-1 Universiteit
%47 Leiden
The Netherlands

Robust rules for prediction and description
Manuel Proenca, H.

Citation

Manuel Proenca, H. (2021, October 26). Robust rules for prediction and
description. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/3220882

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3220882

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3220882

Discovering subgroup lists with RSD

In this chapter!, we propose the Robust Subgroup Discoverer (RSD) algorithm based
on the MDL formulation of subgroup lists proposed in Chapter 3. This algorithm uses
a greedy heuristic to finding good subgroups and can be applied to supervised tab-
ular datasets with univariate and multivariate, nominal and numeric targets. To val-
idate it, we conduct an empirical comparison on 54 datasets against state-of-the-art-
algorithms. This is complemented with two case studies of subgroup lists: 1) to de-
scribe the characteristics of hotel customers based on the time in advance they make
reservations; and 2) to describe how the social-economic background of Colombia
Engineering students is associated with their performance in university national ex-
ams.

Recapitulation of subgroup lists and their MDL formulation. In previous chapters
we defined what a subgroup list and its definition of optimality according to the
MDL principle are. We will now restate those definitions here. First, let us recall from
Chapter 2.4 the subgroup lists model in Figure 5.1.

The best subgroup list SL according to the MDL principle is the one that given the
dataset D minimizes the two-part code defined in Chapter 3.1:

SL* = argmin L(D, SL) = argmin [L(Y | X, SL) + L(SL)],
SLeSL SLeSL
where L(SL) is the length of encoding the subgroup list model SL, and L(Y | X, SL)
is the length of encoding the target variables data given the subgroup list SL and the
explanatory variables X. The model encoding is the same for predictive rule lists and

LParts of this chapter are based on Proenca et al. [99, 100]

86

510 IF a1 Ex THEN vy ~ Dist(©1) --- y; ~ Dist(O})
S ELSEIF a, Cx THEN 1y ~ Dist(0%) --- y; ~ Dist(0%)
default: ELSE y1 ~ Dist(©1) -y, ~ Dist(6%)

Figure 5.1: Generic subgroup list model SL with w subgroups S = {s1,...,s.} and
t (number of target variables) distributions per subgroup. Note that the parameters
of the default rule of a subgroup list @ = {6¢, ... 0%} are fixed to the marginal
distribution of the dataset, i.e., the overall category prior for categorical variables and
the dataset mean and standard deviation for numeric targets.

subgroup lists, as they only differ on how the default rule encodes the data and was
defined in Chapter 3.2 as

LSL) = Ln(1S) + 3 | Zan(facl) + log (|m) 3 L)

a; €S vEa;

where S is the list subgroups in SL, i.e., the model excluding the default rule. Then,
depending on the type of target data the data encoding can vary. In the case of nom-
inal target variables, we use categorical distribution and the Normalized Maximum
Likelihood encoding defined in Chapter 3.4:

LY | X,SL) =Y [LY ©) + > Lymw(Y))
j=1 s; €S

In the case of numeric target variables, we use categorical distribution and the Nor-
malized Maximum Likelihood encoding defined in Chapter 3.5:

t
L(Y | X, SL) = Z L(Y}d | @d) + Z LBayesZ.O(Y}i)
j=1 ;€S

Structure of the chapter. This chapter is divided as follows. First, in Section 5.1
the most relevant related work is covered, together with the main differences to our
approach. After that, in Section 5.2 RSD, a heuristic algorithm to mine subgroup
lists is defined, as well as its statistical guarantees and time complexity. Then, in
Section 5.3 we show the empirical results of our proposed method when compared
against the state-of-the-art algorithms for univariate and multivariate nominal and
numeric targets over 54 datasets. After that, in Section 5.4 we show a simple case

Chapter 5. Discovering subgroup lists with RSD 87

study of RSD applied to hotel bookings. Then, in Section 5.5 we apply RSD to discover
flight delays in an airline dataset. After that, in Section 5.6 we apply robust subgroup
discovery to find how descriptions of the socioeconomic background affect the grades
of engineering students in Colombia. Finally, in Section 5.7 the main conclusions are
presented.

