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Abstract. The binarization step for old documents is still a challenging
task even though many hand-engineered and deep learning algorithms
have been offered. In this research work, we address foreground and back-
ground segmentation using a convolutional autoencoder network with
3 supporting components. The assessment of several hyper-parameters
including the window size, the number of convolution layers, the ker-
nel size, the number of filters as well as the number of encoder-decoder
layers on the network is conducted. In addition, the skip connections
approach is considered in the decoding procedure. Moreover, we evalu-
ated the summation and concatenation function before the up-sampling
process to reuse the previous low-level feature maps and to enrich the
decoded representation. Based on several experiments, we determined
that kernel size, the number of filters, and the number of encoder-decoder
blocks have a little impact in term of binarization performance. While
the window size and multiple convolutional layers are more impactful
than other hyper-parameters. However, they require more storage and
may increase computation costs. Moreover, a careful embedding of batch
normalization and dropout layers also provides a contribution to handle
overfitting in the deep learning model. Overall, the multiple convolu-
tional autoencoder network with skip connection successfully enhances
the binarization accuracy on old Sundanese palm leaf manuscripts com-
pared to preceding state of the art methods.

Keywords: Binarization · Autoencoder · Palm leaf manuscript · Deep
learning

1 Introduction

In document image analysis (DIA), the binarization task is responsible for deter-
mining which pixels belong to the character and which to the background. As a
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result, binarization plays a key role on the performance of the OCR. Nonethe-
less, there are numerous difficulties in binarizing old document images, including
fading text, age color change, crack, and bleed-through noises [1]. Furthermore,
the binarization problems are exacerbated by a variety of tools and acquisition
methods. Owing to inadequate lighting and camera blitz, the image quality may
suffer from blur, low contrast, and uneven illumination [2].

Many works to solve these problems have been proposed in the literature.
Initially, several researchers advocated hand-engineered solutions that relied on
image characteristics. The global thresholding procedure is one of the most basic
binarization methods. The Otsu algorithm [3] is the most widely used threshold-
ing technique and is commonly used as a benchmarking tool. When dealing with
degraded images, a single threshold seldom produces acceptable binarization
results. Since 1986, researchers have been pursuing local adaptive thresholding,
for example, Niblack’s [4] and Bernsen’s [5]. It has an advantage in finding the
adaptable threshold per patch or window. Some authors utilize histograms and
statistics to gain a better threshold by calculating the minimum, maximum,
mean, and standard deviation of intensity for each window. Another advantage
of these handcrafted methods is that they are less expensive to compute because
they only use the image characteristics and do not need a labelled image to be
trained. They also successfully yield a good binarized image over uniform and
low contrast problems. Nonetheless, local adaptive thresholding algorithms are
not enough to tackle images suffering from uneven illumination. For example,
the F-measure of hand-engineered binarization approaches on old Sundanese
manuscripts, only reached a score of 46.79 [6].

Another challenge of traditional adaptive thresholding is that there are sev-
eral parameters to be adjusted to achieve better performance. As a result, it is
regarded as a disadvantage. Several methods for automatically adjusting those
parameters have been proposed and evaluated. Howe improved his previous algo-
rithm by incorporating automatic parameter tuning with pairwise Canny-based
approach [7]. Later, Mesquita optimized Howe’s method using a racing algo-
rithm [8]. Kaur et al. improved Sauvola’s thresholding [9] by applying stroke
width transform (SWT) to automatically calculate window size.

The advent of deep learning algorithms allowing machine work with or with-
out any supervision has opened a new gate to address more complex problems
and tune automatically parameter. In 2015, Pastor et al. first introduced the
CNN implementation on binarization task by classifying every pixel into back-
ground and foreground based on a sliding window [10]. In the meantime, a trans-
formation of CNN into a Fully Convolutional Networks (FCN) topology was
announced for the semantic segmentation task where every pixel is determined
as one of K classes [11,12]. Later, Tensmeyer et al. defined binarization likewise
a semantic segmentation with K = 2 and gained a better performance compared
to CNN [13]. Recently, a combination of an hourglass-shaped deep neural net-
work (DNN) and convolution network was proposed to handle binarization chal-
lenges. It is named as Convolutional Auto Encoder (CAE) network that has the
main advantage to convolve image-to-image as well as to learn compressed and
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distributed encoding (representation) from a training set. Furthermore, in
[14,15], a composite of residual block and CAE outperformed several prior
DNN especially on LRDE DBD [16], DIBCO [17], and palm leaf manuscript [18]
datasets.

