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CHAPTER 1

General introduction and outline of the thesis
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The kidneys in health and disease
The kidneys play a central role in body homeostasis. They remove waste products 
and toxins from the body, regulate fluid balance, acid-base homeostasis, bone 
mineralization and blood pressure and produce hormones such as erythropoietin and 
renin (1-5). Each kidney contains around 1 million nephrons, the functional units of the 
kidney, which consist of a glomerulus and a renal tubule. The glomerulus is a network 
of capillaries (small blood vessels), which are surrounded by Bowman’s capsule. Blood 
is filtered across the capillary walls into Bowman’s space, which yields a filtrate of water, 
small solutes and low-molecular-weight proteins (6). Next, this ultrafiltrate is modified 
along the tubular segments of the nephron, where reabsorption and secretion take 
place. Although the kidneys produce only 1.5 L of urine per day, they receive 20% of the 
cardiac output and form 180 L of ultrafiltrate daily. 

Current international guidelines define chronic kidney disease (CKD) as a 
heterogeneous group of disorders leading to decreased kidney function or 
abnormalities in kidney structure (proteinuria or abnormalities in urinary sediment, 
histology or imaging) that are present for at least 3 months (7). The glomerular 
filtration rate is the recommended form of assessment for overall kidney function. 
It can be measured via exogenous markers (e.g. using iohexol), but is usually 
estimated based on creatinine in routine clinical practice (eGFR) (8). Proteinuria is 
preferably measured by the urinary albumin-to-creatinine ratio. Based on these 
two measurements, CKD is classified into six stages of eGFR and three stages 
of proteinuria (Table 1) (7). When eGFR is less than 15 ml/min/1.73m2 (CKD G5), a 
person has kidney failure and kidney replacement therapy (either dialysis or kidney 
transplantation) is necessary for survival. 

The classification and definition of CKD are based on large-scale epidemiological 
studies, which have shown strong, graded and consistent associations between 
eGFR or albuminuria with adverse outcomes, which are independent of age, 
sex, ethnicity or traditional cardiovascular risk factors (9-17). The lower the 
kidney function and the higher the albuminuria, the higher the risk for mortality, 
cardiovascular events, or end stage kidney disease. The association between CKD 
and cardiovascular abnormalities was first described in 1836 by the British physician 
Richard Bright (18). Since then, many epidemiological studies have confirmed 
and extended this finding. For instance, 50% of patients with CKD G4-5 have 
cardiovascular disease (19, 20). Compared with individuals with a normal kidney 
function, the risk for cardiovascular mortality is twice as high for individuals with 
CKD G3, and three times as high for individuals with CKD G4, even after adjustment 
for traditional cardiovascular risk factors and albuminuria (10, 17). Furthermore, the 
risks of heart failure, stroke, peripheral arterial disease, coronary artery disease and 
atrial fibrillation are roughly doubled in patients with an eGFR <60 ml/min/1.73m2 
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compared to individuals with a preserved kidney function (21-25). Similarly, the risk 
of cardiovascular death is doubled in individuals with albuminuria of 300 mg/g, 
compared with individuals with normal albuminuria (10, 17). 

Chronic kidney disease (CKD) is a significant public health problem. Estimates 
suggest that CKD affects around 850 million individuals (26), corresponding to 8-16% 
of the worldwide population (27-30). In developed countries the main causes of CKD 
are hypertension and diabetes, which are increasing in prevalence due to the rise in 
obesity (31). Like other chronic diseases, the prevalence of CKD increases with age. 
Among individuals above the age of 60 years the prevalence exceeds 20%, and 
among those older than 70 years, 35% have CKD (32). CKD was responsible for 1.2 
million deaths and 35.8 million disability-adjusted life-years worldwide in 2017 (27, 
28), and leads to significant healthcare costs (33, 34). Investigating the effectiveness 
of therapies to reduce the cardiovascular burden and prevent progression to kidney 
failure in CKD patients is therefore of high importance.

Table 1: CKD classification based on eGFR and albuminuria. 

 Persistent albuminuria categories, 
description, and ACR range

A1 A2 A3

Normal 
to mildly 
increased

Moderately 
increased

Severely 
increased

<30 mg/g 30-300 mg/g ≥300 mg/g
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G1 Normal or high ≥90

