential
derivative oscillation amplitude red-shifts as a−1. This follows trivially
from ∆Vχχ ∼ (1 − e−βϕ) ∼

√
V , where ∆Vχχ is the amplitude of the

oscillation of Vχχ shown in Fig. 5.8, while from the equipartition theorem
ϕ̇2 ∼ V . Hence, both the wave-number contribution k2/a2, as well as the
Riemann contribution become subdominant after the first e-fold, which
lasts for more oscillations for smaller values of α. Using Eq. (5.42) and the
results ϕend ≲ 2

√
α, shown in Fig. 5.1, we arrive at V n=1

χχ

∣∣
max,(1) ≲ 2.9.

This simple approximation is able to capture the exact (numerical) result
shown in Fig. 5.8.

E-model potentials with larger values of the potential parameter n can
be analyzed in a similar way. By Taylor-expanding the potential around
its global minimum at ϕ = χ = 0, it is straightforward to see that Vχχ ∝
ϕ2χ2(n−1)/αn−1 for n > 1. Thus all χ derivatives of the potential vanish
for ϕ = 0, contrary to the case of n = 1. Simply put, potentials with n > 1
describe massless fields in the small-amplitude regime.
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The component of the effective χ mass that is due to the potential can
be written for small α, similarly to the n = 1 case, as

Vχχ(χ = 0) ≃ 4

3
ne−βϕ

((
1− e−βϕ

)2)n−1

(5.43)

The height of the first “spike” can be computed using Eq. (5.15)

V n>1
χχ

∣∣
max,(1) =

(
3

2

)2n−3 (
5− 3e−βϕend

)(
1− e−βϕend

)2(n−1)
. (5.44)

Fig. 5.9 shows the evolution of the effective frequency and its two main
components, the potential and Riemann terms, for n = 3/2 and n = 2. An
interesting feature of this model is the evolution of the height of the first
spike, which scales approximately as

V max
χχ (χ = 0) ∼

(
1

a

)min(n,4)
. (5.45)

Simply put, for n < 2 the wavenumber contribution to the effective fre-
quency k2/a2 becomes less important after the first few oscillations, while
for n > 2 it comes to dominate over the potential at late times, for suffi-
ciently large wave-numbers. For the marginal case of n = 2 the relative size
of the wave-number and potential terms remains roughly constant.

By examining the general form of m2
eff,χ for n = 1, shown in Fig. 5.8,

we see that the negative part of the effective mass m2
2,χ is largely can-

celled by the positive contribution of m2
1,χ (not affected by neglecting the

subdominant term m2
4,χ). It means that the tachyonic resonance in the

E-model is completely damped for n = 1 and preheating can only proceed
by parametric resonance alone. Parametric resonance in the simple case
of the Mathieu equation ü(t) + [A+ 2q cos(2t)]u(t) is largely controlled by
the relative size of A and q and is suppressed for A ≫ q. Fig. 5.8 shows
that while the offset A remains constant, the oscillation amplitude q is
damped, hence we expect parametric resonance to quickly shut off, at least
for α = O(0.01). For smaller values of α the effective mass exhibits a highly
oscillatory behaviour, where the amplitude of the oscillation is almost equal
to the constant offset of m2

eff,χ. Furthermore, the anharmonic behaviour of
the background (see Fig. 5.5) is mirrored in the anharmonic effective mass,
particularly in the dominant component Vχχ, where we see a “spike” ap-
pearing at the points where ϕ is maximally negative. This can lead to a
violation of the adiabaticity condition

∣∣ω̇/ω2
∣∣≪ 1.
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Figure 5.9: Effective frequency ω2
χ(k, t) for n = 3/2, 2 (left and right respectively) and

α = 10−2, 10−3, 10−4 (top to bottom). The effective frequency is measured in units of
µ2 ≃ 3.6 · 10−11M2

Pl. We see that for n = 3/2 the effect of the wavenumber term k2/a2

becomes progressively less important compared to the potential spike, which is not the case
for n = 2, where the two terms red-shift in tandem.
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The phenomenon of a spike in the effective frequency of fluctuations
driving the adiabaticity violation was observed in preheating of multi-field
models with non-minimal coupling to gravity [136, 302, 303, 325, 326],
including but not limited to Higgs inflation [304, 326]. In that context, the
field-space curvature is non-uniform: the manifold is asymptotically flat at
large field values and the Ricci scalar exhibits a large positive spike at the
origin3. In order to properly define an adiabaticity parameter and use a
WKB-type analysis, the frequency of the fluctuations δχ must be (much)
greater than the frequency of the background oscillations; simply put, δχ
must oscillate multiple times between the “spikes” shown in Figs. 5.8 and
5.9. We have shown using both analytical and numerical arguments (see
Fig. 5.2) that the background frequency is ωbg ≡ 2π/T ∼ 0.5, with a mild
dependence on the parameters α and n. While the maximum value of
meff,χ is larger than ωbg, the averaged value over one period is not, in fact
⟨meff,χ⟩T ∼ ωbg. Thus, in order to properly use the adiabaticity condition
as a criterion for preheating, we should restrict ourselves to cases where the
wave-number contribution k2/a2 is non-negligible. For now, let us consider
cases where k ≳ µ (we choose to measure k in units of µ, as in Chapter 4).

Fig. 5.10 shows the evolution of the adiabaticity condition for n = 1 and
k = 0.5µ, where we see adiabaticity violation for only a few oscillations at
α ⩽ 10−3. If we consider larger wave-numbers, k ≃ µ, we find

∣∣ω̇/ω2
∣∣ < 1

for n = 1. The situation is however different for n ⩾ 3/2, where we find
instances of ω̇/ω2 > 1 for k ⩾ µ. Fig. 5.10 shows the evolution of the peaks
in the adiabaticity parameter, occurring around the maximally negative
value of ϕ(t). For n = 2 we see that the adiabaticity parameter is violated
(for α ⩽ 10−2) initially, but

∣∣ω̇/ω2
∣∣ decreases with time. The situation is

reversed for n = 3/2, where we see that the adiabaticity parameter grows
with time. Finally, the value of

∣∣ω̇/ω2
∣∣ grows with decreasing α for all

values of n that we examined, signifying a common trend.
Before we conclude this section, it is important to distinguish two dif-

ferent types of sharp features in the effective frequency of fluctuations. The
field-space induced spikes that were found in non-minimally coupled models
[136, 302–304, 325, 326] arise when the fields pass through the origin and
have their maximal velocity. They can lead to significant adiabaticity vio-
lation over a large range of wave-numbers and thus can drive very efficient

3This description corresponds to the analysis performed in the Einstein frame as in
Refs. [136, 302, 303]. The analysis of these models in the Jordan frame was performed
in Ref. [326], where the adiabaticity violation was a result of a spike in the background
field velocity as it crossed the origin.
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Figure 5.10: Left: The adiabaticity condition
∣∣ω̇/ω2

∣∣ for n = 1 and α = 10−2, 10−3, 10−4

(blue solid, red dashed and green dotted respectively) and k = 0.5µ. Right: The peaks
of the adiabaticity condition

∣∣ω̇/ω2
∣∣ for n = 3/2 (solid curves) and n = 2 (dots) for α =

10−2, 10−3, 10−4 (blue, red and green respectively) and k = 1.5µ.

particle production. Contrary to this, Ref. [327] found sharp features in
a model of unitarized Higgs inflation (mixed Higgs-Starobinsky inflation).
This feature however arises from a sharp potential barrier and is thus sim-
ilar to the feature found in the E-model and completely different than
the sharp feature found in “regular” Higgs inflation preheating [304]. The
potential-driven spike in the effective frequency leads to typically weaker
preheating than the field-space-driven one, at least for the models men-
tioned here. It would be interesting to perform an EFT-type analysis for
preheating models with sharp features, but this goes beyond the scope of
our present analysis and is left for future work.

