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CHAPTER 1

General introduction
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ALLOGENEIC STEM CELL TRANSPLANTATION
Allogeneic stem cell transplantation (alloSCT) provides a potentially curative therapy for 

patients with a variety of hematologic malignancies. Besides the therapeutic effect of 

the pre-transplant condition regimen with chemotherapy or radiation therapy, the most 

important therapeutic effect of alloSCT is due to an immune response of donor immune 

cells against the malignancy of the patient. In alloSCT not only stem cells of the donor are 

transfused into the patient, but also donor T cells. The aim is that these donor T cells induce 

an immune response against patient hematopoietic cells. Since the malignancy the patient 

is treated for, is a malignancy of hematopoietic origin, an immune response against patient 

hematopoiesis is an immune response against the disease of the patient. The immune 

response of donor T cells directed against the malignant hematopoietic cells, which usually 

include an immune response to other hematopoietic cells of the patient, is called graft-

versus-leukemia (GVL) reactivity. However, donor T cells can also be directed against non-

hematopoietic healthy tissues of the patient, causing graft-versus-host disease (GVHD). 

GVHD and treatment of GVHD with immunosuppressive agents remain major causes of 

transplant related morbidity and mortality. The ultimate aim in treatment with alloSCT is to 

find the optimal balance between the beneficial GVL reactivity and the detrimental GVHD. 

The most efficient method to prevent GVHD is T-cell depletion (TCD) of the graft. AlloSCT 

regimens using infusion of positively selected CD34 cells, grafts depleted of alpha-beta T 

cells or CD3 T cells, or using the CD52 antibody Alemtuzumab for TCD have demonstrated 

efficient engraftment and reduced acute GVHD.1-10 However, TCD substantially impairs post-

transplant anti-viral and anti-tumor immunity.4,11,12 Due to the reduced antitumor effect of TCD 

grafts, post-transplant donor lymphocyte infusion (DLI) containing donor T cells, may be 

needed for treatment persistent disease or for minimizing the relapse risk by eliminating 

residual patient hematopoiesis after alloSCT. TCD alloSCT with postponed DLI is indeed 

associated with GVL reactivity and with reduced incidence of GVHD.4,13-17 Since the ultimate 

aim in alloSCT is to induce GVL without GVHD, it is important to explore whether the 

postponed DLI can be manipulated to better achieve this goal. 

ANTIGEN PRESENTATION ON CELL SURFACE AND RECOGNITION BY T CELLS
Under normal circumstances in a healthy individual, T cells can detect the presence of 

pathogens because infected cells display peptide fragments derived from pathogen 

specific proteins on their surface. These foreign peptides are presented to T cells by major 

histocompatibility complex (MHC) molecules, also called human leucocyte antigen (HLA) 

molecules. There are two classes of these highly polymorphic HLA molecules, HLA class I 

and HLA class II. Both molecules consists of two domains that fold together to create a cleft 

or binding groove, where the peptide binds to the HLA molecule. Peptides presented in 

HLA class I molecules can be recognized by CD8 T cells and after recognition these CD8 

T cells can exert direct cytotoxicity towards the target cell presenting the peptide. Peptides 

presented in HLA class II can be recognized by CD4 T cells and after recognition these CD4 
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T cells can exert direct cytotoxicity on target cells, can provide help to the development 

and persistence of CD8 T-cell responses or can activate macrophages or B cells to help 

fighting the pathogen. Under normal circumstances, T cells will only recognize foreign 

peptides presented in self-HLA molecules of an individual. Due to positive and negative 

thymic selection, T cells are able to recognize a multitude of foreign molecules without 

attacking the body itself. Positive selection involves the selection of developing T cells that 

can recognize self-HLA molecules expressed in the thymus. Negative selection prevents 

the survival of T cells that interact with self-peptides presented in the thymus. The result is 

that only T cells recognizing non-self-peptides in self-HLA remain present.

