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The kidneys in health and disease
The kidneys play a central role in body homeostasis. They remove waste products 
and toxins from the body, regulate fluid balance, acid-base homeostasis, bone 
mineralization and blood pressure and produce hormones such as erythropoietin and 
renin (1-5). Each kidney contains around 1 million nephrons, the functional units of the 
kidney, which consist of a glomerulus and a renal tubule. The glomerulus is a network 
of capillaries (small blood vessels), which are surrounded by Bowman’s capsule. Blood 
is filtered across the capillary walls into Bowman’s space, which yields a filtrate of water, 
small solutes and low-molecular-weight proteins (6). Next, this ultrafiltrate is modified 
along the tubular segments of the nephron, where reabsorption and secretion take 
place. Although the kidneys produce only 1.5 L of urine per day, they receive 20% of the 
cardiac output and form 180 L of ultrafiltrate daily. 

Current international guidelines define chronic kidney disease (CKD) as a 
heterogeneous group of disorders leading to decreased kidney function or 
abnormalities in kidney structure (proteinuria or abnormalities in urinary sediment, 
histology or imaging) that are present for at least 3 months (7). The glomerular 
filtration rate is the recommended form of assessment for overall kidney function. 
It can be measured via exogenous markers (e.g. using iohexol), but is usually 
estimated based on creatinine in routine clinical practice (eGFR) (8). Proteinuria is 
preferably measured by the urinary albumin-to-creatinine ratio. Based on these 
two measurements, CKD is classified into six stages of eGFR and three stages 
of proteinuria (Table 1) (7). When eGFR is less than 15 ml/min/1.73m2 (CKD G5), a 
person has kidney failure and kidney replacement therapy (either dialysis or kidney 
transplantation) is necessary for survival. 

The classification and definition of CKD are based on large-scale epidemiological 
studies, which have shown strong, graded and consistent associations between 
eGFR or albuminuria with adverse outcomes, which are independent of age, 
sex, ethnicity or traditional cardiovascular risk factors (9-17). The lower the 
kidney function and the higher the albuminuria, the higher the risk for mortality, 
cardiovascular events, or end stage kidney disease. The association between CKD 
and cardiovascular abnormalities was first described in 1836 by the British physician 
Richard Bright (18). Since then, many epidemiological studies have confirmed 
and extended this finding. For instance, 50% of patients with CKD G4-5 have 
cardiovascular disease (19, 20). Compared with individuals with a normal kidney 
function, the risk for cardiovascular mortality is twice as high for individuals with 
CKD G3, and three times as high for individuals with CKD G4, even after adjustment 
for traditional cardiovascular risk factors and albuminuria (10, 17). Furthermore, the 
risks of heart failure, stroke, peripheral arterial disease, coronary artery disease and 
atrial fibrillation are roughly doubled in patients with an eGFR <60 ml/min/1.73m2 
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compared to individuals with a preserved kidney function (21-25). Similarly, the risk 
of cardiovascular death is doubled in individuals with albuminuria of 300 mg/g, 
compared with individuals with normal albuminuria (10, 17). 

Chronic kidney disease (CKD) is a significant public health problem. Estimates 
suggest that CKD affects around 850 million individuals (26), corresponding to 8-16% 
of the worldwide population (27-30). In developed countries the main causes of CKD 
are hypertension and diabetes, which are increasing in prevalence due to the rise in 
obesity (31). Like other chronic diseases, the prevalence of CKD increases with age. 
Among individuals above the age of 60 years the prevalence exceeds 20%, and 
among those older than 70 years, 35% have CKD (32). CKD was responsible for 1.2 
million deaths and 35.8 million disability-adjusted life-years worldwide in 2017 (27, 
28), and leads to significant healthcare costs (33, 34). Investigating the effectiveness 
of therapies to reduce the cardiovascular burden and prevent progression to kidney 
failure in CKD patients is therefore of high importance.

Table 1: CKD classification based on eGFR and albuminuria. 

 Persistent albuminuria categories, 
description, and ACR range

A1 A2 A3

Normal 
to mildly 
increased

Moderately 
increased

Severely 
increased

<30 mg/g 30-300 mg/g ≥300 mg/g
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G1 Normal or high ≥90

G2 Mildly decreased 60-89

G3a Mildly to 
moderately 
decreased

45-59

G3b Moderately to 
severely decreased

30-44

G4 Severely decreased 15-29

G5 Kidney failure <15

Data from the KDIGO CKD Work Group clinical practice guidelines (7). Colors indicate the prognosis by 

eGFR and albuminuria category. Green, low risk; Yellow, moderately increased risk; Orange, high risk; Red, 

very high risk.
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Management of chronic kidney disease
Currently, optimal management of CKD patients includes cardiovascular risk 
reduction (lipid and blood pressure management), drug dosage adjustments and 
avoidance of nephrotoxic agents, as well as treating complications that may arise due 
to CKD, such as anemia, electrolyte abnormalities and mineral and bone disorders 
(35). Renin-angiotensin system inhibitors (RASi; i.e. ACE inhibitors and angiotensin-II 
receptor blockers) are indicated in patients with diabetes and ACR >30 mg/g and in 
all CKD patients with ACR >300 mg/g. In patients with diabetes, glycemic control can 
delay CKD progression and adjustment of oral antihyperglycemic agents may be 
necessary. Recently, sodium-glucose cotransporter-2 inhibitors have been shown 
to reduce major adverse cardiovascular events and in particular CKD progression 
and heart failure in various patient populations, including individuals with diabetes, 
heart failure or CKD (36-39). 

Promises and perils of “real-world evidence” in CKD
To establish the causal effects of treatments and guide decision making, we prefer 
data from randomized controlled trials (RCT). Due to randomization, treatment 
allocation depends only on chance, and not on the decision of the clinician or 
patient. Any differences in outcomes that are larger than we could expect from 
chance can then be interpreted as a causal effect of the treatment itself. 

Unfortunately, evidence from randomized trials is not always available, which has led 
to uncertainty about the effects of therapies in patients with kidney disease. One of 
the reasons for this is that fewer trials are conducted in nephrology, and the quality 
of trials is often lower compared with other specialties (40-42). Second, patients 
with kidney disease have historically been excluded from many RCTs in the field of 
cardiovascular disease or cancer (43-45), and continue to be underrepresented in 
recent cardiovascular trials, especially those with CKD G4-5 (46). Besides the fact 
that few RCTs are performed, they also have a number of important limitations. RCTs 
are costly, may be unethical to conduct, and can take a long time to complete (47). 
Furthermore, they are often conducted in selected populations, whereas a much 
wider population is likely to receive these treatments in clinical practice (48, 49). For 
instance, a meta-analysis of 186 trials conducted in the dialysis population showed 
that trial participants are younger, have a different pattern of comorbidities and a 
lower mortality rate than the overall population of dialysis patients (48). Findings from 
RCTs can therefore not be readily translated to effectiveness and safety profiles of 
patients from routine clinical practice. Lastly, the number of clinical questions greatly 
outpaces the number of RCTs that can be performed.
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For these reasons, there is growing interest from regulators, insurance companies 
and physicians in using observational data to supplement trial evidence and aid in 
clinical decision-making (50, 51). Vast amounts of observational data are generated 
each day as patients interact with the healthcare system and are stored in the form 
of administrative claims databases, electronic health records and registries (52). 
These data sources can be used relatively fast and at a fraction of the cost of RCTs 
to study how treatments work in routine clinical care. Indeed, many observational 
studies are published every year and there has been a trend towards greater reliance 
by regulators on such “real-world evidence” (RWE), which is defined as evidence 
coming from data sources other than the traditional highly controlled RCTs (53, 
54). In 2019, 60% of new drug approvals to the US Food and Drug Administration 
(FDA) had observational evidence as part of their submission, of which 12% was 
considered essential evidence (55). 

However, drawing causal conclusions from routinely collected healthcare data 
is not an easy task. Because treatment has not been randomized, there can be 
systematic differences between the treatment groups, known in the epidemiology 
literature as confounding (56). After all, in observational data we just observe 
what happens in every day care, where treatments are often given to individuals 
with a worse prognosis, or in the case of preventive treatments to health-seeking 
individuals. In addition to this confounding, selection bias (57-59) and information 
bias (60, 61) can also affect the validity of observational studies. Because data are 
widely available while the knowledge to properly analyse these is not, observational 
studies can easily yield associations that are precise (due to the large sample size) 
but not causal. A notable example is the debacle surrounding postmenopausal 
hormone therapy and coronary heart disease (62). Observational studies had shown 
that women using postmenopausal hormone replacement therapy had a markedly 
lower risk of coronary heart disease compared with women who did not use these 
medications (63, 64). As a consequence, this therapy was widely promoted in 
postmenopausal women to prevent heart disease (65, 66). However, a subsequent 
large randomized trial showed completely opposite results: a 24% increased risk 
of coronary heart disease (67). This example illustrates that making mistakes in 
observational data is not without costs and can have grave consequences (62).
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Fortunately, in the past four decades there have been tremendous developments 
in the field of causal inference, the discipline that investigates the assumptions, 
study designs and methods that are needed to draw causal conclusions based on 
data (68). A theoretical framework for causality has been developed such that we 
are able to ask better causal questions, and novel methods increase the validity of 
findings from observational data (47, 69, 70). Our understanding of how the various 
biases arise and how they can be addressed has vastly improved. At the same time, 
databases are becoming larger and more detailed, including longitudinal patient-
level information on medications, lab tests, procedures and diagnoses. As the 
flourishing of the field of causal inference coincides with the upcoming of big data, 
this combination provides immense opportunities to contribute valuable evidence 
for decision making in nephrology. 

Aims and outline 
The aim of this thesis is to answer a number of clinical questions on the effectiveness 
and safety of treatments in the field of kidney disease by using observational data 
from routine clinical care in combination with causal inference methods. This thesis 
is structured in two parts. In part I we explore the methodological aspects of using 
routinely collected observational data to establish causal effects. In part II we apply 
state-of-the-art statistical and epidemiological methods to answer a number of 
pressing clinical questions in nephrology.

Part I: Methodological considerations
A number of biases threaten the validity of observational studies that try to 
estimate the causal effects of treatments. Some of these biases can be prevented 
by applying a sound study design, whereas others need to be addressed in the 
statistical analysis. In Chapter 2 we specifically discuss confounding, prevalent 
user bias, immortal time bias, missing data and measurement error and methods 
to handle these biases, including active comparator new user designs, target trial 
emulation, propensity scores, marginal structural models and multiple imputation.

Different methods exist to adjust for measured confounding in the statistical analysis. 
Chapter 3 discusses the merits and caveats of propensity scores, a commonly 
used method to adjust for confounding. We discuss four types of propensity score 
methods, including propensity score matching, stratification, adjustment and 
weighting, and illustrate these with a clinical example. We also provide guidance 
when to choose propensity score methods versus conventional multivariable 
regression. In Chapter 4 we point out immortal time bias in a published observational 
study which aimed to estimate the causal effect of metformin on kidney outcomes, 
and discuss how this could have been prevented with an appropriate study design 
or statistical analysis. 
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Part II: Clinical applications
RASi (i.e., ACE inhibitors and angiotensin-II receptor blockers) are widely prescribed 
drugs that are a cornerstone in the treatment of hypertension, heart failure and 
proteinuric kidney disease. Acute increases in creatinine (reflecting a drop in kidney 
function) are often observed after initiation of RASi, but the clinical significance of 
such increases is controversial. Chapter 5 investigates the significance of this acute 
creatinine increase by studying the association between the magnitude of increase 
and the outcomes mortality, cardiovascular events and end-stage kidney disease 
using standard multivariable regression to adjust for confounding. Since guidelines 
recommend to monitor creatinine, we also investigate which proportion of patients 
receive this monitoring. 

We do not know the best antihypertensive medications to use in patients with 
advanced CKD (stage 4/5), because they have not been included in many trials. 
In Chapter 6 we compare the effects of RASi versus calcium channel blockers, 
two of the most widely used antihypertensive drugs in this population. An active 
comparator new user design in combination with propensity score weighting is 
applied to reduce confounding and other biases. Since ample evidence is available 
on the efficacy of RASi in moderate CKD (stage 3) from randomized trials, we 
replicate our analyses in a positive control cohort of patients with stage 3 CKD to 
compare the trial findings against our observational estimates. 

Between 10-15% of patients with heart failure have advanced CKD. Although 
β-blockers are a cornerstone in the treatment of patients with heart failure with 
reduced ejection fraction, we do not know whether they are effective in individuals 
with advanced CKD, a population at an extremely high risk of complications and 
(cardiovascular) death. Chapter 7 investigates the effect of β-blocker use in patients 
with heart failure and advanced CKD on cardiovascular and all-cause mortality 
and heart failure hospitalization. Results are reported for reduced, midrange and 
preserved ejection fraction. Similar to the previous chapter, a positive control cohort 
of heart failure patients with moderate CKD is used to benchmark the observational 
findings against trial evidence. 

Small single-center studies have suggested that stopping RASi in patients with 
advanced CKD can postpone dialysis. However, few studies have addressed 
the cardiovascular and kidney effects of this decision. In Chapter 8 we therefore 
investigate the effect of stopping versus continuing RASi in patients with advanced 
CKD on mortality, cardiovascular events and kidney replacement therapy using the 
target trial emulation framework and the cloning, censoring and weighting method. 
In addition, results are replicated by modelling RASi as a time-varying exposure 
using a marginal structural model. 
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Chapter 9 investigates the optimal kidney function to initiate dialysis with respect to 
mortality and cardiovascular outcomes using the target trial emulation framework. 
Although the randomized IDEAL trial showed no differences in outcomes between 
early and late dialysis initiation, only two treatment strategies were compared, and 
the realized eGFR values were within a narrow range (7.2 vs. 9.0 ml/min/1.73m2). 
As a randomized trial testing many different treatment strategies is unfeasible, 
observational data need to be used to answer this question. Since this question 
involves dynamic treatment strategies a cloning, censoring and weighting 
approach is used. We also investigate the influence of lead time bias, selection bias 
and immortal time bias in previous observational studies. The last two chapters 
calculate restricted mean survival time to easily interpret how long an average 
patient would live by following a particular treatment strategy.



17

CHAPTER 1  - Introduction

1
References
1.	 Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V. Handling of Drugs, Metabolites, 

and Uremic Toxins by Kidney Proximal Tubule Drug Transporters. Clin J Am Soc Nephrol. 
2015;10(11):2039-49.

2.	 Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10(5):852-62.

3.	 Hamm LL, Nakhoul N, Hering-Smith KS. Acid-Base Homeostasis. Clin J Am Soc Nephrol. 
2015;10(12):2232-42.

4.	 Blaine J, Chonchol M, Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. 
Clin J Am Soc Nephrol. 2015;10(7):1257-72.

5.	 Hoenig MP, Zeidel ML. Homeostasis, the milieu interieur, and the wisdom of the nephron. Clin J 
Am Soc Nephrol. 2014;9(7):1272-81.

6.	 Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD. The glomerulus: the sphere of influence. Clin J 
Am Soc Nephrol. 2014;9(8):1461-9.

7.	 Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical 
Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney inter, 
Suppl. 2013;3(3):1–150.

8.	 Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to 
estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604-12.

9.	 Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey AS, et al. Lower 
estimated glomerular filtration rate and higher albuminuria are associated with mortality and 
end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. 
Kidney Int. 2011;79(12):1331-40.

10.	 Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, Astor BC, Woodward M, 
Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-
cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. 
Lancet. 2010;375(9731):2073-81.

11.	 Fox CS, Matsushita K, Woodward M, Bilo HJ, Chalmers J, Heerspink HJ, et al. Associations of 
kidney disease measures with mortality and end-stage renal disease in individuals with and 
without diabetes: a meta-analysis. Lancet. 2012;380(9854):1662-73.

12.	 Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Lower 
estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative 
meta-analysis of general and high-risk population cohorts. Kidney Int. 2011;80(1):93-104.

13.	 Hallan SI, Matsushita K, Sang Y, Mahmoodi BK, Black C, Ishani A, et al. Age and association of 
kidney measures with mortality and end-stage renal disease. JAMA. 2012;308(22):2349-60.

14.	 Mahmoodi BK, Matsushita K, Woodward M, Blankestijn PJ, Cirillo M, Ohkubo T, et al. Associations 
of kidney disease measures with mortality and end-stage renal disease in individuals with and 
without hypertension: a meta-analysis. Lancet. 2012;380(9854):1649-61.

15.	 Nitsch D, Grams M, Sang Y, Black C, Cirillo M, Djurdjev O, et al. Associations of estimated 
glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. 
BMJ. 2013;346:f324.

16.	 Wen CP, Matsushita K, Coresh J, Iseki K, Islam M, Katz R, et al. Relative risks of chronic 
kidney disease for mortality and end-stage renal disease across races are similar. Kidney Int. 
2014;86(4):819-27.



18

17.	 van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, et al. Lower 

estimated glomerular filtration rate and higher albuminuria are associated with all-cause and 

cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney 

Int. 2011;79(12):1341-52.

18.	 Bright R. Cases and Observations Illustrative of Renal Disease, Accompanied with the Secretion 

of Albuminous Urine. Med Chir Rev. 1836;25(49):23-35.

19.	 Stevens PE, O'Donoghue DJ, de Lusignan S, Van Vlymen J, Klebe B, Middleton R, et al. Chronic 

kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int. 

2007;72(1):92-9.

20.	 Jankowski J, Floege J, Fliser D, Bohm M, Marx N. Cardiovascular Disease in Chronic Kidney 

Disease: Pathophysiological Insights and Therapeutic Options. Circulation. 2021;143(11):1157-72.

21.	 Kottgen A, Russell SD, Loehr LR, Crainiceanu CM, Rosamond WD, Chang PP, et al. Reduced 

kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities 

(ARIC) study. J Am Soc Nephrol. 2007;18(4):1307-15.

22.	 Abramson JL, Jurkovitz CT, Vaccarino V, Weintraub WS, McClellan W. Chronic kidney disease, 

anemia, and incident stroke in a middle-aged, community-based population: the ARIC Study. 

Kidney Int. 2003;64(2):610-5.

23.	 Wattanakit K, Folsom AR, Selvin E, Coresh J, Hirsch AT, Weatherley BD. Kidney function and risk 

of peripheral arterial disease: results from the Atherosclerosis Risk in Communities (ARIC) Study. 

J Am Soc Nephrol. 2007;18(2):629-36.

24.	 Astor BC, Coresh J, Heiss G, Pettitt D, Sarnak MJ. Kidney function and anemia as risk factors for 

coronary heart disease and mortality: the Atherosclerosis Risk in Communities (ARIC) Study. Am 

Heart J. 2006;151(2):492-500.

25.	 Alonso A, Lopez FL, Matsushita K, Loehr LR, Agarwal SK, Chen LY, et al. Chronic kidney disease is 

associated with the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) 

study. Circulation. 2011;123(25):2946-53.

26.	 Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy 

and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol 

Dial Transplant. 2019;34(11):1803-5.

27.	 Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 1990-

2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225): 

709-33.

28.	 Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global 

dimension and perspectives. Lancet. 2013;382(9888):260-72.

29.	 Jager KJ, Fraser SDS. The ascending rank of chronic kidney disease in the global burden of 

disease study. Nephrol Dial Transplant. 2017;32(suppl_2):ii121-ii8.

30.	 Levin A, Tonelli M, Bonventre J, Coresh J, Donner JA, Fogo AB, et al. Global kidney health 2017 and 

beyond: a roadmap for closing gaps in care, research, and policy. Lancet. 2017;390(10105):1888-917.

31.	 Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet. 

2017;389(10075):1238-52.

32.	 Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney 

disease in the United States. JAMA. 2007;298(17):2038-47.



19

CHAPTER 1  - Introduction

1
33.	 Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic 

kidney disease to the NHS in England. Nephrol Dial Transplant. 2012;27 Suppl 3:iii73-80.

34.	 United States Renal Data System. 2020 USRDS Annual Data Report: Epidemiology of kidney 

disease in the United States. National Institutes of Health, National Institute of Diabetes and 

Digestive and Kidney Diseases, Bethesda, MD, 2020.

35.	 Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review. 

JAMA. 2019;322(13):1294-304.

36.	 de Boer IH, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, Khunti K, et al. Executive summary 

of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in 

monitoring and treatment. Kidney Int. 2020;98(4):839-48.

37.	 Heerspink HJL, Stefansson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin 

in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436-46.

38.	 Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients 

with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and 

DAPA-HF trials. Lancet. 2020;396(10254):819-29.

39.	 Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and 

Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380(24):2295-306.

40.	 Inrig JK, Califf RM, Tasneem A, Vegunta RK, Molina C, Stanifer JW, et al. The landscape of clinical 

trials in nephrology: a systematic review of Clinicaltrials.gov. Am J Kidney Dis. 2014;63(5):771-80.

41.	 Strippoli GF, Craig JC, Schena FP. The number, quality, and coverage of randomized controlled 

trials in nephrology. J Am Soc Nephrol. 2004;15(2):411-9.

42.	 Palmer SC, Sciancalepore M, Strippoli GF. Trial quality in nephrology: how are we measuring up? 

Am J Kidney Dis. 2011;58(3):335-7.

43.	 Kitchlu A, Shapiro J, Amir E, Garg AX, Kim SJ, Wald R, et al. Representation of Patients With 

Chronic Kidney Disease in Trials of Cancer Therapy. JAMA. 2018;319(23):2437-9.

44.	 Charytan D, Kuntz RE. The exclusion of patients with chronic kidney disease from clinical trials in 

coronary artery disease. Kidney Int. 2006;70(11):2021-30.

45.	 Coca SG, Krumholz HM, Garg AX, Parikh CR. Underrepresentation of renal disease in randomized 

controlled trials of cardiovascular disease. JAMA. 2006;296(11):1377-84.

46.	 Konstantinidis I, Nadkarni GN, Yacoub R, Saha A, Simoes P, Parikh CR, et al. Representation of 

Patients With Kidney Disease in Trials of Cardiovascular Interventions: An Updated Systematic 

Review. JAMA Intern Med. 2016;176(1):121-4.

47.	 Vandenbroucke JP. When are observational studies as credible as randomised trials? Lancet. 

2004;363(9422):1728-31.

48.	 Smyth B, Haber A, Trongtrakul K, Hawley C, Perkovic V, Woodward M, et al. Representativeness 

of Randomized Clinical Trial Cohorts in End-stage Kidney Disease: A Meta-analysis. JAMA Intern 

Med. 2019.

49.	 Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: 

The ACTG 320 trial. Am J Epidemiol. 2010;172(1):107-15.

50.	 Franklin JM, Glynn RJ, Martin D, Schneeweiss S. Evaluating the Use of Nonrandomized Real-

World Data Analyses for Regulatory Decision Making. Clin Pharmacol Ther. 2019;105(4):867-77.

51.	 Franklin JM, Schneeweiss S. When and How Can Real World Data Analyses Substitute for 

Randomized Controlled Trials? Clin Pharmacol Ther. 2017;102(6):924-33.



20

52.	 Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic 

research on therapeutics. J Clin Epidemiol. 2005;58(4):323-37.

53.	 Bonamici S. H.R.34 - 114th Congress (2015-2016): 21st Century Cures Act. 2016. Available from: 

https://www.congress.gov/bill/114th-congress/house-bill/34. Accessed March 24, 2021.

54.	 U.S. Food and Drug Administration. Prescription Drug User Fee Act (PDUFA) - PDUFA 

VI: Fiscal Years 2018 - 2022. Available from: https://www.fda.gov/forindustry/userfees/

prescriptiondruguserfee/ucm446608.htm. Accessed March 24, 2021. .

55.	 Aetion. What role does RWE play in FDA approvals? 2020. Available at: https://www.aetion.com/

evidence-hub/infographic-what-role-does-rwe-play-in-fda-approvals. Accessed March 24, 2021.

56.	 Kyriacou DN, Lewis RJ. Confounding by Indication in Clinical Research. JAMA. 2016;316(17):1818-9.

57.	 Hernan MA, Hernandez-Diaz S, Robins JM. A structural approach to selection bias. Epidemiology. 

2004;15(5):615-25.

58.	 Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, et al. Illustrating bias due 

to conditioning on a collider. Int J Epidemiol. 2010;39(2):417-20.

59.	 Elwert F, Winship C. Endogenous Selection Bias: The Problem of Conditioning on a Collider 

Variable. Annu Rev Sociol. 2014;40:31-53.

60.	 Funk MJ, Landi SN. Misclassification in administrative claims data: quantifying the impact on 

treatment effect estimates. Curr Epidemiol Rep. 2014;1(4):175-85.

61.	 Keogh RH, Shaw PA, Gustafson P, Carroll RJ, Deffner V, Dodd KW, et al. STRATOS guidance 

document on measurement error and misclassification of variables in observational epidemiology: 

Part 1-Basic theory and simple methods of adjustment. Stat Med. 2020;39(16):2197-231.

62.	 Hernan MA, Alonso A, Logan R, Grodstein F, Michels KB, Willett WC, et al. Observational studies 

analyzed like randomized experiments: an application to postmenopausal hormone therapy and 

coronary heart disease. Epidemiology. 2008;19(6):766-79.

63.	 Grodstein F, Stampfer MJ, Manson JE, Colditz GA, Willett WC, Rosner B, et al. Postmenopausal 

estrogen and progestin use and the risk of cardiovascular disease. N Engl J Med. 1996;335(7): 

453-61.

64.	 Grodstein F, Manson JE, Colditz GA, Willett WC, Speizer FE, Stampfer MJ. A prospective, 

observational study of postmenopausal hormone therapy and primary prevention of 

cardiovascular disease. Ann Intern Med. 2000;133(12):933-41.

65.	 Hersh AL, Stefanick ML, Stafford RS. National use of postmenopausal hormone therapy: annual 

trends and response to recent evidence. JAMA. 2004;291(1):47-53.

66.	 Connelly MT, Richardson M, Platt R. Prevalence and duration of postmenopausal hormone 

replacement therapy use in a managed care organization, 1990-1995. J Gen Intern Med. 

2000;15(8):542-50.

67.	 Manson JE, Hsia J, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, et al. Estrogen plus progestin 

and the risk of coronary heart disease. N Engl J Med. 2003;349(6):523-34.

68.	 Hill J, Stuart EA. Causal Inference: Overview. In: Wright JD. International Encyclopedia of the Social 

& Behavioral Sciences. 2nd ed. Elsevier; 2015. p. 255-260.

69.	 Imbens G, Rubin D (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An 

Introduction. Cambridge: Cambridge University Press.

70.	 Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.



21

CHAPTER 1  - Introduction

1



PART I 
Methodological considerations for causal 
inference from observational data







CHAPTER 2

Pharmacoepidemiology for nephrologists: 
potential biases and how to overcome them

Edouard L. Fu, Merel van Diepen, Yang Xu, Marco Trevisan, Friedo W. Dekker,  
Carmine Zoccali, Kitty J. Jager, Juan-Jesus Carrero

Clin Kidney J 2020; 14: 1317-1326



26

Abstract
Observational pharmacoepidemiological studies using routinely collected 
healthcare data are increasingly being used in the field of nephrology to answer 
questions on the effectiveness and safety of medications. This review discusses a 
number of biases that may arise in such studies and proposes solutions to minimize 
them during the design or statistical analysis phase. We first describe designs to 
handle confounding by indication (e.g. active comparator design) and methods to 
investigate the influence of unmeasured confounding, such as the E-value, the use 
of negative control outcomes and control cohorts. We next discuss prevalent user 
and immortal time biases in pharmacoepidemiology research, and how these can 
be prevented by focussing on incident users and applying either landmarking, using 
a time-varying exposure or the cloning, censoring and weighting method. Lastly, 
we briefly discuss the common issues with missing data and misclassification 
bias. When these biases are properly accounted for, pharmacoepidemiological 
observational studies can provide valuable information for clinical practice.
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Introduction
Pharmacoepidemiology uses epidemiological methods to study the use, 
therapeutic effects and risks of medications in large populations (1). Due to the 
availability of routinely collected healthcare data from registries, electronic health 
records or claims databases, observational pharmacoepidemiological studies are 
increasingly being used to generate evidence to inform clinical practice. Our first 
review discussed the scope and research questions that are studied within the field 
of pharmacoepidemiology, and described the strengths and caveats of the most 
commonly used study designs to answer such questions (2). We now focus on the 
most common biases that may occur when using observational data to study the 
causal effects of medication on health outcomes. We will attempt to offer possible 
solutions in the design or statistical analysis to prevent or minimize such biases. 
The review is intended as an introduction to the field for those who wish to critically 
appraise pharmacoepidemiological studies or conduct such studies. 

Confounding by indication
Confounding by indication is a threat to any observational study assessing the 
effects of medications, since treatment is not randomly assigned to patients. 
Confounding by indication arises when the indications for treatment, such as age 
and comorbidities, are also related to the outcome under study (3). For example, 
treatment is generally given to those with a worse prognosis. The reverse may also 
occur, when newly introduced drugs are first prescribed to individuals perceived 
as healthier and who may be more likely to tolerate them (4). Both situations lead 
to an uneven distribution of prognostic factors between treatment groups, which 
biases a direct comparison. Take the case shown in Figure 1A, where albuminuria 
is a confounder for the effect of ACE inhibitor treatment on kidney replacement 
therapy: individuals with albuminuria are more likely to be prescribed ACE inhibitors 
and albuminuria is also an independent risk factor for kidney replacement therapy. 
Unknown or unmeasured confounders for the treatment-outcome relationship may 
also be present, such as smoking (if this variable has not been measured and we 
would assume that smoking can affect the decision to start ACE inhibitor therapy 
as well as the outcome). 



28

Figure 1. (A) Confounding by indication arises when prognostic factors for the outcome also infl uence the 

decision to start treatment. Some confounders may be measured, which can be adjusted for in the analysis, 

whereas others are unmeasured, leading to residual confounding. (B) When unintended outcomes are 

studied, less confounding by indication will be present. The indications for ACEi treatment likely do not 

increase the risk for the outcome angioedema. (C) An ideal active comparator has similar indications as 

the medication under study, thereby decreasing confounding by indication. Ideally, the active comparator 

should have no infl uence on the outcome. (D) Negative control outcomes need to have similar measured 

and unmeasured confounders as the treatment-outcome relationship under study. Furthermore, treatment 

should not have an infl uence on the negative control outcome.
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Addressing confounding by indication when designing a 
pharmacoepidemiological study
When designing observational studies to investigate medication effectiveness or 
safety, we should be aware that some research questions will be more susceptible to 
confounding than others. Confounding will generally play a larger role when studying 
the beneficial or “intended” effects of treatments, since the indications for treatment 
are very likely to be related to the prognosis of the patient (5). On the other hand, if 
the outcome is completely unrelated to the indications for treatment, such as when 
studying rare side effects or “unintended” effects, no confounding would be present 
(6). A classic example is the relationship between ACE inhibitors and angioedema. 
Patient characteristics that determine treatment status (e.g. cardiovascular risk, 
albuminuria, blood pressure) are unlikely to be associated with the outcome 
angioedema. Consequently, the arrow from treatment indication to outcome will be 
absent, and confounding by indication will not be an issue (Figure 1B). 

Applying an active comparator design may also decrease confounding by indication 
(7). In an active comparator design, the medication of interest is compared with 
another drug that has similar indications, instead of a non-user group. The more 
exchangeable the active comparator is for the medication of interest, the lower the 
risk for potential confounding will be. After all, if both treatment groups would have 
identical treatment indications (both measured and unmeasured characteristics), 
there would be no arrow from indication to treatment and confounding by indication 
is removed (Figure 1C) (8). A recent example applying an active comparator design 
investigated whether proton pump inhibitors (PPI) increased the risk of chronic 
kidney disease (CKD) (9). Comparing PPI users with non-users may suffer from 
unmeasured confounding, since non-users are generally healthier and not all 
confounders may have been captured in the dataset and adjusted for. Histamine-2 
receptor (H2) antagonists are prescribed for similar indications as PPI. Users of 
these two medications may be more similar regarding comorbidities, medication 
use and other unmeasured variables. 

Adjusting for confounding during the statistical analysis
Selecting an appropriate set of confounders to adjust for is critical when conducting 
pharmacoepidemiological studies (10). In general, it is not recommended to use 
data-driven variable selection methods to identify confounders, such as only 
retaining statistically significant confounders or including variables that change the 
regression coefficient of the treatment variable (11-13). Such data-driven approaches 
can lead to bias if they adjust for mediators (i.e. variables in the causal pathway 
between exposure and outcome) (11), colliders (e.g. a variable caused by both 
treatment and outcome) (14, 15) and instrumental variables (i.e. variables strongly 
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related to the exposure but not to the outcome) (16), although some sophisticated 
statistical covariate selection methods are currently under development (10, 17-19). 
Instead, we suggest to make directed acyclic graphs (DAGs) and select confounders 
based on subject-matter knowledge and biological plausibility (20, 21). Since DAGs 
rely on prior knowledge and assumed causal effects, they do not tell whether these 
assumptions are correct. Different researchers can have different views which 
factor causes the other and this may result in different choices regarding which 
confounders to adjust for. DAGs can aid in this discussion by making the causal 
assumptions explicit in a graphical manner.

Once the confounders have been selected, various methods can be used to adjust for 
confounding. These include, for instance, multivariable regression, standardization 
and propensity score methods (propensity score matching, weighting, stratification 
or adjustment). In the time-fixed setting (i.e. when treatment is only measured once), 
all methods generally suffice to adjust for measured confounding, although the 
interpretation of the effect estimate may differ depending on the method and some 
methods are preferred in specific settings (22-25). A thorough discussion on the 
merits and caveats of multivariable regression and propensity score methods can 
be found elsewhere (26). Nonetheless, in the setting of time-varying treatments 
(i.e. when treatment is received at multiple timepoints and changes over time) and 
time-varying confounding, methods based on weighting or standardization are 
required to give unbiased estimates if the confounders themselves are affected by 
treatment (27). It should be kept in mind that all statistical methods mentioned above 
can only adjust for measured confounders, but not for unmeasured confounders as 
is sometimes claimed (28), unless the unmeasured confounders are correlated with 
the variables that are adjusted for (29, 30).

Assessing the impact of unmeasured confounding 
Although the possibility of residual or unmeasured confounding in observational 
analyses can never be fully eliminated, a number of steps can be taken to alleviate 
concerns and strengthen inferences. In this section we will elaborate on conducting 
sensitivity analyses to obtain corrected effect estimates, calculating the E-value, 
and conducting negative control outcome and control group analyses. 

First and foremost, as many confounders as possible need to be identified and 
adjusted for by using appropriate statistical methods. However, if known confounders 
(e.g. albuminuria or smoking) have not been measured, corrected effect estimates 
can be calculated in quantitative bias analyses (31-34). This requires as input the 
assumed association between confounder and exposure and between confounder 
and outcome, and the prevalence of the confounder in the population. These 
numbers can be based on previous studies and can be varied over a range of values 
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to give an indication how sensitive the estimated treatment effect is to unmeasured 
confounding (35). If results lead to the same conclusion over a wide range of relevant 
scenarios, then the plausibility of the estimated treatment effect will increase. 

Alternatively, one can estimate how strong the unmeasured confounding would 
need to be to completely explain away a certain effect estimate. The E-value 
has recently been introduced as an easily implemented tool for these purposes 
(36-39). The E-value is defined as “the minimum strength of association … that an 
unmeasured confounder would need to have with both the treatment and the 
outcome to fully explain away a specific treatment-outcome association, conditional 
on the measured covariates” (36). As an example, researchers investigated whether 
sodium polystyrene sulfonate (SPS) to treat hyperkalemia, increased the risk of 
severe adverse gastrointestinal events in persons with CKD (40). After adjustment 
for measured confounding, the initiation of SPS was associated with a 1.25 (95% 
confidence interval 1.05-1.49) higher risk of severe gastrointestinal events. The 
corresponding E-value for this risk ratio was 1.80, meaning that an unmeasured 
confounder would need to be associated with both SPS initiation and severe 
gastrointestinal events by a hazard ratio of 1.80 to decrease the point estimate 
from 1.25 to 1.00. What constitutes a large E-value is context-specific and depends 
on the specific research question under study, the effect size of the exposure and 
the hazard ratios of the confounders that have already been adjusted for (38, 41, 
42). Easily implemented online calculators are available to conduct the discussed 
sensitivity analyses (37, 43, 44).

For certain research questions negative control outcomes can be used to provide 
guidance about the presence and magnitude of unmeasured confounding in 
observational studies (45). A negative control outcome is an outcome that is not 
influenced by the treatment of interest but shares the same set of measured 
and unmeasured confounders as the treatment of interest-outcome relationship 
(Figure 1D) (46). Hence, we would not expect to find an association between the 
exposure of interest and the negative control outcome. As an example, one may 
be concerned that the unmeasured variables BMI and smoking bias the results of 
a study investigating the association between a cardiovascular drug and the risk of 
cardiovascular-related mortality. However, we would not expect the cardiovascular 
drug to also lower non-cardiovascular mortality. If we would unexpectedly find a 
lower risk of the negative control outcome non-cardiovascular mortality among 
treated individuals this may be an indication of residual confounding or other 
sources of bias. In addition to the previously mentioned assumptions, the negative 
control outcome should occur with a frequency similar to the primary study 
outcome to ensure enough power to reject the null hypothesis of no association. If 
such assumptions are not met, this may erroneously lead to the conclusion that no 
unmeasured confounding is present (47). 
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Similarly, one can test whether associations are as expected in a certain control 
group. The direction of the expected association (either a positive, negative or 
null association) can be based on physiologic mechanisms or evidence from 
randomized trials (48). For example, Weir et al. hypothesized that users of high-
dialyzable β-blocker would have an increased risk of mortality compared with users 
of low-dialyzable β-blocker, due to loss of high-dialyzable β-blocker in the dialysate 
(49). To strengthen their inferences, a control group of patients with CKD G4-5 was 
constructed in whom a similar effectiveness of high-dialyzable and low-dialyzable 
beta-blockers was expected and subsequently demonstrated. Control groups 
can also strengthen inferences by showing similar results between observational 
studies and randomized trials. We recently evaluated the effectiveness of beta-
blockers in patients with heart failure and advanced CKD, a population which was 
excluded from landmark heart failure trials (50). A positive control group including 
heart failure patients with moderate CKD showed a benefit similar to that observed 
in moderate CKD patients from randomized trials. This positive control analysis 
further supported a causal explanation for the results in the advanced CKD cohort. 

Prevalent user and immortal time biases
We now discuss two types of biases which often occur in pharmacoepidemiological 
studies, but that can and should be avoided by adhering to a simple principle: 
aligning the start of the follow-up with the start of exposure. 

Prevalent user bias
When we want to assess the effectiveness of initiating a drug, it is recommended 
to include incident medication users instead of prevalent users (51, 52). In a new 
user or incident user design, only individuals who initiate the medication of interest 
are studied and followed from the date of treatment initiation. Therefore, the 
start of follow-up and start of treatment will align, and all events that occur after 
drug initiation are captured (53, 54). In contrast, prevalent user designs include 
individuals who initiated the exposure of interest some time before the start of 
follow-up (Figure 2A). Comparing prevalent users to non-users may introduce 
selection bias since individuals who died before enrolment cannot, per definition, 
be included in the analysis, and events occurring shortly after drug initiation are 
neither observed (55, 56). To better understand why this selection bias arises, we 
give a real-world example. Suppose we conducted a randomized trial and found 
that a certain medication increased the risk of myocardial infarction with a hazard 
ratio of 1.24. We now reanalyze the data by starting follow-up at two years after 
randomization. Hence, we only count the myocardial infarctions that occurred 
after two years of follow-up. By doing so, we also exclude all individuals who died 
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or experienced myocardial infarction in the first two years after randomization. 
This new analysis paradoxically (rather erroneously) shows that the medication 
lowers the risk of myocardial infarction. Since the medication increases the risk 
of myocardial infarction, the treatment arm will be progressively depleted of 
patients most susceptible to the event (57). After two years the treated group will 
only consist of survivors who likely do not have other risk factors for myocardial 
infarction. Therefore, comparing these survivors in the treatment group with those 
remaining in the control group leads to an unfair advantage for the treatment group. 

