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Abstract

Learning of environmental features can influence both mating behaviour and the location where young are produced. This may

lead to speciation in three steps: (i) colonization of a new habitat, (ii) genetic divergence of the two groups by adaptation to the

habitats, and (iii) a decrease of genetic mixing between the lineages (similar to reinforcement). In a previous paper we showed that

steps (i) and (ii) occur readily for a wide range of fixed mating and habitat preferences. Here, we study whether this can ultimately

lead to speciation through selective changes in these preferences.

We show that this indeed occurs, and, furthermore, it is very general: for a large class of models there is selection toward

producing young more frequently in the natal habitat. Once habitat preference is strong, there is selection toward stronger

assortative mating. Even when steps (i) and (ii) initially fail, genetic divergence may succeed at a later evolutionary stage, after which

a decrease of genetic mixing completes speciation. Our results show that speciation by the learning of habitat features is an extremely

effective mechanism.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The potential impact of learning on evolutionary
processes has been noted only occasionally (e.g., ten
Cate and Bateson, 1988; Grant and Grant, 1997; Irwin
and Price, 1999; Owens et al., 1999; ten Cate and Vos,
1999; Slabbekoorn and Smith, 2002), and the amount of
theoretical studies investigating it is limited (e.g.,
Laland, 1994a,b; Aoki et al., 2001; Ellers and Slabbe-
koorn, 2003; Beltman et al., 2003, 2004). Studies of
speciation usually focus on the geographical mode of
speciation (see Mayr, 1942, 1963; Schilthuizen, 2001;
Turelli et al., 2001; Gavrilets, 2004; Coyne and Orr,
2004). Indeed, a multitude of models has been produced
e front matter r 2005 Elsevier Inc. All rights reserved.
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to investigate speciation in the presence of geneflow
(e.g., Maynard Smith, 1966; Pimm, 1979; Kawecki,
1997; Dieckmann and Doebeli, 1999; Higashi et al.,
1999; Kondrashov and Kondrashov, 1999; Gavrilets,
2000; van Doorn and Weissing, 2001; Gavrilets and
Waxman, 2002; Fry, 2003), ignoring the potential role of
learning.

Learning can influence speciation when the mating
behaviour of individuals depends on their experience,
which happens in many species. Sexual imprinting
(reviewed in ten Cate and Vos, 1999), the acquisition
of mate preferences through learning the characteristics
of parents or siblings early in life (Lorenz, 1937),
provides an example. Mating behaviour can also be
influenced by the learning of environmental (habitat)
features. For instance, specialist brood-parasitic Vidui-
dae learn the songs of their foster species. Males learn to
produce these songs (Payne et al., 1998), and females use
the songs they heard early in life (i) to find suitable
mates, and (ii) to locate host nests (Payne et al., 2000).

www.elsevier.com/locate/ytpbi
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In this example the habitats are the foster species, and
the learned habitat features their songs. The learning of
habitat features also occurs in other animal species such
as fish, insects and mammals. West-Eberhard (2003) and
Beltman et al. (2004) discuss several examples, but a
more extensive review is provided by Davis and Stamps
(2004), who refer to this phenomenon as ‘‘natal habitat
preference induction’’. They suggest that it has been
understudied, in part because scientists working with
different taxa have used different terms to describe it
(e.g., Hopkins’ host selection principle, or habitat
imprinting). Well-known examples are fish species that
imprint olfactorily at a young age on their local habitat,
and use this learned information as adults for homing
(e.g., salmon), or insects that prefer to feed on the food
plant they have experienced since their birth. The
learned host, habitat, or food features can influence
both mating behaviour (here referred to as mating
preference) and the location where young are produced
(here referred to as habitat preference).

As a consequence of habitat imprinting, females
normally produce their young in the same habitat as
they grew up in. They may, however, accidentally
produce their young in another habitat. The frequency
of such an event will depend on the strength of the
females’ preference for their natal habitat. The young
resulting from ‘‘accidents’’ will learn features of the new
habitat. Because of this, they will most likely mate with
other individuals exploiting the habitat, and adult
females will tend to produce their young in the new
habitat.

In a previous paper (Beltman et al., 2004) we argued
that, through such processes, the colonization of a new
habitat may eventually lead to speciation. We used a
gene-culture coevolutionary model to study this. It was
assumed that population density is regulated separately
in each of the two habitats, and that the viability of an
individual depends on its genotype as well as on the
habitat it exploits. Starting from a population that is
specialized on the exploitation of a particular habitat,
we studied under what circumstances colonization of a
new habitat is possible and whether genetic differences
between the subpopulations can arise. We showed that
under a wide range of conditions, genetic divergence
indeed occurs.

However, in that analysis, the strengths of both the
habitat and the mating preference were assumed to be
fixed traits. In reality, these traits will be under selective
pressure. Furthermore, as long as these preferences are
not absolute, there is no complete reproductive isola-
tion. Therefore, our previous results imply only that the
first steps toward speciation can occur when individuals
imprint on habitat features, but it cannot be concluded
that eventually this will indeed lead to divergence into
different species. To examine that, we need to study
evolutionary changes in habitat and mating preferences.
Selection for changes in habitat preferences is
equivalent to selection for migration modification as
studied by Karlin and McGregor (1972), Balkau and
Feldman (1973), and Karlin and McGregor (1974).
However, these authors only consider situations where
mating occurs within the habitats, which implies that
mating preferences are assumed to be absolute. As a
consequence, reproductive isolation is accomplished as
soon as the migration fraction is zero. We allow mating
frequencies to depend on a mating preference as well as
the availability of potential partners from different
habitats, and consider evolutionary changes in the
strength of this preference.

In the present paper we examine the direction of
selection on the two traits by means of the selection
differentials. Our main assumptions are that viability
selection takes place after density regulation, that
density regulation is such that the attractors are fixed
points, and that viability selection acts in different
directions in the subpopulations. First, we show that
under very general conditions there is selection toward
an increased habitat preference, regardless of the
amount in which different habitats are exploited
initially. Subsequently, we show that in a large class of
models there is selection toward increased assortative
mating as soon as habitat preferences are sufficiently
high. These findings together imply that speciation will
occur whenever a genetic polymorphism for viabilities in
different habitats evolves at high habitat preferences.
We examine the conditions under which this occurs for
the model discussed by Beltman et al. (2004). We find
that, even in cases where successful colonization and
genetic divergence does not occur initially, speciation
often takes place in the long run. Thus, speciation
assisted by the learning of habitat features is an
extremely effective mechanism.
2. Description of the model

As before, we consider two habitats, A and B. The
viability within a habitat is determined by one diploid
locus with two alleles. The three possible genotypes are
denoted by gAgA; gAgB; and gBgB: Individuals are
further characterized by a cultural trait that is deter-
mined by the habitat that they are born into, cA or cB:
We assume that there is female demographic dom-
inance, and dynamics of females and males are equal, so
that it suffices to follow only female dynamics. Genera-
tions are discrete and non-overlapping. It is assumed
that mating is polygynous, and female preferences
depend on male frequencies as well as cultural traits.
After or during production of young there is local
density regulation, and then viability selection takes
place. We here consider a wider class of gene-culture co-
evolution models than in Beltman et al. (2004) in that we
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allow more general forms of density dependence and
mate preference.