The presentation of peptides by HLA molecules is the result of a series of reactions that 

are different between HLA class I and class II molecules. For presentation in HLA class I, 

proteins are degraded by the proteasome and the resulting peptides are translocated via 

transporter associated with antigen presentation (TAP) into the endoplasmic reticulum (ER) 

lumen and loaded onto HLA class I molecules. Peptide–HLA class I complexes are released 

from the ER and transported via the Golgi apparatus to the plasma membrane for antigen 

presentation to CD8 T cells.18 The process of peptide presentation in HLA class II is different. 

HLA class II α- and β-chains assemble in the ER and form a complex with the invariant chain 

(Ii). The Ii–HLA class II heterotrimer is transported through the Golgi apparatus to the HLA 

class II compartment. Endocytosed proteins and Ii are degraded by resident proteases in 

this compartment. The HLA class II associated Ii peptide (CLIP) fragment of Ii remains in 

the peptide-binding groove of the HLA class II dimer and is exchanged for an antigenic 

peptide with the help of the dedicated chaperone HLA-DM. HLA class II molecules are then 

transported to the plasma membrane to present antigenic peptides to CD4 T cells.18 HLA-DO 

is another molecule playing a role in peptide presentation in HLA class II. HLA-DO is an HLA 

class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM 

activity.19 Presence of HLA-DO in a cell expands the repertoire of peptides presented by 

HLA class II molecules.20,21 HLA-DO is mainly expressed in hematopoietic cells, especially 

B cells, and not in non-hematopoietic cells.22 Therefore, it is possible that some particular 

peptides are only presented if HLA-DM activity is inhibited by the presence of HLA-DO. 

HLA molecules present either peptides derived from pathogens or peptides derived from 

self-proteins. In the setting of alloSCT donor T cells will recognize patient derived peptides 

as foreign and attack patient cells if the presented peptide is polymorphic and different 

between patient and donor. The recognized cell is targeted because of the presence of a 

foreign peptide in HLA and depending on which cells the peptide is presented, different 

tissues will be attacked. If the recognized peptide is expressed on hematopoietic cells, 

including the malignant hematopoietic cells of the patient, GVL will be the result. However, 

if the recognized peptide is expressed in normal tissues other than hematopoietic tissue, 

GVHD will occur.
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EXPRESSION OF HLA CLASS I AND II MOLECULES
HLA class I molecules are expressed on all nucleated human cells.18 In contrast to HLA 

class I, constitutive expression of HLA class II molecules is predominantly restricted to 

normal and malignant hematopoietic cells.23-26 This hematopoiesis restricted expression 

makes targeting of HLA class II molecules by donor alloreactive CD4 T cells interesting in 

the setting of alloSCT, where an hematopoiesis restricted immune response is aimed for. 

This is one of the reasons that in the Leiden University Medical Center a clinical trial was 

started in which patients are being treated with purified donor CD4 T cells three months 

after TCD alloSCT. Besides the primary endpoint of immune reconstitution, conversion of 

mixed chimerism after alloSCT due to infusion of donor CD4 T cells is being investigated 

as secondary endpoint. Since CD4 T cells target peptides in HLA class II and HLA class 

II under non-inflammatory circumstances is predominantly expressed on hematopoietic 

cells, including malignant hematopoietic cells,  GVL without GVHD could be the result of 

infusion of donor CD4 T cells. Previously it has been demonstrated that GVL reactivity can 

indeed be caused by donor CD4 T cells recognizing peptides presented in HLA class II.27,28 

However, the period after alloSCT is often complicated by inflammatory conditions in the 

patient and it is known that expression of HLA class II molecule can be upregulated under 

inflammatory conditions like CMV reactivations.18,29 The result of this upregulation of HLA 

class II on non-hematopoietic cells makes GVHD target tissues vulnerable for recognition 

after infusion of CD4 donor T cells. Therefore, under specific clinical circumstances, both 

GVL and GVHD can be expected after CD4 T cell infusion after alloSCT. 