Figure 2. Graphical visualization of prevalent user bias (A) and immortal time bias (B) when setting up the 

start of follow-up in a study. For prevalent user bias, start of follow-up occurs after treatment initiation 

whereas for immortal time bias, the start of follow-up occurs before treatment initiation. These biases can 

be prevented by aligning the start of follow-up with the start of exposure. 
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Prevalent user bias is one of the proposed reasons why postmenopausal hormone 
therapy appeared protective for coronary heart disease in observational studies, but 
was actually harmful when subsequent randomized trials were conducted (58, 59). 
Besides the fact that the effect estimates from a prevalent user design are biased, 
they also do not inform decision making as the decision to start the treatment was 
already made in the past. Studies applying a prevalent user design do not answer 
the relevant question whether treatment should be initiated. The results of such a 
study can only tell you that if a person has survived on treatment for this long, we 
know he is not susceptible to the event, which gives him a better prognosis than 
untreated individuals who are still susceptible. 

Immortal time bias
Immortal time bias occurs when patients are classified into treatment groups 
at baseline based on the treatment they take after baseline (Figure 2B) (60, 61). 
This leads to a period of time (i.e. immortal time) between baseline and start of 
treatment where no deaths can occur in the treatment group, thereby biasing 
results in favor of the treatment group. As an example, a pharmacoepidemiological 
study investigated the long-term effects of metformin use versus no metformin 
use on mortality and end-stage kidney disease (62). In this study, follow-up started 
when patients had a first creatinine measurement, but patients were classified as 
metformin users when they were prescribed metformin for more than 90 days 
during the follow-up period. Using post-baseline information on metformin use to 
classify patients at baseline into the metformin group leads to an unfair survival 
advantage for metformin users (63). Imagine that all individuals in the metformin 
group started medication only after 5 years of follow-up. By definition, no deaths 
would then occur in the metformin group during the first 5 years of follow-up. After 
all, individuals who have an event prior to taking up treatment would be classified 
as untreated. Using post-baseline information for exposure classification thus 
results in immortal time bias (60, 64). To what extent the effect estimate is biased 
depends on the total amount of follow-up that is erroneously misclassified under 
the metformin group. The bias will increase with a larger proportion of exposed 
study participants, a larger amount of time between start of follow-up and initiation 
of treatment and a longer duration of follow-up (65). 

Potential solutions to mitigate immortal time bias
We now discuss three designs that could be applied to avoid immortal time bias: 
landmarking, using a time-varying exposure and using treatment strategies with 
grace periods. Other more complex solutions exist but are outside the scope of this 
review and are discussed elsewhere (66-68). 
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In pharmacoepidemiological studies we are often interested in the effects of 
initiating medication on a particular outcome after a certain event has occurred. A 
recent clinical example is the effect of initiating renin-angiotensin system inhibitors 
on mortality and recurrent AKI after acute kidney injury (AKI) (69-71). When using 
routinely collected healthcare data to study such questions, it is often difficult to 
assign individuals to the correct exposure groups: individuals become eligible for 
inclusion in our study immediately after the AKI event and follow-up will start at that 
moment. However, directly after the AKI event all individuals will likely be unexposed 
in our dataset, as individuals will gradually initiate therapy during follow-up. We 
cannot classify individuals in exposure groups based on post-baseline information 
as this will lead to immortal time bias. The easiest solution is then to move the 
baseline of our study from the date of the AKI event to a later time, e.g. 6 months 
after the AKI event. Our follow-up will therefore start at 6 months after the index 
AKI event (Figure 3) (72-74). This method is called landmarking and was recently 
applied by Brar et al. for this particular research question (69). In the landmarking 
method all individuals who died or developed the outcome between the AKI event 
and the newly chosen start of follow-up (i.e. 6 months after AKI) are excluded; those 
who initiate treatment during this period are considered exposed, and those who 
do not initiate treatment during this period are considered unexposed. Although 
landmarking prevents immortal time bias, the attentive reader will have noted that 
it can introduce prevalent user bias, which was discussed in the previous section. 

Figure 3. Design of a landmark analysis to prevent immortal time bias. In the landmark analysis, follow-up 

starts at a chosen time period after a certain event, in this example at 6 months. Hence, all individuals that 

died before month 6 are excluded from the analysis (individual 4). Individuals are then classified according 

to exposure status in the first 6 months. Individuals 3, 5 and 6 are therefore considered treated, whereas 

individuals 1 and 2 are considered untreated.
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The next solution that prevents immortal time bias and allows starting follow-up 
immediately after the event has occurred is the use of a time-varying exposure 
(Figure 4). When using a time-varying exposure, individuals are allowed to switch 
exposure status from untreated to treated at the time of treatment initiation. Hence, 
individuals will contribute persontime to the unexposed group before treatment 
initiation, and to the exposed group after treatment initiation. This ensures that the 
time between start of follow-up and initiation of treatment will be correctly assigned 
to the non-users. For example, Hsu et al. used a time-varying exposure to study the 
effect of RASi after AKI on the risk of recurrent AKI (70). As previously mentioned, 
using a time-varying exposure involves time-varying confounding. When these 
confounders are also influenced by prior treatment, using standard methods 
such as multivariable regression may not be appropriate. Instead, methods such 
as marginal structural models that are based on inverse probability weighting can 
be used (27, 75). Applying these methods, the authors found that new use of RASi 
therapy was not associated with an increased risk of recurrent AKI. 

Figure 4. Analysis using a time-varying exposure to prevent immortal time bias. In a time-varying design 

treatment status is allowed to change from unexposed to exposed at the moment of treatment initiation. 

This method allows to start of follow-up directly after the event has occurred and also does not exclude 

individuals. E.g., individual 1 is considered unexposed for the first 7 months of follow-up, but after 7 months 

will contribute to the exposed group. In the setting of time-varying exposures, time-varying confounding 

will be present too, which sometimes requires more advanced methods such as marginal structural models 

to obtain unbiased effect estimates.
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Lastly, we may be interested in comparing treatment strategies that include a grace 
period (76). For example, we could compare the strategies “initiate an ACE inhibitor 
within 6 months after the AKI event” versus “do not initiate an ACE inhibitor within 
6 months after the AKI event”. The length of the grace period depends on what is 
commonly done in clinical practice. These treatment strategies with a grace period 
can be investigated by using a three-step method based on cloning, censoring and 
weighting (Figure 5). 

Figure 5. Design of a study using treatment strategies with a grace period based on cloning, censoring and 

weighting. Another method is comparing treatment strategies that include a grace period. Each individual 

is duplicated and assigned to one of two treatment strategies. In this example, clones 1a to 6a follow the 

strategy “initiate ACEi within 6 months”, whereas clones 1b to 6b follow the strategy “do not initiate ACEi 

within 6 months”. Note that copies 1a and 1b represent the same individual. Since copy 1a is assigned to 

initiating within 6 months, he is censored after month 6 as he did not initiate treatment. The censoring is 

likely to be informative and inverse probability weighting is required to adjust for this.
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Briefly, each individual is duplicated so that there are two copies of each individual 
in the dataset. Each copy is then assigned to one of the treatment strategies. In the 
second step the copies are censored if and when their observed treatment does not 
adhere anymore to their assigned treatment strategy. Since this censoring is likely to 
be informative, the third step applies inverse probability weighting to correct for this. 
Bootstrapping can be used to take into account the cloning and weighting and obtain 
valid confidence intervals. An advantage of using treatment strategies with grace 
periods is that a wide range of questions can be answered, including questions on the 
duration of treatment and dynamic treatment strategies (e.g., when should treatment 
be initiated) (76, 77). However, this method requires that detailed longitudinal data 
is present to adequately adjust for the informative censoring. The three methods of 
landmarking, time-varying exposure and treatment strategies with grace periods are 
contrasted in Table 1 and graphically depicted in Figures 3-5.

Table 1. Different methods to address immortal time bias in pharmacoepidemiological analyses. 

Landmark analysis Time-varying 
exposure

Cloning, censoring 
and weighting

Immortal time bias No No No

Start of follow-up At landmark At event At event

Causal effect Initiating versus not 
initiating at x months 
after event (landmark), 
conditional on having 
survived until landmark†

Initiating and always 
using versus never using 
(marginal structural 
model)

Initiating within x 
months versus not 
initiating within x 
months after event

Prevalent user bias Possible No No

Results apply to Individuals surviving 
until landmark

All individuals All individuals

Baseline confounding Yes Yes No*

Time-varying exposure No Yes No

Time-varying 
confounding

No Yes No

Informative censoring No No Yes

G-methods§ required No Sometimes (if confounder 
is influenced by prior 
treatment)

Yes (inverse probability 
weighting)

† This is often how the effect estimate from a landmark analysis is interpreted. However, the landmark 

analysis conditions on surviving until a certain timepoint and classifies individuals into treatment groups 

based on past information, thereby possibly introducing prevalent user bias. 
* Due to the cloning, at baseline each individual will appear in both treatment arms. Hence, no baseline 

confounding will be present.
§ Methods based on standardization or inverse probability weighting, such as the G-formula or marginal 

structural models.
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Missing data and misclassification
We now briefly discuss the implications of missing data and misclassification for 
bias and possible solutions. Although these two sources of bias are a common issue 
in pharmacoepidemiological studies, they are often less emphasized compared 
with confounding. 

Missing data
We usually aim to adjust for as many confounders as possible in our analysis, including 
available laboratory tests (e.g. albuminuria, potassium) and clinical variables (e.g. 
blood pressure, BMI) which are indications for treatment. However, it is not unusual 
that a large proportion of these values are missing in routinely collected data. 
For example, in an analysis using data from the Swedish Renal Registry, baseline 
potassium and albuminuria-to-creatinine-ratio measurements were missing in 32% 
and 41% of patients, respectively (78). In such situations, researchers often perform 
a complete case analysis by restricting to individuals with both measurements 
available. However, this may lead to a drastic reduction in power and often also bias 
(79, 80). Methods such as multiple imputation are therefore recommended and are 
available in most software packages. These methods can reduce these biases even 
with large proportions of missing data (up to 90%) if data are missing at random or 
missing completely at random, sufficient auxiliary information is available and the 
imputation model is properly specified (81). It is therefore important to discuss the 
reasons for missingness and the plausibility of the missing at random assumption. 
In the above example, the researchers explained that although albuminuria and 
potassium values were measured in clinical practice, they were not among the 
list of mandatory laboratory markers that needed to be reported to the Swedish 
Renal Registry. Thus, some clinicians took the time to report those lab tests and 
others not, a decision that could be assumed to be at random. Furthermore, the 
authors showed that clinical characteristics were similar for individuals with and 
without missing data, thereby making the missing at random assumption plausible. 
More information on the different types of missingness (79, 80), in what situations 
complete case analysis leads to unbiased results (82), as well as tutorials to 
implement multiple imputation can be found elsewhere (83).

Misclassification
Although misclassification will be present in nearly every study, it may be especially 
important when using routinely collected healthcare data (84). Misclassification 
may for instance occur when using ICD-10 codes to ascertain the occurrence of 
chronic kidney disease or acute kidney injury, as these are not always coded in 
clinical practice and many patients are unaware of their disease (85-87). When AKI 
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diagnosis based on ICD coding is used as an outcome, differential misclassification 
will arise when doctors are more aware or more likely to encode AKI if certain 
drugs are prescribed. Basing kidney outcomes on biochemical criteria may 
sometimes mitigate such biases, but can also introduce bias when creatinine 
testing is more often directed towards sicker patients or patients at risk of CKD 
progression. Misclassification of comorbidities may be a significant concern in 
routinely collected data since the absence of a diagnosis (recording) is often 
considered to indicate absence of the comorbidity. Residual confounding may 
occur when confounders are misclassified and the direction can be both away or 
toward a null effect (84). Misclassification influences study results in ways that are 
often not anticipated, and simple heuristics about the impact of misclassification 
(towards the null or not) are often incorrect (88, 89). Many correction methods 
for misclassification exist, but these require information about its magnitude and 
structure (i.e. dependent, non-dependent, differential, non-differential) (90-93). As 
such information is often not available in electronic databases, sensitivity analyses 
similar to those for unmeasured confounding can be performed to estimate the 
influence of misclassification on results (33, 94).

Conclusion
Pharmacoepidemiological studies are increasingly being used to answer causal 
questions on the effectiveness and safety of medications in order to inform 
clinical decision making. In this review we discussed the most important biases 
that commonly occur in such studies. We also reviewed methods to account 
for these biases, which are summarized in Table 2. Researchers can and should 
prevent problems arising from immortal time and prevalent user biases in their 
study design. Confounding by indication bias can be tackled by using an active 
comparator design and adequately adjusting for confounders. When concerns 
remain about confounding or misclassification, quantifying their impact on 
effect estimates is recommended. When these principles are correctly applied, 
pharmacoepidemiological observational studies can provide valuable information 
for clinical practice.
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Table 2. Potential biases in pharmacoepidemiological studies and proposed solutions.

Potential 
biases

Example of how biases 
may arise

Possible solutions and recommendations

Confounding by 
indication

•	 Confounding by indication 
arises when prognostic 
factors for the outcome 
are also an indication for 
initiating treatment. 

•	 Unmeasured/residual 
confounding arises 
when confounders are 
not adjusted for, either if 
they are not measured in 
the dataset or if they are 
unknown.

•	 Time-varying confounding 
occurs when investigating 
time-varying exposures. 
When the confounder 
is influenced by past 
treatment, conventional 
methods to control for 
confounding will be biased. 

•	 Research question: Unintended medication effects 
(e.g. rare side effects) may be less susceptible to 
confounding by indication than intended medication 
effects.

•	 Design: Active comparator designs may decrease 
confounding bias if medication is given for similar 
indications. 

•	 Statistical methods: Multivariable regression, 
standardization or propensity score methods 
(matching, weighting, stratification, adjustment) 
can be used to control for measured confounding. 
Propensity score methods may have a number of 
advantages compared with regression, such as 
the ability to check if balance in confounders has 
been achieved. In the presence of time-varying 
confounding that are influenced by treatment, 
conventional methods lead to bias and the so called 
G-methods are required.

•	 After analysis: The impact of unmeasured 
confounding on effect estimates can be investigated 
in simulation analyses. Negative control outcomes 
may investigate whether unmeasured confounders 
bias effect estimates.

Prevalent user 
bias

Comparing ever users 
vs. never users. Including 
individuals after they initiate 
treatment will miss early 
outcome events and exclude 
those that died (depletion of 
susceptibles). 

•	 Prevalent user bias can and should be prevented by 
aligning initiation of treatment with start of follow-up; 
include new users of treatment. 

•	 Exclude prevalent users, e.g. those with drug 
prescription in 12 months prior to inclusion. 

Immortal time 
bias

Classifying individuals in 
treatment groups based on 
future information not present 
at the start of follow-up. A 
period of time is created for 
the treated group during 
which the outcome cannot 
occur. 

•	 Immortal time bias can and should be prevented by 
aligning initiation of treatment with start of follow-
up. Do not use information after start of follow-up to 
classify individuals into exposure groups.

•	 Landmarking, time-varying exposure, and the cloning, 
censoring and weighting method. 

Missing data Routinely collected 
healthcare data are prone to 
missing data. In multivariable 
analyses individuals with 
missing confounder data 
will be excluded. Complete 
case analysis often lead to 
bias when data is not missing 
completely at random, but a 
number of exceptions exist. 

•	 Multiple imputation can be used to decrease bias 
and increase precision, even with large proportions of 
missing data (up to 90%) if data are missing at random 
or missing completely at random and the imputation 
model is properly specified. 

•	 Discuss the missing data mechanism and the 
plausibility of the missing (completely) at random 
assumption. 

Misclassification •	 Misclassification of the 
outcome may occur when 
outcomes are differentially 
ascertained depending on 
treatment status. 

•	 Misclassification of 
confounders may lead to 
residual confounding.

•	 The impact of misclassification on the estimated 
effect size can be quantified in sensitivity analyses. 
Online tools are available to implement these 
methods. 

•	 When external data are available, regression 
calibration, multiple imputation for measurement 
error or propensity score calibration can be used. 
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Abstract
Proper adjustment for confounding is essential when estimating the effects of 
treatments or risk factors on health outcomes in observational data. To this end, 
various statistical methods have been developed. The past couple of years the use 
of propensity scores to control for confounding has increased. Proper understanding 
of this method is necessary to critically appraise research in which it is applied. 
In this article we provide an overview of propensity score methods, explaining 
their concept, advantages, and possible disadvantages. Furthermore, the use of 
propensity score matching, propensity score adjustment and propensity score 
weighting is illustrated using data from the NECOSAD cohort of dialysis patients. 
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Introduction 
Much research in nephrology that investigates the effects of medical treatment or risk 
factors on health outcomes makes use of observational data. In such observational 
studies prognostic factors are usually unequally distributed across different 
treatment groups, which may bias a direct comparison between these groups. This 
phenomenon is called confounding (1). To control for confounding, several statistical 
methods can be used, such as matching, weighting, standardization, multivariable 
regression analysis, and propensity score methods. 

Figure 1. Total number of articles and nephrology articles indexed in Pubmed using the term “propensity 

score” in title or abstract. The following nephrology journals were searched on Pubmed for the term 

“propensity score” in title or abstract: Journal of the American Society of Nephrology, Kidney International, 

American Journal of Kidney Diseases, Nephrology Dialysis Transplantation, Clinical Journal of the American 

Society of Nephrology, BMC Nephrology and American Journal of Nephrology.

During the past decades the use of propensity scores has increased exponentially 
in the medical literature, and also in nephrology research (Figure 1). In a previous 
article in this series, propensity scores were briefly discussed (2). In this article 
we will explain what propensity scores are, to what extent they can control for 
confounding and their advantages and disadvantages. Furthermore, we illustrate 
the use of propensity score methods using data from the NECOSAD cohort of 
dialysis patients. 
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Propensity scores  
In 1983, Rosenbaum and Rubin introduced the propensity score as a means to 
control for confounding in observational studies (3). The propensity score combines 
the information from all measured confounders into one score, which represents 
a patient’s probability of receiving treatment. More formally, the propensity score 
is defined as the probability of treatment assignment conditional on a patient’s 
measured confounders and can be seen as a summary measure of the confounder 
information. Conditional on the propensity score, the treatment and the control 
group are expected to have the same distribution of measured confounders and 
therefore allows for a direct comparison between groups (4). 

Estimation of the propensity score model
For binary treatments (or exposures), the propensity score is usually estimated 
using a binary logistic regression analysis with the treatment as dependent 
variable and the measured confounders as independent variables (5). Machine 
learning algorithms, such as classification and regression trees, can also be used 
to estimate propensity scores (6). It is not advised to use data-driven approaches to 
select confounders for the propensity score model, e.g. by looking at the statistical 
significance of the relation between confounder and treatment status (7-9). Instead, 
directed acyclic graphs (DAGs) can be used to identify potential confounders (10, 
11). Variables that are only related to the treatment and not to the outcome, should 
not be included in the propensity score model, since this may amplify unmeasured 
confounding and increase the variance of the effect estimate (12). When information 
on a large number of confounders is available, e.g. when performing a study using 
routine health care records data, high-dimensional propensity scores can be 
used (13). However, in previous literature this appeared to have little added value, 
probably because additional confounders are correlated to information already 
being observed (14, 15). Furthermore, the high-dimensional propensity score 
algorithm selects variables for the PS model in a data-driven approach, which may 
incorrectly select variables that are not confounders (e.g. intermediate variables or 
colliders) thus requiring pre-selection of possible confounders.

Using the propensity score to correct for confounding
Once the propensity score model is estimated, it can be used to compute individual 
probabilities of receiving treatment by entering the subject’s confounder values 
into the estimated propensity score model. Different methods can then be used 
to actually control for confounding: propensity score matching (PS matching), 
including the propensity score as a covariate in a multivariable regression model 
(PS adjustment), weighting based on the propensity score (PS weighting), or 
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propensity score stratification. Here, we only focus on the first three methods since 
PS stratification may not completely remove the bias due to confounding (16). 

Propensity score matching
In PS matching, each treated subject is matched to an untreated subject on the 
basis of similar values of their propensity scores. Different options are available for 
PS matching, such as one-to-one matching vs. one-to-many matching, nearest-
neighbor matching vs. optimal matching, and by specifying a caliper distance 
(each with or without replacement). One-to-one nearest-neighbor matching is 
commonly used and practical to implement when sample size is large (17). In this 
matching method, treated subjects are picked in random order and matched to 
one untreated subject with the closest propensity score. When a pre-specified 
caliper width is used, a restriction is placed on the maximum difference between 
the propensity scores of the matched couple (18, 19). In one-to-many matching, a 
treated subject can be matched to multiple untreated subjects. Optimal matching 
minimizes the total within-pair difference of the propensity score, but has been 
shown to provide similar balance in measured confounders as nearest-neighbor 
matching when sample size is large (20, 21). When matching with replacement is 
used, an untreated subject remains available in the dataset after matching and 
therefore can be matched to more than one treated subject.

The assessment of balance after PS matching
It is important to assess to which extent the PS matching achieved balance with respect 
to the measured confounders between the matched groups of treated and untreated 
subjects. After all, the propensity score is a balancing score with the aim of achieving 
comparable groups. On a group-level, the confounders need to be equally distributed 
between the treatment and control group. Indeed, after PS matching the groups of 
treated and untreated subjects will - in expectation - be comparable in terms of the 
confounders included in the propensity score model, even though at an individual 
level, subjects with the same PS may differ on specific confounder values. A common 
approach to assess balance is to quantify the absolute standardized differences for 
each confounder in the PS matched set. The standardized difference is calculated by 
dividing the difference in sample means (or proportions for dichotomous variables) 
by the pooled standard deviation. A frequently used cut point indicating acceptable 
balance is a standardized difference less than 0.1 between treatment groups (19). If 
balance has not been achieved, the propensity score model could be modified until 
adequate balance is achieved, for example by including transformations of variables, 
higher order terms, or interactions between confounders (22, 23). Once balance is 
considered appropriate, treatment (or exposure) effects can be estimated directly 
from the PS matched set. 
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Propensity score adjustment
Another method to control for confounding is to include the propensity score as 
a covariate in a regression analysis of the treatment on the outcome. A possible 
disadvantage of this approach is that some (residual) confounding may remain when 
the relation between the propensity score and the outcome is incorrectly specified 
(e.g., assuming a linear relation, while in fact the relation is quadratic). PS adjustment 
differs from traditional multivariable regression analysis since all confounders are 
summarized in one score, instead of adjusting for all separate confounders. 

Propensity score weighting
PS weighting makes use of weights based on each subject’s propensity score in 
order to create a weighted dataset (pseudo-population) in which no confounding is 
present. A subject’s weight is defined as the inverse of the probability of receiving 
his actual treatment, conditional on their measured confounder information. Thus, 
for treated subjects their weight is equal to 1/PSi and for untreated subjects their 
weight is equal to 1/(1-PSi), where PSi indicates the propensity score of individual i. 
This method is better known as inverse probability weighting (IPW). In the weighted 
pseudo-population the measured confounders are expected to be distributed 
similarly between the treatment and control groups and hence confounding 
by measured confounders is eliminated. Like in the PS matched population, the 
pseudo-population allows for a formal assessment of balance of confounders 
between the treated and untreated groups. Treatment effects can be estimated 
directly from the PS weighted population. 

An illustration of Ps methods in the NECOSAD study
To illustrate propensity score methods, we used data of the NECOSAD study, a 
Dutch multicenter cohort study including 1955 incident dialysis patients. Patients 
older than 18 years beginning dialysis as first renal replacement therapy were 
included and monitored at 6-month intervals until renal transplantation or death. 
Further information regarding study design and patient characteristics can be found 
elsewhere (24). We estimated the relation between treatment modality, peritoneal 
dialysis (PD) vs. hemodialysis (HD), and mortality risk using a Cox proportional 
hazards regression analysis. Four methods to control for confounding were applied: 
PS matching, PS adjustment, PS weighting, and multivariable Cox regression 
analysis (25). Dialysis modality and confounder values measured within 3 months 
after renal replacement therapy was started were used. These measurements 
were considered proxies for the confounder values prior to the start of dialysis 
because of the following reasons. First, the chosen treatment modality would be 
more definitive and renal replacement therapy is likely to be a chronic therapy at 3 

edoua
Sticky Note
De "S" ook graag in capital letter
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months. Second, patients who recovered or died from acute renal failure within this 
period would be excluded from analysis. Third, at 3 months the clinical condition 
of patients is more likely to have stabilized (25, 26). We used the same list of 
confounders that were used by Termorshuizen et al. to create the PS model using 
a multivariable binary logistic regression analysis (25). The confounders included 
were age, gender, primary kidney disease, Davies comorbidity index, SGA score, 
residual renal function, hemoglobin and albumin levels at baseline.

Missing confounder values were imputed using a multiple imputation by chained 
equations algorithm, including the confounder information, dialysis modality, follow-
up time, and mortality. Ideally, multiple imputed datasets would be created, however 
for educational simplicity we used one imputed dataset. A detailed explanation about 
multiple imputation followed by propensity score methods can be found elsewhere 
(27, 28). Statistical analyses were performed using R version 3.4.1 (29).

Figure 2. Distribution of propensity scores before and after matching in hemodialysis (HD) and peritoneal 

dialysis (PD) treated patients

Patient characteristics are reported in Table 1. Mean age at the start of dialysis 
was 60 years, mean eGFR 3.8 ml/min/1.73m2. As indicated by the absolute 
standardized differences, the two treatment groups differ markedly with respect 
to important confounders such as age. The unadjusted effect of peritoneal dialysis 
vs. hemodialysis on mortality risk was estimated to be HR 0.60 (95%CI 0.52-0.69) 
(Table 2). The distributions of the propensity score for the hemodialysis and for 
the peritoneal dialysis group are shown in Figure 2, showing a lower propensity 
score – on average – for patients who received hemodialysis, which is according 
to expectation since peritoneal dialysis was considered as the active treatment 
(coded 1), whereas hemodialysis was the control treatment (coded 0). 
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Table 2. Estimated effects of peritoneal dialysis vs. hemodialysis on mortality using different methods to 

control for confounding 

HR (95% CI)

Unadjusted 0.60 (0.52-0.69)

Propensity score matching† 1.04 (0.85-1.28)

PS adjustment† 1.00 (0.84-1.18)

PS weighting† 0.93 (0.78-1.12)

Multivariable regression adjustment* 1.08 (0.91-1.28)

†The propensity score model included the variables age, gender, primary kidney disease, Davies 

comorbidity index, SGA score, residual renal function, hemoglobin, and albumin levels 3 months after renal 

replacement therapy.
*The multivariable Cox regression analysis was adjusted for the variables age, gender, primary kidney 

disease, Davies comorbidity index, SGA score, residual renal function, hemoglobin, and albumin levels 3 

months after renal replacement therapy. 

First, we applied PS matching to control for confounding. We used one-to-one 
nearest-neighbor matching without replacement, using a caliper width equal to 
0.01 on the logit of the propensity score. After PS matching, 441 matched pairs were 
available for the analysis. Note that the loss in number of patients included in the 
PS matched set can be limited by applying one-to-many matching instead of one-
to-one matching (as was done here). Figure 3 shows the absolute standardized 
differences before and after PS matching, indicating clear improvement in balance 
of confounders between treatment groups due to the matching (actual numbers 
shown in Table 1). In the PS matched set, the effect of peritoneal dialysis vs. 
hemodialysis on mortality was estimated to be HR 1.04 (95%CI 0.85-1.28).
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Figure 3. Absolute standardized differences for each of the confounding variables before and after PS 

matching. The dashed line represents the cut-off point of 0.1 indicating acceptable balance.

Second, the propensity score was included as a covariate in the Cox regression 
analysis (n= 1955). The relation between the propensity score and mortality was 
assumed to be log-linear; modelling the relation between the propensity score and 
mortality using splines (5 knots) yielded the same results. After PS adjustment, the 
effect of peritoneal dialysis vs. hemodialysis on mortality was estimated to be HR 
1.00 (95%CI 0.84-1.19). 

As a third approach to control for confounding, propensity score weighting was 
applied. The estimated PS weights ranged between 1.0 and 35.6. After weighting, the 
weighted pseudo-population consisted of 1918 patients in the peritoneal dialysis and 
1979 patients in the hemodialysis group and confounders were balanced between 
treatment groups (Table 1). A dot plot showing the propensity score distribution of 
the hemodialysis and peritoneal dialysis group before and after weighting provides 
insight into the properties of PS weighting: subjects in the peritoneal dialysis group, 
who are relatively uncommon compared to subjects in the hemodialysis group with 
the same propensity score, receive a relatively larger weight. Likewise for subjects in 
the hemodialysis group, who are relatively uncommon compared to subjects in the 
peritoneal dialysis group with the same propensity score. By putting larger weights 
on relatively rare subjects, their contribution increases and as a result of that, the 
peritoneal and hemodialysis group are expected to have similar distributions of the 
propensity score in the weighted pseudo-population (Figure 4). 
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Figure 4. Dot plot showing the propensity score distributions among hemodialysis (HD) and peritoneal 

dialysis (PD) treated patients, before and after propensity score weighting. Each dot represents a different 

subject. In the right panel the dot size represents the weight of each observation in the propensity score 

weighted pseudo-population. Weights ranged between 1.0 and 35.6. 

Consequently, the confounders are expected to be balanced between the two 
groups too. The effect of peritoneal dialysis vs. hemodialysis on mortality was 
estimated using weighted Cox regression analysis with a robust variance estimator: 
HR 0.93 (95%CI 0.78-1.12). 

Lastly, a multivariable Cox proportional hazards model was fitted to the data, 
in which the confounders were included as separate covariates. This approach 
yielded a similar estimate as the propensity based methods. The effect of 
peritoneal dialysis vs. hemodialysis on mortality was estimated to be HR 1.08 
(95%CI 0.91-1.28). 
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Choosing between the different propensity score 
methods
An important aspect to consider when choosing between the different PS methods 
is which treatment effect the researcher wants to estimate. Choosing a particular 
treatment effect depends on the research question and target population to whom 
the results need to apply (19, 30). Here, we consider three types of treatment effects: 
the average treatment effect (ATE), the average treatment effect for the treated 
(ATT) and the average treatment effect for the untreated (ATU). 

The ATE represents the average effect of treatment (PD vs. HD) in the entire study 
population (i.e. 1955 subjects in our example study). The ATT can be interpreted as 
the average effect of treatment among those who were actually treated. Therefore, 
in our example the ATT represents the effect of peritoneal dialysis vs. hemodialysis 
in the subgroup of 683 subjects who actually received peritoneal dialysis. On the 
other hand, the ATU represents the effect of peritoneal dialysis vs. hemodialysis 
in the subgroup of 1272 subjects who actually received hemodialysis. Hence, the 
different treatment effects apply to different (sub)populations of dialysis patients. 
The ATE is more of interest if the goal of the researcher is to apply the treatment 
to all patients (e.g. when examining the effect of a public health intervention such 
as salt reduction in bread), whereas the ATT is more of interest when patient’s 
characteristics determine the treatment received (e.g. when discussing dialysis 
options in a young patient, who is more likely to receive peritoneal dialysis because 
of his age) (31). 

Both PS matching and PS weighting can estimate each of the different treatment 
effects. If the basis for PS matching is formed by the treated subjects, PS matching 
will estimate the ATT, whereas if untreated subjects are the basis for the matching 
the ATU is estimated. The ATE can be estimated by creating a matched set that 
represents the entire study population. In our example PS matching estimated 
the ATT since for each treated subject an untreated subject with the closest PS 
was matched. Whether PS weighting estimates an ATT, ATU or ATE depends on 
the method of weighting (32). PS weighting as applied in our example yields an 
estimate of the ATE. Therefore, the effect estimates obtained through PS matching 
(ATT, HR 1.04) and PS weighting (ATE, HR 0.93) have a different interpretation in our 
example study (Table 2). 

PS adjustment and multivariable regression (MV) analysis both estimate a 
conditional effect which in our example neither can be interpreted as an ATT, ATU 
nor ATE (33). The effect of treatment is estimated conditional on the other variables 
in the regression model, in other words the effect of treatment while holding all 
other variables in the regression model constant. 
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Merits of propensity score methods 
PS methods and multivariable regression have the same potential to control 
for confounding. However, PS methods have certain advantages compared to 
traditional multivariable regression. Firstly, PS matching and PS weighting clearly 
separate the design and analysis steps: first confounding is eliminated by balancing 
the confounders (design step) and afterwards the treatment effect is directly 
estimated (analysis step). 

Secondly, by inspecting the propensity score distribution, areas of non-overlap 
between the treated and untreated groups can be identified. Patients in these areas 
of non-overlap may have an absolute indication or contra-indication for treatment 
(34). In PS matching, these subjects, for whom no comparison can be made, are not 
matched and hence excluded from the analysis. In PS weighting, these subjects 
may be identified since they receive very large weights. In our example data there 
was no clear non-overlap of the propensity score distributions (Figure 2). 

Thirdly, propensity score methods may be preferred over multivariable regression 
analysis when the number of events is low relative to the number of confounders. 
The reason is that PS methods estimate the relationship between confounders and 
treatment, whereas multivariable regression estimates the relationship between 
confounders and outcome. In the case treatment is common but the number 
of events is low, there is often enough data to adequately model the relations 
between (many) confounders and the treatment in a propensity score model, but 
too little data to estimate the relations between confounders and the outcome in 
a traditional regression analysis in which the confounders are included as separate 
covariates (35). In our example, the outcome was relatively common since 963 
patients (49.3%) died. Therefore, the multivariable regression analysis could easily 
incorporate eight confounders and the estimated HR was similar to those obtained 
when using the different propensity score methods. 

Fourthly, in multivariable regression analysis the relation between each of the separate 
confounders and the outcome needs to be modelled properly in order to appropriately 
adjust for confounding. On the other hand, propensity score methods do not model the 
relations between confounders and outcome but instead model the relations between 
confounders and treatment. Whether this was done correctly, i.e., whether it resulted 
in balance of confounders between treatment groups, can be checked formally and 
hence provides an opportunity for correction of modeling errors. 
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Caveats of propensity score methods
In certain situations it is not advisable to use PS methods. In case of rare exposures 
or treatment, there may be insufficient data to model the relationship between 
confounders and treatment (i.e. in the propensity score model) and traditional regression 
analysis may be preferred. Also in the case of continuous treatment variables, PS 
methods may prove to be challenging (36). Furthermore, when the propensity score 
model is not correctly specified, matching (or weighting) on the propensity score may 
not yield the balance in the confounder distribution that is aimed for. 

Lastly, although PS methods have been compared to randomized controlled 
trials, propensity score methods cannot control for unmeasured confounding. 
Like randomization is expected to do in trials, propensity score methods balance 
measured confounders between treatment groups. This property of the propensity 
score becomes clear when looking at, e.g., Table 1, which shows the balance 
achieved by PS matching and PS weighting in our example data. However, the 
analogy between PS methods and randomization does not apply to unmeasured 
confounding. For instance, unmeasured confounding may arise when clinicians use 
their expert knowledge and sometimes gut feeling to decide whether a patient 
has an indication for a certain treatment or not, and this judgment may be based 
on unmeasured characteristics such as severity of disease or frailty of a patient, a 
phenomenon which is commonly known as confounding by indication. 

Key points

•	 The propensity score (PS) is the probability of treatment (or exposure) 
assignment, conditional on measured confounders.

•	 Propensity scores can be used to control for measured confounding 
in observational studies of medical treatments or risk factors, since 
measured confounders are balanced between treatment groups within 
levels of the PS.

•	 Methods to control for confounding using the PS include PS matching, 
PS stratification, multivariable regression analysis including the PS as a 
covariate, and PS weighting.

•	 The different PS methods and multivariable regression have the same 
potential to control for confounding. Choosing between these methods 
depends on the data properties and the treatment effect the researcher 
wants to estimate. 

•	 PS methods as well as multivariable regression analysis cannot control 
for unmeasured confounding. 
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Conclusion 
Propensity scores are often used in observational studies and it is important to 
understand their advantages and limitations. Traditional multivariable regression 
analysis and propensity score methods have been shown to give very similar results 
in data in which both methods could be applied, i.e., relatively large datasets (37, 
38). Also in our illustrative example, similar effect estimates were found between 
PS matching, PS adjustment, PS weighting, and conventional multivariable Cox 
regression analysis. However, all these effect estimates potentially have different 
interpretations. Whether PS methods should be used instead of multivariable 
regression depends on the properties of the data at hand and which treatment 
effect the researcher wants to estimate. Neither of these methods, however, controls 
for unmeasured or unknown confounding. As a result, unmeasured confounding, 
for example as a consequence of confounding by indication, is not controlled for 
by propensity score methods and may still impact the validity of an observational 
study on the effects of treatments or risk factors in nephrology.
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We read with interest the recent study by Kwon et al. examining the long-term 
effects of metformin use on mortality and incident end stage kidney disease (ESKD) 
among 10,426 patients with type 2 diabetic kidney disease (1). The authors report 
that metformin use decreased the risk of all-cause mortality by 35% and ESKD 
progression by 33% after applying propensity score matching to adjust for a number 
of measured confounders. 

We are concerned by the possible influence of immortal time bias on the study 
results. Immortal time arises when patients are classified into treatment groups at 
baseline based on treatment information that is only available after baseline (2). 
Since the treatment group is based on future information, by definition no deaths can 
occur in the treatment group between baseline and this future point in time. After all, 
individuals who have an event prior to taking up treatment would be classified into 
the untreated group. In this study, follow-up started on the date of the first creatinine 
measurement, but patients were classified as metformin users if they were prescribed 
metformin for longer than 90 days during the follow-up period (1). Such exposure 
classification may lead to an unfair survival advantage for the metformin users. For 
example, if all individuals in the metformin group started metformin treatment only 
after 5 years of follow-up, no deaths would occur in the metformin group during the 
first 5 years. The metformin group would thus be “immortal” for this time period. Due 
to the long-term follow-up of this study (maximum follow-up was 16 years), immortal 
time may have substantially biased the study results. 

Immortal time bias could have been prevented by correctly assigning the persontime 
between start of follow-up and treatment initiation to the untreated group, e.g. by using a 
Cox model with a time-varying exposure (2). Individuals will then contribute persontime 
to the unexposed group before metformin initiation and to the exposed group after 
metformin initiation. When using a time dependent exposure, time-dependent 
confounding will also be present. If these time-dependent confounders play both the 
role of confounder and mediator, simply adjusting for them in a regression model will 
produce biased results. For example, HbA1c is influenced by prior metformin treatment 
status, but also influences future metformin treatment status. Therefore HbA1c will 
both confound and mediate the effect of metformin on mortality and a straightforward 
time-dependent Cox analysis may not suffice in this case (3). Instead, methods such as 
marginal structural models based on inverse probability weighting should be applied 
(3). Other methods that could have been used to avoid immortal time bias include 
landmarking (4) or the use of grace periods (5). 