In this paper, we firstly aimed to assess the contribution of five parameters in
CAE and three supporting components including the window size, the number of
encoder-decoder layers, the number of convolution layers, the number of filters,
the kernel size, the skip connector, the dropout size, and the existence of the
batch normalization to achieve the better binarization performance. Second, we
aimed to assess the effectiveness of the CAE network to deal with binarization
challenges on old Sundanese palm leaf manuscripts. The main contribution of
this work is to propose a strategy to determine the best parameters to config-
ure CAE. We present a set of comprehensive experiments analyzing in details
the influence of both hyper-parameters of CAE and supporting components. So
that, the efficacy of each hyper-parameter can be exploited to build an appro-
priate CAE network for processing the images of our Old Sundanese palm leaf
manuscripts. As far we know, to the proposed CAE network in this paper is the
first architecture with several convolution layers for each encoder-decoder block
in a hour-glass model.

This paper is organized as follow. The second section describes the related
works in terms of CAE network, skip connection, dropout, and batch normal-
ization. Experiment procedures and evaluation metrics are detailed in the third
section. Then, the fourth section presents the results of the experiments. Finally,
the conclusions and future research topics are discussed in the last section.

2 Related Work

2.1 Convolutional Autoencoder Network

Autoencoder is a type of unsupervised neural network which can learn latent rep-
resentation from input data [19]. In this case, it does not need a labeled training
set. Autoencoder is also well-known as a dimensionality reduction algorithm,
feature detector, generative model, or unsupervised pretraining of deep learning
model. Several implementations of this neural network in computer vision area
are image denoising [20], augmentation data [20], anomaly detection [21,22],
image restoration [23] and invertible grayscale [24]. In another case, the execu-
tion of autoencoder in a two-level segmentation task or binarization task still
needs labeled image or ground truth binary image. In other words, the weights
of this deep neural network architecture are gained from supervised learning.

In general, an autoencoder is made up of three parts: an encoder part, an
internal hidden layer (the code part), and a decoder part. The encoder is respon-
sible for compressing the input and producing the code or latent representation,
whereas the decoder is responsible for rebuilding or unzipping the code part
provided by the hidden layer. Furthermore, autoencoders use fully-connected
feedforward neural networks for training, following the same procedure as back-
propagation.
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Several types of autoencoders have been proposed successively, including sim-
ple autoencoders, convolutional autoencoders (CAE), and variational autoen-
coders. The similarity of which is that the dimension of output and input are
always same. Nonetheless, the different types of autoencoders can be distin-
guished by the manner in which the latent representation (the code part) is
constructed with the input data, then used to reconstruct the output data. The
simple autoencoder employs a dense network, which means that each output is
linearly connected to each input. The convolution autoencoder can use convo-
lution operators to generate a low-level representation feature map, which can
then be used to analyze the images. So, the spatial information of the image
is preserved, which can be useful during the training step. Variational autoen-
coders propose a learning process based on a probability distribution function by
imposing additional constraints on the encoded representations using Bayesian
inference [25]. The purpose of a variational autoencoder is to serve as a generative
model with the ability to generate new data instances. Nonetheless, the principle
is much easier to understand than those of Generative Adversarial Networks.

