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ABSTRACT

Background: peripheral nerve sheath tumors comprise a broad spectrum of 
neoplasms. Vestibular schwannomas and plexiform neurofibromas are symptomatic 
albeit benign, but a subset of the latter pre-malignant lesions will transform to 
malignant peripheral nerve sheath tumors (MPNST). Surgery and radiotherapy are 
the primary strategies to treat these tumors. Intrinsic resistance to drug therapy 
characterizes all three tumor subtypes. The breast cancer resistance protein BCRP 
is a transmembrane efflux transporter considered to play a key role in various 
biological barriers such as the blood brain barrier. At the same time it is associated 
with drug resistance in various tumors. Its potential role in drug resistant tumors of 
the peripheral nervous system is largely unknown.

Objective: to assess if BCRP is expressed in vestibular schwannomas, plexiform 
neurofibromas and MPNST.

Material and methods: immunohistochemical staining for BCRP was performed 
on a tissue microarray composed out of 22 vestibular schwannomas, 10 plexiform 
neurofibromas and 18 MPNSTs.

Results: sixteen out of twenty-two vestibular schwannomas (73%), nine out of 
ten plexiform neurofibromas (90%) and six out of eighteen MPNST (33%) expressed 
BCRP in the vasculature. Tumor cells were negative.

Conclusion: BCRP is present in the vasculature of vestibular schwannomas, 
plexiform neurofibromas and MPSNT. Therefore, it may reduce the drug exposure of 
underlying tumor tissues and potentially cause failure of drug therapy.

INTRODUCTION

Peripheral nerve sheath tumors (PNST) are 
relatively common neoplasm’s that comprise a broad 
spectrum of different subtypes. Most of these tumors 
are histologically benign such as schwannomas and 
neurofibromas [1, 2]. Next to these benign tumors there is 
a subset of malignant lesions like the malignant peripheral 
nerve sheath tumors (MPNST) [3, 4]. Neurofibromas, 
MPNST and schwannomas are examples of PNST 

that occur either sporadically or as part of hereditary 
neurocutaneous diseases like neurofibromatosis type I 
(NF1) and neurofibromatosis type II (NF2) respectively. 
Both these disorders seem to result from the inactivation 
of a classic tumor suppressor gene. Neurofibromas and 
MPNST show loss of NF1 expression. The NF1 gene is 
located on chromosome 17q11.2. and encodes the tumor 
suppressor protein neurofibromin [5]. NF1 is caused by 
germline mutations in NF1 but there are also mosaic forms 
of this disease [6]. MPNST or plexiform neurofibromas 
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without other symptoms of NF1, i.e. sproradic tumors, 
are probably caused by somatic mosaicism for an NF1 
mutation. A similar situation is seen in NF2. NF2 is caused 
by biallilec inactivation of the NF2 gene, located on 
chromosome 22q11, which encodes the tumor suppressor 
protein merlin [7]. Bilateral vestibular schwannomas 
are pathognomonic for this rare disease. However, most 
vestibular schwannomas occur as sporadic unilateral 
tumors [8].

Schwannomas occur in a wide range of anatomical 
sites, including the subcutaneous tissues of the distal 
extremities and the head and neck region. Schwannomas 
in the head and neck region have a predilection to 
derive from the vestibular portion of the eighth cranial 
nerve, better known as vestibular schwannomas 
(VS). Schwannomas are neoplastic proliferations that 
exclusively comprise Shwann cells while neurofibromas 
contain multiple cell types such as perineurial cells, 
fibroblasts and to a lesser extent Schwann cells [1, 9–
11] There are two types of neurofibromas: dermal and 
plexiform. Plexiform neurofibromas are strongly related 
to NF1, affecting 20% to 40% of patients suffering from 
this condition [12, 13]. These tumors often occur in the 
head, skull base, or neck but also manifest themselves 
on the trunk and limbs. Plexiform neurofibromas have 
the potential to transform into MPNST. However, not 
all MPNST develop from pre-existing neurofibromas, 
as approximately half of all MPNST arise sporadically 
without a known precursor [14].