We denote the probability that a female that was born
in habitat x mates with a male from the same habitat by
rxðaÞ; where a is the strength of the mating preference.
These functions are assumed to be non-negative and
non-decreasing in a; approaching one as a tends to
infinity.

Females produce their young in the same habitat as
they were born in with probability 1 � p (we refer to
1 � p as the habitat preference). In each habitat there is
local density regulation, which is determined by a
function Qx that depends on the density in habitat x.
We restrict our attention to functions Qx of such a form
that the only population dynamical attractors are fixed
points.

The densities of reproductive adult individuals of the
six possible combinations of cultural trait and genotype
are denoted by Ni (i ¼ 1 . . . 6; see summary in Table 1).
Furthermore, we denote the total densities in each
habitat by

NA ¼ N1 þ N2 þ N3,

NB ¼ N4 þ N5 þ N6. (1)

Individuals are subject to viability selection, depending
on their genotype and the habitat they exploit. In
habitat A, individuals carrying more gA alleles have a
higher viability than other individuals, while in habitat
B this is the case for individuals carrying more gB alleles.
We denote the viability of the types by wi (w1 is the
viability of cAgAgA individuals, w2 that of cAgAgB

individuals, etc.). The parameters wi can range from 0
(no individuals of this type survive) to 1 (all individuals
of this type survive).

The model described above is a generalization of that
used by Beltman et al. (2004). There we used the
following specific forms of the functions rxðaÞ and Qx:

rAðaÞ ¼
aNA

aNA þ NB

; rBðaÞ ¼
aNB

aNB þ NA

, (2)

and

QA ¼
E

1 þ KEðð1 � pÞNA þ pNBÞ
,

Table 1

The different types of individuals

Type Density Cultural trait Genetic trait

1 N1 cA gAgA

2 N2 cA gAgB

3 N3 cA gBgB

4 N4 cB gAgA

5 N5 cB gAgB

6 N6 cB gBgB
QB ¼
E

1 þ KEðpNA þ ð1 � pÞNBÞ
, (3)

where E corresponds to female fertility, and K is a
positive parameter that determines the carrying capacity
(note that a lower K implies a higher carrying capacity).
Our present results are, however, valid for any functions
that meet the conditions specified previously.

We denote the frequency of allele gA among those
with cultural trait cA and cB by respectively g and f, i.e.

g ¼
N1 þ

1
2
N2

NA

; f ¼
N4 þ

1
2
N5

NB

. (4)

Furthermore, let bx be the probability that a female who
was born in habitat x produces offspring with paternal
allele gA; i.e.

bA ¼ rAðaÞg þ ð1 � rAðaÞÞf ,

bB ¼ rBðaÞf þ ð1 � rBðaÞÞg. (5)

In Appendix A it is shown that the dynamics of this
system are fully described by a set of recurrence
equations for the total densities in each habitat {NA;
NB}:

NA

NB

 !0

¼
ð1 � pÞQAwAA pQAwAB

pQBwBA ð1 � pÞQBwBB

 !
NA

NB

 !
,

(6)

and a pair of recurrence equations for the frequencies of
allele gA in each habitat fg; f g:

g0 ¼
QA

N 0
A

fð1 � pÞwAA;1NA þ pwAB;1NBg,

f 0
¼

QB

N 0
B

fpwBA;1NA þ ð1 � pÞwBB;1NBg, (7)

where

wAA ¼ ðw1bA þ w2ð1 � bAÞÞg

þ ðw2bA þ w3ð1 � bAÞÞð1 � gÞ,

wAA;1 ¼ ðw1bA þ 1
2
w2ð1 � bAÞÞg þ ð1

2
w2bAÞð1 � gÞ. (8)

The expressions for wAB and wAB;1 are found by
replacing bA by bB and g by f. The expressions for
wBA and wBA;1 are found by replacing w1; w2 and w3 by
respectively w4; w5 and w6: Finally, the expressions for
wBB and wBB;1 are found by replacing the wi ði ¼ 1; 2; 3Þ
as well as bA and g.
3. Results

We study the direction of selection on a and p for the
situation that

w14w24w3 and w64w54w4. (9)
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To do this we use the so-called adaptive dynamics
approach (Metz et al., 1996; Dieckmann and Law, 1996;
Geritz et al., 1998). This implies that we assume that the
population is large, and that there are no other factors
affecting mate choice besides the mating preference.
Furthermore, it is assumed that mutation steps are
small, so that mutants closely resemble the resident type,
and that mutations are very rare, so that ecological and
evolutionary time scales are separated. The last assump-
tion entails that in-between mutation events the
population dynamics reaches its attractor, which is in
our case an equilibrium. The course of evolution can
then be studied by considering which rare mutant types
can establish themselves in a population of residents,
which of these invasions will lead to replacement of the
resident population, and what will be the outcome of a
series of such substitution events.

We thus consider a population with resident trait
values of the parameters (denoted by pr and ar) at its
population dynamical equilibrium. Then we calculate
the initial growth rate of a rare mutant type with a
slightly different value of these traits. If this rate is larger
than the growth rate of the resident population (which
equals one since it is in equilibrium) the mutant type has
a non-zero probability to establish itself. In the
terminology of quantitative genetics we study the
selection differentials of a and p.

By applying the results of Geritz et al. (2002) to our
model, it can be shown that mutants that are able to
invade will replace the resident population, as long as
the process is not in the vicinity of so-called evolu-
tionary branching points. Such branching points may
occur if there is mutual invadability. This means that a
mutant, say of type 1, can invade a population
consisting of a resident type, here called 2 and that the
reverse is also possible: mutants of type 2 can invade a
resident population of type 1. It turns out, however, that
such situations do not occur here. Thus the selection
differentials will tell us the course of evolution.

