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Abstract Purpose: Ewing sarcoma (EWS) is the second most common sarcoma of bone in
children and young adults. Patients with disseminated disease at diagnosis or early relapse
have a poor prognosis. Our goal was to identify novel predictive biomarkers for these patients,
focusing on chemokines, specifically genes involved in the CXCR4-pathway because of their
established role in metastasis and tumour growth.
Methods: Total RNA isolated from therapy-naı̈ve tumour samples (n = 18; panel I) and cell
lines (n = 21) was used to study expression of CXCR4-pathway related genes and CXCR4
splice variants (CXCR4-2: Small and CXCR4-1: Large) by RT-Q-PCR. Expression levels
were correlated to overall survival (OS) and event free survival (EFS). Study results were
validated in an independent series of 26 tumour samples (panel II) from therapy-naı̈ve tumour
samples.
Results: CXCL12, CXCR4, CXCR7 and CXCL14 were expressed and high CXCR7 and
CXCL14 expression showed a positive correlation with EFS and OS and a negative

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejca.2015.08.020&domain=pdf
http://dx.doi.org/10.1016/j.ejca.2015.08.020
mailto:P.C.W.Hogendoorn@lumc.nl
http://dx.doi.org/10.1016/j.ejca.2015.08.020
http://dx.doi.org/10.1016/j.ejca.2015.08.020
http://dx.doi.org/10.1016/j.ejca.2015.08.020
www.sciencedirect.com


L.G.L. Sand et al. / European Journal of Cancer 51 (2015) 2624–2633 2625
correlation with metastasis development. Both splice variants CXCR4 were expressed in cell
lines and tumour samples and CXCR4-1/CXCR4-2 ratio was significantly higher in tumour
samples compared to cell lines and correlated with an improved EFS and OS. The results from
the test panel were validated in an independent sample panel.
Conclusions: We identified a set of genes involved in CXCR4 signalling that may be used as a
marker to predict survival and metastasis development in Ewing sarcoma.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Ewing sarcoma (EWS) is the second most common
bone neoplasm in children and young adolescents while
soft tissue and organ related involvement is more often
observed in adults [1]. Genetically, EWS is characterised
by a recurrent translocation of the EWSR1 gene to a
member of the family of ETS transcription factors [1,2].
Rarely, tumours with Ewing sarcoma-like features exist
were EWSR1 is fused to a non-ETS family member or
between BCOR–CCNB3 or CIC–DUX4 genes [1,3–5].

The introduction of multi-agent chemotherapy in
combination with advancements in surgery and radio-
therapy has improved the 5-year overall survival (OS)
of EWS patients with localised disease from less than
10–70% nowadays, irrespective of the type of classical
Ewing sarcoma specific translocation [6,7]. However,
the OS drops to less than 30% when metastases are
present at the time of diagnosis which is the case in
15–30% of new presentations- or with tumour relapse
[8,9]. For these high risk patients many markers have
been suggested, but at present only classical markers,
such as tumour location, are used in clinic [10]. EWS
is recognised from the onset of its original description
by James Ewing as a highly vascularised tumour and
amongst many other pathways, chemokine and the
TGF-B pathway might play a role for this excessive vas-
cularisation pattern [11–13]. Besides angiogenesis, these
pathways are involved in migration that might be
reflected by the high metastatic propensity of EWS
[1,13,14]. In several tumour types a positive correlation
between increased expression of CXCR4 and metastatic
propensity was reported, but contradictory results were
reported in EWS [15–17].

CXCR4 is a chemokine receptor from the G-protein
coupled receptor family binding the CXC chemokines.
CXCR4 ligands are chemokine CXCL12, also known
as stromal cell-derived factor 1 (SDF1) and CXCL14,
also known as BRAK [18,19].

For CXCR4 two common splice variants have been
described in humans by Gupta et al. containing either
two exons CXCR4-2 or one exon by utilising another
transcription initiation code inside intron one CXCR4-1
[20]. At the protein level, the first five amino acids at the
N-terminus of CXCR4-2 are replaced with nine amino
acids in the CXCR4-1 variant. Hence, the N-terminal
part of CXCR4 is crucial in CXCL12 binding therefore
this change may interfere with CXCR4 activation
[20,21]. The expression levels of these two splice variants
have neither been studied in tumour samples nor associ-
ated with survival.