5.1 Related work

In this section we cover work related to our proposed MDL subgroup lists, in three cat-
egories: subgroup discovery; pattern mining; MDL for pattern mining; and algorithmic
implementations. The relevance of each topic is as follows: subgroup discovery directly
relates to the task at hand; pattern mining and association rule mining are general-
izations of subgroup discovery; MDL for pattern mining shares the same theory for
formalizing the problem; and lastly we go over most of the same works but from an
algorithm implementation perspective to justify our algorithmic choices. Note that
predictive rule lists are also related as they share the same model structure as sub-
group lists and for more details on that we refer the interested reader to Chapter 4.

5.1.1 Subgroup discovery

In its traditional form, subgroup discovery, also referred to as top-k subgroup mining
[8], entails the mining of the k top-ranking subgroups according to a quality measure
and a number k selected by the user. As mentioned in the introduction, this formu-
lation suffers from three main issues that make it impractical for most applications:
1) poor efficiency of exhaustive search for more relevant quality measures [12]; 2) re-
dundancy of subgroup sets mined, i.e., the fact that subsets with the highest deviation
according to a certain quality measure tend to cover the same region of the dataset
with slight variations in their description of the subset [75]; 3) lack of statistical guar-
antees and generalization of mined subgroups [77]. We will now go over the recent
contributions for these three issues, with special emphasis for the last two, redund-
ancy and statistical guarantees, which our work proposes to solve.

Efficient exhaustive search. In the last years, several developments have been made
towards more efficient algorithms for mining the top-k subgroups. Lemmerich et al.
[80] proposed an efficient exhaustive search algorithm for numerical targets, Belfodil
et al. [9] proposed to mine over numeric attributes with guarantees, and Boley et al.
[12] proposed an algorithm that exhaustively mines subgroups that take into account
the dispersion (deviation) of the subgroups target distribution. Subgroup discovery
extension from deviations of distributions of target variables to deviations between

88 5.1. Related work

models is also called Exceptional model mining [79, 32], and can be applied to mod-
els such as Bayesian Networks [31] or non-parametric spatio-temporal patterns [28].
Comparing to our approach these works do not take into account the redundancy
of the subgroups found, and thus, the subgroups found tend to overlap in the same
region of the dataset.

Redundancy of subgroup sets. To address redundancy among subgroups most previ-
ously proposed approaches encompass supervised pattern set mining [16], and meth-
ods based on relevance [46] and diversity [74, 75]. Unlike diversity-based methods,
the supervised pattern set mining objective is to find a fixed number of patterns, which
has to be chosen in advance, while relevance is limited to non-numeric targets. It is
this last group, the diversity-based methods that share most similarities to our work,
i.e., the area of Subgroup Set Discovery.

The main approaches in Subgroup Set Discovery are CN2-SD [71], Diverse Subgroup
Set Discovery (DSSD) [75], Skylines of subgroup sets [76], Monte Carlo Tree Search
for Data Mining (MCTS4DM) [14], Subjectively Interesting Subgroup Mining (SISD)
[83], and FSSD [10]. The differences between Subgroup Set Discovery methods are
summarized in Table 5.1, with RSD representing our approach and where all methods
are compared in terms of: if they use a list or a set; the target variables they support; if
they have statistical guarantees; if they have automatic stopping criteria (not defined
by the user); and if they have a global definition of a subgroup set or list.

Considering the methods in more detail, CN2-SD [71] was one of the first methods to
deal with redundancy and is a direct adaptation of CN2, a classical rule learner, and
can be applied to nominal target variables. It uses a sequential approach, wherein
each iteration adds one subgroup to the set, and then removes the data covered by
that subgroup until no more data can be covered in this way. DSSD [75] developed a
technique based on a novel measure of overlap between subgroups, to iteratively find
a set of subgroups. It can be applied to single-and-multi-target nominal and numeric
variables, with different types of quality measures. Skylines of subgroup sets [76]
proposed to directly account for quality-diversity trade-off, to find the Pareto optimal
subgroup sets of size k. MCTS4DM [14] uses Monte Carlo tree search to improve
the quality of the subgroups found, although it can only be applied to binary target
variables, and attributes of the same type (all numeric or all nominal). Subjectively
interesting Subgroup Discovery [83] finds the subjectively most interesting subgroup
for numeric target variables with regard to the prior knowledge of the user, based
on an information-theoretic framework for formalizing subjective interestingness. By
successively updating the prior knowledge based on the found subgroups, it iteratively
mines a diverse set of subgroups that are also dispersion-aware. FSSD [10] is a more