We only consider situations where the total popula-
tion does not go extinct, i.e. the total density NA þ NB

remains positive. There are several possibilities: when at
equilibrium only allele gA or gB is present in the
population, we will speak of a (genetically) mono-
morphic population. When both alleles are present we
will call the population polymorphic.

We study the selection differentials of p and a
separately. While the evolutionary trajectory may be
affected by correlations between these traits, this does
not affect our main conclusions about the possibility of
speciation.

3.1. Selection on p

We consider the effect of small mutation steps in the
value of p. When mutants are rare, density-dependent
components are determined by the resident population.
Therefore, the initial growth rate of the mutant
population equals the dominant eigenvalue of the
matrix in Eq. (6), with p equal to the mutant value pm;
whereas Qx and the wxy depend on the resident value pr:
We only consider situations where pra0 or 1. This
eigenvalue equals

l ¼
b þ

ffiffiffiffi
D

p

2
, (10)

with

D ¼ b2
� 4c,

b ¼ ð1 � pmÞðQAwAA þ QBwBBÞ,

c ¼ QAQBðð1 � pmÞ
2wAAwBB � p2

mwBAwABÞ. ð11Þ

We will show that the derivative of l to pm; evaluated at
the value pm ¼ pr is negative, which means that there is
selection in favour of a stronger habitat preference
(toward smaller p). This can easily be shown to be
equivalent to

ffiffiffiffi
D

p qb

qpm

þ b
qb

qpm

� 2
qc

qpm

� �
pm¼pr

o0. (12)

Since the resident population is at its equilibrium, b þffiffiffiffi
D

p
must equal 2 when pm equals pr; so the inequality

becomes

qb

qpm

�
qc

qpm

� �
pm¼pr

o0. (13)

The derivative of b equals �b=ð1 � pmÞ: From b þ
ffiffiffiffi
D

p
¼

2 it further follows that b equals 1 þ c; so the left-hand
side of the inequality equals

�1

1 � pm

ð1 þ cÞ �
qc

qpm

� �
pm¼pr

. (14)

Substituting the expressions for c and its derivative
gives, after some rearranging,

QAQBfð1 � prÞ
2wAAwBB þ prð2 � prÞwBAwABgo1. (15)

From Eq. (6) we can derive that at the equilibrium of the
resident population

QA ¼
NA

ð1 � prÞwAANA þ prwABNB

,

QB ¼
NB

ð1 � prÞwBBNB þ prwBANA

. (16)

Substituting this and rearranging gives

wAA

wAB

N2
A þ

wBB

wBA

N2
B � 2NANB40. (17)
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Using the definitions of wxy and bx ðx; y ¼ A;BÞ we can
derive the following:

wAA � wAB

¼ ðg � f Þ
ðw1 � w2ÞðrAðaÞg þ rBðaÞf Þ

þðw2 � w3ÞðrAðaÞð1 � gÞ þ rBðaÞð1 � f ÞÞ

( )
,

wBB � wBA

¼ ðg � f Þ
ðw5 � w4ÞðrAðaÞg þ rBðaÞf Þ

þðw6 � w5ÞðrAðaÞð1 � gÞ þ rBðaÞð1 � f ÞÞ

( )
.

ð18Þ

In Appendix B it is proved that in polymorphic
populations g4f : When the viabilities satisfy the
inequalities in (9), the right-hand sides of both equations
(18) are non-negative. Hence, wAA4wAB and wBB4wBA:
This implies that in polymorphic resident populations
inequality (17) is satisfied for all NA and NB:

It remains to be examined whether inequality (17)
holds for monomorphic equilibria, where g ¼ f ¼ 0 or
1. From (18) we see that in those cases wAA ¼ wAB and
wBB ¼ wBA: Thus, (17) is satisfied when NAaNB: When
NA ¼ NB the left hand side of (17) is zero, and thus
there is no selection on p.

When the density regulation is the same in both
patches, however, NA ¼ NB implies that QA ¼ QB; and
from (16) it can be seen that in a non-trivial equilibrium
QA ¼ 1=wAA and QB ¼ 1=wBB: Hence, this can only
occur when w3 ¼ w6 and g ¼ f ¼ 0; or when w1 ¼ w4

and g ¼ f ¼ 1: It turns out that both these equilibria are
unstable. This is proven for the case g ¼ f ¼ 0 and w3 ¼

w6 in Appendix C. The proof for the other case is
completely analogous. Therefore, this situation cannot
occur.

When the forms of the functions QA and QB differ this
may no longer be true. It would have to be examined for
specific models whether monomorphic equilibria with
NA ¼ NB can be stable. If so, there is no selection on p

for such resident populations. However, note that this is
an exceptional situation. Therefore, in general, selection
will cause p to decrease in monomorphic as well as
polymorphic resident populations regardless of the
value of a:

3.2. Selection on a

We will now examine the direction of selection on a:
First note from (5) that whenever g ¼ f ; bA and bB do
not depend on a: Therefore, there is no selection on a in
monomorphic resident populations.

From the previous results it follows that whatever the
initial conditions, in the long run p will evolve to zero.
Therefore, for polymorphic populations we only need to
study the direction of selection on a for pr ¼ 0: In that
case the recurrence equations for the densities of a rare
mutant are given by

N 0
A ¼ QAwAANA; N 0

B ¼ QBwBBNB, (19)

where the wxx depend on the mating preference of the
mutant, am; and the values of Qx ðx ¼ A;BÞ depend on
the mating preference of the resident population, ar: The
growth rate of the mutant population equals the
maximum of QAwAA and QBwBB: First consider l ¼

QAwAA: In that case,

ql
qam

¼ QA

qbA

qam

ðw1 � w2Þg
�

þðw2 � w3Þð1 � gÞ
	
, ð20Þ

and from (5)

qbA

qam

¼
qrAðaÞ
qam

ðg � f Þ. (21)

Since rAðaÞ increases in a and w14w24w3; ql=qam is
larger than zero when g is larger than f. In a similar way
this can be proven for l ¼ QBwBB: As we know that
g4f for all ar in polymorphic populations (see
Appendix B), this means that there is selection in favour
of an increase in mating preference at pr ¼ 0 in
polymorphic populations.

