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Abstract
We extend the notion of matching for one-dimensional dynamical systems to
random matching for random dynamical systems on an interval. We prove that
for a large family of piecewise affine random systems of the interval the property
of random matching implies that any invariant density is piecewise constant. We
further introduce a one-parameter family of random dynamical systems that
produce signed binary expansions of numbers in the interval [−1, 1]. This fam-
ily has random matching for Lebesgue almost every parameter. We use this to
prove that the frequency of the digit 0 in the associated signed binary expansions
never exceeds 1

2 .

Keywords: interval map, random dynamics, invariant measure, matching, digit
frequency, signed digit expansion

Mathematics Subject Classification numbers: 37E05, 37A45, 37A05, 60G10,
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(Some figures may appear in colour only in the online journal)

1. Introduction

Optimal algorithms for the computation of powers of elements in a group are at the basis of
many public key cryptosystems. Here the group is either the multiplicative group of a finite field
or the group of points on an elliptic curve and the optimality refers to the ability of computing
high powers in a short amount of time. One such algorithm is the binary method, introduced
in [Knu69] and based on the binary expansion of the power. More precisely, if x is an element
of a given group, and a =

∑n
k=0dk2k ∈ N for some digits dk ∈ {0, 1}, then
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xa =
n∏

k=0

xdk2k
,

and the power xa is computed by taking the product of repeated squarings. While the number
of squarings is given by the length n of the binary expansion of a, the number of multiplications
equals the number of non-zero bits dk in the expansion or its Hamming weight. Clearly, a lower
Hamming weight implies fewer multiplications and a faster result. To increase the number
of zero bits, [Boo51] introduced a signed binary representation, i.e., a binary representation
with digits in the set {−1, 0, 1}. This signed binary representation was later adopted in several
methods in elliptic cryptosystems, see e.g. [1998, HP06] and the references therein.

The ordinary binary representation of an integer a is uniquely determined, but this is not
the case for the signed one. In fact, each integer has infinitely many signed binary representa-
tions, which led to the study of algorithms that choose the ones with minimal Hamming weight
(see e.g. [MO90, 1993, LK97]). Typically a number has several signed binary representations
with minimal weight (see [GH06]), but already in the 1960s Reitwiesner proved in [Rei60]
that the signed representation is unique when adding the constraint dkdk+1 = 0. Such repre-
sentations are known as signed separated binary expansions, or SSB for short. In [DKL06] it
is shown how to obtain SSB expansions through the binary odometer and a three state Markov
chain. Furthermore, in [DKL06] the set K := {d1d2 . . . ∈ {−1, 0, 1}N : ∀ k ∈ N, dkdk+1 = 0}
is introduced as a compactification of Z. The authors identified K, endowed with the left shift
σ, with the map S(x) = 2x mod Z on the interval [− 2

3 , 2
3 ] through the conjugation

ψ(d1d2 . . .) =
∞∑

k=1

dk

2k
.

This dynamical viewpoint allowed them to obtain metric properties of the system (K, σ), such
as a σ-invariant measure, the maximal entropy and the frequency of 0 in typical expansions.

In [DK20] this dynamical approach was further developed by considering a family of
symmetric doubling maps {Sα : [−1, 1] → [−1, 1]}α∈[1,2] defined by Sα(x) = 2x − dα and

d =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1, if x ∈ [− 1,−1
2

) ,

0, if x ∈
[
−1

2
,

1
2

]
,

1, if x ∈ (
1
2

, 1] .

The map S from [DKL06], producing SSB expansions, is then easily identified with the map S 3
2
.

For each α ∈ [1, 2] iterations of Sα give a signed binary expansion of the form x =
∑∞

k=1
dk
2k

with dk ∈ {−1, 0, 1} for each number x ∈ [−1, 1]. The authors of [DK20] showed that the
frequency of 0 in such expansions depends continuously on the parameter α and takes its
maximal value 2

3 , corresponding to the minimal Hamming weight of 1
3 , precisely forα ∈ [ 6

5 , 3
2 ].

It follows that typically only 1
3 of the digits in the SSB expansions of integers is different from 0.

The results from [DK20] are obtained by finding a detailed description of the unique invariant
probability density fα of Sα for each valueα and then explicitly computing the frequency of the
digit 0 using Birkhoff’s ergodic theorem. The fact that the family {Sα} exhibits the dynamical
phenomenon of matching was essential for these results.

In this article we consider signed binary expansions in the framework of random dynami-
cal systems. The advantage of random systems in this context is that a single random system
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produces many more number expansions per number than a deterministic map, allowing one
to study the properties of many expansions simultaneously. See e.g. [DK03, DdV05, DdV07,
DK07, KKV17, DO18] for the use of random systems in the study of different types of number
expansions. We will introduce a family of random systems {Rα}α∈[1,2], called random sym-
metric doubling maps, such that each element Rα produces for typical numbers in the interval
[−1, 1] infinitely many different signed binary expansions. This is contrary to the map Sα,
which produces a unique signed binary expansion for each number in [−1, 1]. Our main result
for the family {Rα}α∈[1,2] is that the frequency of the digit 0 in typical signed binary expansions
produced by any of the maps Rα is at most 1

2 , and therefore the Hamming weight is at least 1
2 .

This reinforces the result from [DK20] that the maps Sα with α ∈
[

6
5 , 3

2

]
perform best in terms

of minimal weight.
We obtain this result from Birkhoff’s ergodic theorem after gathering detailed knowledge

on the invariant probability densities of the random maps Rα. We first express these densities as
infinite sums of indicator functions using the algebraic procedure from [KM20]. To compute
the frequency of 0 we need to evaluate the Lebesgue integral of these densities over part of
the domain and therefore we convert the infinite sums into finite sums. For this we introduce
a random version of the dynamical concept of matching that is available for one-dimensional
systems (see e.g. [NN08, DKS09, BCIT13, BSORG13, BCK17, BCMP19, CIT18, CM18,
KLMM20]). Our definition of random matching properly extends the one-dimensional notion
of matching and we illustrate the concept with examples of random continued fraction maps
and random generalised β-transformations. We show that under mild certain conditions, if a
random system of piecewise affine maps defined on the same interval has random matching,
then any invariant probability density of the system is piecewise constant. The precise formu-
lation of this statement and the conditions are given in the next section. Finally, we use this
random matching property to show that for Lebesgue almost all parametersα the invariant den-
sity of the random systems Rα, producing signed binary expansions, is in fact a.e. piecewise
constant.

The article is outlined as follows. The second section is devoted to random matching for
random systems defined on an interval. We first recall some preliminaries on invariant mea-
sures for random interval maps. We then define the notion of random matching and state and
prove the result about densities of random systems of piecewise affine maps with matching.
We also discuss the examples of random continued fraction transformations and random gen-
eralised β-transformations. In the third section we introduce and discuss the family {Rα} of
random symmetric doubling maps and the corresponding signed binary expansions. We prove
that Rα has random matching for Lebesgue almost all α ∈ [1, 2]. We also provide a full descrip-
tion of the matching intervals, i.e., intervals of parameters that exhibit comparable matching
behaviour, and describe the invariant densities of the maps Rα. Finally we prove that typically
the frequency of the digit 0 in the signed binary expansions produced by Rα does not exceed 1

2
for any parameter α. Throughout the paper the statement almost every parameter α is intended
with respect to Lebesgue measure.

2. Random matching

2.1. The definition of random matching

Matching is a dynamical phenomenon observed in certain families of piecewise smooth interval
maps. If T : I → I is such a map (so the domain I is an interval of real numbers), then we say
that T has matching if for every discontinuity point c of T or of the derivative T ′ the orbits of
the left and right limits Tk(c−) = limx↑c Tk(x) and Tk(c+) = limx↓c Tk(x) eventually meet, i.e.,
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if for each c there exist positive constants M = Mc and Q = Qc, such that

TM(c−) = TQ(c+). (1)

T is then said to have strong matching if, moreover, the orbits of the left and right limits have
equal one-sided derivatives at the moment they meet, i.e., if besides (1) it also holds that

(TM)′(c−) = (TQ)′(c+). (2)

It was proven in [BCMP19, theorem 1.2] (see also remark 1.3 in [BCMP19]) that for any
piecewise smooth T with strong matching, any invariant probability measure μ that is abso-
lutely continuous with respect to the Lebesgue measure has a piecewise smooth density. For
continued fraction transformations (as in [NN08, DKS09, KLMM20] for example) it seems
that matching is sufficient to guarantee the existence of a piecewise smooth density (since this
is sufficient to construct a natural extension with finitely many pieces). The strong matching
condition then enforces some stability in the matching behaviour of certain one-parameter fam-
ilies of continued fraction maps, which becomes visible in the appearance of so called matching
intervals in the parameter space: if such a family has strong matching for one parameter, then
one can find an interval of parameters around it, such that all the corresponding transformations
have matching in the same number of steps and with comparable orbits.

In this section we extend the above definitions of matching and strong matching to random
dynamical systems. With a random map we mean a system evolving in discrete time units
in which at each step one of a number of transformations is chosen at random and applied.
One way to describe a random map is with a pseudo-skew product transformation as follows.
Let Ω ⊆ N be the index set of the available maps, so we have a collection of transformations
{T j : I → I} j∈Ω defined on the same interval I at our disposal. Let σ : ΩN → ΩN be the left
shift on one-sided sequences. The random map or pseudo-skew product R : ΩN × I → ΩN × I
is defined by

R(ω, x) = (σ(ω), Tω1 x).

So, the coordinates of ω determine which of the maps T j is applied at each time step. Let
p = (pj) j∈Ω be a positive probability vector, i.e., pj > 0 for all j ∈ Ω and

∑
j∈Ω pj = 1, rep-

resenting the probabilities with which we choose the maps T j. Denote by mp the p-Bernoulli
measure on ΩN, let μp be a probability measure on I that is absolutely continuous with respect

to the one-dimensional Lebesgue measure λ and denote its density by f p := dμp
dλ . If μp satisfies

for each Borel set B ⊆ I that

μp(B) =
∫

B
f pdλ =

∑
j∈Ω

pjμp(T−1
j B), (3)

then the product measure mp × μp is an invariant probability measure for R. Here we call μp
a stationary measure and fp an invariant density for R.

