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Kullback-Leibler divergence between
two normal distributions

Let us assume two normal probability distributions, p(z) ~ N(up,0,) and g(z) ~
N (pg, 04). The Kullback-Leibler divergence of ¢ from p is:
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Note that in the specific case where the Kullback-Leibler divergence only takes into
account the means and assumes both standard deviations equal, i.e., p(x) ~ N (1, o)
and ¢(z) ~ N (pq, o) one obtains:

(pp — Mq)2
202
and the weighted version of this KL, i.e., WKL, = nKL,(p;q), is similar to the
most common subgroup discovery quality functions used for numeric targets that do

KL,(p;q) = loge, (A.2)
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not take into account the dispersion of the subgroup, such as the weighted relative
accuracy or the mean-test [75], which uses the square root of K'L,,. We will call this
measure the Weighted Kullback-Leibler without dispersion.



Prequential plug-in encoding for rule
lists with categorical distributions

For this section, let us assume that we have a dataset D = {X,Y}, Y has k = |}
class labels and a model M that forms a partition over the whole data. The model M
divides the data D in w parts, of the form {(X!, Y1) ... (X% Y“)}. Each part has an
associated categorical distribution with estimated parameters © over the target part
Y’ (as defined in Section 2.4).

Before introducing the prequential plug-in code it is necessary to introduce one main
building block, the smoothed maximum likelihood estimator for a subset i:

nc\i +e

it e (B.1)

Deji =
Unlike the regular maximum likelihood estimator, this smoothed variant—known as
Laplace smoothing—adds a (small) pseudocount ¢ to each class-specific usage even
when that class has no counts. This avoids zero probabilities for any class label and
corresponds in Bayesian statistics to using a symmetric Dirichlet prior ¢ for each class
[42].
Now, the main idea of the prequential plug-in code is to sequentially predict the points
in a subset, starting with no knowledge about their distribution and updating it each
time it receives a point using the Equation (B.1). Intuitively, this means that one starts
with a pseudocount € for each possible element, constructs a code using these pseudo-
counts, starts encoding/sending/decoding messages one by one, and then updates the
count of each element after sending/receiving each individual message. The prequen-
tial plug-in code is asymptotically optimal even without any prior knowledge on the
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probabilities [48].

Applying this idea to encode the class labels in Y and ignoring the data partition
at the moment, initially each class label has a pseudocount of e. Hence, when send-
ing the first class label, y!, we effectively use a uniform code, i.e., —log - After
that, however, we increase the count of that class label by one. Normalizing the up-
dated counts results in a new categorical probability distribution—hence a new code:
—log ke:jrll. This code is the best possible code given the data seen so far and is equal to
the smoothed maximum likelihood of Eq. (B.1). Formally, the plug-in code for encod-
ing the class labels is defined as

{yeYl1|y=c}+e
Yeweyl{lye Yt y=c}+¢€

where u € N, y* represents the u™ class label in Y, Y1“~1 = {y', ..., 4"~} represents
the sequence of the u — 1 first class labels, and ¢ is the pseudocount necessary for
Prpugin(y! = ¢ | Y1) = ¢/ke = 1/k to be valid. The most common values for ¢, which
takes the role of a prior in the Bayesian literature [125], are the Jeffrey’s prior of 0.5
or the uniform prior of 1. For simplicity in our experiments, the value of ¢ = 1 was
used to obtain natural factorials instead of gamma functions as can be seen next.