3.3. Example

From the previous results we can conclude that in the
long run, regardless of the initial resident population,
habitat preference will become absolute (p ¼ 0) and if
the population is polymorphic at that point, mate
preference will increase, which will eventually lead to
complete reproductive isolation of the populations in
the two habitats. Thus, a necessary condition for
speciation is that both alleles can coexist at p ¼ 0 and
high values of a:

3.3.1. Stability of monomorphic equilibria

The possibility of speciation can be studied by looking
at the stability conditions of monomorphic equilibria at
p ¼ 0: As an example, we will consider the model that
was examined by Beltman et al. (2004), with Beverton-
Holt density dependence (see Eq. (3)) and mating
preference functions as in Eq. (2).

At p ¼ 0 the recurrence equations for NA and NB are
as given in (19), and for g and f we find from (7)

g0 ¼
wAA;1

wAA

; f 0
¼

wBB;1

wBB

. (22)

An equilibrium is stable when the Jacobian of the system
of recurrence equations for NA and NB as well as that of
the recurrence equations for g and f both have
eigenvalues that are smaller than one in absolute value.

There are four types of genetically monomorphic
equilibria: two where only one of the habitats is
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Fig. 1. Prediction of evolutionary trajectories for three qualitatively

different parameter settings. In the grey regions a polymorphic

equilibrium will be attained because monomorphic equilibria are

unstable. In the black region the monomorphic equilibrium with allele

gA present is stable, but a polymorphic equilibrium may be stable as

well. Trajectories are shown for the case that the location where young

are produced and mating are initially random (p ¼ 0:5 and a ¼ 1). In

(a), a polymorphic equilibrium is immediately attained. In a part of the

trajectory a monomorphic equilibrium is stable, but speciation occurs

because the polymorphic equilibrium is also stable. In (b) and (c),

evolution proceeds to lower p but there is no evolutionary change in a
as long as the resident population is in a monomorphic equilibrium. In

(b) the decrease of p causes a secondary switch toward the polymorphic

equilibrium, after which completion of speciation follows. In (c) the

equilibrium switch does not happen, and therefore mating with respect

to the cultural trait remains random. Parameters: K ¼ 0:001; w1 ¼ 1:0;
w6 ¼ 1:0; and in (a) E ¼ 2; w2 ¼ 0:8; w3 ¼ 0:2; w4 ¼ 0:2; w5 ¼ 0:8; in

(b) E ¼ 10; w2 ¼ 0:4; w3 ¼ 0:0; w4 ¼ 0:2; w5 ¼ 0:6; and in (c) E ¼ 10;
w2 ¼ 0:4; w3 ¼ 0:2; w4 ¼ 0:6; w5 ¼ 0:8:
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occupied, and two where both habitats are occupied. We
first consider the situation where only allele gA occurs
and only habitat A is occupied. In Appendix D.1 it is
shown that, when the viabilities satisfy (9), the
equilibrium is stable if

w141=E; w4o1=E; w5o2w4. (23)

From symmetry considerations it follows that the
equilibrium with only habitat B occupied and allele gB

present is stable if

w641=E; w3o1=E; w2o2w3. (24)

Note that these conditions do not depend on a:
Next we consider the situation where both habitats

are occupied (but the population is genetically mono-
morphic). In Appendix D.2 it is shown that, when p ¼ 0;
and the viabilities satisfy the conditions in (9), mono-
morphic equilibria where both habitats are occupied
become unstable when a is sufficiently large.

When initially mating with respect to the cultural trait
is random (a ¼ 1), a monomorphic equilibrium with
only allele gA and both habitats occupied is stable when
(Appendix D.2)

w141=E,

w441=E,

8w1w443ðw2w4 þ w1w5Þ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðw2

2w2
4 þ w2

1w2
5Þ � 16w1w2w4w5

q
. ð25Þ

From symmetry considerations it follows that a mono-
morphic equilibrium with only allele gB and both
habitats occupied is stable when

w641=E,

w341=E,

8w6w343ðw5w3 þ w6w2Þ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðw2

5w2
3 þ w2

6w2
2Þ � 16w6w5w3w2

q
. ð26Þ

When all monomorphic equilibria are unstable at p ¼

0; a polymorphic equilibrium will be attained (since
fixed points are the only possible types of attractors)
after which the mating preference will increase, which
leads to speciation. Whether speciation is guaranteed to
occur can thus be derived from conditions (23) to (26).
For instance, when w4o1=E and w3o1=E; sufficient
conditions for speciation are w542w4 and w242w3:

3.3.2. Conditions for speciation

The conditions for speciation to occur are in reality
less strict than those derived from (23) to (26). This is
because it is not necessary that all monomorphic
equilibria are unstable for a polymorphic equilibrium
to be stable. Even when both a monomorphic equili-
brium with allele gA present and one with allele gB

present are stable, there can in addition be a stable
polymorphic equilibrium. The evolutionary outcome
then depends on the initial situation.

Fig. 1 illustrates different qualitative outcomes from
numerical studies, starting at p ¼ 0:5 (no habitat
preference) and a ¼ 1 (random mating). If mono-
morphic equilibria are unstable at this point (as in Fig.
1a), a polymorphic equilibrium will be attained. Evolu-
tion will then proceed to lower p and higher a; even
when a stable monomorphic equilibrium exists (in the
black region in Fig. 1a both a monomorphic equilibrium
with allele gA present and a polymorphic equilibrium are
stable).

An alternative scenario is shown in Fig. 1b. Here, at
the initial point p ¼ 0:5 and a ¼ 1 a monomorphic
equilibrium with allele gA present is stable. When we
start in this equilibrium, evolution proceeds to lower p,
but there is no change in a: This leads to instability of
the monomorphic equilibria, after which a polymorphic
equilibrium is attained, and speciation subsequently
occurs.

Speciation does not occur when the system starts in a
monomorphic equilibrium, and this equilibrium remains
stable on the entire line a ¼ 1 (Fig. 1c). Numerical
analysis showed that this situation is relatively rare, and
occurs mainly when female fertility E is low or the
difference between w2 and w3 and between w4 and w5 is
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small. In such cases, evolution will not lead to speciation
because genetic diversification does not take place.
Instead, although all individuals produce their young
exclusively in one of the two habitats, mating with
respect to the cultural trait is random. Hence, a clear
separation in habitat exploitation of individuals takes
place, but not speciation.