In this study, we focus the use of the convolutional autoencoder on the bina-
rization task. We decompose the CAE for experimental purposes into convolution
blocks, deconvolution blocks, encoder blocks, and decoder blocks. As shown in
Fig. 1, the decoder block is generally mirrored to the encoder block. Each encoder
block employs a convolution block with a stride of 2, in order to compress the
input by dividing the dimension of the output by two. During the model train-
ing process, each decoder block uses transposed convolution with the same stride
as the encoder to up sample the input and learn how to fill in missing parts.
In addition, some researchers demonstrated the use of a pooling layer for down
sampling in the encoder and an up-sampling method in the decoder, as explained
by [22], allows to solve the problem of anomaly image detection. In the case of
image restoration using the Residual Encoder-Decoder Network (RED-Net), a
pooling layer is not recommended for down sampling because deconvolution in
the decoder does not work well [23]. However, the use of strided convolution and
pooling layers is still debatable. Because each brings its own set of benefits and
drawbacks. [26] proposes another study on strided convolution layer and pooling
layer.

Aside from stride, several parameters in the convolution and deconvolution
blocks must be configured: the number of filters, kernel size, padding type, and
activation function. RED-Net advised to configure layers with a kernel size of
3 × 3 and 64 filters [23]. Meanwhile, Selectional Auto-Encoder (SAE) recom-
mended that the convolution block and deconvolution be fixed with kernel sizes
of 5 × 5 and 64 filters [15]. In addition, both blocks have a rectified linear
activation ReLU and padding “same”.

In the context of the encoder-decoder block, we must consider the number of
encoder and decoder blocks, as well as the number of convolution/deconvolution
within them. In a typical CAE, one convolution is used for each encoder
and decoder block. Indeed, in convolution/deconvolution, these parameters are
closely related to the input size and stride size. For instance, if there are five
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encoder blocks and the size of the squared input is 256, the size of the encoded
representation after the fifth encoding with stride 2 in each convolution layer is
8× 8. If the same configuration is used, but the number of encoders increases to
eight, the size of the encoded representation in the final encoding is 1 × 1. The
information in the latent representation is now meaningless. Fixing the larger
patch size, on the other hand, will increase the computation cost. Furthermore,
the patch should be smaller in size than the image. As a result, we need to
manage them carefully.

Fig. 1. The standard architecture of convolutional autoencoder.

2.2 Skip Connections Method

The skip connection is used for two reasons [23]. First, the feature banks deliv-
ered by skip connections contain significantly more information, which will be
useful for obtaining an enriched representation in the next layer. Second, the
skip connection in the deeper network allows training easier.

Concatenation and summation methods are the two most common skip con-
nection variants. ResNet [27], for example, uses element-wise summation as a
standard skip-connection architecture. It enables the features to be refined as it
moves through the network’s various layers. The number of features is preserved
by using additional skip-connections in which the feature dimensions are the
same before and after the skip-connection. Residual Encoder Decoder Network
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(RED-Net) [23] and Selectional Auto Encoder (SAE) [15] are two other deep
learning architectures that use the summation method.

Concatenated skip connections, on the other hand, increase the dimension of
the representations. Nonetheless, it allows to reuse representations from previous
layers. Concatenation’s main advantage is that it provides more information,
which is useful in deep supervision and may result in better gradient propagation.
DenseNet [28] and Inception [29] are two samples of deep learning architecture
which utilize the concatenation approach.

2.3 Dropout Regularization

Aside from incurring higher computation costs, training in a deeper network
with large hyperparameters may result in an overfitting problem. Dropout is
a regularization technique that is commonly used to overcome this problem.
The main idea is to drop units at random during training to avoid excessive
coadaptation [30]. The probability of dropping a unit is a float value in range
0 and 1. The drop value of 0 indicates that all units are preserved. However,
the higher the dropout, the smaller the unit. Dropout can be placed in either
the input or hidden layers. Dropout close to 0 is ideal for the input layer, while
dropout between 0.2 and 0.5 is ideal for the hidden layer.