We now show how this prequential plug-in code can be used in the encoding of the
class labels of a dataset partitioned in w parts. But assuming no interaction between
the parts, the total encoding is equal to the sum of its parts:

Prplug-in(yu =cC | Y‘u_l) = (B.2)

Lplug—in(Y | X, M) = —log H Prplug-in(Yi) = Z Lplug-in(Yi)a (B.3)

where Lplug_in(Yi) = —log Prplug_in(Yi).
Inserting the prequential plug-in code (B.2) in (B.3) we obtain for each part Y:

Lplug-in(Yi) = — log H Prplug»in(yu ‘ Yz'|u—1)

u=1

e (H’z‘_l [ (ut e>>
T (u + ke)

u=0

(B.4)

(ni — 1+ ke)!/(ke — 1)!
— —1lo (Hf—l L(nqi + €>/F(e)>
— _log 7

_ (H’Z_l(nci—ue)!/(e_n!)
~ log

'(n; + ke)/T(ke)

where Y is a sequence of class labels of length « in part D?, and n; = |D| and
Nei = \Dc‘i|. Further, I" is the gamma function, an extension of the factorial to real
and complex numbers that is given by I'(u) = (u — 1)\
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This code starts from sequential data, but as one can see in Eq. (B.4), the order in
which one transmits class labels does not matter. In the end, the formulation is order
agnostic and only depends on the counts per class label.






Normalized Maximum Likelihood for
rule lists with categorical distributions

For this section, let us assume that we have a dataset D = {X,Y} and model M that
forms a partition over the whole data. Model M divides the data D in w parts, of the
form {(X!,Y1),... (X¥ Y¢)}. Each part has an associated categorical distribution
with estimated parameters ©¢ over the target part Y (as defined in Chapter 2.4).
Here we show that the NML encoding of a partition equals the sum of the NML
encoding of its parts:

Lymi(Y | X, M) ZLNML (C.1)

Note that in the case of a subgroup list, as the default rule does not require NML
encoding, the M used in this section represents the subgroups S, and D represents
the data covered by these. In the case of a tree or rule list, M represents the model that
partitions the data at the leaves and rules (including default rule), respectively, and
D the whole dataset. There is no loss of generality for subgroup lists as the separation
property allows us to separate the encoding of the default rule.

First, lets recall the definition of the NML probability distribution [115]:

LNML(YX,M):_10g< Pr(Y | X: NI(Y | X)) >

Zzey" Pr(Z | X§M(Z | X))
where )" is the set of all possible sequences of n points with & = |)| categories,

M(Y | X) and M(Z | X) are the models with parameters estimated according to the
maximum likelihood over the data Y and Z, respectively. Taking into account that
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our data is independent and identically distributed (i.i.d.), and that our model M
partitions the data into w parts, we can further develop the previous formula to:

LNML(Y|X,M)ig-_10g< [T, Pr(y* | x;; M(Y | X)) )

EZe)}” H?:1 Pr(z¢ [ x4 M(Z | X))

__10g< 1, Pr(r¥:60r7) )
> ey LTz, Pr(Z7:6(27)

e (Hif_lz(é“ |Y7*>>
B\ VX M)

—log [ D 16" | Y") | +1logg(Y, X, M),

i'=1

(C.2)

where 1(6" | Y?') is the likelihood function for each of the w parts and g(Y, X, M) is
a complexity function that depends on these three variables.

The first term is already independent for each part, although the second is not.

Let us now look at g(Y, X, M) when we only have one part in the dataset, i.e., D*.
We will call this term the NML complexity of a multinomial distribution and denote it
by C(n1, k) of one part D! = {Y!, X'}, withn; = |[D!| and k = Y

C(ny, k) =log | >  Pr(Z;6(Z"))

zZeym

=log | Y H Pr(z%;0(2Y)) (C.3)

Zeymri i=1
cl|1
][ ( (,|1>
n1‘1|n2|1 nkll‘

D>
nij1tnzit+...tng1=n1

where n,|; is the number of points of category c in Y!, and the passage from the

second equality to the last is a property of multinomial distributions commonly used

to make the computation of C(n,, k) simpler [48]. It is interesting to note that C(n,, k)

only depends on the number of points in Y! and its cardinality, not on the actual
values. This term, i.e., the complexity of a multinomial distribution over n; points
with k possible values, measures the likelihood of each possible sequence.