To study the role of different chemokines and their
receptors in combination with the detection of different
CXCR4 isoforms we performed whole transcriptome
RNA sequencing and a real-time quantitative-reverse
transcriptase PCR (RT-Q-PCR) on EWS cell lines and
two panels of therapy-naı̈ve tumour samples (test and
a validation set: panel I and panel II). Results of the
RT-Q-PCR were correlated to clinical parameters. Sur-
vival analysis of panel I showed that high CXCR4-1

over CXCR4-2 ratio and high expression of CXCL14

and CXCR7 positively correlated with EFS and OS.
These findings were overall confirmed by a validation
set (panel II). Thus, CXCL14, CXCR7 and the ratio
between CXCR4-2 and CXCR4-1 could predict EFS
and OS in Ewing sarcoma patients, which is probably
related to their role in CXCR4 signalling pathway.

2. Material and methods

2.1. Clinical information patient samples

Ewing sarcoma diagnosis was established according
to World Health Organisation (WHO) criteria, includ-
ing immunohistochemistry and EWSR1 translocation
detection either by RT-Q-PCR or interphase FISH. 18
cryopreserved therapy-naı̈ve samples from 18 patients
containing at least 80% tumour were collected at the
Department of Pathology, Leiden University Medical
Center (Table 1A; panel I). Median patient age at diag-
nosis was 17.5 years (range of 5–35 years). All patient
samples were handled in a coded fashion, according to
the Dutch national ethical guidelines (‘Code for Proper
Secondary Use of Human Tissue’, Dutch Federation of
Medical Scientific Societies). For validation a panel of
25 cryopreserved therapy-naı̈ve samples from 25
patients were obtained from the Rizzoli Orthopedics
Institute with a median age at diagnosis of 16 years
(range 3–45 years) (Table 1B; panel II).

2.2. Ewing sarcoma cell lines

21 Ewing sarcoma cell lines were obtained from
multiple sources: L-1062 and L-872 were established



Table 1
Clinical details of the two study panels.

Patient

number

Age

(years)

Sex Primary

tumour

site

Extremitya Pelvicb Starting

treatment

protocol

Tumour

volumec
Neoadjuvant

chemotherapyd
Neoadjuvant

Radiotherapye
Surgeryf Resectable

with free

marginsg

Response to

chemotherapyh
Metastasis

at

diagnosisi

Metastasis

laterj
Local

recurrence/

Relapsek

EFS

Time

(month)

EFSl OS Time

(month)