2.4 The Batch Normalization

To address the training speed issue, Ioffe and Szegedy developed a batch nor-
malization (BN) mechanism that reduced internal covariate shift. BN has sev-
eral advantages, including the use of higher learning rates, a low intention on
initialization, and, in some cases, a reduction in the dropout layer [31]. They
demonstrated some promising results with the corresponding to BN and Dropout
experiments into Inception model. Many current deep learning architectures,
including [32] and [33], use BN because of its ability to reduce training time
while avoiding overfitting. An empirical study of BN over several deep neural
networks was also presented in [34].

Other arguments with respect to BN and Dropout mechanisms are found
in the literature. Garbin et al. presented a comprehensive comparison study
between them on multilayer perceptron networks and convolutional neural net-
works (ConvNet) [35]. As practical guidelines for ConvNet, BN can improve
accuracy with a short training period and should be the first consideration when
optimizing a CNN. Dropout regularization, on the other hand, should be used
with caution because it can reduce accuracy.

3 Dataset and Methodology

3.1 Datasets

In our experimental study, we used old Sundanese palm leaf manuscripts written
by different scribers. The data set consists in 61 images split in a training set of 31
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images and a testing set of 30 images. This dataset is the one used for the ICFHR
2018 competition [36]. It allows to compare our results to the methods presented
in the competition. In addition, each image has its own ground truth image,
which was manually created using Pixlabeler software by a group of philologists
and students from the Sundanese Department at Universitas Padjadjaran in
Indonesia.

3.2 Experiment Procedures

We investigate the impact of five CAE architecture parameters and three other
components on binarization performance. We conduct the experiments on old
Sundanese palm leaf manuscripts. Note that these experiments do not use aug-
mented data. As a starting point, we followed the SAE configuration recommen-
dation [15]. Instead of processing the image as a whole, image data is trained
locally using a patch-wise approach. The weights of network are initialized based
on Xavier weight initialization to manage the variance of activations and back-
propagated gradients, resulting in faster convergence and higher accuracy. They
are then optimized using stochastic gradient descent, a batch size of 10, and
an adaptive learning rate of 0.001 [37]. The training step iteration is set to 200
epochs. However, if there is no decrease in training loss after 20 epochs, the early
stopping strategy is executed. Several configurations are available, including a
square window with a side size of 256, 64 filters and a kernel size of five for each
convolution layer, five encoder blocks and five decoder blocks, a skip connection
for each decoder block, BN, and a dropout of 0.

Fig. 2. The architecture of CAE network with its supporting components.

The first experiment scenario focus on CAE hyperparameters. We set five
window sizes, which is successively to 64, 128, 256, 320, and 384. Then, we take
the best two window sizes and change the number of filters to 16, 32, 64, 96,
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and 128 while keeping the kernel size at 3 × 3 and 7 × 7. Several modifications
to the number of encoder-decoder blocks is simulated based on the best two
previous experiments. Afterward, we evaluated the number of strided convolu-
tion/deconvolution inside encoder-decoder block. The rectified linear activation
function (ReLU) and padding “same” are applied in all convolution and decon-
volution in this scenario. The position of each CAE layer and its supporting
components is depicted in Fig. 2.

Secondly, a review of supporting components is carried out. We begin by vary-
ing the dropout value between 0.1 and 0.5 with and without BN. The existence of
skip-connections for both summation and concatenation is then evaluated using
the best two results of the previous configurations.

3.3 Evaluation Method

During the training process, F-measure (Fm) is used to evaluate the CAE
architecture, because this measure is a popular metric for imbalanced classi-
fication [38]. In the context of binarization, this means that the number of back-
ground pixels is much greater than the number of foreground pixels.

4 Result and Discussion

All experiments are written in Python programming language and supported
by packages such as Scikit-Learn, Numpy, Keras, and Tensorflow. In terms of
hardware, we use a GeForce 2x RTX 2070 (8 GB/GPU) Graphics Processing
Unit (GPU) and 48 GB RAM. All discussions are based on the binarized images
predicted by the best-weighted model on the testing dataset.