TARGETING MINOR HISTOCOMPATIBILITY ANTIGENS PRESENTED IN HLA CLASS II
The immune response of donor T cells directed against patients cells is based on 

recognition of a non-self-peptide-HLA complex in the recipient. This complex can be non-

self due to a non-self-peptide, to a non-self HLA molecule or both. Searching for a suitable 

alloSCT donor starts with identifying potential HLA identical siblings. In the setting of an 

HLA identical transplantation, the immune response of donor T cells will be directed to a 

non-self-peptide presented in self HLA since all HLA alleles are shared between donor 

and recipient. The non-self-peptides that can be recognized by alloreactive donor T 

cells are called minor histocompatibility antigens (MiHA). MiHA are polymorphic peptides 

derived from genes containing genetic differences between patient and donor. These 

polymorphic peptides can be encoded by the male-specific Y-chromosome (H-Y antigens) 

or other chromosomes (autosomal MiHA). The molecular mechanisms by which genetic 

variants can create autosomal MiHA include several ways. First, MiHA can be created 

by single nucleotide polymorphisms (SNP) between donor and recipient in primary gene 

transcripts in the normal or an alternative reading frame. Second, MiHA that are derived 

from polymorphic proteins as created by frameshift insertions or deletions in primary gene 

transcripts.  And third, MiHA that are encoded by polymorphic genes (gene deletion).30 All 

these molecular mechanisms can result in the presentation of a recipient derived peptide 
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that is foreign to donor T cells.

Following HLA identical alloSCT, infusion of donor CD8 T cells recognizing HLA class I 

restricted MiHA that are expressed on all nucleated cells can result in GVL and GVHD. Donor 

CD8 T cells recognizing MiHA selectively expressed in hematopoietic cells may result in 

destruction of patient hematopoietic cells including the malignant cells, without harming 

other normal tissues.30-35 Since HLA class II is predominantly expressed on hematopoietic 

cells only, donor CD4 T cells recognizing HLA class II restricted MiHA may result in selective 

recognition of recipient normal and malignant hematopoietic cells, thereby inducing GVL 

without GVHD, even if MiHA are targeted that are encoded by genes that are broadly 

expressed in recipient tissues.36-40 However, under inflammatory circumstances, expression 

of HLA class II is significantly upregulated on non-hematopoietic cells, making these tissues 

susceptible to recognition by CD4 T cells. It was previously demonstrated that, unlike 

presentation of MiHA in HLA class I, not all MiHA encoded by broadly expressed genes 

are adequately presented in HLA class II on non-hematopoietic cells due to differences in 

peptide processing between different cell types, based on presence or absence of HLA-

DO.20 Thus, even under inflammatory conditions, GVHD target tissues may not always be 

damaged by CD4 T cells recognizing MiHA encoded by broadly expressed genes. This 

combination of relatively hematopoiesis restricted expression of HLA class II molecules and 

limited presentation of several broadly expressed MiHA in HLA class II, makes infusion of 

donor CD4 T cells after alloSCT an attractive strategy to separate GVL from GVHD.

HLA MATCHING BETWEEN PATIENT AND DONOR
HLA molecules are highly polymorphic. Probably the presence of many different HLA 

molecules makes it possible to present many different peptides from pathogens and 

thereby protecting a population against being eliminated by infectious diseases.41

One of the factors that influences the balance between GVL and GVHD after alloSCT is 

the degree of HLA matching between patient and donor. In case more HLA alleles are 

mismatched, the risk of developing GVHD is higher.42-45 The reason is that mismatched HLA 

molecules can be targets for immune responses by donor T cells after alloSCT.46 The T-cell 

repertoire of an healthy individual contains T cells interacting with peptides in the context 

of non-self-HLA molecules. Mixed lymphocyte reactions showed that roughly 1-10% of all T 

cells in an individual may respond to stimulation by cells from allogeneic HLA mismatched 

individuals.47-50 The frequency of these T cells recognizing mismatched HLA molecules is 

much higher than the precursor frequency of known MiHA specific T cells recognizing the 

MiHA in self-HLA.30 Therefore, an HLA mismatch between patient and donor is more likely 

to induce an immune response by donor T cells and the risk of developing GVHD will be 

higher. The high frequencies of allo-HLA reactive T cells is the reason for preferring HLA 

matched donors. If an HLA identical sibling donor is not available, a matched unrelated 
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donor (MUD) is searched. Mainly the HLA loci classified as high expression loci (HEL) HLA-A, 

