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4.1 Abstract 

Dynamic materials have emerged as valuable substrates for a broad range of 

applications in 3D cell culture because of their viscoelastic properties that closely 

mimic the in vivo cell microenvironment. Disulfide-based crosslinks in covalent polymer 

materials have shown dynamic character through thiol-disulfide exchange. However, 

control over their formation in these materials remaining challenging. Herein, we 

report a strategy for generating disulfide crosslinks in polymer materials in a controlled 

manner cyclic thiosulfinate-functionalized monomers. Mono-S-oxo-1,2-dithiolane (ODT) 

was reacted with 4-arm polyethylene glycol (PEG) to obtain the hydrogel macromer, 

PEG-4ODT, and subsequently with thiol PEGs to rapidly form hydrogels with dynamic 

and self-recovering properties. To increase the stability of the formed networks, static 

thiol/vinyl sulfone crosslinks were introduced into the same hydrogel, while retaining 

their self-healing character and improving their stablility for long term cell culture (14 

days). Additionally, this viscoelastic hydrogel supported the culture of hESC-derived 

cardiomyocytes in 3D, showing cells with elongated morphologies, spontaneous 

beating and cell alignment while none of them was observed in static hydrogels. The 

ODT unit was proven to be efficient in rapid hydrogel formation while maintaining the 

viscoelastic character of the materials. Together with thiol/vinyl sulfone crosslinks, the 

dynamic hydrogel was validated as an efficient matrix for the long term 3D culture of 

cardiomyocytes that facilitates their native behavior (e.g. alignment, beating) and 

further underlines the importance of the use of dynamic materials for 3D cell culture 

applications.  
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4.2 Introduction 

The progress of 3D cell culture models is rapidly advancing research in areas of drug 

discovery, disease modeling, regenerative medicine and tissue engineering due to their 

indispensable roles in narrowing the gap between in vitro culture and in vivo 

conditions.[1–3] The abundant choice in cell source offers the possibility to develop a 

wide range of models that can mimic healthy and diseased states of tissues. Induced 

pluripotent stem cells stand out in this regard because of their capacity to differentiate 

into virtually any cell type of the human body while retaining genetic features of the 

patient they are obtained from, providing a personalized view in the above areas. In 

the field of drug discovery there is an interest to develop improved cellular models to 

better predict toxicity of therapeutic candidates. However, cardiomyocytes derived 

from induced pluripotent stem cells show distinct morphological, electrical and 

functional properties in comparison to their adult counterparts because of their fetal-

like character.[4–6] These immature features limit their ability to accurately predict 

patient responses, but further underscore the need to better understand the 

conditions necessary to promote their maturity.  

Natural materials, such as Matrigel, gelatin and collagen, have been widely 

explored to support the growth cells and tissues. Although they provide numerous 

biological cues, these matrices are chemically undefined and lack the potential to tune 

their mechanical properties to match a variety of tissues.[7–10] In contrast, synthetic 

polymer hydrogels provide an alternative water-rich platform that is chemically defined, 

with tunable mechanics that can approximate the stiffnesses of a range of tissues.[11–13] 

In these materials static crosslinks efficiently maintain the gel state during culture, 

however the materials lack the ability to recapitulate viscoelasticity of native tissues 

affecting parameters such as cell migration that is critical for morphogenesis.[14] Thus, 
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synthetic polymer materials that can achieve the stiffness of adult tissues, but contain 

viscoelastic properties are necessary to support cell behavior in complex processes 

such as those that are found in development to further refine the available cell culture 

models.  

Dynamic covalent bonds that combine strength of static covalent bonds and 

reversibility of non-covalent interactions have been broadly applied in the field of 

polymer chemistry to engineer the viscoelasticity of covalent polymer materials.[15–18] 

Boronates,[19] disulfides,[20] Diels–Alder adducts,[21,22] thioesters,[16,23] Schiff bases,[24] 

aldehydes and hydrazides have been frequently reported in this line.[25,26] However, the 

use of these bonds as crosslinks on their on can be insufficient with respect to 

machanics and stability in applications such as 3D cell culture. Thus, their combination 

with static covalent bonds has been examined as a strategy to further control these 

features for applications in tissue culture. The obtained network benefits from the 

synergy in properties between both crosslinks, e.g. physical and reversible crosslinks 

that are dynamic and self-healable, and static covalent crosslinks that provide 

mechanical stiffness and stability.[27–31] For example, Anseth and co-workers employed 

the boronate chemistry to fabricate an adaptable PEG hydrogel, in which the cis-1,2-

diols are crosslinked with boronic acids resulting in a dynamic hydrogel displaying a fast 

stress relaxation profile. A secondary static crosslink is required support a stable 3D cell 

culture platform in presence of serum containing media.[19]  

Among the dynamic covalent bonds, disulfide chemistry is attractive for 

biomaterials applications because of its biological relevance and reversibility under 

mild conditions with respect to various stimuli (e.g. redox, light, heat). However, the 

introduction of crosslinks based on disulfides can sometimes prove challenging due to 

premature cross-linking of the polymers prior to their application. Hence, latent or 

protecting group strategies have been used to facilitate their introduction into polymer 

materials. Latent strategies using cyclic 1,2-dichalcogenides, such as 1,2-dithiolanes, 
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are attractive because of their capacity to form poly(disulfides) on ring opening 

polymerization through the addition of nucleophiles or light in water. Moreover, 

thiol/cyclic 1,2-dithiolane exchange reactions were faster than that of thiol and linear 

disulfide,[32,33] and these reactions are reversible and tunable, depending on the 

substituent pattern on the cyclic dithiolane ring.[34] Waymouth and co-workers 

designed novel water-soluble triblock (ABA) copolymers with pendant 1,2-dithiolanes 

that form hydrogels based on thiol-initiated ring opening polymerization of pendant 

1,2-dithiolanes with shear-thinning and dynamic flow behaviors as a result of the 

formed disulfide polymers.[20,35] Recently, we reported use of cyclic 1,2-dithiolanes to 

crosslink with norbornene on linear PEG polymers through UV irradiation obtaining 

hydrogel materials with branched macromolecular architectures and self-recovering 

properties.[36] However, due to the use of small molecules or light to facilitate their 

crosslinking, their application can be challenging when more sensitive cell types are 

involved and thus, latent strategies that enable gel formation in a controlled and rapid 

manner with high cytocompatibility remain necessary. 

Thiosulfinates are intermediates obtained in the oxidation of thiols to sulfonic 

acids. While efficient in making disulfide-containing compounds, in most cases, the 

linear thiolsulfinates easily decompose upon heating. Recently, Donnelly et al. reported 

several chemically stable cyclic thiosulfinates that were easily synthesized by 

oxidication of cyclic disulfide. The use of cyclic thiosulfinates for protein crosslinking 

was validated, reacting rapidly (~10 min, >95% conversion) in comparison to days in the 

case of 1,2-dithiane.[37] Because of the rapid protein cross-linking kinetics, we became 

interested in the capacity of this latent thiol strategy to crosslink polymer materials for 

3D cell culture applications. We introduced 1,2-dithiolane-1-oxide (ODT) on a 4-arm 

PEG macromer (PEG-4ODT) and evaluated its triggering by thiol-functionalized PEG 

(PEG-4SH) to form polymer materials with disulfide crosslinks. We further examined 

the use of this cross-linking chemistry to prepare scaffolds with modular stiffness for 
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the 3D culture of embryonic pluripotent stem cell derived cardiomyocytes focusing on 

understanding the consequence of their dynamic character driving native cell 

behaviours. 