3.3.3. Individual-based model

To check the validity of the predicted evolutionary
trajectories, we used an individual-based simulation
model based on similar assumptions as the recurrence
equations (a program written in C, available on
request). We consider the situation that the population
initially consists of females and males of type cAgAgA

with a ¼ 1 and p ¼ 0:5: Mating, young production,
density regulation and viability selection are implemen-
ted according to the previously described life history. As
in the previous model, population size is not fixed over
time but depends on density regulation and viability
selection. The traits p and a are inherited from both
parents, using additive genetics (note that males carry
but do not express these traits). Newborns can have
mutations in three characteristics: (i) the probability of
egg laying mistakes p, (ii) the strength of the mating
preference a; and (iii) the genetic trait that determines
viability (gAgA; gAgB; or gBgB). Mutations in the three
traits are independent and occur each with a constant
probability per generation m: For mutations in p or a;
the mutation step is drawn randomly from a normal
distribution with average 0 and standard deviation s: To
avoid biases in the step size of mutations in a certain
direction, we transform p and a to a linear scale that
varies from �1 to 1 before adding mutations (e.g., in
the case of a this means taking the logarithm of the a-
value of an individual). Subsequently, the mutation is
added and the resulting values are transformed back to
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Fig. 2. (a) Evolution of habitat and mating preference in the individual-base

young production (p ¼ 0:5). (b) The population constitution in the course of

and cannot attain the polymorphic equilibrium. Evolution then proceeds to

generations (denoted by the arrows in (a)), the polymorphic equilibrium is atta

and higher a: Parameters: E ¼ 10; w2 ¼ 0:6; w3 ¼ 0:2; w4 ¼ 0:2; w5 ¼ 0:6; m
their original scale. We apply the same procedure to
determine the trait of a young: first the trait values of the
two parents are transformed to the linear scale,
subsequently their average is taken, and the resulting
value is transformed back.

The mathematical analysis showed that, during the
evolution of p and a; the population can switch from a
boundary equilibrium that contains only one type of
allele, to an internal equilibrium that contains both
types of alleles (e.g., Fig. 1b). To allow for this in the
individual-based model, we include mutations in the
genetic trait that determines viability. This is incorpo-
rated as a homozygote (gAgA or gBgB) mutating into a
heterozygote (gAgB), or vice versa. This results in a
constant, low influx of new mutants in the viability gene,
allowing for the process of genetic divergence to occur at
different stages of evolution.

Using these simulations we studied the evolution of
the three traits over a large number of generations. We
did not examine the parameter space exhaustively.
Instead, we performed simulations for several parameter
settings for which the mathematical analysis predicted
qualitatively different results. As expected, the switching
between different equilibria is not as clear cut as in the
deterministic model, and over evolutionary time there is
quite some variation in the evolving traits. Nevertheless,
the predictions of the mathematical analysis were
confirmed by the individual-based analogue. A typical
simulation is shown in Fig. 2: In this example the
monomorphic equilibrium with allele gA present is
stable at the initial point (p ¼ 0:5 and a ¼ 1). There is
selection toward lower p (generation 0 to approximately
50,000), and this modifies the stability of the mono-
morphic equilibrium. As a result, a polymorphic
equilibrium is attained. Subsequently, a decrease in
genetic mixing leads to completion of the speciation
process (generation 50,000–1,000,000).
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4. Discussion

We investigated a mechanism that is often ignored in
the literature, speciation through the learning of habitat
features. When habitat imprinting causes both habitat-
dependent assortative mating and a tendency to produce
young in this habitat, this may lead to speciation in three
steps: (i) colonization of a new habitat, (ii) genetic
divergence of the two groups by adaptation to the
habitats, and (iii) a decrease of genetic mixing between
the lineages. We have previously focussed on the first
two steps of this speciation mechanism by analysing a
gene-culture coevolutionary model (Beltman et al.,
2004). Here we took a more general approach, and
investigated whether there is selection in favour of
decreased genetic mixing. We showed that for a large
class of models there is selection toward producing
young more frequently in the habitat that individuals
exploit themselves. In addition, once habitat preference
is strong and genetic divergence has occurred, there is
selection toward stronger habitat-dependent assortative
mating due to hybrid inferiority. Speciation is thus
guaranteed when genetic divergence occurs at strong
habitat preferences. Sufficient conditions for speciation
in a particular model can therefore be derived from the
stability of genetically monomorphic equilibria at strong
habitat preferences. We derived these conditions for the
example studied in Beltman et al. (2004). We also
demonstrated that the conditions for speciation are in
reality less strict because stability of monomorphic
equilibria does not imply that polymorphic equilibria
are unstable. When polymorphic as well as mono-
morphic equilibria are stable, the occurrence of specia-
tion depends on the initial situation. For instance,
genetic divergence may not occur initially, but evolu-
tionary changes in habitat preference may render a
monomorphic equilibrium unstable. In that case, genetic
diversification followed by speciation will occur secon-
darily (e.g., Fig. 1b). Finally, we investigated an
individual-based analogue of the model of Beltman
et al. (2004), and confirmed the occurrence of speciation
predicted by the mathematical analysis.

The models for migration modification, studied by
Karlin and McGregor (1972), Balkau and Feldman
(1973), and Karlin and McGregor (1974), are closely
related to ours. However, there it is assumed that mating
preference is absolute, i.e. that a is infinitely large.
Speciation is then complete when the migration fraction
is zero (or, in our terminology the habitat preference
equals one). Furthermore, they do not consider the
dynamics of the population densities but assume that
these have positive equilibrium values. They showed
that for several combinations of viability selection in the
two patches, including the ones we consider, there is
selection towards decreased migration. Our results
generalize theirs in two respects: First, we showed that
if the viabilities satisfy the inequalities in (9) selection
towards decreased migration occurs regardless of the
value of the mating preference; Second, we explicitly
considered a wide variety of models for local density
dependence and allowed for the possibility of local
extinction. Furthermore, we derived conditions for
completion of reproductive isolation through selection
towards increased mating preferences.

The decrease of genetic mixing due to hybrid
inferiority was originally hypothesized by Dobzhansky
(1940) and the process has been termed reinforcement
by Blair (1955). It was introduced in the context of
geographical speciation: an initial allopatric phase
during which genetic differences accumulate is followed
by a sympatric phase, during which reinforcement
results in reproductive character displacement. Accord-
ing to several theoretical studies, reinforcement of
prezygotic isolation is possible under certain conditions
(e.g., Liou and Price, 1994; Servedio and Kirkpatrick,
1997; Servedio, 2000; Kirkpatrick, 2001; Sadedin and
Littlejohn, 2003; Servedio and Sætre, 2003). Most
importantly, it was found that a high hybrid viability
and high recombination between alleles affecting mate
choice and those affecting hybrid viability oppose
reinforcement (Felsenstein, 1981; Trickett and Butlin,
1994; Servedio, 2000). The final step of the speciation
mechanism we study is similar to the reinforcement
process, although it operates in a different context.
Here, the decrease of genetic mixing appears to lack
the relatively stringent conditions under which rein-
forcement is expected to occur. Probably the crucial
factor causing this difference in results is the absence
of the opposing effect of recombination: Because
learning instead of a genetic mechanism determines
which of the habitats is preferred, recombination
cannot destroy the association between alleles that
determine viability and the learned preference. There-
fore, our results do not contradict the predictions of
previous models that recombination opposes reinforce-
ment (Felsenstein, 1981; Trickett and Butlin, 1994;
Servedio, 2000).