OSm

(a) Clinical details of patients in study panel I

L318 35 Male Prox

radius

1 0 CESS86 ND 1 0 1 1 1 0 0 0 183 0 233 0

L463 24 Male Thorax

wall

0 0 CESS86 ND 0 0 1 1 ND 0 1 1 12 1 20 1

L469 19 Female Distal

fibula

1 0 EICESS 1 1 0 1 0 0 0 1 1 20 1 23 1

L513 11 Male Pelvis 0 1 EICESS 1 ND 1 0 - ND 1 0 ND 18 1 18 1

L629 5 Male Tibia

+ fibula

1 0 EuroEwing99 1 1 0 1 1 1 1 0 0 135 0 135 0

L683 17 Male Tibia 1 0 EICESS ND 1 0 1 0 0 0 1 0 10 1 16 1

L848 15 Female Humerus 1 0 EuroEwing99 0 1 0 1 1 1 1 0 0 142 0 142 0

L1034 18 Male Pelvis 0 1 EuroEwing99 1 1 0 1 0 0 1 1 0 11 1 18 1

L1098 10 Male Femur 1 0 EuroEwing99 0 1 0 1 0 1 0 0 0 129 0 129 0

L1220 19 Male OS pubis 0 1 EuroEwing99 1 1 - 0 ND 1 1 0 10 1 11 1

L1232 14 Male Humerus 1 0 EuroEwing99 ND ND 0 1 1 ND 0 0 ND 14 1 34 1

L1379 13 Male Fibula 1 0 EuroEwing99 ND 1 0 1 1 0 1 0 0 99 0 99 0

L1489 25 Male Pelvis 0 1 EuroEwing99 1 1 1 1 1 1 0 0 0 91 0 91 0

L1570 12 Male Humerus 1 0 EuroEwing99 ND 1 0 1 1 1 0 0 0 83 0 83 0

L1722 18 Male Humerus 1 0 EuroEwing99 1 1 0 1 1 1 0 1 1 36 1 36 0

L2154 11 Female Femur 1 0 EuroEwing99 0 1 - 1 1 1 1 0 0 176 0 176 0

L2161 19 Male Pelvis 0 1 EuroEwing99 1 1 0 0 - 0 0 1 0 11 1 12 1

L2162 19 Male Pelvis 0 1 EuroEwing99 1 1 0 0 - ND 1 1 0 15 1 19 1

Patient

number

Age

(years)

Sex Primary

tumour site

Extremitya Pelvicb Starting

treatment

protocol

Tumour

volumec
Neoadjuvant

chemotherapyd
Neoadjuvant

Radiotherapye
Surgeryf Resectable with

free marginsg
Response to

chemotherapyh
Metastasis at

diagnosisi
Metastasis

laterj
Local

recurrence/

Relapsek

EFS Time

(month)

EFSl OS Time

(month)