Chapter 5. Discovering subgroup lists with RSD 89

recent approach that considers the ‘union’ of all subgroups as a single pattern by
forming a disjunction of subgroups and evaluating its quality and can only be applied
to binary target variables. This approach is similar to a sequential approach for mining
subgroups although the individual contributions of each subgroup are dissolved in the
‘new’ subgroup formed by the disjunction of all subgroups.

Table 5.1: Comparison of Subgroup Set Discovery methods in terms of their key prop-
erties. From left to right: model class (list or set); types of supported target variables:
binary, nominal, numeric and multi-target; statistical guarantees of the subgroups
mined; automatic stopping criterion (not defined by the user); global formulation of a
subgroup set/list.

Target variables

Method Model binary nom. num. multi Statistical Stopping Global
RSD list v v v/ v v
CN2-SD[71] list v/ oo - - - -
DSSDI[75] set v v v 7 - - -
Skylines[76] set v v - - - - v
MCTS4DM[14] set v - - - - - -
SISD[83] set - - v v v - -
FSSD[10] list v - - - - v v

Statistical guarantees. In terms of statistical guarantees to subgroup discovery, most
approaches consider first mining the top-k subgroups and then post-processing them
in terms of a test to find subgroups that are statistically significant [30, 77]. Duivesteijn
and Knobbe [30] proposed to use random permutations of the target variable for a
quality measure to evaluate how the discovered subgroups compare against the null
hypothesis generated by those permutations. Later, van Leeuwen and Ukkonen [77]
discussed the concept of significance for subgroup discovery and concluded that p-
values should be used with caution as not all false discoveries can be removed in this
way, as there will always be random subsets with large effect sizes. An exception to
this is the work of Lijffijt et al. [83] (already mentioned in the last section), which
uses the maximum entropy principle to iteratively find subgroups that are subjectively
interesting against a user’s prior knowledge. Our approach strongly deviates from the
first two, as our method tests for statistical guarantees during the mining process, it
is parametric, as we use categorical and normal distributions to model the targets,
and also, through the use of MDL-based model encoding, we take into account the
concept of a list of subgroups and penalize for all the possible subgroup lists that
could be discovered in the dataset. Regarding the last approach, even though they

90 5.1. Related work

also mine subgroups iteratively, they lack a definition of an optimal subgroup set, and
their goal is to model the user’s subjective knowledge and find regions in the data
that the user does not know much about.

5.1.2 Pattern mining

Pattern mining and association rule mining [2] are concerned with mining items that
co-occur together, i.e., itemsets or patterns, and relationships between itemsets and a
target item, e.g., a class, respectively. A key problem is that they suffer from the infam-
ous pattern explosion, i.e., they tend to return enormous amounts of patterns/rules.
To solve this problem, many approaches were proposed, but two stand out concerning
our work, namely, association rule classifiers and statistical rule mining.

Association rule classifiers. A simple way to reduce the number of rules returned is
by aggregating association rules in a set used for classification and using a perform-
ance measure to choose the best set. It is relevant to notice that classifiers based on
association rule mining have a similar structure to predictive rule lists and subgroup
lists, as they tend to order the rules sequentially. The best-known techniques are CBA
[85] and CMAR [82], but they tend to obtain large numbers of rules. Similar to pre-
dictive rule lists, these methods aim to maximize the classification performance, and
not to describe the deviations in the data. Another important difference is that these
methods tend to return crisp decisions instead of probabilities and can in general only
be applied to nominal targets.