We assumed that the trait that determines viability is
based on only one locus. It is known that the number of
loci for an ecological trait can influence the probability
of sympatric speciation (e.g., Kondrashov, 1986). We
think that an increase in the number of viability loci in
our model may indeed make the step of genetic
diversification (studied in Beltman et al., 2004) more
difficult, because recombination between these multiple
loci may destroy associations between them. However,
once genetic diversification has been achieved, the
reinforcement step is likely to occur without problem
because recombination again forms no obstacle there
(see above). However, the presence of multiple viability
loci is an interesting extension of the model and remains
to be investigated.
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We assumed that female mate choice is not costly. It
would probably be most realistic to make the cost of
female choosiness dependent on the frequency of the
preferred males (as is for example the case in Gavrilets
and Boake, 1998; Beltman et al., 2003). We expect that
this assumption would not dramatically influence the
reinforcement step, because, once the population has
reached the polymorphic equilibrium, males of both
cultural traits are abundant (see for example Fig. 2b).
However, as we already discussed in Beltman et al.
(2004), the step of genetic diversification is likely to
become more difficult when mate choice is costly,
because at that time the preferred males may not yet
be present in high frequencies.

The learning of habitat features occurs in many
species. In the case of the brood-parasitic finches the
learning of foster species’ songs causes a ‘‘true’’ mating
and egg laying preference. In most other cases these will
be a by-product of feeding preference (e.g., in phyto-
phagous insects). Our assumption that the preference to
produce young in a particular habitat and the mating
preference are independent traits is then violated.
Instead, in such cases there is a single underlying trait
that causes the two effects. It is not likely that this would
prevent speciation, because as we showed selection on
the two effects usually operates in concert toward
speciation. Although we did not test this, we thus
expect that such a coupling would speed up rather than
hamper the speciation process.

We have studied speciation under the assumption that
the learning of habitat features is present from the start.
However, we assumed that the effect that such learning
has on mating behaviour and location where young are
produced can change in the course of evolution. Indeed,
we included a scenario where there is initially no effect
of learning on mating and location where young are
produced (this is the case at p ¼ 0:5 and a ¼ 1). The
evolutionary origin of the learning of habitat features,
however, is not yet completely understood. It may have
evolved for reasons unrelated to the speciation mechan-
ism we study or, alternatively, the evolution of learning
and subsequent speciation may be due to adaptation to
the environment. For example, brood-parasitic finches
use their foster species’ songs for mate choice and host
searching. Probably, their ancestors were generalist
brood parasites and may not have learned the foster
species’ songs (for a discussion on this topic see Beltman
et al., 2003). The learning and use of these songs may
have evolved in response to counteradaptations of the
hosts against brood parasitism. Learning their songs
helps to specialize on the parasitization of a particular
foster species. Among brood parasites there is no other
group than the Viduidae where the copying of foster
species’ song occurs (Davies (2000)). However, brown-
headed cowbirds are able to discriminate between songs
of different host species (Hauber et al. (2002)), although
they are generalist brood parasites. Possibly, the above-
described process may occur in this group as well,
leading to the specialization of cowbirds’ descendants on
particular hosts and maybe also to the copying of their
songs.

Previous models of speciation have usually ignored
the possible role of learning processes, but instead
focused on the geographical mode of speciation (see
references in Introduction). However, as we discussed
previously (Beltman et al., 2004) the learning of habitat
features provides an equally powerful, analogous
mechanism of generating assortative mating as geogra-
phical separation. The possible importance of the
learning of habitat features on speciation has been
hinted at by several researchers (e.g., Thorpe, 1945;
Maynard Smith, 1966; Rice, 1984; Kondrashov and
Mina, 1986; West-Eberhard, 2003), but has received
relatively little attention so far. The present study (in
combination with Beltman et al., 2004) demonstrates the
effectiveness of this speciation mechanism theoretically.
We think that a stronger experimental and theoretical
focus on the role of learning in speciation has much
potential for increasing our understanding of the
evolution of new species.
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Appendix A. Derivation of recurrence relations (6) and (7)

For notational convenience we define the following
matrices:

W A ¼

w1 0 0

0 w2 0

0 0 w3

0
B@

1
CA; W B ¼

w4 0 0

0 w5 0

0 0 w6

0
B@

1
CA
(A.1)

and

MA ¼

bA
1
2
bA 0

ð1 � bAÞ
1
2

bA

0 1
2
ð1 � bAÞ ð1 � bAÞ

0
B@

1
CA. (A.2)
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The matrix MB is the same as MA; but with bB

substituted for bA: If we denote the type densities by a
vector N ¼ ðN1; . . . ;N6Þ

T (as in Table 1), the population
dynamics are described by

N 0 ¼ MN, (A.3)

where M is a 6 � 6 matrix with the following structure:

M ¼
ð1 � pÞQAW AMA pQAW AMB

pQBW BMA ð1 � pÞQBW BMB

 !
. (A.4)

Note that the equations given in the Appendix of
Beltman et al. (2004) can be cast in this form too, with
the definitions of rxðaÞ and Qx as in Eqs. (2) and (3).

The dimension of the state space can be reduced by
considering the following state variables in stead of type
densities:

H1 ¼ N1 þ
1
2
N2; H2 ¼ N3 þ

1
2
N2,

H3 ¼ N4 þ
1
2
N5; H4 ¼ N6 þ

1
2
N5, ðA:5Þ

for example 2H1 is the density of allele gA in habitat A.
We will now show that

H 0 ¼ RH, (A.6)

where H is the vector ðH1; . . . ;H4Þ
T ; and

R ¼
ð1 � pÞQARAA pQARAB

pQBRBA ð1 � pÞQBRBB

 !
. (A.7)

Here,

RAA ¼
w1bA þ 1

2
w2ð1 � bAÞ

1
2

w2bA

1
2

w2ð1 � bAÞ
1
2

w2bA þ w3ð1 � bAÞ

 !
.