4.3 Results and Discussion 

 

Scheme 4.1. A) Preparation of dynamic ODT-SH hydrogels: mixing of PEG macromers 

PEG-4ODT and PEG-4SH yields dynamic disulfide crosslinked hydrogels with tunable 

stiffnesses. B) After incorporation of thiol/VS crosslinks by mixing of PEG-4VS 

macromers, a stable and dynamic PEG hydrogel was obtained. C) Cardiomyocytes that 

were 3D cultured in this dynamic PEG hydrogel displayed natural cell behavior: cell 

alignment. 

ODT-crosslinked hydrogel preparation and characterization. Two PEG macromers, 

end-functionalized with a cyclic disulfide (dithiolane, DT), and a cyclic thiosulfinate 
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(ODT) were first synthesized (Scheme S4.1). DT and ODT with carboxylic acid handles 

were synthesized according to previous reports,[38] prior to coupling coupled onto 

hydroxy PEG macromers through Steglich esterification in presence of N,N'-

dicyclohexylcarbodiimide (DCC) and 4-dimethylaminopyridine (DMAP). The DT (PEG-

4DT) and ODT-functionalized 4-arm PEG macromers (PEG-4ODT) were obtained by 

precipitation in cold diethyl ether and dialyzed against water with a high degree of end-

functionalization (PEG-4DT ca. 86%, Figure A4.5; PEG-4ODT ca. 90%, Figure A4.6). 

Following a similar protocol, the ODT-functionalized linear PEG macromer (PEGdiODT) 

was prepared with a high degree of functionalization of 86%. Detailed synthetic 

information can be found in the Supporting Information.  

To prepare the hydrogels, stock solutions of PEG macromers PEG-4DT and PEG-

4ODT were first dissolved in PBS (pH 7.4) and mixed in particular ratios to result in their 

gelation. Gel inversion tests were first performed on hydrogels consisting of PEG-4ODT 

and PEG-4SH (ODT-SH hydrogels) at a fixed thiol/ODT molar ratio to gain insight into 

the concentrations where gels are formed and gelation time. Transparent hydrogels 

were formed when the total PEG macromer concentrations were higher than 4 mM 

with thiol/ODT molar ratios at 1:1 and 2:1 (Figure S4.1 and S4.2), while no hydrogels 

were formed using the same conditions for PEG-4DT and PEG-4SH. This result points to 

the decreased reactivity of thiol/DT pair in comparison thiol/ODT pair, and is consistent 

with an earlier report of Agar and co-workers.[37] Notably, ODT-SH hydrogels formed 

within 5 min when the PEG macromer concentration was higher than 6 mM, 

showcasing the rapid kinetics of the thiol/ODT reaction and suitability for 3D cell 

culture applications. Moreover, the gelation kinetics were faster than the thiol/VS 

bioconjugation reaction where 10 mins were necessary to form hydrogels on a PEG 

macromer concentration of 12 mM (Figure S4.3). To better understand the thiol/ODT 

reaction on polymer materials, linear PEG macromers with ODT were also prepared. 

Hydrogels were formed at a total PEG macromer concentration of 10 mM suggesting 
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the reaction of one ODT moiety with more than one thiol group to form a  crosslinked 

network between linear PEGs. This rapid crosslinking between thiol and ODT opens a 

new route to prepare hydrogels from both star and linear PEG macromers under cell 

culture conditions. 

Oscillatory rheology measurements were performed to quantitatively assess the 

gelation time and mechanical properties of the disulfide networks. The ODT-SH 

hydrogels showed storage moduli (G’) that were significantly greater than the loss 

moduli (G’’) with tunable stiffness and gelation time based on macromer concentration. 

In contrast, the mixing of PEG-4DT and PEG-4SH resulted in a rheological profile 

consistent with the lack of gel formation (G’’>G’) (Figure 4.1A). The stiffness of ODT-SH 

hydrogels can be tuned from 200 Pa to 5 kPa by varying total PEG macromer 

concentration from 4.5 to 8 mM. Moreover, the gelation time also decreased from 10 

to less than 1 min with increasing the total PEG macromer concentration (Figure 4.1B). 

For ODT-SH hydrogel consisting of 3.0 mM PEG-4ODT and 3.0 mM PEG-4SH, the linear 

viscoelastic (LVE) region showed a limit of applied strain of 322%. Frequency sweep 

measurements demonstrated that G’ was greater than G’’ by two orders of magnitude 

over the frequency range from 0.01 Hz to 10 Hz, confirming the formation of 

viscoelastic materials (Figure S4.6). To probe the contribution of the dynamic thiol/ODT 

crosslinks to the ODT-SH hydrogel mechanical properties, we tested their capacity to 

self-recover by performing a step-strain experiment. The storage modulus (G’) 

recovered more than 90% of its original value after the application of large strain 

(700 %) within 2 min (Figure 4.1C). Alternating the strain from high (700%) to low 

(0.05%) in a cyclic manner further exposed the potential recovery property of the 

materials. Considering their subsequent application as 3D cell culture materials, the 

mechanical properties of the hydrogels were further tested at 37˚C. The data showed 

that G’ measured at room temperature was 5.4, 3.5, 2.2 and 1.9 times higher than the 

samples measured at 37˚C when total PEG macromer concentrations were 4.5, 5, 6,  
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and 8 mM, respectively (Figure 4.1D). The decreased stiffness of the materials likely 

results from the increased rate of thiol/disulfide exchange at 37˚C,[39] further indicating 

the formation of disulfide crosslinks and the inherent dynamic character of the 

network. Importantly, the ODT-SH hydrogel retained its viscoelastic and self-healing 

properties at 37˚C, opening the door to its future use in 3D cell culture applications 

(Figure S4.7). 

 
Figure 4.1. A) Storage (G’) and loss moduli (G’’) of ODT-SH hydrogels and DT-SH 

networks collected by a time sweep measurement at 25 ± 0.2˚C with a fixed frequency 

of 1 Hz and strain of 0.05%. B) Time sweep measurements of ODT-SH hydrogels with 

total PEG macromer concentrations of 4.5, 5, 6 and 8 mM. G’ and G’’ were collected at 

25 ± 0.2˚C with a fixed frequency of 1 Hz and strain of 0.05% until a plateau in the 

moduli was obtained. C) Step-strain measurements of ODT-SH hydrogel (6 mM) at 25 ± 

0.2˚C with a frequency of 1 Hz; Low (0.05%) and high strain (700%) were applied for 

300s alternatively for two times. D) Averaged storage moduli (G’) of ODT-SH hydrogels 

that measured under 25 ± 0.2˚C and 37 ± 0.2˚C with total PEG macromer 

concentrations at 4.5, 5, 6 and 8 mM, respectively. (N = 3) 
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To characterize crosslinking of thiol/ODT at molecular level, nuclear magnetic 

resonance (NMR) and liquid chromatography–mass spectrometry (LCMS) experiments 

were performed using model molecules. The reaction between ODT unit and 

glutathione (GSH) in deuterated water (D2O) was monitored by NMR spectroscopy, and 

changes to ODT were followed tracking the chemical shift of the -CH3 group. Unreacted 

ODT shows a chemical shift of 1.62 ppm for the -CH3 group, whereas its reaction with 

GSH shows an upfield shift 1.48 ppm to 1.31 ppm. After 75 h incubation using a 

thiol/ODT molar ratio of 1:1, 51% ODT was consumed and this value increased to 100% 

when the thiol/ODT molar ratio was increased to 2:1, 4:1 and 8:1, implying that ODT 

reacts with GSH in a 1:2 molar ratio. Moreover, LCMS data supports the determined 

ratios from NMR, as ODT molecules were transferred into compound M1 (t=2.55 min, 

m/z 777.25), as previously reported for the crosslinking of proteins with cyclic 

thiosulfinate. When ODT was treated with excess GSH (thiol/ODT molar ratio at 4:1 and 

8:1), a major shift from 1.31 to 1.48 ppm was recorded and a new compound M3 

(t=3.17, m/z 942.67) was identified. These results indicate that the thiol/ODT 

crosslinking reaction involves two steps: one, the ODT reacts with GSH in a molar ratio 

of 1:2; two, M1 undergoes further thiol/disulfide exchange in presence of thiols to 

form product M3 (Figure S4.5). 