4.1 Discussion on Five Hyper Parameters Experiments

In the first experiment we assess the influence of window size of input image and
the numbers of filters in CAE model which apply three supporting components.
As shown in Fig. 3, we evaluated five different squared window sizes ranging
from 64 × 64 to 384 × 384 in four different numbers of filters (f16, f32, f64, and
f96). The box size of 384 had the lowest accuracy. Because, the boxes are too
wide or long in comparison to the original image which may also result in poor
performance. While boxes with sides of 64, 128, 256, and 320 produce comparable
results. It suggests that those four window sizes can be used to binarize images,
particularly for old Sundanese palm leaf manuscripts. However, we can see that
a window size of 320 provides the most stable performance, with F-measure
greater than 68 for all number of filters.

Furthermore, the highest measurement score on this experiment is obtained
for a window size of 320 and 96 filters, with a F-measure of 68.44. Another
important consideration is that using a larger window requires more storage and
has an impact on computation costs. Afterward, the kernel size is evaluated using
the previous best configuration. As shown in Fig. 4, three kernel sizes (3, 5, and 7)
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Fig. 3. The binarization performance of autoencoder network based on the number of
filters across window size.

Fig. 4. The binarization performance of autoencoder network based on the number of
filters across kernel.

are evaluated in eight CAE models by combining two window sizes (256 and
320) and four number of filters (16, 32, 64, and 96). The impact of kernel size
varies depending on the size of the window and the number of filters. The best
performance is reached with a window size of 320, 96 filters, and a kernel size of
5, which is the same as in the previous experiment.

The number of encoder-decoder blocks are evaluated in the following experi-
ment. We reevaluated the best model from the previous experiment and a base-
line configuration by varying the number of encoder and decoder blocks. As
shown in Fig. 5, the performance rate fluctuates as the encoder-decoder block is
added. Nonetheless, the strided convolution layer within the encoder and decoder
blocks must be considered. In a configuration with a squared window size of 320
and strided convolution of 2, for example, we cannot use more than 6 encoder
blocks (blue line). Because the dimension of the encoded representation from
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the last encoder and the dimension of the decoded representation from the first
decoder are not the same. This indicates that we must set this parameter with
care.

Fig. 5. The binarization performance of autoencoder network based on the number of
encoder and decoder blocks. (Color figure online)

Table 1 shows how the presence of multiple convolution layers in an autoen-
coder network affects computation cost and performance rate. With each addi-
tional layer, the computation requires more storage to handle larger trainable
and non-trainable parameters. We did not consider storage costs in this study,
instead focusing on the impact of multiple convolution layers in binarization
performance. We only evaluate multiple convolution layer (MCL) in CAE model
with window size of 256, 64 filters, and a kernel size of 5 which is the default
configuration proposed in [15]. The use of MCL may improve accuracy, but it
requires more computation time and storage. According to the results of this
experiment, 15 MCL in the encoder block and 15 MCL in the decoder block
performed better than other settings.

Table 1. The binarization performance of autoencoder network (W256 f64 k5) based
on the number of multiple convolution layers.

MCL in encoder MCL in decoder Trainable params Non-trainable params Fm

5 5 926,721 1,280 67.73

10 10 1,952,641 2,560 68.57

15 15 2,978,561 3,840 69.58

20 20 4,004,481 5,120 69.36

25 25 5,030,401 6,400 69.45
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4.2 Experiments on Batch Normalization, Dropout,
Skip-Connection in CAE Network

To assess the impact of the three supporting components, we set several static
hyper-parameters as follows: 5 encoder/decoder blocks, each with one convolu-
tion layer and a kernel size of 5. Figure 6 and Fig. 7 depict the types of accu-
racy performance measures performed by CAE networks with various supporting
components, covering a dropout rate range of 0 to 0.5 in the binarization task of
old Sundanese palm leaf manuscripts. We can see that the accuracy of the CAE
networks increases in general. The configuration with added skip connection and
no batch normalization provides the best performance overall if many filters are
occupied.