A similar class of methods is that of supervised pattern set mining [128]. The key dif-
ference is that these methods do not automatically trade-off model complexity and
classification accuracy, requiring the analyst to choose the number of patterns % in
advance.

Statistical rule mining. The idea of mining rules with statistical guarantees is ap-
pealing as it increases the users’ trust in the patterns found while at the same time
reducing the number of rules returned by a miner [51]. The concept of statistical rule
mining progressed by incrementally adding more statistical guarantees. Webb [124]
proposed for the first time mining of statistically significant patterns, then Haméldinen
[49] proposed KingFisher, an efficient algorithm to mine dependent rules, i.e., rules
that show a dependency with respect to a target in terms of a dependency test like
Fisher’s exact test. After that, Himé&ldinen and Webb [50] added extra procedures to
remove spurious relations from the miner findings. Lastly, the criteria under which
causal rules can be mined was defined and an efficient algorithm to mine them was
proposed [19]. All these methods focus on mining all the possible individual statistic-

Chapter 5. Discovering subgroup lists with RSD 91

ally significant (or causal) rules and not on finding a non-redundant set, as is the case
of Subgroup Set Discovery. In this chapter, we aim to accomplish both at the same
time, finding the best global subgroup list while assuring local statistically robust sub-
groups.

5.1.3 MDL in pattern mining

In the past, for models similar to our subgroup lists, the MDL principle has mostly
been embedded in small parts of predictive algorithms to solve the problem of over-
fitting. Prominent examples of this are C4.5 [103] and RIPPER [22], which use the
MDL principle to prune overfitting models, and help generalization.

In data mining, Krimp [120] was the first method to apply the MDL principle hol-
istically, i.e., for the whole model selection process, unlike previously mentioned ap-
proaches that only used it for a subset of the model selection process. This seminal
work used a version of crude MDL, i.e., a not completely optimal ‘two-part’ encod-
ing of the data, to find the pattern list that compressed a transaction dataset best,
to address the pattern explosion issue in pattern mining. Recent works have aimed
at improving the encoding through the use of refined MDL for encoding the data,
i.e., an encoding that enjoys optimal properties at least in expectation [48]. The first
of such approaches was DiffNorm [18], which used a prequential plug-in code to
improve the encoding of transaction data and recently MINT was proposed to mine
real-valued pattern sets with a similar encoding[86]. Although Krimp, DiffNorm, and
MINT are used to describe data, they aim at finding regularities—not deviations—and
do not consider a target variable. For an in-depth survey of MDL in pattern mining
please refer to the survey by Galbrun [40].

MDL has been used to find optimal sets of association rules for two-view data [73] and
tabular data [35]. The latter is the most related to our work, as it aims to find rule sets
that describe the data well. Similar to Krimp it aims at finding all associations in the
data though, not at identifying deviations as we do, and no specific target variable(s)
are defined.

5.1.4 Algorithmic comparison in the literature

Our proposed algorithm RSD (presented in Section 5.2) is based on a combination of
beam search for candidate generation and greedy search for iteratively adding sub-
groups to the subgroup list. Both techniques have been widely employed for similar
problems.

Greedy search has been often used for learning decision trees and predictive rule lists
[103, 22, 39, 96], as well as for pattern-based modeling using the MDL principle

92 5.1. Related work

[120, 18, 73]. Beam search has been commonly used for candidate generation in sub-
group discovery [87], including for finding subgroup sets [71, 75]. We next provide
the motivation for our algorithmic choices, and describe key similarities and differ-
ences compared to algorithms in the most related literature: 1) predictive rule list
learning; 2) subgroup set discovery; and 3) evolutionary algorithms for rule learning.