To investigate the applicability of the thiol/ODT chemistry for 3D cell culture, NIH 

3T3 cells were encapsulated within the ODT-SH hydrogels. PEG macromer 

concentrations were kept at 6 mM and thiol/ODT molar ratios were varied from 1:1, 

2:1 and 4:1 (Figure S4.10). From LIVE/DEAD staining results, over 95% cells remained 

viable after 2 h culture and were  homogeneously distributed throughout the gel. After 

48 h cell culture, while the cells maintained high viability (> 80%) they settled down to 

the bottom due to the dissolution of hydrogel over the culture period. This result is 

likely due to the dynamic character of the polymer materials due to the disulfide 
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crosslinks, as similar behavior has been reported for other dynamic hydrogels.[19,40] 

Thus, to overcome the rapid gel erosion encountered in the ODT-SH hydrogels under 

the cell culture conditions, static thiol/VS crosslinks based on permanent covalent 

bonds were introduced into the polymer networks at the expense of the thiol/ODT 

crosslinks. 

 

Figure 4.2. Characterization of dynamic PEG hydrogels that consist of both dynamic and 

static crosslinks. A) Swelling measurements of PEG hydrogels: swelling ratios were 

examined as a function of the percentage of dynamic disulfide crosslinks on a total PEG 

macromer concentration of 6 mM. B) Oscillatory rheology time sweep measurements 

of 25%_dPEG hydrogels at total PEG macromer concentrations of 4, 4.5, 5, 6, 8 and 10 

mM. Storage (G’) and loss moduli (G’’) were collected at 37 ± 0.2˚C with a fixed 

frequency of 1 Hz and strain of 0.05% until a plateau in the moduli was reached. C) 

Averaged (N = 3)  plateau moduli, G’ and G’’, of 25%_dPEG hydrogels at total PEG 

macromer concentrations of 5, 6, 8 and 10 mM from frequency sweep measurements. 
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D) Step-strain measurements of 25%_dPEG (6 mM) at 37 ± 0.2˚C at a frequency of 1 Hz; 

low (0.05%) and high strain (700%) were applied in alternation for 300s over two cycles. 

 

Dynamic PEG hydrogel preparation and characterization. Hydrogels prepared from 

exclusively thiol/VS crosslinks are known to be stable and support cell culture in 

presence of medium containing serum.[41] Therefore, swelling experiments were 

performed on gels with both static and dynamic covalent crosslinks to determine the 

ratio of dynamic and static bonds necessary to prepare gels stable for cell culture 

experiments. Hydrogels with 12.5%-100% thiol/ODT crosslinks were prepared keeping 

the total PEG macromer concentration at 6 mM, and then incubated with cell culture 

medium at 37˚C. As observed in earlier viability experiments, ODT-SH hydrogels that 

consist of exclusively thiol/ODT crosslinks were completely dissolved within 24 h. In 

contrast, hydrogels formed from 100% thiol/VS crosslinks (sPEG) remain stable over 

the entire duration of the experiment (28 days) (Figure 4.2A). However, hydrogels 

containing 25% or less thiol/ODT crosslinks showed comparable stability to the sPEG 

hydrogel over a 28-day period. Based on their stability under cell culture conditions, 

the 25%_dPEG network was selected for further culture experiments. 

The consequence of including permanent cross-links on the mechanical 

properties of the 25%_dPEG network was further examined using oscillatory rheology. 

Similar trends were observed to the ODT-SH hydrogels in the various experiments. The 

stiffness of 25%_dPEG hydrogels displayed a concentration-dependent trend, in which 

G’ varied from 1.3 kPa to 10.4 kPa with varying the total PEG macromer concentrations 

from 4 to 10 mM. The gelation time decreased with increasing PEG macromer 

concentration from 16 min to less than 1 min (Figure 4.2B and 4.2C). The LVE region 

was determined by performing an amplitude sweep experiment in a range of strain 

from 0.1% to 1000% and a fixed frequency of 1 Hz. In the case of 25%_dPEG hydrogels 

(5 mM and 6 mM), G’ and G’’ remained constant until 56% strain, whereas for 
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25%_dPEG hydrogels (8 mM and 10 mM) a shift from the linear regime was observed 

at a strain of 99%. During frequency sweep measurements ranging from 0.01 Hz to 10 

Hz, in all test concentrations, G’ was greater than G’’ by two orders of magnitude 

confirming the formation of viscoelastic materials from hybrid crosslinks (Figure S4.8). 

Most importantly, a high self-recovery capacity (~90%) was observed in all 25%_dPEG 

hydrogels after applying high strain (700%) and low strain (0.05%) alternatively for two 

cycles (Figure 4.2D and S4.9). Overall, the combination of the long-term stability and 

high self-recovery capacity of the covalent networks with 25% dynamic thiol/ODT 

crosslinks can be useful for healthcare applications. 

 As a first approach to cell culture within 25%_dPEG hydrogel, cell encapsulation 

and viability experiments were performed. NIH 3T3 cells were encapsulated in 3D 

within 25%_dPEG hydrogels using total PEG macromer concentrations of 4.5, 6 and 10 

mM and cultured for 4 days. LIVE/DEAD staining of the hydrogels after this time period 

showed that the cells were mainly green-stained for all tested conditions indicating 

that the 25%_dPEG hydrogel is cytocompatible (Figure 4.3). It should be noted that a 

lot of cells settled down in case of 6 mM hydrogels after 4 days of culture. Since the 

swelling ratio of 25%_dPEG hydrogel at this concentration stays stable at 1.06, we infer 

that there is an interaction between dynamic hydrogels and cellular thiols or disulfides 

that results in the dissolution of network leading to cell sedimentation. Even though 

cell sedimentation occurred gradually after 4 days of culture, the 25%_dPEG hydrogel 

still supported cells within the well. When a higher concentration of PEG macromers of 

25%_dPEG hydrogel was used (10 mM), cells were supported in 3D with a reasonable 

cell viability (>60%) during the 4 days of culture, after which cell-laden hydrogel can be 

easily taken up by a spatula. Taken together, 25%_dPEG hydrogel was proven to be cell 

compatible at both low (4.5 mM) and high (10 mM) PEG macromer concentrations and 

long-term culture can be realized by introducing the second thiol/VS crosslink into 

100% thiol/ODT hydrogels. 
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Figure 4.3. 3D cell culture in 25%_dPEG hydrogels with total PEG macromer 

concentrations of 6, 8 and 10 mM. A) Representative 2D images and z-stack 3D 

overview of cells in 25%_dPEG hydrogel (6 mM) after 2, 24 and 96h culture. Cells were 

stained with calcein AM (viable cells, green) and propidium iodide (PI) (dead cells, red). 

Scale bar = 100 μm. B) Cell viability percentages were calculated by cell counting in Fiji 

after LIVE/DEAD staining. The means and standard deviations are marked inside the 

graphs, N=3. 