These different types of tumors require different 
types of therapy. To date surgical excision is the only 
effective treatment for plexiform neurofibromas, but recent 
literature demonstrated that targets for pharmacological 
treatment are emerging [15, 16]. Therapeutic management 
of (vestibular) schwannomas consist of surgery or 
radiotherapy and pharmacological treatment options 
were recently tested as well [17]. Although there are 
promising results in individual NF2 patients treated with 
targeted therapy there are also reports indicating drug 
resistance in these tumors [18]. A similar situation exists 
in MPNST. The triad of surgery, radiotherapy and multi-
agent chemotherapy is applied to these tumors as well. 
Despite promising reports on for instance (neoadjuvant) 
doxorubicin-ifosfamide treatment regimens, these tumors 
are often characterized by a highly aggressive behavior 
and resistance to multidrug therapy, resulting in poor long-
term survival rates [19–21]. In short, despite the different 
therapies that are applied to these PNST one of their 
common dominators is the fact that they show a certain 
degree of drug resistance.

Acquired and/or innate drug resistance of tumor cells 
is a common phenomenon and a major hurdle to effective 
chemotherapeutic intervention. An important mechanism 
contributing to drug resistance concerns the expression 
of ATP binding cassette (ABC) transporter proteins that 
are capable of extruding drugs from tumors [22]. These 
energy-dependent transmembrane proteins transport a 

wide range of substrates, including many anticancer drugs, 
across cell membranes [23–27]. So far 49 genes have been 
identified to encode for members of the ABC transporter 
family [28], but only a subset of these is involved in drug 
resistance. Of these drug transporters ABCB1 (P-gp) and 
ABCG2 (BCRP) are the most extensively studied. They 
were first discovered in tumor cells [29, 30], but are also 
expressed at the apical membranes of epithelial cells in 
biological barrier tissues such as in the intestines, kidneys 
and liver and have an important role in the clearance of 
xenobiotics from the body [23]. In addition, they are 
expressed in specialized endothelial cells that form the 
blood-brain, blood-testis and blood-placenta barriers 
where they help to limit the exposure of the underlying 
tissues (brain, testis and fetus) to xenobiotics [31–33]. 
Besides efflux transporters, these specialized endothelial 
cells also present other barrier properties, such as tight 
junctions and lack of fenestrations that limit para-cellular 
entry of drugs. In the brain, the surrounding glial cells 
(astrocytes, pericytes) govern the expression of these 
barrier markers in these endothelial cells. The blood-
brain barrier (BBB) may thereby “protect” tumor cells 
that reside within the central nervous system [34]. Similar 
to the situation in the brain, tumors originating from the 
peripheral nerve sheath may be protected by the so called 
blood-nerve-barrier (BNB). Our hypothesis is that the 
blood-nerve-barrier might hinder drugs from reaching 
their target cells in peripheral nerve sheath tumors, thereby 
contributing to drug resistance (Figure 1). The three tumor 
types we included in this analysis were selected because 
all of them originate from the peripheral nerve sheath 
and, as mentioned earlier, each of them are characterized 
by some form of drug resistance. The BNB is located in 
microvasculature of the endoneurium and the inner most 
layers of the perineurium [35] and there are reports that, 
analogous to the situation at the BBB, the BNB contains 
members of the ABC transporter family such as BCRP and 
P-gb [36, 37]. Apart from the concept of protection by the 
BNB, these tumors may also be drug resistant because the 
tumor cells themselves express ABC drug transporters. 
Since its discovery, BCRP expression has been observed 
in several types of tumors [38–47] and elevated expression 
levels of this transporter have been correlated with poor 
prognosis in a number of studies [48–50]. Moreover, the 
expression of BCRP in tumor cells has been associated 
with a rare subset of so-called cancer stem cells, similar 
to the expression of BCRP in normal stem cells [51, 
52]. Consequently, the expression of BCRP both in 
tumor blood vessels or in tumor cells can mediate drug 
resistance.

The aim of this study was to assess the presence 
and localization of BCRP in peripheral nerve sheath 
tumors. We investigated the expression pattern of BCRP 
in twenty-two sporadic vestibular schwannomas, ten 
plexiform neurofibromas and eighteen MPNST using 
an immunohistochemical assay performed on a tissue 
microarray (TMA) composed of these tumors. We used 
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TMA technology because it provides the advantage of 
simultaneously analyzing a large panel of tumors with a 
high degree of experimental standardization [53]. Is has 
also been shown that the clinico-pathological findings 
obtained by this technique are highly representative of 
their donor tissues [54]. The results of our analysis show 
that BCRP is expressed in all three of these tumor types. 
This observation indicates that BCRP might reduce drug 
accumulation in these peripheral nerve sheath tumors thus 
creating a hurdle to effective drug treatment.