Algorithms for finding predictive rule lists. The common way to finding a good
predictive rule list is through heuristic search [22, 39, 96], however recent works
have proposed to find optimal models for binary classification under specific condi-
tions [125, 5]. Belong to the former category, Proenca and van Leeuwen [96] use a
Separate and Conquer (SaC) technique to greedily add rules, together with Frequent
Pattern Mining for candidate generation. In this chapter, the beam search for can-
didate generation does not require a discretized dataset, is faster, and without large
loss in the quality of the subgroups found due to discretization [88]. In the latter
category, of optimal predictive rule list discovery, the algorithms were only developed
for binary classification, and either require a simplification of the rules in the list to
decision rules—with true or false instead of probabilities as consequent—combined
with a simple objective function, such as accuracy, that allows for efficient branch and
bound [5], or it requires the dataset to be sparse and small, with large minimum sup-
ports for the rules (above 10%) and using convergence to an optimal algorithm such
as Monte Carlo sampling [125]. Neither of these approaches can deal with a variety
of target variables as our proposed approach can.

Algorithms for subgroup set discovery. Both beam search and greedy search are
commonplace in subgroup set discovery [71, 75], due to their efficiency and flexib-
ility in being applied to different types of targets. More recently, Monte Carlo Tree
Search (MCTS) was proposed for mining sets of subgroups [14], although it can only
be applied to binary targets and specific types of explanatory variables. In the classical
case of mining top-k subgroups without incorporating diversity, exhaustive search is
feasible [12], but again it is only efficient for specific types of quality measures or tar-
gets and does not scale well for finding the best set [75]. Together with the fact that
the loss in quality of using beam search is almost negligible [88], exact algorithms
are rarely used in MDL-based data mining, because it is infeasible [120, 18, 35, 96].

Evolutionary algorithms. Global heuristics, such as evolutionary algorithms, have
been applied to fuzzy rule-based model learning [34], and although they could also
be applied here, we found that the arguments in favor of a local search approach
were stronger: 1) local heuristics have often been successfully applied for pattern-
based modeling using the MDL principle, making it a natural approach to consider;

Chapter 5. Discovering subgroup lists with RSD 93

2) local heuristics are typically faster than global heuristics, as much fewer candid-
ates need to be evaluated; 3) global heuristics typically require substantially more
(hyper)parameters that need to be tuned (e.g., population size, selection and muta-
tion operators, etc.), while local heuristics have very few.

5.2 The RSD Algorithm

In this section we propose the Robust Subgroup Discoverer (RSD), a heuristic algorithm
to find good subgroup lists based on the proposed MDL formulation. As the problem
of finding an optimal subgroup list is NP-hard [90] we propose a heuristic based
on the Separate-and-Conquer (SaC) [38] strategy of iteratively adding the local best
subgroup to the list, combined with beam search for candidate subgroup generation.
The use of greedy heuristic approaches is common practice in MDL-based pattern
mining [120, 96] and rule-based learning [39], and beam-search is widely adopted
for its efficient generation of subgroups in subgroup discovery [71, 87, 75].

This section is divided as follows. First, in Section 5.2.1 we give a high-level descrip-
tion of our proposed algorithm and motivate our choices. After that, in Section 5.2.2
the quality measure used to iteratively add rules—compression gain—is presented,
together with its relationship with subgroup discovery quality measures. Then, in
Section 5.2.3 the statistical testing interpretation of the compression gain is given.
After that, in Section 5.2.4 the beam search for candidate subgroup generation is
presented in detail. Then, in Section 5.2.5 the Separate-and-Conquer RSD algorithm
is presented. Finally, in Section 5.2.6 the time and space complexity of the overall
algorithm is given.

5.2.1 Algorithm high-level description

The algorithm we propose is a heuristic composed of two parts: we greedily add one
subgroup at a time to the subgroup list, for which candidates are generated using
beam search. More specifically, the greedy search algorithm starts from an empty list,
with just a default rule equal to the priors in the data, and adds subgroups accord-
ing to the well-known separate-and-conquer strategy [39]: 1) iteratively find and add
the subgroup that gives the largest improvement in compression; 2) remove the data
covered by that rule; and 3) repeat steps 1-2 until compression cannot be improved.
This implies that we always add subgroups at the end of the list, but before the default
rule. Beam search is used for candidate generation at each iteration to find the best
candidate to add. Given a beam width w;, and maximum search depth d,,, it consists
of: 1) find all items, i.e., all conditioned variables such as z; < 5 or z2 = category,

94 5.2. The RSD Algorithm

and add the best w; items according to compression gain (Eq. (5.2.2)) as subgroups
of size 1 to the beam; 2) refine all subgroups in the beam with all items and add
the best w;, to a new empty beam; 3) repeat 2 and 3 until the maximum depth d,,q.
of the beam is reached and return the best subgroup—according to the compression
score—found in all iterations. The beam search algorithm is described in detail in
Section 5.2.4 and the greedy search algorithm RSD in Section 5.2.5.

