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Abstract. The task of subgroup discovery (SD) is to find interpretable
descriptions of subsets of a dataset that stand out with respect to a target
attribute. To address the problem of mining large numbers of redundant
subgroups, subgroup set discovery (SSD) has been proposed. State-of-
the-art SSD methods have their limitations though, as they typically
heavily rely on heuristics and/or user-chosen hyperparameters.

We propose a dispersion-aware problem formulation for subgroup set
discovery that is based on the minimum description length (MDL) prin-
ciple and subgroup lists. We argue that the best subgroup list is the
one that best summarizes the data given the overall distribution of the
target. We restrict our focus to a single numeric target variable and
show that our formalization coincides with an existing quality measure
when finding a single subgroup, but that—in addition—it allows to trade
off subgroup quality with the complexity of the subgroup. We next pro-
pose SSD++, a heuristic algorithm for which we empirically demonstrate
that it returns outstanding subgroup lists: non-redundant sets of com-
pact subgroups that stand out by having strongly deviating means and
small spread.

Keywords: Pattern mining · Subgroup discovery · The MDL principle

1 Introduction

Subgroup discovery [2,9] (SD) is the task of discovering subsets of the data that
stand out with respect to a given target. It has a wide range of applications in
many different domains [17]. For example, insurance companies could use it for
fraud detection, where a found subgroup ‘provider = HospitalX ∧ care = leg
in cast → average(claim) = $2829.50’ might indicate that a certain health care
provider claims much more for certain care than others.

Since its conception subgroup discovery has been developed for various types
of data and targets, e.g., nominal, numeric, and multi-label [11] targets. In this
paper we limit the scope to attribute-value data with a numeric target, i.e.,
each data point is a row with exactly one value for each attribute and a single,
numeric target label, as is also considered in the regular regression setting.
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Related Work. Subgroup discovery traditionally focused on mining the top-
k subgroups, based on their individual qualities. This approach has two major
drawbacks: 1) its focus on quality measures that only take into account the
centrality measure of the subgroup, such as the mean or median, and 2) the
pattern explosion, i.e., typically large amounts of redundant patterns are found.

In response to the centrality problem of numeric targets, dispersion-aware
measures—that allow for efficient mining of the top-k patterns—were proposed
[4], but these do not address the second drawback, i.e., the pattern explosion.

To address this drawback, methods for subgroup set discovery (SSD) have
emerged. While SD aims on ranking the quality of subgroups regardless of how
they cover the data together, SSD aims at finding good quality subgroups that
together describe different regions of the data with minimum overlap between
those. However, most of the SSD methods focus on binary target variables
[3,5,10]. For the setting with a numerical target variable, three approaches have
been proposed:

1) Sequential covering : CN2-SD [10], originally introduced for nominal targets,
can be directly applied to numeric targets. The idea is to iteratively find the
subgroup with the highest quality, removing the data covered by that subgroup,
and repeating this process until no further subgroups are found. This is virtually
the same as mining a list of subgroups and therefore closest to our approach.

2) Diverse Subgroup Set Discovery (DSSD) [12]: DSSD uses a diverse beam
search to find a non-redundant set of high-quality subgroups. It is based on
a two-step approach that first mines a large pool of subgroups based on their
individual qualities and then selects subgroups from that pool that maximize
quality while penalizing for overlap. DSSD relies on tunable hyperparameters
for the search and overlap penalization, which strongly influence the results.

3) Subjectively interesting Subgroup Discovery (SISD) [13]: This approach finds
the subjectively most interesting subgroup with regard to the prior knowledge of
the user, based on an information-theoretic framework. By successively updating
the prior knowledge based on the found subgroups, it iteratively mines a diverse
set of subgroups that are also dispersion-aware.

Apart from the limitations already mentioned, all three approaches lack a
global formalization of the optimal set of subgroups for a given dataset and
instead employ a sequential approach for which the stopping criteria, such as
the total number of patterns to be found, need to be manually defined.

Contributions.1 We introduce a principled approach for dispersion-aware sub-
group set discovery that builds on recent work [18,22] that uses the minimum
description length (MDL) principle [8,19] for pattern-based modelling. The MDL
principle states that the best model is the one that compresses the data and
model best and is ideally suited for model selection tasks where the goal is to
find succinct and descriptive models—such as is the case in subgroup discovery.