Maturation of hESC-derived CMs within 25%_dPEG hydrogel. The matrix 

microenvironment plays an important role in guiding cell behavior, for example, the 

morphology, spontaneous contraction and eventually, maturation of CMs. Few 

examples have been reported in fabricating dynamic materials while decoupling the 

biological cues to understand their effect on cell fate. In this work, a genetically 

modified hESC cell line was used that shows fluorescence through GFP for the cardiac 

transcription marker Nkx2.5 and mRuby for α-actinin. First, the hESC-derived CMs were 
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prepared by seeding hESCs on Matrigel coated plates and differentiated as a 

monolayer using the STEMdiffTM Cardiomyocyte Differentiation Kit. Bright field and 

fluorescence microscopy images of their differentiation in 2D were taken over a 28-day 

period as a control. As shown in Figure S4.11, the hESCs started to express the cardiac 

transcription factor Nkx2.5 (GFP fluorescence) on day 7, and the expression became 

more uniform across the cells during their further differentiation. Conversely, 

expression of α-actinin as observed from the fluorescence of mRuby is hardly visible 

until day 9, increasing in intensity after day 14 and maintained a uniform expression 

until day 28. Notably, sarcomeres were visualized through the mRuby labeled α-actinin 

showing mainly disordered structure that does not resemble the organization of 

sarcomeric α- actinin in native human myocardium.[42] RT-PCR experiments were 

subsequently performed to obatin a quantitative insight into cardiac and pluripotent 

gene expression. As seen in Figure S4.12, expression of pluripotent genes Oct4, Sox2 

and Nanog was significantly decreased over the differentiation period (P<0.0001). 

Meanwhile, increased expression of cardiac structural genes cTnT, MYH6 and MYH7 

were measured that is in line with the experimental observation of spontaneously 

beating cardiomyocytes in the culture. Cx43 protein that codes for gap junctions that 

are critical for synchronous contraction of CMs, showed significantly decreased 

expression after 8 days of differentiation (P<0.01) and remained low during the whole 

differentiation process supporting the inhomogeneous beating of cardiomyocytes. 

Taken together, the increased expression of cardiac makers and genes together with 

significantly decreased pluripotency gene expression demonstrated the successful 

differentiation of the hESC reporter line to cardiomyocytes in 2D. 

The hESC-CMs were collected after being prepared as a monolayer and reseeded 

in 3D in the 25%_dPEG and sPEG hydrogels to study their cell behavior in 3D with 

respect to various stiffnesses. From the confocal microscopy images, hESC-CMs 

cultured within all tested hydrogels maintained the expression of Nkx2.5_GFP and the 
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α-actinin_mRuby (Figure 4.4). Spontaneous beating was not immediately observed 

after seeding in 3D, but after 3 days of culture, hESC-CMs encapsulated in 25%_dPEG 

(6 mM, 4.5 kPa) hydrogel started beating, becoming more robust with further culture. 

The loss and recovery of spontaneous beating of CMs is on par with literature reports 

that show 2-3 days are necessary to regain this behavior.[43,44] In case of sPEG hydrogel, 

hESC-CMs did not spontaneously beat after reseeding, and even after further culture 

pointing out the importance of a dynamic environment to promote native hESC-CM 

behavior. Recovery of the beating of hESC-CMs was observed on day 14 for 25%_dPEG 

hydrogels with higher concentration and stiffness (8 mM, 8 kPa), whereas further 

increasing the stiffness did not yield any cell beating in 25%_dPEG hydrogels (10 mM, 

10.5 kPa). This observation can be rationalized by the inverse correlation between 

substrate stiffness and CM contraction,[45] that is, increased stiffness is expected to 

delay the recovery of hESC-CM contraction. 
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Figure 4.4. Representative confocal microscopy images of hESC-CMs reseeded and 

cultured within 25%_dPEG and sPEG hydrogels for 14 days after differentiation on 

Matrigel. Merged flurescent images of cardiac transcription factor Nkx2.5_GFP (Green) 

and the sarcomeric protein α-actinin_mRuby (Red) of the hESC-CMs after 0, 3, 7 and 14 

days of reseeding, respectively. Scale bar: 50 μm. 

Morphology of hESC-CMs within the 25%dPEG and sPEG hydrogel were captured 

by brightfield microscopy using a 10x objective (Figure 4.5). In comparison to the round 

morphology of hESC-CMs in sPEG hydrogel, hESC-CMs cultured in 25%_dPEG (6 mM) 

hydrogel displayed an elongated shape. More interestingly, after one day of culture, 

hESC-CMs started to spontaneously align in this soft and dynamic hydrogel (G’ 4.5 kPa), 

behaving similarly to the alignment of CMs in native tissues. Also, hESC-CMs started to 

show a similar alignment in the 25%_dPEG hydrogel (8 mM) on day 14. In case of stiff 
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25%_dPEG hydrogel (10 mM), cells displayed a round morphology and no alignment 

were observed over the culture period. This trend in cell behavior in 25%_dPEG 

hydrogel with respect to the beating of hESC-CMs, therefore, it is likely the dynamic 

nature of the hydrogel plays critical role in supporting their native behaviors. 

 

Figure 4.5. Bright field microscopy images of hESC-CMs that differentiated in 2D for 14 

days and then cultured in 25%_dPEG (6, 8, 10 mM) and sPEG (6 mM) hydorgels for 3, 7 

and 14 days, respectively. Scale bar: 100 μm. 

To gain more quantitative information about cardiomyocyte maturation in the 

dynamic hydrogels in 3D, RT-PCR experiments were performed at two different time 

points. Gene expression analysis revealed that the relative expression levels of Cx43 

and MYH7 were comparable in 2D and 3D hydrogel-based cultures (Figure 4.6). The 

hESC-CMs that were cultured in 25%_dPEG hydrogels (6 mM) displayed a significantly 

higher cardiac troponin T, cTnT, expression than in 2D (p < 0.05) (Figure 4.6B). This 
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increase was not observed for hESC-CMs cultured in sPEG hydrogels (6 mM). This result 

could explain the differenence in spontaneous beating that was observed in sPEG and 

25%_dPEG (6 mM) hydrogels as the cTnT protein controls the interaction between 

actin and myosin that work together in cardiomyocyte contraction. Moreover, a 

significant increase in MYH6 expression was observed for cells in sPEG and 25%_dPEG 

hydrogels (6 mM), in comparison to those maintained in 2D (P<0.05 and P<0.01, 

respectively) (Figure 4.6C). Also, a significant difference in expression of MYH7 was 

measured in 2D with a 17-fold increase in expression at day 28 in 2D, while in 3D in 

25%_dPEG hydrogels, a 1.5, 6 and 2-fold increase in 6 mM, 8 mM and 10 mM 

hydrogels, respectively, was obtained. The observation of an increase expression of 

MYH7 expression in 2D culture but a more subtle change in the 3D culture samples is 

most likely due to the variable cell density of the CMs within the hydrogels. Therefore, 

seeding a higher cell density within the gels or prolonging the culture time of hESC-CMs 

in the hydrogels in 3D is recommended to enhance the isoform transition from MYH6 

to MYH7. Taken together, 14-day culture of hESC-CMs in a soft and dynamic hydrogels, 

25%_dPEG (6 mM), facilitated spontaneous beating and alignment, significantly 

increased expression of cTnT and MYH6 accompanied by an elongated morphology. 

Hence, these experiments set the stage for the further examination of our hydrogels to 

mature hESC-CMs. 
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Figure 4.6. Relative gene expression profiles of hESC-CMs cultured on Matrigel in 2D for 

21 and 28 days, or differentiated in 2D for 14 days and then encapsulated within 3D 

PEG hydrogels for another 7 days and 14 days culture. A: Cx43. B: cTnT. C: MYH6. D: 

MYH7. The means and standard deviations are marked inside the graphs, N = 6, *P < 

0.05, ** P< 0.01. 