Now we must generalize from a part to the partition of the dataset. To illustrate how
to do this, let us first look at Table C.1, which shows an example of all the possible
sequences in a fixed-length three-part partition of the data. Taking into account those
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Table C.1: All possible sequences of a partition of fixed length of the data in three
parts. Fixed length means that all possible parts always have the same amount of
points, as e.g. |Ai| = |Az| =+ = |44 = na.

Part 1 Part 2 Part 3

Ay B, Cy
Ay B (O
Ay By 1
A, By C.

three parts, let us look at how the probabilities of all those sequences could be com-
puted:

> Pr(Aq) Pr(By) Pr(C, ZPr A Do Pr(By) Pr(C

Va,b,c Vb,c

Sopr(da) |- [Py | - [ Do Pr(cy) |
Ya Vb Ve

where this follows naturally from the distributive property of the multiplication. It is
easy to see that this generalizes to partitions of any number of parts. Thus, going back
to the complexity term g(Y, X, M), we can see that

logg(V. X, M) =log Y [[ Pr(z";0(z"))

zey" i'=1
= log H Z Pr(Z",6(Z"))
JThaten (C.4)
= log Z Pr(Z":6(Z"))
i'=1 Zi' eymit

EH

:ZOgana



142

Substituting this back into Eq. (C.2), we obtain what we wanted:

i=1

Lnun(Y | X, M) = —log (Zl(éi | Yi)) +) logC(ni, k)
=1

1O | YY) 4 C(ni, k)

I

©
I
—

Lymrn (YY)

I
.ME

©
Il
—

(C.5)



Bayesian encoding of a normal
distribution with mean and standard
deviation unknown

For encoding a sequence of numeric valued i.i.d. observations such as Y = {y1, ...., yn },
the Bayesian encoding takes the following form:

Pouyesl¥) = [ (¥ |©)u(®)do. (.1

where f is the probability density function (pdf), © is the set of parameters of the
distribution, and w(©) the prior over the parameters. In the case of a normal distri-
bution © = {u, o}, with p and o being its mean and standard deviation, respectively,
the pdf f(Y | ©) over a sequence Y is the multiplication of the individual pdfs, thus:

1 1 n ;
JY [ po)= WGXP [_M Z:(y - M)Q] ) (D.2)

In order not to bias the encoding for specific values of the parameters, we choose to
use the constant Jeffrey’s prior of 1/02 for the unknown parameters y and o, and add
an extra. Thus, our prior is given by:

1

w(:u’vJ) = ma (DB)

where 1/+/27 was added for normalization reasons.
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Putting everything together, one obtains:

PBayes (Y) =

+oo  ptoo n
_ n+1 1 i (D'4)

%

The integrals over the whole space of the parameters i and o allow to penalize the
fact that we do not know the statistics a priori, thus penalizing the fact that a distri-
bution over n points could, by chance, have the same statistics as the one found in
the data.

Note that using an improper prior requires that we somehow make it proper, i.e., we
need to find a way to make the integration over the prior finite [ [w(u,0) = K,
where K is a constant value. The usual way to make an improper prior finite is to
condition on the k& minimum number observations Y!* € Y needed to make the
integral proper [48], which in the case of two unknowns (x and o) is k = 2. Thus,
instead of using w(u, o) we will in practice be using w(u, o | Y1?), and using the the
chain rule and the Bayesian formula returns a total encoding of Y equal to

PBayeé (Y)
PBayes(Yl )

where P(Y?) is a non-optimal probability used to define Y1? = {y*, 42} that we will
define later and y',%? chosen in a way that maximizes P(Y). Now that we have all
the ingredients to define P(Y") we will start by defining Pp,yes(Y) and then choose
the appropriate probability for P(Y'1?).