In the literature there exist various sets of conditions under which the existence of such an
invariant measure is guaranteed. See for example [Mor85, Pel84, Buz00, GB03, BG05, Ino12].
Here we explicitly mention a special case of the conditions by Inoue from [Ino12] which are
simple to state and suit our purposes in the next sections. Let Ω ⊆ N, I ⊆ R an interval and
{T j : I → I} j∈Ω a family of transformations. Let p = (pj) j∈Ω be a positive probability vector.
Assume that the following three conditions hold:

(a1) There is a finite or countable interval partition {Ii} of I, such that each map T j is C1 and
monotone on the interior of each interval Ii.
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Let C denote the set of all boundary points of the intervals Ii that are in the interior of I. We
choose the collection {Ii} as small as possible, so that C contains precisely those points that
are a critical point of T j or T ′

j for at least one j ∈ Ω. We call elements c ∈ C critical points for
the corresponding random system R.

(a2) The random system R is expanding on average, i.e., there exists a constant 0 < ρ < 1,
such that

∑
j∈Ω

pj
|T ′

j(x)| � ρ holds for each x ∈ I\C.
(a3) For each j ∈ Ω and c ∈ C the map

x �→

⎧⎨⎩
pj

|T ′
j(x)| , if x �= c,

0, otherwise,

is of bounded variation.

It then follows from [Ino12, theorem 5.2] that an invariant measure for R of the form mp × μp
with μp satisfying (3) exists. Let R denote the class of random maps R that satisfy these three
conditions. We will define random matching for maps in R, but first we fix some notation on
sequences and strings.

For each k > 0 the set Ωk = {u = u1 · · · uk : ui ∈ Ω, 1 � i � k} is the set of all k-strings of
elements in Ω. We let Ω0 = {ε}, with ε the empty string. For a finite string u let |u| denote
its length, i.e., |u| = k if u ∈ Ωk. Also, for 1 � n � k we let un

1 := u1 · · · un and we set u0
1 = ε.

Similarly, for an infinite sequence ω ∈ ΩN and n � 1 we use the notation ωn
1 :=ω1 · · ·ωn with

ω0
1 = ε. Finally, we use square brackets to denote cylinder sets, so

[u] = {ω ∈ ΩN : ω1 · · ·ω|u| = u}. (4)

For u ∈ Ωk and 0 � n � k, let

Tu = Tuk ◦ Tuk−1 ◦ · · · ◦ Tu1 and Tn
u = Tun

1
= Tun ◦ Tun−1 ◦ · · · ◦ Tu1 .

Note that T0
u = Tu0

1
= Tε = id. Similarly if ω ∈ ΩN, we let Tn

ω = Tωn
1
= Tωn ◦ Tωn−1 ◦ · · · ◦ Tω1

for any n � 0. For u ∈ Ωk the left and right random orbits of the critical points c ∈ C are

Tu(c−) = lim
x↑c

Tu(x) and Tu(c+) = lim
x↓c

Tu(x).

The one-sided derivatives along u are given by

T ′
u(c−) = lim

x↑c

k∏
n=1

T ′
un

(Tun−1
1

(x)) and T ′
u(c+) = lim

x↓c

k∏
n=1

T ′
un

(Tun−1
1

(x)).

We use the abbreviation pu := pu1 · · · puk with pε = 1.

Definition 2.1. (Random matching). A random map R ∈ R has random matching if for
every c ∈ C there exists an M = Mc ∈ N and a set

Y = Yc ⊆
{

Tk
ω(c−) : ω ∈ ΩN, 1 � k � M

}
∩
{

Tk
ω(c+) : ω ∈ ΩN, 1 � k � M

}
such that for every ω ∈ ΩN there exist k = kc(ω), 
 = 
c(ω) � M with Tk

ω(c−), T

ω(c+) ∈ Y.

The main difference with one-dimensional matching as in (1) and (2) is that in a random
system R the critical points have many different random orbits. Definition 2.1 states that any
random orbit of the left or the right limit of any critical point c passes through the set Yc at
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the latest at time M. The indices k, 
 are introduced to cater for the possibility that these orbits
pass through the set Yc at different moments. Since all points in Yc are in the orbit of both c−

and c+, this implies that all random orbits of the left limit meet with some random orbit of the
right limit and vice versa. This corresponds to the statement in (1). Note that we do not ask
Tk
ω(c−) = T


ω(c+).

Definition 2.2. (Strong random matching). A random map R ∈ R has strong random
matching if it has random matching and if for each c ∈ C and y ∈ Yc the following holds. Set

Ω(y)− =

{
u ∈

M⋃
k=1

Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ωkc(ω) and Tu(c−) = y

}
,

Ω(y)+ =

{
u ∈

M⋃
k=1

Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ω
c(ω) and Tu(c+) = y

}
.

Then, ∑
u∈Ω(y)−

pu

T ′
u(c−)

=
∑

u∈Ω(y)+

pu

T ′
u(c+)

. (5)

Definition 2.2 guarantees that one can choose the times k, 
 such that at those times orbits
enter the set Y with the same weighted derivative. This is comparable to (2). Note that⋃

y∈Yc

⋃
u∈Ω(y)−

[u] = ΩN =
⋃

y∈Yc

⋃
u∈Ω(y)+

[u],

where [u] is a cylinder as defined in (4), so we have indeed captured all random orbits of c.
Note that definition 2.2 depends on the choices of kc(ω) and 
c(ω) for each c in definition 2.1.

If Ω consists of one element only, then the random map is actually a deterministic map.
In this case definitions 2.1 and 2.2 reduce to the definitions of one-dimensional matching
and strong matching given in (1) and (2), so the random definitions extend the deterministic
ones.

2.2. Two examples of families of dynamical systems with random matching

Below there are two examples of families of random interval maps depending on one parameter.
We show that for each of these families there exist parameter intervals such that the systems
have strong random matching for every parameter within these intervals. Moreover, within
such an interval matching happens in a comparable way, i.e., with the same M and similar sets
Y. As in the deterministic case, we call these intervals matching intervals. To ease the notation
we use the symbol � to indicate the set of strings obtained by replacing � with any j ∈ Ω. E.g.,
if Ω = {0, 1, 2}, then 0� = {00, 01, 02}.

Example 2.3. For α ∈ (0, 1) let Tα,0, Tα,1 : [α− 1,α] → [α− 1,α] be the Nakada and
Ito–Tanaka α-continued fraction transformations, introduced in [Nak81] and in [TI81] respec-
tively, which are given by

Tα,0(x) =
1
|x| −

⌊
1
|x| + 1 − α

⌋
and Tα,1(x) =

1
x
−
⌊

1
x
+ 1 − α

⌋
,

for x �= 0 and Tα,0(0) = 0 = Tα,1(0). The graphs are shown in figure 1.
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Figure 1. The Nakada α-continued fraction map Tα,0 in (a) and the Ito-Tanaka α-
continued fraction map Tα,1 in (b) for α = 7

10 ∈
(

5−
√

13
2 ,

√
2

2

)
.

Let Rα denote the corresponding pseudo-skew product on {0, 1}N × [α− 1,α] and let
p = (p0, p1) be a positive probability vector. For x ∈ [0,α], the two maps coincide and

Tα,0(x) = Tα,1(x) =
1
x
− n for x ∈

(
1

α+ n
,

1
α+ n − 1

]
, n ∈ N.

For x ∈ [α− 1, 0), we have

Tα,0(x) = −1
x
− n for x ∈

[
− 1
α+ n − 1

,− 1
α+ n

)
,

Tα,1(x) =
1
x
+ n for x ∈

[
1

α− n
,

1
α− (n + 1)

)
.

We first show that for any α ∈
(√

10−2
2 , 2 −

√
2
)

the map Rα has random matching. For

this note that the critical points c are all in the set { 1
α+n ,− 1

α+n , 1
α−n : n ∈ N}. For any positive

critical point c > 0 and any j ∈ {0, 1}, T j(c−), T j(c+) ∈ {α− 1,α}. For c < 0, c is either a
critical point for T0 and a continuity point for T1, or a critical point for T1 and a continuity
point for T0. Specifically, since α > 1

2 , for c = − 1
α+n we have

T0(c−) = α, T0(c+) = α− 1, and T1(c−) = T1(c+) = 1 − α,

and for c = 1
α−n

T1(c−) = α− 1, T1(c+) = α, and T0(c−) = T0(c+) = 1 − α.

As a consequence, to show that Rα has random matching we only need to consider the orbits

of α− 1 and α. Due to the choice of endpoints of the parameter interval
(√

10−2
2 , 2 −

√
2
)

, the

first three orbit points of α and α− 1 are easily determined. They are given in figure 2. Hence,
if we take M = 3 and

Y =

{
5α− 3
1 − 2α

,
4 − 7α
1 − 2α

}
, if c > 0

3682



Nonlinearity 34 (2021) 3676 K Dajani et al

and

Y =

{
5α− 3
1 − 2α

,
4 − 7α
1 − 2α

, 1 − α

}
, if c < 0,

then Rα has random matching according to definition 2.1.
Rα does not satisfy strong random matching with this choice of Y . To see this, note

that T ′
α,1(x) = − 1

x2 for all x where the derivative exists, while T ′
α,0(x) = − 1

x2 if x > 0 and
T ′
α,0(x) = 1

x2 if x < 0. Now take for example c = 1
α+n > 0 and y = 4−7α

1−2α . ThenΩ(y)− = �11 =

{011, 111} and Ω(y)+ = � � 1. For the quantities from (5), we obtain∑
u∈Ω(y)−

pu

T ′
u

(c−) = −p2
1c2(2α− 1)2 and

∑
u∈Ω(y)+

pu

T ′
u

(c+) = −p1c2(2α− 1)2,

which are not equal for any p1 ∈ (0, 1).
We now identify a countable number of parameter intervals on which the maps Rα have

strong matching with the same exponent M = 4, i.e., we identify a countable number of match-
ing intervals for the family Rα. For n � 4 let the interval Jn := (
n, rn) be defined by the left
and right endpoints


n =
n + 1 −

√
n2 − 2n + 5
2

and rn =

√
n − 2

n
, (6)

respectively. Set g :=
√

5−1
2 for the small golden mean and note that g < 
n < rn for all n � 4

and that limn→∞
n = limn→∞rn = 1. See figure 3 for an illustration of the location of these
intervals.