The main reasons for using greedy search and adding one subgroup at a time are
its computational simplicity and transparency, as it adds at each iteration the locally
best and most statistically significant subgroup found by the beam search. Further,
in the context of subgroup discovery beam search was empirically shown to be very
competitive in terms of quality when compared to a complete search, while it demon-
strates a considerable speed-up [88]. Also, its straightforward implementation allows
flexibility to easily extend this framework to other types of targets in the future.

5.2.2 Compression gain

To quantify the quality of annexing a subgroup s at the end (after all the other sub-
groups and before the default rule) of subgroup list SL, denoted SL & s, we employ
the compression gain:

L(D,SL)— L(D,SL
s* = argmax AgL(D, SL & s) = arg max (D,SL) (ﬂ ,SL @ s)
sef sef (ns)

, Be0,1]

(5.1)
where 5 weighs the level of the normalization, and AgL(D, SL @ s) should be greater
than zero for a decrease in the encoded length from L(D, SL) to L(D,SL @ s). Con-
sidering the extremes, with 3 = 1 we have the normalized gain first introduced for
the classification setting by Proenca and van Leeuwen [96], and for 8 = 0 we have
the absolute gain which is just the regular gain used in the greedy search of previous
MDL-based pattern mining [120].

Developing Eq. (5.1) further shows that the compression gain only depends on the

added subgroup s, as in the specific case of a subgroup list the default rule is fixed

and it is the same for M and M @ s:

LY | X,SL)— L(Y | X,SL®s) L(SL) — L(SL & s)
(ns)? " (n,)7

= AQL(Y | X,SL®s)+ AgL(SL D s),

AsL(D,SL @ s) =

where AgL(Y | X,SL & s) and AgL(SL & s) are the data and model compression
gain, respectively.

Furthermore, if we note that maximizing the gain in Eq. (5.1) is equivalent to max-
imizing the subgroup discovery equivalent objective of Eq. (3.18) for nominal targets

Chapter 5. Discovering subgroup lists with RSD 95

and Eq. (3.25) for numeric targets, this means that finding the subgroup that max-
imizes the compression gain is the same as finding the subgroup that maximizes the
subgroup discovery equivalent objective:

s* =argmax AgL(SL @ s)
sef

nsKL(©,;04) COMP(ng, #param)
= arg max 5 - 3
sef (ns) (ns)

where n,K L(6,; ©4) has the general form of a subgroup discovery measure of Eq. (2.20),
COMP(ng, #param) is the complexity associated with each target probability distribu-
tion (normal or categorical), and AgL(M @ s) the added model complexity of adding

S.

+ AsL(SL & s)

Interpretation of hyperparameter 5. The hyperparameter /3 represents a tradeoff
between finding many subgroups that cover few instances or few subgroups that cover
many instances?. In the general form of a subgroup quality measure of Eq. (2.20), 3
is just given by 8 = 1 — o. We empirically show later that the normalized gain (5 = 1)
usually achieves a better MDL score than other 5 values; this was already known
for other measures from rule learning theory [39]. Nonetheless, the main objective of
subgroup discovery is to locally describe regions in the data that strongly deviate from
a certain target. Thus, it is up to the user to specify what one is looking for in the data:
either a more granular and detailed perspective (3 close to one) or a more general
and high-level one (3 close to zero). Note that, for comparison to other algorithms
we will always use the normalized gain (8 = 1) except when explicitly stated.