4.4 Conclusions 

A novel strategy to engineer disulfide-based hydrogel matetials using latent cyclic 

thiosulfinate is disclosed. Quick gelation, on the order of minutes, self-recovery and 

cytocompatible cell encapsulation was achieved. During 3D culture, dissolution of the 

hydrogel was observed when exclusively disulfide crosslinks are used. To obatin stable 

long-term cell culture, hydrogels with formulation of 25% dynamic crosslinks 

(thiol/ODT) and 75% static crosslinks (thiol/VS), or 25%_dPEG hydrogels, needed to be 

employed. This ratio showed self-recovery properties, and simultaneous increase in 

stability over 4 weeks as shown by swelling measurements. The 25%_dPEG hydrogels 

supported the culture of hESC-CMs with elongated morphologies, rapid recovery of cell 

spontaneous beating and cell alignment, demonstrating the crucial role of dynamic 
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matrix in supporting their natural behavior. Together with the significant increased 

expression of cardiac genes cTnT and MYH6, it is established that these materials show 

tremendous potential for cardiomyocytes maturation studies in the future. 
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4.6 Supporting information 

4.6.1 Materials 

Tetra-arm hydroxy-terminated PEG (Mw 10 kDa) and thiol-terminated PEG (Mw 10 kDa) 

were obtained from Creative PEGWorks and Jenkem Technology, respectively. 

Poly(ethylene glycol) (Mw 6 kDa) and a,W-Bis-mercapto poly(ethylene glycol) (Mw 6 

kDa) were purchased from Fluka and Iris Biotech GMBH. Deuterated dimethyl sulfoxide 

(DMSO-d6) and chloroform (CDCl3) were purchased from Eurisotop. All other chemicals 

and reagents for synthesis were purchased from Sigma Aldrich and used without 

further purification. Dulbecco’s modified Eagle medium (DMEM) was from Gibco, Life 

Technologies. Vitronectin XFTM, Essential 8TM medium and Ethylenediaminetetraacetic 

acid disodium salt (EDTA) were purchased from ThermoFisher Scientific. Dulbecco’s 

Phosphate Buffered Saline (DPBS), calcein AM (AM = acetoxymethyl) and propidium 

iodide (PI) were obtained from Sigma-Aldrich.  

4.6.2 Instruments 

1H NMR and 13C NMR spectra were acquired on a Bruker DMX-400 and Bruker DPX-300 

MHz at 298K. LC-MS analysis was performed on a TSQ Quantum Access MAX system 

equipped with a Gemini 3 µm C18 110 Å 50×4.60 mm column (UV detection at 214 nm 

and 254 nm, mass detection range: 160 to 3000 (Da)). The mobile phase consisted of a 

gradient of 10-90% of H2O-ACN with 0.1% trifluoroacetic acid (TFA) over 13.5 minutes. 

HPLC purification of the monomers was executed on setup equipped with C18 column. 

A gradient from 10%-90% ACN (0.1% TFA) in H2O (0.1% TFA) over 15 min at a flow rate 

of 12 mL/min was used. Oscillatory rheology experiments were executed on a 

Discovery HR-2 hybrid rheometer using a cone-plate geometry (40 mm, 1.995°) at 37 ± 

0.2 °C with a peltier-based temperature controller and solvent trap. High resolution 

mass spectra (HR-MS) were collected on a Thermo Fisher LTQ Orbitrap mass 
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spectrometer equipped with an electrospray ion source in positive mode (resolution R 

= 60000). The spectra were collected by direct injection of samples (2 µM in H2O-ACN 

50/50 v/v) and recorded with a mass range of 150-2000 and dioctylpthalate (m/z = 

391.28428) as a “lock mass”. Confocal fluorescent images were acquired on Leica TCS 

SP8 and SPE confocal laser scanning microscopes equipped with a 10× air objective and 

a 40× oil immersion objective. Images were processed using the Fiji Image J software. 

Real-time polymerase chain reaction (RT-PCR) measurements were performed on an 

ABI PRISM 7700 machine (Applied Biosystems®) using SYBR Green technology. 

4.6.2 Synthetic procedures 

 

Scheme S4.1. Synthesis route of cyclic 1,2-dithiolane (DT) and cyclic 1,2-thiosulfinates 

(ODT)  

Synthesis of DT. The synthesis of DT was performed as previously reported.[1] Briefly, 

3,3-dichloropivalic acid (4.00 g, 23.39 mmol) was suspended in water (40 mL) within a 

3-neck round bottom flask. Sodium carbonate (2.38 g, 22.46 mmol) was slowly added,  

followed by potassium thioacetate (5.38 g, 47.11 mmol). The resulting clear solution 

was heated to 100 °C, followed by the addition of sodium carbonate (7.8 g, 73.59 

mmol). After refluxing overnight, DMSO (4 mL) was added and left to stir for another 

12 h at 100 °C.  The reaction mixture (pH ~ 9) was allowed to cool to room temperature 

and was acidified with hydrochloric acid (pH ~ 1). The yellow precipitate was filtered off 

and washed with ice-cold water and dried overnight in an vacuum oven to obtain as DT 

a yellow solid. Yield: 62.5%, 2.4 g. 1H-NMR (DMSO-d6, 400 MHz): 3.57-3.54 (d, 2H), 

O
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S
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2.99-2.97 (d, 2H), 1.38 (s, 3H). 13C-NMR (DMSO-d6, 100 MHz): 175.42, 56.95, 46.97, 

23.19. 

Synthesis of ODT. Synthesis of ODT was performed according to a previously published 

protocol.[1][2] Compound A (3.0 g, 18.3 mmol) was dissolved in acetone (30 mL). 

Hydrogen peroxide aqueous solution (50%, 1.3 mL, 22.9 mmol) was added into the 

solution. The reaction mixture was stirred at room temperature for 24h, followed by a 

concentrate by N2 flow. Afterwards, the crude was purified by flash column 

chromatography on silica gel with 20% EtOAc in PE. The purified fractions were 

collected, evaporated and dried in vacuum oven overnight to obtain ODT as a white 

solid. Yield: 47.1%, 1,55 g. 1H-NMR (DMSO-d6, 400 MHz): major isomer 4.40-4.36 (d, 

1H), 3.82-3.74 (q, 2H), 3.11-3.08 (d, 1H), 1.57 (s, 3H); minor isomer 4.22-4.19 (d, 1H), 

3.97-3.94 (q, 1H), 3.43-3.40 (d, 1H), 3.32-3.29 (d, 1H), 1.50 (s, 3H). 13C-NMR (DMSO-d6, 

100 MHz): major isomer 174.65, 71.59, 58.66, 46.17, 23.43; minor isomer 174.32, 70.44, 

56.39, 44.67, 21.59 HR-MS: [M+H]+: calcd: 180.9988, found: 180.9986. 