B, C and DRB1 are taken into account in the donor selection, since mismatches in HLA-

HEL are strongly associated with an increased incidence of severe GVHD.44,51,52 If patient 

and donor are matched for these HLA alleles, it is called an 8/8 HLA match. In contrast, 

HLA-DRB3, 4 and 5, HLA-DQ and HLA-DP are usually assumed to be low expression loci 

(LEL) based on their surface expression.53,54 HLA-LEL mismatches were considered not 

to be associated with adverse outcome in HLA 8/8 matched alloSCT and therefore are 

frequently not taken into account in donor selection.53 However, it has been demonstrated 

that immune responses against mismatched HLA-DQ can contribute to the development 

of both GVHD and GVL reactivity.42,55,56 Therefore, in many centers a matched unrelated 

donor is searched for that is HLA 10/10 matched, meaning matched for HLA-A, B, C, DRB1 

and DQB1. In the setting of HLA 10/10 matched transplantations, besides potential GVL and 

GVHD due to recognition of MiHA in a shared HLA molecule, there is additional potential 

GVL and GVHD due to recognition of allo-HLA molecules by donor T cells, since the HLA 

class II alleles HLA-DRB3, -DRB4, -DRB5 and -DPB1 can be mismatched. After infusion of 

CD4 donor T cells, also these alleles can be targeted.

HLA-DP MISMATCHES IN alloSCT
Unrelated donors for alloSCT who are HLA 10/10 matched with the recipient are mismatched 

for HLA-DP in 71-88% of cases.57-60 Although not taken into account in donor selection, 

immune responses by donor CD4 T cells against this mismatched HLA allele can result 

in both GVL and GVHD.27,29,61 Not all mismatches in HLA-DP between donor and patient 

turned out to be equally immunogenic. HLA-DPB1 alleles have been categorized into 

T-cell epitope (TCE) groups based on in vitro experiments using recognition patterns of 

anti-HLA-DP directed T cells and amino acid sequences of the binding groove defining 

functional distance among the different HLA-DPB1 alleles.62-64 Based on this classification, 

HLA-DP mismatches have been classified as permissive (mismatch within the same TCE 

group) or non-permissive (mismatch across different TCE groups) with predictive value for 

the outcome of transplantation.62,65-68 Others conclude that the difference in immunogenicity 

of HLA-DP mismatches is based on differences in expression of HLA-DP alleles due to the 

absence or presence of SNP rs9277534.69 It has been shown that polymorphisms within 

the peptide binding groove of HLA-DP molecules are more important for HLA-DP restricted 

alloreactivity than polymorphisms outside the peptide binding groove.63,70 Therefore, 

it is possible that differences in composition of peptides bound to the various HLA-DP 

molecules determine the potency to induce immune responses between mismatched HLA-

DP molecules. Mismatched HLA-DP alleles that are more similar to each other and present 

similar peptides will then be more permissive than mismatched HLA-DP alleles with large 

structural differences presenting different peptides.
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AIM OF THIS STUDY
Donor CD4 T cell infusion may be an attractive strategy for separating GVL and GVHD 

because of the relatively hematopoiesis restricted expression of HLA class II molecules. 

Therefore, the aim of this thesis is to investigate in detail the immunological effects of  

donor CD4 T cell infusion after TCD alloSCT and to explore whether this strategy indeed 

can separate GVL from GVHD. 

Since CD4 T cells target HLA class II expressing cells, the first aim is to answer the question 

which patient derived cells express HLA class II after alloSCT. HLA class II expression is 

upregulated under inflammatory conditions. Thus tissue damage caused by the conditioning 

regimen before alloSCT may influence the expression of HLA class II alleles on GVHD 

target tissue. 

In chapter 2 the hypothesis was investigated that activated patient originated HLA class II 

positive cells are present for several months in skin due to tissue damage caused by the 

conditioning regimen given before alloSCT and that these HLA class II positive cells are 

able to initiate an immune response by donor T cells. To investigate this, the quantitative 

presence of HLA class II expressing cells and T cells in the dermal layer was substantiated 

by dermal area count calculation in skin biopsies taken from patients at several time points 

from transplantation, and compared to normal skin biopsies. To investigate whether the 

HLA class II positive cells and T cells were of patient or donor origin, XY-FISH combined 

with staining of HLA class II was performed after alloSCT from patients with a gender 

mismatched donor.