1 The extended version of this work is available on arXiv [16].
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Table 1. First 4 subgroups of a subgroup list obtained by SSD++ on the Hotel booking
dataset with target lead days—number of days in advance the bookings were done (this
case study is discussed in Sect. 6). Description contains information regarding client
bookings, n the number of instances covered, μ̂ and σ̂ are the mean and standard devi-
ation in days, and overlap is the percentage of the subgroup description that is covered
by subgroups that come before in the list, i.e., how independently can the subgroups
be interpreted. The last line represents the dataset overall probability distribution.
* The n of the dataset is the total number of instances in the dataset.

s description of client bookings n μ̂ σ̂ overlap

1 month = 9 & customer type = Transient-Party 22 533 34 −
& meal = Half Board & country = GBR & adults ≥ 2

2 month ∈ [7, 9] & market segment = Groups 29 336 ∼ 0 0%

& weekend nights = 1 & distribution channel = Direct

3 month = 9 & week nights =4 16 343 3 0%

& distribution channel = Corporate

4 week nights = 0 & deposit type = Refundable 20 9 ∼ 0 0%

& repeated guest = no & adults≥ 2

dataset overall distribution 18 550∗ 92 99 −

Our three main contributions are: 1) A formalization of subgroup set dis-
covery for numeric targets using the MDL principle. To this end we devise a
model class based on probabilistic rule lists. This probabilistic approach not
only enables MDL-based model selection, naturally identifying compact sub-
group lists, but also takes into account the dispersion (or spread) of the target
value. By mining an ordered list of subgroups rather than an unordered set,
we avoid the problem of a single instance being covered by multiple subgroups.
This comes at the cost of slightly reduced interpretability, as the subgroups
always need to be considered in order, but note that the still often-used sequen-
tial covering approach effectively identifies subgroup lists as well. 2) Derivations
that show how our formalization relates to both an existing subgroup quality
measure and Bayesian testing, and—based on these insights—a novel evaluation
measure for subgroup lists. 3) SSD++, a heuristic algorithm that finds a set of
non-redundant patterns according to our MDL-based problem formulation.

Example. To illustrate how our MDL-based problem formulation naturally
defines a succinct and non-redundant set of subgroups for a given dataset, with-
out the need to define the desired diversity or number of patterns in advance, we
show an example subgroup list as obtained by our approach on the Hotel booking
dataset (see Table 1 for the details and in depth explanation in Sect. 6). Our
method identifies a detailed list of booking descriptions from which we show here
the first four subgroups, each consisting of a short description that clearly repre-
sent different sub-populations of the data, i.e., different types of client bookings.
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2 Subgroup Discovery with Numeric Targets

Consider a dataset D = (X,Y ) = {(x1, y1), (x2, y2), ..., (xn, yn)}. Each example
(xi, yi) is composed of a numeric target value yi and an instance of values of the
explanatory variables xi = (xi1, xi2, ..., xik). Each instance value xij is associated
to variable vj and the total number of values in an instance is k = |V | values, one
for each variable vj in V , which represents the set of all explanatory variables
present in X. The domain of a variable vj , denoted Xj , can be one of three types:
numeric, binary, or nominal (with > 2values). Y is a vector of values yi of the
numeric target variable with domain Y = R.

Subgroups. A subgroup, denoted by s, consists of a description (also intent)
that defines a cover (also extent), i.e., a subset of dataset D.

Subgroup Description. A description a is a Boolean function over all explanatory
variables V . Formally, it is a function a : X1 × · · · X|V | �→ {false, true}. In our
case, a description a is a conjunction of conditions on V , each specifying a specific
value or interval on a variable. The domain of possible conditions depends on
the type of a variable: numeric variables support greater and less than {≥,≤};
binary and categorical support equal to {=}. The size of a pattern a, denoted
|a|, is the number of variables it contains. In Table 1, subgroup 1 has description
of size |a| = 5, where two of those conditions are {meal = Half Board} and
{adult ≥ 2}; on a categorical and a numerical variable, respectively.

Subgroup Cover. The cover is the bag of instances from D where the subgroup
description holds true. Formally, it is defined by Da = {(x, y) ∈ D | a � x},
where we use a � x to denote a(x) = true. Further, let |Da| denote the coverage
of the subgroup, i.e., the number of instances it covers.

Interpretation as Probabilistic Rule. As Da encompasses both the explanatory
variables and the target variable, the effect of a on the target variable can be
interpreted as a probabilistic rule a �→ f̂a(Y ) that associates the antecedent a to
its corresponding target values in Y through the empirical distribution of their
values f̂a(y). Note that in general f̂a(Y ) can be described by a statistical model
and corresponding statistics Θ̂, e.g., a normal distribution N with given mean
μ̂ and standard deviation σ̂.

Revisiting the subgroup list in Table 1, the description and corresponding
statistics for the third subgroup are a = {month = 9 & week nights = 4 &
distribution channel = Corporate} and Θ̂a = {μ̂ = 343; σ̂ = 3}, respectively,
and together represent the following rule:

if a � xthen lead time ∼ N (μ = 343;σ = 3)

where N (μ;σ) is the probability density function of a normal distribution.

Quality Measures. To assess the quality (or interestingness) of a subgroup
description a, a measure that scores subsets Da needs to be chosen. The measures
used vary depending on the target and task [2], but for a numeric target it usually
has two components: 1) representativeness of the subgroup in the data, based
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on coverage |Da|; and 2) a function of the difference between a statistic of the
empirical target distribution of the pattern, f̂a(Y ), and the overall empirical
target distribution of the dataset, f̂d(Y ). The latter corresponds to the statistics
estimated over the whole data, e.g., in Table 1 it is Θ̂d = {μ̂ = 92; σ̂ = 99} and
it is estimated over all 18 550 instances of the dataset.