To solve the first integral of Pgqycs(Y) in Eq. (D.4), we integrate in ¢ and note that
the formula is an instance of the gamma function,

P(Y) = Ppayes(Y | YR)P(YP?) = P(Y1?) (D.5)

—+oo
I'(k) = / 2P lem% dz, (D.6)
0
with the corresponding variable transformation:

A 1 2212 o =, . )
=g g = s s As DWWt 07
Performing the variable transformation and noting that the minus sign of dz cancels
with the reversing of the integral limits, we get:

PBayes (Y) =

_nt1
2

1\ = w1 [T | S (D.8)
e G Ul B D DU I 2




Appendix D. Bayesian encoding of a normal distribution with mean and standard
deviation unknown 145

which reveals that the prior on the effect size p, and specifically its standard deviation
parameter T, is equivalent to adding 1/72 virtual points to the original data.

To solve the integral in u we need to introduce the statistics i and ¢ as the values
estimated from the data. We define these quantities as:

n

L= %Zy 6% = %Z(y - )?, (D.9)

where /i is the mean estimator over n data points and 42 is the estimator of the
variance. Note that for the variance the biased version with n was used instead of
with n — 1 as it allows to compute the Residual Sum of Squares (RSS) directly by
RSS =né.

Focusing now on the interior part of the integral of Eq. D.8 and rewriting it in order
to resemble the t-student distribution, we obtain:

o ~(n+1)/2
> —w? =
- . —(n+1)/2
> (W) = nfi® + np® — 20y + np® =
- 1 (1)
Z(yl)2 —nfi* + (i — p)? = (D.10)
L ~ntn)/2
A
1 —(n+1)/2
-2 [ (i p)?
{no’ } 1+ 52
i —(n+1)/2
—(n+1)/2 1 /f—nu\2
] e (5]
n 52
where 52 = 4%/n is the “sampling” variance. Now, taking into account the fact that

the integral of the t-student distribution over the whole space is equal to one, and
reshuffling around its terms we get

oo 1 /p—p\| ° . T(%) ans,
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Inserting this back in Eq. D.4 we obtain:

PBayes(Y):
B n+1Y\ ns1_y _nm D(§)V/mnsg [ o1—(n41)/2
- () e S ] o1

1 -3
— 9 lp 5T <”> — [n&Q]
2)\/n ’

Returning to the the conditional probability of Eq. (D.5), we see that we still need to
define P(Y'?), the non-optimal probability of the first two-points. As in the case of our
model class we assume that the dataset overall statistics are known, i.e., © = {ji4, 54},
we will use this distribution to find the probability of the points Y'I> = {y*, 4%} as :

2
1 ,
P(Y‘2) =log 27 + log g + T&g Z:(y’ — /ld)2 loge. (D.13)
Finally, applying the minus logarithm base 2 to all the terms in Eq (D.5) to obtain the
total code length in bits,
LBayesQ.O(Y) = - log PBayes(Y) + IOg PBayes(Y|2) - IOgP(Y|2)
1
> + 3 logn + glog (n&i)
2

2 1 ,
—1—§log7r+0—§—log E (y" — f1g)*
i (D.14)
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1
= glogw —logT (Z) + 3 logn + glog (n&i) + LCOSt(yD)’

where /i is the estimated mean of 3,32 and L., (Y?) is the extra cost incurred of
not being able to use a refined encoding for Y'12. Now that the length of the encoding
is defined, we just need to choose the two points. i.e., y!,y?. Because we want to
minimize this length, we notice that there are only two terms that contribute to it in
Lcost(Y‘Q), and thus by choosing the two observations close to ji; minimizes both the
encoding of P(Y'?) and maximize Pp,,.s(Y?) for most cases. There are exceptions to
this, depending on the respective values of 4 and y', y? but these are not significant
to change the values too much and also requires less computational search to find the
points.