Synthesis of PEG-4DT. DT (0.20 g, 1.21 mmol) and N,N'-dicyclohexylcarbodiimide (0.25 

g, 1.21 mmol) were dissolved in dry CHCl3 (5 mL) and stirred at room temperature for 

30 min as solution one. In a separate flask, tetra-arm hydroxyl-terminated PEG (Mw 

10k) (0.30 g, 0.03 mmol) and 4-dimethylaminopyridine (15 mg, 0.12 mmol) were 

dissolved in dry CHCl3 (5 mL). Subsequently, the PEG solution was added dropwise into 

the DT containing solution one and the reaction mixture were left stirring at room 

temperature for 24 h. The crude reaction mixture was first filtered prior to 

precipitation in cold diethyl ether, washed, re-dissolved in DCM, and re-precipitated 

from cold diethyl ether. The obtained products after three rounds of precipitation were 

re-dissolved in water, dialyzed against water for 48 h and lyophilized to obtain PEG-4DT 

as a light yellow solid. Yield: 83.3%, 0.25 g. 1H-NMR (CDCl3, 400 MHz): 4.29-4.27 (m, 2H), 

3.80-3.44 (m, 224H), 2.93-2.90 (m, 2H), 1.47 (s, 3H). 
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Synthesis of PEG-4ODT. ODT (0.48 g, 2.69 mmol) and N,N'-dicyclohexylcarbodiimide 

(0.632 g, 3.06 mmol) were dissolved in dry DMF (10 mL) and stirred at room 

temperature for 30 min. In a separate flask, tetra-arm hydroxyl-terminated PEG (Mw 

10k) (1.15 g, 0.11 mmol) and 4-dimethylaminopyridine (60 mg, 0.50 mmol) were 

dissolved in dry DMF/DCM (10 mL, 1:1, v/v). Subsequently, the PEG solution was added 

dropwise into the ODT solution and the reaction mixture was left stirring at room 

temperature for 24 h. The reaction crude was first filtered and the filtrate was 

precipitated in cold diethyl ether, washed, re-dissolved in DCM, and precipitated from 

cold diethyl ether. The obtained products after three rounds precipitation were re-

dissolved in water, dialyzed against water for 48 h and lyophilized to obtain PEG-4ODT 

as a white solid. Yield: 82.6%, 0.95 g. 1H-NMR (CDCl3, 400 MHz): 4.53-4.49 (m, 1H), 

4.29-4.27 (m, 2H), 3.90 (d, 1H), 3.81-3.44 (m, 224H), 3.04-3.00 (d, 1H), 2.95-2.87 (d, 1H), 

1.68 (s, 3H). 

Synthesis of PEGdiODT. ODT (0.32 g, 1.76 mmol) and N,N'-dicyclohexylcarbodiimide 

(0.40 g, 1.94 mmol) were dissolved in dry DMF (10 mL) and stirred at room 

temperature for 30 min. In a separate flask, linear hydroxyl-terminated PEG (Mw 6k) 

(1.18 g, 0.20 mmol) and 4-dimethylaminopyridine (121 mg, 0.99 mmol) were dissolved 

in dry DMF/DCM (10 mL, 1:1, v/v). Subsequently, the PEG solution was added dropwise 

into the ODT solution and the reaction mixture was left stirring at room temperature 

for 24 h. The reaction crude was first filtered and the filtrate was precipitated from 

cold diethyl ether, washed, dissolved in DCM, and re-precipitated from cold diethyl 

ether. The obtained products after three rounds precipitation were re-dissolved in 

water, dialyzed against water for 48 h and lyophilized to obtain PEGdiODT as a white 

solid. Yield: 75.4%, 0.89 g. 1H-NMR (CDCl3, 400 MHz): 4.53-4.49 (m, 2H), 4.32-4.27 (m, 

4H), 3.93-3.90 (d, 2H), 3.82-3.44 (m, 540H), 3.04-3.01 (m, 2H), 1.69 (s, 3H). 

Peptide synthesis. RGD peptides (CGGGRGDS) (cRGD) were synthesized on an 

automatic CEM peptide synthesizer  on a 100 µmol scale. Fmoc-Rink amide AM resin 
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with a loading of 0.74 mmol/g  was used. Fmoc-Rink amide AM resin with a loading 

capacity of 0.74 mmol/g was used. Amino acid coupling was performed with 4 eq. of 

the amino acid, 4 eq. of the activator HCTU and 8 eq. of DIPEA. Fmoc-deprotection was 

executed using a solution of  pyridine and dimethylformamide (DMF) (2:8 v/v). The 

peptides were cleaved from the resin using a TFA solution containing 2.5% H2O, 2.5% 

1,2-ethanedithiol and 2.5% triisopropylsilane (TIPS) for 3h, precipitated in cold diethyl 

ether, dried, dissolved in water and purified by HPLC using a gradient 1-10% ACN/H2O 

over 15 min. The product was concentrated by evaporation and lyophilized overnight 

to obtain a white solid. LC-MS: t =0.65 min, m/z calcd: 604.26, found: 603.07. 

4.6.3 Hydrogel preparation 

Hydrogels were prepared by separately dissolving PEG macromers in PBS (pH 7.4) and 

mixing them in the desired molar ratio. Specifically, to prepare the thiol/ODT 

crosslinked hydrogel, stock solution of PEG-4ODT (100 µL) was mixed with a freshly 

prepared solution of PEG-4SH (100 µL), and pipetted to obtain a homogeneous solution 

with a final PEG macromer concentrations in the range of 1-12 mM. The precursor 

solution was left at room temperature to gelate. Hydrogels with static crosslinks (PEG-

4VS and PEG-4SH) and with linear PEG macromers (PEGdiODT and PEGdiSH) were 

prepared in the same way. To prepare the hybrid hydrogels, stock solutions of PEG-

4ODT (60 µL) and PEG-4VS (60 µL) were mixed with freshly prepared solutions of PEG-

4SH (60 µL), and pipetted to obtain a homogeneous solution with final PEG macromer 

concentrations between 4.5-10 mM. The precursor solution was left at room 

temperature for gelation. Gelation time was determined until the gel did not flow on 

vial inversion. 
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Figure S4.1. Gel inversion test of ODT-SH hydrogels prepared from macromers PEG-

4ODT and PEG-4SH with thiol/ODT molar ratio at 1:1. 

 

Figure S4.2. Gel inversion test of ODT-SH hydrogels prepared from macromers PEG-

4ODT and PEG-4SH with thiol/ODT molar ratio at 2:1. 

 
Figure S4.3. Gel inversion test of VS-SH hydrogels prepared from macromers PEG-4VS 

and PEG-4SH with thiol/VS molar ratio at 1:1. 



 157 

 

Figure S4.4. Gel inversion test of 25%_dPEG hydrogels prepared from macromers PEG-

4ODT, PEG-4VS and PEG-4SH with thiol/ODT molar ratio at 1:1 and thiol/VS molar ratio 

at 1:3. 

4.6.4 NMR analysis 

ODT was weighed in a 2.0 mL glass vial and dissolved in deuterated water with a final 

concentration at 20 mM. In a separate vial, glutathione (GSH) was freshly weighed and 

dissolved in deuterated water with final concentrations at 20 mM, 40 mM, 60 mM and 

80 mM, respectively. The ODT solution (300 µL) was mixed with freshly prepared GSH 

solution (300 µL) by vortex for 10 s prior to its transfer into a NMR tube. The samples 

were incubated at 37 ˚C until desired time points and NMR spectra were collected on a 

Bruker DMX-400 at 298K.  
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Figure S4.5. A) 1H-NMR spectra of ODT and GSH mixture after 75-h incubation at 37˚C. 

B) Proposed mechanism of thiol (blue) and cyclic thiosulfinates (green) crosslinking. 1) 

ODT was reacted with GSH with in a molar ratio of 1:2 in the same mechanism 

reported from Agar and co-workers; [2] 2) thiol/disulfide exchange between GSH and 

M1 to result in a new free thiol, M2; 3) further thiol/disulfide exchange to give a new 

disulfide product M3. 

4.6.5 Oscillatory Rheology 

Oscillatory rheology experiments were carried out on a Discovery HR-2 hybrid 

rheometer using parallel plate geometry (20 mm diameter) at 37 ± 0.2 °C with a peltier-

based temperature controller and a solvent trap. The prepared hydrogel (100 µL) was 
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pipetted onto the bottom plate and the geometry was lowered to a gap distance of 300 

µm. Time sweep measurements were executed at a frequency of 1.0 Hz and strain of 

0.05% and frequency sweeps were conducted from 0.01−10 Hz with 0.05% strain. 