In conclusion, we feel the possibility of immortal time bias casts serious doubt on 
the validity of the results. Observational pharmacoepidemiologic studies must 
be designed and analyzed properly. Only then can the results of these studies 
meaningfully inform clinical practice. 
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Abstract 
Background and objectives. Data from observational and interventional studies 
provide discordant results regarding the relationship between creatinine increase 
following renin-angiotensin system inhibition (RASi) and adverse outcomes. We 
compared health outcomes among patients with different categories of increase in 
creatinine upon initiation of RASi in a large population-based cohort. 

Design, setting, participants, and measurements. We performed a retrospective 
analysis of the Stockholm CREAtinine Measurements database, which contains 
complete information on diagnoses, medication dispensation claims, and laboratory 
test results for all Stockholm citizens accessing healthcare. Included were 31 
951 adults initiating RASi during 2007-2011 with available pre- and post-initiation 
creatinine monitoring. Multivariable Cox regression was used to compare mortality, 
cardiovascular and end-stage kidney disease (ESKD) events among individuals with 
different ranges of creatinine increases within 2 months after starting treatment.

Results. In a median follow-up of 3.5 years, acute increases in creatinine were 
associated with mortality (3202 events) in a graded manner: compared with 
creatinine increases <10%, a 10-19% increase showed an adjusted HR of 1.15 (95% CI 
1.05-1.27); HR 1.22 (1.07-1.40) for 20-29%; HR 1.55 (1.36-1.77) for ≥30%. Similar graded 
associations were present for heart failure (2275 events, p for trend <0.001) and 
ESKD (52 events; p for trend <0.001), and, less consistently, myocardial infarction 
(842 events, p for trend 0.25). Results were robust across subgroups, among 
continuing users, when patients with decreases in creatinine were excluded from 
the reference group, and after accounting for death as a competing risk.

Conclusions. Among real-world monitored adults, increases in creatinine (>10%) 
following initiation of RASi are associated with worse health outcomes. These 
results do not address the issue of discontinuation of RASi when plasma creatinine 
increases but do suggest that patients with increases in creatinine have higher 
subsequent risk of cardiovascular and kidney outcomes. 
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Introduction
Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers 
(ARBs), known collectively as renin-angiotensin inhibitors (RASi), are widely 
prescribed drugs that are cornerstones in the treatment of hypertension, heart 
failure and proteinuric kidney disease (1, 2). Acute increases in creatinine are often 
observed after initiation of RASi, but the clinical significance of such increases is 
controversial (3-10). Current clinical guidelines recommend monitoring of creatinine 
during the first weeks of RASi, and discontinuing if creatinine increases exceed 30% 
(1, 2, 11). The rationale for the 30% threshold is unclear (12, 13). 

One previous healthcare-based study, and reanalysis of 5 trials, have attempted 
to identify the threshold of increase in creatinine associated with increased risk of 
patient-important outcomes (14-17). While two reports found no outcome association 
for acute decrease of >20% (14) or >15% (15) in estimated glomerular filtration rate 
(eGFR), two other analyses suggested that increases of plasma creatinine as small 
as 10% were associated with worse kidney and cardiovascular outcomes (16, 17). 
Lack of power, limited healthcare coverage and the use of variable time windows 
to define the increase in creatinine may explain these differences. A report from 
the U.S. National Kidney Foundation recently emphasized the need to clarify this 
conflicting and limited evidence (13).

We used a large healthcare-based Swedish population cohort to investigate 
the frequency of plasma creatinine increases following RASi and whether such 
increases are associated with adverse health outcomes. 

Material and Methods

Data sources
We used data from the Stockholm CREAtinine Measurements (SCREAM) project, a 
healthcare utilization cohort including all adult residents in Stockholm in whom a 
creatinine level was measured between 2006 and 2011 (18). SCREAM includes data 
from about 1.3 million adults, corresponding to 68% of the population of the region 
for that period (18). Laboratory results were linked to other administrative databases 
with complete information on demographic data, healthcare use, diagnoses, 
vital status, validated kidney replacement therapy endpoints, and dispensed 
prescriptions at Swedish pharmacies. The study utilized only de-identified data and 
thus was deemed not to require informed consent. It was approved by the regional 
ethical review boards and the Swedish National Board of Welfare.
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Study design
We included all adult (>18 years old) community-dwelling patients newly initiating 
RASi irrespective of indication, with a creatinine measured on or within 3 months 
before the dispensation date, and a post-initiation creatinine within two months 
after. This strict window of pre- and post-initiation monitoring was chosen to 
align with guideline recommendations as well as previous studies (12, 13, 15, 16). 
We defined new users as individuals receiving a new RASi dispensation, with no 
dispensation of a RASi in the preceding 12 months, to ensure that the dispensation 
was not a continuation of an existing prescription. Additional exclusion criteria were 
missing age or sex, eGFR <30 ml/min/1.73m2 or undergoing kidney replacement 
therapy at RASi dispensation.

Exposure
The study exposure was an increase in creatinine within the first two months 
of RASi, calculated as the difference between the baseline and first follow-up 
measurement. We only used creatinine measurements from the ambulatory 
setting. Creatinine tests from inpatient care, emergency room visits and taken within 
24 hours before or after hospital admission were excluded. The date of the follow-
up creatinine measurement was the index date of the study; the main analysis was 
by intention to treat. We categorized the relative increase in creatinine as follows: 
<10% (reference), 10-19%, 20-29% and ≥30%. In Stockholm healthcare, all laboratory 
tests are measured by one of three laboratories (Aleris, Unilabs and Karolinska), all 
of which are captured in SCREAM. Creatinine was measured in plasma, with either 
an enzymatic or corrected Jaffe method (alkaline picrate reaction), both methods 
being traceable to isotope dilution mass spectroscopy standards. Creatinine values 
<25 or >1500 μmol/L were considered outliers and discarded. 

Time on RASi 
Using information on all subsequent RASi dispensations, we defined continuous 
use as a refilling of prescription within the prescribed pill supply, adding 45 days 
to account for stockpiling and events that occur shortly after stopping drug. We 
quantified the proportion of patients who discontinued RASi within 14 days of the 
follow-up creatinine, and performed sensitivity analyses using an “as-treated” 
design, censoring at discontinuation.

Outcomes 
Study outcomes were ascertained via linkage with the government-run National 
Population Registry, which registers all deaths without loss to follow up, and 
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the National Patient Register with codes diagnoses for essentially all (>99%) 
hospitalizations. The primary outcome was all-cause mortality. Secondary outcomes 
were hospitalization or death due to heart failure (international classification of 
disease (ICD)-10 code I50); myocardial infarction (I21-I22) and end-stage kidney 
disease (ESKD, defined as the composite of N18.5-N18.6 codes, kidney replacement 
therapy initiation recorded in the validated Swedish Renal Registry, or a clinically 
encountered outpatient eGFR <15 ml/min/1.73m2, whichever occurred first). 

Covariates
Study covariates included age, sex, eGFR, comorbidities (hypertension, diabetes 
mellitus, myocardial infarction, heart failure, arrhythmia, peripheral vascular disease, 
cerebrovascular disease, ischemic heart disease) and medications (beta blocker, 
calcium channel blocker, thiazide diuretic, loop diuretic, potassium-sparing diuretic, 
non-steroidal anti-inflammatory drug, statin) (definitions in Table S1). Comorbidities 
identified in this study used established algorithms with an 85-95% sensitivity 
or positive predictive value (19). Drug dispensation data were obtained from the 
Dispensed Drug Registry, a nationwide register with complete information on all 
prescribed drugs dispensed at Swedish pharmacies. The coverage of this register is 
considered virtually complete, as outpatient drugs prescriptions and dispensations 
in Sweden are linked to the citizen’s unique personal identification number. eGFR 
was calculated using the CKD-EPI formula (20). We defined chronic kidney disease 
(CKD) as eGFR below 60 ml/min/1.73m2 on the first creatinine measurement, and 
categorized patients according to KDIGO criteria: category G3a (eGFR 45-59 ml/
min/1.73m2) and G3b (eGFR 30-44 ml/min/1.73m2) (21, 22).

Statistical analyses
Continuous variables are presented as mean with standard deviation or median with 
interquartile range (IQR), depending on the distribution, and categorical variables 
as number and percentages. Patients were followed from dispensation of RASi until 
the occurrence of an event, emigration from Stockholm region or end of follow-up 
(2012 December 31), whichever occurred first. Cumulative incidence functions were 
calculated and plotted to account for the competing event mortality. Incidence 
rates per 1000 person years with 95% confidence intervals were calculated for 
each outcome. Multivariable Cox proportional hazards regression was used to 
calculate hazard ratios associated with creatinine increases as earlier defined. 
The proportional hazards assumption was checked using log-minus-log plots. 
Our primary analysis followed an intention-to-treat approach, assuming that RASi 
continued until occurrence of the first event or censoring (emigration or end of 
follow up). Next, we performed subgroup analyses for a priori defined strata: sex, 
comorbidities (diabetes, myocardial infarction, heart failure, hypertension, chronic 
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kidney disease) and treatment (ACEi, ARB or both). Finally, creatinine increase was 
also modelled as a continuous exposure using penalized smoothing splines. In 
order to elucidate short-term vs long-term risk associations, we performed time-
varying Cox regression analysis splitting follow up in two intervals: <1 year and ≥1 
year from baseline (23). 

Sensitivity analyses included the following approaches: First, we followed an 
as-treated design censoring at RASi discontinuation. Second, we performed a 
competing risk analysis to calculate subdistribution hazards for the secondary 
study outcomes accounting for death as a competing risk. Third, we repeated the 
main analyses after excluding patients whose creatinine decreased by more than 
10%. Fourth, we excluded all patients who developed hyperkalemia within the first 
three months of RASi (defined as an outpatient plasma potassium > 5.5 mmol/L). 
Lastly, we excluded patients who were hospitalized for heart failure or a myocardial 
infarction in the time window between the creatinine measurements. Missing data 
were rare, and no imputations were made. Statistical analyses were performed 
using R version 3.4.1 (24).

Figure 1. Flow chart of patient inclusion in the study. SCREAM = Stockholm CREAtinine Measurements 

project; RASi = renin-angiotensin system inhibition; eGFR = estimated glomerular filtration rate; KRT = kidney 

replacement therapy.
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Results
A total of 174  005 new users of RASi were identified in Stockholm during 2007-
2011 (Figure 1). Of these, 141 462 patients were excluded due to lack of an eligible 
pre- or post-initiation creatinine test (or both): 42 713 (30%) had a pre-initiation test, 
and 29 574 (21%) a post-initiation test. Of patients with chronic kidney disease (CKD; 
n=8273) on their pre-initiation test, 4852 (59%) had a post initiation test. An additional 
592 patients were excluded for baseline eGFR <30 ml/min/1.73m2 or kidney 
replacement therapy at time of RASi dispensation. The final study cohort consisted 
of 31 951 patients (18% of all identified new-users). For these patients, the median 
(interquartile range; IQR) number of days between the first creatinine measurement 
and start of RASi treatment was 14 (5-36), whereas median time between start of 
treatment and the second creatinine measurement was 19 (11-31) days.

Table 1. Baseline characteristics of new users of renin-angiotensin system inhibitors in the Stockholm 

CREAtinine Measurements project, overall and by increase in plasma creatinine (Cr) following drug initiation.

Overall
(n = 31 951)

Cr increase 
<10%

(n = 24 671)

Cr increase 
10-19%

(n = 4515)

Cr increase 
20-29%

(n = 1655)

Cr increase 
>=30%

(n = 1110)

Mean age (SD), y 65 (14) 64 (14) 66 (14) 66 (14) 69 (15)

Age category, n (%)

<50 4344 (14) 3473 (14) 565 (13) 197 (12) 109 (10)

50-59 6353 (20) 5010 (20) 871 (19) 308 (19) 164 (15)

60-69 9101 (29) 7163 (29) 1222 (27) 456 (28) 260 (23)

70-79 7119 (22) 5429 (22) 1070 (24) 358 (22) 262 (24)

>=80 5034 (16) 3596 (15) 787 (17) 336 (20) 315 (28)

Women, n (%) 15768 (49) 12110 (49) 2195 (49) 845 (51) 618 (56)

Mean eGFR (SD), ml/
min/1.73m2

82 (19) 81 (18) 85 (19) 86 (20) 84 (22)

eGFR category, ml/
min/1.73m2 

30-44 1276 (4) 974 (4) 159 (4) 80 (5) 63 (6)

45-59 3017 (9) 2381 (10) 362 (8) 138 (8) 136 (12)

>=60 27658 (87) 21316 (87) 3994 (89) 1437 (87) 911 (82)

Comorbidities, n (%)

Diabetes mellitus 6101 (19) 4693 (19) 854 (19) 315 (19) 239 (21)

Myocardial infarction 2140 (7) 1514 (6) 347 (8) 149 (9) 130 (12)

Heart failure 3969 (12) 2670 (11) 622 (14) 305 (18) 372 (34)

Hypertension 23374 (73) 18192 (74) 3268 (72) 1169 (71) 745 (67)
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Overall
(n = 31 951)

Cr increase 
<10%

(n = 24 671)

Cr increase 
10-19%

(n = 4515)

Cr increase 
20-29%

(n = 1655)

Cr increase 
>=30%

(n = 1110)

Arrhythmia 4807 (15) 3500 (14) 689 (15) 315 (19) 303 (27)

Peripheral vascular 
disease

1362 (4) 969 (4) 214 (5) 93 (6) 86 (8)

Cerebrovascular 
disease

2136 (7) 1587 (6) 325 (7) 116 (7) 108 (10)

Ischemic heart disease 4587 (14) 3376 (14) 708 (16) 271 (16) 232 (21)

Chronic obstructive 
pulmonary disease

1826 (6) 1277 (5) 288 (6) 142 (9) 119 (11)

Medication, n (%)

Beta blockers 12691 (40) 9487 (39) 1852 (41) 749 (45) 603 (54)

Calcium channel 
blockers

7265 (23) 5504 (22) 1053 (23) 406 (25) 302 (27)

Thiazides 2568 (8) 1965 (8) 353 (8) 153 (9) 97 (9)

Loop diuretics 4983 (16) 3305 (13) 822 (18) 400 (24) 456 (41)

Potassium-sparing 
diuretics

1507 (5) 976 (4) 228 (5) 108 (7) 195 (18)

NSAIDs 5951 (19) 4533 (18) 874 (19) 314 (19) 230 (21)

Statins 9666 (30) 7420 (30) 1422 (32) 484 (29) 340 (33)

eGFR = estimated glomerular filtration rate; SD = standard deviation; NSAIDs = non-steroidal anti-

inflammatory drugs.

The characteristics of included patients are described in Table 1, overall and by 
increase in creatinine. Patients had a mean age of 65 years, 49% were women and 
13% had CKD. Hypertension (73%), diabetes mellitus (19%), arrhythmias (15%) and 
ischemic heart disease (14%) were the most common comorbidities. Concurrent use 
of beta blockers (40%), statins (30%) and calcium-channel blockers (23%) was also 
common. Creatinine increases of 10-19% occurred in 4515 patients (14%), of 20-39% 
in 1655 (5%) and ≥30% in 1110 (4%). Patients with higher creatinine increases were 
on average older, had more comorbidities and a higher proportion were taking 
additional medications. Excluded patients (i.e., those with missing baseline or follow-
up creatinine measurement) differed from those included in several ways, being in 
general younger, with higher GFR and lower prevalence of comorbidities (Table S2). 

Association between creatinine increase and study outcomes

During a median follow up of 3.5 (IQR 2.1-4.7) years, there were 3202 deaths, 2275 
heart failure hospitalizations, 842 myocardial infarctions and 52 ESKD events; 
incidence rates (95% CI) were 29.4 (28.4-30.4), 21.7 (20.8-22.6), 7.8 (7.3-8.4) and 0.5 
(0.4-0.6) per 1000 person years, respectively.
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Table 2. Crude and adjusted hazard ratios for the association between plasma creatinine increase category 

and death, cardiovascular or end-stage kidney disease outcomes.

n Number 
of events

Person 
Years

IR per 1000PY 
(95% CI)

Crude HR 
(95% CI)

Adjusted HR 
(95% CI)a

P value 
for trend

Death

Overall 31951 3202 108897 29.4 (28.4-30.4)

<10% 24671 2183 84247 25.9 (24.8-27.0) 1 1 <0.001

10-19% 4515 522 15533 33.6 (30.8-36.6) 1.30 (1.18-1.43) 1.15 (1.05-1.27)

20-29% 1655 231 5660 40.8 (35.7-46.4) 1.58 (1.38-1.80) 1.22 (1.07-1.40)

>30% 1110 266 3457 76.9 (68.0-86.8) 2.98 (2.62-3.38) 1.55 (1.36-1.77)

Heart failure

Overall 31951 2275 104859 21.7 (20.8-22.6)

<10% 24671 1505 81627 18.4 (17.5-19.4) 1 1 <0.001

10-19% 4515 367 14830 24.7 (22.3-27.4) 1.34 (1.20-1.51) 1.14 (1.02-1.28)

20-29% 1655 184 5327 34.5 (29.7-39.9) 1.87 (1.60-2.18) 1.23 (1.05-1.43)

>30% 1110 219 3075 71.2 (62.1-81.3) 3.73 (3.24-4.30) 1.41 (1.21-1.63)

Myocardial infarction

Overall 31951 842 107357 7.8 (7.3-8.4)

<10% 24671 608 83126 7.3 (6.7-7.9) 1 1 0.25

10-19% 4515 127 15287 8.3 (6.9-9.9) 1.14 (0.94-1.38) 1.05 (0.86-1.27)

20-29% 1655 62 5559 11.2 (8.6-14.3) 1.53 (1.18-1.98) 1.32 (1.02-1.72)

>30% 1110 45 3385 13.3 (9.7-17.8) 1.80 (1.33-2.44) 1.29 (0.94-1.76)

End-stage kidney disease

Overall 31951 52 108815 0.5 (0.4-0.6)

<10% 24671 24 84218 0.3 (0.2-0.4) 1 1 <0.001

10-19% 4515 12 15517 0.8 (0.4-1.4) 2.72 (1.36-5.44) 3.25 (1.61-6.53)

20-29% 1655 6 5644 1.1 (0.4-2.3) 3.73 (1.53-9.13) 2.65 (1.05-6.72)

>30% 1110 10 3435 2.9 (1.4-5.4) 10.13 (4.84-21.18) 8.31 (3.87-17.83)

CI = confidence interval; IR = incidence rate; PY = person years; HR = hazard ratio.
a Analyses are adjusted for age, sex, diabetes mellitus, myocardial infarction, heart failure, hypertension, 

arrhythmia, peripheral vascular disease, eGFR, cerebrovascular disease, ischemic heart disease, use of 

beta blockers, calcium channel blockers, thiazide diuretics, loop diuretics, potassium-sparing diuretics, 

NSAIDs and statins.
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Figure 2 and Table 2 show that in both crude and multivariable-adjusted models, 
there was a gradually increased risk of events with larger creatinine increases. For 
instance, the risk of death, HR (95% CI), was 1.15 (1.05-1.27), 1.22 (1.07-1.40) and 1.55 (1.36-
1.77) times higher for increases of 10-19%, 20-29% and ≥30% respectively, compared 
with patients with creatinine increase <10% (p for trend < 0.001). Similar trends were 
observed for the outcomes heart failure and ESKD (p values for trend <0.001). The 
association was less robust for the outcome myocardial infarction (p for trend 0.25), 
but creatinine increases of 20-29% and ≥30% were associated with tendencies 
toward increased risk in multivariable analysis. Stratified analyses showed similar 
associations and tendencies, with wider confidence intervals (Table S3). 

Figure 2. Cumulative incidence plots for death, cardiovascular and end-stage kidney disease outcomes 

by ranges of plasma creatinine increase during the first 2 months after RASi treatment initiation. The 

cumulative incidence plots for heart failure, myocardial infarction and end-stage kidney disease account 

for the competing risk of death.
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For comparison with preceding literature and current guideline recommendations, 
we compared mortality, kidney and cardiovascular risks associated with 
increases ≥30% versus <30%. Patients with increases ≥30% were older, had more 
comorbidities and used more medications (Table S4). Creatinine increases ≥30% 
were associated with an increased risk for all studied outcomes, overall (Figure 3;  
Table S5) and across different subgroups (Figure S1). In restricted follow-up 
analyses, the associations were apparent during both short- and long-term follow 
up, but with consistent tendencies towards higher risk magnitude during the first 
year of observation (Figure 3). 

Figure 3. Adjusted hazard ratios for the association between creatinine increase ≥30%, compared with 

<30%, and death, cardiovascular or end-stage kidney disease outcomes, overall, and within or beyond the 

first year of follow-up. HR = hazard ratio. The hazard ratio beyond the first year of follow-up is calculated 

conditional on surviving the first year.

When modelling creatinine change as a continuous exposure through spline 
curves, we observed an asymmetrical U-shaped association, with the lowest risk 
at decreases in creatinine of 5 to 20%, for the outcomes death and myocardial 
infarction. In contrast, for risk of heart failure and ESKD the association was linear 
(Figure S2). The inclusion of patients whose creatinine acutely decreased in the 
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reference group might alter the effect size associated with increases in creatinine. 
We therefore tested whether redefining the reference category by excluding 
patients with creatinine decreases ≥10% would modify our observations; we 
observed no major deviation from our main results (Table S6). 

The median length of RASi treatment was 18 (IQR 8-33) months. In the as-treated 
sensitivity analysis, censoring at RASi discontinuation, effects were similar to the 
intention-to-treat main analysis (Table S7). Of note, 239 (22%) patients with creatinine 
increase ≥30% discontinued treatment immediately after, compared with 5477 (18%) 
in those with creatinine increase of <30% (crude relative risk 1.19; 95% CI 1.06-1.33).
Potassium was measured at least once within the first 3 months of RASi in 29 152 
patients (91%), and there were 241 patients with hyperkalemia (> 5.5 mmol/L). 
Hyperkalemia was more common among patients with creatinine increases ≥ 
30% (5% of patients) than in those with creatinine increases <30% (0.6% of patients, 
relative risk of hyperkalemia 8.02; 95% CI 5.96-10.80), Table S8). Exclusion of 
patients with concurrent hyperkalemia did not modify our main observations (Table 
S9). Competing risk models accounting for death showed also similar associations 
regarding the risk of cardiovascular and ESKD events (Table S10). Finally, we 
compared study outcomes in included versus excluded (i.e., unmonitored) 
patients. Patients who were included in our analysis had a higher risk of death, 
but no increased risk for hospitalization for heart failure, myocardial infarction or 
ESKD compared with patients in whom creatinine was not monitored (Table S11). 
Exclusion of patients that were hospitalized in the time window between the 
creatinine measurements did also not modify the results (Table S12). 

Discussion
In this large healthcare-based observational study, we found that i) 18% of adults 
initiating RASi underwent pre- and post-initiation creatinine monitoring according 
to current guideline recommendations; ii) creatinine increases of 10-29% within the 
first 2 months of RASi were common among monitored individuals, occurring in 
19% of patients, and increases of 30% or more occurred in 4%; iii) acute increases 
in creatinine of any magnitude above 10%, relative to baseline, were consistently 
associated, in a graded manner, with increased subsequent risk of death, 
cardiovascular events and ESKD. 

Clinical guidelines recommend monitoring creatinine and considering 
discontinuation or dose reduction of RASi if creatinine increases by 30% or 
more (1, 11). We found that 18% of all new users of RASi in our region underwent 
guideline-recommended creatinine monitoring. This is in keeping with most 
observations from other countries and healthcare systems (25-32), for example, 
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in a UK primary health care cohort, 14% of patients were monitored before and 
after (31). However, in a US health maintenance organization 70% of patients were 
monitored (33). Comparing monitoring practices between studies is problematic 
because of differing definitions, data collection periods, database quality and 
coverage. In Stockholm healthcare, laboratory tests are centrally measured by 
three different laboratories, all of which contribute to SCREAM, which ensures 
that our cohort includes all creatinine measurements. Though the proportion of 
patients monitored in many of these observational studies might be thought low, it 
is worth considering, in this context, that the recommendation for monitoring is not 
based on direct evidence of benefit from monitoring, but rather on extrapolation 
from clinical trials in which monitoring occurred. In these trials, the response to 
monitoring was not protocolized, and many patients with increases in creatinine 
likely stayed on drug (15, 17, 34). In our study, monitored patients were older, and 
had a higher comorbidity burden. The presence of monitoring, in adjusted analysis, 
was associated with outcomes that were worse than (death) or similar to (heart 
failure, myocardial infarction, ESKD) those in unmonitored patients, suggesting, to 
some extent, that its use is selective and directed at patients at higher risk. 

Among those who were monitored, acute increases in creatinine were associated in 
a graded manner with increased subsequent mortality, kidney and cardiovascular 
events. Our results expand the findings of the UK primary health care cohort (16), 
but contrast with some analyses from other clinical trials: first, a post hoc evaluation 
from ONTARGET and TRANSCEND (n=9340) did not find decreases in eGFR of >= 
15% to be associated with kidney or cardiovascular events, with an adjusted HR (95% 
CI) of 1.14 (0.93-1.39) for new micro-albuminuria and 1.17 (0.99-1.38) for the primary 
cardiovascular composite (15). Second, in analyses from AASK and MDRD (n=1660), 
acute eGFR decreases between 5-20% in the setting of intensive blood pressure 
control were not associated with the risk of ESKD, with an adjusted HR (95% CI) of 
1.19 (0.84-1.68) for AASK and 1.08 (0.84-1.40) for the MDRD trial (14). In ADVANCE, 
increase in creatinine was associated with the composite outcome of mortality, major 
cardiovascular events, and new or worsening nephropathy, in a graded way: HR’s 
were 1.1 (95% CI 1.0-1.3), 1.3 (1.1-1.7) and 1.4 (1.2-1.8) for increases in creatinine of 10-19%, 
20-29%, and >=30% respectively, all compared with the referent category of increase 
<10%, with P for trend < 0.001 (17). However, it is noteworthy that half the patients 
contributing to these cohort analyses of ADVANCE were randomized to placebo after 
the active run in phase. Taken together, the tendencies and effects in these studies 
are in the direction of the effects that we observed, and the differences in statistical 
significance may reflect the greater power in the observational data sets. 

Our finding that associations were stronger during the first year of follow up is a new 
observation. By demonstrating the asymmetry of the relationships across increase 
and decrease in creatinine, we have excluded the possibility that the results are 
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caused solely by variability itself as an adverse prognostic marker, though we 
recognize that variability may contribute to the magnitude of the observed effects 
(35, 36). We have also demonstrated that results are largely unchanged after the 
exclusion of patients whose creatinine significantly decreased, using patients with 
changes of ±10% as reference. Additional strengths include our use of a stricter 
definition for pre-initiation testing (a 3-month window), following criticisms that 
follow up after a 12-month window (13, 16) could reflect long-term progression of 
CKD rather than acute decreases in GFR. We based our exposure on pharmacy 
dispensations rather than prescriptions written, which offers better ascertainment, 
although we cannot ensure that the medication has been taken. We excluded 
patients with CKD G4-5, as the use of RASi is subject to other considerations in this 
patient group, and their inclusion might have driven kidney outcomes. Our work 
illustrates how healthcare-based analyses and clinical trials provide complementary 
information on benefits and harms of therapy (37).

RASi by ACEi/ARBs leads to the loss of glomerular efferent arteriolar vasoconstriction, 
which reduces intraglomerular pressure, resulting in an acute decrease in GFR 
(38, 39); mitigation of maladaptive hyperfiltration by this mechanism is thought to 
contribute to the kidney benefit of RASi. Studies of intensive blood pressure reduction 
suggest that decreases in GFR in this context reflect hemodynamic changes rather 
than intrinsic injury (40, 41), and after long-term empagliflozin, which is also thought 
to acutely decrease GFR through a hemodynamic mechanism, discontinuation of 
empagliflozin is followed by an acute increase in GFR (42). Acute hemodynamic 
change in GFR may therefore carry a different implication and prognosis than 
change secondary to progression. 

The origin of the guideline recommendation to discontinue RASi after acute 
increases in creatinine >= 30% is unclear (13). It appears to have originated with an 
influential narrative review of 12 small trials (1102 participants), which concluded 
that creatinine increases of less than this magnitude were associated with more 
stable subsequent GFR in patients with CKD; methods and effect size for this 
conclusion were not shown, so it is difficult to make a direct comparison between 
these data and our own (12). In our larger, observational dataset, there is increased 
power to detect outcomes associated with more modest changes, and perhaps 
explains why we found that acute increases in creatinine of 10% or more were also 
associated with subsequent adverse events. The most significant limitation of our 
finding is that one cannot establish causality from this observational evidence: our 
results do not mean that RASi should be discontinued in any group. Instead, they 
are part of an emerging network of evidence that informs the decision to monitor 
and how to respond to monitoring, in the context of robust randomized evidence 
demonstrating reduction in patient-important kidney and cardiovascular outcomes 
with RASi (43-48). Because reanalyses of TRANSCEND and ADVANCE found no 
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evidence for modification of the benefit of RASi by level of creatinine increase (15, 
17), we speculate that creatinine increases may therefore be a risk marker of disease 
rather than directly leading to adverse outcomes (49). We were unable to adjust 
for blood pressure and proteinuria, because blood pressure is not included in any 
linked database, and proteinuria data had a high degree of missingness that was 
unlikely to be random. In previous work, initial blood pressure is not associated with 
change in GFR, and for albuminuria the effect size is not strong (OR 1.2, 95% CI: 1.0-
1.5) (15), so we believe they are unlikely to be important confounders. It is a limitation 
of our data that we were unable to comment on the persistence of the change: 
however, in ONTARGET and TRANSCEND, 50% of those with a decrease of GFR 
of ≥16 15% at 2 weeks did not have a difference of that magnitude at 8 weeks (15). 
For patients who are monitored and who experience an increase of 30% or more, 
repeating the value may therefore be helpful. Whether routinely discontinuing 
versus continuing RASi after a relevant creatinine increase would result in improved 
outcomes is outside the scope of our analysis because of the complexity of time-
dependent confounding. We note that this is precisely the aim of an ongoing trial of 
patients with CKD G4-5 (50). 

To conclude, acute increases in creatinine following initiation of RASi of 10% or 
more were robustly associated with increased risk of death, cardiovascular events 
(myocardial infarction, heart failure) and development of ESKD in an observational 
clinical setting. Monitoring creatinine before and after initiation of RASi identifies 
patients at high risk.
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Abstract
Rationale & Objective. It is unknown whether initiating a renin-angiotensin system 
inhibitor (RASi) in patients with advanced chronic kidney disease (CKD) is superior 
to alternative antihypertensive agents such as calcium channel blockers (CCB). 
We compared the risks of kidney replacement therapy (KRT), mortality and major 
adverse cardiovascular events (MACE) in patients with advanced CKD in routine 
nephrology practice who were initiating either RASi or CCB therapy. 

Study Design. Observational study in the Swedish Renal Registry, 2007 to 2017. 

Settings & Participants. 2458 new users of RASi and 2345 CCB users with estimated 
glomerular filtration rates (eGFR) <30 ml/min/1.73m2 (CKD G4-5 without KRT) who 
were being followed up by a nephrologist. As a positive control cohort, new users 
of the same drugs in patients with CKD G3 (eGFR 30-60 ml/min/1.73m2) were 
evaluated.

Exposures. RASi vs. CCB therapy initiation.

Outcome. Initiation of KRT (maintenance dialysis or transplantation), all-cause 
mortality and MACE (composite of cardiovascular death, myocardial infarction or 
stroke). 

Analytical approach. Hazard ratios (HRs) with 95% CIs were estimated using 
propensity score-weighted Cox proportional hazards regression adjusting for 
demographic, clinical and laboratory covariates. 

Results. Median age was 74 years, 38% were women and median follow-up was 4.1 
years. After propensity score weighting, there was significantly lower risk of KRT after 
new use of RASi compared with new use of CCBs (adjusted HR 0.79; 95% CI 0.69-
0.89), but similar risks of mortality (adjusted HR 0.97; 95% CI 0.88-1.07) and MACE 
(adjusted HR 1.00; 95% CI 0.88-1.15). Results were consistent across subgroups and 
in as-treated analyses. The positive control cohort of patients with CKD G3 showed 
similar KRT risk reduction (0.67; 0.56-0.80) with RASi therapy compared with CCBs.

Limitations. Potential confounding by indication.

Conclusions. Our findings provide evidence from routine care that initiation of RASi 
therapy compared with CCBs may confer kidney benefits among patients with 
advanced CKD, with similar cardiovascular protection. 
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Introduction
Randomized trials of angiotensin-converting enzyme inhibitors (ACEi) or angiotensin 
receptor blockers (ARB), collectively renin-angiotensin system inhibitors (RASi), 
have shown that these drugs are more effective in delaying the progression of CKD 
than placebo or alternative agents, such as diuretics, beta-blockers or calcium 
channel blockers (CCB) (1-6). Clinical guidelines recommend RASi as the first-line 
pharmacologic antihypertensive treatment strategy in patients with CKD G1-3 and 
proteinuria, with or without diabetes (7-9). There is, however, less evidence on the 
benefits of RASi in patients with CKD G4-5, a population that was under-represented 
in pivotal trials (3, 10-15). A small randomized trial (16) and various observational 
studies (17-20) suggest that RASi confer reno-protection compared with placebo or 
no use, but no data exist to inform the choice of RASi over alternative antihypertensive 
agents. This, together with concerns about the persistent hemodynamic effects of 
RASi (21, 22), may lead to underutilization of these medications in advanced CKD (23, 
24). Indeed, recent studies indicate that a significant proportion of individuals with CKD 
G3-5 do not receive RASi therapy (23-25). A recent NKF-KDOQI controversies report 
(14) identified the lack of comparative effectiveness data as a critical knowledge gap, 
and emphasized the need of further studies to inform practice.

CCBs are also frequently prescribed to treat hypertension, especially to patients with 
CKD (26-28). Although CCBs were used as an active comparator to RASi in trials such 
as AASK or IDNT (4, 11), these trials included very few patients with advanced CKD to 
allow for stratification. In the absence of trial evidence, observational studies in patients 
cared for in routine clinical practice can provide insights into the relative efficacy of 
medications. To fill this knowledge gap we studied kidney and cardiovascular outcomes 
in patients with advanced CKD who initiated RASi or CCB therapy. 

Methods

Data sources
We conducted an observational cohort study using data from the Swedish Renal 
Registry (SRR), a nationwide registry including patients with CKD G3–5 under 
nephrologist care (29, 30). The SRR includes information on outpatient visits, 
including laboratory tests and results from clinical examination. According to the 
guidelines of the registry, patients with an estimated glomerular filtration rate (eGFR) 
<30 mL/min/1.73m2 should be enrolled. Registrations of subsequent outpatient 
visits to nephrology care are thereafter performed until death, emigration from the 
country or start of kidney replacement therapy (KRT). Nearly all nephrology clinics 
in Sweden (96%) report to the SRR-CKD and the estimated national coverage is 75-
90% of nephrologist-referred patients with recognized CKD G4-5 (31). 
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Using each citizen’s unique personal identification number, the SRR-CKD was 
linked to other national registries. The Swedish Prescribed Drug Register provided 
complete information on all prescribed drugs dispensed at Swedish pharmacies 
(32); the Swedish Patient Register added information on all outpatient specialist 
consultations and hospitalizations occurring in Swedish healthcare, and was used 
to obtain information on comorbidities and outcomes (33); the Swedish Cause 
of Death Register added information on date and causes of death (34). All these 
registers are run by the Swedish National Board of Welfare and are considered to 
have no or minimal loss to follow up. We used de-identified data, the study was 
approved by the regional ethical review boards and the Swedish National Board of 
Welfare, and was judged not to require informed consent.

Patient selection and study design
We created a cohort of all adult patients in the SRR-CKD (≥ 18 years) newly initiating 
a RASi or CCB between 1 January 2007 and 1 June 2017. New users were defined as 
individuals receiving a RASi or CCB without dispensation of either drug in the previous 
six months. Prevalent users of these drugs were excluded to prevent prevalent user 
bias (35). We further excluded all individuals with a history of kidney transplantation, 
an eGFR > 30 ml/min/1.73m2, or those initiating both drugs simultaneously. 

The date of initiation was defined as the index date of the study and start of follow-
up. Patients were followed from index date to the first occurrence of a study 
outcome or end of follow-up (1 June 2017). eGFR was calculated with the CKD-EPI 
equation from routine plasma creatinine measurements performed by enzymatic 
or corrected Jaffe methods traceable to isotope dilution mass spectroscopy 
standards. Information on race is not available in Sweden by law; we assumed that 
all patients were Caucasian. 

Study exposure and covariates
The exposure of interest was RASi initiation compared with initiation of a CCB. 
Baseline covariates included age, sex, eGFR, comorbidities (diabetes mellitus, 
myocardial infarction, heart failure, arrhythmia, peripheral vascular disease, 
cerebrovascular disease, ischemic heart disease), medications (β-blocker, thiazide 
diuretic, loop diuretic, potassium-sparing diuretic, potassium binder, non-steroidal 
anti-inflammatory drug, statin), systolic blood pressure, diastolic blood pressure, 
urinary albumin-to-creatinine ratio (ACR), potassium. In addition, we considered 
other covariates in an attempt to evaluate reasons that led to the use of either 
medication: the rate of kidney function decline prior to therapy initiation, the 
occurrence of a cardiovascular-related hospitalization in the preceding six months, 
the number of overall hospitalizations in the year prior and a history of hyperkalemia 
or AKI. Covariate definitions are detailed in Supplemental Table S1.
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Study outcomes
The primary study outcome was initiation of KRT, defined as the date of start of 
maintenance dialysis or kidney transplantation, as registered in the SRR. Secondary 
outcomes were all-cause mortality and major adverse cardiovascular events 
(MACE), defined as a composite of cardiovascular death (ICD-10 code of the I 
family as main cause of death), hospitalization due to stroke (I63) or myocardial 
infarction (I21-I23). For the analysis of mortality and MACE, KRT was not considered 
a censoring event. In addition, we reported information about hospitalizations for 
hyperkalemia and acute kidney injury (AKI) after medication initiation. 

Statistical analysis
We used doubly robust methods, i.e., combining outcome regression with inverse 
probability of treatment weighting (IPTW), to control for confounding (36). A 
multivariable logistic regression model was used to calculate the probability of 
receiving RASi (versus CCB) as a function of baseline covariates. Weighting was 
considered appropriate if the standardized mean difference (SMD) between 
treatment groups was <0.1. Weights were stabilized to increase precision by adding 
the marginal probability of treatment to the numerator of the weights. Robust 
variance estimation was used to calculate confidence intervals after weighting. We 
assessed the association between RASi use compared with CCB use on outcomes 
using multivariable cause-specific Cox proportional hazards regression in the inverse 
probability weighted sample, additionally adjusting for all baseline covariates. In 
addition, we estimated adjusted cumulative incidence curves standardized to the 
distribution of the baseline variables in the study population. To do so, we fitted a 
weighted pooled logistic model including an indicator for treatment, month and 
its quadratic term, all baseline confounders, and interactions between treatment 
and time (37). Interaction terms were included to allow for nonproportional hazards 
(38). The predicted probabilities from this logistic model were used to estimate the 
adjusted absolute risks of KRT, mortality and MACE which were then standardized 
to the baseline distribution of confounders. For the calculation of the cumulative 
incidence of KRT and MACE, we took into account the competing risk of (non-
cardiovascular) death (39-41). Pointwise 95% confidence intervals for the cumulative 
incidence curves were calculated using nonparametric bootstrap based on 500 full 
samples. In primary analyses, we adopted an intention-to-treat (ITT) approach and 
analyzed patients according to their initially assigned treatment group irrespective 
of discontinuation or treatment switch. Next, we examined whether there was an 
interaction between treatment effect and the following variables, according to a 
priori defined strata: age (≥70 vs <70 years), sex, diabetes, myocardial infarction, 
heart failure, systolic blood pressure (≥140 vs <140 mmHg), eGFR (≥15 vs <15 mL/
min/1.73m2) and ACR (≥70 vs <70 mg/mmol). To calculate the subgroup hazard 
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ratios, we separately estimated the propensity score model and Cox model in each 
subgroup (42). Multiplicative interaction was tested by including interaction terms 
between treatment and the variable of interest to the Cox model. 