Bayesian encoding convergence to BIC
for large n

This section shows that for a large number of instances n, the Bayesian encoding of
Appendix D converges to the Bayesian Information Criterion (BIC). Thus, Eq. (D.14))
converges to the encoding of a normal distribution with mean and standard deviation
known plus log n. First, the encoding of a normal distribution with mean and standard
deviation known over n i.i.d. points is equal to the sum of the individual encodings:

n

N n n ~ 1 i ~
LY |©)= 3 log 2w + 5 log 6% + 252 Z(y —)?| loge. (E.1)

i

Second, we need to use the Stirling’s approximation of the Gamma function for large

n:

—logI’ (n)
2 (E.2)

1 1
N—ilogﬂ—ilog(n—Q)— (Z—l) log (Z—l) + (Z—l) loge,
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and finally we insert it into Eq. (D.14) and assume 7 = 1 to obtain:

_110 -I—llo o +210 L&Q + % 1) loge
g 8TTo o) T2 e 2 &

+log (Z - 1> + Leost (Y1?)

L(Y) ~

~14 2
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=LY |0)+ log + Leost(Y1?)
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where from the second to the third line, we assumed large n, making some of the
terms disappear, while the definition n6? = > 7 (y* — p)? is used for making the
third term of the third expression appear. From the fourth to the fifth expressions, it
assumes that L., (Y1?) is negligible, as it is the cost of not being able to encode the
first two points optimally. For the Bayes information criterion, we used its standard
definition,

BIC =—-2In¢O|Y)+klan, (E.4)

where £(© | Y) is the likelihood as estimated from the data, and & is the number of
parameters, which in our case is 2.



Datasets used for classification
experiments

The 17 datasets used for classification are shown in Table F.1, and were retrieved from
LUCS/KDD! repository. The datasets all have binary explanatory variables.

Ihttp://cgi.csc.1liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html
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Table F.1: Dataset properties: number of {samples, binary variables, classes, average
number of candidate patterns per fold for CLASSY with n,,;,. = 5% and dpee =
4}. The datasets are ordered first by number of classes and then by the number of
samples.

Dataset |D| [V|Y| |Cands|
hepatitis 155 48 2 39137

ionosphere 351 155 2 332560
horsecolic 368 81 2 23552
cylBands 540 120 2 304749
breast 699 14 2 299
pima 768 34 2 543
tictactoe 958 26 2 1907
mushroom 8124 84 2 79602
adult 48842 96 2 7231
iris 150 14 3 144
wine 178 63 3 13439
waveform 5000 96 3 86889
heart 303 46 5 21876
pageblocks 5473 39 5 = 2902
led7 3200 22 10 2507

pendigits 10992 81 10 107001
chessbig 28056 54 18 1384




RSD supplementary empirical
evaluation

G.1 Datasets used for subgroup discovery experiments

The datasets selected are commonly used in machine learning and subgroup discov-
ery, and were retrieved from UCI [29], Keel [4], MULAN [117] repositories. The data-
sets for nominal and numeric targets experiments are in Table G.1 and G.2, respect-
ively.
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Table G.1: Nominal targets datasets for subgroup discovery: single-binary, single-
nominal and multi-label. Dataset properties: number of {target variables T'; target
labels |)|; samples |DJ; type of variables (nominal/numeric) }.

Dataset T1Y| |D|V(nom./num.)
sonar 1 2 208 (0/60)
haberman 1 2 306 (0/3)
breastCancer 1 2 683 (0/9)
australian 1 2 690 (0/14)
TicTacToe 1 2 958 (9/0)
german 1 2 1000 (13/7)
chess 1 2 3196 (36/0)
mushrooms 1 2 8124 (22/0)
magic 1 219020 (0/10)
adult 1 245222 (8/6)
iris 1 3 150 (0/4)
balance 1 3 625 (0/4)
CMC 1 3 1473 (0/9)
page-blocks 1 5 5472 (0/10)
nursery 1 512960 (7/1)
automobile 1 6 159 (10/15)
glass 1 6 214 (0/10)
dermatology 1 6 358 (0/34)
kr-vs-k 1 18 28056 (6/0)
abalone 1 28 4174 (1/7)
emotions 6 2 593 (0/72)
scene 6 2 2407 (0/294)
flags 7T 2 194 (9/10)
yeast 14 2 2417 (0/103)
birds 19 2 645 (/258)
genbase 27 2 662 (1186/0)
mediamill 101 2 43907 (0/120)
CAL500 174 2 502 (0/68)
Corel5k 374 2 5000 (499/0)
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Table G.2: Numeric targets datasets for subgroup discovery: single-numeric and multi-
numeric. Dataset properties: {number of target variables 7'; minimum and maximum
target values [min., max.]; number of samples | D|; number of type of variables (nom-
inal/numeric) }.