5.4 Massscales and Preheating

Due to the construction of the E-model, which arises by defining the Kähler
potential and superpotential for a complex field Z, the ϕ and χ dependence
of the potential are related to each other. The second derivative of the
potential with respect to χ, which is one of the two main components in
the effective mass-squared m2

eff,χ, can be related to the potential value itself
as

Vχχ
V

∣∣∣∣
χ=0

= 2 +
n

3α sinh2
(
βϕ
2

) . (5.46)

This diverges at ϕ = 0 for all values of α and n, which is easy to understand
by Taylor expanding the two terms for χ = 0 as V (χ = 0) ≃ 2n

3nan−1ϕ
2n +

O(ϕ2n+1) and Vχχ(χ = 0) ≃ 2n+1n
3nan−1ϕ

2n−2 + O(ϕ2n−1). We see that for
all values of n the potential V vanishes faster than the derivative Vχχ for
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Figure 5.11: Left: The ratio Vχχ/V multiplied by the factor α as a function of the
rescaled inflaton field for n = 1, 3/2, 2 and α = 10−2, 10−3, 10−4. The color-coding
is as follows: {n, α} = {1, 10−2}, {1, 10−3}, {1, 10−4}: blue, red-dashed, green-dotted,
{n, α} = {3/2, 10−2}, {3/2, 10−3}, {3/2, 10−4}: brown, orange-dashed, yellow-dotted,
{n, α} = {2, 10−2}, {2, 10−3}, {2, 10−4}: black, purple-dashed, cyan-dotted. We see that
for field values relevant for preheating the α dependence is canceled out when multiplying
by α and the n dependence is weak. Right: The ratio Vχχ/Vϕϕ for the same parameters
and color-coding. In both panels, the three curves corresponding to the same value of n and
different values of α are indistinguishable.

χ = 0 and ϕ → 0. For asymptotically large values of ϕ the ratio becomes
constant and equal to 2. However for ϕ = O(1)

√
α, which is the relevant

parameter range for preheating, the ratio is Vχχ/V = O(1) × α−1, where
the proportionality factor depends on n and ϕ.

Furthermore, the ϕ and χ mass-scales are also related to each other as

Vχχ
Vϕϕ

∣∣∣∣
χ=0

= −

(
eβϕ − 1

)2 (
6α+ ncsch2

(
βϕ
2

))
4n (eβϕ − 2n)

≃ −

(
eβϕ − 1

)2 csch2
(
βϕ
2

)
4 (eβϕ − 2n)

,

(5.47)
where the last equation holds for α ≪ 1. We see that Vϕϕ changes sign,
since the potential is concave during inflation. For (large) negative values of
ϕ the scaling of the ratio Vχχ/Vϕϕ simplifies as Vχχ/Vϕϕ ∼ e

√
2ϕ/

√
3α/(2n).

The full behavior is shown in Fig. 5.11.
Finally, Fig. 5.12 shows the potential close to the origin for each of the

fields V (ϕ, χ = 0) and V (ϕ = 0, χ) for n = 1. We see that the mass of
the ϕ and χ particles is equal. This can have important phenomenological
consequences, since the inability of the particles to decay into each other
opens the way for the emergence of composite oscillons, comprised of both
fields [328]. Oscillons appear when the potential of a scalar field is shallower
than quadratic away from the origin. Intuitively, this makes the frequency
of large oscillations smaller than the mass of the particle, creating a po-
tential barrier that keeps the particles bound inside the oscillon. Two-field
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oscillons are more complicated and only a few examples have been found
in the literature (see e.g. Refs. [328–331]. A feature of two-field systems
exhibiting oscillons must be the inability of the scalar field comprising the
oscillon to decay into lighter fields. In the α-attractor case it is reason-
able to expect that, since the two fields have the same mass, decays and
scatterings will be kinematically suppressed, possibly leading to long-lived
oscillons. The study of oscillons in α-attractors is beyond the scope of the
present work. One further interesting observation can be made when one
compares the mass of particles in the E- and T-model. In the latter case,
the small field excitations of the n = 1 potential have a mass of µ/

√
3, half

of the E-model case. This leads to a simple criterion for tachyonic resonance
in α-attractors. The maximally negative contribution to the effective mass
of the χ fluctuations is related to the Hubble scale at the end of inflation
through energy conservation (neglecting Hubble drag after inflation)

1

2
Rϕ̇2 = 3RM2

PlH
2 ≃ −µ2 (5.48)

Fig. 5.1 shows that the Hubble scale at the end of inflation differs by about
10% for the E- and T-models for small values of α, regardless of the potential
steepness n. In the EFT language, α-attractors in the small α regime show
a strong hierarchy of scales, where the Hubble scale is almost constant and
much smaller than the background oscillation frequency [332]. Fig. 5.12
shows the potential contribution to the effective mass for the E- and T-
model. We see that while the tachyonic contribution is similar in the two
models, the potential contribution is larger for the E-model. Thus, a quick
calculation of the energy density at the end of inflation and the mass of the
spectator field in any α-attractor model can provide a strong indication for
the efficiency of tachyonic preheating. The case of asymmetric α-attractors
is slightly more involved, because of the introduction of one further mass-
scale, in which case one must check the possibility of non-adiabatic behavior
due to it, as discussed in Section 5.3.1.

5.4.1 Floquet charts

In order to compare the efficiency of particle production (mode amplifi-
cation) during preheating, we will use Floquet theory, by working in the
static universe approximation, where the inflaton field oscillates periodically
without Hubble friction. We use the algorithm described in Ref. [118]. The
equation of motion for the χk modes (similarly for the ϕk ones) for H = 0
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Figure 5.12: Left: The field V (ϕ, χ = 0) (dotted) and V (ϕ = 0, χ) (solid) for the massive
case n = 1 of the E- and T-models (red/blue and black/green respectively). We see that in
each model the ϕ and χ masses are equal to each other. However the masses of the fields
in the T-model are larger than the ones in the E-model. Right: The potential contribution
to the δχ effective mass for the E- and T- model (solid and dotted curves respectively) for
n = 1, 3/2, 2 (blue,red green) and α ≪ 1. The black line shows an estimate of the tachyonic
field-space contribution. We see that in the E-model for n = 1, the potential term can
dominate over the tachyonic field-space curvature term, consistent with the behavior shown
in Fig. 5.8.

and a(t) = 1 is written as

d

dt

(
χk

χ̇k

)
=

(
0 1

−(k2 +m2
eff,χ) 0

)(
χk

χ̇k

)
, (5.49)

where m2
eff,χ = m2

1,χ +m2
2,χ. This equation is of the form

ẋ(t) = P(t) x(t) , (5.50)

where P(t) is a periodic matrix. The solutions are of the form

χk(t) = eµktg1(t) + e−µktg2(t) (5.51)

where g1, g2 are periodic functions and µk is the Floquet exponent. If µk has
a non-zero real component, one of the two solutions will be exponentially
growing, signaling an instability and efficient amplification for this specific
wavenumber.