OSm

(b) Clinical details of patients in validation panel II

R040 24 Male Femur 1 0 IOR NEO3 1 1 0 1 1 0 0 1 0 17 1 135 0

R042 18 Male Femur 1 0 IOR NEO3 0 1 0 1 1 0 0 0 0 262 0 262 0

R046 7 Female Radius 1 0 IOR NEO3 0 1 0 1 1 0 0 1 0 21 1 63 1

R060 12 Male Pelvis 0 1 IOR NEO3 0 1 1 0 ND ND 0 0 0 226 0 226 0

R063 13 Male Pelvis 0 1 ISG-SSG3 0 1 1 0 ND ND 0 0 0 109 0 109 0

R078 11 Female Pelvis 0 1 ISG-SSG4 1 1 1 0 ND ND 1 0 0 183 0 183 0

R080 8 Female Femur 1 0 ISG-SSG3 0 1 0 1 1 0 0 1 0 57 1 72 1

R517 3 Male Humerus 1 0 ISG-SSG PILOT 0 1 0 1 1 0 0 0 0 161 0 161 0

R650 26 Female Femur 1 0 ISG-SSG3 0 1 0 1 1 0 0 1 0 28 1 141 0

R653 9 Male Tibia 1 0 ISG-SSG4 0 1 0 1 1 1 1 1 0 30 1 52 1

R658 17 Female Tibia 1 0 IOR NEO2 0 1 1 0 ND ND 0 1 1 24 1 35 1

R673 15 Female Humerus 1 0 ISG-SSG3 0 1 0 1 1 1 0 0 0 122 0 122 0

R680 17 Male Fibula 1 0 ISG-SSG3 0 1 0 1 1 1 0 0 0 122 0 122 0

R681 12 Female Femur 1 0 ISG-SSG3 0 1 0 1 1 1 0 0 0 151 0 151 0

R822 31 Male Tibia 1 0 ISG-SSG3 0 1 0 1 1 0 0 1 0 11 1 21 1

R833 17 Female Femur 1 0 ISG-SSG3 0 1 0 1 1 0 0 1 0 43 1 63 1

R835 26 Male Scapula 1 0 ISG-SSG3 0 1 0 1 1 0 0 0 0 128 0 128 0

R863 18 Male Tibia 1 0 ISG-SSG3 0 1 0 1 1 0 0 0 0 106 0 106 0

R880 10 Male Radius 1 0 ISG-AIEOP 0 1 0 1 1 1 0 0 0 84 0 84 0

R891 21 Male Femur 1 0 ISG-SSG3 0 1 0 1 1 0 0 0 0 89 0 89 0

R892 37 Female Femur 1 0 ISG-AIEOP 1 1 0 1 1 0 0 0 0 84 0 84 0

R906 10 Male Humerus 1 0 ISG-AIEOP 1 1 0 1 0 0 0 1 0 12 1 25 1

R910 45 Male Scapula 1 0 ISG-AIEOP 1 1 0 1 1 0 0 1 0 19 1 33 1

R914 10 Male Femur 1 0 EUROEWING99 0 1 0 1 1 0 0 1 0 52 1 64 1

R917 14 Male Metatarsus 1 0 ISG-AIEOP 1 1 0 1 1 1 1 0 0 59 0 59 0

ND: Not determined; EFS: Event free survival; OS: overall survival.
a,b,d,e,f,g,I,k,l1: event reported or 0: no event reported.c1 tumour volume > 200 ml or 0: < 200 ml.h1: < 10% tumour vitality or 0 > 10% tumour vitality.
b1: Dead or 0: alive.
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Table 2
Ewing sarcoma cell lines and their origin.

Cell line Gender Age
(years)

Tumour source Translocation# TP53 literature TP53 status# TP53 expression
(RPKM)

CDKN2A expression
(RPKM)

RM-82a Male 8 Femur EWS-ERG p.Arg273His rs28934576*,† 79.78 54.99
CADO-ES-1a Female 19 Malignant pleural effusion EWS-ERG wt wt 26.79 -
TTC-466a Female 5 Lung metastasis EWS-ERG NA rs28934578* 63.06 81.28
IARC-EW-3a Male 14 Malignant pleural effusion EWS-ERG c-852_858del c-852_858del† 18.72 24.72
L-4027c Male - NA EWS-ERG NA wt 65.4 -
STA-ET-10 NA NA NA EWS-FEV wt wt 57.29 5.33
L-872b Male 20 Rib EWS-FLI1 type I c 641 A > G, p.H214R chr17.7578.208 A > G† 47.37 19.35
L-1062b Male 17 Femur EWS-FLI1 type I c 404 G > T, p.C135F chr17.7578526 G > T† 90.27 31.69
IARC-EW-7a Female 20 NA EWS-FLI1 type I NA wt 48.35 1.04
TC-32a Female 17 Pelvis bone marrow EWS-FLI1 type I NA wt 99.81 -
TC-71a Male 23 Humerus EWS-FLI1 type I p.Arg213X missing exon 5,6,7 1.97 -
STA-ET-1a Female 13 Humerus EWS-FLI1 type I wt rs28934576* heterozygous 30.09
WE-68a Female 19 Fibula EWS-FLI1 type I wt wt 62.14 -
SK-NM-Ca Female 14 Supraorbital metastasis EWS-FLI1 type I c.17-_572del c.17-_572del 64.22 100.3
A-673a Male 15 NA EWS-FLI1 type II 552insCA NA 3.65 -
RD-ESa Male 19 Humerus EWS-FLI1 type II p.Arg273Cys rs121913343*,† 62.06 24.29
SK-ES-1a Male 18 NA EWS-FLI1 type II p.Cys176Phe chr17.7578403 G > T† 72.18 41.81
CHP-100a Female 12 Mediastinum EWS-FLI1 type II wt wt 3.25 45.13
6647a NA NA NA EWS-FLI1 type II NA rs28934573* 66.97 21.69
VH-64a Male 24 Pleural effusion lung metastasis EWS-FLI1 type II wt wt 48.28 -
COH NA NA Femur EWS-FLI1 type III wt wt 61.90 12.03

Translocation, TP53 status and CDKN2A expression were analysed using transcriptome profiling from this study.
wt: wild type TP53; NA: Not available; RPKM: Reads Per Kilobase per Million mapped reads; –: lacking expression.
a Described by van Valen (43).
b Characterised by K. Szuhai et al. (44).
c Primary culture.
† Corresponding with in literature described TP53 mutation.
* Known pathogenic mutation in TP53.
# Detected by whole transcriptome analysis.
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Fig. 1. RT-Q-PCR and transcriptome analysis resulted in comparable
expression levels of CXCR4–CXCR7 genes using all studied samples.
Housekeeping gene normalised RT-Q-PCR expression levels were
measured in duplicates (mean ± SEM).