Multiple imputation by chained equations was used to impute missing data on 
systolic and diastolic blood pressure (missing for 2.3% of patients). Treatment, 
confounding variables, outcomes and interaction terms between treatment and 
confounders were used in the imputation model to derive 50 imputed datasets (43). 
eGFR was non-normally distributed and was log-transformed before imputation. 
Multiple imputation was combined with IPTW using the within method (44). In 
the within method, effect estimates are obtained separately in each imputation 
using the propensity score, which are then combined to an overall estimate. The 
within method has been shown to produce unbiased estimates with appropriate 
confidence intervals compared with the across approach (44).

We performed several sensitivity analyses to test the robustness of our results. 
First, we additionally adjusted our analyses for plasma potassium and ACR. These 
variables were missing for a large proportion of patients (32% and 41%, respectively) 
because it was not mandatory to report these measures. Those with missing 
ACR measurements had similar characteristics as those without missing ACR 
measurements and we assumed data to be missing at random (Supplemental Table 
S2). We used multiple imputation with chained equations, a technique well suited to 
impute data that are missing at random. Second, we redefined new users as those 
not using RASi and CCB for at least 12 months. Third, we replicated our analyses in a 
positive control cohort of patients with CKD G3, for which we expected a reduction 
in kidney replacement therapy consistent with previously conducted randomized 
trials (3, 45-47). Fourth, we performed an as-treated analysis in which patients were 
censored at the time of therapy discontinuation (no dispensation for the index drug 
within 60 days after the estimated last day of pill supply from the previous drug 
dispensation), treatment switch (on the day RASi was added to CCB or vice versa) 
or at the end of the study period. To account for potential informative censoring due 
to discontinuation or treatment switch, inverse probability of censoring weighting 
(IPCW) was applied (see Supplemental methods for details). Fifth, we used incident 
cancer diagnosis as a negative control outcome to study the influence of potential 
unmeasured confounders (such as smoking and alcohol use) on our effect estimates. 
While unmeasured confounders may predict the risk of cancer, we did not expect 
initiation of RASi or CCB to cause or prevent cancer (48). For this analysis, we excluded 
patients with a recent cancer diagnosis (within two years from index date). Lastly, we 
repeated our analysis adding heart failure related hospitalization (I50) as an outcome 
in the composite of MACE. All analyses were performed using R version 3.6.2. 
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Results

Cohort characteristics
We identified 21,065 patients under nephrologist care with eGFR <30 ml/min/1.73m2 
and no history of KRT. Of these, 13 896 (66%) were prevalent users of RASi or CCB and 
were excluded. We further excluded 1913 patients who received neither of these 
drugs during observation and 453 patients who were prescribed both medications 
simultaneously. The final study cohort consisted of 4803 patients: 2458 (51%) who 
initiated RASi and 2345 (49%) who initiated CCB (Supplemental Figure S1). Of 
patients initiating RASi, the majority initiated enalapril (37.2%), candesartan (23.4%), 
losartan (21.4%) or ramipril (9.6%). In total, 249 of 2458 (10.1%) individuals initiating 
RASi had a cardiovascular hospitalization in the 6 months prior to initiation, of which 
129 (5.2%) due to heart failure and 37 (1.5%) due to myocardial infarction. Five people 
initiated dual RAS blockade with an ACEi and ARB. The majority of patients initiating 
a CCB used a dihydropyridine CCB (97.7%), mainly amlodipine (55.4% of total CCB 
initiators) or felodipine (36.9%). In total, 231 of 2345 (9.9%) individuals initiating CCB 
had a cardiovascular hospitalization in the 6 months prior to initiation, of which 49 
(2.1%) due to heart failure and 32 (1.4%) due to myocardial infarction.

Overall, study participants had a median (IQR) age of 74 (64-81) years and 38% were 
women. Median eGFR was 20 (15-21) ml/min/1.73m2, median ACR 28 (7-108) mg/
mmol, median systolic blood pressure 140 (125-153) mmHg and median diastolic 
blood pressure 80 (70-85) mmHg. The most common comorbidities were diabetes 
(34%), ischemic heart disease (26%) and heart failure (19%). Concurrent use of 
β-blockers (63%), loop diuretics (63%) and statins (50%) was prevalent. At baseline, 
patients who initiated RASi, compared with those initiating CCB, had a higher eGFR, 
a lower systolic blood pressure and ACR, and a higher prevalence of comorbidities 
such as diabetes, heart failure and arrhythmia. After weighting, all baseline 
covariates appeared well balanced between treatment groups (standardized 
differences <0.1) (Table 1). 
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Table 1. Baseline characteristics of patients with advanced CKD by RASi or CCB treatment, before and after 

inverse probability weighting. 

Unweighted Weighted*

RASi 
(N = 2458)

CCB 
(N = 2345)

Std 
Diff†

RASi 
(N = 2473)

CCB 
(N = 2330)

Std Diff†

Median age (IQR)‡, years 73 [62, 80] 74 [66, 81] 0.22 74 [64, 80] 73 [64, 80] 0.00

Age category, n (%)

<50 303 (12.3) 159 (6.8) 0.19 238 (9.6) 210 (9.0) 0.02

50-59 226 (9.2) 189 (8.1) 0.04 195 (7.9) 217 (9.3) 0.05

60-69 461 (18.8) 443 (18.9) 0.00 477 (19.3) 454 (19.5) 0.01

70-79	 826 (33.6) 805 (34.3) 0.01 871 (35.2) 800 (34.4) 0.02

>=80 642 (26.1) 749 (31.9) 0.13 692 (28.0) 649 (27.8) 0.00

Women 909 (37.0) 906 (38.6) 0.03 950 (38.4) 898 (38.5) 0.00

Median eGFR (IQR)‡,  
ml/min/1.73m2

22 [17, 26] 18 [13, 24] 0.41 20 [15, 25] 20 [15, 25] 0.00

eGFR category, n (%)

<15 ml/min/1.73m2, n (%) 399 (16.2) 727 (31.0) 0.35 657 (25.4) 678 (27.0) 0.04

15-30 ml/min/1.73m2, 
n (%)

2059 (83.8) 1614 (68.8) 0.36 1816 (74.6) 1652 (73.0) 0.04

Median SBP (IQR)‡, mmHg 133 [120, 
146]

144 [130, 
160]

0.51 140 [125, 
155]

140 (125, 
154)

0.00

SBP category, n (%)

<120 486 (19.8) 161 (6.9) 0.39 333 (13.5) 304 (13.0) 0.02

120-139 934 (38.0) 689 (29.4) 0.18 842 (34.1) 801 (34.4) 0.01

140-159 661 (26.9) 804 (34.3) 0.16 774 (31.3) 740 (31.8) 0.01

>160 323 (13.1) 633 (27.0) 0.35 524 (21.2) 485 (20.8) 0.01

Missing 54 (2.2) 58 (2.5) 0.02 - - -

Median DBP (IQR)‡, mmHg 78 [70, 84] 80 [70, 89] 0.28 80 [70, 85] 80 [70, 85] 0.00

DBP category, n (%)

<80 1264 (51.4) 942 (40.2) 0.23 1156 (46.7) 1077 (46.2) 0.01

80-89 776 (31.6) 783 (33.4) 0.04 847 (34.3) 772 (33.1) 0.03

90-99 260 (10.6) 380 (16.2) 0.16 323 (13.1) 330 (14.2) 0.03

>100 104 (4.2) 182 (7.8) 0.15 147 (6.0) 151 (6.5) 0.02

Missing 54 (2.2) 58 (2.5) 0.02 - - -

Median ACR (IQR)‡,  
mg/mmol

24 [5, 95] 33 [9, 116] 0.12 29 [7, 111] 29 [7, 113] 0.00

ACR category, n (%)

A1 (<3) 276 (11.2) 150 (6.4) 0.17 373 (15.1) 342 (14.7) 0.01

A2 (3-29) 542 (22.1) 483 (20.6) 0.04 880 (35.6) 829 (35.6) 0.00

A3 (30-69) 240 (9.8) 204 (8.7) 0.04 400 (16.2) 383 (16.4) 0.01
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Unweighted Weighted*

RASi 
(N = 2458)

CCB 
(N = 2345)

Std 
Diff†

RASi 
(N = 2473)

CCB 
(N = 2330)

Std Diff†

A3 (≥70) 461 (18.8) 472 (20.1) 0.03 820 (33.2) 776 (33.3) 0.00

Missing 939 (38.2) 1036 (44.2) 0.12 - - -

Median potassium (IQR)‡, 
mmol/L*

4.4 [4.1, 4.8] 4.3 [4.0, 4.7] 0.15 4.4 [4.0, 4.7] 4.4 [4.0, 4.7] 0.00

Comorbidities, n (%)

Diabetes mellitus 916 (37.3) 734 (31.3) 0.13 851 (34.4) 833 (35.8) 0.03

Myocardial infarction 423 (17.2) 353 (15.1) 0.06 398 (16.1) 361 (15.5) 0.02

Heart failure 580 (23.6) 320 (13.6) 0.26 457 (18.5) 420 (18.0) 0.01

Arrhythmia 469 (19.1) 316 (13.5) 0.15 416 (16.8) 395 (17.0) 0.00

Peripheral vascular 
disease

313 (12.7) 312 (13.3) 0.02 330 (13.3) 313 (13.5) 0.00

Cerebrovascular disease 294 (12.0) 327 (13.9) 0.06 321 (13.0) 311 (13.3) 0.01

Ischemic heart disease 691 (28.1) 574 (24.5) 0.08 657 (26.6) 617 (26.5) 0.00

Medication, n (%)

β-blockers 1443 (58.7) 1586 (67.6) 0.19 1563 (63.2) 1486 (63.8) 0.01

Thiazides 79 (3.2) 66 (2.8) 0.02 71 (2.9) 70 (3.0) 0.01

Loop diuretics 1613 (65.6) 1395 (59.5) 0.13 1551 (62.7) 1463 (62.8) 0.00

Potassium-sparing 
diuretics

167 (6.8) 114 (4.9) 0.08 136 (5.5) 121 (5.2) 0.01

Potassium binders 242 (9.8) 240 (10.2) 0.01 254 (10.2) 216 (9.3) 0.03

NSAIDs 103 (4.2) 90 (3.8) 0.02 101 (4.1) 92 (4.0) 0.01

Statins 1270 (51.7) 1121 (47.8) 0.08 1232 (49.8) 1167 (50.1) 0.01

Hospitalizations, n (%)

Any hospitalization in 
previous year

1084 (44.1) 1254 (53.5) 0.19 1210 (48.9) 1138 (48.8) 0.00

Cardiovascular 
hospitalization in previous 
6 months

249 (10.1) 231 (9.9) 0.01 251 (10.1) 229 (9.8) 0.01

Hyperkalemia 
hospitalization

35 (1.4) 39 (1.7) 0.02 38 (1.5) 37 (1.6) 0.00

AKI hospitalization 125 (5.1) 213 (9.1) 0.16 187 (7.6) 169 (7.2) 0.01

Previous eGFR decline, 
ml/min/1.73m2 (SE) §

-2.03 (0.08) -1.98 (0.08) 0.02 - - -

* Inverse probability weighting was performed after imputation. Baseline characteristics are shown after 

imputation and weighting (marked with *).
† A standardized difference >0.1 indicates meaningful imbalance between groups. 
‡ Standardized difference for the mean was calculated for age, eGFR, blood pressure, ACR and potassium.
§ Calculated in the overall population on all previous eGFR measurements with a linear mixed model 

containing fixed effects for time, treatment and time/treatment interaction and random intercept and slope.
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Comparative effectiveness of RASi vs. CCB initiation
Median follow-up was 4.1 (95% CI 3.9-4.2) years, maximum follow-up was 10.4 years, 
and the total follow-up time of the cohort was 14 682 person years. During follow-
up 1416 individuals initiated KRT. The absolute 5-year risk of KRT was 39.0% among 
CCB users and 34.8% among RASi users, with a 5-year absolute risk difference of 
-4.3% (-8.0 to -0.6). The KRT risk was consistently lower in RASi users compared 
with CCB users during the entire follow-up period. For instance, risk differences 
were -3.3% (-4.9 to -1.6) at 1 year and -4.4% (-7.4 to -1.6) at 3 years (Figure 1 and 
Supplemental Table S3). For patients initiating RASi, compared with those initiating 
CCB, we observed a weighted hazard ratio of 0.79 (0.69-0.89), in favor of RASi 
initiation (Table 2).

Table 2. Number of events, incidence rates as well as crude and adjusted hazard ratios for the association 

between RASi vs. CCB initiation and all-cause mortality, MACE and kidney replacement therapy. 

Number of
events*

Person
years*

IR per 100PY 
(95% CI)*

Crude HR 
(95% CI)

Adjusted HR
(95% CI)†

KRT

Overall 1416 11044 12.8 (12.2-13.5)

CCB 753 4872 15.5 (14.4-16.6) 1 (reference) 1

RASi 663 6172 10.7 (9.9-11.6) 0.70 (0.63- 0.78) 0.79 (0.69-0.89)

All-cause 
mortality

Overall 1974 14682 13.4 (12.9-14.1)

CCB 991 6769 14.6 (13.7-15.6) 1 1

RASi 983 7912 12.4 (11.7-13.2) 0.85 (0.78- 0.93) 0.97 (0.88-1.07)

MACE

Overall 1043 13814 7.6 (7.1-8.0)

CCB 510 6311 8.1 (7.4-8.8) 1 1

RASi 533 7503 7.1 (6.5-7.7) 0.90 (0.80- 1.02) 1.00 (0.88-1.15)

IR = incidence rate; PY = person years; HR = hazard ratio; CI = confidence interval; MACE = major adverse 

cardiovascular events; RASi = renin-angiotensin system inhibitor; CCB = calcium channel blocker; KRT = 

kidney replacement therapy.

* Number of events, person years and incidence rates were calculated in the unweighted population.
† Analyses were adjusted for age, sex, eGFR, heart failure, arrhythmia, peripheral vascular disease, 

cerebrovascular disease, ischemic heart disease, diabetes mellitus, systolic blood pressure, diastolic 

blood pressure, use of β-blocker, thiazide diuretic, potassium-sparing diuretic and statin, total number 

of hospitalizations in previous year, hospitalization in previous year (yes/no), history of hyperkalemia 

hospitalization and history of AKI hospitalization using inverse probability of treatment weighting.
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Figure 1. Weighted standardized survival curves for KRT (panel A), mortality (panel B) and major adverse 

cardiovascular events (MACE, panel C) stratified by RASi or CCB use.
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In total, 1974 individuals died, with an absolute 5-year mortality risk of 49.5% among 
CCB users and 48.3% among RASi users. The absolute risk difference at 5 years was 
-1.2% (-4.1 to 1.7), with a weighted mortality hazard ratio of 0.97 (95% CI 0.88-1.07). 
During follow-up, 1043 individuals experienced a MACE, with a weighted hazard 
ratio of 1.00 (0.88-1.15). The absolute 5-year risk of MACE was 25.1% among CCB 
users and 25.0% among RASi users, with a 5-year risk difference of -0.1% (-3.4 to 
3.0). Among individuals initiating RASi, 18 (0.7%) experienced a hospitalization for 
hyperkalemia and 83 (3.4%) a hospitalization for AKI. Among those initiating CCB, 
18 (0.8%) experienced a hospitalization for hyperkalemia and 72 (3.1%) individuals 
experienced a hospitalization for AKI.

Subgroup and sensitivity analyses
Results were robust in most subgroup analyses (Figure 2, Supplemental Figures S2-
S3, Supplemental Table S4). A lower risk of KRT for RASi users compared with CCB 
was observed across strata of sex, diabetes, ACR, eGFR, heart failure and systolic 
blood pressure, but a significant interaction was observed for age, with benefit for 
initiating RASi in younger but not older patients (p < 0.01). An increased risk of mortality 
and MACE (interaction p <0.01) was observed for patients with baseline heart failure 
and CKD G4-5 initiating RASi, compared with CCB, as well as a significant interaction 
for MACE according to sex (p < 0.01). Other than this, risks of mortality and MACE did 
not differ by prespecified subgroups (all interaction p > 0.12).
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The positive control cohort included 2608 nephrologist-referred patients with CKD 
G3 of whom 1663 started RASi and 945 started CCB (baseline characteristics in 
Supplemental Table S5). After IPTW, the adjusted hazard ratio for RASi compared 
with CCB was 0.68 (0.48-0.98) for KRT, 0.97 (0.81-1.17) for mortality and 1.09 (0.85-
1.40) for MACE (Supplemental Table S6). 

In the as-treated analysis, a hazard ratio of 0.67 (0.56-0.80) was observed for KRT for 
RASi initiation compared with CCB initiation. The adjusted hazard ratios for mortality 
and MACE were 1.05 (0.87-1.26) and 1.03 (0.83-1.26), respectively (Supplemental 
Table S7). Additional adjustment for ACR and potassium or redefining new users 
as no recorded dispensation of either RASi or CCB for at least 12 months, produced 
hazard ratios consistent with the results of our main analysis (Supplemental 
Table S7). Individuals who initiated RASi had similar risks of cancer compared with 
CCB initiators, with a weighted HR of 1.03 (0.87-1.22). Adding heart failure-related 
hospitalization to the MACE outcome did not alter our results (adjusted HR 1.00; 
95% CI 0.89-1.13) (Supplemental Table S8). 

Discussion
Current clinical guidelines recommend the use of ACEi or ARBs as first-line therapy 
in patients with CKD and proteinuria, with or without diabetes (7-9, 49), but provide 
no guidance regarding eGFR thresholds for which these recommendations are 
valid (14, 15). In our study of a large, nationwide cohort of nephrologist-referred 
patients with advanced CKD, initiation of RASi compared with CCB was associated 
with a reduced risk of KRT, but similar risk of mortality and MACE. These findings 
were robust across subgroups of patients and following an as-treated design. 

Our study does not evaluate the health benefits of RASi versus no use in patients 
with CKD G4 and 5. This has been investigated previously (17, 18, 24), including the 
randomized trial by Hou et al. (16) or the post-hoc analysis of the REIN (Ramipril Efficacy 
in Nephropathy) trial (10). Our goal was to inform on the choice of antihypertensive 
agents in the advanced CKD population by comparing outcomes associated with 
initiating RASi or CCB as the two most commonly used antihypertensive agents in 
clinical practice (28). A considerable proportion of patients reach CKD stage 4-5 
without these medications. In our register this equaled to 34% of the population, a 
figure which agrees with other contemporary reports: in the CRIC cohort, ~30% of 
patients CKD G4 and about 73% of patients CKD G5 did not receive RASi, and similar 
proportions of non-use were reported for CCB in CKD G4 (50% not using CCB) and 
G5 (40% not using CCB) (24). Recent data from CKDOPPS indicates that this pattern 
is followed globally: for instance, only 52% of DOPPS patients in the United States 
and 66% in Brazil were receiving RASi (25).
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We observed that RASi may be superior to CCB in delaying KRT in advanced CKD. 
This is consistent with a recent network meta-analysis of patients with CKD G3 
showed that ACEi reduced the odds of KRT by 35% (OR 0.65; 95% credibility interval 
0.51-0.80), and ARBs reduced the odds of kidney failure by 25% (0.75; 0.54-0.97), 
compared with other antihypertensive drugs, which included CCBs, diuretics and 
beta-blockers (13). Our positive control cohort of individuals with CKD G3 showed a 
reduction in KRT risk (HR 0.68; 95% CI 0.48-0.98) of magnitude similar to that meta-
analysis, which lends reassurance to our observations. We note that 98% of our 
patients used dihydropyridine CCB, and the comparative effectiveness and safety 
of non-dihydropyridine CCB cannot be informed by our study. 

We observed no differences in the risk of MACE between both therapies in persons 
with advanced CKD, a finding we believe is novel (7, 14) and in a magnitude similar 
to our control population of patients with CKD G3. Again this agrees and expands 
two large meta-analyses of randomized trials comparing antihypertensive agents 
in patients with CKD G3 (13, 50). Compared with placebo, blood-pressure-lowering 
regimens significantly reduced the risk of MACE in individuals with CKD G3 (HR 
0.83; 95% CI 0.76-0.90), but results were similar whether the regimen was based 
on ACEi, CCB, diuretics or beta-blockers (50). Another Bayesian network meta-
analysis found odds ratios of 0.94 (95% credibility interval 0.75-1.12) for ACEi and 
0.86 (95% credibility interval 0.70-1.03) for ARB versus active controls (either CCB, 
diuretics or beta-blockers) on cardiovascular events (13). Collectively these findings 
may suggest that there is little evidence to support a particular drug class for the 
prevention of cardiovascular outcomes in the general population with CKD. 

Finally, few studies have compared the mortality risk of RASi versus alternative 
antihypertensive agents in advanced CKD. In the meta-analysis by the Blood 
Pressure Lowering Treatment Trialists’ Collaboration, both ACEi vs. placebo and 
CCB vs. placebo were associated with similar reductions in all-cause mortality for 
CKD patients (predominantly CKD G3a), with HR (95% CI) of 0.86 (0.76-0.97) and 0.83 
(0.56-1.24), respectively (50). Head-to-head comparisons of RASi vs. CCB in patients 
with CKD yielded a hazard ratio of 1.00 (0.89-1.13) (50), which is again similar to what 
we observed in patients with CKD G4-5ND (0.97; 0.88-1.07) and our control cohort 
of patients with CKD G3 (0.97; 0.81-1.17). 

We studied a unique nationwide inception cohort design of patients referred to a 
nephrologist in a country with universal healthcare access, with long-term follow-
up data of over 10 years, assessment of multiple relevant endpoints, virtually no 
loss to follow-up and low likelihood of misclassification for the outcomes KRT and 
mortality. Furthermore, results were robust in multiple subgroup and sensitivity 
analyses. Our positive control analysis of persons with CKD G3 aligned with findings 
from two meta-analyses of trials and the patients included are representative of 
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routine clinical practice. In addition, the negative control analysis with cancer did 
not indicate that the observed associations were due to different health status. 
However, we recognize limitations. Despite adjustment for a wide range of potential 
confounders, selection of patients referred to nephrologists, and the use of an 
active comparator (CCB initiation), residual confounding-by-indication bias cannot 
be excluded in observational designs, and the reasons for the initiation of these 
drugs in the patients of our study remain unknown. Because only around 10% of 
individuals starting RASi or CCB in our study had a cardiovascular hospitalization 
in the 6 months prior to therapy start, we speculate that medications may have 
been initiated for renoprotection or as antihypertensive agents. Data were missing 
for ACR and potassium, but our results were similar whether these variables were 
included using multiple imputation or not, and those with missing measurements 
had similar characteristics to those without missing measurements. We recognize 
that it may be unusual to start RASi or CCB this late in the course of disease, and 
that there may be special indications for it. While we acknowledge that we do 
not have the precise reasons that prompted the use of these therapies, we went 
through a great deal of efforts to identify and control for these potential indications. 
Our results are likely generalizable to Swedish clinical practice during the period 
2007-2017. However, extrapolations to other ethnicities, countries or periods should 
be done with caution. Finally, our conclusions remain observational in nature and 
do not substitute for randomized trials. However, until these trials are conducted 
they may assist in informing clinical decisions. 

In conclusion, in patients with CKD G4-5ND, RASi initiation, compared with CCB 
initiation, was associated with a lower risk of KRT, but similar risks of MACE or 
mortality. These results suggest that use of RASi may confer additional renal 
benefits compared with CCB in patients with CKD G4-5ND. This evidence may 
potentially inform clinical decisions on the choice of antihypertensive therapy for 
this patient group, minimally included in pivotal trials. 
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Supplemental Methods
For the as-treated analysis, we censored individuals when they either discontinued 
therapy (no dispensation for the index drug within 60 days after the estimated 
last day of supply), or switched treatment (on the day of a prescription of the drug 
different from the index drug). To adjust for the time-varying selection bias that is 
introduced when censoring individuals if they deviate from the initiated medication 
at cohort entry, we used inverse probability of censoring weighting (IPCW). We 
constructed our dataset into monthly intervals and updated all comorbidities and 
medication use at each month. For each subject we estimated a weight that was, 
informally defined, proportional to the inverse of the probability of observing one’s 
censoring history. The stabilized censoring weight at month t was calculated as
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where Ct indicates censoring status, At̅ treatment history, V is a vector of time-
fixed covariates at baseline and Lt̅ represents the time-varying covariates. The 
denominator of swCt adjusts for the informative censoring and is the probability 
of being uncensored in month k, conditional on past censoring history, treatment 
history, time-fixed covariates (measured at baseline), and time-varying covariates. 
The numerator of swCt is not required for censoring adjustment but is used to 
stabilize the weights and improve statistical efficiency. The numerator represents 
the probability of remaining uncensored in month k, conditional on censoring 
history, treatment history, and time-fixed covariates. To estimate the weights, two 
separate pooled logistic models were fitted for the numerator and denominator 
respectively: 

logit [Pr ( Ct = 0 ǀ Yt = Ct-1 = 0, A, X, V )] = η0 + η1t + η2 t
2 + η3 A + η4

ꞌV + η4 X
logit [Pr ( Ct = 0 ǀ Yt = Ct-1 = 0, A, X, V )] = η0 + η1t + η2 t

2 + η3 A + η4
ꞌV + η4 X + η5 Lt

As time-fixed covariates we used age and sex, and as time-varying covariates we 
used all comorbidities, medications and hospitalizations listed in Supplemental 
Table S1 as well as eGFR, systolic and diastolic blood pressure. The stabilized 
censoring weights had a mean of 1.00 and ranged from 0.30 to 5.65, indicating 
no violation of the positivity assumption. A weighted Cox model was then used 
to calculate adjusted hazard ratios for mortality, MACE and kidney replacement 
therapy for the as-treated analysis, using the estimated stabilized censoring 
weights, and additionally adjusting for all baseline covariates. Robust variance 
estimation was used to derive conservative 95% confidence intervals. A similar 
procedure was used for the competing risk analysis.



119

CHAPTER 6 -  RASi vs. CCB and outcomes in CKD G4-5

6





CHAPTER 7

Association between β-blocker use and 
mortality/morbidity in patients with 

heart failure with reduced, midrange, and 
preserved ejection fraction and advanced 

chronic kidney disease

Edouard L. Fu, Alicia Uijl, Friedo W. Dekker, Lars H. Lund, Gianluigi Savarese,  
Juan-Jesus Carrero

Circ Heart Fail 2020; 13: e007180



122

Abstract
Background: It is unknown if beta-blockers reduce mortality/morbidity in patients 
with heart failure (HF) and advanced chronic kidney disease (CKD), a population 
underrepresented in HF trials.

Methods: Observational cohort of HF patients with advanced CKD (eGFR 
[estimated glomerular filtration rate] <30 mL/min/1.73m2) from the Swedish Heart 
Failure Registry between 2001-2016. We first explored associations between 
beta-blocker use, 5-year death, and the composite of cardiovascular (CV) death/
HF hospitalization among 3,775 patients with HF with reduced ejection fraction 
(HFrEF) and advanced CKD. We compared observed hazards with those from 
a control cohort of 15,346 patients with HFrEF and moderate CKD (eGFR<60-30 
mL/min/1.73m2), for whom beta-blocker trials demonstrate benefit. Secondly, we 
explored outcomes associated to beta-blocker among advanced CKD participants 
with preserved (HFpEF; N=2,009) and midrange ejection fraction (HFmrEF; N=1,514). 

Results: During median 1.3 years, 2,012 patients had a subsequent HF hospitalization, 
and 2,849 died in the HFrEF cohort, of which 2,016 due to cardiovascular causes. 
Among patients with HFrEF, beta-blocker use was associated with lower risk 
of death (adjusted hazard ratio 0.85; 95% confidence interval 0.75-0.96) and CV 
mortality/HF hospitalization (0.87; 0.77-0.98) compared to non-use. The magnitude 
of the associations was similar to that observed for HFrEF patients with moderate 
CKD. Conversely, no significant association was observed for beta-blocker users in 
advanced CKD with HFpEF (death: 0.88; 0.77-1.02, CV mortality/HF: 1.05; 0.90-1.23) 
or HFmrEF (death: 0.95; 0.79-1.14, CV mortality/HF: 1.09; 0.90-1.31).

Conclusion: In HFrEF patients with advanced CKD, use of beta-blockers was 
associated with lower morbidity and mortality. Although inconclusive due to limited 
power, these benefits were not observed in similar patients with HFpEF or HFmrEF.
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Introduction
Chronic kidney disease (CKD) is highly prevalent in patients with heart failure (HF) and 
their coexistence is increasing due to an ageing population and shared risk factors 
and mechanisms (1-3). Patients with HF and CKD experience significant morbidity and 
mortality (4, 5), which is highest in those with advanced CKD (estimated glomerular 
filtration rate (eGFR) <30 ml/min/1.73m2) (2, 6-8). Although persons with advanced 
CKD typically represent 10-15% of the HF population, they have been systematically 
excluded or underrepresented in HF clinical trials (9-12), leading to uncertainty about 
the effect of therapies and optimal management for them (13).

Beta-blockers are a cornerstone in the treatment of patients with HF with reduced 
ejection fraction (HFrEF) since they substantially reduce mortality and morbidity 
(13-21). A recent meta-analysis of randomized trials showed consistent benefits 
of beta-blockers in patients with HFrEF and moderate CKD (eGFR 30-60 ml/
min/1.73m2), but there were too few HF patients with advanced CKD (less than 3% of 
all patients included in the trials) to draw firm conclusions (22). Furthermore, the few 
observational studies conducted to date show inconsistent results, being limited by 
a small number of patients with advanced CKD (23-25) and/or lacking information 
on ejection fraction (26, 27).

We here sought to evaluate outcomes associated with the use of beta-blockers in 
a large, contemporary, and nationwide routine-cared cohort of patients with HFrEF 
and advanced CKD. As a secondary objective, we investigated whether potential 
benefits of beta-blockers may also extend to patients with advanced CKD and 
heart failure with midrange (HFmrEF) or preserved ejection fraction (HFpEF), for 
whom no beta-blocker trial evidence exist.

Methods

Study protocol and setting
The data that support the findings of this study are available from the corresponding 
author, provided that data sharing is permitted by European Union General Data 
Protection Regulation regulations and appropriate ethics committees. The Swedish 
Heart Failure Registry has been described previously (28). The inclusion criterion is 
clinician-judged heart failure. Approximately 80 variables are recorded at hospital 
discharge or after an out-patient clinic visit and entered into a web-based database 
managed by the Uppsala Clinical Research Center. Ejection fraction is categorized 
as <30%, 30-39%, 40-49% and >=50%. Deaths and causes of death are obtained 
from the Swedish Population Registry monthly. The National Patient Registry was 
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used to obtain information on additional baseline comorbidities and the outcomes 
hospitalization due to HF, hospitalization due to syncope and cancer. Variable 
definitions are reported in Supplemental Table S1. Linkage with Statistics Sweden 
provided socioeconomic characteristics. Individual patient consent is not required, 
but patients are informed of entry into national registries and have the opportunity 
to opt out. This study was approved by a multisite ethics committee and complies 
with the Declaration of Helsinki.

Study population
Patients registered between 11 May 2000 and 31 December 2016 with an eGFR <30 
ml/min/1.73m2 at time of registration and no missing data for beta-blocker use or 
ejection fraction were considered for this study. Patients receiving beta-blockers 
other than those recommended by HF guidelines (i.e. bisoprolol, carvedilol, or 
metoprolol) and those that died during the index hospitalization/outpatient visit 
were excluded. The index date was defined as the date of hospital discharge or 
date of outpatient clinic visit. If the same patient was registered more than once, we 
considered the first registration with eGFR <30 ml/min/1.73m2. eGFR was calculated 
using the CKD Epidemiology Collaboration equation (29). Patients undergoing 
chronic dialysis at index date where considered to have advanced CKD. Individuals 
were followed from index date until occurrence of an event or end of follow-up (31 
December 2016), whichever occurred first. A flow chart describing patient flow is 
reported in Supplemental Figure S1.

Outcomes
Our primary outcome was mortality due to any cause up to 5 years. Secondary 
outcomes included a combined endpoint of 5-year cardiovascular mortality and 
HF hospitalization (definitions in Supplementary Table S1), and each component 
separately. As safety outcome we considered hospitalization for syncope, as beta-
blocker use is associated with increased risk of bradycardia and hypotension (10). 
As a negative control outcome, we used hospitalization for cancer.

Covariates
Study covariates were recorded at HF registration/discharge and were used in 
multivariable adjustments, and included age, sex, civil status, location (inpatient 
or outpatient), follow-up referral specialty, New York Heart Association (NYHA) 
class, left ventricular ejection fraction (LVEF) [<30 vs. 30-39% in HFrEF analyses; 
EF not used for adjustment in the HFpEF or HFmrEF analyses], systolic, diastolic 
and mean arterial pressure, heart rate, eGFR, heart failure duration, comorbidities 
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(hypertension, diabetes mellitus, smoking, ischemic heart disease, peripheral 
artery disease, stroke/transient ischemic attack, atrial fibrillation, anemia, valvular 
disease, lung disease, dilated cardiomyopathy), concomitant medications (renin-
angiotensin-system inhibitors [RASi], mineralocorticoid receptor antagonists 
[MRA], digoxin, diuretic, nitrate, platelet inhibitor, oral anticoagulant, statins) and 
history of interventions (revascularization, valve intervention, pacemaker, cardiac 
resynchronization therapy, implantable cardioverter defibrillator). We further 
extracted information on NT-proB-type Natriuretic Peptide and body mass index 
but did not adjust for these variables due to a high proportion of missing values. 

Statistical analysis
Continuous variables are presented as mean with SD or median with interquartile 
range (IQR), depending on the distribution, and categorical variables as number 
and percentages.

The primary analysis compared outcomes associated with beta-blocker use in 
patients with HFrEF (ejection fraction ≤39%). Incidence rates per 100 person-years 
with 95% confidence intervals (95% confidence intervals [CI]) were calculated for 
each outcome. We computed survival curves standardized to the distribution of the 
baseline variables in the study population to provide absolute survival probabilities 
and risk differences (30, 31). Survival probabilities were log-log transformed before 
pooling and combined using Rubin’s rules (32). The combined estimates were back 
transformed onto the original scale after pooling. Multivariable Cox proportional 
hazards regression was used to estimate hazard ratios (HRs) for the association 
between beta-blocker use and outcomes. The proportional hazards assumption 
was verified by assessment of the Schoenfeld residuals. We performed subgroup 
analyses in a priori defined strata of sex, location, NYHA class (I/II vs. III/IV), ejection 
fraction (<30% vs. 30-39%), eGFR (<15 ml/min/1.73m2 vs. 15-30 ml/min/1.73m2), atrial 
fibrillation, diabetes, hypertension, ischemic heart disease and COPD, and non-
prespecified subgroups of RASi and MRA use. In addition, we compared outcomes 
according to the beta-blocker dose received.

Observed estimates were contrasted with those from a positive control cohort of 
patients with HFrEF and moderate CKD (eGFR between 30-60 ml/min/1.73m2), 
for whom a risk benefit has been observed in landmark trials (10-12, 33, 34). The 
positive control cohort was defined in the same way as our primary cohort. As a 
sensitivity analysis we repeated our analyses using a maximum follow-up of 1 year. 
Furthermore, to evaluate the extent of residual confounding, we used hospitalization 
for cancer as a negative control outcome, which is not expected to be associated 
with beta-blocker use.



126

Finally, we evaluated outcomes associated with beta-blocker use in persons with 
advanced CKD and HFmrEF (ejection fraction 40-49 %) or HFpEF (ejection fraction 
≥50%) separately, in a manner identical to our primary analysis.

Missing confounder values were imputed using a multiple imputation by chained 
equations algorithm (generating 50 imputed datasets), including the confounder 
information, beta-blocker use, the censoring indicator of the composite outcome 
and the Nelson-Aalen estimate of the cumulative hazard. Missing data for each 
variable are reported in Supplemental Table S2 for all cohorts separately. Statistical 
analyses were performed using R version 3.6.2.

Table 1. Baseline characteristics of individuals with HFrEF and advanced CKD (eGFR<30 ml/min/1.73m2), 

overall and stratified by beta-blocker use.

Beta-blocker users
(N = 3371)

Beta-blocker non-users
(N = 404)

Age, years, median (IQR) 80 [74, 85] 82 [75, 87]

Women (%) 1213 (36) 145 (36)

Location, outpatient (%) 1109 (33) 84 (21)

Follow-up location, specialty (%) 1830 (58) 168 (47)

NYHA class (%)

I 70 (3) 7 (3)

II 670 (28) 54 (22)

III 1355 (57) 128 (53)

IV 279 (12) 54 (22)

EF (%)

<30 1721 (51) 218 (54)

30-39 1650 (49) 186 (46)

Clinical measures

BMI (kg/m2), mean (SD) 27 (5) 26 (5)

SBP (mmHg), mean (SD) 122 (22) 122 (23)

DBP (mmHg), mean (SD) 70 (12) 70 (13)

MAP (mmHg), mean (SD) 87 (14) 87 (15)

Heart rate (bpm), median [IQR] 75 (16) 76 (17)

eGFR (mL/min/1.73m2), median [IQR] 25 [20, 28] 24 [19, 28]

eGFR <15 ml/min/1.73m2 (%) 347 (10) 57 (14)

eGFR between 15-30 ml/min/1.73m2 
(%)

3024 (90) 347 (86)
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Beta-blocker users
(N = 3371)

Beta-blocker non-users
(N = 404)

NT-proBNP, pg/L, median [IQR] 9176 [3914, 19894] 9950 [4241, 24107]

Smoking (%)

Never 1100 (44) 122 (45)

Former 1176 (47) 123 (45)

Current 209 (8) 29 (11)

Medical history (%)

Atrial fibrillation 2084 (62) 235 (58)

Anaemia 2031 (61) 254 (63)

COPD 553 (16) 73 (18)

Dilated cardiomyopathy 379 (12) 50 (13)

Diabetes 1339 (40) 147 (36)

Hypertension 2573 (76) 274 (68)

Ischemic heart disease 2542 (75) 272 (67)

Peripheral artery disease 632 (19) 89 (22)

Stroke and/or TIA 636 (19) 94 (23)

Valvular disease 1204 (36) 167 (41)

Cancer in the previous 3 years 418 (12) 66 (16)

Procedures

Coronary revascularization 1410 (42) 138 (34)

Devices (CRT or ICD) 412 (12) 25 (6)

Pacemaker (CRT-D, CRT-P or pacemaker) 668 (20) 71 (18)

Medication use (%)

RAS inhibitors 2320 (69) 215 (53)

MRA 827 (25) 109 (27)

Digoxin 313 (9) 36 (9)

Diuretics 3178 (95) 374 (94)

Statins 1661 (49) 141 (35)

Anticoagulants 1358 (40) 130 (32)

Antiplatelets 1798 (54) 192 (48)

Nitrates 928 (28) 93 (23)
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Beta-blocker users
(N = 3371)

Beta-blocker non-users
(N = 404)

Socioeconomic characteristics (%)

Marital status

Married 1600 (48) 191 (47)

Single 742 (22) 84 (21)

Widowed 1022 (30) 129 (32)

Education level

Compulsory school 1751 (54) 209 (53)

Secondary school 1132 (35) 135 (34)

University 387 (12) 51 (13)

Income > median 1511 (45) 173 (43)

NYHA = New York Heart Association; EF = ejection fraction; BMI = body mass index; SBP = systolic blood 

pressure; DBP = diastolic blood pressure; MAP = mean arterial pressure; eGFR = estimated Glomerular 

Filtration Rate; NT-proBNP = N-terminal pro-B-type natriuretic peptide; CRT = cardiac resynchronization 

therapy; ICD = implantable cardioverter-defibrillator; CRT-D = cardiac resynchronization therapy with 

defibrillation; CRT-P = cardiac resynchronization therapy with pacemaker.