Figure 5.13 shows the Floquet charts for the generalized E-model for the
case of n = 3/2. We see that, when properly rescaled, the Floquet charts
for different values of α ≪ 1 are similar to each other. However, unlike
the case of the T-model in Chapter 4, the Floquet charts do not exactly
reach a “master diagram” for 10−2 ⩽ α ⩽ 10−4. This can be traced back
to the existence of two mass-scales: the field-space curvature and the steep
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Figure 5.13: Upper row: The 3-D Floquet charts for n = 3/2 and α = 10−2, 10−4 (left
and right panels respectively). Bottom row: The contour plots for µk = 0 (solid lines) and
µk = 0.1 (dashed lines) in units of µ. The background field oscillation amplitude ϕ0 is rescaled
either by √

α (left) or by the field value at the end of inflation ϕend [which is denoted here
as ϕe] (right). The blue, green and orange curves are for α = 10−2, 10−3, 10−4 respectively.
We see that, when properly rescaled, the Floquet charts asymptote to a “master diagram”
for α ≪ 1.
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potential at maximum negative ϕ. While the former does not scale with α
for α ≪ 1, the latter does in a non-trivial way, albeit weakly, as shown in
Fig. 5.8. Furthermore, the existence of multiple instability bands, unlike in
the T-model case, can be an indication of the richer spectral content of the
background field.

By constructing the Floquet diagram using the field amplitude ϕ0 rescaled
by the field value at the end of inflation ϕend rather than

√
α, the approach

to a master diagram becomes better, especially for the higher k instabil-
ity bands. This is due to the high sensitivity of V max

χχ on ϕ0, as shown in
Fig. 5.9. Furthermore, the value of V max

χχ mostly affects the higher instabil-
ity bands, as we will discuss in Section 5.4.2.

Fig. 5.14 shows the Floquet charts for the cases of n = 1 and n = 2,
which correspond to a locally quadratic and quartic potential near the ori-
gin. The Floquet charts for n = 3/2 and n = 2 are visually similar exhibit-
ing multiple, non-trivial, instability bands in the range k ≲ 2.5µ. However,
the Floquet chart for n = 1 has a completely distinct structure. The reason
behind this discrepancy is that, as shown in Section 5.3.1, the structure of
the effective mass of χ fluctuations is different for n = 1 as compared to
n ⩾ 3/2. For n = 1 the tachyonic contribution of the field-space is entirely
negated by the potential contribution. For n ⩾ 3/2 both the negative field
space contribution and the positive potential term are visible. As we will
show, the field-space effects are present for n ⩾ 3/2, especially for k ≲ µ,
hence the dominant instability bands are similar amongst those models.
This is different from the generalized T-model case discussed in Chapter 4,
where the Floquet charts for all values of n show instability bands of simi-
lar shape and position, albeit not identical ones, exhibiting smaller Floquet
exponent µk for n = 1.

5.4.2 Parametric resonance and competing massscales

As a way to encode the structure of preheating in the generalized E-model
and make our results easily transferrable to other models, we examine the
different mass-scales (and corresponding time-scales) that arise for the back-
ground motion and χ fluctuations.

The Hubble scale at the end of inflation Hend is proportional to the
mass-scale µ and is defined by the requirement that the density fluctuations
encoded in the CMB have the proper amplitude. It enters the calculation,
by normalizing the amplitude of the Bunch-Davies vacuum, compared to
the background energy density, hence it shows how much fluctuations must
grow to dominate over the background energy density and lead to complete
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Figure 5.14: Left column: The 3-D Floquet charts for n = 1 (upper panel) and α = 10−4.
The contour plots for µk = 0(solid lines) and µk = 0.1 (dashed lines) for n = 1 with the field
amplitude rescaled by the field value at the end of inflation ϕe (bottom panel). The blue,
green and orange curves are for α = 10−2, 10−3, 10−4 respectively. Right column: The same
quantities for n = 2. We see the significantly suppressed parametric resonance for n = 1,
both in the number of instability bands, as well as in the width and magnitude of the main
instability band.
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preheating. Furthermore, the Hubble scale controls the red-shifting of the
mode wavenumbers and the amplitude of the inflaton condensate.

The background frequency ωbg controls the period of background os-
cillations. This is related to the local curvature of the potential near the
origin Vϕϕ(ϕ = 0, χ = 0). In simple polynomial models of inflation, for
example quadratic inflation, these two time-scales, the Hubble scale and
the background frequency, are connected. However in plateau models, like
α-attractors, a large hierarchy can exist between them (Fig. 5.2). The
potential exhibits more mass-scales, including the local curvature of the
spectator field potential Vχχ(ϕ = 0, χ = 0) and the average frequency of
the χ fluctuations ⟨ωχ⟩ over one background period. The former defines
the mass of χ particles, while the latter is related to the existence of broad
or narrow resonance.

The field-space curvature R ∝ α−1 enters the effective frequency of
χ fluctuations through the combination 1

2Rϕ̇
2. This drives the efficient

tachyonic resonance. For both the T- and E-model, this combination peaks
close to −1, when the background field crosses the origin.

Finally, the maximum value of the potential curvature V (max)
ϕϕ , as well as

the width of the “spike” measured as ∆ϕ or ∆t, control the higher harmonic
content of the background motion. Due to the structure of the E-model
potential, V (max)

ϕϕ is also related to the spike in the effective frequency of
the χ fluctuations, V (max)

χχ .
Having seen that the field-space contribution is similar for the E- and

T-models and also similar among different parameter choices n and α≪ 1,
we turn our attention to disentangling the potential and background con-
tributions to the parametric resonance. For that we construct the Floquet
diagrams for δχ by neglecting the field-space contribution. Fig. 5.15 shows
the Floquet exponents for n = 3/2 and n = 2. We see that the exponents
arising from the full δχ effective mass and those that are computed by con-
sidering only the potential and wavenumber contributions are very similar
for k > µ and differ greatly for k ≲ µ, where the full system shows much
more efficient particle production than the potential-only contribution.

We can thus conclude that the high-k resonance bands are mostly con-
trolled by the potential. By contrast, the resonance structure differs greatly
for k ≲ µ. This is due to the fact that the tachyonic part strongly enhances
modes with k ≲ µ, as shown extensively for the T-model in Chapter 4,
while it plays a subdominant role for large wavenumbers.