The general form of a quality measure to be maximized is

q(a) = |Da|αg(f̂a(Y ), f̂d(Y )), α ∈ [0, 1], (1)

where α allows to control the trade-off between coverage and the difference of the
distributions, and g(f̂a(y), f̂d(y)) is a function that measures how different the
subgroup and dataset distributions are. The most adopted quality measure is the
Weighted Relative Accuracy (WRAcc) [2], with α = 1 and g(f̂a(Y ), f̂d(Y )) =
μ̂a − μ̂d (the difference between averages of subgroup and dataset).

Subgroup Set Discovery. Subgroup set discovery [12] is the task of finding a
set of high-quality, non-redundant subgroups that together describe all substan-
tial deviations in the target distribution. That is, given a quality function Q for
subgroup sets and the set of all possible subgroup sets S, the task is to find that
subgroup set S∗ = {s1, . . . , sk} given by S∗ = arg maxS∈SQ(S).

Ideally this measure should 1) be global, i.e., for a given dataset it should
be possible to compare subgroup set qualities regardless of subgroup set size or
coverage; 2) maximize the individual qualities of the subgroups; and 3) minimize
redundancy of the subgroup set, i.e., the subgroups covers should overlap as little
as possible while ensuring 2.

3 MDL-Based Subgroup Set Discovery

In this section we formalize the task of subgroup set discovery as a model selec-
tion problem using the Minimum Description Length (MDL) principle [8,19]. To
this end we first need to define an appropriate model class M; as we will explain
next, we use subgroup lists as our models. The model selection problem should
then be formalized using a two-part code [8], i.e.,

M∗ = arg min
M∈M

L(D,M) = arg min
M∈M

[
L(Y | X,M) + L(M)

]
, (2)

where L(Y | X,M) is the encoded length, in bits2, of target Y given explanatory
data X and model M , and L(M) is the encoded length, in bits, of the model.
Intuitively, the best model M∗ is that model that results in the best trade-off
between how well the model compresses the target data and the complexity of
that model—thus minimizing redundancy and automatically selecting the best
subgroup list size. This formulation is similar to those previously used for two-
view association discovery and multi-class classification [18,21]. We will first
describe the details of the model class and then the required length functions.

2 To obtain code lengths in bits, all logarithms in this paper are to the base 2.
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3.1 Model Class: Subgroup Lists

Although Eq. (2) provides a global criterion that enables the comparison of
subgroup sets of different sizes, subgroups are descriptions of local phenomena
and we require each individual subgroup to have high quality.

We can accomplish this by using subgroup lists as models; see Eq. (3). Specifi-
cally, as we are only interested in finding subgroups for which the target deviates
from the overall distribution, we assume y values to be distributed according to
f̂d by default (last line in Eq. (3)). For each region in the data for which the
target distribution deviates from that distribution and a description exists, a
subgroup specifying a different distribution f̂a is added to the list.

We model the empirical distributions f̂ by normal distributions, as those
capture the two properties of interest, i.e., centre and spread, while being
robust to cases where f violates the normality assumption [8]. We thus define
f̂μ̂,σ̂(y) = (2πσ̂)−1/2 exp (y−μ̂)2

2σ̂2 , where μ̂ and σ̂ are the estimated mean and
standard deviation, respectively. These statistics can be easily estimated using
the maximum likelihood estimator, so that a pattern a establishes a rule of the
form if a � xthenN (μ̂i, σ̂i). Combining subgroup distributions f̂a,μ̂a,σ̂a

with
estimated dataset distribution f̂d,μ̂d,σ̂d

, this leads to a subgroup list M given by

subgroup 1 : if a1 � xthen f̂a1,μ̂1,σ̂1(y)
...

subgroup k :else if ak � xthen f̂ak,μ̂k,σ̂k
(y)

dataset :else f̂d,μ̂d,σ̂d
(y)

(3)

This corresponds to a probabilistic rule list with k = |S| subgroups and a
last (default) rule which is fixed to the overall empirical distribution f̂d,μ̂,σ̂ [18].
Fixing the distribution of this last ‘rule’ is crucial and differentiates a subgroup
list from rule lists as used in classification and/or regression, as this enforces
the discovery of a set of subgroups that individually all have target distributions
that substantially deviate from the overall target distribution.

3.2 Model Encoding

The next step is to define the two length functions; we start with L(M). Following
the MDL principle [8], we need to ensure that 1) all models in the model class,
i.e., all subgroup lists for a given dataset, can be distinguished; and 2) larger
code lengths are assigned to more complex models. To accomplish the former we
encode all elements of a model that can change, while for the latter we resort
to two different codes: when a larger value represents a larger complexity we
use the universal code for integers [8], denoted3 LN, and when we have no prior
knowledge but need to encode an element from a set we choose the uniform code.