The intervals Jn are chosen in such a way that we can determine the first three orbit points
of α and α− 1. Let n � 4. We further divide the interval Jn. For k ∈ {2, 3, . . . , n}, let

in,k =
−4 + 2n − kn + k +

√
k2n2 − 2k2n + k2 + 4

2(n − 1)
,

and note that Jn ⊆ ∪n−1
k=2(in,k+1, in,k]. Therefore, for each α ∈ Jn there exists a

k ∈ {2, 3, . . . , n − 1} such that α ∈ (in,k+1, in,k]. For α ∈ Jn ∩ (in,k+1, in,k] the orbits of α
and α− 1 are given in figure 4.

Definition 2.1 holds for α ∈ Jn ∩ (in,k+1, in,k] with M = 4 and

Y =

{
1 − 2k + kn − α(kn − k + 1)

α(n − 1) + 2 − n

}
for any critical point c > 0. For c < 0 we add the point 1 − α to Y . Here the values kc(ω) and

c(ω) either equal 1, 3 or 4 according to the number of orbit points in the paths in figure 4.
For definition 2.2, for c > 0 and y ∈ Y we have Ω(y)− = �0 � ∪ � 1 � � and Ω(y)+ = � � ��,
so that ∑

u∈Ω(y)−

pu

T ′
u(c−)

= (−c2)p0(α− 1)2 · (α(n − 1) + 2 − n)2

−(α− 1)2

+ (−c2)p1(−(α− 1)2) · (1 + n(α− 1))2

−(α− 1)2
· (α(n − 1) + 2 − n)2

−(1 + n(α− 1))2

= c2(α(n − 1) + 2 − n)2.
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Figure 2. The first three elements in the orbits of α and α− 1 under the random con-
tinued fraction map Rα for α ∈

(√
10−2
2 , 2 −

√
2
)

. The digits above the arrows indicate
which one of the maps Tα,0 or Tα,1 is applied. If there is no digit, then both maps yield
the same orbit point. Orbit points in boxes with the same colour are equal.

Figure 3. The semicircles indicate the locations of the intervals Jn.

and ∑
u∈Ω(y)+

pu

T ′
u(c+)

= (−c2)(−α2)
(1 − α)2

−α2
· (α(n − 1) + 2 − n)2

−(1 − α)2

= c2(α(n − 1) + 2 − n)2,

implying that also condition (5) holds. For c = −1/(α+ n) we getΩ(1 − α)− = Ω(1 − α)+ =
{1}, Ω(y)− = 0 � �� and Ω(y)+ = 00 � ∪01 � �, and for c = 1/(α− n) we obtain Ω(1 −
α)− = Ω(1 − α)+ = {0}, Ω(y)− = 10 � ∪11 � � and Ω(y)+ = 1 � ��. In both cases the result
follows in a similar fashion. So, the random continued fraction system Rα has strong random
matching for any p and any α ∈ Jn.

Note that in this example the orbits of α meet with some of the orbits of α− 1 already after
two time steps in the point α(n−1)+2−n

1−α
. Hence,

α(n − 1) + 2 − n
1 − α

∈
{

Tk
ω(c−) : ω ∈ ΩN, k � M

}
∩
{

Tk
ω(c+) : ω ∈ ΩN, k � M

}
.

Therefore, for a critical point c > 0, we could also take Y =
{

α(n−1)+2−n
1−α , 1−2k+kn−α(kn−k+1)

α(n−1)+2−n

}
and split the random orbits of α for example in the following way:

Ω

(
α(n − 1) + 2 − n

1 − α

)+

= � � 0 and Ω

(
1 − 2k + kn − α(kn − k + 1)

α(n − 1) + 2 − n

)+

= � � 1 � .
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Figure 4. The first few points in the orbits of α and α− 1 under the random continued
fraction map Rα for α ∈ Jn ∩ (in,k+1, in,k]. For details we refer the reader to [2021].

For the orbits passing through α− 1 we have

Ω

(
α(n − 1) + 2 − n

1 − α

)−
= �0 and Ω

(
1 − 2k + kn − α(kn − k + 1)

α(n − 1) + 2 − n

)−
= �1 � �.

One can check that condition (5) is satisfied and Rα has strong random matching with this
choice of Y. Note that in this case many sequences ω have smaller values kc(ω) and 
c(ω) than

with Y =
{

1−2k+kn−α(kn−k+1)
α(n−1)+2−n

}
and that for some ω ∈ ΩN we do not take kc(ω) equal to the

first time that the random orbit Tk
ω(c−) enters Y. For example, for c > 0 and any ω with ω3 = 1

we have T3
ω(c+) = α(n−1)+2−n

1−α
∈ Y, but we take kc(ω) = 4. The flexibility in the choice of Y

and the length of the paths kc(ω) and 
c(ω) embedded in definition 2.1 allows one to choose
the option that is computationally most convenient.

Example 2.4. Let β = 1+
√

5
2 be the golden mean, so β2 = β + 1, and for any

α ∈
(

3β−2
2 , 4β − 5

)
consider two generalisedβ-transformations Tα, j : [−β, β] → [−β, β], j =

0, 1, defined by

Tα,0(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
βx + α, if x ∈

[
−β,− 1

β

)
,

βx, if x ∈
[
− 1
β

, 1

]
,

βx − α, if x ∈ (1, β],

and

Tα,1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

βx + α, if x ∈ [−β,−1),

βx, if x ∈
[
−1,

1
β

]
,

βx − α, if x ∈
(

1
β

, β

]
.

Note that it does not matter how one defines the maps at the discontinuity points. This is just
a choice that we made. See figure 5 for the graphs.
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Figure 5. The maps Tα,0 and Tα,1 from example 2.4 for α ∈ ( 3β−2
2 , 4β − 5).

Let Rα denote the corresponding random system and let p = (p0, p1) be a positive proba-

bility vector. Then C =
{
−1,− 1

β
, 1
β

, 1
}

. By the symmetry in the maps to show that Rα has

matching we only need to consider the points 1
β

and 1. The parameter interval
(

3β−2
2 , 4β − 5

)
is constructed in such a way that for any α ∈

(
3β−2

2 , 4β − 5
)

the initial parts of the random
orbits of the left and right limits to 1

β and 1 are determined in the following way. For j = 0, 1

and any ω ∈ {0, 1}N,

Tα,0(1−) = β, Tα,ω(β) = β2 − α, T2
α,ω(β) = β2(β − α),

Tα,1(1−) = Tα, j(1+) = β − α, Tα,ω(β − α) = β(β − α), T2
α,ω(β − α) = β2(β − α).

Hence, for 1 ∈ C we can take M = k1(ω) = 
1(ω) = 3 for each ω, Y = {β2(β − α)} and one
easily checks the conditions of both definitions 2.1 and 2.2.

For 1
β we get Tα, j

(
1
β

−
)
= 1 = Tα,0

(
1
β

+
)

and Tα,1

(
1
β

+
)
= 1 − α. We saw the orbit of

1 above and the orbit of 1 − α is depicted in figure 6. Then straightforward computations
show that Rα has strong random matching with M = k 1

β
(ω) = 
 1

β
(ω) = 7 for each ω and

Y = {β5(β − α) − α, β5(β − α) − βα = β6 − 3β3α}.
Theorem 2.5 below explains the need for condition (5) in definition 2.2.

2.3. Random matching for piecewise affine systems

In case each map T j : I → I is piecewise affine on a finite partition c0 < c1 < . . . < cN the
conditions (a1) and (a3) are automatically satisfied and under some additional assumptions
strong random matching has consequences for invariant densities. For this result we consider
a subset of the collection of random maps R. We define the subset RA ⊂ R to be the set of
random systems in R that satisfy the following additional assumptions:

(c1) There exists a finite interval partition {Ii}1�i�N of I = [c0, cN] given by the points c0 <
c1 < . . . < cN , such that each map T j : I → I, j ∈ Ω, is piecewise affine with respect to
this partition. In other words, for each j ∈ Ω and 1 � i � N we can write T j|(ci−1,ci)(x) =
ki, jx + di, j for some constants ki, j, di, j.
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Figure 6. The first couple of points in the orbit of 1 − α under the random generalised
β-transformation from example 2.4. We have boxed β2(β − α), since this point also
appears in all random orbits of 1.

(c2) For each 1 � i � N there is an 1 � n � N, such that∑
j∈Ω

pj
ki, j

di, j

1 −
∑
j∈Ω

pj
ki, j

�=

∑
j∈Ω

pj
kn, j

dn, j

1 −
∑
j∈Ω

pj
kn, j

. (7)

(c3) For each 1 � i � N,
∑

j∈Ω
pj
ki, j

�= 0.

Using the results from [KM20], we will show that for R ∈ RA the following holds.

Theorem 2.5. Let R ∈ RA. If R has strong random matching, then there exists an invariant
probability measure mp × μp for R with μp absolutely continuous with respect to λ and such
that its density fp is piecewise constant. If moreover every map Tj is expanding, i.e., if |ki,j| > 1
for each 1 � i � N and j ∈ Ω, then any invariant probability density fp of R is piecewise
constant.

Assumptions (c2) and (c3) are used in [KM20] to prove that for systems in RA there exists
an invariant probability density function that can be written as an infinite sum of indicator
functions. More precisely, assumption (c2) states that the maps x �→ ki,jx + di,j do not have a
common weighted intersection point with the diagonal, and assumption (c3) states that the
weighted inverse derivatives of the maps Tj are not 0. These conditions, which are not very
restrictive, guarantee that the method from [KM20] works, but they might not be necessary
for the results from [KM20, theorem 4.1] and theorem 2.5. In fact, the deterministic analog of
theorem 2.5, which can be found in [BCMP19, theorem 1.2], does not have a condition like
(7). Their proof uses an induced system with a full branched return map instead. One could
try to transfer the proof of [BCMP19, theorem 1.2] to the setting of random interval maps to
avoid (c2) and (c3). Then, the recent results from Inoue in [Ino20] on first return time functions
for random systems seem relevant. These results show, however, that an induced system for a
random interval map will become position dependent instead of i.i.d., which might make such
an extension not so straightforward.

Proof. The set of critical points of R is given by C = {c1, . . . , cN−1}. Any random map R ∈
RA satisfies the conditions of [KM20, theorem 4.1]. Thus, there exists an invariant probability
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measure mp × μp for R with a probability density fp for μp of the form

f p =

N−1∑
i=1

γi

∑
k�1

∑
u∈Ωk

(
pu

T ′
u(c−i )

1[c0,Tu(c−i )) −
pu

T ′
u(c+i )

1[c0,Tu(c+i ))

)
, (8)

for some constants γ i depending only on the critical points ci. Fix an i and let M, Y be such
that R satisfies the conditions of definitions 2.1 and 2.2 for ci. Then by (5)

∑
y∈Y

⎛⎝ ∑
u∈Ω(y)−

pu

T ′
u(c−i )

1[c0,Tu(c−i )) −
∑

u∈Ω(y)+

pu

T ′
u(c+i )

1[c0,Tu(c+i ))

⎞⎠ = 0.

