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expression analysis of CCL21 and its receptor CCR7 
in 24 therapy-naïve tumors showed that there was no 
expression in all bar one Ewing sarcoma cells. In con-
clusion, CCL21 is expressed in clinical Ewing sar-
coma samples by nontumor-infiltrating immune cells. 
The observed positive correlation with survival implies 
that CCL21 might be a potential prognostic marker 
for Ewing sarcoma and marks the potential of CCL21 
immunotherapy for use in Ewing sarcoma.

Keywords Bone tumor · Soft tissue tumor · 
Immunotherapy · Tumor microenvironment · Immune 
response
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Abstract Ewing sarcoma is an aggressive neoplasm 
predominantly occurring in adolescents and has a poor 
prognosis when metastasized. For patients with meta-
static disease in particular, immunotherapy has been 
proposed as possible beneficial additive therapy. CCL21 
activation-based immunotherapy was successful in pre-
clinical studies in other tumor types; therefore, we 
investigated CCL21 expression in Ewing sarcoma as 
potential target for immunotherapy. The CCL21 RNA 
expression was determined in 21 Ewing sarcoma cell 
lines and 18 primary therapy-naive Ewing sarcoma sam-
ples. In the tumor samples, this was correlated with the 
number and CD4+/CD8+ ratio of infiltrating T cells 
and clinical parameters. Higher RNA expression levels 
of CCL21 significantly correlated with a lower CD4+/
CD8+ T cell ratio (P = 0.009), good chemotherapeutic 
response (P = 0.01) and improved outcome (P < 0.001). 
In patients with metastases, CCL21 expression was sig-
nificantly lower than in patients without (P < 0.0005). 
CCL21 expression was significantly higher in Ewing sar-
coma tissue samples compared to cell lines (P < 0.01), 
implying the involvement of a stromal factor. Protein 
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Introduction

Ewing sarcoma (EWS) is the third most common primary 
bone sarcoma which predominantly occurs in children and 
adolescents [1]. It is characterized by aggressive/destruc-
tive local growth and has a high-grade malignant behavior, 
with (micro-) metastases at the time of presentation being 
common. Patients with metastases or recurrent disease have 
a poor outcome with 15–30 % long-term survival [2, 3].

To date, after the initial introduction of multimodal 
chemotherapy, no further improvement in survival of these 
patients has been accomplished, and besides the classical 
parameters such as tumor site, resectability, response to 
chemotherapy and size, no prognostic markers are in clini-
cal use for decision making. EWS has a very low number 
of mutations compared to other tumors, which suggests that 
corrective apoptosis pathways are still functional, such as 
TNF-related apoptosis-inducing ligand (TRAIL) pathway 
[4–6]. The death receptor pathways and other apoptotic 
pathways are active in EWS and consequently the tumor 
is sensitive for activation of these mechanisms by natural 
killer (NK) cells and cytotoxic T cells [7–9]. Immunother-
apy in Ewing sarcoma has been shown to have a promis-
ing potential role in vitro and is being tested in two clinical 
trials by administrating donor NK-cells (NCT01287104, 
NCT02100891) [7, 8, 10].

We previously investigated the immune microenviron-
ment in EWS and demonstrated a relation between the 
number of infiltrating cytotoxic T cells and patient outcome 
[11]. Expression levels of pro-inflammatory chemokines 
[particularly chemokine (C-X-C motif) ligand 9 (CXCL9), 
chemokine (C-X-C motif) ligand 10 (CXCL10) and 
chemokine (C-C motif) ligand 5] correlated positively 
with the number of infiltrating CD8+ T cells [11]. Another 
potent T cell chemoattractant is chemokine (C-C motif) 
ligand 21 (CCL21), which acts via its receptor chemokine 
(C-C motif) receptor 7 (CCR7) as a single attractant or in 
combination with CXCL9 and CXCL10 [12, 13]. In addi-
tion, CCL21 may increase dendritic cell-provoked T cell 
responses, leading to more efficient anti-tumor immune 
responses [14, 15]. Successful use of CCL21 as immuno-
therapy has been demonstrated and a trial using dendritic 
cells expressing CCL21 showed better results than CCL21 
used alone in nonsmall lung cancer [16]. Due to the immu-
nogenic role of CCL21 and its immunotherapeutic poten-
tial, we studied the CCL21 expression in primary ther-
apy-naïve Ewing sarcoma samples and EWS cell lines by 
analyzing the RNA expression levels of CCL21. The meas-
ured RNA expression levels were correlated with the num-
ber of infiltrating T cells and the CD4+/CD8+ T cell ratio 
in Ewing sarcoma samples. A reversed CD4+/CD8+ T cell 
ratio has been reported as predictor of improved outcome in 

other tumors [17, 18]. In our study, the CD4+/CD8+ T cell 
ratio showed inverse correlation with the CCL21 expres-
sion level, and increased CCL21 expression levels were 
associated with better survival. This correlation suggests 
that testing for CCL21 levels in therapy-naïve EWS tumor 
samples could be used as a prognostic marker and supports 
a potential role for this cytokine in anti-tumor immunity.