Subsequently, a step-strain measurement was performed after a plateau was reached 

in the storage modulus during the time sweep. Then, 700% strain was applied on the 

hydrogels for 300 s. The hydrogels were left to recover for 300 s while measuring at 

0.05% strain (f = 1.0 Hz) and continued with a frequency sweep (from 0.01 to 10 Hz, γ = 

0.05%), during which the storage modulus returned to the original plateau. This 

measurement was repeated for three cycles. 

 

Figure S4.6. A) Frequency sweep measurements of ODT-SH hydrogels in PBS (pH 7.4) at 

25 ± 0.2 °C. Frequency sweep data was collected in a range of 0.01 Hz to 10 Hz with 

strain of 0.05%. B) Amplitude sweep measurements of ODT-SH hydrogels (6 mM) in 

PBS (pH 7.4) at 25 ± 0.2 °C with frequency of 1 Hz and strain from 0.1% to 1000%.  
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Figure S4.7. A) Frequency sweep measurement of ODT-SH hydrogels (6 mM) in PBS (pH 

7.4) at 37 ± 0.2 °C. Frequency sweep data was collected in a range of 0.01 Hz to 10 Hz 

with strain of 0.05%. B) Amplitude sweep measurements of ODT-SH hydrogels (6 mM) 

in PBS (pH 7.4) at 37 ± 0.2 °C with frequency of 1 Hz and strain from 0.1% to 1000%. C) 

Step-strain measurements of ODT-SH hydrogels (6 mM) at 37 ± 0.2˚C with a frequency 

of 1 Hz; Low (0.05%) and high strain (700%) were applied alternatively for two cycles. 

 

Figure S4.8. A) Frequency sweep measurements of 25%_dPEG hydrogels in PBS (pH 7.4) 

at 37 ± 0.2 °C. Frequency sweep data were collected in a range of 0.1 Hz to 10 Hz with 

strain of 0.05%. B) Amplitude sweep measurements of 25%_dPEG hydrogels at 37 ± 

0.2 °C with frequency of 1 Hz and strain from 0.1% to 1000%.  
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Figure S4.9. Step-strain measurement of 25%_dPEG hydrogels in PBS (pH 7.4) at 37 ± 

0.2 °C. Low strain (0.05%) and high strain (700%) were alternated twice in a sequence 

for 300 s applied twice for 120s. The data was collected at a frequency of 1 Hz. 

4.5.6 Swelling measurements 

Hydrogels (200 µL) were prepared according to gelation protocol descripted above and 

were allowed to stand for 2h. The wet weight of hydrogels were measured as W0. 

Afterwards, DMEM medium (200 µL) was added on top of hydrogel and incubated at 

37˚C. At desired time points, the supernatant solution was carefully removed and the 

wet weight of the hydrogels were measured as Wt. The percentage of hydrogel 

degradation or swelling ratios was calculated by the following equation: weight change 

(%) = Wt/W0 x 100%. 

4.5.7 LIVE/DEAD staining 

NIH 3T3 cells were cultured in high glucose DMEM supplemented with 10% Fetal Calf 

Serum, 1% Glutamax, and 0.2% penicillin-streptomycin in a 37 °C incubator with 5% 

CO2. Prior to encapsulation, cells were dissociated by trypsin, collected by centrifuge 

and re-suspended in PBS with a final cell centration at 2 x 107 cells/mL. To prepare the 

ODT-SH hydrogel, PEG-4ODT stock solution (80 µL) was first mixed with freshly 

prepared cRGD (PBS, 10 µL) by pipetting. After 5 min incubation, a cell suspension (20 

µL) was added and mixed, followed by the addition of a freshly prepared PEG-4SH 
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solution (90 µL). The precursor solution was mixed and pipetted into µ-Slide 

angiogenesis slide by 12µL/well. After incubated at 37˚C for 15 min, fresh culture 

medium (48 µL) was added on top and cells were cultured at 37 °C. At pre-determined 

time points, the medium on top of the hydrogel was removed by pipetting, rinsed 

twice with PBS (pH 7.4, 45 µL) and incubated with a prepared staining solution (45 µL) 

(calcein AM (2 µM) and propidium iodide (1.5 µM)) at 37 °C for 20 min. The staining 

solution was removed and the hydrogel was rinsed again with PBS two times (45µL). 

The stained cell-laden hydrogel was imaged through z-stack on Leica TCS SP8 confocal 

laser scanning microscope equipped with a 10× air objective. Fluorescent images were 

acquired at a resolution of 1024 × 1024 pixels using an excitation wavelength of 488 

nm and an emission filter of 500−545 nm for calcein AM and an excitation wavelength 

of 532 nm and an emission filter of 594−686 nm for propidium iodide. Cell viability was 

determined by counting the calcein AM-stained green cells (viable) and PI-stained red 

cells (dead) in ImageJ. For each hydrogel sample at each time point, three Z-stack 

images were counted (~2000 cells). To prepare 25%_dPEG hydrogel, PEG-4ODT stock 

solution (50 µL) was first mixed with freshly prepared cRGD (PBS, 10 µL) by pipetting. 

After 5 min incubation, PEG-4VS solution (50 µL) and cell suspension (20 µL) was added 

and mixed, following with addition of freshly prepared PEG-4SH solution (70 µL). The 

precursor solution was mixed and pipetted into µ-Slide angiogenesis slide by 12µL/well. 

After incubated at 37˚C for 15 min, fresh culture medium (48 µL) was added on top and 

cells were cultured at 37 °C. Cytocompatibility test of 25%_dPEG hydrogels was 

performed in the same protocol described above. 
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Figure S4.10. Cytocompatibility of ODT-SH hydrogels (6 mM) with thiol/ODT molar 

ratios at 1:1, 2:1 and 4:1. A) Representative z-stack images of cells in hydrogels after 2h, 

24h and 48h culture. Cells were stained with calcein AM (viable cells, green) and 

propidium iodide (PI) (dead cells, red). Scale bar: 100 μm. B) Quantification of cell 

viability. Error bars represent standard deviations of means. 

4.6.8 hESC culture and differentiation 

Human embryonic stem cell line (hESCs) was obtained from Prof. Dr. Robert Passier in 

University of Twente (The Netherlands). hESCs were cultured on six-well plates coated 

with vitronectin. Cells were passaged by use of EDTA solution (0.5 mM) with replating 

densities at 180K cells/well and 100K cells/well on Mondays and Thursdays, 

respectively. In detail, on the passage day, cells were first washed with PBS and 

incubated with EDTA solution for 5 min at 37°C. After aspirating the EDTA solution, 

Essential 8TM medium (RevitaCell 1:200, 2 mL) was added. A P1000 micropipette was 

used to suspend and dissociate cells (6-8 times). Cells were first collected by a 5-min 

centrifuge at 300g and then replated into new plates. The replated cells were treated 
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with medium supplied with Revita Cell (1:200) for 24h and refreshed with E8 medium 

and cultured until next passage. 

Prior to the start of cardiomyocyte differentiation, Matrigel coated plates were 

prepared according to a reported protocol.[3] On the passage day, hESCs were seeded 

on the Matrigel coated plates and differentiated to cardiomyocytes using the 

STEMdiffTM Cardiomyocyte Differentiation Kit (Stem Cell Technologies). Fluorescent 

images of hESC-derived cardiomyocytes (hESC-CMs) were acquired on a Leica SP8 

confocal microscope at predetermined time points using an excitation wavelength of 

488 nm and an emission filter of 500-545 nm for GFP and an excitation wavelength of 

532 nm and an emission filter of  600-680 nm for mRuby. 