Results
Among a total of 76,506 patients in the Swedish Heart Failure Registry, 7,298 had 
advanced CKD (Supplemental Figure S1). Based on LVEF evaluation, 3,775 were 
classified as HFrEF, 2,009 as HFpEF and 1,514 as HFmrEF. Characteristics for the 
overall HF cohort are shown in Supplemental Table S3; beta-blockers were used 
in 6,317 (87%) individuals.

Primary analysis: Beta blockers in HFrEF with advanced CKD
Baseline characteristics for the HFrEF cohort, stratified by beta-blocker use are 
reported in Table 1. Of the 3,775 patients with HFrEF, 3,371 (89%) were treated with 
beta blockers and 404 were not (11%). The majority of patients received metoprolol 
(53%), followed by bisoprolol (41%) and carvedilol (6%). As many as 26% received 
target doses, 36% received 50-99% of the target dose, and the remaining 38% 
received <50% of target dose (Supplemental Table S4, Supplemental Figure S2). 
Median (IQR) age was 80 (74-85) years among beta-blocker users, compared with 
82 (75-87) years among non-users, and in both groups the proportion of women 
was 36%. Among beta-blocker users, 51% had an ejection fraction <30%, compared 
with 54% among non-users. Atrial fibrillation was a common comorbidity, occurring 
in 62% of beta-blocker users, and 58% of non-users (Table 1).
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The median follow-up time was 1.3 years, for a total of 6,138 person-years of follow-
up. A total of 2,849 (75.5%) individuals died, of whom 2,016 (70.8% of total deaths) 
due to cardiovascular causes. The 5-year incidence rate of all-cause mortality was 
44.8 per 100 (95% CI 43.1-46.6) person-years among beta-blocker users vs. 64.0 
(57.2-71.3) for non-users (Figure 1). The 5-year survival was 12.9% for non-users and 
16.2% for beta-blocker users (Figure 2, Supplemental Table S5). Compared to no-
use, beta-blocker users had a 3.2% (95% CI 0.9%-5.6%) lower mortality risk, with an 
adjusted HR of 0.85 (95% CI 0.75-0.96). A total of 2,779 (73.6%) patients experienced 
the composite outcome of CV mortality or HF hospitalization, with again a lower 
incidence among beta-blocker users (incidence rate 69.8; 95% CI 67.2-72.5) than 
among for non-users (incidence rate 92.3; 95% CI 82.3-103.1). 

The 5-year composite-free survival was 10.3% among non-users and 12.9% for beta-
blocker users (Figure 2, Supplemental Table S6). Compared to no-use, beta-blocker 
users had a 2.6% (95% CI 0.3%-4.8%) lower CV mortality/HF hospitalization risk (HR 
0.87; 95% CI 0.77-0.98), primarily attributed to a reduction in cardiovascular death 
(HR 0.81; 0.71-0.93), whereas the adjusted HR for heart failure hospitalization was 
0.94 (95% CI 0.81-1.10) (Supplemental Figure S3). Results were similar when using a 
shorter maximum 1-year follow-up (Supplemental Table S7). No differences were 
observed for the safety outcome, risk of syncope hospitalization, with a HR of 0.99 
(95% CI 0.47-2.07) for beta-blocker users compared with no use. We also observed 
no association between beta-blocker use and the “negative control outcome” of 
cancer hospitalization, with a HR of 1.08 (0.63-1.84) (Supplemental Table S8).

Stratified analyses (Figure 3) showed significant interaction terms, with the 
association between beta-blocker use and mortality being stronger for inpatient 
than for outpatient cases, and also stronger in the absence of ischemic heart 
disease and those not receiving RASi. The association between beta-blocker use 
and the composite outcome was more favorable in patients with an eGFR <15 ml/
min/1.73m2 than in those with an eGFR between 15-<30 ml/min/1.73m2, among 
those without atrial fibrillation and those not receiving RASi. Compared to non-use, 
the observed point estimates for benefit of beta-blocker use were similar regardless 
of the dose prescribed, although the confidence intervals exclude 1 only for doses 
that are 50% or more of target (Supplemental Tables S9-10).
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Figure 2. Standardized survival curves for the association between beta-blocker use and all-cause mortality 

and the composite outcome cardiovascular mortality or heart failure hospitalization. Legend: Panels A and 

B: patients with HFrEF and advanced CKD. Panels C and D: patients with HFrEF and moderate CKD (positive 

control analysis). HR = hazard ratio; CI = confidence interval; ARD = absolute risk difference at 5 years.
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Figure 3. Association between beta-blocker use, 5-year all-cause mortality (A) and the composite of 

cardiovascular mortality and heart failure hospitalization (B) in subgroups of patients with HFrEF and 

advanced CKD.



134

Positive control cohort: Beta blockers in HFrEF with moderate 
CKD
From a total of 15,346 identified individuals with HFrEF and moderate CKD, 13,890 
(90.5%) were treated with beta-blockers. Median eGFR was 48 ml/min/1.73m2 (IQR 
40-54), 60.2% had CKD G3a and 39.8% CKD G3b (Supplemental Table S11). The 
pattern of beta-blocker drug class use was similar to that observed for patients 
with advanced CKD (Supplemental Table S4). During follow up, they experienced a 
much lower event rate for all-cause mortality (incidence rate 18.6; 95% CI 18.2-19.0) 
and the composite outcome (incidence rate 31.7; 95% CI 31.0-32.3) than patients 
with advanced CKD (Figure 1). The 5-year survival was 38.4% for non-users and 
42.0% for beta-blocker users (Figure 2, Supplemental Table S6). Compared to no-
use, patients receiving beta-blockers had a 3.6% (95% CI 1.5%-5.8%) lower risk of 
death (HR 0.88; 95% CI 0.82-0.95). The risk of CV death/HF hospitalization was also 
lower among beta-blocker users (HR 0.89; 95% CI 0.83-0.96), attributed both to a 
lower cardiovascular death risk (HR 0.86; 95% CI 0.79-0.94) and a lower heart failure 
hospitalization risk (HR 0.88; 0.81-0.96) (Supplemental Figure S3).

Secondary analyses: Beta blockers in HFpEF and HFmrEF with 
advanced CKD
We identified 2,009 individuals with HFpEF and 1,514 individuals with HFmrEF and 
advanced CKD. In patients with HFpEF, 1,649 (82.1%) used beta-blockers, and 1,297 
(85.7%) patients with HFmrEF used beta-blockers. Their characteristics are shown 
in Supplemental Tables S12-13, and the number of outcomes during follow up 
in Figure 1 and Supplemental Figure S3. The pattern of specific beta-blocker 
class and recommended target dose within each class were similar to our primary 
analysis (Supplemental Table S4). In patients with HFpEF the use of beta-blockers 
did not significantly associate with the risk of death (0.88; 0.77-1.02) or CV death/HF 
hospitalization (1.05; 0.90-1.23) (Figure 1). The association was neither observed in 
beta-blocker users with HFmrEF (HR 0.95; 95% CI 0.79-1.14 for death and 1.09; 0.90-
1.31 for CV death/HF hospitalization) (Supplemental Figure S3).

Discussion
This large prospective registry analysis of patients with HF and advanced CKD has the 
following findings: 1) Overall beta-blocker use was high despite lack of trial evidence; 
2) use of beta-blocker in HFrEF and advanced CKD was associated with lower risk of 
all-cause mortality and the composite outcome of CV mortality/HF hospitalization. 
The observed risk magnitude was similar to that of patients with HFrEF and moderate 
CKD; (3) use of beta-blockers in HFmrEF or HFpEF and advanced CKD showed 
inconsistent and non-significant associations with study outcomes.
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Between 10-15% of patients with HF have advanced CKD (2, 7). This population 
is at the highest risk of complications and (cardiovascular) death (5, 6, 8, 9, 35), 
attributed to the coexistence of both traditional (such as hypertension, dyslipidemia 
and diabetes) and nontraditional cardiovascular risk factors (inflammation, mineral 
and bone disorders, oxidative stress, and clinical frailty) that emerge with the failing 
kidney (36, 37). In our study, we indeed observed that the incidence rates of death 
or composite CV death/HF outcomes were doubled in those with advanced CKD 
compared with the moderate CKD positive control cohort. Since the event rates 
are much higher, the absolute risk reduction of beta-blocker use may actually be 
largest in individuals with the lowest kidney function, similarly to what has been 
observed for RASi-inhibitors in HFrEF and advanced CKD (38) or older age (39).

Beta-blockers are class I guideline-recommended therapies for patients with HFrEF 
(13, 14), without specifications by severity of CKD. A recent meta-analysis which pooled 
results of 16,740 patients from ten placebo-controlled trials, reported consistency in 
the death risk reduction of beta-blockers for persons with moderate CKD (eGFR 30-
60 ml/min/1.73m2), reporting a HR of 0.73 (95% CI 0.62-0.86) for patients with an eGFR 
of 45-59 ml/min/1.73m2 and of 0.71 (95% CI 0.58-0.87) for patients with eGFR 30-
44 ml/min/1.73m2 (22). The results from our positive control cohort align with these 
findings and found a slightly lower HR of 0.88 (0.82-0.95) for mortality. However, we 
note that patients in our routine-care cohort were considerably older (78 vs. 68 years, 
respectively) and used different medications (MRA use 38% in our cohort vs. 10% in 
the trials, respectively) than the patients included in those trials.

Beta-blocker use in HFrEF and advanced CKD
There is a lack of evidence-based therapies for HFrEF patients with advanced CKD 
as they have been severely underrepresented in landmark randomized trials (9-13, 
16-22). In the recent meta-analysis of 10 pooled randomized trials in HFrEF, only 
448 out of 16,740 patients (2.7%) were identified to have advanced CKD at inclusion 
(22). Due to this low number the authors were unable to comment on the efficacy 
of beta-blockers in this population. Despite a lack of trial evidence, the majority 
(89%) of advanced CKD patients in our register used beta-blockers. However, 
we note that a large proportion did not receive the recommended target dose, 
perhaps due to fear for side effects in this vulnerable population. Our main analysis 
in HFrEF patients with advanced CKD suggests a possible therapeutic benefit 
similar to that observed for persons with moderate CKD. In support of our findings, 
a recent Canadian observational study (although small, with a sample size of only 
200) reported a HR of 0.55 (95% CI 0.41-0.73) in the risk of death in elderly patients 
with HF and advanced CKD initiating beta-blockers versus no use (26). However, 
this study lacked information on ejection fraction. Importantly, subgroup analyses 
in our study showed that the benefit on all-cause mortality and CV mortality/HF 
hospitalization also extended to those with the lowest level of kidney function 
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(eGFR <15 ml/min/1.73m2) and indicated no increased risk for syncope, although 
confidence intervals were wide. In addition, the negative control outcome indicated 
no increased risk for cancer, thereby strengthening our inferences that observed 
differences are not primarily explained by a worse health status. Our subgroup 
analyses indicated no benefit of beta-blocker use with regard to CV mortality/HF 
hospitalization in persons with HFrEF and atrial fibrillation, consistent with a recent 
meta-analysis (40). However, we observed no effect modification for all-cause 
mortality. Although a number of recent studies have shown absent mortality benefit 
for beta-blockers among patients with concomitant HF and atrial fibrillation, these 
analyses did not focus on patients with advanced CKD (22, 40-42). A meta-analysis 
specifically investigating patients with renal impairment found that beta-blockers 
versus placebo were associated with HRs of 0.58 (0.21-1.63; N = 72) for those with 
HFrEF, atrial fibrillation and an eGFR <30 ml/min/1.73m2 and 0.83 (0.58-1.19; N = 458) 
for those with an eGFR between 30-44 ml/min/1.73m2 (22). It may be that patients 
with advanced CKD and heart failure benefit from beta-blockers via mechanisms 
that are different from those with less severe renal impairment. Alternatively, 
residual confounding or chance may explain the benefit in individuals with HFrEF 
and atrial fibrillation. The larger benefit of beta-blocker use in certain subgroups 
such as those not receiving RASi needs replication in future studies. 

Beta-blocker use in HFpEF or HFmrEF and advanced CKD
Information on ejection fraction further allowed us to evaluate the potential 
effectiveness of beta-blockers separately according to LVEF strata. We found 
that the observed benefit associated with beta-blocker use in those with HFrEF 
and severe renal dysfunction was not extended to those with HFmrEF (ejection 
fraction 40-49%) and HFpEF (ejection fraction ≥50%). A recent individual patient-
level meta-analysis of randomized trials found that beta-blockers conferred similar 
(cardiovascular) mortality benefit in persons with LVEF between 40-49% compared 
to LVEF <40% (adjusted HR 0.59; 95% CI 0.34-1.03 for mortality and 0.48; 0.24-0.97 for 
CV mortality), although no benefit for cardiovascular hospitalization was observed 
(adjusted HR 0.95; 95% CI 0.68-1.32). Similar findings of a benefit in this “mildly 
reduced” EF range have been observed for angiotensin receptor-blockers (43), 
MRAs (44), and sacubitril/valsartan (45), which is also consistent with the HFmrEF 
resembling HFrEF in most regards, rather than being an intermediate between 
HFrEF and HFpEF (43, 46). In addition, this meta-analysis found no evidence of 
benefit from beta-blockers in the small subgroup of 244 patients with LVEF >50% 
in sinus rhythm. The absence of an effect of beta-blockers in persons with HFmrEF 
and advanced CKD in our analyses was unexpected and inconsistent with the 
HFrEF data in our analysis, and may be caused by effect modification according 
to renal function, or due to limited sample size and low event rate. Future studies 
should therefore confirm our findings.



137

CHAPTER 7  - Beta-blocker and Outcomes in Heart Failure with Advanced CKD

7

Strengths and limitations
Our analysis including 3,775 patients with HFrEF and advanced CKD is the largest 
evaluation to date of beta-blocker effectiveness in this population. Strengths of our 
study include the large sample size together with detailed information available in 
the Swedish Heart Failure Registry, which allowed extensive adjustment for a wide 
range of confounders. We were also able to study multiple outcomes across the 
ejection fraction spectrum, and results were robust in several sensitivity analyses, 
including the positive control cohort and negative control outcome. However, our 
study also has limitations. Residual confounding by indication may be present 
despite adjustment for 36 variables. In addition, the cohort size was considerably 
smaller for those with HFmrEF and HFpEF compared with HFrEF, which may have 
limited power. We further defined beta-blocker use at baseline and potential cross-
over may have diluted the association, although outcomes with 1-year of follow-up, 
for which we would expect less cross-over, showed similar results to the primary 
analysis with 5 years of follow-up. We did not use propensity score methods to 
control for confounding since there were few patients unexposed to beta-blockers 
at baseline (47). However, empirical studies have shown that multivariable adjusted 
and propensity-score adjusted studies in general do not differ much in the estimated 
effect size (48, 49). Our results should be considered as hypothesis generating and 
need confirmation in randomized trials. 

In conclusion, in patients with HFrEF and advanced CKD, beta-blocker use 
was associated with improved survival. Our analyses support current guideline 
recommendations on beta-blocker therapy in HFrEF patients regardless of kidney 
function.
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Abstract 
Background: It is unknown whether outcomes are affected by stopping renin-
angiotensin system inhibitor (RASi) therapy in patients with advanced chronic 
kidney disease (CKD). 

Methods: We studied 10,254 nephrologist-referred patients from the Swedish 
Renal Registry during 2007-2017 who reached advanced CKD (glomerular filtration 
rate [eGFR] <30 ml/min/1.73m2) while on RASi therapy. Target trial emulation 
techniques based on cloning, censoring and weighting were used to compare the 
risks of stopping within 6 months and remaining off treatment vs. continuing RASi 
on subsequent 5-year mortality, major adverse cardiovascular events (MACE) and 
initiation of kidney replacement therapy (KRT). 

Results: Of 10,254 prevalent RASi users with new-onset eGFR <30 ml/min/1.73m2, 
1553 (15%) stopped RASi within 6 months. Median age was 72 years, 36% were 
women, and median eGFR was 23 mL/min/1.73m2. Compared with the decision to 
continue, stopping RASi was associated with a higher absolute 5-year risk of death 
(40.9% vs. 54.5%) and MACE (47.6% vs. 59.5%), but lower risk of KRT (36.1% vs. 27.9%), 
corresponding to absolute risk differences of 13.6 (95% CI 7.0, 20.3), 11.9 (5.7, 18.6) and 
-8.3 (-12.8, -3.6) events per 100 patients, respectively. Results were consistent whether 
patients stopped at higher or lower eGFR, across pre-specified subgroups, after 
adjustment and stratification for albuminuria and potassium, and when modelling 
RASi as a time-dependent exposure using a marginal structural model. 

Conclusion: In this nationwide study of people with advanced CKD, stopping RASi 
was associated with a higher absolute risk of mortality and MACE, but a lower 
absolute risk of KRT. 
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Introduction
Renin-angiotensin system inhibitors (RASi), that is, angiotensin-converting enzyme 
(ACE) inhibitors and angiotensin receptor blockers (ARB), are a cornerstone in the 
treatment of proteinuric chronic kidney disease (CKD), supported by trials showing 
their effectiveness in delaying the progression of CKD (1-7). However, evidence 
regarding the efficacy and safety of RASi in individuals with advanced CKD is limited 
to a small single-center trial (8) and post-hoc analyses of the few patients with 
advanced CKD who were included in the pivotal RASi trials (9, 10).

A small observational study, showing improved glomerular filtration rate (GFR) 
after stopping RASi (11), led to the hypothesis that continuing RASi in patients with 
advanced CKD might accelerate the need for kidney replacement therapy (KRT) (12). 
This, together with the concern that the persistent hemodynamic effects of RASi, 
which are manifested by an acute change in GFR at initiation (13, 14), may cause 
harm by chronically lowering the GFR, has led to frequently stopping RASi among 
patients with advanced CKD in routine clinical practice (15, 16). However, stopping 
RASi may also harm patients by increasing cardiovascular risk and mortality (17).

This clinical equipoise is being addressed by an ongoing randomized trial that 
evaluates the difference in 3-year eGFR change in patients with advanced CKD at 
baseline, randomized to continue or discontinue RASi, with publication anticipated 
in 2022 (18, 19). Recently, an observational study from a private healthcare provider in 
the United States (U.S.) suggested that stopping RASi in patients with advanced CKD 
was associated with an increased risk of major cardiovascular events (MACE) and 
death, but not with the risk of KRT (17). While this study has generated considerable 
attention, confirmation of such findings in independent and geographically diverse 
health systems is needed to increase generalizabilty and provide the strength of 
evidence needed to inform clinical practice. 

We used routine-care data from patients referred to nephrologist care in Sweden, 
to compare the outcomes of long-term users of RASi who stopped or continued 
treatment after developing advanced CKD (eGFR <30 ml/min/1.73m2). Our primary 
objective was to evaluate the risks of death, MACE and commencement of KRT by this 
treatment decision. As a secondary objective, we investigated whether observed risks 
and benefits differed in individuals who stopped earlier (eGFR 20-30 ml/min/1.73m2) 
or later (eGFR <20 ml/min/1.73m2) in the course of their disease progression. 
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Methods

Swedish Renal Registry
We used data from the Swedish Renal Registry (SRR), a nationwide registry of 
patients with CKD G3–5 attending routine nephrologist-specialist care in Sweden 
(20, 21), during the period 2007-2017. The SRR collects routine information from 
outpatient nephrologist visits, including CKD aetiology, laboratory tests, blood 
pressure and other results obtained from routine clinical examination. The registry 
has a mandatory enrolment policy for patients with an eGFR <30 mL/min/1.73m2, 
but the registry also encourages the inclusion of patients earlier in the course 
of the disease (eGFR<45 mL/min/1.73m2) provided it is done systematically 
by the nephrology clinic (i.e., all or none are registered from each specific clinic 
with eGFR<45 mL/min/1.73m2). Registrations of subsequent outpatient visits to 
nephrology care (on average 2-3 per year per patient) are thereafter recorded until 
death, emigration from the country or start of KRT. Nearly all nephrology clinics in 
Sweden (96%) report to the SRR-CKD and the estimated national coverage is >75% 
for nephrologist-referred patients with G4-5 CKD (20). 

Via each citizen’s unique personal identification number, the SRR was linked to 
other national registries; the Swedish Prescribed Drug Registry provided complete 
information on all prescribed drugs dispensed at Swedish pharmacies (22), 
and this was used to define RASi use and changes in RASi therapy; the Swedish 
Patient Registry added information on all outpatient specialist consultations and 
hospitalizations occurring in Swedish healthcare since 1997 until end of follow up, 
and this was used to obtain information on comorbidities and outcomes (23); the 
Swedish Death Registry added information on date and causes of death (24). All 
these registries are run by the Swedish National Board of Welfare, a government 
institution, and are considered to have no, or minimal, loss to follow up. All patients 
are informed about their participation in the registry and have the possibility to opt 
out at any time. We used data linked and de-identified by the Swedish government 
and were judged not to require informed consent, being approved by the regional 
ethical review boards and the Swedish National Board of Welfare. 

Patient selection and study design
This observational study emulated a pragmatic clinical trial (25) comparing the 
effect of stopping vs. continuing RASi on cardiovascular and renal outcomes in 
people with advanced CKD (19). Supplemental Table S1 outlines the protocol of 
such trial, which would randomize prevalent RASi users reaching incident CKD 
G4-5 to either stop RASi within 6 months or to continue with the treatment. 
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We created a cohort of all adult (≥18 years) patients registered in the SRR after 2007 
January 01, who experienced new CKD G4 (ie, whose GFR decreased to <30 ml/
min/1.73m2), and who had taken RASi for more than 80% of the two years before that 
date. We defined this using a medication possession ratio >80%, the proportion of 
the number of days of medication dispensed to total number of days of observation. 
Baseline (T0) was defined as the day on which the first recorded eGFR <30 ml/
min/1.73m2 was identified. We chose to include only patients apparently adherent to 
RASi therapy to decrease the possibility of confounding bias due to nonadherence. 
We excluded patients with a history of kidney transplantation, patients with missing 
blood pressure measurements at the time of eGFR decrease to <30 ml/min/1.73m2 

or those who stopped RASi before the decrease in eGFR. eGFR was calculated 
with the CKD-EPI equation (26) from routine plasma creatinine measurements 
performed by enzymatic or corrected Jaffe methods traceable to isotope dilution 
mass spectroscopy standards. As information on race is not available in Sweden by 
law, we did not use the variable for African American ethnicity. 

Treatment strategies
We compared the strategies “stop RASi within 6 months and remain off treatment 
after eGFR decrease <30 ml/min/1.73m2” vs. “continue RASi for the whole follow-
up”. We chose to examine the effect of stopping and remaining off treatment 
because a significant proportion of individuals who discontinued RASi restarted 
during follow-up (57.1%). Stopping of RASi was defined as absence of a dispensation 
of RASi within 60 days (lag phase) after the estimated last day of pill supply from 
the previous dispensation, assuming the most common prescription pattern of 
one pill per day. When a prescription was filled before the expected end of the 
previous dispensation, we added the remaining pills onto the next period, for the 
first occurrence, but did not carry this forward. In the case of hospitalization, we 
added as many additional pills as days spent in the hospital. 

Study outcomes
Each patient was followed until the first of: occurrence of an event, five years after 
baseline, or administrative censoring (June 1, 2017). The primary outcome was 
5-year all-cause mortality. Secondary outcomes included MACE (defined as a 
composite endpoint of mortality, myocardial infarction and cerebrovascular events) 
and KRT (defined as undergoing kidney transplantation or initiating maintenance 
dialysis). ICD-10 codes for ascertainment of cardiovascular outcomes are listed in 
Supplemental Table S2. Information on date of initiation of KRT was obtained from 
the SRR.
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Emulation of the target trial
We used the method of cloning, censoring and weighting (25, 27-29) to emulate 
a target trial comparing the effects of “stopping RASi within 6 months after eGFR 
dropped <30 ml/min/1.73m2 and remaining off treatment” vs. “continuing RASi” (see 
Supplemental Methods and Supplemental Figure S1 for a detailed discussion 
on target trial emulation). Briefly, we created a dataset with two copies of each 
eligible individual (cloning, or replicating) and assigned each of the replicates to 
one of the treatment strategies at the start of follow-up. Thereafter, we assessed 
at monthly intervals whether replicates adhered to their assigned treatment 
strategy; replicates were censored if and when their actual treatment deviated 
from their assigned treatment strategy, thereby ensuring that replicates followed 
their assigned strategy. For example, if a replicate was assigned to continuing RASi, 
but actually stopped RASi treatment on day 90, they would be censored at that 
point. A replicate that was assigned to the discontinuation arm, and discontinued 
within 6 months but subsequently restarted treatment would also be censored at 
the date of treatment restart. To adjust for the potential selection bias induced by 
this artificial censoring, each individual received a time-varying inverse probability 
weight (30). Informally, the denominator of the weights was the probability that a 
replicate remained uncensored (i.e., remained on the assigned treatment strategy) 
conditional on baseline and time-varying variables (Supplemental Table S3). The 
weights created two pseudopopulations in which treatment was independent of 
measured prognostic factors. We estimated the time-varying weights by fitting 
a pooled logistic model for the monthly probability of remaining uncensored, 
including variables for time and the baseline and time-varying covariates listed in 
Table 1. Models were fitted separately in both treatment arms to allow for treatment-
covariate interaction (29). The variables for each model and their regression 
coefficients are reported in Supplemental Tables S4-5. To avoid undue influence of 
outliers, weights were truncated at the 99.5th percentile (31).

We estimated the effect of stopping RASi on 5-year all-cause mortality, MACE 
and KRT using weighted pooled logistic regression, including an indicator for 
treatment strategy, month and its quadratic term, and their interactions to allow 
for non-proportional hazards. The predicted probabilities from this logistic model 
were used to estimate the adjusted 5-year predicted probability of mortality, 
MACE and KRT under each treatment strategy and produce weighted cumulative 
incidence curves (32, 33). For the KRT curves, the competing risk of death was 
taken into account. Pointwise 95% confidence intervals were calculated using 
nonparametric bootstrap based on 500 full samples. In addition to absolute risks 
and risk differences, we estimated the 5-year restricted mean survival time (RMST) 
under each treatment strategy and the 5-year RMST difference between both 
strategies. The RMST is interpreted as the average survival time over a fixed follow-
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up period and graphically it corresponds to the area under the survival curve (34, 
35). The 5-year RMST difference compares the areas under the two survival curves 
for the intervention and control group. It is interpreted as the mean postponement 
of the outcome in one group compared with the other. E.g., if the 5-year RMST 
difference equals 6 months, then on average, patients on one strategy survive 6 
months longer compared with patients on another strategy over a 5-year follow-up 
period. We used nonparametric bootstrapping to obtain 95% confidence intervals 
using the standard deviation (SD) of the bootstrap estimations as an estimation of 
the standard error of the RMST (36). We did not calculate hazard ratios since the 
proportionality of hazards assumption was not met and hazard ratios were thus 
difficult to interpret (29, 37, 38). R version 3.6.2 was used for all statistical analyses. 

Secondary objective: stopping RASi at different eGFRs 
In order to evaluate whether observed associations differed in individuals who 
stopped earlier or later in the course of their disease progression, we created two 
additional cohorts using the same methodology: we evaluated separately the 
outcomes associated with stopping vs. continuing RASi in a cohort of individuals on 
their first detected eGFR decrease to between 20-30 ml/min/1.73m2 (higher eGFR 
cohort) and another cohort of individuals on their first detected eGFR below 20 
ml/min/1.73m2 (lower eGFR cohort). Note that there is some overlap of patients in 
these cohorts as patients progress to a lower eGFR during observation.

Supporting and sensitivity analyses
We pre-specified several analyses to test the robustness and consistency of 
our main results. First, we compared results when using nontruncated weights. 
Second, we performed stratified analyses by age (≥70 vs. < 70 years), sex, presence 
of diabetes, and presence of heart failure, and investigated the interaction of each 
of these variables with treatment on an additive scale by calculating the absolute 
excess risk due to interaction. Third, as a negative control analysis, we examined 
the association between stopping or continuing RASi and the long-term diagnosis 
of cancer (39). We did not expect stopping RASi to cause or prevent cancer. If we 
found stopping RASi to be associated with an increased risk of cancer, this would 
suggest that the observed effect estimate suffers from residual confounding by 
unmeasured clinical conditions that are associated with stopping RASi, and which 
are also likely to be associated with the risk of cancer, such as smoking and BMI. 
For this analysis, patients with a recent cancer diagnosis (within two years from 
the index date) were excluded from this analysis to minimise the effects of reverse 
causality, since people may have stopped RASi because they had been diagnosed 
with cancer. Fourth, we compared results from our trial emulation design with an 
analysis handling RASi as a time-varying covariate (40). The effect of “always using 
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RASi” vs. “immediately stopping and not restarting RASi” after eGFR dropped <30 
ml/min/1.73m2 was estimated using inverse probability of treatment and censoring 
weighted estimation of a marginal structural model (see Supplemental Methods 
for detailed explanation) (30, 41). Fifth, we additionally adjusted our analyses for 
time-dependent measures of urinary albumin-to-creatinine ratio (ACR) and plasma 
potassium. This analysis was restricted to the 3049 individuals with this data 
available, and evaluated consistency across baseline albuminuria (≥70 vs. <70 
mg/mmol) and potassium (≥5.0 vs. <5.0 mmol/L) strata. Finally, after reviewing 
the results of the work above, we conducted a non-prespecified analysis, in which 
we examined the associations of stopping vs. continuing RASi on the combined 
outcome of death and KRT, as a surrogate of “net clinical benefit.” 

Results
Of 30,180 individuals registered in SRR during the study period, 10,254 prevalent 
RASi users with a medication possession ratio >80% and no history of kidney 
transplantation were included from the day of their first recorded eGFR below 30 
ml/min/1.73m2. 

Figure 1 displays the patient selection flow chart, and Table 1 describes their 
baseline characteristics. At baseline, patients had a median (IQR) age of 72 (63-
79) years and 35.7% were women. Median eGFR was 23 (18-27) ml/min/1.73m2, 
median ACR 35 (6-156) mg/mmol, mean (± SD) systolic blood pressure 139 (SD 22) 
mmHg and mean diastolic blood pressure 76 (SD 12) mmHg. Hypertension (88.7%), 
diabetes (49.5%), ischemic heart disease (33.1%) and heart failure (28.0%) were the 
most common comorbidities. Concurrent use of diuretics (79.3%), beta blockers 
(67.6%), statins (61.6%) and calcium channel blockers (60.5%) was also prevalent. 
During the first 6 months of observation 1,553 (15.1%) individuals stopped RASi. Of 
these, 887 (57.1%) of patients restarted RASi during follow-up. 
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Figure 1. Selection of study participants. 

Abbreviations: RASi = Renin-angiotensin-system inhibitor; eGFR = estimated glomerular filtration rate; MPR 

= medication possession ratio; KRT = renal replacement therapy.
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Table 1. Baseline characteristics of prevalent RASi users with eGFR <30 ml/min/1.73m2 registered in the 

Swedish Renal Registry during 2007-2017.

eGFR <30 ml/min/1.73m2 
cohort (n = 10,254)

Median Age (IQR)‡, years 72 [63, 79]

Age category, n (%)

<50 848 (8.3)

50-59 1046 (10.2)

60-69 2400 (23.4)

70-79	 3471 (33.9)

>=80 2489 (24.3)

Women 3662 (35.7)

Median eGFR (IQR)‡, ml/min/1.73m2 23 [18, 27]

eGFR category, n (%)

<15 ml/min/1.73m2, n (%) 1557 (15.2)

≥15 ml/min/1.73m2, n (%) 8697 (84.8)

Primary kidney disease, n (%)

Diabetes 2878 (28.1)

Hypertension 2512 (24.5)

Glomerulonephritis 1096 (10.7)

Polycystic kidney disease 574 (5.6)

Pyelonephritis 171 (1.7)

Other 1753 (17.1)

Missing 1270 (12.4)

Mean SBP (SD), mmHg 139 (22)

SBP category, n (%)

<120 1430 (13.9)

120-139 3670 (35.8)

140-159 3224 (31.4)

>160 1930 (18.8)

Mean DBP (SD), mmHg 76 (12)

DBP category, n (%)

<80 5502 (53.7)

80-89 3340 (32.6)

90-99 1066 (10.4)

>100 346 (3.4)

Median urinary ACR [IQR], mg/mmol 35 [6, 156]
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eGFR <30 ml/min/1.73m2 
cohort (n = 10,254)

ACR category, n (%)

A1 (<3) 785 (7.7)

A2 (3-29) 1445 (14.1)

A3 (30-69) 614 (6.0)

A3 (≥70) 1835 (17.9)

Missing 5575 (54.4)

Mean serum potassium (SD), mg/mmol* 4.5 (0.6)

Comorbidities, n (%)

Hypertension 9099 (88.7)

Myocardial infarction 2212 (21.6)

Ischemic heart disease 3390 (33.1)

Arrhythmia 2302 (22.4)

Heart failure 2868 (28.0)

Peripheral vascular disease 1269 (12.4)

Cerebrovascular disease 1620 (15.8)

Diabetes mellitus 5079 (49.5)

Chronic obstructive pulmonary disease 1811 (17.7)

Cancer diagnosis in previous 2 years 1018 (9.9)

Medication, n (%)

Beta blockers 6928 (67.6)

Calcium channel blockers 6202 (60.5)

Diuretics 8128 (79.3)

Statins 6312 (61.6)

Antiplatelets 4736 (46.2)

Potassium binder 941 (9.2)

Calendar year

2007-2010 3431 (33.5)

2011-2013 3399 (33.1)

2014-2016 3424 (33.4)

Hospitalizations

Any hospitalization in previous year, n (%) 4325 (42.2)

Hyperkalemia hospitalization, n (%) 415 (4.0)

AKI hospitalization in previous year, n (%) 481 (4.7)

eGFR = estimated glomerular filtration rate; SBP = systolic blood pressure; DBP = diastolic blood pressure; 

ACR = albumin-to-creatinine ratio; AKI = acute kidney injury. 

* potassium was missing in 37% of individuals. 
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Stopping RASi and outcomes 
After cloning, 10,254 individuals were assigned to each treatment strategy. The 
mean of the truncated inverse probability weights was 2.2 (maximum 35.0). The 
characteristics in each treatment arm at the end of the grace period (six months 
after baseline) before and after weighting are shown in Supplemental Table S6. The 
inverse probability weighting showed a good ability to remove covariate imbalance. 
The estimated 5-year mortality risk was 40.9% (95% CI 38.9, 42.8) among those who 
continued RASi, and 54.5% (95% CI 48.5, 61.2) among those who stopped RASi, 
corresponding to an absolute risk difference of 13.6 (95% CI 7.0, 20.3) deaths per 100 
individuals and a 5-year RMST difference of -3.6 months (95% CI -5.4, -1.8) (Table 2). 
The 5-year risk of MACE was 47.6% (95% CI 45.9, 49.4) in the RASi continuation arm 
and 59.5% (95% CI 53.8, 66.1) percent in the stopping RASi arm, with an estimated 
5-year absolute risk difference of 11.9 (95% CI 5.7, 18.6) events per 100 individuals 
and a 5-year RMST difference of -3.3 months (95% CI -5.3, -1.4) (Figure 2, Table 2). 

Figure 2. Weighted cumulative probability curves for mortality (A), MACE (B), KRT (C) and cancer (D, negative 

control outcome) stratified by RASi use strategy. Thinner dotted lines represent 95% confidence intervals.
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Table 2. 5-year RMST, RMST differences, absolute risks and risk differences associated with stopping RASi 

and continuation on mortality, MACE and KRT in advanced CKD patients with eGFR <30 ml/min/1.73m2. 

Weighted 
persons, n

Weighted 
events, n

5-year RMST, 
months  
(95% CI)

5-year RMST 
difference, 

months  
(95% CI)

5-year 
absolute risk, 

% (95% CI)

5-year 
risk 

difference, 
% (95% CI)

All-cause 
mortality

Continuing 
RASi 

7971 3258 47.9 (46.2, 49.7) Reference 40.9 (38.9, 42.8) Reference

Stopping 
RASi 

7078 3852 44.3 (43.8, 44.8) -3.6 (-5.4, -1.8) 54.5 (48.5, 61.2) 13.6 (7.0, 20.3)

MACE

Continuing 
RASi 

8127 3870 44.7 (42.8, 46.5) Reference 47.6 (45.9, 49.4) Reference

Stopping 
RASi 

7623 4543 41.4 (40.8, 41.9) -3.3 (-5.3, -1.4) 59.5 (53.8, 66.1) 11.9 (5.7, 18.6)

KRT

Continuing 
RASi 

8329 3007 48.1 (46.5, 49.7) Reference 36.1 (34.7, 37.7) Reference

Stopping 
RASi 

8808 2458 48.9 (48.3, 49.5) 0.8 (-0.8, 2.5) 27.9 (23.5, 32.5) -8.3 (-12.8, -3.6)

N = number; CI = confidence interval; MACE = major adverse cardiovascular events; RASi = renin-angiotensin 

system inhibitor; KRT = renal replacement therapy; RMST = restricted mean survival time.
†Analyses were adjusted through inverse probability weighting for age, sex, calendar year, eGFR, systolic 

and diastolic blood pressure, comorbidities (ischemic heart disease, myocardial infarction, arrhythmia, heart 

failure, peripheral vascular disease, cerebrovascular disease, diabetes, chronic pulmonary disease, cancer), 

medication use (beta blockers, calcium channel blockers, diuretic, statins, antiplatelet) and hospitalizations 

(total number of hospitalizations in previous year, AKI hospitalization in previous year, hyperkalaemia 

hospitalization). Valid 95% confidence intervals were derived using nonparametric bootstrap based on 500 

samples to account for the within-subject correlation induced by weighting. Weights were truncated at the 

99.5th percentile. 

The 5-year estimated risk of KRT was 36.1 (95% CI 34.7, 37.7) for patients that 
continued with RASi and 27.9 (95% CI 23.5, 32.5) for those who stopped RASi. This 
corresponds to an absolute risk reduction of -8.3 (95% CI -12.8, -3.6) KRT events 
per 100 individuals among patients stopping RASi and a 5-year RMST difference of 
0.8 months (95% CI -0.8, 2.5). Figure 2 shows the weighted cumulative incidence 
curves for study outcomes stratified according to treatment strategy. The curves for 
mortality and MACE progressively diverged after a few months, whereas the curves 
for KRT crossed, and diverged after three years. 
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Stopping RASi and outcomes at different eGFR 
The higher eGFR cohort included 7,277 individuals whose first observed eGFR 
was between 20-30 ml/min/1.73m2 (median eGFR 25; IQR 23-28), and the lower 
eGFR cohort included 6,907 individuals whose first observed eGFR was below 
20 ml/min/1.73m2 (median eGFR 17; IQR 14-19). Baseline characteristics for both 
cohorts are displayed in Supplemental Table S7. In both cohorts an increased 
risk for mortality and MACE was observed when RASi was stopped (Tables 3-4, 
Supplemental Figures S2-S3). For instance, in the lower eGFR cohort, stopping 
RASi was associated with an increased absolute risk for mortality (17.1; 95% CI 9.9, 
23.8 per 100 individuals) and MACE (12.6; 95% CI 5.8, 19.3 per 100 individuals). In both 
cohorts, there also was a lower absolute risk of KRT among patients stopping RASi. 
For instance, in the low eGFR cohort there was an absolute risk reduction of -9.6 
(95% CI -15.0, -3.8) KRT events per 100 individuals among patients stopping RASi. 
The cumulative incidence curve showed that the risk for KRT was slightly higher in 
the stopping arm during the first two years of follow-up, crossed at two years, and 
diverged gradually (Supplemental Figures S2-S3). 