For each 1 � i � N − 1 and each 1 � k � M, let

Ωi,k
− = {u ∈ Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ωk and k < kci (ω)}

and similarly

Ωi,k
+ = {u ∈ Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ωk and k < 
ci (ω)}.

Then fp can be written as

f p =
N−1∑
i=1

γi

M∑
k=1

⎛⎜⎝∑
u∈Ωi,k

−

pu

T ′
u(c−i )

1[c0,Tu(c−i )) −
∑

u∈Ωi,k
+

pu

T ′
u(c+i )

1[c0,Tu(c+i ))

⎞⎟⎠ .

Hence fp is constant on each interval in the finite partition of I specified by the orbit points in
the set

N−1⋃
i=1

M⋃
k=1

(
{Tu(c−i ) : u ∈ Ωi,k

− } ∪ {Tu(c+i ) : u ∈ Ωi,k
+}
)
.

This gives the first part of the result.
For the second part, note that under the additional assumption that |ki, j| > 1 for all i, j the

map R satisfies the conditions of [KM20, theorem 5.3]. As a consequence, any invariant density
fp of R can be written as in (8) for some values γi. This proves the theorem. �
Example 2.6. The random generalised β-transformations Rα from example 2.4 satisfy all
conditions of theorem 2.5. Hence, for any α ∈

(
3β−2

2 , 4β − 5
)

any invariant density of the
random system Rα is piecewise constant.

3. Random signed binary transformations and expansions

In the second part of this article we use strong random matching to study the frequency of the
digit 0 in the signed binary expansions produced by a family of random system of piecewise
affine maps. We first define this family and its relation to binary expansions.

3.1. The family of random symmetric doubling maps

A signed binary expansion of a number x ∈ [−1, 1] can be obtained by iterating any piecewise
affine map D : [−1, 1] → [−1, 1] that is given by D(x) = 2x − d with d ∈ {−1, 0, 1} on each
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Figure 7. The maps Da and S 1
2a

for a = 7
20 . The grey lines indicate the remainder of the

maps x �→ 2x + 1, x �→ 2x and x �→ 2x − 1. The red box in (a) shows the attractor of
the map Dc. The map inside the box in (a) is a rescaled version of the map in (b).

of its intervals of monotonicity. One can for example take any a ∈
[

1
4 , 1

2

]
and then define the

symmetric map

Da(x) =

⎧⎪⎪⎨⎪⎪⎩
2x + 1, if − 1 � x < −a,

2x, if − a � x � a,

2x − 1, if a < x � 1.

By setting dn(x) = d, d ∈ {−1, 0, 1}, if Dn
a(x) = 2Dn−1

a (x) − d, one obtains

x =
d1(x)

2
+

Da(x)
2

= · · · = d1(x)
2

+ · · ·+ dn(x)
2n

+
Dn

a(x)
2n

→
∑
n�1

dn(x)
2n

,

so this gives a signed binary expansion of x. The family of maps {Da} 1
4�a� 1

2
is the object

of study in [DK20]. As can be seen from figure 7(a) the interval [−2a, 2a] is an attractor for
the dynamics of Da. Since this interval depends on a, in [DK20] the authors decided to work
instead with the measurably isomorphic family {Sα}1�α�2 given by

Sα(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2x + α, if − 1 � x < −1

2
,

2x, if − 1
2
� x � 1

2
,

2x − α, if
1
2
< x � 1,

(9)

see figure 7(b), which transfers the dependence on the parameter from the domain [−1, 1] to
the branches of the maps.

While each deterministic map produces for each number in its domain a single signed
binary expansion, one can define random dynamical systems that produce for λ almost all
numbers uncountably many different signed binary expansions. The family of random maps
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Figure 8. The maps Tα,0 and Tα,1 for α = 1 in (a), α = 3
2 in (b), and α = 2 in (c). The

blue lines correspond to Tα,0, the pink ones to Tα,1 and the purple ones to both.

{Rα}, which we define next, extends the family of deterministic maps {Sα}. So the dependence
on the parameter is visible in the branches of the maps instead of in the domains.

Let Ω = {0, 1} and define for j ∈ Ω and each parameter α ∈ [1, 2] the maps T j = Tα, j :
[−1, 1] → [−1, 1] by

Tα,0(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x + α, if x ∈
[
−1,

1 − α

2

]
,

2x, if x ∈
(

1 − α

2
,

1
2

]
,

2x − α, if x ∈
(

1
2

, 1

]
,

and

Tα,1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x + α, if x ∈
[
−1,−1

2

)
,

2x, if x ∈
[
−1

2
,
α− 1

2

)
,

2x − α, if x ∈
[
α− 1

2
, 1

]
.

(10)

See figure 8 for three examples. The maps Tα,0 and Tα,1 differ on the intervals
[
− 1

2 , 1−α
2

]
and[

α−1
2 , 1

2

]
, which are indicated by the grey areas in the pictures. Let R = Rα : ΩN × [−1, 1] →

ΩN × [−1, 1] be the random system obtained from Tα,0 and Tα,1, i.e.,

Rα(ω, x) =
(
σ(ω), Tα,ω1(x)

)
,

where σ is the left shift on ΩN. We call the systems Rα random symmetric doubling maps and
the subscript α will sometimes be suppressed if it does not lead to confusion.

Fix an α ∈ [1, 2]. Recall from (4) that we use square brackets to denote the cylinder sets in
ΩN. Letπ : ΩN × [−1, 1] → [−1, 1] denote the canonical projection onto the second coordinate
and set
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sn(ω, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if Rn−1(ω, x) ∈ ΩN × [− 1,−1
2

) ∪ [0] ×
[
−1

2
,

1 − α

2

]
,

0, if Rn−1(ω, x) ∈ [1] ×
[
−1

2
,

1 − α

2

]
∪ΩN ×

(
1 − α

2
,
α− 1

2

)
∪ [0] ×

[
α− 1

2
,

1
2

]
,

1, if Rn−1(ω, x) ∈ [1] ×
[
α− 1

2
,

1
2

]
∪ΩN ×

(
1
2

, 1

]
.

(11)
Then

π(Rn(ω, x)) = 2π(Rn−1(ω, x)) − sn(ω, x)α,

so that just as in the deterministic case by iteration we obtain

x =
s1(ω, x)α

2
+ · · ·+ sn(ω, x)α

2n
+

π(Rn(ω, x))
2n

→ α
∑
n�1

sn(ω, x)
2n

.

In other words, iterations of the random system R give a signed binary expansion for the pair
(ω, x).

Note that for each x ∈ [−1, 1] there is an ω ∈ ΩN, such that π(Rn
α(ω, x)) = Sn

α(x), where Sα

is the map in the family {Sα} from [DK20]. In particular, the random signed binary expansions
produced by the family {Rα} include, among many others, the SSB expansions. The random-
ness of the system allows us to choose (up to a certain degree) where and when we want to
have a digit 0. Below we investigate the frequency of the digit 0 in typical expansions produced
by the maps R. We do so by applying Birkhoff’s ergodic theorem for invariant measures for R
of the form m × μ with m a Bernoulli measure and μ absolutely continuous with respect to λ.
For that we need to investigate the density of such measures μ.

3.2. Prevalent matching for random symmetric doubling maps

For any α ∈ [1, 2] the common partition on which T0 and T1 are monotone is given by the
points

c0 = −1, c1 = −1
2

, c2 =
1 − α

2
, c3 =

α− 1
2

, c4 =
1
2

, c5 = 1.

Set, in accordance with (a1),

I1 = [c0, c1), I2 = [c1, c2], I3 = (c2, c3), I4 = [c3, c4], I5 = (c4, c5],

then C = {c1, c2, c3, c4}. Note that for α = 1, c2 = c3 = 0 and I3 vanishes. For 0 < p < 1,
use p = (p0, p1) to denote the probability vector with p0 = p and p1 = 1 − p. Since T0 and T1

from (10) are both piecewise affine with slope 2, we have pj
|T ′

j(x)| =
pj

T ′
j(x) =

pj
2 , j = 0, 1. So the

random system R satisfies conditions (a1), (a2), (a3), i.e., R ∈ R. Due to the symmetry in the
map, to verify whether R has strong random matching it is enough to check the conditions of
definitions 2.1 and 2.2 for the points 1 = T0(c4)− and 1 − α = T0(c4)+.

Before we proceed with a description of the matching behaviour of the family of random
systems {Rα}, we first recall the results from [DK20, propositions 2.1 and 2.3] on matching
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for the family of deterministic symmetric doubling maps {Sα}, see (9). Let

Mα = inf

{
n � 0 :

1
2
< Sn

α(1) < α− 1
2

}
+ 1, (12)

with Mα = ∞ if no such n exists. Then according to [DK20, propositions 2.1 and 2.3] for all
α ∈ [1, 2],

Sk
α(1 − α) = Sk

α(1) − α for k < Mα (13)

and for almost all α ∈ [1, 2] in fact Mα < ∞ and

SMα+1
α

(
1
2

−)
= SMα

α (1) = SMα
α (1 − α) = SMα+1

α

(
1
2

+)
.

In other words, for almost all parameters α ∈ [1, 2] the map Sα has matching with matching
exponent M = Mα + 1 that is determined by the first time the orbit of 1 enters the interval(

1
2 ,α− 1

2

)
. Moreover, SMα−1

α (1 − α) < − 1
2 for all α, Mα = 1 for α ∈

[
3
2 , 2
]

and Mα > 1 for
α ∈

(
1, 3

2

)
. Due to the constant slope and the same matching exponent Mα of the left and right

limits, in this case matching implies strong matching.

Remark 3.1. The discrepancy between Mα + 1 here and Mα as matching exponent in
[DK20] comes from the fact that in [DK20] the orbits are considered as starting from 1 and
1 − α, whereas in (1) and (2) we followed the convention in [BCMP19] and start at the critical
point c = 1

2 instead.

From this we deduce the following small lemma.