3LN(i) = log k0 + log∗ i, where log∗ i = log i + log log i + . . . and k0 ≈ 2.865064.
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Specifically, the encoded length of a model M over variables V is given by

L(M) = LN(|S|) +
∑

ai∈S

⎡

⎣LN(|ai|) + log
(|V |

|ai|
)

+
∑

v∈ai

L(v)

⎤

⎦ , (4)

where we first encode the number of subgroups |S| using the universal code
for integers, and then encode each subgroup description individually. For each
description, first the number |ai| of variables used is encoded, then the set of
variables using a uniform code over the set of all possible combinations of |ai|
from |V | variables, and finally the specific condition for a given variable. As we
allow variables of three types, the latter is further specified by

L(vbin) = log 2 ; L(vnom) = log |Xv| ; L(vnum) = log N(ncut), (5)

where the code for each variable type assigns code lengths proportional to the
number of possible partitions of the variable’s domain. Note that this seems
justified, as more partitions implies more potential spurious associations with
the target that we would like to avoid. For binary variables only two conditions
are possible, while for nominal variables this is given by the size of the domain.
For numeric variables it equals the number of possible combinations N(ncut), as
there can be conditions with one (e.g. x ≤ 2) or two operators (e.g. 1 ≤ x ≤ 2),
which is a function of the number of possible subsets generated by ncut cut
points. Note that we here assume that equal frequency binning is used, which
means that knowing X and ncut is sufficient to determine the cut points.

3.3 Data Encoding

The remaining length function is that of the target data given the explanatory
data and model, L(Y | X,M). For this we first observe that for any given
subgroup list of the form of Eq. (3), any individual instance (xi, yi) is ‘covered’
by only one subgroup. That is, the cover of a subgroup ai, denoted Di, depends
on the order of the list and is given by the instances where its description occurs
minus those instances covered by previous subgroups:

Di = {Xi, Yi} = {(x, y) ∈ D | ai � x ∧
⎛

⎝
∧

∀j<i

aj 
� x

⎞

⎠}. (6)

Next, let ni = |Di| be the number of instances covered by a subgroup (also
known as usage). For a given subgroup ai, we then estimate

μ̂i =
1
ni

∑

y∈Yi

y (7)

σ̂2
i =

1
ni

∑

y∈Yi

(y − μ̂i)2, (8)
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where σ̂2
i is the biased estimator such that the estimate times ni equals the

Residual Sum of Squares, i.e., niσ̂
2
i =

∑
y∈Yi

(y − μ̂i)2 = RSSa.
Given the above, we can separately encode the covers of the individual sub-

groups, but we first show how to encode the target values not covered by any
subgroup.

Encoding Target Values Not Covered by Any Subgroup. The target
values not covered by any subgroup, given by Yd = {(x, y) ∈ D | ∀ai∈Mai 
� x},
are covered by the default dataset ‘rule’ and distribution at the end of a subgroup
list. As f̂d,μ̂d,σ̂d

is known and constant for a given dataset, one can simply encode
the instances using this (normal) distribution, resulting in encoded length

L(Yd | μ̂d, σ̂d) =
nd

2
log 2π +

nd

2
log σ̂2

d +

⎡

⎣ 1
2σ̂2

d

∑

y∈Yd

(y − μ̂d)2

⎤

⎦ le, (9)

where le = log e. The first two terms are normalizing terms of a normal
distribution, while the last term represents the Residual Sum of Squares (RSS)
normalized by the variance of the data. Note that when Yd = Y , i.e., the whole
dataset target, RSS is equal to ndσd and the last term reduces to lend/2.

Encoding Target Values Covered by a Subgroup. In contrast to the previ-
ous case, here we do not know a priori the statistics defining the probability dis-
tribution corresponding to the subgroup, i.e., μ̂ and σ̂ are not given by the model
and thus both need to be encoded. For this we resort to the Bayesian encoding
of a normal distribution with mean μ and standard deviation σ unknown, which
was shown to be asymptotically optimal [8]. An optimal code length is sim-
ply given by the negative logarithm of a probability, and the optimal Bayesian
probability for Yi is given by

PBayes(Yi) =
∫ +∞

−∞

∫ +∞

0

(2πσ)−ni
2 exp −

∑
y∈Yi

(y − μ)2

2σ2
w(μ, σ) dμdσ, (10)

where w(μ, σ) is the prior on the parameters, which needs to be chosen.
The MDL principle requires the encoding to be as unbiased as possible for

any values of the parameters, which leads to the use of uninformative priors.
The most uninformative prior is Jeffrey’s prior, which is 1/σ2 and therefore
constant for any value of μ and σ, but unfortunately its integral is undefined,
i.e.,

∫ ∫
σ−2 dσ dμ = ∞. Thus, we need to 1) constrain the parameter space and

2) make the integral finite, which we will do next in consecutive steps.
One of the best ways to constrain the parameter space without biasing

it, is by multiplying Jeffrey’s prior by a normal prior on the effect size, i.e.,
ρ = μ/σ ∼ N (0, τ) [20]. We then still need to describe τ though; the most
uninformative choice would be to use an inverse-chi-squared distribution, which
would be equivalent to using a Cauchy prior on the effect size [20]. Unfortunately,
this would lead to an open integral, which would render the approach infeasible
for cases—like ours—where many probabilities need to be computed. The second
best option is to fix τ = 1, which gives a tractable formula that is equivalent to



Discovering Outstanding Subgroup Lists for Numeric Targets Using MDL 27

introducing a virtual point and converges4 to the Bayes Information Criterion
(BIC) for large n. This is the best we can do and we proceed with this option.