Table 3. 5-year RMST, RMST differences, absolute risks and risk differences associated with stopping RASi 

and continuation on mortality, MACE and KRT in advanced CKD patients with eGFR 20-30 ml/min/1.73m2. 

Weighted 
persons, n

Weighted 
events, n

5-year RMST, 
months (95% 

CI)

5-year RMST 
difference, 

months 
(95% CI)

5-year 
absolute risk, 

% (95% CI)

5-year 
risk 

difference, 
% (95% CI)

All-cause 
mortality

Continuing 
RASi 

5471 2114 48.7 (46.4, 50.9) Reference 38.6 (36.3, 40.9) Reference

Stopping 
RASi 

4594 2340 46.1 (45.4, 46.8) -2.6 (-4.9, -0.2) 50.9 (42.4, 60.1) 12.3 (3.3, 21.4)

MACE

Continuing 
RASi 

5634 2525 45.7 (43.3, 48.1) Reference 44.8 (42.7, 46.9) Reference

Stopping 
RASi 

5005 2950 42.7 (42.0, 43.4) -3.0 (-5.5, -0.5) 58.9 (49.2, 67.8) 14.1 (4.6, 23.5)

KRT

Continuing 
RASi 

5376 1360 53.3 (51.5, 55.0) Reference 25.3 (23.4, 27.3) Reference

Stopping 
RASi 

5312 681 55.4 (54.9, 55.9) 2.1 (-0.3, 3.9) 12.8 (7.6, 18.6) -12.5 (-17.8, -6.6)

N = number; CI = confidence interval; MACE = major adverse cardiovascular events; RASi = renin-angiotensin 

system inhibitor; KRT = renal replacement therapy; RMST = restricted mean survival time.
†Analyses were adjusted through inverse probability weighting for age, sex, calendar year, eGFR, systolic 

and diastolic blood pressure, comorbidities (ischemic heart disease, myocardial infarction, arrhythmia, heart 
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failure, peripheral vascular disease, cerebrovascular disease, diabetes, chronic pulmonary disease, cancer), 

medication use (beta blockers, calcium channel blockers, diuretic, statins, antiplatelet) and hospitalizations 

(total number of hospitalizations in previous year, AKI hospitalization in previous year, hyperkalaemia 

hospitalization). Valid 95% confidence intervals were derived using nonparametric bootstrap based on 500 

samples to account for the within-subject correlation induced by weighting. Weights were truncated at the 

99.5th percentile. 

Table 4. 5-year RMST, RMST differences, absolute risks and risk differences associated with stopping RASi 

and continuation on mortality, MACE and KRT in advanced CKD patients with eGFR <20 ml/min/1.73m2. 

Weighted 
persons, n

Weighted 
events, n

5-year RMST, 
months (95% 

CI)

5-year 
RMST 

difference, 
months 
(95% CI)

5-year 
absolute 

risk, 
% (95% CI)

5-year 
risk 

difference, 
% (95% CI)

All-cause 
mortality

Continuing 
RASi 

5470 2401 46.4 (44.7, 48.2) Reference 43.9 (41.3, 46.6) Reference

Stopping 
RASi 

5423 3309 42.0 (41.3, 42.7) -4.4 (-6.3, -2.5) 61.0 (54.0, 67.3) 17.1 (9.9, 23.8)

MACE

Continuing 
RASi 

5547 2845 43.0 (41.2, 44.8) Reference 51.3 (48.9, 53.9) Reference

Stopping 
RASi 

5734 3663 39.9 (39.2, 40.7) -3.1 (-5.0, -1.1) 63.9 (57.0, 70.0) 12.6 (5.8, 19.3)

KRT

Continuing 
RASi 

5914 3131 40.6 (38.6, 42.6) Reference 52.9 (50.8, 54.8) Reference

Stopping 
RASi 

6872 2981 42.0 (41.3, 42.7) 1.4 (-0.7, 3.5) 43.4 (38.3, 48.8) -9.6 (-15.0, -3.8)

N = number; CI = confidence interval; MACE = major adverse cardiovascular events; RASi = renin-angiotensin 

system inhibitor; KRT = renal replacement therapy; RMST = restricted mean survival time.
†Analyses were adjusted through inverse probability weighting for age, sex, calendar year, eGFR, systolic 

and diastolic blood pressure, comorbidities (ischemic heart disease, myocardial infarction, arrhythmia, 

heart failure, peripheral vascular disease, cerebrovascular disease, diabetes, chronic pulmonary disease, 

cancer), medication use (beta blockers, calcium channel blockers, diuretic, statins, antiplatelet) and 

hospitalizations (total number of hospitalizations in previous year, AKI hospitalization in previous year, 

hyperkalaemia hospitalization). Valid 95% confidence intervals were derived using nonparamtric bootstrap 

based on 500 samples to account for the within-subject correlation induced by weighting. Weights were 

truncated at the 99.5th percentile. 
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Supporting and sensitivity analyses
Using untruncated weights had no major influence on the point estimates 
(Supplemental Table S8). Subgroup analyses within strata of age, sex, diabetes, 
heart failure and ischemic heart disease showed no suggestion of heterogeneity, 
with higher risk differences for mortality and MACE and lower risk differences for KRT 
observed across all subgroups (Supplemental Figure S4). We did not observe an 
association between continuing/stopping RASi and the risk of cancer in any of the 
studied cohorts (Supplemental Table S9). In the sensitivity analysis using RASi as a 
time-dependent exposure through inverse probability of treatment and censoring 
weighted estimation of a marginal structural model, immediately stopping and not 
restarting RASi compared with always using RASi was associated with an 11.3% (95% 
CI 8.1, 14.5) higher risk for mortality, an 8.8% (95% CI 5.5, 12.5) higher risk for MACE and 
a -7.1% (95% CI -11.8, -3.4) lower risk for KRT (Supplemental Table S10, Supplemental 
Figure S5). In patients with available measures of ACR and potassium, additional 
adjustment for these covariates showed results consistent with our main analysis, 
although with wider confidence intervals: compared with patients continuing RASi, 
stopping was associated with a 9.3% (95% CI -1.1, 23.7) higher absolute risk for mortality, 
7.6% (95% CI -23.6, 21.2) higher risk for MACE but -8.2% (95% CI -15.8, 5.8) lower risk for 
KRT (Supplemental Table S11). Stratified analyses by baseline ACR and potassium 
categories were largely consistent with the main results (Supplemental Figure S5). 
There was an increase in the magnitude of the association of stopping RASi on KRT 
events: risk difference of -11.4 (95% CI -19.5, -2.6) KRT events per hundred patients in 
patients with baseline potassium <5.0 mmol/l and -33.3 (95% CI -41.9, -25.5) in patients 
with potassium ≥5.0 mmol/l over a 5-year follow-up period (interaction p < 0.001). 
Finally, evaluating the composite outcome of death plus KRT favored the strategy of 
continuing with RASi vs. stopping, although confidence intervals were wide, with an 
absolute 5-year risk difference of 5.1% (95% CI -0.2, 11.3) (Supplemental Table S12 and 
Supplemental Figure S6).

Discussion
Deciding whether and when to stop RASi in patients with advanced CKD is a frequent 
issue in clinical practice (15, 16). A single-center UK observational study of 52 individuals 
(mean eGFR of 16 ml/min/1.73m2) reported that eGFR increased significantly after 
stopping RASi, leading to the idea that stopping RASi may prolong the time to KRT (11). 
Stopping RASi, on the other hand, may also potentially harm patients by increasing 
cardiovascular risk and mortality, based on generalisation from cardiovascular trials 
largely conducted in people with higher GFR (17). We addressed this problem by 
modelling the consequences of this decision in a nationwide observational study of 
over ten thousand individuals with advanced CKD under routine nephrological care. 
We found that compared with continuing RASi, stopping treatment was associated 
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with a higher 5-year risk of mortality and MACE, but a lower absolute KRT risk. These 
results appeared robust in various sensitivity and subgroup analyses, including the 
evaluation of stopping at a higher or lower eGFR. 

Our findings of a higher absolute risk of death and MACE among patients stopping 
RASi confirm and expand a recent observational study of 3909 persons with advanced 
CKD from a single healthcare provider in the U.S. (17). Expansion of this evidence to 
a large, nationwide and geographically diverse cohort of patients receiving universal 
government-subsidized healthcare increases generalizability. Collectively, this 
agrees with trial evidence on the cardioprotection that RASi confers to patients with 
CKD (42), and with observational evidence of lower cardiovascular risk associated 
with RASi use at all levels of eGFR (43, 44). Our finding of a lower absolute KRT risk 
among patients stopping RASi differs from the previous U.S. study. Qiao et al. (17) 
observed that continuing RASi was not associated with increased risk of KRT (HR, 1.19; 
95% CI, 0.86-1.65) and they summarized this as “KRT harms may not be excessive”. 
Because the assumption of proportional hazards was not met in our study, we 
reported absolute risk differences, and observed an association of stopping RASi 
therapy with reduced risk of KRT (8.3 KRT events could have been prevented per 
100 patients who continued with RASi therapy over 5 years). The composite outcome 
of death plus KRT, which could be considered as the overall “net-clinical benefit” of 
the decision strategy, favored continuing with RASi. However, this analysis assumes 
that death and dialysis are of equal importance, which is not the case in aggregate; 
individual patients may attribute different importance to these outcomes and their 
priorities should also be considered in decision making. Finally, individual patients 
may respond differently to RASi, and individualization of treatment and drug dosing 
are other important aspects not considered in our modelling. 

We used comparable designs and analytical strategies to those used in the U.S. study 
(17), with one exception: we censored patients when their initial strategy was changed, 
in acknowledgement that patients who stopped their therapy were frequently re-
started during follow-up, and thus ensuring no crossovers; we think this is a strength 
of this current work. However, the source and type of data differ: while our cohort is 
representative of the CKD population under nephrologist care in Sweden, Geisinger is 
a large, predominantly rural, private healthcare system in Pennsylvania that included 
both nephrologist-referred and non-referred patients. We believe that our selection 
of nephrologist-referred patients is a strength for the evaluation of KRT outcomes, 
because patients receive and stop or continue RASi for reasons and indications that 
may differ between primary care and specialist nephrology care. Both studies have 
a similar duration of follow-up, but a larger proportion of patients initiated KRT in our 
study, 35%, compared with 8% in the U.S. cohort. Between-country differences and 
differences between nephrologists and primary health care practitioners in clinical 
practice may additionally explain the divergent findings: e.g., 15% of patients stopped 
RASi in our study vs. 32% in the U.S. cohort.
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Our study is the largest to date investigating the clinical consequences associated 
with this common clinical issue, whether to continue or stop RASi in patients 
with GFR < 30 ml/min/1.73m2. Additional strengths are: i) the application of two 
complementary state-of-the-art analytic approaches (i.e. target trial emulation and 
marginal structural modelling) to account for time-dependent confounding of a rich 
range of confounders; ii) confirmation of results across risk subgroups, including 
those with albuminuria or elevated potassium which might have explained why 
drugs were stopped or continued; iii) modelling a negative control outcome to 
evaluate the impact of reverse-causation and unknown confounding; iv) evaluation 
of RASi use by pharmacy dispensations, which may be a better indicator for 
medication intake than prescriptions. Exclusion of patients with long-term use of 
RASi who did not have a high medication possession ratio reduces the likelihood 
that medication non-adherence was the cause of drug cessation. We acknowledge 
a number of limitations. We did not have information on ethnic origin. Results apply 
to Swedish practice and extrapolation to other populations and countries should 
be done with caution. Initiation of KRT is itself a treatment decision that varies by 
practitioner and variations in physician behavior were not captured in our study. 
Furthermore, the decision to stop RASi is not a random one, but the consequence 
of complex factors that likely herald worse outcomes. Frail patients where RASi 
may have been more likely to be stopped may also be more likely to be treated 
conservatively. Despite our sophisticated analytical design, residual confounding 
cannot be excluded from any observational analysis, and the precise reasons for 
stopping RASi remain unknown. Our conclusions remain observational in nature 
and therefore do not substitute for randomized trials. However, until these trials are 
conducted they may assist in informing clinical decisions. 

To conclude, in this nationwide study, stopping RASi among patients referred to 
nephrologists with advanced CKD was associated with an increased absolute risk 
of mortality and MACE, but a lower absolute risk of KRT. To date, there is no trial 
evidence to inform the decision of stopping RASi therapy in these patients. Until 
the ongoing STOP-ACEi trial is completed (19), our analyses support current KDIGO 
recommendations of not routinely stopping RASi in people with advanced CKD (45, 
46). 
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Supplemental Table S12. Sensitivity analysis: 5-year absolute risks and risk 
differences associated with stopping vs. continuing RASi on the composite outcome 
of death and KRT.

Supplemental Figure S1. Schematic representation of cloning, censoring and 
weighting algorithm.

Supplemental Figure S2. Weighted cumulative incidence curves for mortality 
(A), MACE (B), KRT (C) and cancer (D) stratified by RASi use strategy in the cohort 
with first detected eGFR drop between 20-30 ml/min/1.73m2. Thinner dotted lines 
represent 95% confidence intervals.

Supplemental Figure S3. Weighted cumulative incidence curves for mortality (A), 
MACE (B), KRT (C) and cancer (D) stratified by RASi use strategy in the cohort with 
first detected eGFR drop <20 ml/min/1.73m2. Thinner dotted lines represent 95% 
confidence intervals.

Supplemental Figure S4. Weighted cumulative incidence curves for mortality (A), 
MACE (B) and KRT (C) standardized to the baseline distribution of confounders using 
a time-dependent exposure. The effect of always using vs. immediately stopping 
and not restarting RASi was estimated using inverse probability of treatment and 
censoring weighted estimation of a marginal structural model. 

Supplemental Figure S5. Effect of stopping RASi on mortality (A), MACE (B) and KRT 
(C) across categories of age, sex, diabetes, heart failure, ischemic heart disease, 
ACR and potassium. Subgroup analyses for ACR and potassium were performed on 
the subset of individuals with these measurements available.

Supplemental Figure S6. Weighted cumulative incidence curves for the composite 
outcome of death or KRT by RASi strategy for the main cohort (A), cohort of 
individuals with first detected eGFR drop between 20-30 ml/min/1.73m2 (B), and 
cohort of individuals with first detected eGFR drop <20 ml/min/1.73m2 (C). Thinner 
dotted lines represent 95% confidence intervals.
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Supplemental Methods

Target trial emulation using cloning, censoring and weighting
Here we describe in detail our implementation of target trial emulation and the 
cloning, censoring and weighting procedure. A thorough review of trial emulation can 
be found elsewhere (1, 2), as well as recent applications of the methodology (3-8). 

Specifying details of the target trial

A simple way to structure the study design and analysis of an observational 
comparative effectiveness study is to use the target trial framework (1). This means 
that we think about a hypothetical randomized trial we would like to conduct and 
then use our observational data to explicitly emulate it. Explicitly emulating a 
randomized trial can prevent unnecessary biases such as immortal time bias and 
prevalent user bias (10-12), as well as making results from observational analyses 
more comparable to those from trials (13). Similar to a real trial, we first need to 
formally define the eligibility criteria of our hypothetical trial, the treatment strategies 
we would like to compare, how treatment is assigned to each individual, the 
duration of follow-up, the primary and secondary endpoints, the causal contrast of 
interest (intention-to-treat or per protocol effect), and the statistical analysis. Details 
of the target trial we wanted to emulate in our analysis are given in Supplemental 
Table S1. 

In our study we were interested in comparing the treatment strategies “stop RASi 
within 6 months and remain off treatment” vs. “continue RASi during follow-up”. 
We deliberately chose treatment strategies that required patients to be on or off 
treatment during the whole follow-up period, which ensured no cross-over between 
treatment arms. For example, in our study 57% of individuals who discontinued 
RASi within the first six months restarted treatment during follow-up. Comparing 
strategies such as “stop RASi within 6 months” vs. “continue RASi for 6 months” 
would therefore suffer from a lot of cross-over and dilution of the treatment effect.

Comparing treatment strategies that are sustained over time (as opposed to point 
interventions which happen only once, such as surgery or vaccination) requires 
methods that can appropriately adjust for time-varying confounding, such as the 
parametric G-formula or cloning, censoring and weighting (1, 14). We now explain in 
detail our implementation of the latter approach. A graphical depiction of the cloning, 
censoring and weighting procedure can be found in Supplemental Figure S1. 
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Step 1: Cloning and assigning replicates to the treatment strategies

The first step consists of cloning each individual into two identical replicates, 
each of whom is assigned to one strategy. The dataset will now be twice as large 
compared with the original dataset. Since each individual occurs in both strategies, 
no baseline confounding is present. 

Step 2: Censoring replicates if and when they do not adhere to their 
assigned strategy

Note that there are now clones included in both strategies that do not necessarily 
always adhere to their assigned strategy. To estimate the effect of a particular 
treatment strategy, we therefore need to censor clones if and when their observed 
treatment does not match their assigned strategy anymore. 

In our dataset, we therefore determined at each month whether a replicate was 
adherent to their assigned strategy and artificially censored them if they stopped 
adhering. Those assigned to the stopping strategy had to stop RASi within 6 months 
and remain off treatment for the remainder of the follow-up. Therefore, replicates in 
this treatment arm are censored under the following two conditions: if they had not 
stopped by month 6, or if they restarted treatment at any moment during follow-
up after stopping. Those assigned to continuation were censored if they stopped 
treatment at any moment during follow-up. 

Step 3: Inverse probability weighting to adjust for informative censoring

Because the artificial censoring of replicates is likely to be informative, this will lead to 
selection bias (collider stratification bias). We therefore need to use inverse probability 
weighting to adjust for this selection bias, which is the most involved step of the 
cloning, censoring and weighting procedure. In brief, uncensored replicates receive 
a weight that is equal to the inverse of the probability of remaining uncensored, 
conditional on their own covariate history. Intuitively, the weighting will upweight 
uncensored replicates who have similar characteristics as censored replicates (see 
also Supplemental Figure 1). This creates a pseudopopulation in which censoring 
does not depend on measured characteristics and is no longer informative. 

To estimate the inverse probability of censoring weights, we first fit a pooled logistic 
model with being uncensored as the outcome and as independent variables an 
indicator for time (e.g., month and month squared [quadratic term], or more flexible 
functions of time such as restricted cubic splines), baseline and time-varying 
confounders. We fit a pooled logistic model for each arm separately for two reasons. 
First, the censoring pattern is likely different between both treatment strategies 
and secondly, this will better capture treatment by covariate interaction (2). The 
regression coefficients from these models are shown in Supplemental Tables S4-5. 
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Next, we used the probabilities estimated by these models to construct the inverse 
probability of censoring weights as shown in Supplemental Table S3. Weights 
were set to 1 during the first 5 months for replicates in the stopping arm that had 
not yet discontinued RASi, as their probability to remain uncensored is per definition 
1. We truncated the weights at the 99.5th percentile to avoid undue influence of 
very large weights. Truncating the weights is a trade-off between bias and 
precision: truncation of large weights will lead to narrower confidence intervals at 
the expense of introducing some bias. The mean of the truncated weights was 2.2 
and the maximum 35.0. Using untruncated weights showed virtually similar results 
(Supplemental Table S8). The weights showed good ability to remove imbalance 
at the end of the grace period (6 months after baseline) (Supplemental Table S6).

Step 4: Primary analysis 

Next, we stacked the two datasets (stopping and continuing). We used a weighted 
pooled logistic model to estimate the per protocol effect of stopping vs. continuing. 
The pooled logistic model contained indicators for time (month and month squared), 
an indicator for treatment strategy, and interactions between time and treatment 
strategy, as well as the weights estimated in step 3. The pooled logistic model was 
used to calculate weighted cumulative incidence curves. The weighted curves 
were then used to calculate 5-year absolute risk differences and differences in 
restricted mean survival time. To account for the weighting we used nonparametric 
bootstrapping based on 500 samples to obtain valid 95% confidence intervals. 

RASi as time-dependent exposure using inverse probability of 
treatment and censoring weighted estimation of a marginal 
structural model
We used a marginal structural model to estimate the effect of time-varying RASi use 
on outcomes. A marginal structural model was used because some of the time-varying 
confounders may also be affected by treatment itself (i.e., over time the covariate plays 
both the role of confounder and mediator of the effect of treatment on outcomes). 
Using a time-dependent regression analysis would therefore lead to biased results 
due to adjustment in the causal pathway and introducing collider stratification bias (15). 

The method described here instead uses inverse probability weighting to 
appropriately adjust for time-varying confounding and censoring. Inverse probability 
of treatment weights (IPTW) were used to adjust for time-varying confounding, 
whereas inverse probability of censoring weights (IPCW) were used to adjust for 
informative censoring. The IPTW and IPCW were estimated using the same time-
fixed and time-varying confounders that were used in the main analysis using the 
cloning, censoring and weighting design (see Supplemental Table 1 for variables).
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Treatment weights

The IPTW consists of a numerator and a denominator. The denominator is used to 
adjust for the time-varying confounding, whereas the numerator is used to stabilize 
the weights so that they do not become excessively large. To estimate the numerator 
and denominator for the IPTW, we fitted two separate pooled logistic regression 
models. The pooled logistic regression model for the numerator had discontinuation 
as the outcome and an indicator for time and all time-fixed confounders as 
independent variables. The pooled logistic regression model for the denominator 
additionally included all time-varying confounders as independent variables. Time 
in both models was modelled using month and month squared as predictors. The 
predicted values from these pooled logistic models were used to estimate the IPTW. 

Censoring weights

In order to estimate the effect of “always” vs. “never” using RASi, we censored patients 
when they restarted RASi treatment after they had discontinued. This censoring is 
likely to be informative. We therefore additionally constructed IPCW to adjust for this 
informative censoring. The IPCW were constructed in a similar manner as the IPTW 
specified above, with the only difference being that the outcome was “remaining 
uncensored” instead of “discontinuation”. Since patients who had not discontinued 
(yet) cannot be censored by definition, censoring weights were only calculated for 
the patients after they discontinued. For the other records, the IPCW were set to 1. 

Outcome model

The IPTW and IPCW were multiplied to obtain the final stabilized weights used in the 
outcome model. We estimated the effect of RASi discontinuation vs. continuation on 
all-cause mortality, MACE and KRT by fitting a weighted pooled logistic model that 
included month, month squared, a time-dependent treatment variable, interactions 
between time and treatment and all baseline covariates. This model was used to 
estimate adjusted cumulative incidence curves. The cumulative incidence curves 
were standardized to the distribution of baseline variables in the study population 
(17). Under the assumptions of exchangeability, positivity, consistency and no model 
misspecification, this approach estimates the average causal effect of treatment 
discontinuation on outcomes in the original study population (15).

The stabilized weights had a mean of 1.0, a minimum of 0.095 and a maximum of 
69.9. Weights were not truncated; truncation at the 99.5th percentile gave virtually 
identical results (mean of weights after truncation: 1.0; maximum: 2.4; results 
not shown). Nonparametric bootstrap with 500 samples was used to compute 
percentile-based 95% confidence intervals for the absolute estimates. 
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Abstract
Objectives: To identify the optimal estimated glomerular filtration rate (eGFR) to 
initiate dialysis in persons with advanced chronic kidney disease.

Design: Nationwide observational cohort study. We mimicked the strict design 
criteria of a clinical trial using the cloning, censoring, and weighting method to 
eliminate immortal time bias, lead time bias and survivor bias. 

Setting: National Swedish Renal Registry of nephrologist-referred patients. 

Participants: Individuals had a baseline eGFR between 10-20 ml/min/1.73m2 and 
were included between January 1, 2007, and December 31, 2016, with follow-up 
until June 1, 2017.

Main outcome measures: A dynamic marginal structural model was used to 
estimate adjusted hazard ratios (HR) and absolute risks for 5-year all-cause mortality 
and major adverse cardiovascular events (MACE; composite of cardiovascular 
death, nonfatal myocardial infarction, or nonfatal stroke) for fifteen dialysis initiation 
strategies with eGFR values between 4 and 19 ml/min/1.73m2 in increments of 1 ml/
min/1.73m2. An eGFR between 6-7 ml/min/1.73m2 (eGFR6-7) was taken as reference.

Results: Among 10,290 incident individuals with advanced CKD (median age 73 
years; 36% women; median eGFR 16.8 ml/min/1.73m2), 3822 individuals initiated 
dialysis, 4160 died and 2446 experienced a MACE. A parabolic relationship was 
observed for mortality, with the lowest risk for eGFR15-16. Compared with dialysis 
initiation at eGFR6-7, initiation at eGFR15-16 was associated with a 5.1% (95% CI 2.5% to 
6.9%) lower absolute 5-year mortality risk and 2.9% (95% CI 0.2% to 5.5%) lower MACE 
risk, corresponding with HRs of 0.89 (95% CI 0.87 to 0.92) and 0.94 (95% CI 0.91 
to 0.98), respectively. This 5.1% absolute risk difference corresponded to a mean 
postponement of death of 1.6 months over 5 years of follow-up. However, dialysis 
would need to be initiated 4 years earlier. When emulating the intended strategies 
of the IDEAL trial (eGFR10-14 vs. eGFR5-7) and the achieved eGFR levels in IDEAL 
(eGFR7-10 vs. eGFR5-7), HR’s for all-cause mortality were 0.96 (95% CI 0.94 to 0.99) and 
0.97 (95% CI 0.94 to 1.00), respectively, which are congruent with the findings of the 
randomized IDEAL trial.

Conclusions: Very early dialysis initiation was associated with a modest reduction 
in mortality and cardiovascular events. For most individuals such a reduction may 
not outweigh the burden of a substantially longer period spent on dialysis. 
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Introduction
Worldwide, more than 3 million individuals with kidney failure require maintenance 
dialysis treatment for survival (1-4). These numbers are expected to double by 2030 
(2). The societal and patient burden of kidney failure treated by dialysis is high: for 
instance, the United States Medicare fee-for-service spending for beneficiaries 
with kidney failure was 36.6 billion in 2018 (3). The mean annual healthcare costs 
per hemodialysis patient are $93,191 in the United States (3), and similar numbers 
are reported for European countries (5-8). Dialysis treatment also places a large 
burden on patients’ daily lives (9, 10). Determining the optimal timing of dialysis is 
therefore of substantial importance.

Despite extensive previous literature, there is absence of evidence on whether an 
optimal GFR to start dialysis exists, and if so where it lies. Previous observational 
studies that attempted to investigate multiple estimated glomerular filtration rate 
(eGFR) strategies have been limited by insufficient power (11-13), immortal time bias 
(14-17) or lead time and selection biases (16-32). In 2010 the Initiating Dialysis Early 
and Late (IDEAL) trial (33) showed that a strategy to start dialysis at an eGFR of 10-14 
ml/min/1.73m2 was not superior to one of waiting until symptoms develop or eGFR 
is 5-7 ml/min/1.73m2. This is reflected in subsequent guidelines, which recommend 
starting dialysis when symptoms and signs attributable to kidney failure arise 
rather than a specific kidney function (34-40). However, IDEAL only compared two 
strategies, from which an optimal GFR cannot be derived. In addition, the achieved 
GFR separation in IDEAL was 1.8 (9.0 vs. 7.2) ml/min/1.73m2 by Modification of Diet in 
Renal Disease equation. It therefore remains possible that there is a kidney function 
outside this range at which starting dialysis is associated with better outcomes, and 
uncertainty on this issue in providers persists (41).

In the absence of evidence on an optimal GFR level, decision-making may be 
influenced by other factors, including potential financial incentives. Indeed, 
large between-country variation exists in the mean eGFR at dialysis start: from 
approximately 5 ml/min/1.73m2 in Taiwan, to 8.5 in the United Kingdom and 11 ml/
min/1.73m2 in the United States (36). Some health systems in the United States (42) 
start at a mean eGFR of 16-17 ml/min/1.73m2. This broad heterogeneity may lead 
to differences in outcomes and healthcare costs. 

Ideally, this complex question would be addressed in a multi-armed randomized 
trial. However, such a trial is unlikely to be conducted because the required sample 
size is large and recruitment is problematic: IDEAL recruited 828 patients over 8 
years. In the absence of trial evidence, clinical decisions could be aided by well-
conducted observational studies which explicitly mimic the strict design criteria of 
this multi-armed trial. We therefore used novel analytical methodology to compare 
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different dialysis initiation strategies using data from a nationwide cohort of non-
dialysis dependent patients with advanced chronic kidney disease (CKD) under 
nephrologist care. 

Methods
This study was reported following the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) guidelines (43).

Data sources
We used data from the Swedish Renal Registry, a nationwide registry of patients 
with CKD categories G3-5 attending routine nephrologist care in Sweden (44, 45), 
during the period 2007-2017. The Swedish Renal Registry includes information 
from outpatient nephrologist visits, including CKD etiology, laboratory tests, blood 
pressure and other results obtained from routine clinical examination, as well as 
the date of kidney replacement therapy (either kidney transplantation or long-term 
dialysis). Registry enrolment is mandatory in Sweden when patients reach an eGFR 
<30 mL/min/1.73m2, but some clinics may start reporting them earlier. Subsequent 
outpatient visits to nephrology care (on average 2-3 per year per patient) are 
registered until death or emigration. Nearly all nephrology clinics in Sweden (96%) 
report to the Swedish Renal Registry and the estimated national coverage is >75% 
for nephrologist-referred patients with CKD G4-5 (46). 

Using each citizen’s unique personal identification number, the Swedish Renal 
Registry data was linked to other national registries. The Swedish Prescribed 
Drug Registry provided complete information on all prescribed drugs dispensed 
at Swedish pharmacies (47); the Swedish Patient Registry added information on 
all outpatient specialist consultations and hospitalizations occurring in Swedish 
healthcare since 1997, and was used to obtain information on comorbidities and 
outcomes (48); the Swedish Death Registry added information on the date and 
causes of death (49). All these registries are run by the Swedish National Board of 
Welfare, a government institution, and are considered to have no or minimal loss to 
follow-up. All patients are informed about their participation in the registry and have 
the possibility to opt out at any time. 

Study design and patient selection
This observational study emulated a pragmatic clinical trial (50) comparing the 
effect of initiating dialysis at various eGFR levels on mortality and cardiovascular 
outcomes in people with advanced CKD, and in general follows the approach 
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proposed by Sjölander et al. (51). WebTable 1 outlines the protocol of such a trial 
and the emulation procedure. Explicit emulation of a trial, and in particular aligning 
the start of follow-up with the assignment of treatment strategies, eliminates 
immortal time bias, selection/survivor bias and lead time bias, which significantly 
affected previous observational studies (51-53). A detailed explanation of how these 
biases arise can be found in the Supplemental Methods. Our analysis included 
individuals who met the following eligibility criteria between January 1, 2007 and 
December 31, 2016: aged 18 years or older, an eGFR measurement between 10-20 
ml/min/1.73m2 with a previous eGFR measurement between 10-30 ml/min/1.73m2 
as confirmation, no history of kidney replacement therapy, and at least one 
available measurement of systolic blood pressure, diastolic blood pressure, total 
calcium, phosphate, albumin and hemoglobin. Baseline was defined as the first 
time when all of these eligibility criteria were met. eGFR was calculated with the 
CKD-EPI equation (54) from routine plasma creatinine measurements performed 
by enzymatic or corrected Jaffe methods traceable to isotope dilution mass 
spectroscopy standards. As information on ethnicity is not available in Sweden by 
law, we assumed all patients to be Caucasian. 

Treatment strategies
We compared fifteen dialysis initiation strategies with eGFR values ranging between 
4 and 19 ml/min/1.73m2 in increments of 1 ml/min/1.73m2. An eGFR between 6-7 
ml/min/1.73m2 (eGFR6-7) was taken as the reference group since this is the eGFR at 
which most individuals initiate dialysis in Sweden. 

Study outcomes
The primary outcome was 5-year all-cause mortality. The secondary outcome 
was MACE (defined as a composite endpoint of cardiovascular death, non-fatal 
myocardial infarction and non-fatal stroke). ICD-10 codes for ascertainment of 
cardiovascular outcomes are listed in WebTable 2. Each patient was followed 
until the first of occurrence of an event, five years after baseline, or administrative 
censoring (June 1, 2017). 

Statistical analysis
We used the method of cloning, censoring and weighting (50, 52, 55-57) to emulate 
a target trial comparing the effects of different dialysis initiation strategies (see 
Supplemental Methods and WebFigure 1 for a detailed discussion on target trial 
emulation and the cloning, censoring and weighting method). Explained briefly, we 
created a dataset with fifteen copies of each eligible individual (cloning step) and 
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assigned each of the replicates to one of the treatment strategies at the start of 
follow-up. Thereafter, we assessed at monthly intervals whether replicates adhered 
to their assigned treatment strategy; replicates were censored as soon as their actual 
treatment deviated from their assigned treatment strategy, thereby ensuring that 
replicates followed their assigned strategy (censoring step). To adjust for the potential 
selection bias induced by this artificial censoring, each individual received a time-
varying inverse probability weight (58) (weighting step). Informally, the denominator of 
the weights was the probability that a replicate remained uncensored during follow-
up (i.e., remained on the assigned treatment strategy). These weights created fifteen 
pseudopopulations in which censoring was independent of measured prognostic 
factors. We estimated the time-varying weights by fitting a pooled logistic model 
for the monthly probability of remaining uncensored, including variables for time 
and baseline plus time-varying covariates listed in WebTable 2. Models were fitted 
separately for each treatment strategy to allow for treatment-covariate interaction 
(57, 59). The variables for each model and their regression coefficients for the eGFR6-7 
strategy are reported in WebTable 3. To avoid undue influence of outliers, weights 
were truncated at the 99.95th percentile (60).

After cloning, censoring and weighting, we estimated the effect of each dialysis 
initiation strategy on 5-year all-cause mortality and MACE using a weighted pooled 
logistic regression model, including an indicator for treatment strategy (modelled as 
restricted cubic spline with knots at 5, 8, 11, 14 and 17 ml/min/1.73m2), month, month 
squared, their interactions to allow for non-proportional hazards, and all baseline 
covariates. This weighted model estimates the parameters of a dynamic marginal 
structural model when the covariates include all joint determinants of censoring 
and the outcome (55). The predicted probabilities from this logistic model were 
used to estimate the adjusted 5-year probability of mortality and MACE under each 
treatment strategy and to produce weighted cumulative incidence curves, which 
were standardized to the baseline distribution of confounders (61, 62). From these 
probabilities we also derived 5-year risk differences, risk ratios and hazard ratios. 
We estimated cause-specific cumulative incidences to account for the competing 
event of kidney transplantation (63, 64). In addition, we also calculated the 5-year 
restricted mean survival time (RMST) and the 5-year RMST differences between 
each dialysis initiation strategy. The RMST is interpreted as the average survival 
time over a fixed follow-up period. Graphically, it corresponds to the area under 
the survival curve (65). The 5-year RMST difference compares the areas under the 
survival curves for the different dialysis initiation strategies. It is interpreted as the 
mean postponement of the outcome in one group compared with the reference. 
Pointwise 95% percentile confidence intervals were calculated using nonparametric 
bootstrap based on 500 full samples. The 5-year RMST difference was compared 
with the postponement of dialysis initiation to provide insight into this trade-off. 
Postponement of dialysis initiation was determined by the average eGFR decline 
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before dialysis initiation using a linear mixed model (Supplemental Methods). R 
version 3.6.2 was used for all statistical analyses. 

Sensitivity analyses
We pre-specified several analyses to test the robustness of our main results. First, 
we emulated the IDEAL trial comparing early (eGFR10-14) versus late initiation (eGFR5-

7) on mortality and MACE to validate our analytical methods. We added a third 
“intermediate initiation” arm (eGFR7-10), which includes the mean achieved eGFR in 
the early initiation arm in IDEAL. Second, we performed stratified analyses by age 
(≥70 vs. <70 years), sex, presence of diabetes, eGFR at baseline (10-15 vs. 15-20 
ml/min/1.73m2), presence of ischemic heart disease, and presence of heart failure. 
Third, we investigated the influence of adjustment for measured confounders 
on our point estimates by sequentially adjusting for baseline and time-varying 
confounders. Fourth, we compared results when using nontruncated weights. Fifth, 
we excluded individuals with cancer at baseline. Sixth, we used a different analytical 
method for the competing event of kidney transplantation. We modelled the direct 
effect of dialysis initiation strategies on mortality, not mediated through kidney 
transplantation, by adding additional inverse probability of censoring weights (63). 
Intuitively, this models the effect of dialysis initiation strategies in a hypothetical 
world in which no kidney transplantations occur. Seventh, we additionally adjusted 
for time-dependent measures of urinary albumin-to-creatinine ratio and plasma 
potassium in our analyses. This analysis was restricted to the 4286 individuals with 
these measurements available. Although these laboratory values are routinely 
measured in this population, reporting these to the Swedish Renal Registry was not 
mandatory until 2015. Because some physicians chose to report this information 
whereas others did not, we assumed that these data were missing completely 
at random (44). Eighth, we censored patients who chose conservative treatment, 
where patients explicitly chose treatment of kidney failure without dialysis. We 
used additional inverse probability of censoring weights to account for informative 
censoring. Intuitively, this models the effect of dialysis initiation strategies in a 
hypothetical world in which no patients choose conservative management. Lastly, 
we analyzed our data using the “from initiation” and “from threshold” method 
analogous to previous observational studies (14-29) to show that immortal time 
bias and selection/survivor bias give an artificial survival advantage to late dialysis 
initiation (51, 52). A detailed description of these methods and how bias arises is 
provided in the Supplemental Methods. Due to computational efficiency and lower 
power with fifteen strategies, subgroup and sensitivity analyses were performed 
using three dialysis initiation strategies only.
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Patient involvement
No patients were involved in setting the research question or the outcome 
measures, nor were they involved in developing plans for design or implementation 
of the study. No patients were asked to advise on interpretation or writing up of 
results. Being a study based on anonymised nationwide register data, there are no 
plans to disseminate the results of the research to study participants. 

Results
Of 30,180 individuals registered in the Swedish Renal Registry during the study 
period, 10,290 individuals with an eGFR between 10-20 ml/min/1.73m2 were 
eligible for inclusion in our study. WebFigure 2 displays the patient selection flow 
chart, and Table 1 describes their baseline characteristics. At baseline, individuals 
had a median (interquartile range; IQR) age of 73 (63-80) years, 35.7% were women 
and 42.1% had diabetes. The median eGFR was 16.8 (14.3-18.6) ml/min/1.73m2 and 
68.9% of the study population had an eGFR between 15-20 ml/min/1.73m2. 

Table 1. Baseline characteristics of individuals under nephrologist care with eGFR between 10-20 ml/

min/1.73m2 registered in the Swedish Renal Registry during January 2007 and December 2016. 