2628 L.G.L. Sand et al. / European Journal of Cancer 51 (2015) 2624–2633
in-house; SK-ES-1, SK-NM-C, A-673 and R-D-ES
from the American Type Culture Collection and 6647,
CHP100, RM-82, IARC-EW-7, WE-68, IARC-EW-3,
STA-ET-2.1, TTC-466, TC-32, STA-ET-10, CADO-
ES1, STA-ET-1, TC-71, COH and VH-64 were obtained
from the EuroBoNET consortium collection located at
the Institute of Pathology, University Medical Center,
Düsseldorf, Germany. All cell lines and primary culture
L-4027 were cultured in Iscove’s Modified Dulbecco’s
Medium containing GlutaMAX supplement, supple-
mented with 1% streptomycin/penicillin and 10% heat-
inactivated FCS (all from Life Technologies, Bleiswijk,
The Netherlands). Regular Mycoplasma DNA Q-PCR
screening [22] and authentication of cell lines using
Powerplex 1.2 and CellID STR (Promega, Leiden, The
Netherlands) were performed on all cell lines.
2.3. RNA isolation

Total RNA was isolated using TRIzol Reagent (Life
Technologies, Bleiswijk, The Netherlands) according to
manufacturer’s instruction. RNA concentration was
measured using Nanodrop and quality of the RNA
was determined using Bioanalyzer2000 RNA Nano chip
(Agilent Technology, Amstelveen, The Netherlands).
For whole transcriptome RNA sequencing analysis a
RNA Integrity Number (RIN) of 8 was set as threshold.
For the RT-Q-PCR analysis the inclusion criteria were
at least a RIN of 5 and measurable expression levels.
2.4. CXCR4 splice variant specific primer design and

detection

CXCR4 splice variant specific primers sets were
designed for RT-Q-PCR based expression analysis.
CXCR4-2 primers CXCR4-2F 50AGGTAGCAAAGTG
ACGCCGA 30 and CXCR4-2R 50 TAGTCCCCTGAG
CCCATTTCC 30 were intron spanning by priming exon
1 and exon 2. CXCR4-1 primers were CXCR4-1F 50

GACTTTGAAACCCTCAGCGTC 30 and CXCR4-1R
50 TCCTACAACTCTCCTCCCCAT 30. Products were
detected by using 10ul RT-Q-PCR mixture using iQ
SYBR Green supermix (Biorad, Hercules, CA, USA).
2.5. RT-Q-PCR analysis and Fluidigm

cDNA generation and RT-Q-PCR using Fluidigm
biomark system was performed according to the H
format instructions of the manufacturer (QIAGEN,
Venlo, The Netherlands). Samples were prepared for
RT-Q-PCR using a 96 � 96 dynamic array chip and per-
formed using BioMark HD system (Fluidigm, San, CA,
USA). All primers for this array chip were obtained
from QIAGEN (Venlo, The Netherlands) including nine
control genes: RPL13A, BTF3, YWHAZ, UBE2D2,
ATP6V1G1, IPO8, HBS1L, AHSP and TBP. Samples
were measured in duplicates and analysed using Bio-
Mark software, delivered with the HD system.
2.6. Whole transcriptome RNA sequencing

RNA sequencing was performed at BGI genomics
(Hong Kong, People’s Republic of China) following
standard protocol established by BGI genomics. In
short, total isolated RNA was enriched for mRNA using
Oligo(dT) beads and generated fragments were size
selected for amplification. Amplified fragments were
quality controlled and sequenced using Illumina HiSeq
2000. Reads were aligned to a reference sequence using
SOAPaligner/SOAP2. Gene expression was calculated
using Reads Per Kilobase per Million mapped reads
(RPKM) method [23].
2.7. Statistical analysis

Survival curves were calculated using the Kaplan–
Meier method and P-values were calculated using the
log-rank and Gehan Breslow Wilcoxon test using SPSS
20 (IBM Inc. Amsterdam, The Netherlands) and Prism
Graphpad 6 (Graphpad Software Inc. La Jolla, CA,
USA). Correlations were calculated with SPSS 20 using
Spearman or Pearson correlation. High RNA expres-
sion was set as expression above the median. Student
t-tests P-value was calculated using Prism Graphpad
assuming non-parametric distribution due to limited
numbers of samples and were corrected using Manley–
Welch correction.
3. Results