Materials and methods

Clinical information on patient samples

Eighteen cryopreserved primary therapy-naïve samples 
from 18 EWS patients, all containing more than 80 % tumor 
cells as assessed by light microscopy, and a validation tis-
sue microarray (TMA) of formalin-fixed paraffin-embedded 
(FFPE) specimens of 16 tumors of 16 patients were obtained 
from the Department of Pathology, Leiden University Medi-
cal Center, and were handled in a coded fashion, according 
to the Dutch National Ethical Guidelines (‘Code for Proper 
Secondary Use of Human Tissue’). Ewing sarcoma diag-
nosis was established according to WHO criteria, including 
immunohistochemistry (IHC) and Ewing sarcoma break-
point region 1 (EWSR1) translocation detection either by 
real-time quantitative reverse transcriptase PCR (RT-Q-PCR) 
or by interphase fluorescence in situ hybridization (FISH). A 
good chemotherapeutic response was defined by <10 % mor-
phologically viable tumor cells upon histopathologic evalu-
ation of the post-chemotherapy resection specimen [19, 20]. 
Median patient age at diagnosis of the cohort was 17.5 years 
(range of 5–35 years) (Supplementary Table S1).

Ewing sarcoma cell lines

Ewing sarcoma cell lines (n = 21) were obtained from 
multiple sources: L-1062 and L-872 were established in-
house [21]; CHP100, RM-82, IARC-EW7, TC32 and 
6647, CHP100, RM-82, IARC-EW-7, WE-68, IARC-
EW-3, STA-ET-2.1, TTC-466, STA-ET-10, CADO-ES1, 
TC-71, VH-64, COH and STA-ET-1 were obtained from 
the EuroBoNeT consortium collection (Institute of Pathol-
ogy, University Medical Center, Düsseldorf, Germany) 
[22] and SK-ES-1, SK-NM-C, A-673 and R-D-ES from the 
American Type Culture Collection (ATCC). All cell lines 
and primary culture L-4027 were cultured in a monolayer 
under equal conditions and in Iscove’s modified Dulbecco’s 
medium containing GlutaMAX supplement, supplemented 
with 1 % streptomycin/penicillin and 10 % heat-inactivated 
FCS (all from Life Technologies, Bleiswijk, The Nether-
lands). Authentication of cell lines using Powerplex 1.2 
and CellID STR (Promega, Leiden, the Netherlands) and 
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mycoplasma DNA Q-PCR screening were regularly per-
formed on all cell lines.

RNA isolation

Total RNA was isolated using TRIzol reagent (Life Tech-
nologies, Bleiswijk, the Netherlands) according to the man-
ufacturer’s instructions. RNA concentration was measured 
using Nanodrop, and quality of the RNA was determined 
using Bioanalyzer2000 RNA Nano chip (Agilent Technol-
ogy, Amstelveen, The Netherlands). Samples with a RNA 
integrity number ≥5 were included for RT-Q-PCR analysis.

RT‑Q‑PCR analysis and Fluidigm

cDNA generation and RT-Q-PCR using Fluidigm BioMark 
system was performed according to the H format protocol 
of the manufacturer (QIAGEN, Venlo, the Netherlands). 
Samples were prepared for RT-Q-PCR using a 96 × 96 
dynamic array chip and performed using BioMark HD sys-
tem (Fluidigm, San Francisco, CA, USA). All primers for 
this array chip were obtained from QIAGEN (Venlo, The 
Netherlands) including nine control genes: RPL13A, BTF3, 
YWHAZ, UBE2D2, ATP6V1G1, IPO8, HBS1L, AHSP and 
TBP. Samples were measured in duplicates and analyzed 
using BioMark software, delivered with the HD system.