G2 Mildly decreased 60-89

G3a Mildly to 
moderately 
decreased

45-59

G3b Moderately to 
severely decreased

30-44

G4 Severely decreased 15-29

G5 Kidney failure <15

Data from the KDIGO CKD Work Group clinical practice guidelines (7). Colors indicate the prognosis by 

eGFR and albuminuria category. Green, low risk; Yellow, moderately increased risk; Orange, high risk; Red, 

very high risk.
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Management of chronic kidney disease
Currently, optimal management of CKD patients includes cardiovascular risk 
reduction (lipid and blood pressure management), drug dosage adjustments and 
avoidance of nephrotoxic agents, as well as treating complications that may arise due 
to CKD, such as anemia, electrolyte abnormalities and mineral and bone disorders 
(35). Renin-angiotensin system inhibitors (RASi; i.e. ACE inhibitors and angiotensin-II 
receptor blockers) are indicated in patients with diabetes and ACR >30 mg/g and in 
all CKD patients with ACR >300 mg/g. In patients with diabetes, glycemic control can 
delay CKD progression and adjustment of oral antihyperglycemic agents may be 
necessary. Recently, sodium-glucose cotransporter-2 inhibitors have been shown 
to reduce major adverse cardiovascular events and in particular CKD progression 
and heart failure in various patient populations, including individuals with diabetes, 
heart failure or CKD (36-39). 

Promises and perils of “real-world evidence” in CKD
To establish the causal effects of treatments and guide decision making, we prefer 
data from randomized controlled trials (RCT). Due to randomization, treatment 
allocation depends only on chance, and not on the decision of the clinician or 
patient. Any differences in outcomes that are larger than we could expect from 
chance can then be interpreted as a causal effect of the treatment itself. 

Unfortunately, evidence from randomized trials is not always available, which has led 
to uncertainty about the effects of therapies in patients with kidney disease. One of 
the reasons for this is that fewer trials are conducted in nephrology, and the quality 
of trials is often lower compared with other specialties (40-42). Second, patients 
with kidney disease have historically been excluded from many RCTs in the field of 
cardiovascular disease or cancer (43-45), and continue to be underrepresented in 
recent cardiovascular trials, especially those with CKD G4-5 (46). Besides the fact 
that few RCTs are performed, they also have a number of important limitations. RCTs 
are costly, may be unethical to conduct, and can take a long time to complete (47). 
Furthermore, they are often conducted in selected populations, whereas a much 
wider population is likely to receive these treatments in clinical practice (48, 49). For 
instance, a meta-analysis of 186 trials conducted in the dialysis population showed 
that trial participants are younger, have a different pattern of comorbidities and a 
lower mortality rate than the overall population of dialysis patients (48). Findings from 
RCTs can therefore not be readily translated to effectiveness and safety profiles of 
patients from routine clinical practice. Lastly, the number of clinical questions greatly 
outpaces the number of RCTs that can be performed.
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For these reasons, there is growing interest from regulators, insurance companies 
and physicians in using observational data to supplement trial evidence and aid in 
clinical decision-making (50, 51). Vast amounts of observational data are generated 
each day as patients interact with the healthcare system and are stored in the form 
of administrative claims databases, electronic health records and registries (52). 
These data sources can be used relatively fast and at a fraction of the cost of RCTs 
to study how treatments work in routine clinical care. Indeed, many observational 
studies are published every year and there has been a trend towards greater reliance 
by regulators on such “real-world evidence” (RWE), which is defined as evidence 
coming from data sources other than the traditional highly controlled RCTs (53, 
54). In 2019, 60% of new drug approvals to the US Food and Drug Administration 
(FDA) had observational evidence as part of their submission, of which 12% was 
considered essential evidence (55). 

However, drawing causal conclusions from routinely collected healthcare data 
is not an easy task. Because treatment has not been randomized, there can be 
systematic differences between the treatment groups, known in the epidemiology 
literature as confounding (56). After all, in observational data we just observe 
what happens in every day care, where treatments are often given to individuals 
with a worse prognosis, or in the case of preventive treatments to health-seeking 
individuals. In addition to this confounding, selection bias (57-59) and information 
bias (60, 61) can also affect the validity of observational studies. Because data are 
widely available while the knowledge to properly analyse these is not, observational 
studies can easily yield associations that are precise (due to the large sample size) 
but not causal. A notable example is the debacle surrounding postmenopausal 
hormone therapy and coronary heart disease (62). Observational studies had shown 
that women using postmenopausal hormone replacement therapy had a markedly 
lower risk of coronary heart disease compared with women who did not use these 
medications (63, 64). As a consequence, this therapy was widely promoted in 
postmenopausal women to prevent heart disease (65, 66). However, a subsequent 
large randomized trial showed completely opposite results: a 24% increased risk 
of coronary heart disease (67). This example illustrates that making mistakes in 
observational data is not without costs and can have grave consequences (62).



14

Fortunately, in the past four decades there have been tremendous developments 
in the field of causal inference, the discipline that investigates the assumptions, 
study designs and methods that are needed to draw causal conclusions based on 
data (68). A theoretical framework for causality has been developed such that we 
are able to ask better causal questions, and novel methods increase the validity of 
findings from observational data (47, 69, 70). Our understanding of how the various 
biases arise and how they can be addressed has vastly improved. At the same time, 
databases are becoming larger and more detailed, including longitudinal patient-
level information on medications, lab tests, procedures and diagnoses. As the 
flourishing of the field of causal inference coincides with the upcoming of big data, 
this combination provides immense opportunities to contribute valuable evidence 
for decision making in nephrology. 