RESULTS

The results from this immunohistochemical, tissue 
micro array based study indicate the presence of BCRP 
in the microvascular endothelium of MPNST, plexiform 

neurofibromas and vestibular schwannomas (Figure 2). 
Six out of the eighteen MPNST samples showed vascular 
BCRP expression. Two of the positive specimens were 
NF1 related and the other four were sporadic tumors. 
Tumor cells were negative for BCRP. One of the studied 
MPNSTs was a recurrent tumor and matched with another 
specimen in this study. In both cases, the vasculature of 
these samples was BCRP negative. None of the MPNST 
patients received chemotherapy prior to resection. The 
vasculature of nine out of ten plexiform neurofibroma 
samples was BCRP positive as well as the vasculature of 
sixteen of the twenty-two schwannomas. Two separate 
plexiform neurofibroma samples originated from the 
same NF1 patient and both these tumors had BCRP 
positive vasculature. Unfortunately, the analyzability of 
some of the MPNST tumor specimens on the TMA slide 

Figure 1: A mechanistic figure of the proposed function of BCRP and P-gb at the blood-nerve-barrier.

Figure 2: Immunohistochemistry images showing clear BCRP and CD31 positivity in the microvascular epithelium of MPNST(A and B), 
plexiform neurofibroma (C and D) and vestibular schwannoma (E and F) respectively. Images (G and H) show a CD31 positive yet BCRP 
negative sample of a vestibular schwannoma.
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was impaired due to necrosis. We found that in four out 
of eighteen MPNST cases one or two specimens showed 
intrinsic tumor necrosis making them unsuitable for 
microscopic analysis. Nevertheless, at least one of the 
three specimens of these tumors contained representative 
tumor tissue. Therefore it was still possible to perform 
adequate microscopic analysis on tissue from all the 
tumors in the analysis. Of these four MPNST one was 
scored positive for BCRP and the other three were scored 
negative.

DISCUSSION

Present treatment of peripheral nerve sheath 
tumors is mainly a surgical matter. The unraveling 
of the underlying molecular pathologies and the 
ongoing development of new therapeutic agents may 
provide potentially effective drugs as an alternative- or 
concomitant therapeutic strategy. Unfortunately, however, 
the occurrence of innate or acquired drug resistance of 
tumors is a common event. Drug resistance is a frequently 
encountered problem in MPNST, but it is also observed 
in benign or precursor lesions. Multidrug resistance is 
a complex phenomenon and frequently multifactorial. 
One important reason is impaired drug delivery to the 
target tissues because of the expression of drug efflux 
proteins in the (micro) vasculature of tumor tissues or 
because of expression of these proteins by tumor cells 
themselves. In central nervous system (CNS) tissues, 
the restricted entry is due to drug transporters located 
at the interface between the blood and the brain (the 
BBB). A similar situation may be present at the interface 
between blood and peripheral nerves, but this has not 
been well established yet. The most extensively studied 
efflux transporters of the BBB are P-gp (ABCB1) [55] 
and BCRP (ABCG2) [56]. Together, these two efflux 
transporters team up to restrict the CNS penetration of a 
wide range of substrates including many potentially useful 
drugs [56–59]. In this study, we have investigated the 
expression of BCRP in tumors of the peripheral nervous 
system. Based on our results it is not entirely clear if the 
vascular BCRP expression we observed in a selection of 
the investigated tumors is a specific characteristic of these 
tumors, or if it is a remaining part of the blood-nerve-
barrier. Dahin et al [60] identified BCRP expression in 
retinal nerve fibers suggesting that BCRP is part of the 
blood-nerve-barrier that protects retinal nerve fibers from 
injury by removing intracellular toxins and xenobiotics. A 
contradictory observation was made by Huang et al [61]. 
They investigated BCRP and P-gp in peripheral nerves 
using a tissue distribution assay on rats but did not find 
a difference in drug distribution between wild type- or 
BCRP/P-gp knock out rats. However, in the Huang study 
the Abcg2 KO had little effect on the brain distribution 
of known BCRP substrate drugs and these findings are 
at odds with other ABC KO studies and have not been 

replicated independently since [37, 62, 63]. Furthermore, 
they are in stark contrast with multi drug resistance 
observed in clinical studies in NF1 patients with known 
P-gp and/or BCRP substrate drugs [15, 16, 64–66]. 
Similarly, prior studies in MPNST confirmed the presence 
of drug resistant sarcoma stem cells [67, 68] and the P-gp 
and BCRP efflux pumps [47, 50, 69, 70], while drug trials 
in MPNST patients have not improved outcomes [50, 
71] Our findings provide a rationale to further study the 
hypothesis that endothelial BCRP expression may be part 
of the reason why drug therapy of PNST often fails [47]. 
If this hypothesis is correct it could mean that inhibition of 
BCRP may aid in rendering these tumors more susceptible 
to drug therapy. A potential strategy to achieve this is to 
co-administer elacridar, a potent, selective inhibitor of 
both P-gp and BCRP with molecularly targeted drugs 
to enhance drug levels in diseased neural tissues and 
improve outcomes as has been observed in animal models 
of other pump-protected diseases [34, 72–82].