Overall (N = 10,290)

Age, median (IQR), y 73.0 [63.0, 80.0]

Age group, N (%)

<50 1057 (10.3)

50-59 1030 (10.0)

60-69 2119 (20.6)

70-79 3247 (31.6)

>=80 2837 (27.6)

Female Sex 3739 (36.3)

Primary kidney disease, N (%)

Diabetes 2427 (23.6)

Hypertension/Renovascular 2277 (22.1)

Glomerulonephritis 1066 (10.4)

Polycystic kidney disease 636 (6.2)

Pyelonephritis 313 (3.0)

Other 2083 (20.2)

Unknown 1488 (14.5)
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Overall (N = 10,290)

Clinical and laboratory values

Previous eGFR before baseline, median (IQR), ml/min/1.73m2, b 20.4 [16.4, 22.7]

Baseline eGFR, median (IQR), ml/min/1.73 m2, b 16.8 [14.3, 18.6]

Baseline eGFR between 15-20 ml/min/1.73 m2, b, N (%) 7087 (68.9)

SBP, mean (SD), mmHg 139.6 (21.0)

SBP category, N (%)

<120 1270 (12.3)

120-139 3774 (36.7)

140-159 3315 (32.2)

>160 1931 (18.8)

DBP, mean (SD), mmHg 76.6 (11.8)

DBP category, N (%)

<80 5346 (52.0)

80-89 3354 (32.6)

90-99 1201 (11.7)

>100 389 (3.8)

BMI, mean (SD), kg/m2, c 27.9 (5.7)

Total calcium, mean (SD), mmol/L 2.3 (0.2)

Total calcium category, N (%)

<2.0 351 (3.4)

2.0-2.19 2156 (21.0)

2.20-2.44 6502 (63.2)

>2.45 1281 (12.4)

Phosphorus, mean (SD), mmol/L 1.4 (0.3)

Phosphorus category, N (%)

<0.8 45 (0.4)

0.8-1.49 6628 (64.4)

1.50-1.99 3215 (31.2)

>2.0 402 (3.9)

Albumin, mean (SD), g/L 36.5 (4.7)

Albumin category, N (%)

<25 152 (1.5)

25-29 555 (5.4)

30-39 6889 (66.9)

>40 2694 (26.2)

Hemoglobin, mean (SD), g/L 119.4 (14.1)
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Overall (N = 10,290)

Hemoglobin category, N (%)

<90 143 (1.4)

90-99 585 (5.7)

100-114 3071 (29.8)

>115 6491 (63.1)

UACR, median (IQR), mg/mmolc 57.6 [11.6, 180.0]

UACR category, N (%)

A1 (<3) 570 (9.9)

A2 (3-29) 1698 (29.4)

A3.1 (30-70) 815 (14.1)

A3.2 (>70) 2701 (46.7)

Potassium, mean, mmol/Lc 4.5 (0.6)

C-reactive protein, median, ng/mLc 5.0 [2.1, 10.0]

Ferritin, median, ng/mLc 150.0 [77.0, 274.0]

Comorbidities, N (%)

Hypertension 8796 (86.6)

Acute coronary syndrome 1906 (18.5)

Other ischemic heart disease 3177 (30.9)

Heart failure 2612 (25.4)

Diabetes 4329 (42.1)

Valve disorders 670 (6.5)

Stroke 1243 (12.1)

Other cerebrovascular disease 1300 (12.6)

Atrial fibrillation 1808 (17.6)

Other arrhythmia 898 (8.7)

Peripheral vascular disease 1415 (13.8)

Chronic obstructive pulmonary disease 792 (7.7)

Other lung disease 1605 (15.6)

Venous thromboembolism 816 (7.9)

Cancer in previous year 1025 (10.0)

Liver disease 368 (3.6)

Fracture in previous year 297 (2.9)

Medication use, N (%)

Beta blocker 6736 (65.5)

Calcium channel blocker 6348 (61.7)

Diuretic 7356 (71.5)

ACEi/ARB 6971 (67.7)
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Overall (N = 10,290)

Lipid lowering drug 5610 (54.5)

Potassium binder 1270 (12.3)

Phosphate binder 1034 (10.0)

Erythropoietin-stimulating agent 3160 (30.7)

Vitamin D 5977 (58.1)

Digoxin 158 (1.5)

Nitrate 1474 (14.3)

Antiplatelet 4345 (42.2)

Anticoagulant 1214 (11.8)

Sodium bicarbonate 4381 (42.6)

Calendar Year, N (%)

2007-2010 3211 (31.2)

2011-2013 3473 (33.8)

2014-2016 3606 (35.0)

Hospitalizations

Number of hospital admissions in previous year, median (IQR) 0.0 [0.0, 2.0]

Any hospitalization in previous year, N (%) 4770 (46.4)

Hospital admission due to cardiovascular causes in previous year, N (%) 1614 (15.7)

eGFR = estimated glomerular filtration rate; SBP = systolic blood pressure; DBP = diastolic blood pressure; 

UACR = albumin-to-creatinine ratio. 
a Due to the cloning step in the cloning, censoring and weighting method, patient characteristics are 

identical at baseline for the early, intermediate and late dialysis initiation groups. A detailed explanation of 

the cloning, censoring and weighting method can be found in the Methods and Supplemental Methods. 
b eGFR was calculated with the CKD-EPI formula. Patients were required to have two eGFR measurements 

to be eligible for inclusion. The median (IQR) time between the baseline and previous eGFR measurement 

was 154 (93-234) days. 
c BMI was missing in 25.8% of individuals, UACR in 43.8%, potassium in 29.1%, CRP in 15.9% and ferritin in 

60.3%, because reporting these variables to the Swedish Renal registry was not mandatory (Webtable 2). 

Due to the high degree of missingness, these variables were not used in further analyses and are presented 

for descriptive purposes only. 

During follow-up 3822 individuals started dialysis, the majority with an eGFR 
between 5 and 8 ml/min/1.73m2 (WebFigure 3). Hemodialysis was the initial dialysis 
modality in 2339 individuals (61.2%) and peritoneal dialysis in 1483 individuals (38.8%).
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Dialysis initiation strategies and risk of mortality or MACE
During a median (IQR) follow-up of 3.1 (1.7-5.0) years, 4160 (40.4%) individuals died. 
Table 2 and Figure 1A show the 5-year absolute risks, risk differences, hazard 
ratios and cumulative incidence curves for all-cause mortality for all dialysis 
initiation strategies. For mortality, the absolute risk decreased from eGFR18-19 to a 
nadir at eGFR15-16 and progressively increased again between eGFR15-16 and eGFR4-

5. Compared with eGFR6-7, 5-year absolute risk differences varied between an 
increase of 0.8% (95% CI, 0.0% to 1.6%) for eGFR4-5 and a decrease of 5.1% (95% CI, 
2.5% to 6.9%) for eGFR15-16 (Figure 2A), with corresponding hazard ratios of 1.01 (95% 
CI, 1.00 to 1.02) and 0.89 (95% CI, 0.87 to 0.92), respectively. When the mean eGFR 
at dialysis start in the United States was taken as reference group (i.e. eGFR11-12), 
risk differences varied between an increase of 2.8% (95% CI, 0.5% to 5.3%) and a 
decrease of 3.1% (95% CI, 0.9% to 5.2%) (WebTable 4). Compared with eGFR6-7, the 
maximum 5-year RMST difference was 1.6 months (95% CI, 1.0 to 2.0) for eGFR15-16, 
and these patients would need to start dialysis on average 47.9 months (95% CI, 46.2 
to 49.6) earlier than eGFR6-7 (WebTables 5-6 and Figure 3). 
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Figure 1. Weighted, standardized cumulative incidence curves for mortality (A) and MACE (B) stratified by 

different dialysis initiation strategies. 
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Figure 2. 5-year absolute risks and risk differences for mortality (A) and MACE (B) associated with initiating 

dialysis with eGFR values between 4 and 19 ml/min/1.73m2 in increments of 1 ml/min/1.73m2, with 6-7 ml/

min/1.73m2 as reference. 
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Figure 3. Trade-off between additional survival time (5-year RMST difference) and time that dialysis has to 

be initiated earlier, for dialysis initiation strategies with eGFR values between 4 and 19 ml/min/1.73m2 in 

increments of 1 ml/min/1.73m2, with 6-7 ml/min/1.73m2 as reference. Note that a positive value indicates 

longer survival and an earlier dialysis start compared with the reference group. In our study population the 

annual eGFR decline was 2-3 ml/min/1.73m2, which was estimated with a linear mixed model including 

linear and quadratic slope (Supplemental Methods). In other words, it takes ~5 months for the eGFR to 

decline 1 ml/min/1.73m2.
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For MACE the absolute risk was lowest between eGFR17-18 and eGFR11-12 and then 
progressively increased between eGFR11-12 and eGFR4-5 (WebTable 7 and Figure 2B). 
Compared with eGFR6-7, risk differences varied between an increase of 1.5% and a 
decrease of 3.3% (Figure 2B), and hazard ratios between 1.04 and 0.91, respectively. 
When eGFR11-12 was taken as reference group, risk differences varied between an 
increase of 4.7% for eGFR4-5 to a decrease of -0.2% for eGFR12-13 (WebTable 8). The 
5-year RMST differences varied between -0.3 and 0.7 months (WebTable 5).

Supporting and sensitivity analyses
In our analysis mirroring the GFR thresholds from the IDEAL trial, early dialysis 
initiation (eGFR10-14) was associated with a 3.3% (95% CI, 1.3% to 5.3%) lower 5-year 
mortality risk and 3.6% (95% CI, 1.0% to 6.0%) lower MACE risk compared with late 
initiation (eGFR5-7), with hazard ratios of 0.96 (95% CI, 0.94 to 0.99) and 0.96 (95% CI, 
0.93 to 1.00), respectively (WebTable 9, Figure 4). Similar results were found when 
comparing late versus intermediate (eGFR7-10) dialysis initiation, in keeping with the 
achieved eGFR at initiation in the earlier arm of IDEAL. A lower mortality risk for 
early dialysis initiation was observed among all subgroups of age, sex, diabetes, 
eGFR, and ischemic heart disease (WebTables 10-11, WebFigures 4-6). Patients 
with diabetes or heart failure had a high absolute 5-year mortality and MACE risk. 
For instance, for the early dialysis initiation strategy the 5-year absolute mortality 
risk was 59.1% (95% CI, 54.9% to 65.4%) in the subgroup of patients with diabetes, 
and 80.5% (95% CI, 74.1% to 86.1%) in the subgroup with heart failure. Among patients 
with diabetes, early dialysis initiation (eGFR10-14) was associated with a 5.4% (95% 
CI, 2.1% to 8.1%) lower 5-year mortality risk and 4.3% (95% CI, 0.2% to 9.1%) lower 
MACE risk compared with late initiation (eGFR5-7), with hazard ratios of 0.96 (95% CI, 
0.92 to 1.00) and 0.98 (95% CI, 0.93-1.04), respectively. Among patients with heart 
failure, early dialysis initiation was associated with a 3.3% (95% CI, -0.1% to 6.1%) 
lower 5-year mortality risk but no difference in MACE risk (0.3%; 95% CI, -5.2% to 
5.0%) compared with late initiation, with hazard ratios of 0.95 (95% CI, 0.92 to 0.99) 
and 1.03 (95% CI, 0.97 to 1.08), respectively. Adjustment for confounders moved the 
risk difference away from the null (WebTable 12). As an example, the unadjusted 
5-year risk difference between eGFR5-7 and eGFR10-14 was -0.11% and became 
-3.33% after full adjustment. Using untruncated weights, excluding patients with 
cancer, applying an alternative analytical approach for the competing risk of kidney 
transplantation, additionally adjusting for urinary albumin-to-creatinine ratio and 
potassium or censoring patients who chose conservative care did not alter our 
results (WebTables 13-17). 

When we used traditional analytical approaches that introduced immortal time bias 
like previous observational studies (14-17) (Supplemental Methods), early dialysis 
initiation was associated with worse outcomes, the opposite of the association we 
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identified in our trial emulation analysis. The hazard ratio for eGFR15 was 1.46 (95% CI, 
1.19 to 1.78) compared with eGFR5 (WebFigure 7). In addition, when starting follow-
up at dialysis initiation which introduced selection/survivor bias and lead time bias 
(16-31), the hazard ratio for eGFR15 was 1.58 (95% CI, 1.37 to 1.83) compared with 
eGFR5 (WebFigure 8).

Figure 4. Weighted, standardized cumulative incidence curves for mortality (A) and MACE (B) for early, 

intermediate and late dialysis initiation. 
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Discussion
In this large nationwide study of patients with advanced CKD, we estimated 
with novel trial emulation methodology that the maximum absolute 5-year risk 
reductions were 5.1% for mortality (for eGFR15-16 vs. eGFR6-7) and 3.3% for MACE (for 
eGFR13-14 vs. eGFR6-7). These results were robust in various sensitivity analyses and 
subgroups, including older patients and those with comorbidities such as diabetes, 
ischemic heart disease or heart failure. 

Strengths and limitations of study
Strenghts of our study include its nationwide nature, large sample size, inclusion 
of a representative cohort of patients under routine nephrologist care, long-
term follow-up and adjustment for 83 time-fixed and time-varying confounders. 
Furthermore, we tested the robustness of our findings in a number of supplemental 
analyses, and present information on absolute and relative risks, and the trade-off 
between restricted mean survival time and earlier dialysis start to provide a detailed 
picture of this issue. Our study also has limitations. First, despite adjustment for 
rich baseline and time-varying covariates which are used in the decision-making 
process (including time-varying eGFR and previous eGFR measurements), residual 
confounding cannot be excluded, and the precise reasons for dialysis initiation were 
not available in our study. Our study lacked important variables influencing this 
decision such as nutritional status or muscle mass stores, uremic symptoms, quality 
of life or physical activity. We believe however that some of these aspects were 
indirectly captured through adjustment for biochemical variables, hospitalizations 
and comorbidities. Indeed, additional adjustment for urinary albumin-to-creatinine 
ratio and potassium did not meaningfully alter our point estimates. Furthermore, in 
one of our sensitivity analyses, we sequentially adjusted for major confounder groups 
which are expected to induce strong confounding. However, additional adjustment 
resulted in at most a 1% increase in absolute risk. This, in combination with the strong 
probability that additional (unmeasured) confounders will be correlated with the 
variables we already adjusted for, reassures us that the impact from unmeasured 
confounders is unlikely to be large. In any case, the most compelling argument in 
favour of the validity of the findings is the congruence between our findings using 
trial emulation and those of the randomized IDEAL study. Second, the Swedish 
Renal Registry did not record information on symptoms or quality of life during the 
study period. Future studies should include symptoms in their treatment strategies 
and study quality of life as an outcome. Third, creatinine-based estimates of eGFR 
may not be an accurate reflection of true kidney function, as it may be influenced by 
muscle wasting or cachexia; eGFR estimated by the CKD-EPI equation is accurate 
within 30% to measured GFR 85% of the time (54). However, eGFR is commonly 
one of the factors to take into consideration by many physicians at the time of 
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decision-making. Lastly, as Sweden has nationwide healthcare reimbursement, 
and individuals in our analyses were all under nephrologist care, generalizing our 
results to other health systems should be done with caution. 

Comparison with other studies
One randomized trial (IDEAL) and various observational studies have investigated 
the timing of dialysis. In a sensitivity analysis, we compared the same treatment arms 
as the IDEAL trial to benchmark our analytical methods (33). In IDEAL, the achieved 
eGFR in the early and late arms were 7.2 vs. 9.0 ml/min/1.73m2 respectively. In our 
study, mean eGFR for late (eGFR5-7) and intermediate (eGFR7-10) start were 6.0 and 
8.3 ml/min/1.73m2, respectively. In this comparison, we observed hazard ratios 
of 0.97 (95% CI, 0.94 to 0.99) for mortality and 1.00 (0.97 to 1.04) for MACE. These 
findings are congruent with IDEAL: 1.04 (95% CI, 0.83 to 1.30) and 1.23 (95% CI 0.97 to 
1.56), respectively. 

Previous observational studies (14-31) investigating the timing of dialysis initiation 
have been criticized for the presence of immortal time, selection/survivor and lead 
time biases (15, 19, 51). For example, some reports found a strong protective effect 
of late dialysis initiation (18, 20-24, 26, 27, 29, 30), which conflicts with findings from 
IDEAL. In our sensitivity analyses we showed that such findings may have been 
attributed to either immortal time bias or selection/survivor bias. Our study design 
based on cloning, censoring and weighting prevents these biases by explicitly 
emulating a target trial, and aligning eligibility and treatment strategies at baseline. 
Although one previous observational study applied a similar design as ours, it did 
not adjust for time-varying covariates and was limited in sample size (13).

Policy implications
Our findings provide novel evidence regarding the optimal timing of dialysis initiation 
and show that even with maximum eGFR separations, the range of plausible effects 
is likely to be small. The modest increase in observed survival for initiation at higher 
eGFR comes at the expense of earlier dialysis initiation. Our results provide an insight 
into this trade-off: the maximum 5.1% absolute mortality reduction translated into a 
postponement of death of only 1.6 months over a 5-year follow-up period, whereas 
dialysis would need to be started on average 4 years earlier. For many patients 
this increased time on dialysis may not outweigh the modest survival benefit. Our 
results further suggest that in the absence of symptoms or strong indications, 
dialysis initiation may be postponed until lower eGFR values are reached (intent-to-
defer) (40, 66), without a large increase in mortality or cardiovascular events. From 
a societal perspective, the elevated costs associated with earlier dialysis initiation 
make these strategies even less desirable. Current position papers highlight the 
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importance of individualized decision making in deciding whether and when to 
start dialysis, taking into account outcomes, quality of life and patient preferences. 
Our findings should not be used to suggest a single eGFR cut-off to start dialysis in 
all patients. Rather, our finding of similar survival across the range of eGFR where 
dialysis is usually considered (eGFR 5-14 ml/min/1.73m2) should be a reassuring 
addition to the evidence base for clinicians: these data provide no support for any 
strategy other than starting dialysis based on symptoms and patient preferences, 
which is widespread clinical practice, recommended by guidelines, and a patient-
centred approach. Our study did not address the effects of dialysis initiation 
versus comprehensive conservative management in patients with kidney failure. 
Conservative care has been proposed as a reasonable alternative to maintenance 
dialysis for selected older patients with comorbidities or poor functional status. 
Whether there are differences in survival and quality of life between dialysis and 
conservative management is currently unknown, and is being addressed in the 
ongoing randomized PREPARE for Kidney Care Study (67).

Conclusions
In conclusion, although early dialysis initiation was associated with a modest 
reduction in mortality and cardiovascular events, this may not outweigh the burden 
of a substantially longer period spent on dialysis. 
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WebFigure 4. Weighted, standardized cumulative incidence curves for mortality for 
late (eGFR 5-7 ml/min/1.73m2), intermediate (eGFR 7-10 ml/min/1.73m2) and early 
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WebFigure 5. Weighted, standardized cumulative incidence curves for MACE for 
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The reference was set at an eGFR of 5 ml/min/1.73m2. Dotted lines represent 95% 
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WebFigure 8. Deliberate introduction of selection/survivor bias and lead time 
bias to illustrate why previous observational studies found a protective effect of 
late dialysis initiation on all-cause mortality. eGFR was modelled as a continuous 
variable using a penalized spline. The reference was set at an eGFR of 5 ml/
min/1.73m2. Dotted lines represent 95% confidence intervals.
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Supplemental Methods

Target trial emulation using cloning, censoring and weighting
Here we describe in detail our implementation of target trial emulation and the 
cloning, censoring and weighting procedure. A thorough review of trial emulation can 
be found elsewhere (1, 2), as well as recent applications of the methodology (3-10). 

Specifying details of the target trial

The goal of many observational studies is to compare the effects of two or more 
treatment strategies on a clinical outcome. A simple way to structure the study 
design and analysis of such a study is to use the target trial framework (1, 2). 
This means that we think about the hypothetical randomized trial we would like 
to conduct and then use our observational data to explicitly emulate it. Explicitly 
emulating a randomized trial can prevent unnecessary biases such as immortal 
time bias, selection/survivor bias and lead time bias (11-15), as well as making results 
from observational analyses more comparable to those from trials (16). Similar to 
a real trial, we first need to formally define the eligibility criteria of our hypothetical 
trial, the treatment strategies we would like to compare, how treatment is assigned 
to each individual, the duration of follow-up, the primary and secondary endpoints, 
the causal contrast of interest (intention-to-treat or per protocol effect), and the 
statistical analysis. Details of the target trial we wanted to emulate in our analysis 
are given in WebTable 1. 

In our study we were interested in comparing 15 dialysis initiation strategies , with 
eGFR values ranging between 4-5 ml/min/1.73m2 and 18-19 ml/min/1.73m2. Note 
that it would be difficult to compare 15 strategies in a real randomized controlled 
trial, as this would require an extremely large sample size. The IDEAL trial required 8 
years to include 828 individuals. We therefore need to rely partly on well-conducted 
observational studies to identify the optimal eGFR to start dialysis. We applied the 
same methodology when comparing three treatment strategies in our sensitivity 
analysis. For ease of explanation we will therefore explain the methods according 
to three strategies only. 

Treatment strategies such as those defined above depend on the value of a 
time-varying individual characteristic (in this case eGFR) and are therefore called 
dynamic treatment strategies (5, 17). Such dynamic treatment strategies answer 
the question “When should I start a particular treatment?”. Comparing the effects 
of dynamic treatment strategies in observational data requires methods that 
can appropriately adjust for time-varying confounding, such as the parametric 
G-formula (18, 19) or cloning, censoring and weighting (1, 14, 20). We now explain 
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in detail our implementation of the latter approach for three dialysis initiation 
strategies. A graphical depiction of the cloning, censoring and weighting procedure 
can be found in WebFigure 1.  

Rationale for the cloning, censoring and weighting method

The rationale for using the cloning, censoring and weighting method is that at baseline, 
an individual’s data is consistent with multiple strategies. For instance, an individual 
with an eGFR of 16 ml/min/1.73m2 at baseline has data consistent with early (starting 
dialysis with an eGFR10-14), intermediate (eGFR7-10) or late (eGFR10-14) dialysis initiation. 
This individual could be randomly assigned to one of the three strategies, similar 
to a real randomized trial. However, it is more statistically efficient to allocate this 
individual to all treatment strategies with which his/her data are consistent.

Step 1: Cloning and assigning replicates to the treatment strategies

The first step consists of cloning each individual into three identical replicates, 
each of whom is assigned to one strategy (either late, intermediate or early dialysis 
initiation). The dataset will now be three times as large as the original dataset. Since 
each individual occurs in all strategies, the three treatment groups will be identical 
in all characteristics and hence no baseline confounding is present. 

Note that for the comparison of 15 dialysis initiation strategies, 15 identical replicates 
of each individual need to be made. At baseline some of the replicates will already 
have passed their assigned eGFR value to start dialysis. For example, an individual 
with a baseline eGFR of 13 ml/min/1.73m2 can never comply with the strategy 
“initiate dialysis with an eGFR between 16-17 ml/min/1.73m2”. Such replicates that do 
not comply with their assigned strategy at baseline are removed from the dataset. 

Step 2: Censoring replicates if and when they do not adhere to their 
assigned strategy

Note that there are now replicates included that do not necessarily always adhere 
to their assigned strategy during follow-up. To estimate the effect of a particular 
treatment strategy, we need to censor replicates if and when their observed 
treatment does not match their assigned strategy anymore. 

In our dataset, we therefore determined at each month whether a replicate was 
adherent to their assigned strategy and artificially censored them if they stopped 
adhering. As an example, consider the three hypothetical persons in the Appendix 
Table on the next page. Three replicates of each person are present in the dataset 
(cloning step), and each replicate is assigned to a different treatment strategy (late, 
intermediate or early dialysis initiation). 
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Replicate 1.1 is assigned to the strategy “initiate dialysis with an eGFR between 5-7 
ml/min/1.73m2” (i.e. late dialysis initiation). Since his eGFR has dropped to 4.2 ml/
min/1.73m2 in month 5 and this individual has not initiated dialysis yet, he will be 
censored in month 5. Replicate 1.2 is assigned to the strategy “initiate dialysis with 
an eGFR between 7-10 ml/min/1.73m2” (i.e. intermediate dialysis initiation). Since 
his eGFR has dropped to 6.5 ml/min/1.73m2 in month 3 and this individual has not 
initiated dialysis yet, he will be censored in month 3. Lastly, replicate 1.3 is assigned 
to the strategy “initiate dialysis with an eGFR between 10-14 ml/min/1.73m2”. Since 
his eGFR has dropped to 7.3 ml/min/1.73m2 in month 2 and this individual has not 
initiated dialysis yet, he will be censored in month 2. The first individual died in 
month 5. However, this death will count for none of the treatment strategies since all 
replicates are censored before the death is observed. Note that the three replicates 
represent the same person (individual 1), and that we use data from individual 1 to 
estimate the effect of each strategy as long as he adheres to his assigned strategy. 

Person 2 is like person 1, except that dialysis is initiated in month 3 of follow-up at an 
eGFR of 6.5 ml/min/1.73m2. Replicate 2.1 adheres to his assigned treatment strategy 
and is therefore never censored during follow-up. Replicate 2.2 and replicate 2.3 are 
censored in month 3 and 2, respectively, since they do not adhere to their assigned 
strategy anymore in those months. Note that the death is observed only for replicate 
2.1 and not for replicates 2.2 or 2.3.

Person 3 dies in the first month while his eGFR was 12.0 ml/min/1.73m2. The death 
will count for all three treatment strategies because the data were consistent with 
all strategies when it developed. 
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Appendix Table. Three hypothetical persons whose data are consistent with multiple dialysis initiation 

strategies.  

Person Replicate Assigned 
strategy

Month eGFR Dialysis Death Artificial 
censoring

1 1.1 5-7 1 12.0 0 0 0

1 1.1 5-7 2 7.3 0 0 0

1 1.1 5-7 3 6.5 0 0 0

1 1.1 5-7 4 5.8 0 0 0

1 1.1 5-7 5 4.2 0 1 1

1 1.2 7-10 1 12.0 0 0 0

1 1.2 7-10 2 7.3 0 0 0

1 1.2 7-10 3 6.5 0 0 1

1 1.2 7-10 4 5.8 0 0 1

1 1.2 7-10 5 4.2 0 1 1

1 1.3 10-14 1 12.0 0 0 0

1 1.3 10-14 2 7.3 0 0 1

1 1.3 10-14 3 6.5 0 0 1

1 1.3 10-14 4 5.8 0 0 1

1 1.3 10-14 5 4.2 0 1 1

2 2.1 5-7 1 12.0 0 0 0

2 2.1 5-7 2 7.3 0 0 0

2 2.1 5-7 3 6.5 1 0 0

2 2.1 5-7 4 5.8 1 0 0

2 2.1 5-7 5 4.2 1 1 0

2 2.2 7-10 1 12.0 0 0 0

2 2.2 7-10 2 7.3 0 0 0

2 2.2 7-10 3 6.5 1 0 1

2 2.2 7-10 4 5.8 1 0 1

2 2.2 7-10 5 4.2 1 1 1

2 2.3 10-14 1 12.0 0 0 0

2 2.3 10-14 2 7.3 0 0 1

2 2.3 10-14 3 6.5 1 0 1

2 2.3 10-14 4 5.8 1 0 1

2 2.3 10-14 5 4.2 1 1 1

3 3.1 5-7 1 12.0 0 1 0

3 3.2 7-10 1 12.0 0 1 0

3 3.3 10-14 1 12.0 0 1 0
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Step 3: Inverse probability weighting to adjust for informative censoring

Because the artificial censoring of replicates is likely to be informative, this will 
lead to selection bias (also called collider stratification bias in the epidemiology 
literature). We therefore need to use inverse probability weighting to adjust for 
this selection bias, which is the most involved step of the cloning, censoring and 
weighting procedure. In brief, uncensored replicates receive a weight that is equal 
to the inverse of the probability of remaining uncensored, conditional on their own 
covariate history. Intuitively, the weighting will upweight uncensored replicates who 
have similar characteristics as censored replicates (see also WebFigure 1). This 
creates a pseudopopulation in which censoring does not depend on measured 
characteristics and is no longer informative (21). 

To estimate the inverse probability of censoring weights, we first fit a pooled logistic 
model with “being uncensored” as the outcome and as independent variables an 
indicator for time (a restricted cubic spline with prespecified knots at months 3, 7, 12, 
23 and 35), baseline and time-varying confounders. We fit a pooled logistic model 
for each arm separately since the censoring pattern is likely to be different for each 
treatment strategy, and to allow for treatment-covariate interaction (2, 4). The knots 
for time were based on visual inspection of the censoring pattern during follow-up.  

Next, we used the probabilities estimated by these models to construct the inverse 
probability of censoring weights. Weights were set to 1 after a replicate initiated dialysis, 
as their probability to remain uncensored is per definition 1. We truncated the weights 
at the 99.95th percentile to avoid undue influence of very large weights. Truncating 
the weights is a trade-off between bias and precision: truncation of large weights will 
lead to narrower confidence intervals at the expense of introducing some bias. The 
median of the truncated weights was 1.02, the mean 1.17 and the maximum 31.1. Using 
untruncated weights showed virtually similar results and therefore indicated that no 
substantial bias was introduced by truncation (WebTable 13). 

Step 4: Primary analysis 

Next, we stacked the three datasets (late, intermediate and early dialysis initiation). 
We used a weighted pooled logistic model to estimate the per protocol effect of 
late, intermediate and early dialysis initiation. The pooled logistic model contained 
indicators for time (month and month squared), an indicator for treatment strategy, 
interactions between time and treatment strategy (to allow for nonproportional 
hazards) and all baseline covariates, as well as the weights estimated in step 3. 
Treatment strategy was modelled as a factor for 3 strategies and as a restricted cubic 
spline with knots at 5, 8, 11, 14 and 17 for 15 strategies. This pooled logistic model 
was used to calculate weighted cumulative incidence curves. The weighted curves 
were then standardized to the baseline distribution of confounders and used to 
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calculate 5-year absolute risk differences and differences in restricted mean survival 
time. To account for the weighting and cloning procedure, we used nonparametric 
bootstrapping based on 500 samples to obtain valid percentile confidence intervals. 
From the survival curves we estimated the average hazard ratio at each month 
during follow-up as log(Survival2)/log(Surival1). To obtain one summary hazard ratio 
we averaged the hazard ratio over the whole study period (22).  

Why common methods introduce immortal time bias,  
lead-time bias or selection bias
A number of observational studies have tried to estimate the effects of dialysis 
timing on outcomes. Most of these studies used two methods, denoted by 
Sjölander et al. as the “from initiation” method or the “from threshold” method (13). 
Both methods introduce various biases, including lead time bias, survival/selection 
bias and immortal time bias. 

In the from initiation method, baseline is defined as the time of dialysis initiation 
(Appendix Figure 1). All patients are included at the moment of dialysis start and 
eGFR levels are then compared on outcomes such as mortality. Note that the choice 
if baseline in the from initiation method is wrong: in a randomized trial (such as 
the IDEAL trial) individuals are included before dialysis. The from initiation method 
introduces two biases: lead time bias and survivor/selection bias. The lead time 
bias occurs because patients with a higher eGFR at dialysis initiation will be earlier 
in the course of their disease progression than individuals with a lower eGFR. This 
will give early starters an artificial survival advantage. It is similar to the lead time 
bias in observational studies investigating cancer screening. The screened group 
will be diagnosed with cancer earlier, and hence follow-up for this group starts 
earlier in the course of their disease. However, in reality patients in the screened 
group may not live longer than those in the non-screened group: only the diagnosis 
of cancer is moved earlier in time. 

The second bias that is introduced by the from initiation method is selection/
survival bias, also known in the epidemiology literature as collider stratification bias. 
This bias gives an artificial survival advantage to the late starters. Why this bias 
arises can be understood intuitively. Patients with a low eGFR who are included in 
an observational cohort must have survived long enough until sampling. As eGFR 
is a strong risk factor for mortality, patients who do not have other risk factors for 
mortality (such as diabetes) are more likely to survive until a low eGFR. After all, if the 
patients with a low eGFR would have had multiple other risk factors for mortality, 
they most likely would not have survived until sampling into the cohort. The bias 
can be graphically shown in a causal diagram (Appendix Figure 2). Conditioning 
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on surviving until a low eGFR value (denoted by the selection node S), induces 
an inverse association between eGFR and other risk factors (denoted by U). In 
technical terms, the conditioning on the collider S opens a backdoor path, thereby 
introducing collider stratification bias. To properly adjust for the selection bias, 
one would need to adjust for all risk factors for mortality. Failure to do so (which 
is very likely) will lead to biased effect estimates, e.g. if one has not measured all 
risk factors for mortality. It should be noted that this selection bias is distinct from 
confounding. Confounders are variables which influence both eGFR at dialysis 
initiation and mortality. Adjusting for confounders only will not be sufficient to adjust 
for the selection bias. 

It seems that the effect of the selection/survival bias is stronger than the effect 
of lead time bias, since most observational studies have found a harmful effect of 
early dialysis initiation rather than a protective effect (23-33). When reanalyzing our 
data using the from initiation method, we also obtained an effect estimate favoring 
the late starters, with a hazard ratio of 1.58 (95% CI, 1.37 to 1.83) for eGFR15 versus 
eGFR5 (WebFigure 8). Even though we adjusted for a large number of confounders 
(similar to previous observational studies), this suggests that we – like the other 
observational studies – were not able to correct for all selection bias introduced 
by the from initiation method, since our main analysis found a completely opposite 
effect: a modest protective effect of early initiation. 

In an attempt to mitigate lead time bias, some researchers have started follow-
up at a common point in time, e.g. when eGFR drops below 20 ml/min/1.73m2 for 
the first time. This method has been referred to as the from threshold method, 
because follow-up starts when a certain threshold is passed. However, by doing 
so, immortal time bias can be introduced. The problem is that at baseline it is not 
yet known at which eGFR dialysis will be initiated. At baseline all patients will have 
an eGFR around 20 ml/min/1.73m2, and dialysis has not started yet at that moment. 
To overcome this problem, some researchers have classified patients into exposure 
groups by using future information that is not available at baseline. Whenever 
future information is used to classify patients into exposure groups, immortal time 
is introduced. All patients need to survive until dialysis start, otherwise they cannot 
be classified. Therefore, all included individuals will be immortal until the start of 
dialysis. The immortal time will be longer for individuals with a low eGFR than for 
those with a high eGFR, and therefore favors late dialysis initiation (Appendix Figure 
3). When reanalyzing our data using the from threshold method and introducing 
immortal time bias, we obtained again an effect estimate favoring the late starters, 
with a hazard ratio of 1.46 (95% CI, 1.19 to 1.78) for eGFR15 versus eGFR5.
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Both methods described above do not explicitly emulate a clinical trial. In a 
randomized trial we would follow patients from a common starting point (e.g. eGFR 
between 10-20 ml/min/1.73m2) and randomize them at that moment to treatment 
groups. Therefore, the moment of start of follow-up and the assignment of treatment 
strategies coincide at baseline. The from initiation method does not adhere to this 
important principle since it starts follow-up at dialysis initiation. The from threshold 
method as applied by previous researchers (34-37) also does not properly emulate 
a randomized trial since the start of follow-up happens before the assignment of 
treatment strategies. The cloning step forces the alignment of the start of follow-
up and assignment of treatment strategies and thereby automatically eliminates 
immortal time bias, lead time bias and selection/survivor bias. This cloning, 
censoring and weighting approach was used in an earlier analysis by Crews et al 
(38). However, their analysis was limited by a small sample size and by the fact 
that analyses were not adjusted for time-varying confounders. WebTable 13 in 
which we sequentially adjusted for more baseline and time-varying confounders 
shows the importance of adjusting for time-varying confounders when applying 
this analytical method.

Another recent study compared dialysis initiation versus no initiation stratified by 
eGFR levels (39). However, this analytical approach does not answer the question 
when to initiate dialysis. Rather, it compares the effectiveness of dialysis vs. no 
dialysis for various levels of eGFR (i.e.: “given that my patient has survived until an 
eGFR of x ml/min/1.73m2, what is the effect of dialysis vs. no dialysis on mortality?”). 
The authors found that dialysis initiation compared with no initiation was associated 
with an adjusted HR of 0.28 (95% CI, 0.16 to 0.45) in individuals with an eGFR <6 ml/
min/1.73m2. The hazard ratio was 0.41 for eGFR6-9, 0.83 for eGFR9-12, 0.88 for eGFR12-15, 
1.50 for eGFR15-29 and 3.70 for eGFR >29 ml/min/1.73m2. Looking at these numbers, 
it is tempting to compare the different hazard ratios and conclude that initiating 
dialysis at an eGFR <6 is associated with the best survival (since it has the lowest 
hazard ratio). However, we cannot compare the different hazard ratios with each 
other, since each hazard ratio is calculated conditional on surviving until a certain 
eGFR level. Therefore, the patients that contribute to the eGFR <6 analysis are only 
a subset of the patients that contribute to the analysis of dialysis effectiveness 
in individuals with an eGFR between 12-15. Naturally, the authors found that the 
effectiveness of dialysis was stronger in individuals with a low eGFR. These results 
tell you that if you do not initiate dialysis when you reach an eGFR of 6, you will die 
quickly. It does not tell you that initiating at an eGFR <6 is better than initiating at an 
eGFR between 9 and 12. 

Lastly, Scialla et al. elegantly applied an instrumental variables approach using 
geographic variation as an instrument (40). Similar to conventional observational 
analyses, instrumental variable analyses also rely on untestable assumptions 
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which are difficult to verify, e.g. that there are no confounders for the instrument-
outcome relationship (exogeneity assumption) and that the instrument influences 
the outcome mortality only through eGFR levels at dialysis initiation (exclusion 
restriction assumption). Secondly, it is difficult to interpret the effect estimate 
obtained from an instrumental variables analysis. Under additional assumptions 
(e.g. the monotonicity assumption) the effect estimate can be interpreted as the 
average causal effect of treatment in the subpopulation of compliers. However, it is 
not possible to identify this subpopulation of compliers, which makes it difficult to 
apply these findings for decision making. A more detailed discussion of merits and 
caveats of instrumental variable analysis can be found elsewhere (41-43).

A fourth bias: confounding
All observational studies are limited by confounding. However, published results 
show that confounding may not be the biggest problem in observational analyses. 
Rather, the preventable biases explained in the previous section are an important 
reason why observational analyses and randomized trials have led to different 
conclusions, e.g. in the case of statins and decreased cancer risk, the effect of 
hormonal replacement treatment on cardiovascular events in postmenopausal 
women, or the effect of timing of dialysis on outcomes (12, 15, 44). There are a 
number of recent analyses showing that properly conducted observational studies, 
in particular those explicitly emulating a trial, can in certain situations obtain similar 
estimates as randomized trials (e.g. if we apply similar inclusion/exclusion criteria, 
have enough data to emulate the treatment strategies, etc.) (16, 45). When data from 
randomized trials are available, it can help to compare the results obtained from 
the observational analysis with those from the trial. If these results align, this can 
add further validity to the methods and data used in the observational approach.