Detection of infiltrating T‑lymphocytes

Number of CD4- and CD8-positive T cells were deter-
mined according to Berghuis et al. [11]. In brief, FFPE 
tumor sections were stained for CD3 (Dako, Heverlee, Bel-
gium), CD4 and CD8 (Novocastra, Newcastle upon Tyne, 
UK) and scanned with Zeiss LSM-510 confocal micro-
scope (Carl Zeiss AG, Göttingen, Germany). In each sec-
tion 10 areas were selected, digitally photographed and 
lymphocytes were counted.

Immunohistochemistry

Tumor sections were stained with anti-CCL21 (clone: 
HPA051210) (Sigma-Aldrich, Steinheim, Germany) and 
CCR7 (Abcam, Cambridge, UK) antibodies. Extensive 
validation data for anti-CCL21 antibody (HPA051210) 
using IHC on various TMAs and western blots are acces-
sible at the Human Protein Atlas portal [23]. Sections were 
dewaxed, rehydrated and were subjected to citrate pH6.0 
(CCL21) or Tris/HCl-EDTA pH9 (CCR7) antigen retrieval. 
Sections stained for CCL21 expression were incubated 
with 5 % nonfat dry milk for 30 min at room temperature 
and incubated with anti-CCL21 (1:600) in 5 % ELK over-
night at 4  °C. Sections stained for CCR7 expression were 

incubated 1.5 % BSA with anti-CCR7 (1:2000) overnight 
at 4  °C. Afterward sections were incubated with Immuno-
logic Poly-HRP-GAM/R/R IgG (Leica Biosystems, Eind-
hoven, The Netherlands) and Dako liquid DAB+ Substrate-
Chromogen System (Dako, Heverlee, Belgium). Scanning 
of the slides was performed by Philips Ultra Fast Scanner 
(Philips Healthcare, Eindhoven, Netherlands). Tonsil tis-
sues, both regular and decalcified FFPE processed, were 
used as a control. All slides were evaluated by at least two 
experienced persons of whom one was a reference patholo-
gist (PCWH).

Statistical analysis

Survival curves were calculated using the Kaplan–Meier 
method, and P values were calculated using the log-rank 
test using SPSS 20 (IBM Inc. Amsterdam, The Nether-
lands) and Prism GraphPad 6 (GraphPad Software Inc. 
La Jolla, CA, USA). Multivariate analysis of the param-
eters could not be performed due to the limited number of 
samples. Correlations were calculated with SPSS 20 using 
Pearson or Spearman correlation. High RNA expression 
was set as expression above the median. Student t test’s 
P value was calculated using Prism GraphPad 6 assuming 
nonparametric distribution due to limited number of sam-
ples and was corrected using Manley-Welch correction.

Results

RNA expression of CCL21 was analyzed in 18 primary 
therapy-naïve tumor samples, and the expression levels 
were correlated with the immunohistochemical staining 
of the CD4+- and CD8+-infiltrating T cells in eight tissue 
samples for which sufficient FFPE material was still availa-
ble (Supplementary Table S2). In these samples, the CCL21 
expression was inversely correlated to CD4+/CD8+ T cell 
ratio (Fig. 1). However, the absolute numbers of CD8+ or 
CD4+ T cells did not correlate with CCL21 expression and 
varied widely between the samples (data not shown). Since 
a high-CD8+ T cells infiltration was associated in Ewing 
sarcoma with a better outcome, we correlated CCL21 
RNA expression levels in therapy-naïve tumor samples 
with development of metastases, survival and chemother-
apeutic response. Kaplan–Meier survival analysis dem-
onstrated that an increased CCL21 expression correlated 
significantly both with improved-event-free survival (EFS) 
and with overall survival (OS) (P = 0.0001; P = 0.0004) 
(Fig. 2a, b). Moreover, natural logarithm-transformed 
CCL21 expression was significantly higher in patient who 
did not develop a metastasis compared to patients who 
did (P < 0.0005) (Fig. 2c). However, no correlation with 
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metastasis at diagnosis was observed (data not shown). The 
improved survival may be linked to a better chemothera-
peutic response as correlation between good response and 
increased CCL21 expression was observed (P = 0.02). It 
should also be noted that good response to chemotherapy 
was correlated with improved outcome (P = 0.008).

In addition, we investigated the CCL21 RNA expression 
in 21 cell lines and 1 primary culture. The CCL21 expres-
sion levels in the cell lines were significantly lower than the 

in therapy-naive tumor samples (Fig. 3), with a large varia-
tion of expression levels between tumor samples compared 
to cell lines.