The existence for the multiple resonance bands for the E-model and not
the T-model (see Chapter 4) is rooted in the existence of another mass-scale
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Figure 5.15: The Floquet exponent µk for α = 10−4, ϕ = ϕend and n = 3/2, 2 (left and right
respectively). The blue curves correspond to the full Floquet exponent, while the red-dashed
one correspond to the Floquet exponent computed by neglecting the field-space contribution.
The Floquet exponents are measured in units of µ−1. The vertical dotted lines distinguish the
regimes k < µ and k > µ. The regime k < µ is controlled by the Ricci term in the effective
mass, since the large field-space induced instability is absent in the case of the potential-only
calculation. The regime k > µ is populated by multiple instability bands in both cases, with
minor differences in position and height. We can thus deduce that parametric resonance in
this regime is dominated by the effects of the potential term.

in the problem V max
ϕϕ ∝ V max

χχ , which leads the inflaton field and the effective
mass of the χ fluctuations to acquire a large number of higher harmonics.

Before proceeding to compute particle production in an expanding uni-
verse, we wish to make a general comment in order to clear a common
misconception in the literature. Frequent use of the term “α-attractors”
is made to describe single-field systems with flat potentials of the form
V = V0

∣∣1− e−ϕ/Λ
∣∣2n or V = V0 |tanh(ϕ/Λ)|2n. However the flattening

of the potential is merely a by-product of a more general feature of α-
attractors: the existence of a hyperbolic field-space manifolds. As we have
demonstrated in the present work and in Chapter 4, along with similar
work by other authors, the presence of a second field is crucial for the full
dynamics of α-attractors during preheating. The full two-field dynamics
must be considered in order to properly extract the predictions of these
models.

5.4.3 Expanding Universe

Having extensively analyzed the parametric resonance structure of the gen-
eralized two-field E-model for any value of the potential steepness param-
eter n and the field space curvature parameter α, we now incorporate the
effects of the non-zero expansion rate of the universe during preheating.
While there are semi-analytic methods to incorporate the effects of the ex-
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pansion in parametric resonance studies, using either Floquet theory or the
WKB approximation (see e.g. Refs. [160, 306, 309]), we will not rely on
them, since they do not provide anything further in this case, in terms of
intuitive understanding, to the static universe analysis. We will instead
numerically compute the evolution of fluctuations, taking into account the
expansion of the universe and the red-shifting of the amplitude of the back-
ground inflaton oscillations. We will however neglect the back-reaction of
the fluctuations onto the inflaton condensate and the non-linear mode-mode
coupling of the fluctuations.

Our present study can be used as a strong indication for the param-
eter values that can lead to complete preheating, as well as elucidating
the differences between the T- and E-models. Ultimately, the question of
complete preheating and subsequent thermalization will have to be decided
using lattice simulations, such as the ones presented in Ref. [160] for the
T-model and in Ref. [325] for the related family of ξ-attractors. In the case
of the generalized two-field T-model, our semi-analytical results were shown
to agree with the full lattice computation for a broad range of parameters,
while at the same time elucidating the underlying physics and demonstrat-
ing the scaling properties of the Floquet charts [158, 160]. In the present
work, we show that single-field simulations are unable to capture the most
important time-scales, which are controlled by the tachyonic growth of the
spectator field in both the E- and T-models of α-attractors. Section 5.4
suggests that this effect will carry over to other models with negatively
curved field-space manifolds

Fig. 5.16 shows the growth of ϕ and χ fluctuations for the T- and E-
models with n=1. This can be thought of as the physically “generic” case,
since it describes massive particles in the small field limit. We see that the
behavior of the two models is qualitatively different. In the case of the E-
model the ϕ resonance is stronger, leading to possibly complete preheating
already at α = 10−3, where the χ resonance is vastly subdominant. The
two become comparable at α ≲ 10−3, where preheating can complete within
less than an e-fold.

In the case of the T-model, the χ resonance is always stronger than the ϕ
resonance for n = 1. We see that the T-model does not completely preheat
for α = 10−3. In the case of efficient parametric resonance in the ϕ field (for
α ≲ 10−4), lattice simulations have shown the fragmentation of the inflaton
condensate and the subsequent formation of localized structures (oscillons)
[323]. It is interesting to consider whether tachyonic resonance into the χ
field can deplete the inflaton condensate before it has time to fragment.



5.4 Mass-scales and Preheating 171

-1.0 -0.5 0.0 0.5 1.0 1.5

10-23
10-21
10-19
10-17
10-15
10-13
10-11

e-folding number N

ρ
ϕ
,ρ

χ
(M

P
l
4
)

-1.0 -0.5 0.0 0.5 1.0

10-23
10-21
10-19
10-17
10-15
10-13
10-11

e-folding number N
ρ
ϕ
,ρ

χ
(M

P
l
4
)

-0.4 -0.2 0.0 0.2 0.4
10-24
10-22
10-20
10-18
10-16
10-14
10-12

e-folding number N

ρ
ϕ
,ρ

χ
(
M
P
l
4
)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
10-24
10-22
10-20
10-18
10-16
10-14
10-12

e-folding number N

ρ
ϕ
,ρ

χ
(
M
P
l
4
)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0
10-24
10-22
10-20
10-18
10-16
10-14
10-12

e-folding number N

ρ
ϕ
,ρ

χ
(
M
P
l
4
)

-0.1 0.0 0.1 0.2 0.3 0.4
10-24
10-22
10-20
10-18
10-16
10-14
10-12

e-folding number N

ρ
ϕ
,ρ

χ
(
M
P
l
4
)

Figure 5.16: Energy density in ϕ and χ fluctuations (green-dashed and blue) and the back-
ground energy density of the inflaton (black) as a function of e-folds for the E-model (upper
panels) and the T-model (lower panels) with n = 1 and α = 10−3, 10−4, 10−5 (left to right).
We see efficient preheating for the E-model for α = 10−3, which is absent for the T-model.
Furthermore, the E-model for n = 1 and α > 10−5 preheats predominately through inflaton
self-resonance, while in the case of the T-model tachyonic amplification of the spectator field
is always stronger than inflaton self-resonance.

Even in the case of a fragmented inflaton, one must consider the two pos-
sibilities: either resonance of the ϕ field to χ modes can proceed within
the oscillons leading to the decay of the localized structures or composite
oscillons consisting of both fields can form (see e.g. [328, 333]). Parametric
resonance of scalar fields in localized structures, such as oscillons [334], Q-
balls [335] or axion clumps [336], is similar to the homogenous field case with
one important qualitative difference. If the Floquet exponent (computed
by neglecting the spatial structure of the clump) is smaller than the time-
scale on which the produced particles escape the clump, Bose enhancement
is destroyed and the parametric resonance effectively shuts off [336]. In our
case the maximum Floquet exponent is µk ∼ µ, where µ = O(10−6)MPl.
The size of the oscillons formed in single-field models with α-attractor-like
potentials is L = O(µ−1). The comparison between the homogeneous field
Floquet exponent and the escape time µesc ≈ 1/(2L) shows that it is in-
deed possible for efficient production of χ particles to proceed within the
oscillon, but a detailed calculation is needed to reach a definite conclusion,
since non-trivial O(1) factors are involved in the calculation.