Lemma 3.2. For α ∈ [1, 2] and for all k < Mα − 1, either Sk
α(1) ∈ I4 and Sk

α(1) − α ∈ I1

or Sk
α(1) ∈ I5 and Sk

α(1) − α ∈ I2.

Proof. From (13) it follows for all k < Mα that Sk
α(1) − α � −1, implying that

α− 1
2

� α− 1 � Sk
α(1) � 1 and − 1 � Sk

α(1) − α � 1 − α � 1 − α

2
,

so that Sk
α(1) ∈ I4 ∪ I5. If Sk

α(1) ∈ I4, then Sk
α(1) − α � 1

2 − α < − 1
2 , so Sk

α(1) − α ∈ I1.
Suppose Sk

α(1) ∈ I5 and k < Mα − 1. If Sk
α(1) − α < − 1

2 , this would imply that Sk
α(1) ∈(

1
2 ,α− 1

2

)
, contradicting the definition of Mα in (12). Hence, Sk

α(1) − α ∈ I2. �

The next result states that a random equivalent of (13) holds for α ∈
(
1, 3

2

)
.

Proposition 3.3. For all α ∈ [1, 2], 0 � k � Mα and u ∈ Ωk, it holds that Tu(1), Tu(1 −
α) ∈ {Sk

α(1), Sk
α(1) − α}.

Proof. First consider α ∈
[

3
2 , 2
]
. Then Mα = 1 and the result trivially holds. Fix an α ∈(

1, 3
2

)
. Since T0 and T1 agree on I5 we can find a sequence ω̂ ∈ ΩN with ω̂1 = 0 that gives

Tω̂k
1
(1) = Sk

α(1) for all k � 0.

Note that 1 ∈ I5 and from α ∈
(
1, 3

2

)
we get 1 − α ∈ I2, so

T0(1 − α) = T0(1) = T1(1) = 2 − α = Sα(1) and T1(1 − α) = 2 − 2α = Sα(1 − α).

(14)
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Hence, from the first iterate on, the orbits of 1 and 1 − α under the deterministic map Sα are
contained in the orbit of 1 − α under the random map R. To prove the statement, we therefore
only have to consider Tn

ω(1 − α) for any ω ∈ ΩN and n � 1. In particular (14) implies that

Tω̂k
1
(1 − α) = Sk

α(1)

for all k � 1. We prove the statement by induction.
The statement obviously holds for k = 0 and by (14) also for k = 1. Let 1 � n < Mα and

suppose the statement holds for all k � n. Then

Tω̂n
1
(1 − α) = Sn

α(1) and Tωn
1
(1 − α) ∈ {Sn

α(1), Sn
α(1) − α} for all ω ∈ ΩN.

By lemma 3.2 there are three cases.

(a) If Sn
α(1) ∈ I4, then Sn+1

α (1) = 2Sn
α(1) and Sn

α(1) − α ∈ I1. So for the random images we
get

T0(Sn
α(1)) = 2Sn

α(1), T1(Sn
α(1)) = 2Sn

α(1) − α,

and

T0(Sn
α(1) − α) = T1(Sn

α(1) − α) = 2Sn
α(1) − α.

(b) If Sn
α(1) ∈ I5 and Sn

α(1) − α ∈ I2, then

T0(Sn
α(1)) = T1(Sn

α(1)) = 2Sn
α(1) − α = Sn+1

α (1)

and

T0(Sn
α(1) − α) = 2Sn

α(1) − α, T1(Sn
α(1)) = 2Sn

α(1) − 2α.

(c) If Sn
α(1) ∈ I5 and Sn

α(1) − α ∈ I1 (so n = Mα − 1), then

T0(Sn
α(1)) = T1(Sn

α(1)) = 2Sn
α(1) − α = Sn+1

α (1)

and

T0(Sn
α(1) − α) = T1(Sn

α(1) − α) = 2Sn
α(1) − α = Sn+1

α (1).

Hence, for all u ∈ Ωn and j = 0, 1, Tu j(1 − α) ∈ {Sn+1
α (1), Sn+1

α (1) − α}, which gives the
result. �

From this proposition we can deduce that matching is prevalent for the family {Rα} and we
can find the precise matching times. We first prove the following lemma, stating that all the
orbit points Sn

α(1), Sn
α(1 − α) up to the moment of matching are different.

Lemma 3.4. For each k < Mα the set {Sn
α(1), Sn

α(1 − α) : 0 � n � k} has 2(k + 1)
elements.

Proof. Since k < Mα it follows from (13) that Sn
α(1) �= Sn

α(1 − α) for each n. It also cannot
hold that there are 0 � n < k < Mα such that Sn

α(1) = Sk
α(1 − α) or Sk

α(1) = Sn
α(1 − α), since

this would imply that |Sk
α(1) − Sn

α(1)| = α and that would contradict the fact that Sn
α(1), Sk

α(1) ∈
I4 ∪ I5. This leaves the possibility that there are 0 � n < k < Mα such that Sn

α(1) = Sk
α(1), i.e.,

that the orbit of 1 under Sα is ultimately periodic, or Sn
α(1 − α) = Sk

α(1 − α). Assume Sn
α(1) =

Sk
α(1) for some n < k. It follows that Sn

α(1 − α) = Sn
α(1) − α = Sk

α(1) − α = Sk
α(1 − α), so the
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orbit of 1 − α is also ultimately periodic and by (13) all these orbit points lie at distance α of
the corresponding orbit points of 1. This contradicts the fact that α is a matching parameter.
Hence, the set {Sn

α(1), Sn
α(1 − α) : 0 � n � k} has 2(k + 1) elements. �

Theorem 3.5. For almost all parametersα ∈ [1, 2] the map Rα has strong random matching
with M = Mα + 1, where Mα is given by (12), and Y = {SMα

α (1)}. Moreover, Rα does not satisfy
the conditions of strong random matching for any K < M.

Proof. First consider α ∈
[

3
2 , 2
]
. Then Tj(1 − α) = 2 − α = T j(1) for j = 0, 1, so random

matching occurs for R with M = 2 and Y = {2 − α} and both parts of the theorem hold.
Now, fix α ∈ [1, 3

2 ) such that Sα has matching. Then, Sk
α(1) �= Sk

α(1 − α) for 1 � k < Mα

and SMα−1
α (1) ∈

(
1
2 ,α− 1

2

)
, so that SMα

α (1) = 2SMα−1
α (1) − α. By proposition 3.3 for each u ∈

ΩMα−1 either

Tu(1 − α) = SMα−1
α (1) >

1
2

or

Tu(1 − α) = SMα−1
α (1) − α < −1

2
.

In both cases this leads to Tu j(1 − α) = 2SMα−1
α (1) − α for both j = 0, 1. The same statement

holds for Tu(1), so that for c = 1
2 we therefore have

T1u j

(
1
2

−)
= T0u j

(
1
2

+)
= T1u j

(
1
2

+)
= Tu j(1 − α) = SMα

α (1)

and

T0u j

(
1
2

−)
= Tu j(1) = SMα

α (1).

Hence, we can take Y 1
2
= {SMα

α (1)}. Since this set contains one element only and the maps T j

have the same constant slope, condition (5) from definition 2.2 follows immediately. The first
part of the theorem now follows since the deterministic maps Sα have matching for almost all
parameters α. For the critical points c �= 1

2 the statement follows by symmetry.
For the second part we assume for α ∈ [1, 3

2 ) that Sα has matching and we proceed by
contradiction. Therefore, assume that Rα satisfies the conditions of definitions 2.1 and 2.2 for
c = 1

2 for some minimal 1 � K < M = Mα + 1. Suppose that Sn
α(1) ∈ Y 1

2
for some n < K − 1.

By lemma 3.4 any u for which Tu

(
1
2
±
)
= Sn

α(1) has length |u| = n + 1. Together with (5) and

the fact that the maps Tα,0 and Tα,1 both have constant slope 2, this implies that∑
u∈Ω(Sn

α(1))−

pu =
∑

u∈Ω(Sn
α(1))+

pu. (15)

For any u ∈ Ωn+1\Ω(Sn
α(1))−, u′ ∈ Ωn+1\Ω(Sn

α(1))+ we have by proposition 3.3 that

Tu

(
1
2
−
)
= Tu′

(
1
2
+
)
= Sn

α(1) − α. Furthermore,
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1 =
∑

u∈Ωn+1

pu =
∑

u∈Ω(Sn
α(1))−

pu +
∑

u∈Ωn+1\Ω(Sn
α(1))−

pu

=
∑

u∈Ω(Sn
α(1))+

pu +
∑

u∈Ωn+1\Ω(Sn
α(1))+

pu.

From (15) and proposition 3.3 we see that∑
u∈Ω(Sn

α(1−α))−

pu =
∑

u∈Ωn+1\Ω(Sn
α(1))−

pu =
∑

u∈Ωn+1\Ω(Sn
α(1))+

pu =
∑

u∈Ω(Sn
α(1−α))+

pu.

This implies that the conditions of definitions 2.1 and 2.2 hold with M 1
2
= n + 1 and Y 1

2
=

{Sn
α(1), Sn

α(1 − α)}, contradicting the minimality of K. In a similar way we can exclude the
possibility that Sn

α(1 − α) ∈ Y for n < K − 1. Since there is an ω̃ ∈ ΩN such that for each
k < M − 1, Tω̃k

1
(1 − α) = Sk

α(1 − α) = Sk
α(1) − α, it must hold that

Y 1
2
= {SK−1

α (1), SK−1
α (1) − α}.

To conclude the proof we show that for this set Y 1
2

condition (5) cannot hold. By the constant
slope, condition (5) can be rephrased as⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
u∈Ω(SK−1

α (1))−

pu −
∑

u∈Ω(SK−1
α (1))+

pu = 0,∑
u∈Ω(SK−1

α (1)−α)−

pu −
∑

u∈Ω(SK−1
α (1)−α)+

pu = 0.
(16)

and by lemma 3.4 any u ∈ Ω(SK−1
α (1))± ∪ Ω(SK−1

α (1) − α)± has length K. Since K < Mα + 1,
so K − 2 < Mα − 1, lemma 3.2 tells us that there are only two possibilities:

(a) SK−2
α (1) ∈ I4 and SK−2

α (1) − α ∈ I1;
(b) SK−2

α (1) ∈ I5 and SK−2
α (1) − α ∈ I2.