In conclusion, our results demonstrate the 
expression of BCRP in the vascular endothelium in a 
substantial fraction of MPNST, plexiform neurofibromas 
and sporadic vestibular schwannomas. Similar to CNS 
tumors, the presence of BCRP, and perhaps other members 
of the ABC efflux transporter family, may reduce the 
drug exposure of underlying tumor tissues and mediate 
resistance to drug therapy.

MATERIALS AND METHODS

Patients

The cases included in this study were retrospectively 
selected from the files of the bone- and soft tissue tumor 
database at the department of Pathology of the Leiden 
University Medical Center, Leiden the Netherlands. 
Tumor specimens were obtained from patients surgically 
treated for their tumors between January 1999 and 
December 2012. Formalin-fixed paraffin-embedded 
samples of twenty-two sporadic vestibular schwannomas, 
ten plexiform neurofibromas and eighteen MPNST 
were selected. Of these selected tumors two separate 
plexiform neurofibromas originated from the same patient 
and one MPNST was a recurrence of a primary tumor 
included in this analysis as well. Surgery was performed 
at the departments of Neurosurgery, Otolaryngology, 
Orthopedic surgery and General surgery of the Leiden 
University Medical Center. In each case the diagnosis was 
made according to the WHO classification of soft tissue 
tumors [83]. All tumor samples were handled in a coded 
fashion and all procedures were performed according to 
the ethical guidelines of the Code for Proper Secondary 
Use of Human Tissue in The Netherlands (Dutch 
Federation of Medical Scientific Societies). Additional 
clinicopathological data are shown in Supplementary 
Table 1.
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Tissue microarray (TMA) preparation

Preparation of the TMAs was performed at the 
department of pathology of the Leiden University Medical 
Center. TMAs were constructed from 1mm cores of all 
tumor samples using a TMA Master (3DHISTECH Ltd, 
Budapest, Hungary). Per tumor three randomly selected 
cores were included in the TMA in order to compensate 
for intra-tumoral heterogeneity. Normal colon, tonsil, 
placenta, prostate and spleen tissue together with mamma 
carcinoma were used to serve as internal controls and 
points of orientation. In line with data provided by the 
manufacturer we found high BCRP expression in placenta 
and low expression in colon tissue.

Immunohistochemistry (IHC)

Immunohistochemical reactions were performed 
according to standard laboratory methods [84]. In brief, heat-
induced antigen retrieval was performed after dewaxing 
and rehydration, followed by blocking of endogenous 
peroxidase with 3% H2O2 in methanol. Incubation with 
the primary antibodies BCRP (Abcam; ab24115) and 
CD31 (Abcam; ab28364) was overnight. Subsequently, 
CD31 sections were conjugated with Labelled Polymer-
HRPAnti-Rabbit Envision (DakoCytomation; K4005) while 
conjugation of the BCRP sections was performed with 
Goat-α-Rat-Bio (Santa Cruz; SC-2041) and Streptavidin/
HRP (DakoCytomation; P0397) respectively. Visualization 
was carried out with a diaminobenzidine solution. All 
washing procedures were conducted in phosphate-buffered 
saline. Slides were counterstained with haematoxylin.

Microscopic analysis

After staining the TMA was scanned using a 
Pannoramic MIDI Digital Slide Scanner (3DHISTECH 
Ltd, Budapest, Hungary). Analysis of the digital slides 
took place with Pannoramic Viewer software version 
1.15.3. Scoring was performed by two observers who 
were unaware of the clinico-pathological data. Staining 
of tumor specimens was classified as either positive or 
negative. Differently assessed cases were discussed to 
reach consistent scoring results.

Abbreviations

ABC: ATP binding cassette; ABCB1: ATP-binding 
cassette sub-family B member 1; ABCG2: ATP-binding 
cassette sub-family G member 2; BBB: Blood-brain-
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Blood-nerve-barrier; MPNST: Malignant peripheral 
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