Fig. 5.17 shows the spectrum of produced ϕ and χ modes during the
initial stages of preheating, before backreaction effects become important.
We see that for n = 1 and α = 10−4 the parametric resonance of the ϕ
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modes is stronger than that of the χ ones. This can be expected based on
the results of Fig. 5.8, where we see that the two effective masses oscillate
around m2 = 4µ2/3, while the oscillation amplitude for the ϕ effective
mass is larger, leading to a stronger resonance (see e.g. Ref. [118]). The
similarity of the two effective masses for ϕ and χ fluctuations is a direct
consequence of the E-model potential, which arises from a supergravity
construction, where one specifies the potential of a complex scalar field,
whose components are related to ϕ and χ, as shown in Appendix 5A. An
interesting feature arises when we compare the χ spectrum for n = 3/2 and
n = 2. For n = 2 the maximum excited wavenumber is set by the initial
amplification and is found to be kmax ≃ 1.2µ. For n = 3/2 the value of
kmax grows with time. This can be traced back to the behavior we saw in
Fig. 5.10, where the adiabaticity violation for n = 3/2 was shown to grow
with time, contrary to n = 2. This behavior is explained by using the results
of Fig. 5.9, where it was demonstrated that the height of the effective mass
spike –which controls the large k resonance– red-shifts slower than a−2 for
n = 3/2, hence it becomes progressively more important compared to the
wavenumber term k2/a2.

Finally, Fig. 5.18 provides a visual summary of the preheating efficiency
for different models and parameter values. For the case of massive particles,
n = 1, the T-model exhibits efficient preheating through the χ field for
α ≲ 10−4. On the other hand, parametric resonance in the E-model is more
efficient, starting at α ≈ 10−3, albeit through self-resonance of the ϕ field,
since tachyonic production of χ modes is shut off due to the large positive
mass term (see Fig. 5.8). For steeper potentials n ⩾ 3/2, self-resonance of
the ϕ field becomes progressively more inefficient, while tachyonic resonance
of χ modes becomes efficient already at α ≈ 10−3 and is able to completely
preheat the universe within 1.5 e-folds after the end of inflation, much faster
than a naive single-field analysis would suggest.

Overall this means that α-attractors with n = 1 and α ≳ 10−3, equiv-
alently a tensor to scalar ratio r ≳ 10−6, can undergo a long matter-
dominated expansion after the end of inflation and the decay of the inflaton
condensate can proceed only through perturbative decays to other parti-
cles. Unfortunately, there is no concrete theoretical motivation for the size
of such couplings, hence the transition to radiative degrees of freedom can-
not be estimated. For potentials describing massless scalar fields, the decay
of the condensate to radiative degrees of freedom can occur very quickly
through tachyonic production of the spectator field χ, for both the E-model
explored here and the T-model explored in Refs. [158, 160].
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Figure 5.17: The spectra of the ϕ fluctuations |ϕk|2 and χ fluctuations |χk|2 (in arbitrary
units) in the E-model as a function of the wavenumber k (in units of µ) at different times
for {n, α} = {1, 10−4} (upper panels) and {n, α} = {3/2, 10−3}, {n, α} = {2, 10−3} (lover
panels, left and right respectively). The times corresponding to the various curves are shown
in the legend of each panel, measured in e-folds after the end of inflation (negative values
correspond to spectra during the last stages of inflation). We see that for n = 1 the ampli-
fication of the ϕ (inflaton) modes is much stronger than that of the χ (spectator) modes.
For n = 3/2 we see that at later times, the range of excited χ wavenumbers grows, while
for n = 2 it remains constant at kmax ≃ µ. This is in agreement with the behavior of the
effective mass shown in Fig. 5.9.
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Figure 5.18: Left: The time of reheating for n = 1 through ϕ (green) and χ (blue) fluctu-
ations for the T- and E-models (dashed and solid curves respectively) Right: The E-model
behavior for n = 1, 3/2, 6 (blue, red, orange) and resonance through ϕ or χ modes (dashed
and solid curves respectively). For 10−4 ≲ α ≲ 10−3 the E-model preheats predominately
through inflaton self-resonance, while the T-model does not completely preheat. For n ⩾ 3/2
the E-model preheats through amplification of the spectator field for α ≲ 0.01. For small
values of α ≲ 10−4 preheating is practically instantaneous (lasting less than one e-fold) for
any potential parameter n.
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5.4.4 Gravitational waves

It has been shown that efficient preheating leading to a turbulent fluid can
lead to the production of gravitational waves. This can occur e.g. through
coupling of the inflaton to gauge fields, as well as through inflaton decay
through self-resonance. The latter case is similar to the current analysis of
parametric resonance in α-attractors, where the spectator field is amplified.
Using the “rule of thumb” estimates of Ref. [177], the frequency of GW’s
today is related to the Hubble scale at the time of generation and the
dominant wavenumber of the source as

f ≃ 2.7 · 1010
kphys√
MPlH

Hz . (5.52)

In most models, the physical wavenumber is proportional to the Hubble
scale, thus reducing the Hubble scale reduces the frequency of the GW sig-
nal as f ∝

√
H. As has been extensively shown in the present work and

in Refs. [158, 160], preheating in α-attractors occurs at a typical wavenum-
ber k ∼ µ, while the Hubble scale scales as MPlH ∼

√
αµ. Using these

estimates, the peak GW frequency today becomes

f ∼ 107

α1/4
Hz , (5.53)

where we used the value of µ ≃ 6 × 10−6MPl required to produce the ob-
served amplitude of density fluctuations. Thus, contrary to the common
behavior of GW from preheating, reducing the Hubble scale through re-
ducing α (increasing the field-space curvature) will actually increase the
peak frequency of GW’s, pushing them further away from the observable
range of interferometers. It remains interesting to follow progress in detec-
tion strategies for Ultra High Frequency gravitational waves, as many early
universe sources operate in this regime.

5.5 Summary and Discussion

In the present work we revisited the multi-field behavior of the general-
ized E-model, which consists of two-fields on a hyperbolic manifold. More
highly curved manifolds lead to a lower Hubble scale and correspondingly
to a smaller tensor to scalar ratio. We focus on the region 10−7 ≲ r ≲ 10−4,
which is below the direct detection limits of the next generation CMB ex-
periments. The potential of the inflaton field ϕ is asymmetric with respect
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to the global minimum at the origin. It exhibits a flat plateau where infla-
tion is realized, leading to the usual Starobinsky-like predictions ns ∼ N−1

∗
and r ∼ N−2

∗ and a sharp potential“wall”, which the field probes after in-
flation and during preheating. By contrast, the potential of the spectator
field χ is symmetric with respect to the minimum at χ = 0. Several studies
in the literature have examined the equivalence of the single-field behav-
ior of the E- and T-models during inflation. Going beyond these studies
we were able to show that the similarities of the T- and E-model extend
beyond the single-field analysis. In fact, their multi-field behavior during
inflation is identical up to slow-roll corrections. Previous analyses of the
E- and T-models have established the existence of a single field attrac-
tor along the minimum of the spectator field [321]. In order to assess the
possibility of multi-field effects beyond the single-field attractor, we exam-
ined the basin of attraction by choosing a wide variety of initial conditions
along iso-potential surfaces. We showed that the global behavior of this
system consists of two straight inflationary trajectories, each keeping one
of the fields constant. While each of them can be made arbitrarily long
by appropriate choice of initial field values, only the final trajectory, the
single field attractor along χ = 0 gives results that are in agreement with
the CMB. It remains to be seen, if similar two-stage behavior appears in
other realizations of α-attractors and if some well-motivated models exist
where both stages can lead to predictions that are consistent with CMB
measurements. Furthermore, the two straight trajectories are joined by a
sharp turn and a brief period of oscillations around χ = 0. An assessment
of the observability of such a signal [337] at CMB or LSS scales is beyond
the scope of this work and is left for future analysis.