3.1. EWS expresses all CXCR4–CXCR7 axis genes and

tumour samples have an increased CXCR4-1/CXCR4-2

ratio

RNA expression levels of chemokines and their
receptors in cell lines were analysed using both Fluidigm
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Fig. 2. Comparison of expression levels between cell lines and tumour samples. (A) Expression levels (median with interquartile range) of genes
involved in the CXCR4–CXCR7 axis were not significantly different between samples (squares) and cell lines (circles) except for CXCL12 and
CXCR7. *P < 0.05. (B) Expression of individual splice variants of CXCR4 was not significantly different between tumour samples and cell lines
(boxplot with maximal and minimal values). (C) CXCR4-1/-2 ratio was in tumour samples significantly higher compared to cell lines (median with
interquartile range) (ns: non-significant).
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RT-Q-PCR and whole transcriptome analysis. Both
methods showed comparable expression levels and that
all genes involved in the CXCR4–CXCR7 axis were
expressed (Fig. 1). We performed an expression analysis
of a CXCR4–CXCR7 axis chemokine and their receptor
gene set, from which expression differences were
observed for CXCR7 and CXCL12 between cell lines
and tumour samples, using a panel of 18 therapy naı̈ve
tumour samples, 21 cell lines and 1 primary culture
(Tables 1A and 2). The cell line RT-Q-PCR expression
levels of the CXCR4–CXCR7 axis genes were compared
with expression levels in tumour samples and showed an
increased expression of CXCL12 and CXCR7 in tumour
samples. Furthermore, within the cell lines and among
individual tumour samples a large variation was
observed (Fig. 2A).
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Fig. 3. Overview of CXCR4–CXCR7 axis genes and event free survival (EFS), overall survival (OS) in panel 1 and panel 2. CXCR4-1/-2 ratio and
CXCL14 expression were associated with a significant better EFS in both panels, CXCR7 in panel I with OS in panel I. RNA expressions of the
CXCR4–CXCR7 axis genes of the therapy-naı̈ve tumour samples of panel I (n = 18) (A–C, G–I) and panel II (n = 25) (D–F, J–L) were correlated
using Kaplan–Meier survival analysis. Median was set as threshold between high (straight line, panel I n = 9, panel II n = 13) and low expression
(dotted line, panel I n = 9, panel II n = 12). A significant association between high CXCR4-1/CXCR4-2 ratio and improved EFS or OS was
observed in both panels.

Fig. 4. Model for CXCR4 signalling in Ewing sarcoma: CXCL12 binds and activates CXCR4-2, which is inhibited by CXCL14 and CXCR7 by
inhibiting receptor binding and scavenging of CXCL12. Dimerisation of CXCR4-1 and CXCR4-2 results in CXCR4 activation inhibition due to
either change in CXCR4-2 signalling or by higher CXCR4-1 affinity for CXCL14. As available therapeutic options (boxed red) are CXCL14
analogues, CXCL12 neutralisers and CXCR4 inhibitors (see [19,36,37]). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Both splice variants of CXCR4 were expressed in all
tumour samples and cell lines except the A673 cell line
and no significant difference was observed between the
groups (Fig. 2B). The ratio between splice variants has
been shown to be functionally relevant, therefore we fur-
ther analysed the ratio between expression levels of
CXCR4-1 and CXCR4-2 in our samples [24]. The
CXCR4-1/CXCR4-2 ratio was uniformly distributed in
the cell line panel with two outliers; A673 cell line with-
out CXCR4-1 expression and COH cell line with a high
CXCR4-1/CXCR4-2 ratio (Table S1). Tumours samples
of panel I demonstrated a wide distribution (range
0.06–0.003, SD = 0.015) and an overall significantly
higher CXCR4-1/CXCR4-2 ratio when it was compared
to cell lines (median of 0.030 versus 0.012, P < 0.001)
(Fig. 2C).
3.2. CXCR4-1 over CXCR4-2 ratio, CXCR7 and