5.2.3 Statistical testing interpretation of compression gain

The gain of Eq. (5.2.2) shares the same expression of the weighted Kullback Leibler
divergence that was shown in Sections 3.4.3 and 3.5.3 to be equivalent to a Bayesian
one-sample proportions/multinominal test and t-test, respectively. Thus, it too guar-
antees individual “significance” for each subgroup according to these tests. We will
now look at this in more detail.

A Bayesian factor is an alternative to frequentist statistical testing and is given by the
likelihood of both hypotheses generating the data [61]:

Pr(D | M)

log K = log —— 11
R T D | M)

where M; and M- are two models that we are comparing. Values of log K above zero
tell us that there is more evidence in favour of model M;, while negative values tell us

2For details on the empirical analysis of different 3 values please refer to Appendix G.2

96 5.2. The RSD Algorithm

the opposite [61]. If we look back at the expression of the greedy gain in Eq. (5.1) for
a general model M (instead of SL) and convert the encoding L(- - -) to probabilities
Pr(---) using the Shannon-Fano code: L(A) = —logPr(A) [114]; we can see that it
takes the same form plus some extra terms:

Pr(Y | X, M & s) Pr(M@s)) 1 log (K - K)
Pr(Y | X, M) Pr(M) (ns)? (ng)? 7

where Ky, = Pr(M @ s)/Pr(M) represents the division of the model’s likelihood
(called a prior in Bayesian statistics). Thus, we obtain an expression with three terms:
the first, K, gives us an MDL equivalent to a Bayesian factor that weighs how likely the
data is given each model (M or M @ s); the second, K, gives the likelihood of each
model; and the third is a normalizing term to be able to compare the contribution of
different subgroups given how much data they cover.

The first conclusion that we can draw from this is that the subgroup that maximizes
the compression gain is the one that locally maximizes this statistical test, i.e., it is the
mode of this distribution. In the specific case of subgroup lists, the factor term K of
the compression gain corresponds to a proportion/multinomial or t-test depending on
the type of target variable. Second, the term K, can be seen as a multiple hypothesis
testing correction, as the way in which L(M) was developed puts more weight on
model structures that can generate more variants. Also, it should be noted that the
encoding of L(M) is more subjective than L(D | M), but it will be an upper bound on
the perfect encoding for M, and can be taken as a more ‘conservative’ test. Third, if
the compression gain is positive for a subgroup, it means that there is more evidence
in favor of adding that subgroup than not. Fourth, the normalizing term allows us to
adjust the weight that is given to the data covered by each subgroup.

In summary, we can say that the greedy gain based on the compression gain, a com-
mon heuristic for MDL in pattern mining, is maximizing the test statistic of a hypo-
thesis test and only adds that subgroup for which most evidence is available.

AgL(M & s) = log <

5.2.4 Beam search for subgroup generation

The beam search algorithm for subgroup generation is shown in Algorithm 5.1. It
starts by discretizing all variables depending on their subsets, i.e., nominal with the
operator equal to (=) and numeric by generating all subsets with n.,; points. At each
iteration, the w;, subgroups that maximize the selected gain (Eq. (5.1)) are chosen
and will be expanded with all discretized variables until the maximum depth d,,,, of
the description is achieved.

The algorithm accepts as inputs the dataset D = (X, Y), the number of cut points rn.,;
used for equal frequency binning of numeric variables, the beam width w;, the max-

Chapter 5. Discovering subgroup lists with RSD 97

imum depth of search or number of variables in a subgroup description d,, ., and the
indexes of the data covered by the subgroups present in the subgroup list, coverages.
The algorithm is initialized by filling the beam and subgroup with an empty subgroup
of size zero (Ln 2 and Ln 3, respectively). The algorithm is composed of three nested
loops. In short, the first (outer) loop goes over each depth of subgroups generated,
the second loop goes over each candidate to extend for a fixed depth, and the third
(interior) loop goes over each item used to extend the candidates. Now we will go
into more detail over each loop.