Reheating is crucial for connecting inflationary predictions to CMB ob-
servables. Especially in the case of inflationary models that follow the pre-
dictions of the Starobinsky model, ns = 1− 2/N∗, the latest Planck results
[53] are putting mild pressure on N∗ ≃ 50, instead preferring a value closer
to N∗ = 60. Such models include the Starobinsky model, Higgs inflation
and its generalizations of non-minimally coupled models [154–156] and of
course α-attractors. These results and the anticipated improvement from
next generation experiments, like LiteBird and CMB-S4, can significantly
constrain the existence of a prolonged matter dominated expansion after
inflation.

The preheating efficiency depends on the amplification of fluctuations of
the inflaton and spectator fields, which is governed by their corresponding
effective masses. The coupled metric perturbations component that con-
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tributes to the inflaton self-resonance is proportional to
√
α and becomes

subdominant for α ≪ 1. The term that encodes the space-time curvature
is even smaller, being proportional to α. The inflaton self-resonance is thus
solely determined by the second derivative of the potential, while the reso-
nance structure of the spectator field is determined by the interplay of the
potential contribution and the field-space effects, which do not scale with
α. Furthermore, the wavenumbers that are amplified due to parametric
resonance of either the inflaton or spectator fields do not depend on α and
scale as k ≲ O(1)µ, where µ ≃ 6×10−6MPl in order to produce the correct
amplitude of density perturbations. By contrast the Hubble scale depends
on α as H ∝ µ

√
α. Hence for small α the dominant preheating dynamics is

occurring at very sub-horizon (sub-Hubble) scales. This creates the appar-
ent paradox that reducing the inflationary scale will lead to the frequency
of GW’s from preheating to increase as f ∝ α−1/4 ∝ H−1/2 rather than
decrease, as in the usual case for low-scale inflation.

The preheating efficiency of the E-model is qualitatively different than
that of the T-model [158, 160]. The parametric resonance of ϕ fluctuations
is significantly more enhanced in the E-model, as compared to the T-model.
This can be traced back to the inherent asymmetry of the E-model poten-
tial, which introduced a spike in the effective mass of the fluctuations and
higher harmonic content in the background motion. For massive fields, the
tachyonic component of the spectator effective mass in the E-model is can-
celed by the contribution of the potential term, hence tachyonic amplifica-
tion is completely shut off. However the spike introduced by the potential
term leads to efficient parametric resonance. However, a similar spike is
present in the self-resonance of the inflaton field and is more pronounced
than the one in the spectator effective mass. This leads to the E-model
preheating predominately through self-resonance for massive fields (n = 1).
Furthermore, preheating in the E-model is efficient for higher values of α
than in the T-model (α ∼ 10−3), leading to the first distinguishing feature
between them.

For massless fields, or equivalently potentials that behave as V (ϕ, χ) ∝
{|ϕ|2n, |χ|2n} with n ⩾ 3/2 close to the minimum, the spectator field dom-
inates the preheating behavior of the E-model, leading to fast preheating
for α ≲ 0.01. For small wavenumbers (k ≲ µ), the χ modes grow tachyoni-
cally due to the effects of the negative field-space. For larger wavenumbers,
the amplification is controlled by the potential spike, leading to paramet-
ric resonance and multiple instability bands. For highly curved manifolds
α ≲ 10−4, preheating concludes within less than an e-fold for any potential
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choice. The preheating dynamics of both the E- and T-model reinforce the
need for notational clarity regarding α-attractors: a flat potential of the
form V ∝

∣∣1− e−ϕ/Λ
∣∣2n or V ∝ |tanh(ϕ/Λ)|2n that is usually associated

with α-attractors should not be regarded as their main characteristic. On
the contrary, the hyperbolic manifold, from which the potential flatness
originates, and their multi-field nature, should be taken into account to
properly address the dynamics of α-attractor models. In anticipation of
upcoming CMB and LSS data, that hope to further restrict the value of
ns and r, theoretical uncertainties must become small enough to allow for
an accurate comparison between theory and observation. Single-field sim-
ulations are unable to capture the most important preheating time-scales,
which are controlled by the tachyonic growth of the spectator field in both
the E- and T-models of α-attractors. We must thus consider the full two-
field dynamics in order to put α-attractor predictions to the test.

Using the T- and E-models as characteristic examples, we analyzed the
various mass-scales that control the tachyonic growth of fluctuations, mak-
ing a first step towards an Effective Field Theory description of preheating
in hyperbolic manifolds [332]. The necessary presence of a spectator field,
as required by the supergravity constructions of α-attractors, make it nec-
essary to extend the single-field preheating results found in the literature
[323] to examine the effects of efficient tachyonic preheating. Having pro-
vided a qualitative and quantitative understanding of the relevant time and
mass-scales, we leave such two-field lattice simulations for future work.

5.6 Appendix 5A: Generalization of the Emodel
For completeness, we describe here the N = 1 Supergravity embedding of
the two-field E-model [321] considered in the main text. Similarly as in
Chapter 4 we consider the super-potential

WH =
√
αµS F (Z) (5.54)

and Kähler potential

KH =
−3α

2
log
[

(1− ZZ̄)2

(1− Z2)(1− Z̄2)

]
+ SS̄ . (5.55)

Using the relation between the Kähler potential and the superpotential

Z =
T − 1

T + 1
(5.56)
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and choosing for the E-model

F (Z) =

(
2Z

Z + 1

)n

(5.57)

we get

KH =
−3α

2
log
[
(T + T̄ )2

4T T̄

]
+ SS̄ (5.58)

and
WH =

√
αµS

(
T − 1

T

)n

. (5.59)

as in Ref. [321]. The potential is of the form

V = αµ24n
[

(ZZ̄ − 1)2

(Z2 − 1)(Z̄2 − 1)

]−3α/2 [
ZZ̄

(1 + Z)(1 + Z̄)

]2
. (5.60)

With the same field-space basis as in Chapter 4, i.e. see (4.65) – (4.69),
one may find the corresponding two-field potential

V (ϕ, χ) = αµ2
(
1− 2e−βϕ

cosh (βχ)
+ e−2βϕ

)n

(cosh(βχ))2/β
2

, (5.61)

where again β =
√

2/3α. It is trivial to see that for χ = 0 we recover the
usual expression for the E-model

V (ϕ, χ) = αµ2
(
1− e−βϕ

)2n
. (5.62)

where the exponent is 2n instead of 2.
The expressions for the non-zero components of the field-space metric

together with Christoffel symbols, Riemann and Ricci tensors are the same
as in Chapter 4 and we do not duplicate them here.
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Summary

From a time of ancient gods, warlords and kings people were curious about
the origin of our Universe. Nowadays, with the theoretical and experi-
mental tools of modern cosmology the scientific community is breaking the
boundaries of the previously unsolved questions, pushing forward our un-
derstanding of the Universe. From the myths that our world is located on
the backs of four elephants, who are standing themselves on a turtle, hu-
manity has arrived at the era of precision cosmology that allows us to talk
about previously philosophical questions in scientific terms with further
confirmation or falsification by observational experiments.