CXCL14 expression associate with development of

metastases and survival

The large observed variation in CXCR4–CXCR7 axis
genes and in the CXCR4-1/CXCR4-2 between individual
tumour samples prompted us to perform a comparison
between patient samples. A survival analysis was per-
formed using the CXCR4–CXCR7 axis gene expressions
and the CXCR4-1/CXCR4-2 ratio of the primary
therapy-naı̈ve tumour samples. We observed that a high
CXCR4-1/CXCR4-2 ratio and high expression of
CXCL14 and CXCR7 correlated with an improved
event free survival (EFS) (P < 0.03, P < 0.01, P < 0.02)
and OS (P < 0.03, P < 0.02, P < 0.01), respectively
(Fig. 3A-C, G-I). Consistent with the correlations with
improved survival were increased CXCL14 (P < 0.02)
and CXCR7 (P < 0.02) expression negatively correlated
with the development of metastasis. The results were
validated with an independent second panel of 25
therapy-naı̈ve tumour samples using the same methods
(Table 1B; panel II). The same pattern of survival asso-
ciations with improved EFS was observed for increased
CXCR4-1/CXCR4-2 ratio (P < 0.05) and expression of
CXCL14 (P < 0.04) (Fig. 3D and I), while the expression
of CXCL14 (P < 0.02) and CXCR7 (P < 0.03) showed a
negative correlation with the development of metastasis.
Expression of CXCR7 was associated with improved
EFS but did not reach a significant level (Fig. 3F). No
association to overall survival was observed in panel II
(Fig. 3J–K). Expression levels of CXCR4 or CXCL12

did not show significant correlation with survival in
either panel. (Fig. S1A–H). As control experiment a
survival analysis was performed using the classical
prognostic parameters tumour volume, metastasis at
diagnosis, location and metastasis after diagnosis of
both panels [25]. The development of metastasis after
diagnosis was strongly associated with poor survival
(P < 0.01) consistent with panel I. A pelvic located
tumour correlated with a significant poor EFS and OS
in panel I, while these were not significant in panel II.
Intriguingly, metastasis at diagnosis did not correlate
significantly with survival in both panels (Fig. S2).
4. Discussion

In earlier studies a crucial role of the CXCR4/CXCR7
axis in solid tumour development and prognosis has been
reported [17,19,26]. Recent discoveries regarding the
receptor–receptor and novel ligand–receptor interaction
between CXCR4, CXCR7, CXCL12 and CXCL14 have
been reported. Contradictory results in Ewing sarcoma
prompted us to study the role of these chemokines in
therapy-naı̈ve patient material and cell lines [15,16,18].
In addition, we studied expression levels of the earlier
reported CXCR4 isoforms in tumour samples as the
expression of these isoforms in particular might partly
be responsible for the contradictory results [15,16,20].
All chemokines and receptors of the CXCR4–CXCR7

axis were expressed in EWS but a large variation was
observed between individual samples, consistent with
previous observations [16,27]. The observed increased
expression of CXCR7 and CXCL12 in tumour samples
compared to cell lines could be stromal derived since
both endothelial and perivascular cells express CXCR7

and CXCL12 and EWS is highly vascularised [28,29].
In our results, increased expressions of CXCL14,
CXCR7 and CXCR4-1/CXCR4-2 ratios were associated
with better EFS and OS in panel I. In panel II increased
CXCL14 expression and CXCR4-1/CXCR4-2 ratio were
associated with better EFS. However, CXCL12 and
CXCR4mRNA expression levels did not correlate signif-
icantly with EFS or OS. In both panels there was an
inverse correlation of increased expression of CXCL14
and CXCR7 and development of metastases. This can
be related to immune cell infiltration [30,31]. Classical
clinical parameters were included to compare with the
newly identified parameters. In panel II none of the clas-
sical parameters were significant predictors of survival.
This cohort has been extensively treated by different res-
cue protocols after failure of the initial treatment.