If case (a) holds, then T0(SK−2
α (1)) = SK−1

α (1) and

T1(SK−2
α (1)) = T0(SK−2

α (1) − α) = T1(SK−2
α (1) − α) = SK−1

α (1) − α,

so that (16) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

u∈Ω(SK−2
α (1))−

pu p0 −
∑

u∈Ω(SK−2
α (1))+

pu p0 = 0,∑
u∈Ω(SK−2

α (1))−

pu p1 +
∑

u∈(Ω(SK−2
α (1)−α)−

pu −
∑

u∈Ω(SK−2
α (1))+

pu p1 −
∑

u∈(Ω(SK−2
α (1)−α)+

pu = 0.

The last system of equations implies⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

u∈Ω(SK−2
α (1))−

pu −
∑

u∈Ω(SK−2
α (1))+

pu = 0,∑
u∈(Ω(SK−2

α (1)−α)−

pu −
∑

u∈(Ω(SK−2
α (1)−α)+

pu = 0,
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which contradicts the minimality of K. For the second case, the same contradiction is obtained
in a similar way. �

Remark 3.6. From the previous result we see that matching occurs for the random sys-
tems Rα for the same parameters α and at the same time as for the deterministic systems
Sα. [DK20] contains a complete description of the matching intervals of the maps Sα. The
interval [1, 2] can be divided into intervals of parameters for which matching of the maps Sα

occurs after the same number of steps. By the above, these matching intervals also apply to the
systems Rα.

3.3. An expression for the invariant density

The existence of an invariant measure of the form mp × μp with μp � λ for the random sym-
metric doubling maps Rα is guaranteed by the results of [Pel84, Mor85]. Furthermore, since
T0 is expanding and has a unique absolutely continuous invariant measure, it follows from
[Pel84, corollary 7] that also for Rα there is a unique measure mp × μp and that Rα is ergodic
with respect to this measure. To show that Rα ∈ RA, we check conditions (c1)–(c3). (c1) is
immediate and (c3) follows from the constant slope 2 of the maps Tα,0 and Tα,1. We check
condition (7). Note that for any α �= 2,∑

j∈Ω

pj
k3, j

d3, j

1 −
∑
j∈Ω

pj
k3, j

=

∑
j∈Ω

pj
2 0

1 −
∑
j∈Ω

pj
2

= 0

and ∑
j∈Ω

pj
k1, j

d1, j

1 −
∑
j∈Ω

pj
k1, j

=

∑
j∈Ω

pj
2 α

1 −
∑
j∈Ω

pj
2

= 2α �= 0.

Then [KM20, theorem 5.3] implies that an explicit formula for the density of this measure
can be found via the algebraic procedure in [KM20] and from theorems 2.5 and 3.5 we know
that for almost all parameters α this density is piecewise constant. We will execute the proce-
dure from [KM20] and start by introducing the same notation as in [KM20]. Since Ω consists
of two elements only, from now on we will just use p as an index instead of p whenever
appropriate.

Denote by ai, j and bi, j the left and right limits at each critical point ci ∈ C, i.e., for 1 � i � 4
and j ∈ Ω:

ai, j = T j(c−i ) = lim
x↑ci

T j(x), and bi, j = T j(c
+
i ) = lim

x↓ci
T j(x).

The images of the critical points are then given by

a1,0 = a1,1 = b1,0 = α− 1, b1,1 = −1,

a2,0 = 1, a2,1 = b2,0 = b2,1 = 1 − α,

a3,0 = a3,1 = b3,0 = α− 1, b3,1 = −1,

a4,0 = 1, a4,1 = b4,0 = b4,1 = 1 − α.

For y ∈ [−1, 1] and 1 � n � 4 set
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KIn(y) =
∑
k�1

∑
u∈Ωk

pu

2k
1In(Tuk−1

1
(y)). (17)

The quantity KIn(y) weighs the number of times the random orbits of y enters the interval In.
The weight depends on the length and probability of each path ω ∈ ΩN leading the point y to
In. The fundamental matrix A = (An,i) of R is the 5 × 4 matrix with entries

An,i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
j∈Ω

pj(1 + KIn(ai, j) − KIn(bi, j)), for n = i,∑
j∈Ω

pj(KIn(ai, j) − KIn(bi, j) − 1), for n = i + 1,∑
j∈Ω

pj(KIn(ai, j) − KIn(bi, j)), else.

Since for R there is a unique invariant probability measure mp × μp with μp � λ, [KM20,
theorem 5.3] implies that the null space of the matrix A is one-dimensional. According to
[KM20, theorem 4.1] there is a unique vector γ = (γ1, γ2, γ3, γ4) ∈ R

4\{0} with Aγ = 0 and
such that the probability density f p of μp has the form (8). Using the values of ai, j and bi, j

computed above, we can reduce this to

f p = (γ1 + γ3)
∑
k�0

∑
u∈Ωk

p1u

2k+1

(
1[−1,Tu(α−1)) − 1[−1,Tu(−1))

)
+ (γ2 + γ4)

∑
k�0

∑
u∈Ωk

p0u

2k+1

(
1[−1,Tu(1)) − 1[−1,Tu(1−α))

)
.

(18)

By symmetry to determine f p it is enough to know the random orbits of 1 and 1 − α only. From
(18) we see that the density is piecewise constant when the orbits of 1 and 1 − α are finite or
when they merge with the same weight. In the former case the map admits a Markov partition,
the latter case happens if R exhibits strong random matching. We focus on the second situation,
since we know from theorem 3.5 that this holds for almost all parameters.

Fix an α ∈ [1, 2] such that R presents strong random matching. Let M be as in theorem 3.5.
Then for each i, j, n,

KIn(ai, j) − KIn(bi, j) =
M−1∑
k=1

∑
u∈Ωk

pu

2k

(
1In(Tuk−1

1
(ai, j)) − 1In(Tuk−1

1
(bi, j))

)
.

From lemma 3.2 and the symmetry of the map we get

KI3(1) − KI3(1 − α) = 0 = KI3(−1) − KI3(α− 1),

implying that A3,1 = A3,4 = 0, A3,2 = −1 and A3,3 = 1. Hence, any solution vector γ̂ for
Aγ̂ = 0 has the form γ̂ = (γ̂1, γ̂2, γ̂2, γ̂3) and (18) becomes

f p = (γ1 + γ2)
p1

2

M−2∑
k=0

∑
u∈Ωk

pu

2k

(
1[−1,Tu(α−1)) − 1[−1,Tu(−1))

)

+ (γ2 + γ3)
p0

2

M−2∑
k=0

∑
u∈Ωk

pu

2k

(
1[−1,Tu(1)) − 1[−1,Tu(1−α))

)
,

(19)
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where γ = (γ1, γ2, γ2, γ3) is the unique non-trivial vector in the null space of the fundamental
matrix A that makes f p into a probability density function. In the next section we will derive
a number of properties of f p with the goal of determining the frequency of the digit 0 in the
signed binary expansions of mp × μp typical points.

3.4. The frequency of the digit 0 in random signed binary expansions

Recall from (11) that the random signed binary expansion of a point (ω, x) has a digit 0 in the
n-th position precisely if

Rn−1(ω, x) ∈ [1] × I2 ∪ ΩN × I3 ∪ [0] × I4 = :D0.

Since R is ergodic with respect to mp × μp, it follows from Birkhoff’s ergodic theorem that
the frequency of the digit 0 in mp × μp-almost all (ω, x) equals

π0(α, p) := lim
n→∞

1
n

n−1∑
k=0

1D0 (Rk(ω, x)) = (1 − p)μp(I2) + μp(I3) + pμp(I4). (20)

To give an example, consider α = 1, see figure 8(a). It is straightforward to check that the
probability density f p = (1 − p)1[−1,0] + p1[0,1] is invariant. This gives

π0(1, p) = pμp

([
0,

1
2

])
+ (1 − p)μp

([
−1

2
, 0

])
=

p2 + (1 − p)2

2
� 1

2
(21)

with equality only for p = 0 or p = 1.
For any α ∈

[
3
2 , 2
]

it is also easy to see that Mα = 2, and a quick computation leads to the
following expression for the invariant probability density function

f p =
1 − p
α

1[−1,1−α) +
1
α

1[1−α,α−1] +
p
α

1(α−1,1].

With this information we can easily compute π0(α, p) and obtain

π0(α, p) =
α− 1
α

+
2 − α

2α
=

1
2
. (22)

That is, for 2 � α � 3
2 , and any 0 < p < 1, the frequency of the digit 0 is equal to 1

2 in the
signed binary expansion of mp × μp-almost all (ω, x). For the other values of α we need to do
some more work.

So in the following, consider α ∈
(
1, 3

2

)
only. For k � 1 set Ek = {u ∈ Ωk : Tu(1) =

Sk
α(1)} and Fk = {u ∈ Ωk : Tu(1 − α) = Sk

α(1)}. Also, use (bn)n�1 to denote the digits in the
signed binary expansion of 1 generated by Sα, i.e.,

bn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, if Sn−1

α (1) < −1
2

,

0, if − 1
2
� Sn−1

α (1) � 1
2

,

1, if Sn−1
α (1) >

1
2
.

Write bk = b1 · · · bk for any k � 1.

Lemma 3.7. For all 1 � k < M − 1, Fk ⊆ Ek and Ek\Fk = {bk}.
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Proof. First note that the nth signed binary digit of 1 generated by Sα, n < M − 1, equals
0 if Sn−1

α (1) ∈ I4 and 1 if Sn−1
α (1) ∈ I5. We prove the statement by induction. For k = 1 we

have E1 = {0, 1} and F1 = {0}. Assume the statement holds for some 1 � k < M − 2. If
Sk
α(1) = Tbk (1) ∈ I4, then bk+1 = 0 and we know from the assumptions, proposition 3.3 and

since Sk
α(1) − α ∈ I1 that

Tbk0(1) = Sk+1
α (1), Tbk1(1) = Tbk0(1 − α) = Tbk1(1 − α) = Sk+1

α (1) − α.

Hence, bk0 ∈ Ek+1\Fk+1 and bk1 /∈ Ek+1 ∪ Fk+1. If Sk
α(1) = Tbk (1) ∈ I5, then bk+1 = 1 and

Tbk0(1) = Tbk1(1) = Tbk0(1 − α) = Sk+1
α (1), Tbk1(1 − α) = Sk+1

α (1) − α.