Our current understanding is that about 13.77 billion years ago the Uni-
verse began from a dense and hot state, that expanded and continues to
expand today. The leading paradigm in the physics of the early universe is
called cosmological inflation. It describes the earliest stage of the Universe’s
expansion that happened about 10−36 seconds after the moment we call the
“Big Bang”. Quantum fluctuations produced during inflation serve as the
source for the density inhomogeneities that became stars, galaxies, clusters
of galaxies and, in turn, formed the large scale structure. To connect the
inflationary era with the Universe we observe nowadays, the energy that
drives inflation must be transferred to elementary particles and to radia-
tion. This process is called reheating. When particles settle into thermal
equilibrium, the formation of chemical elements starts, which is followed by
the rest of cosmic evolution.

This thesis is dedicated to the exploration of the primordial dark ages:
unknown physics during the inflationary and reheating eras that has not
been directly probed by observations. We focus on novel effects in inflation
and reheating in multi-dimensional field spaces, with the aim to provide
new connections to astrophysical observables and reduce theoretical un-
certainties, in order to properly test inflationary models and understand
the physics of the early universe. In particular, the unknown expansion



history of the universe during the reheating era connects the cosmic mi-
crowave background observations to inflationary physics. The cosmic mi-
crowave background is the oldest light in the universe that was emitted
about 380.000 years after the beginning of the universe’s evolution and
provides us a snapshot of the primordial universe. In addition to that,
both the inflationary and reheating eras generate various signatures to be
seen in upcoming experiments, for instance, via gravitational waves and
cosmic microwave background polarization.

The first part of the thesis studies inflation with multiple scalar fields
as well as covers the physics of gauge fields during the inflationary era.
Gauge fields are unavoidable components of any successful field theory.
They describe fundamental forces of nature and explain the dynamics of
elementary particles. On the other hand, the studies of multi-field infla-
tion are motivated by high energy completions of low energy field theories.
Since energies in the primordial universe are extremely high, it is natural
to assume that multiple fields may participate in inflationary dynamics.

In Chapter 2 we present a new class of inflationary models that is called
“shift-symmetric orbital inflation”. The field that drives inflation in this
case orbits along an angular direction with a constant arbitrary radius. In
this model the extra degree of freedom is responsible for the primordial
observables at the end of inflation. Nevertheless, it governs single-field-
like predictions that are favoured by observations. We explicitly prove the
neutral stability of the attractor solution.

Chapter 3 is dedicated to the study of the predictions for the amplitude
and tensor tilt of chiral gravitational waves produced by a non-Abelian
gauge field sector that is realised as a spectator for a standard scalar single-
field inflation. We find a maximum allowed value for the gravitational
wave enhancement with respect to the standard vacuum predictions, that
could be potentially distinguishable in future cosmic microwave background
polarization experiments.

The second part of the thesis explores reheating in multi-field models
of inflation with curved field-space geometries. A knowledge of the physics
of the reheating era is crucial since its efficiency and duration significantly
influences the cosmic microwave background predictions and may affect
primordial nucleosynthesis.

Chapter 4 studies preheating in one broad family of multi-field models of
inflation that is called α-attractors. We show analytically a simple scaling
behaviour that allows for an easy estimate of the reheating efficiency for
large values of the field-space curvature.



Chapter 5 investigates and compares the dynamics during inflation and
reheating for the multi-field α-attractor model with prototype potentials
that are symmetric and asymmetric around the minimum. We explicitly
show the significance of the asymmetry and its influence on the reheating
efficiency.

The aim of this thesis is to shed light on the primordial dark ages of
cosmology, push forward their frontier and motivate further development.
We live in an exciting time of precision measurements in modern cosmol-
ogy that may disclose previously unknown physics of the early universe.
However, a correct interpretation of the observations significantly relies on
theoretical understanding of the early universe physics. Below we outline
a few directions that require a deep investigation in the coming years.

• Gravitational wave experiments opened a new window for probing
the physics of the early Universe via the stochastic gravitational wave
background. It is important to deeply understand their production
mechanisms in order to correctly interpret the measurements of the
upcoming experiments.

• Features in the primordial power spectrum are exciting signatures
from both the inflationary and reheating eras that may be potentially
visible in the cosmic microwave background and large scale structure
spectra. This subject requires a thorough analytical understanding
and future research.

• An effective theory of reheating is essential for the correct under-
standing of the cosmic microwave background predictions. In turn,
predictions for inflationary models strongly depend on the physics of
the reheating era. Hence, the development of the effective field the-
ory of reheating for curved field-space manifolds is an important goal
for theoretical physics. Special attention would require incorporating
the non-linear effects and systematic analytical studies of stable long-
lived spatially localized structures such as oscillons, especially in the
general multi-field set-ups.

In order to keep the motivation for further exciting explorations it is
good to remember:

“The cosmos is within us. We are made of star-stuff.
We are a way for the universe to know itself.”

Carl Sagan





Samenvatting

Sinds de tijd van de oude goden, krijgsheren en koningen zijn mensen
nieuwsgierig over de oorsprong van onze heelal. Vandaag de dag, doorbreekt
de wetenschappelijke gemeenschap de grenzen van de voorheen onopgelos-
te vragen en bevordert ons begrip van het universum met behulp van de
theoretische en experimentele hulpmiddelen van de moderne kosmologie.
Uit de mythe, dat onze wereld op de ruggen van vier olifanten ligt, die
zelf op een schildpad staan, is de mensheid aangekomen in het tijdperk van
precisie- kosmologie die het mogelijk maakt om eerdere filosofische vragen in
wetenschappelijke termen te bespreken ter bevestiging of verwerping door
observaties en experimenten.