Aims and outline 
The aim of this thesis is to answer a number of clinical questions on the effectiveness 
and safety of treatments in the field of kidney disease by using observational data 
from routine clinical care in combination with causal inference methods. This thesis 
is structured in two parts. In part I we explore the methodological aspects of using 
routinely collected observational data to establish causal effects. In part II we apply 
state-of-the-art statistical and epidemiological methods to answer a number of 
pressing clinical questions in nephrology.

Part I: Methodological considerations
A number of biases threaten the validity of observational studies that try to 
estimate the causal effects of treatments. Some of these biases can be prevented 
by applying a sound study design, whereas others need to be addressed in the 
statistical analysis. In Chapter 2 we specifically discuss confounding, prevalent 
user bias, immortal time bias, missing data and measurement error and methods 
to handle these biases, including active comparator new user designs, target trial 
emulation, propensity scores, marginal structural models and multiple imputation.

Different methods exist to adjust for measured confounding in the statistical analysis. 
Chapter 3 discusses the merits and caveats of propensity scores, a commonly 
used method to adjust for confounding. We discuss four types of propensity score 
methods, including propensity score matching, stratification, adjustment and 
weighting, and illustrate these with a clinical example. We also provide guidance 
when to choose propensity score methods versus conventional multivariable 
regression. In Chapter 4 we point out immortal time bias in a published observational 
study which aimed to estimate the causal effect of metformin on kidney outcomes, 
and discuss how this could have been prevented with an appropriate study design 
or statistical analysis. 
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Part II: Clinical applications
RASi (i.e., ACE inhibitors and angiotensin-II receptor blockers) are widely prescribed 
drugs that are a cornerstone in the treatment of hypertension, heart failure and 
proteinuric kidney disease. Acute increases in creatinine (reflecting a drop in kidney 
function) are often observed after initiation of RASi, but the clinical significance of 
such increases is controversial. Chapter 5 investigates the significance of this acute 
creatinine increase by studying the association between the magnitude of increase 
and the outcomes mortality, cardiovascular events and end-stage kidney disease 
using standard multivariable regression to adjust for confounding. Since guidelines 
recommend to monitor creatinine, we also investigate which proportion of patients 
receive this monitoring. 

We do not know the best antihypertensive medications to use in patients with 
advanced CKD (stage 4/5), because they have not been included in many trials. 
In Chapter 6 we compare the effects of RASi versus calcium channel blockers, 
two of the most widely used antihypertensive drugs in this population. An active 
comparator new user design in combination with propensity score weighting is 
applied to reduce confounding and other biases. Since ample evidence is available 
on the efficacy of RASi in moderate CKD (stage 3) from randomized trials, we 
replicate our analyses in a positive control cohort of patients with stage 3 CKD to 
compare the trial findings against our observational estimates. 

Between 10-15% of patients with heart failure have advanced CKD. Although 
β-blockers are a cornerstone in the treatment of patients with heart failure with 
reduced ejection fraction, we do not know whether they are effective in individuals 
with advanced CKD, a population at an extremely high risk of complications and 
(cardiovascular) death. Chapter 7 investigates the effect of β-blocker use in patients 
with heart failure and advanced CKD on cardiovascular and all-cause mortality 
and heart failure hospitalization. Results are reported for reduced, midrange and 
preserved ejection fraction. Similar to the previous chapter, a positive control cohort 
of heart failure patients with moderate CKD is used to benchmark the observational 
findings against trial evidence. 

Small single-center studies have suggested that stopping RASi in patients with 
advanced CKD can postpone dialysis. However, few studies have addressed 
the cardiovascular and kidney effects of this decision. In Chapter 8 we therefore 
investigate the effect of stopping versus continuing RASi in patients with advanced 
CKD on mortality, cardiovascular events and kidney replacement therapy using the 
target trial emulation framework and the cloning, censoring and weighting method. 
In addition, results are replicated by modelling RASi as a time-varying exposure 
using a marginal structural model. 
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Chapter 9 investigates the optimal kidney function to initiate dialysis with respect to 
mortality and cardiovascular outcomes using the target trial emulation framework. 
Although the randomized IDEAL trial showed no differences in outcomes between 
early and late dialysis initiation, only two treatment strategies were compared, and 
the realized eGFR values were within a narrow range (7.2 vs. 9.0 ml/min/1.73m2). 
As a randomized trial testing many different treatment strategies is unfeasible, 
observational data need to be used to answer this question. Since this question 
involves dynamic treatment strategies a cloning, censoring and weighting 
approach is used. We also investigate the influence of lead time bias, selection bias 
and immortal time bias in previous observational studies. The last two chapters 
calculate restricted mean survival time to easily interpret how long an average 
patient would live by following a particular treatment strategy.
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