First, a discussion of dropout regularization is presented. Based on 4 CAE
models, we discovered that the existence of dropout layer relatively increases the
accuracy rate. Without dropout layer (dropout = 0.0), the F-measure reaches
most of the time the lowest level for a given CAE model. On contrary, the dropout
layer in range 0.2 and 0.5 generally may obtain the better accuracy. In order to
obtain a global optimum performance, dropout rate could be different for each
model. This conclusion corresponds to the suggestion made by the authors who
proposed the dropout concept [30]. It means that dropout rate needs to be set
carefully.

In terms of skip-connection, CAE models with no residual blocks cannot
outperform CAE models with either added or concatenated skip-connection.
The highest accuracy score for a CAE model with a residual block is based on
a window size of 320 × 320, 96 filters, a kernel size of 5, and a dropout rate of

Fig. 6. An accuracy performance comparison of different dropout rates, skip connection
functions and batch normalization on CAE network.



Binarization Strategy Using MCAE-Net for Old Sundanese Ms. Image 153

0.3. In many cases, such as the number filters of 96, the summation function
(blue and orange lines) outperforms the concatenation function (green line and
red line). We recommend using the residual block with the summation function.
Another important point is that transferring meaningful information from the
previous layer via the skip method may improve accuracy. Figure 6 depicts the
performance of a residual CAE network with an accuracy rate higher than 67.
In contrast, as shown in Fig. 7, a CAE model with a non-residual block can
accurately segment below this rate.

As shown in Fig. 7, the BN has a significant impact on the CAE network with
no skip-connection. On all dropout rates, BN within non-residual CAE (blue line)
consistently outperforms the configuration without BN (orange line). Addition-
ally, the model of residual CAE with BN and 50% dropout after each convolution
block performs slightly better than the model without BN, as depicted in Fig. 6.
In contrast, the residual CAE with a dropout rate of 0.4 or less in some config-
uration produces less performance than the model without BN. Meanwhile, the
model without residual block and batch normalization fails to segment foreground
and background because the F-measure is most of the time lower than 55%.

Figure 8 illustrates the qualitative results of several binarization methods
applied on testing dataset of old Sundanese palm leaf manuscripts. Several exper-
iments on supporting components in CAE architecture revealed that the highest
accuracy rate (F-measure) is 69.60 for a 320× 320 window size, 96 filters, 5× 5 ker-
nel, with added skip-connection, no batch normalization, and dropout rate of 0.3.
Another intriguing aspect is the possibility of improving accuracy by using multi-
ple convolutional layers. The accuracy improvement of CAE add BN w256 f64 k5

Fig. 7. A comparison of the dropout and batch normalization (BN) influence on CAE
network without skip-connection (SC). (Color figure online)
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model can be seen in the configuration of CAE add BN 30MCL w256 f64 k5.
Overall, the evaluation metric of the CAE model also validates the promising
results and outperforms the winner of ICFHR 2018 [36]. Moreover, from the image
visualization of a sample image, the binarized images produced by CAE models
are cleaner than prior state of the art approaches in term of separate foreground
from random distributed noise, as shown in Fig. 9.

Fig. 8. Evaluation metric on several binarized images.

Fig. 9. A sample of original palm leaf manuscript image, ground truth image (GT)
and the binarization results.

5 Conclusion

Several experiments on the CAE network’s hyper-parameters and three sup-
porting components were carried out for the binarization task on old Sundanese
palm leaf manuscripts. Tuning the parameters can improve the performance of
the binarization. Nevertheless, some parameters such as kernel size, number of
filters and the number of encoder-decoder blocks, don’t play a significant role
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on accuracy measurement. However, in this network, window size and the mul-
tiple convolution layer have a significant impact. Furthermore, skip-connection
of both summation and concatenation functions that supply the encoded repre-
sentation from the previous layer can increase accuracy. To handle overfitting in
deep network, dropout layer needs to be set up in range 0.2 and 0.5. Moreover,
the batch normalization also provides a big impact if there is no residual block in
CAE network. Therefore, to achieve good performance, we need to choose care-
fully the hyper-parameters and the supporting components. These experimental
results will help us for future works on document image analysis, specifically for
evaluating the CAE network with larger datasets of palm leaf manuscripts.
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