The second aim of this thesis is to investigate whether donor CD4 T cells from HLA 

matched sibling donors can induce GVL without GVHD after alloSCT by targeting HLA 

class II restricted MiHA. In chapter 3 we investigated in detail the observed hematopoiesis 

restricted immune responses after CD4 DLI, as illustrated by conversion from mixed to 

full donor chimerism, without GVHD in four patients transplanted with an HLA identical 

sibling donor. Alloreactive CD4 T cells were isolated from blood and bone marrow after 

CD4 DLI and using whole genome association scanning, the MiHA that were recognized 

by alloreactive CD4 T cells were identified. Some of the identified MiHA turned out to 

be encoded by genes with broad expression in both hematopoietic cells as well as non-

hematopoietic cells. Since an hematopoietic restricted immune response was observed in 

patients, we aimed to identify factors responsible for this hematopoietic restricted immune 

response besides hematopoiesis restricted expression of HLA class II. We investigated 

whether differences in peptide processing between hematopoietic and non-hematopoietic 

cells in the presence or absence of HLA-DO was of influence in separating GVL from GVHD.
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Donor CD4 T cells can target the HLA class II molecules HLA-DQ and HLA-DP in case of 

a mismatch in these alleles between patient and donor. However, also the HLA class II 

molecules HLA-DRB3, -DRB4 and -DRB5 can be mismatched between patient and donor 

in case of an HLA 10/10 MUD. These HLA-LEL are not taken into account in donor selection 

since they are regarded as not relevant in alloSCT. We aimed to investigate whether donor 

CD4 T cells from HLA 10/10 MUD can induce an immune response targeting mismatched 

HLA-DRB3. In chapter 4, we analysed the immune response in a patient who received 

purified CD4 donor lymphocytes 3 months after TCD alloSCT. Afterwards conversion from 

mixed to full donor chimerism occurred in the presence of skin and liver GVHD. Patient 

and donor were HLA 10/10 matched, but mismatched for HLA-DRB3 and HLA-DPB1. We 

investigated whether these mismatched HLA-LEL class II molecules were the target of 

recognition and whether CD4 T cells targeting mismatched HLA class II molecule are likely 

to have caused the immune response consisting of GVL and GVHD.

In the setting of alloSCT with HLA 10/10 matched, but HLA-DP mismatched donors, some 

HLA-DP mismatches are more permissive and less immunogenic than other mismatches. 

HLA-DPB1 alleles have been categorized into TCE groups and based on this classification, 

HLA-DP mismatches have been classified as permissive (mismatch within the same TCE 

group) or non-permissive (mismatch across different TCE groups) with predictive value for 

the outcome of transplantation. The functional groups of TCE-1 alleles (HLA-DPB1*09:01, 

10:01 and 17:01) and TCE-2 alleles (HLA-DPB1*03:01, 14:01 and 45:01) were clearly defined, 

but TCE-3 included any HLA-DPB1 allele not belonging to either group 1 or 2, and 

represents a relatively heterogeneous group. In chapter 5, we aimed to redefine the 

current classification into TCE groups and to unravel potential new functional hierarchies 

of different HLA-DP mismatches in the setting of alloSCT. The hypothesis was that HLA-

DP molecules that are structurally more similar to each other and present more similar 

peptides, are less immunogenic when mismatched and that HLA-DP molecules that are 

structurally more different and present more different peptides are more immunogenic 

when mismatched. To investigate whether permissiveness and non-permissiveness with 

respect to alloreactivity in the context of alloSCT could be defined based on the similarity 

or differences in their respective immunopeptidomes, we analysed the peptidome of the 12 

common HLA-DP molecules.

In chapter 6 the most important results of the performed analyses are summarized and the 

relevance of the results in the light of the current knowledge are discussed. 
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