Ons huidige begrip is dat ongeveer 13.77 miljard jaar geleden het uni-
versum begon in een dichte en hete toestand, die uitdijde en vandaag de dag
nog steeds uitdijt. Het leidende paradigma in de fysica van het vroege heelal
wordt kosmologische inflatie genoemd. Het beschrijft het vroegste stadium
van de uitdijing van het heelal, ongeveer 10−36 seconden na het moment
dat we de “Oerknal” noemen. Kwantum fluctuaties die tijdens inflatie wor-
den geproduceerd, dienen als de bron voor de dichtheidsinhomogeniteiten
die sterren, sterrenstelsels, en clusters van sterrenstelsels werden en op hun
beurt de grootschalige structuur vormen. Om het inflatie tijdperk te ver-
binden met het heelal dat we tegenwoordig waarnemen, moet de energie
die de inflatie aandrijft, worden omgevormd naar elementaire deeltjes en
naar straling. Dit proces wordt heropwarmen genoemd. Wanneer deeltjes
in thermisch evenwicht komen, begint de vorming van chemische elementen,
gevolgd door de rest van de kosmische evolutie.

Dit proefschrift is gewijd aan de verkenning van de primordiale donke-
re tijd: onbekende fysica tijdens de inflatie- en heropwarmingsperioden die
niet direct door waarnemingen zijn onderzocht. We richten ons op nieuwe
effecten in inflatie en voorverwarming in multidimensionale veldruimten,
met het doel om nieuwe verbanden te leggen met astrofysische waarnemin-



gen en de theoretische onzekerheden te verminderen, om inflatie modellen
goed te kunnen testen en de fysica van het vroege heelal te begrijpen. In het
bijzonder verbindt de onbekende uitdij-geschiedenis van het heelal tijdens
het heropwarmtijdperk de waarnemingen van de kosmische achtergrond-
waarnemingen met de inflatiefysica. De kosmische microgolf achtergrond is
het oudste licht in het heelal, dat werd uitgezonden ongeveer 380.000 jaar
na het begin van de evolutie van het heelal en biedt ons een momentopna-
me van het oer-universum. Bovendien genereren zowel het inflatie- als het
heropwarmingstijdperk diverse afdrukken die in toekomstige experimenten
te zien zullen zijn, bijvoorbeeld via zwaartekrachtgolven en polarisatie van
de kosmische microgolf-achtergrond straling.

Het eerste deel van het proefschrift bestudeert inflatie met meervoudige
scalaire velden en behandelt de fysica van ijkvelden tijdens het inflatie-
tijdperk. Ijkvelden zijn onvermijdelijke componenten van elke successvolle
veldentheorie. Zij beschrijven fundamentele natuurkrachten en verklaren de
dynamica van elementaire deeltjes. Anderzijds zijn de studies van de multi-
veldinflatie gemotiveerd door hoge energie vervollediging van lage energie
veld theorieën. Aangezien de energieën in het oer-universum extreem hoog
zijn, is het natuurlijk om aan te nemen dat meerdere velden kunnen deel-
nemen aan de inflatiedynamica.

In Hoofdstuk 2 presenteren we een nieuwe klasse van inflatiemodellen
die we “shift-symmetric orbital inflation” noemen. Het veld dat de inflatie
aandrijft, draait in dit geval langs een cirkel met een constante willekeurige
straal. In dit model is de extra vrijheidsgraad verantwoordelijk voor de
primordiale waarnemingen aan het eind van de inflatie. Niettemin geeft het
enkel-veldachtige voorspellingen die door waarnemingen worden gesteund.
We bewijzen expliciet de neutrale stabiliteit van de attractoroplossing.

Hoofdstuk 3 is gewijd aan voorspellingen voor de amplitude en kante-
ling van het spectrum van chirale gravitatiegolven geproduceerd door een
niet-Abelse ijkveldsector die wordt gerealiseerd als een spectator voor een
standaard scalaire één-velds inflatie. We vinden een maximaal toegestane
waarde voor de verhoging van de gravitatie golf ten opzichte van de stan-
daard vacuüm voorspellingen, die potentieel onderscheidbaar zou kunnen
zijn in toekomstige kosmische microgolf polarisatie-experimenten.

Het tweede deel van het proefschrift onderzoekt de heropwarming in
multi-veld modellen van inflatie met gekromde veld-ruimte geometrieën.
Kennis van de fysica van het heropwarmingstijdperk is cruciaal, omdat de
efficiëntie en duur ervan de voorspellingen van de kosmische microgolfach-
tergrond aanzienlijk beïnvloedt en de primordiale nucleosynthese kunnen



beïnvloeden.
Hoofdstuk 4 bestudeert heropwarming in een brede familie van multi-

veldmodellen van inflatie, α-attractoren genoemd. We tonen analytisch een
eenvoudig schalingsgedrag dat een eenvoudige schatting mogelijk maakt van
de heropwarmingsefficiëntie voor grote waarden van de veld-ruimte krom-
ming.

Hoofdstuk 5 onderzoekt en vergelijkt de dynamica tijdens inflatie en
heropwarming voor het multiveld α-attractormodel met prototype poten-
tialen die symmetrisch en asymmetrisch zijn rond het minimum. We tonen
expliciet de betekenis van de asymmetrie en de invloed ervan op het her-
opwarmingsrendement.

Het doel van dit proefschrift is om licht te werpen op de primordïa-
le donkere tijden van de kosmologie, hun grenzen te verleggen en verdere
ontwikkeling te motiveren. We leven in een opwindende tijd van precisieme-
tingen in de moderne kosmologie die tot nu toe onbekende fysica van het
vroege heelal aan het licht kunnen brengen. Een juiste interpretatie van
de waarnemingen is echter sterk afhankelijk van theoretisch begrip van de
fysica van het vroege heelal. Hieronder schetsen wij enkele richtingen die in
de komende jaren diepgaand onderzoek vereisen.

• Zwaartekrachtsgolfexperimenten openden een nieuw venster voor het
onderzoeken van de fysica van het vroege heelal via de stochastische
zwaartekrachtgolf achtergrond. Het is belangrijk om hun productie
mechanismen goed te begrijpen om de metingen van de komende ex-
perimenten correct te interpreteren.

• Kenmerken in het primordïale vermogensspectrum zijn opwindende
kenmerken van zowel het inflatie- als het opwarmende tijdperk die
mogelijk zichtbaar zijn in de kosmische microgolfachtergrond en in het
grootschalige structuur spectrum. Dit onderwerp vereist een grondig
analytisch inzicht en toekomstig onderzoerk.

• Een effectieve theorie van opwarmen is essentieel voor het juiste be-
grip van de voorspellingen van de kosmische achtergrondstraling. Op
hun beurt zijn voorspellingen voor inflatiemodellen sterk afhankelijk
van de fysica van het opwarmtijdperk. Daarom is de ontwikkeling
van de effectieve veldtheorie van heropwarming voor gekromde veld-
ruimtes een belangrijk doel voor de theoretische fysica. Speciale aan-
dacht zou moeten gaan naar het incorporeren van de niet-lineaire
effecten en systematische analytische studies van stabiele langlevende



ruimtelijk gelokaliseerde structuren zoals oscillons, vooral in situaties
met meerdere velden.

Om de motivatie voor verdere spannende verkenningen vast te houden,
is het goed om de volgende afspraak te onthouden:

“De cosmos is in ons. We zijn gemaakt van sterrenstof.
We zijn een manier voor het universum om zichzelf te leren kennen.”

Carl Sagan
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