 

Figure S4.11. Representative images of hESC-CM differentiation on Matrigel in 2D over 

28 days . Fluorescent images of cardiac transcription factor Nkx2.5_GFP (green) and the 

sarcomeric protein, α-actinin_mRuby (red). Brightfield microscopy images were 
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captured after 7, 9, 14, 17 and 28 days differentiation, respectively. Merged images 

were prepared in Fiji. Scale bar: 50 μm. 

4.6.9 hESC-CMs encapsulation and culture in 3D 

After 14-days differentiation, hESC-CMs were first washed with DPBS and then 

dissociated by incubation with a TrypLE Select (1x) solution for 5 min at 37 °C. The 

TrypLE Select solution was removed and cells were suspended in Cardiomyocyte 

Maintenance medium by a P1000 micropipette. (8-10 times) Then, hESC-CMs were 

collected, spun down and resuspended in Cardiomyocyte Maintenance medium with a 

cell density at 5 x 107 cells/mL. Afterwards, hESC-CMs were encapsulated within 

25%_dPEG hydrogels and sPEG hydrogel in the same way as NIH 3T3 cells.  Complete 

cardiomyocyte maintenance medium (48 μL) was added on top of the gel and was 

refreshed every other day. At desired timepoints, bright field images were acquired on 

SP8 confocal microscope using 10x and 20x objectives. Fluorescent images were 

acquired at a resolution of 1024 x 1024 pixels and a z-step size of 2.00 µm, using an 

excitation wavelength of 488 nm and an emission filter of 500-545 nm for GFP and an 

excitation wavelength of 532 nm and an emission filter of  600-680 nm for mRuby. 

4.6.10 RT-PCR 

At pre-determined time points, cells were lysed with GTC lysis buffer (500 µL) at room 

temperature for 1 min and stored at -20 °C until RNA isolation was initiated. For cells 

released from the hydrogels, GTC (500 µL) was added and incubated at room 

temperature for 6 min. After that, the gels were spun down (5 min, 500g) and the 

supernatant was collected in a new Eppendorf tube. 

Total RNA was collected using the standard phenol/chloroform extraction 

method and 500 ng RNA was reverse transcribed using RevertAid Reverse 

Transcriptase. For RT-PCR, cDNA (4 µL) was mixed with primers mix (Table S4.1) and 
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SensiMix SYBR low-ROX mix and analysis was performed on a 7500 Fast Real-time PCR 

system (Applied Biosystems). Gene expression was normalized to the averaged gene 

expression of two housekeeping genes, the tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein zeta coding gene YWHAZ and the 60S ribosomal 

protein L37 coding gene RPL37. Outlier tests were performed on dCt values and 

relative expression values (ROUT method, Q=1%). One-way ANOVA tests were used to 

determine significant changes in gene expression (95% confidence interval), followed 

by a Tukey test to determine significant changes between groups. 

Table S4.1. Primer sequences used for RT-PCR 

Gene Forward 5’- 3’ Reverse 5’ -3’ 

Sox2 TGGTTACCTCTTCCTCCCACTCCAG TAGTGCTGGGACATGTGAAGTCTGC 

Nanog TCCAGCAGATGCAAGAACTCTCCAAC CACCATTGCTATTCTTCGGCCAGTTG 

Oct4 GCTTGGAGACCTCTCAGCCTGAG TTTIGCTCCAGCTTCTCCTTCTCCAG 

cTnT AGTTCGACCTGCAGGAGAAGTTCAAG TATTTCCAGCGCCCGGTGACTTTAG 

Cx43 GTCTGAGTGCCTGAACTTGCCTTTTC TCCAGCAGTTGAGTAGGCTTGAACC 

MYH6 TTCGAGC CAAGAGC CGTGACATTG TTACAGGTTGGCAAGAGTGAGGTTCC 

MYH7 GTCAACAAGCTGCGGGCCAAG CTGAGCAGATCAAGATGTGGCAAAGC 

YWHAZ TGAAGAGTCATACAAAGACAGCACGCT TTGGAAGGCCGGTTAATTTTCCCCT 

RPL37 TGGAGTGCCAAGGCTAAAAGACGAA GGGTTTAGGTGTTGTTCCTTCACGGA 
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Figure S4.12 Gene expression profiles of hESC-CMs differentiation on Matrigel in 2D 

over 28-days. A) Relative gene expression of the pluripotency genes OCT4, SOX2 and 

NANOG (scale: 0-1.0) and the cardiac gene Cx43 (scale: 0-1.0), cTnT, MYH6 and MYH7 

(scale: 0-15). B) C: Fold change (log2) for all genes in comparison to expression on day 0. 

N = 6 

4.6.11 Appendix: NMR spectra 

 

Figure A4.1. 1H-NMR (400 MHz, 298K, DMSO-d6) spectrum of DT 
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Figure A4.2. 13C-NMR (400 MHz, 298K, DMSO-d6) spectrum of DT 

 

Figure A4.3. 1H-NMR (400 MHz, 298K, DMSO-d6) spectrum of ODT 
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Figure A4.4. 13C-NMR (400 MHz, 298K, DMSO-d6) spectrum of ODT 

 

Figure A4.5. 1H-NMR (400 MHz, 298K, CDCl3) spectrum of PEG-4DT. The degree of 

functionalization was 86%. 
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Figure A4.6. 1H-NMR (400 MHz, 298K, CDCl3) spectrum of PEG4-ODT. The degree of 

functionalization was 90%. 

 

Figure A4.7. 1H-NMR (400 MHz, 298K, CDCl3) spectrum of PEGdiODT. The degree of 

functionalization was 86%. 
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Figure A4.8. 1H-NMR (400 MHz, 298K, D2O) spectrum of ODT. 

 

Figure A4.9. 13C-NMR (100 MHz, 298K, D2O) spectrum of ODT 
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Figure A4.10. HSQC (400 MHz, 298K, D2O) spectrum of ODT 

 

Figure A4.11. 1H-NMR (400 MHz, 298K, D2O) spectrum of the ODT and GSH mixture at 

specific time points with a molar ratio of thiol/ODT at 1:1 
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Figure A4.12. 1H-NMR (400 MHz, 298K, D2O) spectrum of the ODT and GSH mixture at 

specific time points with a molar ratio of thiol/ODT at 2:1 

 

Figure A4.13. 1H-NMR (400 MHz, 298K, D2O) spectrum of the ODT and GSH mixture at 

specific time points with a molar ratio of thiol/ODT at 4:1 
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Figure A4.14. 1H-NMR (400 MHz, 298K, D2O) spectrum of the ODT and GSH mixture at 

specific time points with a molar ratio of thiol/ODT at 8:1 

4.6.12 References 

[1] X. Marat, K. Lucet-Levannier, L. Marrot, 2013, U.S. Patent No. US8530511B2. 

[2] D. P. Donnelly, M. G. Dowgiallo, J. P. Salisbury, K. C. Aluri, S. Iyengar, M. 
Chaudhari, M. Mathew, I. Miele, J. R. Auclair, S. A. Lopez, R. Manetsch, J. N. Agar, 
J. Am. Chem. Soc. 2018, 140, 7377. 

[3] E. Giacomelli, M. Bellin, V. V. Orlova, C. L. Mummery, Curr. Protoc. Hum. Genet. 
2017, 95, 21.9.1. 

1.01.21.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.0
f1 (ppm)

1

2

3

4

5

6

4%
11%

85%

80%

20%

88%

12%

ODT1_8GSH_1h

ODT1_8GSH_4h

ODT1_8GSH_8h

ODT1_8GSH_24h

ODT1_8GSH_48h

ODT1_8GSH_75h

25%
75%

44%
56%

87%

13%