(A.8)

In RAB; bA is substituted by bA in this matrix. In RBA

and RBB; w1; w2 and w3 are replaced by respectively w4;
w5 and w6; and in RBB; moreover, bB is substituted for
bA:

Let HA be the vector ðH1;H2Þ
T ; HB ¼ ðH3;H4Þ

T ; and
FA ¼ ðN1;N2;N3Þ

T ;FB ¼ ðN4;N5;N6Þ
T then HA ¼

XFA; and HB ¼ XF B with

X ¼
1 1

2
0

0 1
2

1

 !
. (A.9)

From (A.4) it follows that

H 0
A ¼ ð1 � pÞQAXW AMAFA þ pQAXW AMBF B.

(A.10)

It is easily verified that

XW AMA ¼ RAAX and XW AMB ¼ RABX , (A.11)

which implies that

H 0
A ¼ ð1 � pÞQARAAHA þ pQARABHB. (A.12)
The relation

H 0
B ¼ pQBRBAHA þ ð1 � pÞQBRBBHB (A.13)

is derived analogously.
The relations in (6) can be derived by noting that

NA ¼ H1 þ H2 ¼ HT
A

1

1

� �
(A.14)

and similarly NB ¼ H3 þ H4: The recurrence equations
for g and f follow from g0 ¼ H 0

1=N 0
A and f 0

¼ H 0
3=N 0

B:
Appendix B. Proof that gXf with equality only when g ¼

0 or 1

From the recurrence equation for g in (7) and (16) it
follows that at equilibrium

ð1 � pÞNAfwAA;1 � gwAAg þ pNBfwAB;1 � gwABg ¼ 0.

(B.1)

Further,

wAA;1 � gwAA ¼ bA
1
2
w2 þ gð1 � gÞððw1 � w2Þ

�
�ðw2 � w3ÞÞ

	
þ ðw2 � w3Þgð1 � gÞ �

1

2
w2g,

wAB;1 � gwAB ¼ bB
1
2
w2 þ f ð1 � gÞðw1 � w2Þ

�
�gð1 � f Þðw2 � w3Þ

	
þ w2f ð1 � gÞ � w3gð1 � f Þ � 1

2
w2f .

ðB:2Þ

We will now show that if f4g both these expressions are
positive, which contradicts (B.1). First note that 1

2
w2 þ

gð1 � gÞððw1 � w2Þ � ðw2 � w3ÞÞ is positive. This is ob-
viously true when ðw1 � w2Þ4ðw2 � w3Þ: When ðw1 �

w2Þoðw2 � w3Þ this function has a global minimum at
g ¼ 1

2
; and obviously its value is larger than zero at this

point. If f4g then the multiplication factor for bB in the
second equation above is larger than this value, so that
value must then be positive too. From (5) it further
follows that in this case bA and bB are both larger than
g. Therefore,

wAA;1 � gwAA4g 1
2
w2 þ gð1 � gÞððw1 � w2Þ

�
� ðw2 � w3ÞÞ

	
þ ðw2 � w3Þgð1 � gÞ � 1

2
w2g

¼ gð1 � gÞfgðw1 � w2Þ þ ð1 � gÞ

�ðw2 � w3Þg40, ðB:3Þ
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and

wAB;1 � gwAB4g 1
2
w2 þ f ð1 � gÞðw1 � w2Þ

�
� gð1 � f Þðw2 � w3Þ

	
þ w2f ð1 � gÞ � w3gð1 � f Þ � 1

2
w2f

¼ f
gð1 � gÞðw1 � w2Þ þ g2ðw2 � w3Þ

þw2ð1 � gÞ þ w3g � 1
2
w2

8<
:

9=
;

� 1
2
w2g

¼ f fgð1 � gÞððw1 � w2Þ þ ðw2 � w3ÞÞ

þ 1
2
w2g �

1
2
w2g

4gfgð1 � gÞððw1 � w2Þ

þ ðw2 � w3ÞÞg40. ðB:4Þ

Thus, if f4g both expressions on the left-hand side of
(B.1) are positive, which cannot be true. Therefore f

must be smaller than or equal to g.
When g is equal to f, it can be seen from (5) that

bA ¼ bB ¼ g: And from (B.1) and (B.2) we find

gfgð1 � gÞððw1 � w2Þ � ðw2 � w3ÞÞg

þ ðw2 � w3Þgð1 � gÞ ¼ 0, ðB:5Þ

with solutions g ¼ 0 or 1. The other solution must
satisfy

gfððw1 � w2Þ � ðw2 � w3ÞÞg þ ðw2 � w3Þ ¼ 0, (B.6)

and so

g ¼
ðw2 � w3Þ

ðw2 � w3Þ � ðw1 � w2Þ
. (B.7)

However, there is no g between 0 and 1 that satisfies this
equation, which means that there are no polymorphic
equilibria with g equal to f.
Appendix C. Proof that when w3 ¼ w6 the equilibrium

with g ¼ f ¼ 0 ^ NA ¼ NB is unstable

A necessary condition for stability of this equilibrium
is that the absolute values of all eigenvalues of the
Jacobian of the recurrence equations for NA and NB in
(6) are smaller than one. The partial derivatives are

qQA

qNA

ðð1 � pÞwAANA þ pwABNBÞ

þð1 � pÞQAwAA

qQA

qNB

ðð1 � pÞwAANA þ pwABNBÞ

þpQAwAB

qQB

qNA

ðpwBANA þ ð1 � pÞwBBNBÞ

þpQBwBA

qQB

qNB

ðpwBANA þ ð1 � pÞwBBNBÞ

þð1 � pÞQBwBB

0
BBBBBBBB@

1
CCCCCCCCA

.

(C.1)

In the considered case

wAA ¼ wAB ¼ wBB ¼ wBA ¼ w, (C.2)
and when NA ¼ NB ¼ N the equilibrium conditions
lead to

QAwAA ¼ QBwBB ¼ 1. (C.3)

Furthermore, when density regulation is similar in the
two habitats we know that at the equilibrium where
NA ¼ NB; qQA=qNA ¼ qQB=qNB and qQA=qNB ¼

qQB=qNA: Denote these values by respectively g and Z:
The Jacobian then becomes

gwN þ ð1 � pÞ ZwN þ p

ZwN þ p gwN þ ð1 � pÞ

 !
. (C.4)

It is easily shown that the largest eigenvalue of this
matrix is larger than one, which implies that the
equilibrium is unstable.
Appendix D. Stability conditions for monomorphic

equilibria at p ¼ 0

From (3) it can be derived that when p ¼ 0:

qQA

qNB

¼
qQB

qNA

¼ 0;
qQx

qNx

¼ �KQ2
x ðx ¼ A;BÞ. (D.1)

Hence, the matrix of partial derivatives for the system
{NA;NB} equals (see (C.1))

�KQ2
AwAANA þ QAwAA 0

0 �KQ2
BwBBNB þ QBwBB

 !
.