To show that the difference in expression between tumor 
samples and cell lines can be accounted for by infiltrat-
ing immune cells in the tumor tissues, we studied CCL21 
expression at the protein level. The eight cases for which 
sufficient FFPE material was available were stained for 
CCL21 using IHC. In addition, the tumor samples were 
stained for CCR7, the receptor of CCL21. In the tumor 
samples, EWS cells were negative for CCL21 and CCR7, 
while infiltrating immune cells did show expression of both 
CCL21 and CCR7 (Fig. 4). An additional TMA of 16 EWS 
cases was used for validation of the CCR7 and CCL21 
expression pattern. In this TMA, similar to the other cases, 
EWS cells were CCR7 and CCL21 negative for all but one 
of the cases.

Discussion

Previously, we demonstrated that pro-inflammatory 
chemokines CXCL9 and CXCL10 were associated with an 
increase in tumor infiltrating CD8+ T cells [11]. CCL21 is, 
like CXCL9 and CXCL10, a CD8+ T cell chemoattractant, 
and its potency is enhanced by the interaction with CXCL9, 
CXCL10 and interferon gamma (IFNƴ) [13]. These findings 
prompted us to further investigate the role of CCL21 in EWS. 
We observed that an increased CCL21 RNA expression was 
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Fig. 1  Increased CCL21 RNA expression correlates with reversed 
CD4+/CD8+ ratio of infiltrating CD3+ T cells. CCL21 RNA expres-
sion levels of samples with available high-quality RNA and high-
quality FFPE material (n = 8) were natural log-transformed and 
correlated with the ratio between the total counted CD3+CD4+ and 
CD3+CD8+-infiltrating T cells. P value of the linear regression anal-
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Fig. 2  High CCL21 expression 
correlated to better EFS and OS. 
a, b CCL21 RNA expression 
levels of the primary therapy-
naïve tumors samples were 
correlated to EFS and OS using 
Kaplan–Meier survival analysis. 
Median was set as threshold 
to determine high (dotted line) 
and low (straight line) CCL21 
expression. c Natural log-
transformed CCL21 expression 
levels were compared between 
patients who developed a metas-
tasis (+) and patients who did 
not develop a metastasis (−)
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correlated with a decreased CD4+/CD8+ ratio. It is likely 
that these CD3+CD8+-positive lymphocytes are T cells, but 
the presence of CD3+CD8+ NK T cells cannot be excluded 
[24]. In addition, increased CCL21 expression correlated 
with both better EFS and OS and inversely correlated with 
the development of metastasis. These observations may point 
toward a role of CCL21 in the anti-tumor immune response 
related to the proportion and type of immune cells present in 
or around the tumor in EWS patients; this has been observed 
in other tumors including breast cancer and melanoma [25–
27]. Even though the presence of infiltrating immune cells 
in pediatric sarcomas, particularly in EWS, was found to be 

limited [28], the effect of these cells with regard to therapy 
response is significant [11].

A second factor which might have had an influence on 
the observed correlation with patient survival is the chemo-
therapeutic response of the tumor. In this study (P = 0.008) 
and other studies, a correlation with patient survival was 
reported [20, 29, 30]. Patients with a good chemothera-
peutic response had a higher CCL21 expression in the 
tumor sample compared to patients with a poor response. 
Although it is generally believed that chemotherapy has 
an immunosuppressive effect by decreasing the number of 
leukocytes, by now it has become clear that certain chemo-
therapeutic agents can augment the tumor immunogenicity 
and stimulate dendritic cell maturation [31–33]. In mice, 
combining CCL21 immunotherapy with the chemothera-
peutic agent paclitaxel had a synergistic effect [34]. CCL21 
attracts dendritic cells and is suggested to improve the T 
cell activation of mature dendritic cells [14, 35]. Increased 
expression of CCL21 might be associated with an increase 
in the number of dendritic cells or an improved immuno-
logic response upon tumor cell death. In patients with 
CCL21-expressing cells present in or around the tumor, 
chemotherapy could enhance the anti-tumor immunity and 
subsequently lead to a better chemotherapeutic response. 
Our study is based on a small patient cohort, and there-
fore, a larger study using therapy-naïve samples would be 
needed to validate the observed correlations.