Now, given the prior defined by ρ = μ/σ ∼ N (0, 1), the remaining question is
how we can make the integral over the prior finite. The most common solution,
which we also employ, is to use k data points from Yi, denoted Y k

i , to create a
proper conditional prior w(μ, σ | Y k

i ). As there are only two unknown parame-
ters, we only need two points hence k = 2 [7,8]. Consequently, we first encode
Y 2

i with a non-optimal code that is readily available—here the encoding with
the dataset distribution of Eq. (9)—and then use the Bayesian rule to derive the
total encoded length of Yi as

L(Yi) = − log
PBayes(Yi)
PBayes(Y 2

i )
P (Y 2

i | μd, σd) = LBayes(Yi) + Lcost(Y 2
i ), (11)

where Lcost(Y 2
i ) = L(Y 2

i | μd, σd) − LBayes(Y 2
i ) is the extra cost incurred by

encoding two points non-optimally. After some re-writing5 we obtain the encoded
length of the y values covered by a subgroup Yi as

L(Yi) = LBayes(Yi) + Lcost(Y 2
i )

= 1 +
ni

2
log π − log Γ

(
ni

2

)
+

1
2

log(ni + 1) +
ni

2
log nσ̂2

a + Lcost(Y 2
i ),

(12)

where Γ is the Gamma function that extends the factorial to the real numbers
(Γ (n) = (n − 1)! for integer n) and μ̂i and σ̂i are the statistics of Equations (7)
and (8), respectively. Note that for Y 2

i any two unequal values (otherwise σ̂2 = 0
and LBayes(Y 2

i ) = ∞) can be chosen from Yi, thus we choose them such that
they minimize Lcost(Y 2

i ). Finally, the total encoded size of Y is given by

L(Y | X,M) =
∑

i∈M

L(Yi) + L(Yd | μd, σd). (13)

3.4 Properties and Quality Measure for Subgroup Lists

We next show6 that the proposed data encoding is an instance of the classical
definition of a quality measure as given by Eq. (1), and is tightly related to both
an existing quality measure and the Bayesian two-sample t-test.

First, we show that Eq. (12)—with mean and variance unknown—converges,
for large n, to Eq. (9)—with mean and variance known—plus an additional term.
Using the Stirling approximation of Γ (n + 1) ∼ √

2πn
(

n
e

)n leads to

L(Yi) ∼ ni

2
log 2π +

ni

2
log σ̂2

i +
ni

2
le + log

ni

e
, (14)

4 See proof in Appendix 2 of the extended version [16].
5 The full derivation of the Bayesian encoding and an in-depth explanation are given

in Appendix 1 of the extended version [16].
6 Derivations are given in Appendix 4 of the extended version [16].
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where log n
e is equal to the penalty term of BIC and similar to the usual MDL

complexity of a distribution [8].
Now, we can show that minimizing our MDL criterion is equivalent to maxi-

mizing a subgroup discovery quality function of the form Eq. (1). Focusing on the
case where S = {s1} contains only one subgroup with statistics Θ̂1 = {μ̂1, σ̂1},
we start with L(Y | X,M) (Eq. (2)), multiply it by minus one to make it a
maximization problem, and add a constant L(Y | μ̂d, σ̂d), i.e., the encoded size
of the whole target Y using the overall distribution dataset, to obtain

L(Y | Θ̂d) − L(Y | X, M) ∼ ni

[
log

σ̂d

σ̂i
+

σ̂2
i + (μ1 − μ2)

2

2σ2
d

le − le

2

]
− log(ni) − L(S)

= niDKL(Θ̂a; Θ̂d) − log(ni) − L(S),

(15)

where Θ̂a = {μ̂d, σ̂d} and niDKL(Θ̂a; Θ̂d) is the usage-weighted Kullback-Leibler
divergence between the normal distributions specified by the respective param-
eter vectors. This shows that finding the MDL-optimal subgroup is equivalent to
finding the subgroup that maximizes the weighted Kullback-Leibler (WKL) diver-
gence, an existing subgroup discovery quality measure [11] that was previously
used for nominal targets, plus a term that defines the complexity of the sub-
group. Moreover, note that Eq. (15) is equivalent to the Bayesian two-sample
t-test [6] plus the complexity of the model, which plays the role of penalizing
for multiple hypothesis testing. Finally, our measure is part of the family of
dispersion-corrected subgroup quality measures, as it takes into account both
the centrality and the spread of the target values [4].