(D.2)
D.1. One habitat occupied

We consider the equilibrium with g ¼ 1;NA40 and
NB ¼ 0: At this equilibrium we see from (2) that rAðaÞ ¼
1; rBðaÞ ¼ 0; from (5) that bA ¼ bB ¼ 1; and from (8)
that wAA;1 ¼ wAA ¼ w1 and wBB;1 ¼ wBB ¼ w4: Filling in
NB ¼ 0 in the second equation in (3) gives QB ¼ E:
From the equilibrium condition for NA it follows that
QA ¼ 1=w1: Substituting these values in (D.2) gives the
Jacobian for fNA;NBg:

�K 1
w1

NA þ 1 0

0 Ew4

 !
. (D.3)

From QA ¼ 1=w1 we can derive that the equilibrium
value of NA equals 1

K
ðw1 �

1
E
Þ; so the eigenvalues are

l1 ¼
1

Ew1
; l2 ¼ Ew4. (D.4)
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We now turn to the Jacobian for g and f. From (5) we
find

qbA

qg

� �
g¼1;f¼0

¼ rAðaÞ ¼ 1,

qbA

qf

� �
g¼1;f¼0

¼ 1 � rAðaÞ ¼ 0,

qbB

qg

� �
g¼1;f¼0

¼ 1 � rBðaÞ ¼ 1,

qbB

qf

� �
g¼1;f¼0

¼ rBðaÞ ¼ 0, ðD:5Þ

and from (8)

qwAA;1

qg

� �
g¼1;f¼0

¼ 2 w1 �
1

2
w2

� �
,

qwAA

qg

� �
g¼1;f¼0

¼ 2ðw1 � w2Þ,

qwAA;1

qf

� �
g¼1;f¼0

¼
qwAA

qf

� �
g¼1;f¼0

¼ 0,

qwBB;1

qg

� �
g¼1;f¼0

¼
1

2
w5,

qwBB

qg

� �
g¼1;f¼0

¼ w5,

qwBB;1

qf

� �
g¼1;f¼0

¼ w4 �
1

2
w5,

qwBB

qg

� �
g¼1;f¼0

¼ w4 � w5. ðD:6Þ

Substituting these values in the partial derivatives of g0

and f 0 gives the Jacobian:

w2

w1
0

�
1

2

w5

w4

1

2

w5

w4

0
BB@

1
CCA (D.7)

with eigenvalues

l3 ¼
w2

w1
; l4 ¼

1

2

w5

w4
. (D.8)

For an equilibrium to be stable, all eigenvalues should
be smaller than one. This is true for l3 because w2ow1:
The stability conditions that follow from the other
eigenvalues in (D.4) and (D.8) are summarized in (23) of
the main text.

D.2. Both habitats occupied

We consider the equilibrium at which g ¼ f ¼ 1: At
this equilibrium we have: bA ¼ bB ¼ 1; and wAA;1 ¼

wAA ¼ w1; wBB;1 ¼ wBB ¼ w4: From the equilibrium
condition for NA and NB it follows that QA ¼ 1=w1

and QB ¼ 1=w4: From QA ¼ 1=w1 we can derive that the
equilibrium value of NA equals 1
K
ðw1 �

1
E
Þ: Similarly, the

equilibrium value of NB is 1
K
ðw4 �

1
E
Þ: Substituting these

values in (D.2) gives the eigenvalues:

l1 ¼
1

Ew1
; l2 ¼

1

Ew4
, (D.9)

which gives the first two conditions in (25).
From (5) we find

qbA

qg

� �
g¼f¼1

¼ rAðaÞ,

qbA

qf

� �
g¼f¼1

¼ 1 � rAðaÞ,

qbB

qg

� �
g¼f¼1

¼ 1 � rBðaÞ,

qbB

qf

� �
g¼f¼1

¼ rBðaÞ, ðD:10Þ

and from (8)

qwAA;1

qg

� �
g¼f¼1

¼ ðw1 �
1

2
w2Þð1 þ rAðaÞÞ,

qwAA

qg

� �
g¼f¼1

¼ ðw1 � w2Þð1 þ rAðaÞÞ,

qwAA;1

qf

� �
g¼f¼1

¼ ð1 � rAðaÞÞðw1 �
1

2
w2Þ,

qwAA

qf

� �
g¼f¼1

¼ ð1 � rAðaÞÞðw1 � w2Þ. ðD:11Þ

Substituting these values in the partial derivatives of g0

and using symmetry arguments for f 0 we find the
Jacobian matrix

ð1 þ rAðaÞÞ
1

2

w2

w1

� �
ð1 � rAðaÞÞ

1

2

w2

w1

� �

ð1 � rBðaÞÞ
1

2

w5

w4

� �
ð1 þ rBðaÞÞ

1

2

w5

w4

� �
0
BBB@

1
CCCA. (D.12)

Both rAðaÞ and rBðaÞ increase monotonically in a: These
functions equal zero when a ¼ 0 and tend to one as a
becomes infinitely large (see Eq. (2)).

At a ¼ 1 the function values equal 0.5, which is of
special interest because it represents random mating.
When a equals one, the Jacobian becomes

3

4

w2

w1

1

4

w2

w1

1

4

w5

w4

3

4

w5

w4

0
BB@

1
CCA, (D.13)

with eigenvalues

l3;4 ¼
3ðw2w4 þ w1w5Þ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ðw2

2w2
4 þ w2

1w2
5Þ � 16w1w2w4w5

q
8w1w4

.

ðD:14Þ
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The expression under the root is always positive because
w14w2 and w54w4: Hence, the eigenvalues are real
numbers. The last stability condition in (25) at p ¼ 0 and
a ¼ 1 then follows from demanding that the eigenvalue
with the positive root is smaller than one.

In the limit for a ! 1 the Jacobian tends to

w2

w1
0

0
w5

w4

0
BB@

1
CCA (D.15)

with eigenvalues

l3 ¼
w2

w1
; l4 ¼

w5

w4
. (D.16)

Because w2ow1 and w54w4; l3 is always smaller than
one and l4 is always larger than one. Hence, for large
values of a; the equilibrium will be unstable.
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