To avoid confounding as much as possible, we adjusted for a wide range of 
baseline and time-varying covariates, including demographic variables, laboratory 
measurements, medication use, medical history, and prior hospitalizations, many 
of which are used in the decision-making process to start dialysis. Sequential 
adjustment for confounding can also give an indication how large confounding bias 
is likely to be, and whether any additional adjustment would significantly affect the 
point estimate. This seemed not to be the case. Additional adjustment for urinary 
albumin-to-creatinine ratio and potassium measurements also did not suggest 
major residual confounding bias. 
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Calculation of postponement of dialysis using a linear mixed-
effects regression model.
To estimate the time from baseline until start of dialysis for various dialysis initiation 
strategies, we first fit the a linear mixed-effects regression model that describes the 
eGFR decline of the population over time. This model estimates the coefficients β, 
b and ε, as previously described by Crews et al. (38):

eGFRij = β0 + β1tij + β2(tij)
2 + b0i + b1itij + b2i(tij)

2 + εij (eq. 1)

where persons i = 1, …, n have eGFR measurements at occasions j=1, …, mi and tij 
= time in years after baseline. β terms represent fixed effects describing the 
population-average eGFR decline over time, b terms are random effects describing 
the patient-specific deviation from this population average, and ε terms represent 
the patient- and occasion-specific residuals. All eGFR measurements until the start 
of dialysis were used for the estimation of this model. 

Using the coefficients  of the fitted model, we solved the quadratic equation for t to 
obtain time until dialysis for various eGFR levels. 

where
 

Next, dialysis times were subtracted from the reference value of dialysis initiation 
at eGFR6-7. To obtain 95% confidence intervals around these differences, parametric 
bootstrapping based on 10.000 samples was used. 

β0 + β1t + β2t
2 = eGFR (eq. 2)

β0 = 21.0, β1 = -2.7+ β2=0.05.  ̂ ̂ ̂

̂ ̂ ̂
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Summary of main findings 
The aim of this thesis was to substantially contribute to decision making in kidney 
disease. It answered a number of clinical questions on the effectiveness and safety 
of therapies by applying state-of-the-art methods to routinely collected healthcare 
data. In addition, we aimed to raise awareness on potential biases that could arise 
when using observational data for these purposes and how to mitigate them. 

Observational studies with a causal aim can be plagued by a number of biases, 
of which some are discussed in Chapter 2. Although confounding by indication is 
a threat to any observational study assessing the causal effects of treatments, 
questions on unintended treatment effects and questions which involve an active 
comparator may be less susceptible to confounding. Remaining confounding should 
be addressed in the statistical analysis, where confounders to adjust for should be 
identified using subject matter knowledge, for example by using causal diagrams. 
Only measured confounding can be adjusted for, and this can be done through 
multivariable regression, standardization or propensity score (PS) methods. For point 
treatments, all methods are capable to adjust for measured confounders. However, 
in the setting of sustained treatments and treatment-confounder feedback, special 
methods based on standardization or weighting are required. The impact of residual 
confounding can be explored by calculating the E-value, performing quantitative 
bias analysis, or applying a negative control outcome or positive cohort analysis. 
These analyses can make the assumption of no unmeasured confounding more or 
less plausible. In addition to confounding, prevalent user bias and immortal time bias 
are important limitations in many observational studies. These biases arise whenever 
the start of follow-up and the start of exposure do not align. Explicit emulation of a 
randomized trial can eliminate these biases since it forces the alignment of follow-up 
and exposure. Lastly, missing data and measurement error often occur in routinely 
collected healthcare data. Methods such as multiple imputation and quantitative 
bias analysis are therefore recommended. 

In Chapter 3 we further discussed the concept, merits, and possible caveats of 
PS methods, a popular statistical method to control for measured confounding. 
Various methods that use the PS to control for confounding exist. These include 
PS matching, PS stratification, multivariable regression analysis including the PS 
as a covariate, and PS weighting. PS methods offer a number of advantages: it is 
possible to check for covariate balance, to choose a specific target population 
and to exclude individuals in non-overlapping regions of the PS distribution. 
Furthermore, PS methods are preferred in the setting of high-dimensional data with 
many confounders and relatively few outcomes. 
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In Chapter 4 we highlighted immortal time bias in a published observational study 
aiming to estimate the causal effect of metformin in diabetic kidney disease. We 
propose a number of solutions that could have been applied to eliminate this bias. 
These include modelling metformin use as a time-varying exposure, landmarking or 
the use of grace periods in combination with the cloning, censoring and weighting 
method. Alternatively, a sequential trial approach could have been applied. 

In Chapter 5 we studied the association between acute increases of creatinine and 
cardiovascular and kidney outcomes. Patients with higher creatinine increase after 
initiation of RASi were at higher risk of death, heart failure, myocardial infarction and 
end-stage kidney disease. We also found that only 18% of individuals initiating RASi 
received the recommended creatinine monitoring, and that increases between 
10-29% were common among monitored individuals. These results do not address 
the issue of discontinuation of RASi when creatinine increases but do suggest that 
patients with increases in creatinine have higher subsequent risk of cardiovascular 
and kidney outcomes.

Chapter 6 is a comparative effectiveness study of RASi versus calcium 
channel blockers on kidney replacement therapy, mortality and major adverse 
cardiovascular events in individuals with advanced CKD. We found that initiation of 
RASi was associated with a lower risk of kidney replacement therapy, and similar 
risks of mortality and cardiovascular events, compared with calcium channel 
blockers. We also performed analyses in a positive control cohort of patients with  
mild-to-moderate CKD, which aligned with evidence from previous randomized 
trials. A negative control analysis using cancer incidence did not indicate residual 
confounding by body mass index or smoking. These findings may inform clinical 
decisions on the choice of antihypertensive therapy in patients with advanced CKD. 

In Chapter 7 we found that β-blocker use at discharge was associated with a 
lower risk of mortality and cardiovascular mortality/heart failure hospitalization 
in individuals with heart failure with reduced ejection fraction and advanced CKD. 
A positive control analysis in individuals with heart failure with reduced ejection 
fraction and mild-to-moderate CKD showed a similar reduction in outcomes for 
β-blocker users. Such benefits were not observed in individuals with advanced 
CKD and midrange or preserved ejection fraction, although these results were 
inconclusive due to limited power. These findings suggest that β-blockers are 
effective in patients with heart failure with reduced ejection fraction across the 
spectrum of kidney function. 

In Chapter 8 we examined the effect of stopping versus continuing RASi in individuals 
with advanced CKD on mortality, major adverse cardiovascular events and kidney 
replacement therapy. We observed that individuals who stopped RASi had a higher 
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risk of mortality and major adverse cardiovascular events, but a lower risk of kidney 
replacement therapy. Similar findings were obtained when modelling RASi use as a 
time-varying covariate in a marginal structural model, when additionally adjusting 
for potassium and albumin-to-creatinine ratio and within subgroups, including 
when RASi was stopped at higher (eGFR 20-30 ml/min/1.73m2) or lower eGFR (<20 
ml/min/1.73m2). These findings caution against routine discontinuation of RASi in 
individuals with advanced CKD, while awaiting evidence from the STOP-ACEi trial.

Chapter 9 addresses the question whether there is an optimal kidney function 
to start dialysis. We were able to replicate the findings of the randomized IDEAL 
trial using observational data. We further showed that early dialysis initiation was 
associated with a modest reduction in mortality and cardiovascular events (with an 
eGFR of 15-16 versus 6-7 ml/min/1.73m2). This translated to a mean postponement 
of death of 1.6 months at the expense of starting dialysis 48 months earlier. We also 
show that previous observational studies suffered from lead time bias, selection 
bias and immortal time bias, that these biases can be avoided by applying the target 
trial emulation framework, and that incorrect analysis of our own data leads to 
similar biased results. Collectively, these findings indicate that there is little benefit 
of starting dialysis early based on eGFR alone. Future studies may investigate 
whether dialysis should be started based on symptom burden, to further improve 
clinical outcomes. 

Future perspectives 
The number of observational studies using routinely collected data is ever 
increasing. In this thesis we highlighted that the use of such data to inform clinical 
practice represents a double-edged sword: on the one hand it offers tremendous 
opportunities to study how treatments work in real-world practice, to study 
questions that are difficult to answer in randomized trials, and to study populations 
that were underrepresented in trials. On the other hand, several biases can 
invalidate the findings from observational studies: confounding bias, immortal time 
bias or prevalent user bias to name just a few. 

How should we move forward to provide the best evidence for treating patients with 
kidney disease? Of course, more trials need to be conducted. In kidney disease, there 
have been relatively few randomized trials conducted (1), and patients with kidney 
disease have been largely excluded from trials in other fields, such as cardiology or 
oncology (2, 3). In order to solve this issue, others have called for reducing the costs 
and complexity of conducting trials, including the bureaucratic burden (4, 5). That this 
is possible has been proven by the RECOVERY trial, which randomized over 39.000 
patients hospitalized for COVID-19 in less than a year (6). Additional examples include 
the publication of “large, simple trials” in the past decades (7) and recent innovations in 
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trial design such as the registry-based trial (8). Fortunately, the field of kidney disease 
seems to be catching up, with the publication of a number of important clinical trials 
(9-13) and other trials now actively recruiting patients (14-17). In addition to conducting 
more trials, novel approaches to generalize trial results to other populations can 
bridge the gap between trials and routine clinical practice (18, 19).

A fundamental question is whether it is even possible to draw causal conclusions 
from observational data. Indeed, some researchers are of the opinion that only 
randomized trials can obtain causal conclusions and observational studies cannot, 
and that only randomized trials are therefore useful (4, 20). However, this is a false 
dichotomy. Causality is not a yes/no statement and is rarely concluded on the 
basis of one study, since it always involves the totality of evidence, which can 
come from laboratory studies, observational studies, and RCTs. Furthermore, there 
are considerable differences in quality between observational studies, with some 
better able to come to causal conclusions and others less so. On the one hand, 
well-conducted observational studies have successfully replicated or predicted 
the findings of RCTs (21-31). On the other hand, numerous examples exist where 
observational studies have failed to do so (20, 32-35). The latter can often be 
explained by the fact that the these observational studies used flawed methods 
which introduced unnecessary biases, such as immortal time bias or prevalent user 
bias, rather than the presence of unmeasured confounding (36). These biases arise 
whenever the timing of the following three elements is not aligned at baseline: start 
of follow-up, start of the treatment strategies, and fulfilment of all eligibility criteria 
for each included patient (36). Since randomization automatically aligns the timing 
of these elements, trialists never have to worry about this problem. However, this 
is not the case in observational data where researchers must carefully think about 
baseline and handle this appropriately in their analyses. Examples from the literature 
where well-conducted observational studies were able to obtain answers similar to 
trials, whereas observational studies that introduced preventable biases were not, 
include studies on the timing of dialysis initiation and the risk of mortality (this thesis), 
postmenopausal hormone therapy and the risk of coronary heart disease (26, 32, 37, 
38), statins and the risk of cancer (23, 33, 39, 40), timing of combined anti-retroviral 
therapy and risk of mortality (21), dabigatran and the risk of stroke (34, 41, 42), sodium-
glucose cotransporter 2 inhibitors and the risk of mortality (35, 43, 44) and colonoscopy 
screening and the risk of colorectal cancer (45, 46). Using the target trial emulation 
framework can help to eliminate these unnecessary design flaws (47), forces the 
researcher to ask meaningful causal questions (48, 49), facilitates communication 
and guides the statistical analysis (50-52). In addition, investigators should use the 
analytical methods that are best suited to answer the clinical question at hand. 
For example, the cloning, censoring and weighting method is suitable to answer 
questions which 1) compare different timings of an intervention (“When should we 
start treatment?”); 2) compare different durations of a treatment (“How long should we 



222

treat?”) and 3) involve a grace period (“Should treatment be started within x months 
after event y or not?”) (53). When the aim is to compare initiation of a treatment against 
no initiation, a random eligibility date needs to be chosen for the non-initiators or 
a sequential trial approach should be used to correctly handle baseline (22, 45). 
Researchers conducting observational studies should therefore have the appropriate 
methodological expertise and receive thorough training to correctly implement the 
methods, or involve someone with this expertise. When flawed methods are applied, 
flawed answers will be obtained. 

Ongoing systematic replications of randomized trials using observational data, 
such as the RCT-DUPLICATE initiative (25, 27, 54, 55) and other efforts (24, 56-61), are 
therefore essential to demonstrate that observational studies can lead to the same 
conclusion as RCTs if done adequately. They will also provide valuable insights 
under which circumstances (i.e. for which study question, analytical methods, 
and data sources) one can come to causal conclusions in observational data and 
study treatment effects without randomization. These studies use principled causal 
inference methods and also try to emulate trial inclusion and exclusion criteria as 
much as possible to ensure that findings do not differ because of applying flawed 
methods or different patient populations (55). Such calibration studies need to be 
performed in the field of kidney disease as well. 

Furthermore, not all observational studies are equally sensitive to confounding. 
Whether an observational study can come to causal conclusions greatly 
depends on the study question at hand, which has been referred to as an “axis of 
haphazardness of exposure” (62). Pharmacoepidemiological studies investigating 
harmful unintended effects of medications suffer less from (residual) confounding 
than studies investigating (un)intended beneficial effects. Indeed, regulatory 
agencies have a long history of using evidence from observational studies to 
assess the safety of medications. Furthermore, studies that involve the comparison 
of two drugs that are prescribed for similar indications are much less susceptible 
to confounding compared with studies that compare a drug against no drug 
(63). It is difficult to study questions comparing initiation versus no initiation in 
observational data, since treatment initiation is a marker of disease severity or – in 
the case of preventive treatments – a marker of health-seeking behaviour; both 
of these sources of bias may not be completely captured in observational data. In 
such cases, treatment selection may be so strong that baseline randomization is 
necessary. Nevertheless, successful applications do exist in literature (22, 26). 

The ability to draw causal conclusions also greatly depends on the data that are 
used (64, 65), and the variables that are available in the database. Before embarking 
on a study, investigators should ask whether the data are of sufficient quality for the 
particular study. When sufficient granularity in exposures, outcomes or covariates 
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are missing, one may choose not to proceed with the analysis. Specifically for 
kidney disease, availability of routine laboratory measurements such as creatinine 
and albuminuria are often essential to adequately control for confounding. 

Although the absence of unmeasured confounding remains an assumption that 
cannot be verified, researchers must carefully justify this assumption as best as 
possible, which is the difficult part of epidemiological research. Different analyses 
can be used to strengthen our confidence in the validity of findings, e.g. positive 
and negative control analyses, which could be either outcomes or cohorts for 
which we expect certain associations (either null or non-null). These analyses can 
be performed to explore whether it is feasible to answer a particular question even 
before conducting the primary analysis (66, 67). If trial results are available, the 
results of the observational analysis can be compared with those obtained in the 
trial, taking into account whether similar treatment strategies and study populations 
were investigated. In addition, adequate control must be made for confounding. For 
instance, whenever time-dependent confounding is present, G-methods such as 
inverse probability weighting of marginal structural models are required to obtain 
unbiased estimates (68). Propensity scores are a popular method to adjust for 
measured confounders. The many developments in propensity score methodology 
offer great flexibility in specification of the target population (to which population 
do our results apply), covariate balance, and precision (69). Importantly, covariate 
balance on measured and unmeasured confounders should be checked prior to 
analysis. In propensity score analyses, unmeasured confounders are only balanced 
to the extent that they are correlated with measured variables that were included in 
the propensity score. Therefore, a key approach to adjust for residual confounding 
from unobserved factors is to adjust for as many proxies of the underlying confounder 
as possible (e.g. diagnoses, procedures, medications, number of hospitalizations), 
which should be measured before the start of treatment to prevent adjusting for 
causal intermediates (28, 70). Whenever certain confounders are only available 
for a subset of the population and are not used in the adjustment set, balance 
in this variable after propensity score matching/weighting increases confidence 
that other unmeasured variables are also balanced. Besides confounding, other 
sources of bias should be investigated as well through sensitivity analyses, such as 
differential outcome ascertainment. E.g., when investigating a 30% GFR decline as 
outcome, one should check whether both treatment arms have the same intensity 
of creatinine testing during follow-up (71). Quantitative bias analyses can be used to 
investigate the influence of remaining biases. 
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Furthermore, different observational studies applying different causal methods 
can be used to triangulate evidence (72), since each method has its own specific 
assumptions. On this note, there are great opportunities for exchange of (quasi-
experimental) methods from other scientific fields, such as regression discontinuity 
(73). Lastly, several other measures can increase the reproducibility of observational 
studies (74). These include preregistration of observational studies (75), the 
publication of codes (76), and adhering to reporting guidelines (77-80). In essence, 
the process of conducting observational studies should mimic the regulatory 
submission process of randomized trials. For example, no treatment-specific 
outcome analyses should be conducted until full specification and registration of 
the protocol (67).

In conclusion, obtaining evidence from non-experimental and experimental studies 
will remain important as both sources of evidence complement each other. Well-
conducted observational studies can provide valuable evidence for decision-
making in the field of kidney disease but also for medicine in general. All we need 
to do is to answer the right questions with the correct methods.
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Nederlandse samenvatting (Dutch summary) 

Samenvatting van belangrijkste bevindingen
Het doel van dit proefschrift was om een substantiële bijdrage te leveren aan 
de besluitvorming bij patiënten met nierziekten. In dit proefschrift zijn een aantal 
klinische vragen beantwoord over de effectiviteit en veiligheid van therapieën 
door gebruik te maken van state-of-the-art methoden en routinematig 
verzamelde zorgdata. Daarnaast is getracht het bewustzijn te vergroten voor 
potentiële systematische vertekeningen die kunnen optreden bij het gebruik van 
observationele data, en hoe deze biases verminderd kunnen worden.

Observationele studies met een causaal doel kunnen geplaagd worden door 
verschillende biases, waarvan enkele worden beschreven in hoofdstuk 2. 
Alhoewel confounding door indicatie een gevaar vormt bij alle observationele 
studies die als doel hebben de causale effecten van behandelingen te schatten, 
kunnen vragen over onbedoelde behandeleffecten en vragen met een actieve 
controlegroep minder gevoelig zijn voor confounding. De resterende confounding 
moet geadresseerd worden in de statistische analyse, waarbij confounders 
geïdentificeerd moeten worden op basis van vakinhoudelijke kennis, bijvoorbeeld 
door gebruik te maken van causale diagrammen. Er kan alleen gecorrigeerd worden 
voor gemeten confounding en dit kan gedaan worden met multivariabele regressie, 
standaardisatie of propensity score methoden. Voor eenmalige behandelingen 
kunnen alle methoden even goed corrigeren voor gemeten confounders. In de 
setting van langdurige behandelingen en behandeling-confounder feedback zijn 
speciale methoden gebaseerd op standaardisatie of wegen nodig. De impact van 
residuele confounding kan worden onderzocht door een E-waarde te berekenen, 
door middel van een kwantitatieve bias analyse, of door het uitvoeren van een 
negatieve controle uitkomst of positieve cohort analyse. Naast confounding 
zijn prevalent user bias en immortal time bias belangrijke limitaties in veel 
observationele studies. Deze biases ontstaan wanneer de start van follow-up en 
de start van de blootstelling niet overeenkomen. Het expliciet emuleren van een 
gerandomiseerde trial kan deze biases elimineren aangezien dit forceert dat de 
start van follow-up en blootstelling overeenkomen. Ten slotte komen missende 
waarden en meetfouten veelvuldig voor in routinematig verzamelde zorgdata. Het 
wordt daarom aanbevolen om methoden zoals multipele imputatie of kwantitatieve 
bias analyse toe te passen. 

In hoofdstuk 3 bediscussiëren we het concept en de voor- en nadelen van 
propensity score (PS) methoden, een populaire statistische methode om te 
corrigeren voor gemeten confounding. Er bestaan verschillende soorten PS 
methoden. Dit zijn PS matching, PS stratificatie, multivariabele regressie waarbij de 
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PS als variabele wordt toegevoegd, en PS wegen. PS methoden hebben een aantal 
voordelen ten opzichte van conventionele multivariabele regressie: het is mogelijk 
om de balans van variabelen te checken, om een specifieke target populatie te 
kiezen, en om individuen te excluderen die zich in de niet-overlappende delen 
van de PS distributie bevinden. Daarnaast hebben PS methoden de voorkeur in 
de setting van hoog-dimensionele data waarbij er veel confounders zijn en relatief 
weinig uitkomsten. 

In hoofdstuk 4 besteden we aandacht aan immortal time bias in een gepubliceerde 
observationele studie die als doel heeft om het causale effect van metformine te 
schatten in patiënten met diabetische nefropathie. We stellen een aantal oplossingen 
voor die toegepast hadden kunnen worden om deze bias te elimineren. Dit zijn 
onder andere het modelleren van metformine als tijdsafhankelijke blootstelling, 
landmarken of het gebruik van grace periodes in combinatie met de cloning-
censoring-weighting methode. Een andere optie is het emuleren van een trial met 
de sequentiële trial methode. 

In hoofdstuk 5 bestuderen we de associatie tussen acute stijgingen in creatinine 
na het starten van RAS-blokkers en cardiovasculaire en nieruitkomsten. Patiënten 
met een hogere creatininestijging na de start van RAS-blokkers hadden een hoger 
risico op sterfte, hartfalen, myocardinfarcten en nierfalen. We vonden ook dat 
slechts 18% van de individuen die RAS blokkade startten de aanbevolen creatinine 
monitoring kregen, en dat creatininestijgingen tussen de 10-29% regelmatig 
voorkwamen bij gemonitorde individuen. Deze studie adresseert niet de kwestie 
van het stoppen van RAS-blokkers bij creatininestijgingen, maar suggereert wel dat 
patiënten met een creatininestijging een hoger risico hebben op cardiovasculaire 
en nieruitkomsten.

Hoofdstuk 6 is een vergelijkend effectiviteitsonderzoek tussen RAS-blokkers en 
calciumantagonisten op het starten van nierfunctie-vervangende therapie (dialyse 
of niertransplantatie), sterfte en cardiovasculaire uitkomsten (een combinatie 
van cardiovasculaire sterfte, myocardinfarct of beroerte) in patiënten met 
gevorderde chronische nierziekten. We vonden dat het starten van RAS blokkade 
was geassocieerd met een lager risico op nierfunctie-vervangende therapie en 
vergelijkbare risico’s op sterfte en cardiovasculaire uitkomsten vergeleken met 
calciumantagonisten. Daarnaast is een analyse uitgevoerd in een positief controle 
cohort van patiënten met milde tot matige chronische nierziekten, waarvan de 
resultaten overeenkwamen met bewijs uit eerdere gerandomiseerde onderzoeken. 
Een negatieve controle analyse met kanker als uitkomst suggereerde geen 
residuele confounding door body mass index of roken. Deze bevindingen zouden 
de klinische besluitvorming rond de keuze van antihypertensiva kunnen informeren 
in patiënten met gevorderde chronische nierziekten.
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In hoofdstuk 7 vonden we dat het gebruik van β-blokkers bij ziekenhuisontslag 
geassocieerd was met een lager risico op sterfte, en een gecombineerd eindpunt 
van cardiovasculaire sterfte en ziekenhuisopnames voor hartfalen in individuen 
met hartfalen met een verminderde ejectiefractie en gevorderde chronische 
nierziekten. Een positieve controle analyse in individuen met hartfalen met een 
verminderde ejectiefractie en milde tot matige chronische nierziekten lieten 
vergelijkbare reducties in uitkomsten zien voor gebruikers van β-blokkers. Deze 
voordelen werden niet gezien in individuen met gevorderde chronische nierziekten 
en matige of behouden ejectiefractie, alhoewel deze analyses niet eenduidig 
waren door lage power. Deze bevindingen suggereren dat β-blokkers effectief 
zijn in patiënten met hartfalen met een verminderde ejectiefractie over het gehele 
spectrum van nierfunctie. 

In hoofdstuk 8 is het effect van stoppen versus doorgaan van RAS-blokkers in 
individuen met gevorderde chronische nierziekte onderzocht op de uitkomsten 
sterfte, cardiovasculaire uitkomsten, en nierfunctie-vervangende therapie. We 
observeerden dat individuen die stopten met RAS blokkade een hoger risico 
hadden op sterfte en cardiovasculaire uitkomsten, maar een lager risico hadden 
op nierfunctie-vervangende therapie. Vergelijkbare bevindingen werden verkregen 
wanneer gebruik van RAS-blokkers werd gemodelleerd als tijdsafhankelijke variabele 
in een marginal structural model, wanneer daarnaast gecorrigeerd werd voor kalium 
en albumine-creatinine ratio, en in subgroepen, inclusief het stoppen van RAS-
blokkers bij een hogere (nierfunctie tussen 20-30%) of lagere eGFR (nierfunctie <20%). 
Deze bevindingen suggereren dat, terwijl de resultaten van de gerandomiseerde 
STOP-ACEi trial worden afgewacht, niet routinematig moet worden gestopt met 
RAS-blokkers in patiënten met gevorderde chronische nierziekten. 

Hoofdstuk 9 adresseert de vraag of er een optimale nierfunctie is om te starten met 
dialyse. In dit onderzoek konden we met observationele data de bevindingen van 
de gerandomiseerde IDEAL trial repliceren. Daarnaast toonden we aan dat vroeg 
starten met dialyse geassocieerd was met een bescheiden vermindering in sterfte 
en cardiovasculaire uitkomsten (met een nierfunctie tussen de 15-16% versus een 
nierfunctie tussen 6-7%). Dit vertaalde zich naar een hogere levensverwachting van 
1,6 maanden, terwijl dialyse gemiddeld 48 maanden eerder gestart zou moeten 
worden. We tonen ook aan dat eerdere observationele studies leden aan lead time 
bias, selectiebias en immortal time bias, dat deze systematische vertekeningen 
voorkomen hadden kunnen worden als het target trial emulatie framework was 
toegepast, en dat incorrecte analyse van onze eigen data tot dezelfde verkeerde 
resultaten leidt. Als geheel wijzen deze resultaten erop dat er weinig voordeel is van 
het vroeg starten van dialyse op basis van nierfunctie alleen. In toekomstige studies 
kan worden onderzocht of dialyse gestart moet worden op basis van symptomen 
om klinische uitkomsten verder te verbeteren.  
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Toekomstperspectieven
Het aantal observationele studies dat gebruik maakt van routinematig verzamelde 
zorgdata neemt almaar toe. In dit proefschrift is toegelicht dat het gebruik van dit 
soort data om de klinische praktijk te informeren een tweesnijdend zwaard betreft: 
aan de ene kant biedt het enorme kansen om te bestuderen hoe behandelingen 
in de routine klinische praktijk werken, om vragen te bestuderen die moeilijk te 
beantwoorden zijn in gerandomiseerde trials, en om populaties te bestuderen die 
zijn ondervertegenwoordigd in trials. Aan de andere kant kunnen verscheidene 
biases de bevindingen uit observationele studies vertekenen: confounding bias, 
immortal time bias en prevalent user bias om er slechts een paar te noemen.

Hoe moeten we verder om het beste bewijs te leveren voor de behandeling 
van patiënten met nierziekten? Natuurlijk zullen er meer gerandomiseerde trials 
moeten komen. In nierziekten zijn relatief weinig gerandomiseerde trials gedaan, 
en patiënten met nierziekten zijn overwegend geëxcludeerd uit trials in andere 
vakgebieden zoals de cardiologie en oncologie. Om dit probleem op te lossen 
hebben andere onderzoekers opgeroepen tot vermindering van de kosten en 
complexiteit van trials, inclusief de bureaucratische last. Dat dit mogelijk is, is 
recent aangetoond door de RECOVERY trial, die binnen een jaar meer dan 39.000 
gehospitaliseerde COVID-19 patiënten heeft gerandomiseerd. Andere voorbeelden 
zijn onder andere de publicatie van zogeheten “grote, simpele trials” in de afgelopen 
decennia en recente innovaties in trial design zoals de registratie-gebaseerde 
trial. Gelukkig lijkt het vakgebied van nierziekten een inhaalslag te maken, met 
de publicaties van een aantal belangrijke klinische trials, terwijl andere trials nu 
actief bezig zijn met het includeren van patiënten. Naast het uitvoeren van meer 
trials kunnen nieuwe benaderingen om trialresultaten te generaliseren naar andere 
populaties de kloof tussen trials en de dagelijkse klinische praktijk overbruggen. 

Een fundamentele vraag is of het überhaupt mogelijk is causale conclusies te 
trekken uit observationele data. Sommige onderzoekers zijn inderdaad van mening 
dat causale conclusies alleen uit gerandomiseerde trials kunnen worden getrokken, 
maar niet uit observationele studies, en dat alleen gerandomiseerde onderzoeken 
nuttig zijn. Dit is echter een valse tweedeling. Causaliteit is niet een ja/nee 
statement en wordt zelden geconcludeerd op basis van één studie, aangezien het 
altijd om de totaliteit van bewijs gaat, wat kan komen uit laboratorium onderzoek, 
observationele studies en gerandomiseerde trials. Daarnaast zijn er substantiële 
verschillen in kwaliteit tussen observationele studies, waarbij sommigen beter tot 
causale conclusies kunnen komen dan anderen. Aan de ene kant is het mogelijk 
met goed uitgevoerde observationele studies de resultaten van gerandomiseerde 
trials te repliceren of zelfs te voorspellen. Aan de andere kant bestaan er legio 
voorbeelden van observationele studies waarbij dit niet is gelukt. Dit laatste kan 
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vaak verklaard worden door het feit dat deze observationele studies gebrekkige 
methoden hebben gebruikt die onnodige systematische vertekeningen 
introduceerden, zoals immortal time bias en prevalent user bias, en werd in deze 
gevallen niet veroorzaakt door de aanwezigheid van ongemeten confounding. Deze 
biases ontstaan als de timing van de volgende drie elementen niet overeenkomt op 
baseline: de start van follow-up, de start van de behandelstrategieën en het voldoen 
aan alle inclusiecriteria. Omdat door randomisatie de timing van deze elementen 
automatisch overeenkomt, hoeven onderzoekers van gerandomiseerde trials zich 
hier nooit zorgen over te maken. Dit is echter niet het geval voor observationele data, 
waar de onderzoeker zorgvuldig moet nadenken over de baseline en hier adequaat 
mee om moet gaan in de analyses. Voorbeelden uit de literatuur waarbij goed 
uitgevoerde observationele studies in staat waren dezelfde antwoorden te krijgen 
als trials, terwijl observationele studies die vermijdbare biases introduceerden dit 
niet konden bereiken, zijn onder andere onderzoeken naar de timing van dialyse 
en het risico op sterfte (dit proefschrift), postmenopauzale hormoontherapie en 
het risico op coronaire hartziekten, statines en het risico op kanker, de timing van 
antiretrovirale behandeling en het risico op sterfte, dabigatran en het risico op 
beroertes, sodium-glucose cotransporter 2 remmers en het risico op sterfte, en 
colonoscopie screening en het risico op darmkanker. Het gebruik van het target 
trial emulatie framework kan helpen om deze onnodige studiedesign gebreken 
te elimineren, dwingt de onderzoeker om betekenisvolle causale vragen te 
stellen, faciliteert de communicatie en is leidend voor de statistische analyse. 
Daarnaast moeten onderzoekers de analytische methoden gebruiken die het 
best passen bij de klinische onderzoeksvraag. De cloning-censoring-weighting 
methode is bijvoorbeeld geschikt om vragen te beantwoorden die 1) verschillende 
initiatiemomenten van een interventie vergelijken (“Wanneer moeten we starten 
met de behandeling?”); 2) verschillende behandelduur vergelijken (“Hoe lang 
moeten we behandelen?”) en 3) een grace periode bevatten (“Moet de behandeling 
binnen x maanden gestart worden na event y of niet?”). Wanneer het doel is om het 
effect van het starten van een behandeling te vergelijken met het niet starten van 
deze behandeling kan een random inclusiedatum gekozen worden voor de niet-
starters, of zal een sequentiële trial methode gebruikt moeten worden om correct 
om te gaan met baseline. Onderzoekers die observationele studies uitvoeren 
zullen daarom moeten beschikken over geschikte methodologische expertise 
en een gedegen opleiding om deze methoden correct toe te passen, of iemand 
moeten inschakelen die deze expertise heeft. Wanneer gebrekkige methoden 
worden toegepast, zullen gebrekkige antwoorden worden verkregen. 

Lopende systematische replicaties van gerandomiseerde trials met observationele 
data, zoals het RCT-DUPLICATE initiatief en andere inspanningen zijn daarom 
essentieel om aan te tonen dat observationele onderzoeken tot dezelfde 
conclusies leiden als gerandomiseerde onderzoeken, mits adequaat uitgevoerd. 
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Deze inspanningen zullen ook waardevolle inzichten geven onder welke 
omstandigheden (dat wil zeggen voor welke onderzoeksvragen, analytische 
methoden en databronnen) men zonder randomisatie tot causale conclusies 
kan komen in observationele data, en de effecten van behandelingen kan 
bestuderen zonder randomisatie. Deze initiatieven maken gebruik van principiële 
causal inference methoden en proberen ook de in- en exclusiecriteria van trials 
zo nauwkeurig mogelijk na te bootsen, om ervoor te zorgen dat de bevindingen 
niet verschillen door toepassing van gebrekkige methoden of verschillende 
patiëntpopulaties. Dergelijke calibratiestudies zullen ook op het gebied van 
nierziekten moeten worden uitgevoerd.

Bovendien zijn niet alle observationele studies even gevoelig voor confounding. Of 
een observationele studie tot causale conclusies kan komen hangt sterk af van de 
onderzoeksvraag, die wel eens de “axis of haphazardness” is genoemd. Farmaco-
epidemiologische studies die schadelijke, onbedoelde effecten van medicijnen 
onderzoeken hebben minder last van (residuele) confounding dan studies die 
(on)bedoelde gunstige effecten onderzoeken. Regelgevende instanties maken 
inderdaad al langdurig gebruik van bewijs verkregen uit observationele studies om 
de veiligheid van medicijnen te beoordelen. Daarnaast zijn onderzoeken waarin twee 
geneesmiddelen met elkaar worden vergeleken die voor vergelijkbare indicaties 
worden voorgeschreven minder vatbaar voor confounding dan onderzoeken 
waarin een geneesmiddel wordt vergeleken met geen geneesmiddel. Het is 
moeilijk om in observationele data vragen te bestuderen waarin het starten van 
een medicijn wordt vergeleken met het niet starten, aangezien het starten van 
de behandeling een marker is voor de ernst van de ziekte of - in het geval van 
preventieve behandelingen - een marker van gezondheidszoekend gedrag; beide 
bronnen van bias zijn mogelijk niet volledig vastgelegd in de observationele data. 
In deze gevallen kan de selectie voor behandeling zo sterk zijn dat randomisatie 
noodzakelijk is. Desalniettemin bestaan er succesvolle toepassingen in de literatuur.

Het vermogen om causale conclusies te trekken hangt ook sterk af van de data 
die worden gebruikt en de variabelen die in de database beschikbaar zijn. Alvorens 
aan een onderzoek te beginnen, dienen onderzoekers zich af te vragen of de data 
van voldoende kwaliteit zijn voor het betreffende onderzoek. Wanneer voldoende 
gedetailleerdheid in blootstelling, uitkomsten of covariabelen ontbreekt, kan men 
ervoor kiezen om niet verder te gaan met de analyse. Specifiek voor nierziekten is 
de beschikbaarheid van routinematige laboratoriummetingen zoals creatinine en 
albuminurie vaak essentieel om adequaat te corrigeren voor confounding. 

Hoewel de afwezigheid van ongemeten confounding een assumptie blijft die 
niet kan worden geverifieerd, moeten onderzoekers deze assumptie zorgvuldig 
en zo goed mogelijk rechtvaardigen, wat natuurlijk het moeilijke gedeelte van 
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epidemiologisch onderzoek is. Verschillende analyses kunnen worden gebruikt 
om het vertrouwen in de validiteit van bevindingen te versterken, zoals positieve 
en negatieve controle analyses, die zowel uitkomsten als cohorten zouden kunnen 
zijn waarvoor we bepaalde associaties verwachten. Deze analyses kunnen worden 
uitgevoerd om te onderzoeken of het haalbaar is om een bepaalde vraag te 
beantwoorden, zelfs voordat de primaire analyse is uitgevoerd. Indien resultaten uit 
gerandomiseerde trials beschikbaar zijn, kunnen de resultaten van de observationele 
analyse worden vergeleken met de resultaten van de trial, in acht nemend of 
dezelfde behandelstrategieën en studiepopulaties zijn onderzocht. Daarnaast 
moet er adequaat worden gecorrigeerd voor confounding. Wanneer bijvoorbeeld 
tijdsafhankelijke confounding aanwezig is, zijn G-methods zoals inverse probability 
weighting van marginal structural models vereist om juiste schattingen te krijgen. 
Propensity scores zijn een populaire methode om te corrigeren voor gemeten 
confounders. De vele ontwikkelingen in de propensity score-methodologie 
bieden een grote flexibiliteit voor het specificeren van de doelpopulatie (op welke 
populatie zijn onze resultaten van toepassing), balans in confounders, en precisie. 
Belangrijk is dat de balans op gemeten en ongemeten confounders voorafgaand 
aan de analyse moet worden gecontroleerd. In propensity score analyses worden 
ongemeten confounders alleen gebalanceerd voor zover ze gecorreleerd zijn 
met gemeten variabelen die zijn geïncludeerd in de propensity score. Daarom is 
een belangrijke aanpak om te corrigeren voor residuele confounding door niet-
geobserveerde factoren om te corrigeren voor zoveel mogelijk proxy's van de 
onderliggende confounder (bijvoorbeeld diagnoses, procedures, medicijnen, 
aantal ziekenhuisopnames), die vóór de start van de behandeling moeten worden 
gemeten om correctie voor causale mediatoren te voorkomen. Wanneer bepaalde 
confounders alleen beschikbaar zijn voor een subset van de populatie en niet 
kunnen worden gebruikt om voor te corrigeren, kan de balans in deze variabele 
na het matchen/wegen van de propensity score het vertrouwen verhogen 
dat andere niet-gemeten variabelen ook in evenwicht zijn. Naast confounding 
moeten ook andere bronnen van vertekening worden onderzocht door middel van 
sensitiviteitsanalyses, zoals differentiële misclassificatie. Bij het onderzoeken van 
een 30% GFR-afname als uitkomst, moet men bijvoorbeeld controleren of beide 
behandelarmen dezelfde intensiteit van creatininetesten hebben tijdens follow-up. 
Kwantitatieve bias-analyses kunnen worden gebruikt om de invloed van resterende 
systematische vertekeningen te onderzoeken.

Bovendien kunnen verschillende observationele studies die verschillende 
causale methoden toepassen, worden gebruikt om bewijs te trianguleren, 
aangezien elke methode zijn eigen specifieke assumpties heeft. Op dit punt 
zijn er grote kansen voor uitwisseling van (quasi-experimentele) methoden uit 
andere wetenschapsgebieden, zoals regressiediscontinuïteit. Ten slotte kunnen 
verschillende andere maatregelen de reproduceerbaarheid van observationele 
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studies vergroten. Dit omvat preregistratie van observationele studies, de publicatie 
van codes en het volgen van rapportagerichtlijnen. In wezen zou het proces van het 
uitvoeren van observationele onderzoeken het regelgevende indieningsproces van 
gerandomiseerde onderzoeken moeten nabootsen. Er mogen bijvoorbeeld geen 
behandeling-uitkomstanalyses worden uitgevoerd totdat het protocol volledig is 
gespecificeerd en geregistreerd.

Concluderend zal het verkrijgen van bewijs uit niet-experimentele en experimentele 
studies belangrijk blijven, aangezien beide bronnen van bewijs elkaar aanvullen. 
Goed uitgevoerde observationele studies kunnen waardevol bewijs leveren voor 
de besluitvorming op het gebied van nierziekten, maar ook voor de geneeskunde 
in het algemeen. Het enige dat we moeten doen is het beantwoorden van de juiste 
vragen met de juiste methoden.
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