So, bk1 ∈ Ek+1\Fk+1 and bk0 ∈ Ek+1 ∩ Fk+1. For any other u ∈ Ωk it holds that Tu(1) =
Tu(1 − α), so that either u j ∈ Ek+1 ∩ Fk+1 or u j /∈ Ek+1 ∪ Fk+1, j = 0, 1. This gives the
statement. �

Lemma 3.8. The density fp is constant and equal to 1
α

on the interval [1 − α,α− 1].

Proof. For any u ∈ Ωk, write ū = (1 − u1) · · · (1 − uk) and for a subset E ⊆ Ωk write
Ē = {u ∈ Ωk : ū ∈ E}. By lemma 3.7 we have for each k < M,

δk :=
∑
u∈Ek

pu

2k
−
∑
u∈Fk

pu

2k
=

pbk

2k
, δ̄k :=

∑
u∈Ēc

k

pu

2k
−
∑
u∈F̄c

k

pu

2k
=

pb̄k

2k
,

Recall the formula for the density f p from (19). Using proposition 3.3 we get

p0

2

M−2∑
k=0

∑
u∈Ωk

pu

2k

(
1[−1,Tu(1)) − 1[−1,Tu(1−α))

)

=
p0

2

M−2∑
k=0

∑
u∈Ωk :

Tu(1)=Sk
α(1),

Tu(1−α)=Sk
α(1)−α

pu

2k
1[Tu(1−α),Tu(1)) −

p0

2

M−2∑
k=0

∑
u∈Ωk :

Tu(1)=Sk
α(1)−α,

Tu(1−α)=Sk
α(1)

pu

2k
1[Tu(1),Tu(1−α))

=
p0

2

M−2∑
k=0

δk1[Sk
α(1)−α,Sk

α(1)).

For the other side it holds similarly using the symmetry of the system that

p1

2

M−2∑
k=0

∑
u∈Ωk

pu

2k

(
1[−1,Tu(α−1)) − 1[−1,Tu(−1))

)
=

p1

2

M−2∑
k=0

δ̄k1[−Sk
α(1),α−Sk

α(1)).

By (13) we have for all k < M − 1,

Sk
α(1),α− Sk

α(1) ∈ [α− 1, 1] and Sk
α(−1), Sk

α(α− 1) ∈ [−1, 1 − α],

so that on [1 − α,α− 1] we obtain

f p|[1−α,α−1](x) = (γ1 + γ2)
p1

2

M−2∑
k=0

δ̄k + (γ2 + γ3)
p0

2

M−2∑
k=0

δk.
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Since f p is a probability density it follows that

1 =

∫
[−1,1]

f pdλ = (γ1 + γ2)
p1

2

M−2∑
k=0

δ̄kα+ (γ2 + γ3)
p0

2

M−2∑
k=0

δkα. (23)

Hence,

f p|[1−α,α−1](x) =
1
α

,

which gives the result. �
Lemma 3.9. Let γ = (γ1, γ2, γ2, γ3) be the unique vector in the null space of A that makes
fp into a probability density function. Then γ2 = 1

α .

Proof. Since Sk
α(1) ∈ I4 ∪ I5 for all k < M − 1 it follows from the definition of the function

KIn in (17) and proposition 3.3 that for y = 1, 1 − α,

KI4(y) + KI5(y) =
M−2∑
k=0

∑
j∈Ω

∑
u∈Ωk

pj

2
pu

2k
1I4∪I5 (Tu(y)) =

1
2

M−2∑
k=0

∑
u∈Ωk :

Tu(y)=Sk
α(1)

pu

2k
,

so that

1
2

M−2∑
k=0

δk = KI4(1) − KI4(1 − α) + KI5(1) − KI5(1 − α).

A similar statement holds for −1 and α− 1. The fourth and fifth line of the linear system
Aγ = 0 read

p1(KI4(α− 1) − KI4(−1))(γ1 + γ2) + p0(KI4(1) − KI4(1 − α))(γ2 + γ3)

− γ2 + γ3 = 0,

and

p1(KI5(α− 1) − KI5(−1))(γ1 + γ2) + p0(KI5(1) − KI5(1 − α))

(γ2 + γ3) − γ3 = 0,

respectively, where we have used that γ = (γ1, γ2, γ2, γ3). Adding them up gives

γ2 = p1(γ1 + γ2)(KI4(α− 1) − KI4(−1) + KI5(α− 1) − KI5(−1))

+ p0(γ2 + γ3)(KI4(1) − KI4(1 − α) + KI5(1) − KI5(1 − α))

=
p1

2
(γ1 + γ2)

M−2∑
k=0

δ̄k +
p0

2
(γ2 + γ3)

M−2∑
k=0

δk.

The result then follows from (23). �
Combining lemmas 3.8 and 3.9 gives the following expression for the density f p:

f p =

(
γ1 +

1
α

)
p1

2

M−2∑
k=0

pb̄k

2k
1[−Sk

α(1),α−Sk
α(1)) +

(
1
α
+ γ3

)
p0

2

M−2∑
k=0

pbk

2k
1[Sk

α(1)−α,Sk
α(1)), (24)
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where bk = b1 · · · bk denote the first k digits in the signed binary expansion of 1 given by Sα.

Lemma 3.10. Let α ∈
(
1, 3

2

)
be a parameter for which the random system R has strong

random matching. Then both γ1, γ3 � 0. As a consequence, fp > 0 and μp is equivalent to λ.

Proof. Let γ = (γ1, γ2, γ2, γ3) be the unique vector in the null space of A that makes f p into
a probability density. Set

y = max
k∈{1,2,...,M−2}

{Sk
α(1),α− Sk

α(1)}.

By lemma 3.4 we can assume that y �= 1. Furthermore, T0(1 − α) = 2 − α and T1(1 − α) =
2 − 2α, so in particular y � max{2 − α, 2α− 2} > α− 1. Then

μp([y, 1]) = mp × μp(R−1(Ω× [y, 1])) = pμp

([
y − α

2
,

1 − α

2

]
∪
[

y
2

,
1
2

])
.

By the definition of y one can see from (24) that

μp([y, 1]) =
p(γ2 + γ3)

2
(1 − y).

It follows that 1 − α � y−α
2 < 1−α

2 . Thus by lemmas 3.8 and 3.9, f p|[ y−α
2 , 1−α

2 ] = γ2. We pro-

ceed by showing that none of the points Sk
α(1) or α− Sk

α(1), 1 � k � M − 2, lie in the inter-
val
[ y

2 , 1
2

]
, which then by (24) implies that the density f p is also constant on the interval[ y

2 , 1
2

]
. For k = M − 2 = Mα − 1, matching for Sα implies that 1

2 < SM−2
α (1) < α− 1

2 and
α− SM−2

α (1) > 1
2 . Suppose there exists a k ∈ {1, 2, . . . , M − 3} such that y

2 < Sk
α(1) < 1

2 (or
y
2 < α− Sk

α(1) < 1
2 ). Then Sk+1

α (1) > y (orα− Sk+1
α (1) > y), which gives a contradiction with

the definition of y. The same holds for α− Sk
α(1). Hence, there is a constant c � 0 such that

p(γ2 + γ3)
2

(1 − y) = μp([y, 1]) = p

(
γ2

(1 − y)
2

+ c
(1 − y)

2

)
.

So, 0 � μp

([ y
2 , 1

2

])
= c = γ3. The proof that γ1 � 0 goes similarly. The fact that f p is strictly

positive and the equivalence of μp and λ now follow from (24). �

The following result can be proven in essentially the same way as [DK20, theorem 4.1]. We
include a proof here for convenience.

Lemma 3.11 (cf theorem 4.1 of [DK20]). Fix 0 < p < 1. The map α �→ π0(α, p) is
continuous on

(
1, 3

2

)
.

Proof. In this proof we use fα = fα,p to denote the unique density from (24). By (20), for
the continuity of α �→ π0(α, p) it is sufficient to prove L1-convergence of the densities fα;
i.e., for any sequence {αk}k�1 ⊆

(
1, 3

2

)
converging to a fixed α̂ ∈

(
1, 3

2

)
, there is convergence

f αk → f α̂ in L1(λ). The proof of this fact goes along the following lines:

(a) First we show that there is a uniform bound, i.e., independent of k, on the total variation
and supremum norm of the densities f αk . It then follows from Helly’s selection theorem
that there is some subsequence of ( f αk) for which an a.e. and L1 limit f̂ exist.

(b) We show that f̂ = f α̂, which by the same proof implies that any subsequence of ( f αk ) has
a further subsequence converging a.e. to the same limit f α̂. Hence, ( f αk ) converges to f α̂
in measure.
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(c) By the uniform integrability of ( f αk) it then follows from Vitali’s convergence theorem
that the convergence of ( f αk ) to f α̂ is in L1.

Steps (a) and (b) use Perron–Frobenius operators. For j = 0, 1 the Perron–Frobenius
operator Pα, j of Tα, j is uniquely defined by the equation∫

(Pα, j f )gdλ =

∫
f (g ◦ Tα, j)dλ ∀ f ∈ L1(λ), g ∈ L∞(λ)

and the Perron–Frobenius operator Pα of Rα is then defined by Pα f = pPα,0 f + (1 − p)Pα,1 f .
Equivalently, Pα is uniquely defined by the equation

∫
(Pα f )gdλ = p

∫
f (g ◦ Tα,0)dλ+ (1 − p)

∫
f (g ◦ Tα,1)dλ ∀ f ∈ L1(λ), g ∈ L∞(λ).

(25)

Since each Rα has a unique probability density fα it follows from [Pel84, theorem 1] that fα is
the L1 limit of ( 1

n

∑n−1
j=0 P j

α1)n�1 and it is the unique probability density that satisfies Pα fα = fα.
From [Ino12, theorem 5.2] each fα is a function of bounded variation. We proceed by finding
uniform bounds on the total variation and supremum norm of these densities.

Fix α̂ ∈
(
1, 3

2

)
. For the second iterates of the Perron–Frobenius operators we have

P2
α f =

1∑
i, j=0

pi pjPα, j(Pα,i f ).