Dataset T [min.;mazx.] |D| V(nom./num.)
baseball 1 [109;6100] 337 (4/12)
autoMPG8 1 (0;46.6] 392 (0/6)
dee 1 [0.8;5.1] 365 (0/6)
ele-1 1 [80;7675] 495 (0/2)
forestFires 1 [0;1091] 517 (0/12)
concrete 1 [3;21] 1030 (0/8)
treasury 1 [29;90] 1049 (0/15)
wizmir 1 [29;90] 1461 (0/9)
abalone 1 [1;29] 4177 (0/8)
puma32h 1 [—0.0867;0.0898] 8192 (0/32)
ailerons 1 [—0.0036; 0] 13750 (0/40)
elevators 1 [0.012;0.078] 16599 (0/18)
bikesharing 1 [1;977] 17379 (2/10)
california 1 [14999;500001] 20640 (0/8)
house 1 [0; 500001] 22784 (0/16)
edm 2 [-1;1] 154 (0/16)
enb 2 [6.01; 48. 03] 768 (0/8)
slump 3 [0;78] 103 (0/7)
sf1 3 [0;4] 323 (0/10)
sf2 3 [0;8] 1066 (0/10)
jura 3 [0.135;166.4] 359 (0/15)
osales 12 [500;795000] 639 (0/413)
wq 14 [0;5] 1060 (0/16)
0es97 16 [30;48890] 334 (0/263)
oes10 16 [30;64560] 403 (0/298)




154 G.2. Analysis of RSD compression gain hyperparameter

G.2 Analysis of RSD compression gain hyperparameter

In this section, we present a thorough comparison of the normalization term /3 of RSD,
where § = 1 is the normalized gain and 8 = 0 the absolute gain. RSD is executed
with the same hyperparameters (beam width, number of cut points for numerical
variables, and maximum depth of search) as in the experiments section, i.e., w, = 100,
Newt = D, dmae = H. The different types of gain are compared for all the benchmark
datasets described in the paper in terms of their compression ratio (defined later) in
Figure G.1, Sum of Weighted Kullback-Leibler divergency (SWKL) in Figure G.2, and
number of rules in Figure G.3. The compression ratio is the length of the found model
L(D, M) divided by the length of encoding the data with the dataset distribution (a
model without subroups) L(D | 69)

Loy — LD,

= — G.1
L(D| &) (@D

1.0

1.0 = = 1(normalized)
mm 3=05
mmm B =0 (absolute)

== B =1(normalized)
= =05
= B=0 (absolute)

0.8

e e
o ®

I
ES
compression ratio

compression ratio

0.2

(a) Univariate nominal target. (b) Univariate numeric target.

Figure G.1: Compression ratio obtained with 5 = 0 (absolute gain), 8 = 0.5, and
B =1 (normalized gain).
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G.3 Analysis of RSD beam search hyperparameters

In this section, we present a thorough comparison of the beam search hyperparamet-
ers influence on RSD output. As a complete search over the whole combination of
hyperparameters is unfeasible, we present here an exploration over the hyperpara-
meters used for the experimental comparison in the paper (w, = 100, neye = 5,
dmaz = 5), i.e., we fix two of the parameters on the aforementioned values and then
proceed to change the selected hyperparameter of interest, and we do this for all the
3 parameters. The line between the dots of the same colour does not represent an
interpolation and is merely used to aid visualization and suggest trends.