The significantly higher CCL21 expression in primary 
therapy-naïve tumors compared to EWS cell lines suggests 
the involvement of a stromal factor in CCL21 expression. 
CCL21 expression can be enhanced by the interaction with 
CXCL9, CXCL10 and IFNƴ [13]. However, we reported 
previously the absence of CCL21 expression in cell lines 
even after IFNƴ stimulation indicating that this might be 
regulated by the EWSR1–friend leukemia virus integration 
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Fig. 3  RNA expression levels of CCL21 were significantly higher in 
tumor samples compared to cell lines. CCL21 expression levels of 21 
cell lines and 1 primary culture were compared to expression levels 
of the primary therapy-naïve tumor samples

Fig. 4  Neither CCR7 nor CCL21 expression was observed in Ewing 
sarcoma cells by immunohistochemical detection. Eight tumor sam-
ples included in the RNA expression analysis and a TMA with 16 
samples in duplicate were stained for CCR7 and CCL21 (20× mag-
nification). a Tumor cells showed no expression, while infiltrating 

immune cells showed expression of CCR7 (left inset, 40× magni-
fication), positive control is in the right inset from tonsil. b Tumor 
cells showed no expression, while infiltrating immune cells showed 
expression of CCL21 (left inset, 40× magnification), positive control 
is in the right inset from tonsil. Magnification: 20×
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1 (FLI1) transcription factor [3, 11]. In this study, some 
cell lines expressed, at low levels, CCL21. The difference 
in CCL21 expression between tumor samples and cell lines 
might be not only caused by a stromal factor but could also 
be due to selective in vitro culture conditions. Therefore, 
the protein expression levels and localization of CCL21 
were determined in EWS patient samples using IHC and 
demonstrated that CCL21 expression was restricted to 
tumor infiltrating immune cells and that it was not pre-
sent in EWS cells. In addition, only in one sample CCR7 
expression was detected in EWS cells. EWSR1–ETS fusion 
protein is known to downregulate, directly or indirectly, 
many chemokines and chemokine receptors, for example 
by altering regulatory miRNA expression levels and pattern 
[3]. Of these, the let-7 miRNA family is known to regulate 
expression of the CCL21–CCR7 [36]. The tumor suppres-
sor let-7a is, for example, known to be directly downregu-
lated by EWSR1–ETS, but this decrease in let-7a does not 
lead to increased CCR7 expression like in breast cancer 
cells [37, 38]. Several studies have investigated the role of 
the let-7 family in EWS and demonstrated a high expres-
sion of some members, mainly let-7g, in tumor samples. 
These studies also revealed various pathways in which 
these let-7 family members play a role; however, none of 
them could establish a direct connection between CCL21 
or CCR7 and let-7 [37–41].

It is important to note that high CCL21 expression in 
tumor cells, for example in bladder cancer and breast can-
cer, is associated with an increased proliferation, number 
of metastases and a suppressive immune reaction. This 
might be as a result of paracrine or autocrine activation of 
a pro-tumorigenic CCL21/CCR7 axis [25, 27, 42]. As in 
EWS cells, no CCL21 expression was detected and CCR7 
expression except in only one sample, and therefore, an 
active CCL21/CCR7 axis in EWS cells is unlikely. In stud-
ies which correlate CCL21 and CCR7 expression, not only 
the expression level but also the source, tumor cells versus 
infiltrating immune cells, should also be considered and 
recorded.

The potency of immunotherapy to treat EWS has 
been demonstrated by a number of studies [7, 8, 10, 43]. 
CCL21 is a chemoattractant for dendritic cells, cytotoxic T 
cells and natural killer cells and can improve the immune 
response. It has been tested as an immunotherapeutic 
agent in preclinical and clinical settings as a single agent 
and combination with chemotherapy [15, 16, 34]. The 
combination with chemotherapy had a synergistic effect 
[34]. This could be true for EWS as well, considering the 
increased expression CCL21 in patients with a good chem-
otherapeutic response. However, prior to administration of 
CCL21 immunotherapy, determination of CCR7 expres-
sion in EWS samples may be needed, as high expression 
of CCL21 and CCR7 expression in tumor cells was found 

to have negative effect and, one out of the 24 tested EWS 
samples showed high CCR7 expression in tumor cells. For 
this case, CCL21 administration might have resulted in an 
adverse effect, but further studies are needed to draw con-
crete conclusions. In addition, the potential of CCL21 treat-
ment in not CCL21-primed tumors, meaning no CCL21 
expression was present, should be further investigated.

In conclusion, in this study, we showed that patients 
with increased CCL21 RNA expression have a better EFS 
and OS. In addition, protein expression of CCL21 and its 
receptor CCR7 were not detected in all but one sample of 
EWS cells, indicating the absence of pro-tumorigenic par-
acrine and autocrine loops the majority of EWS cases. This 
tumor entity could therefore serve as a good target for an 
immunotherapy approach based on the use of CCL21. Fur-
thermore, expression levels of CCL21 might be used as a 
potential prognostic marker for survival.
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