Contrary to our results, increased expression of
CXCR4 or CXCR7 has been reported to be associated
with poor survival in EWS and other tumours [16,17].
This might be attributed to different methodologies and
patient groups used in different studies ormight be related
to biological effects between different tumour types. For
example, the effect of CXCR4 and CXCR7 is dependent
on their spatial–temporal distribution. When they are
expressed in the same cell, heterodimers can be formed
leading to an enhanced CXCR4 downstream signalling
[26]. When CXCR7 is expressed alone it can act as scav-
enging receptor for CXCL12 and subsequently reduces
CXCR4 activation by CXCL12 [32]. By flow cytometry
and immunohistochemistry a heterogeneous CXCR4
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expression has been shown in EWS and this may hold for
CXCR7 as well [27]. The local tumour microenvironment
can be an influencing factor here as well. CXCR7,
CXCR4 and CXCL12 are expressed by tumour-
associated vessels and immune cells, where CXCR7 is
detected largely intracellular in immune cells [31]. Fur-
thermore, infiltrating macrophages, for example, have
been reported to predict a worse survival in classical
Hodgkin’s lymphoma and were associated with reduced
metastasis and improved survival in high-grade osteosar-
coma [33,34].

Based on our data the following model can be
proposed (see Fig. 4): The paracrine and autocrine
CXCR4 signalling present in EWS might be altered by
CXCR4-1/-2 ratio, CXCL14 and CXCR7 expressions.
High expression of CXCL14 antagonises CXCL12 bind-
ing to CXCR4 and increased CXCR7 sequesters
CXCL12 co-operatively leading to a reduced CXCR4
signalling [18,32]. The investigated CXCR4 isoforms
might be present in dimers or oligomers. The presence
of CXCR4-1 in these complexes could lead to down
regulation of CXCR4 signalling as it has been shown
in rat basal leukaemia 2H3 cells [20]. Moreover, the
CXCR4-1 isoform may have a higher affinity for
CXCL14 than CXCR4-2, consequently further increas-
ing the antagonising effect of CXCL14 [18].

Hence, CXCR4 signalling is a potential targetable
pathway and inhibition of CXCR4 signalling in EWS
in vitro and in xenografts has already been shown to
reduce tumour migration growth and angiogenesis
[15,27,35]. Potential drugs to treat EWS are; CXCL12
neutralising ligands, like chalcone 4, CXCR4 antago-
nists, like AMD3100 and CXCL14 analogues (Fig. 4)
[19,36,37].

Here we document that the increased expression of
genes involved in the down regulation of CXCR4 sig-
nalling and the CXCR4 splice variant balance predict
the prognosis of therapy-naı̈ve Ewing sarcoma patients.
In addition the CXCR4-1/-2 ratio, the level of CXCL14
and level of CXCR7 may be used as markers for thera-
peutic inhibition of the CXCR4 pathway. Based on our
results, additional studies to further characterise the role
of altered CXCL14, CXCR7 and CXCR4-1/-2 ratio in
CXCR4 signalling, could be performed in model sys-
tems, such as well-established zebrafish models [38].
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[26] Décaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP,
Sachdev P. CXCR7/CXCR4 heterodimer constitutively recruits
b-arrestin to enhance cell migration. J Biol Chem 2011;286:
32188–97.

[27] Krook MA, Nicholls LA, Scannell CA, Chugh R, Thomas DG,
Lawlor ER. Stress-induced CXCR4 promotes migration and
invasion of Ewing sarcoma. Mol Cancer Res 2014;12:953–64.

[28] Ding L, Morrison SJ. Haematopoietic stem cells and early
lymphoid progenitors occupy distinct bone marrow niches.
Nature 2013;495:231–5.
[29] Berahovich RD, Zabel BA, Lewén S, Walters MJ, Ebsworth K,
Wang Y, et al. Endothelial expression of CXCR7 and the regulation
of systemic CXCL12 levels. Immunology 2014;141:111–22.

[30] Rivera LB, Meyronet D, Hervieu V, Frederick MJ, Bergsland E,
Bergers G. Intratumoral myeloid cells regulate responsiveness and
resistance to antiangiogenic therapy. Cell Rep 2015;11:577–91.

[31] Sánchez-Martı́n L, Sánchez-Mateos P, Cabañas C. CXCR7
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