Since the intervals of monotonicity of any of the maps Tα,u for u ∈ Ω2, only become arbitrarily
small for α approaching 1 and 3

2 , we can find a uniform lower bound δ on the length of the
intervals of monotonicity of any map Tα,u, u ∈ Ω2, for all values α that are close enough to α̂.
Applying [BG97, lemma 5.2.1] to Tα, j, j = 0, 1, and any of the second iterates Tα,u, u ∈ Ω2,
gives that

Var(Pα, j f ) � Var( f ) +
1
δ
‖ f ‖1 and Var(Pα,u f ) � 1

2
Var( f ) +

1
2δ

‖ f ‖1,

where Var denotes the total variation over the interval [−1, 1]. Since these bounds do not
depend on α, j, u, the same estimates hold for Pα, so that for any function f : [−1, 1] → R

of bounded variation and any n � 1,

Var(Pn
α f ) � 1

2�n/2� Var( f ) +

(
2 +

1
δ

)
‖ f ‖1. (26)

Let {αk}k�1 with αk → α̂ be a sequence for which the lower bound δ holds for each k. For
each k and n, write f k,n = 1

n

∑n−1
i=0 Pαk 1. Since

sup | f k,n| � Var( f k,n) +
∫

f k,ndλ,

it follows from (26) that there is a uniform constant C > 0 (independent of k, n) such that
Var( fk,n), sup| fk,n| < C. The same then holds for the limits f αk . Helly’s selection theorem
then gives the existence of a subsequence {ki} and a function f̂ of bounded variation, such
that f αki

→ f̂ in L1(λ) and λ-a.e. and with Var( f̂ ), sup | f̂ | < C. This finishes (a).
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Figure 9. The graph of (α, p) �→ π0(α, p).

By (b) and (c) above, what remains to finish the proof is to show that Pα̂ f̂ = f̂ . By (25) it
is enough to show that for any compactly supported C1 function g : [−1, 1] → R it holds that∣∣∣∣∫ (Pα̂ f̂ )gdλ−

∫
f̂ gdλ

∣∣∣∣ = 0.

Note that ∣∣∣∣∫ (Pα̂ f̂ )gdλ−
∫

f̂ gdλ

∣∣∣∣ � p

∣∣∣∣∫ f̂ (g ◦ Tα̂,0)dλ−
∫

f̂ gdλ

∣∣∣∣
+ (1 − p)

∣∣∣∣∫ f̂ (g ◦ Tα̂,1)dλ−
∫

f̂ gdλ

∣∣∣∣ .
For j = 0, 1 we can write∣∣∣∣∫ f̂ (g ◦ Tα̂, j)dλ−

∫
f̂ gdλ

∣∣∣∣ � ∣∣∣∣∫ f̂ (g ◦ Tα̂, j)dλ−
∫

f αki
(g ◦ Tα̂, j)dλ

∣∣∣∣
+

∣∣∣∣∫ f αki
(g ◦ Tα̂, j)dλ−

∫
f αki

(g ◦ Tαki
, j)dλ

∣∣∣∣
+

∣∣∣∣∫ f αki
(g ◦ Tαki

, j)dλ−
∫

f̂ gdλ

∣∣∣∣ .
The first and third integral on the right-hand side can be bounded by ‖g‖∞‖ f̂ − f αki

‖1 → 0.
For the second integral, ‖ f αki

‖∞ < C and
∫
|g ◦ Tα̂, j − g ◦ Tαki

, j|dλ→ 0 by the dominated

convergence theorem. Hence, f̂ = f α̂ and f αk → f α̂ in L1. �

Figure 9 shows a numerical approximation of the graph of the function (α, p) �→ π0(α, p).
We can now prove that the maximal value of the frequency of the digit 0 is in fact 1

2 .
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Theorem 3.12. For any 0 < p < 1 and any α ∈ [1, 2] the frequency π0(α, p) is at most 1
2

for mp × λ-a.e. (ω, x) ∈ ΩN × [−1, 1].

Proof. For α ∈
[

3
2 , 2
]

the statement follows from (22) and for α = 1 from (21). Let α ∈(
1, 3

2

)
. The deterministic map Tα,0 has density f 0 = 1

α
1[1−α,1] and Tα,1 has f 1 = 1

α
1[−1,α−1].

Hence π0(α, p) = 1
2 for p = 0, 1. Let 0 < p < 1 and let α be a parameter satisfying the con-

ditions of lemma 3.10. We know that f p is constant and equal to 1
α

on [1 − α,α− 1]. For
x > α− 1 the density can be written as

f p(x) =
1
α
−
(

(1 − p)(γ1 + γ2)
2

M−2∑
k=0

pb̄k

2k
1[α−1,x](α− Sk

α(1))

+
p(γ2 + γ3)

2

M−2∑
k=0

pbk

2k
1[α−1,x](S

k
α(1))

)

=
1
α
− (1 − p)(γ1 + γ2)

2
−
(

(1 − p)(γ1 + γ2)
2

M−2∑
k=1

pb̄k

2k
1[α−1,x](α− Sk

α(1))

+
p(γ2 + γ3)

2

M−2∑
k=1

pbk

2k
1[α−1,x](Sk

α(1))

)

� 1
α
− (1 − p)(γ1 + γ2)

2
.

Similarly, for x < 1 − α we get f p(x) � 1
α − p(γ2+γ3)

2 . By (20) and lemma 3.10,

π0(α, p) =
α− 1
α

+
α− 1

2α
+ pμα,p

([
α− 1,

1
2

])
+ (1 − p)μα,p

([
−1

2
, 1 − α

])
� 3(α− 1)

2α
+

3 − 2α
2α

(
1 − p(1 − p)α

2
min{γ1 + γ2, γ2 + γ3}

)
=

1
2
− 3 − 2α

2
p(1 − p)

2
min{γ1 + γ2, γ2 + γ3}

<
1
2
.

Since matching holds for almost all parametersα, the statement now follows from lemma 3.11
and the equivalence of μp and λ. �

4. Final remarks

4.1. Remarks on the symmetric doubling maps

The numerical approximation of the graph of (α, p) �→ π0(α, p) shown in figure 9 seems to
suggest some other features of the map that we have not proved. Firstly, it suggests some
symmetry. In fact it can be shown that for each fixed α and any x ∈ [0, 1], it holds that f p(x) =

f1−p(−x). For this one needs to consider the fundamental matrix Ã corresponding to the random
system R̃α obtained by switching the roles of p and 1 − p. Then using the permutation (12)(45),
one can relate various of the quantities involved for Ã to the fundamental matrix A of Rα.
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Secondly, for any matching parameter α and any 0 < p < 1 the density fα,p is a finite com-
bination of indicator functions, whose supports depend on the position of the points in the set
{Sk

α(1),α− Sk
α(1)}M−2

k=0 and whose coefficients are polynomials in p. So, for such a fixed α and
any x ∈ [−1, 1], the map p �→ fα,p(x) is continuous in p.

Thirdly, the graph also suggests that the map presents a minimum at p = 1
2 . Using the above

two facts we were only able to show the following:

Proposition 4.1. Let α ∈ [1, 2] be such that R has strong random matching. Then the map
p �→ π0(α, p) has an extremal value at p = 1

2 .

Proof. By combining (20) and the fact that f p(x) = f1−p(−x) we obtain

π0(α, p) = (1 − p)μ1−p(I4) + μp(I3) + pμp(I4).

Computing the derivative with respect to p then gives

∂pπ0(α, p) = −μ1−p(I4) − (1 − p)∂p(μ1−p(I4)) + ∂p(μp(I3)) + μp(I4) + ∂p(μp(I4)). (27)

From lemma 3.8 it follows that ∂p(μp(I3)) = −∂p(μ1−p(I3)), implying that ∂p(μp(I3)) = 0 at
p = 1

2 . Therefore, by (27) ∂pπ0(α, p) = 0 at p = 1
2 . �

4.2. Remarks on random continued fractions

Theorem 2.5 states that for random piecewise affine maps of the interval satisfying (c1)–(c3)
strong random matching implies that there exists a piecewise constant invariant density. Con-
dition (5) was sufficient for the theorem to work, which was one of the main motivations for
definition 2.2.

Theorem 2.5 is a random analogue of [BCMP19, theorem 1.2], except that there the state-
ment has less assumptions. The authors mention in [BCMP19, remark 1.3] that for piecewise
smooth interval maps with strong matching the corresponding invariant probability densities
are piecewise smooth. On the other hand, as we noted before, the natural extension construc-
tion which for continued fraction transformations is often used to find invariant densities, seems
to suggest that matching alone is sufficient to guarantee the existence of a piecewise smooth
density. It would be interesting to investigate this further for the random continued fraction
transformation.

In a first attempt to investigate to what extent theorem 2.5 can be generalised to piecewise
smooth random systems on an interval, we include some numerical simulations. Recall from
example 2.3 that the random continued fraction maps Rα have strong random matching for α
in the intervals Jn with endpoints as in (6), see also figure 3. Figure 10 shows two simulations
of the invariant densities for such systems Rα. The densities seem to be piecewise smooth with
discontinuities precisely at the orbit points of α and α− 1 before matching. This seems to
support the claim that strong random matching is sufficient to guarantee the existence of a
piecewise smooth invariant density.

In example 2.3 we also considered the maps Rα for α ∈
(√

10−2
2 , 2 −

√
2
)

. We showed that

Rα has random matching with M = 3, but no strong matching at that moment. With a similar

approach it can be shown that Rα has random matching for various other intervals in
[

1
2 ,

√
5−1
2

]
.

For α ∈
[

1
2 , 2 −

√
2
]

both deterministic maps Tα,0 and Tα,1 have strong matching with
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Figure 10. Numerical simulations of the invariant probability densities of the random
continued fraction maps Rα from example 2.3. In (a) we take α ∈ J4 and p0 = 0.3 and
in (b) we have α ∈ J5 and p0 = 0.6. The dashed lines indicate the positions of the pre-
matching points, i.e., the points in the orbits of α and α− 1 before the moment of
matching.

Figure 11. Numerical simulations of the invariant probability densities of the random
continued fraction maps Rα from example 2.3 for three values of α between 1

2 and 2 −√
2. The map in (a) hasα ∈

(√
10−2
2 , 2 −

√
2
)

, which is the matching interval considered
in example 2.3. The orange graph is the graph of the weighted average of the densities
of Tα,0 and Tα,1 with the appropriate values of p.

M, Q � 2, as was shown in [Nak81] and [TI81], and moreover, for both of them the invari-
ant densities are known. In figure 11 we have plotted the weighted average of these densities

together with numerical simulations of the densities for various values ofα ∈
[

1
2 , 2 −

√
2
]

and

0 < p < 1. This makes us wonder whether we need strong random matching to guarantee the
existence of a piecewise smooth invariant density for these random systems or whether random
matching is sufficient.
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