Quality Measure for Subgroup Lists. Based on the previous, we naturally
extend the KL-based measure for individual subgroups to subgroup lists and
propose the Sum of Weighted Kullback-Leibler (SWKL) divergences:

SWKL(S) =
∑

a∈S

niDKL(Θ̂a; Θ̂d) =
∑

ai∈S

ni

[

log
σ̂d

σ̂i
+

σ̂2
i + (μ̂i − μ̂d)2

2σ̂2
d

le − le
2

]

(16)
An advantage of this measure is that it can not only be used for numeric

targets, but for any type of probabilistic model. Note that computing SWKL is
straightforward for subgroup lists as obtained by most methods, including ours,
but not for subgroup sets as instances can be covered by multiple subgroups.

4 The SSD++ Algorithm

As the problem of finding an MDL-optimal list of subgroups is unfeasible, we pro-
pose a heuristic approach (as is common in MDL-based pattern mining [18,22])
based on Separate-and-Conquer (SaC) to construct the list, and beam-search to
generate the subgroups to add at each iteration of SaC. The first reason for using
greedy search to add one subgroup at the time, is its transparency, as it adds at
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Algorithm 1: SSD++ algorithm
Data: Dataset D, number of cut points ncut, beam width wb, depth max. dmax

Result: Subgroup list S
1 M ← [Θd(Y )];
2 repeat
3 Cands ← BeamSearch(M, D, wb, ncut, dmax);
4 s ← arg max∀s′∈Cands : δL(D, M ⊕ s′);
5 M ← M ⊕ s ;

6 until δL(D, M ⊕ s′) ≤ 0, ∀s′ ∈ Cands;

each iteration the locally best subgroup found by the beam search. Beam-search,
on the other hand, was empirically shown, in the context of subgroup discovery for
numeric targets, to be very competitive in terms of quality when compared to a
complete search with an associated speedup improvement [14]. Also, its straight-
forward implementation allows to easily extend this framework to other types of
targets, not just numeric. To quantify the quality of annexing ⊕ a subgroup s at
the end (after all the other subgroups) of model M , we use the normalized gain
δL(M ⊕ s) = (L(D,M) − L(D,M ⊕ s))/ns, which was first introduced in the
classification setting and proved to outperform its non-normalized version in that
setting [18]. For a detailed empirical comparison of normalized gain and its non-
normalized version please refer to Appendix 6 [16].

Algorithm 1 presents SSD++, a greedy algorithm that iteratively adds sub-
groups to an empty subgroup list until no more compression can be gained, where
compression is measured in terms of normalized gain of adding a subgroup s.

The beam search algorithm starts by discretizing all variables depending on
their subsets, i.e. categorical and binary with the operator equal to (=) and
numeric by generating all subsets with ncut points. At each iteration the wb

subgroups that maximize the selected gain are chosen and will be expanded
with all discretized variables until the maximum depth dmax of the description
is achieved.

The SSD++ algorithm [15] takes as input the dataset D, and the beam search
parameters, namely the number of cut points ncut, the width of the beam wb, and
the maximum depth of search dmax. The algorithm starts by adding the dataset
empirical distribution to the model (Ln 1). Then, while there is a subgroup that
improves compression (Ln 6), it keeps iterating over three steps: 1) generating the
candidates using beam search (Ln 3); 2) finding the subgroup that maximizes the
normalized gain (Ln 4); and 3) adding that subgroup to the end of the model, i.e.,
after all the existing subgroups in the model (Ln 5). The beam search returns the
best subgroup according to the data not covered by any subgroup in the model M
and its parameters (wb, ncut, dmax).When there is no subgroup that improves com-
pression (non-positive gain) the while loop stops and the subgroup list is returned.
Note that beam search is used at each iteration, instead of only once at the begin-
ning, as it can converge to local optima, and would thus bias our search to the top-k
subgroups instead of the best at each iteration.
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5 Experiments

We evaluate SSD++7 by comparing it to 1) a classical top-k mining algorithm,
as a baseline of a non-diverse method, and 2) the sequential covering algorithm,
henceforth called top-k and seq-cover respectively, which are both available in
the implementation of the DSSD algorithm8.

DSSD and SISD will not be compared due to two interconnected issues: 1)
the lack of a global definition of the optimal set for a dataset; 2) the absence of
a definition for the interaction between subgroups that overlap. The first issue
has as a natural consequence that none of the methods have a clear stopping
criteria as the definition of when a set describes the data well is not available,
apart from the user-specified hyperparameter ‘number of subgroups’. Added to
this, both issues give rise to the question of how to measure the interaction of
subgroups in the region of their overlap from a model (global) perspective, i.e.,
they could behave as an additive or a multiplicative mixture of their probabilities
for example. These issues hamper the comparison with both methods as they do
not have a clear stopping criteria and a formulation of their overlap interaction,
of which the latter is necessary for our proposed measure SWKL. On the other
hand, a direct use of SWKL assuming a list formulation, i.e. ordering them and
removing the overlap, will always rate them lower, which was corroborated with
our initial experiments. Moreover, we do not compare with prediction algorithms
that generate rules for regression, such as RIPPER or CART, as the rules gener-
ated aim at making the best prediction possible, and not the highest difference
from the dataset distribution, as shown theoretically in Appendix 5 [16].