Note on relative compression. It may seem that the values of the relative compression
remain constant but that is an illusion due to the scale of the y axis. As the com-
pression ratio is given by the division of large values (usually above the thousands)
its value with two decimal digits can be misleading. Nonetheless, in general, when
zooming over the figures one can discern a slight improvement (smaller values) for
larger values of the hyperparameters.
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Figure G.4: Compression ratio obtained by varying the maximum search depth fixing
wp = 100, ne,: = 5 and f = 1 (normalized gain). The black vertical line represents
the value used in the experiments section for subgroup lists (Section 5.3).
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Figure G.5: Average number of conditions per subgroup obtained by varying the max-
imum search depth fixing w, = 100, n.,: = 5 and § = 1 (normalized gain). The black
vertical line represents the value used in the experiments section for subgroup lists

(Section 5.3).
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Figure G.6: Compression ratio obtained by varying the beam width and fixing d,,,q. =
5, neywe = 5 and B = 1 (normalized gain). The black vertical line represents the value
used in the experiments section for subgroup lists (Section 5.3).
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Figure G.7: Compression ratio obtained by varying the number of cut points and fixing
wyp = 100, dpq: = 5 and 8 = 1 (normalized gain). The black vertical line represents
the value used in the experiments section for subgroup lists (Section 5.3).
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G.4 Results of non-sequential subgroup set discovery
algorithms

The comparison of RSD with subgroup set discovery algorithms that return sets (and
not lists) can be seen in Table G.3.

Table G.3: Single nominal target results for non-sequential methods plus RSD. This
includes single-binary, single-nominal, respectively separated by an horizontal line in
the table. The properties of the datasets can be seen in Table G.1, and are ordered
by number target variables, number of classes, and number of samples, in this order.
The evaluation measures are {quality of the subgroup set swkl; number of subgroups
|S|; and average number of conditions |a|}. Note that FSSD does not work for single-
nominal case and MCTS4DM only works for datasets with the same type of explan-
atory variables and thus the empty values —. *as DSSD has as stopping criteria the
maximum number of subgroups was selected as the number of subgroups found by
RSD, and total overlapping subgroups were posteriorly removed.

DSSD MCTS4DM FSSD RSD
datasets swkl |S|x |a|] swkl |S| |a| swkl |[S| |a| swkl |S|] |a]
sonar 0.33 2 5 — - — 0.05 1 43 043 2 3
haberman 0.08 1 4 0.08 1 3 0.04 11 3 0.04 1 1
breastCancer 0.79 6 3 0.81 6 4  0.35 6 9 0.82 6 2
australian 0.50 3 3 0.54 7 6 033 15 12 0.55 5 2
tictactoe 0.50 4 3 — - — 0.20 5 3 0.87 16 2
german 0.15 4 5 - -  — 010 6 11 0.14 4 3
chess 0.76 11 4 — - - 034 4 15 0.97 17 2
mushrooms 0.97 3 4 — — — 040 5 20 1.00 12 1
magic 0.30 40 3 — - — 0.06 3 10 047 69 4
adult 0.24 31 5 — - — 0.00 1 10 0.31 103 4
avg. rank 1.8 1.7 20 - - = 3.0 19 29 1.2 25 1.1
iris 1.44 3 2 1.45 4 3 - - — 144 4 1
balance 0.63 9 3 — — — — —  0.69 9 3
CMC 0.18 7 3 016 20 4 — — - 025 7 2
page-blocks 0.36 19 3 - - = — — - 049 21 3
nursery 0.92 2 3 - - = - - - 163 381 3
automobile 0.85 5 5 — - = — — - 125 5 2
glass 1.55 3 1 1.12 5 6 — — —  1.92 5 1
dermatology  1.85 6 3 1.02 9 6 — — - 211 9 2
kr-vs-k 0.62 13 3 — — — — — — 183 351 3
abalone 0.53 14 3 — — — - 0.7 16 2
avg. rank 19 12 1.7 - - - - = 1.1 19 1.3
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