Data. We use a set of 16 benchmark datasets from the Keel9 repository com-
monly used for subgroup discovery. The complete description of the datasets is
given in Table 2; the datasets were chosen to be diverse, ranging from 297 to
22 784 instances and from 2 to 40 variables.

Hyperparameter Selection. SSD++: the algorithm admits as hyperparame-
ters: the width of the beam wb; number of cut points ncut; and maximum depth
of search dmax. By varying these parameters over the datasets the results can
be seen in Appendix 7 [16] and it was concluded that: 1) no descriptions of size
much greater than 5 are found; 2) after ncut = 5 (the default value for seq-cover)
the subgroups returned are virtually the same but with numerical values refined;
3) for most datasets the quality of the subgroup list stabilizes beyond wb = 100.
Thus, for the rest of our experiments the parameters are set accordingly.

Top-k: the software used here is the top-k subgroups implemented in DSSD,
which is equivalent to most top-k subgroup miners. As it is common with top-k
miners a depth-first search is used for small datasets |D| ≤ 2000 and a beam

7 For the implementation of SSD++ and to reproduce the experiments see Proença
[15].

8 http://www.patternsthatmatter.org/software.php#dssd/.
9 http://www.keel.es/.

http://www.patternsthatmatter.org/software.php#dssd/
http://www.keel.es/
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Table 2. Dataset properties: number of instances, and variables.

Dataset |D| categorical numerical Dataset |D| categorical numerical

cholesterol 297 7 5 wizmir 1 461 0 9

baseball 337 4 12 abalone 4 177 0 8

autoMPG8 392 0 6 puma32h 8 192 0 32

dee 365 0 6 ailerons 13 750 0 40

ele-1 495 0 2 elevators 16 599 0 18

forestFires 517 0 12 bikesharing 17 379 2 10

concrete 1 030 0 8 california 20 640 0 8

treasury 1 049 0 15 house 22 784 0 16

search for the rest. For the quality measure it uses the Weighted Kullback-
Leibler without dispersion, i.e., WKLμ(s) = ns/σ̂d(μ̂d − μ̂s)2 as described in
Appendix 3 [16], as the algorithm does not accept its dispersion-aware version
used in Eq. (16). Also, as it does not have a termination criteria, the k number
of subgroups returned is selected as the number of subgroups found by SSD++.

Seq-cover: to ensure fairness the same beam search hyperarameters as SSD++
are used, i.e., dmax = 5, wb = 100, ncut = 5. As quality measure it uses the
Weighted Kullback-Leibler without dispersion for the same reasons as top-k.

5.1 Subgroup List Quality

The results can be seen in Table 3, and Figs. 1 and 2. The algorithms are
compared in terms of Sum of Weighted Kullback-Leibler (SWKL) of Eq. (16)
for the quality of the list, number of subgroups |S|, average number of variables
per description |a|, standard deviation of the first subgroup σ̃top1, runtime and
average Jaccard index of the lists. Note that σ̃top1 shows the most important
characteristic first found by each miner. In the case of the averaged Jaccard
index it is computed based on the average of the Jaccard index between the
1-vs-1 covers (when considered independently) of the subgroups in the list, i.e.,
for the case of a list of 4 subgroups, 6 values are averaged.

From Table 3 we see that SSD++ obtains the best score in terms of our
proposed measure SWKL for 12 out of 16 datasets. As expected the top-k algo-
rithm obtains a lower score for all datasets except for one. This supports that
our proposed measure SWKL gives weight to subgroup sets that cover different
parts of the dataset. Also, in terms of the dispersion of the first subgroup its
value is lower for 80% of the cases. In terms of the number of rules and com-
pared with seq-cover, SSD++ tends to find fewer subgroups for smaller datasets
(|D| ≤ 10 000), and more for larger datasets. For the latter, the experiments
showed that on average each subgroup covers more than 100 instances per sub-
group. In terms of the number of variables per description, it tends to find more
compact descriptions than top-k and seq-cover.

In terms of runtime, as per Fig. 1, SSD++ has a similar performance to seq-
cover for small sample sizes (|D| ≤ 1000) and 10 times slower for larger sizes.



32 H. M. Proença et al.

Table 3. Performance results of {Summed Weighted Kullback-Leibler Divergence
(SWKL) divided by number of examples; standard deviation of the first subgroup
normalized by σd; number of subgroups; average number of conditions per subgroup
description} per dataset for each algorithm.

top-k seq-cover SSD++

datasets SWKL σ̃top1 |S| |a| SWKL σ̃top1 |S| |a| SWKL σ̃top1 |S| |a|
cholesterol 0.14 1.49 1 5 0.840.840.84 1.511.511.51 33 4 0.11 1.99 1 3

baseball 0.25 0.85 8 5 1.69 0.82 26 4 1.921.921.92 0.220.220.22 8 2

autoMPG8 0.48 0.54 10 5 1.36 0.54 22 3 1.651.651.65 0.180.180.18 10 2

dee 0.49 0.47 8 5 1.471.471.47 0.50 20 4 1.33 0.440.440.44 8 2

ele-1 0.29 1.061.061.06 9 3 1.14 1.061.061.06 22 3 1.251.251.25 1.33 9 2

forestFires 0.58 6.84 23 5 2.85 6.84 57 4 3.803.803.80 0.030.030.03 23 3

concrete 0.25 0.78 19 5 1.271.271.27 0.65 35 4 1.271.271.27 0.340.340.34 19 3

treasury 0.42 0.70 31 5 2.41 0.68 25 3 3.733.733.73 0.050.050.05 31 2

wizmir 0.77 0.31 22 5 2.17 0.31 26 4 2.732.732.73 0.160.160.16 22 2

abalone 0.23 0.59 25 5 0.48 0.59 118 3 0.710.710.71 0.450.450.45 25 3

puma32h 0.55 0.59 42 5 1.481.481.48 0.59 76 5 1.42 0.300.300.30 42 3

ailerons 0.24 1.23 19 2 1.04 1.23 101 4 1.581.581.58 1.101.101.10 197 4

elevators 0.25 1.441.441.44 141 4 0.84 1.441.441.44 157 4 1.301.301.30 1.441.441.44 160 4

bikesharing 0.27 1.09 127 5 1.24 1.09 91 4 1.681.681.68 0.070.070.07 127 4

california 0.19 0.90 163 4 0.70 0.90 135 5 1.151.151.15 0.840.840.84 163 4

house 0.19 1.591.591.59 280 5 0.91 1.591.591.59 145 4 2.082.082.08 2.18 280 5

Fig. 1. Runtime in seconds per algorithm
and dataset.

Fig. 2. Average overlap of subgroups in a
list per dataset and algorithm.

This can, in part, be explained, by the larger number of subgroups found for
these datasets—from 1.2 to 4 times more. Figure 2 shows that for small datasets
the overlap is larger than for seq-cover, while for larger datasets our formulation
tends to have similar level of overlap.
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6 Case Study: Hotel Bookings

To test the usefulness of our method we applied it to the problem of under-
standing the type of clients that make a hotel booking based on how much time
in advance (lead time in days) this was done. To this end we used the “Hotel
booking demand dataset” [1], and analysed the data referent to a resort hotel
in the year of 2016. The first four subgroups of a total of 260 obtained with
SSD++ can be seen in Fig. 1 (in Sect. 1) and its subgroups versus the dataset
in Fig. 3. Only the first 4 subgroups are shown here for clarity, and given that
greedy search is used, they are also the 4 most interesting subgroups.

The results show us a detailed picture of the dataset and at first glance, one
notices that most subgroups cover a small number of instances. Nevertheless,
this is normal as they represent highly defined subgroups, with a very different
mean and an almost zero standard deviation, compared with the dataset μ̂d = 92
and σ̂d = 99. As an example, subgroup 1 has an average lead time circa 6 times
higher than the dataset distribution, together with a standard deviation that is 3
times smaller. This subgroup seems to represent a group of people that travelled
together from Great Britain and all chose the same type of booking, while with
some slight days of difference in their bookings. Another interesting subgroup
is the 4th which shows that there is a group of around 20 similar bookings for
groups of 2 or more adults done with only 9 days before arrival when the deposit
type is refundable. If one would follow the whole subgroup list one would have
a complete summary of the bookings done.

Fig. 3. Kernel density estimation of the dataset distribution and mean value of the
first 4 found subgroups.

7 Conclusions

We introduced a dispersion-aware problem formulation for subgroup set dis-
covery based on subgroup lists, the MDL principle, and Bayesian statistics. We
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proved our formulation to be equivalent to an existing subgroup quality measure
for the case of finding the single best subgroup, and showed a relationship to
Bayesian testing. Based on these insights we proposed a new evaluation measure
for subgroup lists, the sum of Weighted Kullback-Leibler divergences (SWKL).

To find good subgroup lists we introduced SSD++, a greedy algorithm that
we empirically evaluated on 16 datasets and compared against state-of-the-art
algorithms. SSD++ was shown to outperform the other methods in terms of both
our proposed measure and subgroup set complexity as quantified by subgroup
and/or description sizes, and discovers subgroups with small standard deviation.

Acknowledgment. This work is part of the research programme Indo-Dutch Joint
Research Programme for ICT 2014 with project number 629.002.201, SAPPAO, which
is financed by the Netherlands Organisation for Scientific Research.
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