In the first loop, the depth is increased by one (Ln 6), candidates is initialized with the
patterns of the beam from the previous iteration (Ln 7), and after that, all patterns
are removed from the beam (Ln 8). The second loop iterates over all candidates (Ln 9)
and expands each of them in the third loop with all the items generated from the ex-
planatory variables X (Ln 11). An item is a subgroup of size one that can be generated
by logical conditions on one variable X; € X. If variable X; is nominal, each item is
a condition given by the equality operator (=) on each category, e.g., feathers = yes
from Figure 2.4. If the variable is numeric, equal frequency binning with open and
closed intervals is used to generate all possible items (further explained at the end
of this paragraph). Expanding a candidate cand to generate a subgroup_new (Ln 15)
requires computing three properties: 1) its coverage of the data through a bitwise
AND (Ln 12); 2) its description (Ln 15); and 3) its statistics © ., (Ln 15). Its score
is computed according to Eq. (5.1) (Ln 16). Then if the score is higher than the pat-
tern with a minimum score in the beam, the latter is replaced by the higher-scoring
one. Finally, if the score is higher than the score of subgroup, this is replaced. The
algorithm terminates when the maximum search depth of the subgroups is reached
and subgroup is returned, to be added to the subgroup list (Ln 21).

Numeric discretization. Suppose a numeric variable X;, and a number of cut points
Neut- The items generated from this numeric variable are all valid subsets (they must
cover at least one instance) given by equal frequency discretization with open and
closed intervals for n.,; cut points. Open intervals require one operator (> or <),
while closed intervals require two (> and <). As an example, in the case of a generic
variable X; and n.,; = 2, with cut_point; = 10 and cut_point, = 20 it generates four
items with one operator, i.e., itemsiop, = { z; > 10, z; < 10,z; > 20, z; < 20}, and
one item with two operators, i.e., itemsso, = {10 < z; < 20}.

98 5.2. The RSD Algorithm

Algorithm 5.1 Beam search for subgroup generation

Input: Dataset D, number of cut points n.,;, beam width w, depth max. d,,,., and
data already covered by other subgroups in SL coverages.
Output: subgroup
1: (X,Y)« D
beam + [2]
subgroup < &
d+1
while d < d,,,4,, do
d+d+1
candidates < beam
beam < empty _list(size = wy)

e Nl eN

for (cand, coverage_cand) € candidates do

10: coverage_cand <— coverage_pattern & coveragegs

11: for (item, bitset_item) € items(X) do

12: coverage_new <— coverage_item & coverage_cand
13: cand_new <— cand @ item

14: Opnew statistics(Y, coverage_new)

15: subgroup_new <+ (cand_new, ©pey)

16: score < AgL(D, SL & subgroup_new)

17: if score > min_score(beam) then

18: beam < replace(beam, subgroup_new, min_score)
19: if score > AgL(D, SL & subgroup) then

20: subgroup + replace(subgroup, subgroup_new)

21: return subgroup

5.2.5 The Robust Subgroup Discoverer algorithm

Algorithm 5.2 presents RSD?, for Robust Subgroup Discoverer, a greedy algorithm that
starts with an empty subgroup list and iteratively adds subgroups until no more com-
pression can be gained, where compression is measured in terms of compression gain
(Eq. 5.1) of adding a subgroup s.

The algorithm starts by taking as input a dataset D and the beam search parameters,
namely the number of cut points n.,;, the width of the beam w,, and the maximum
depth of search d,,,.. It initializes the predictive rule list with the default rule, based
on the dataset empirical distribution (Ln 1). Then, while the beam search algorithm

30ur implementation uses the rulelist package (https://pypi.org/project/rulelist/) and can be
found on GitHub: https://github.com/HMProenca/RuleList

https://pypi.org/project/rulelist/
https://github.com/HMProenca/RuleList

Chapter 5. Discovering subgroup lists with RSD 99

returns subgroups that improve compression (Ln 3), it keeps iterating over two steps:
1) finding the best subgroup from all candidates generated in the beam search (Ln 4);
and 2) adding that subgroup to the end of the model, i.e., after all the existing sub-
groups in the model (Ln 5). The beam search returns the best subgroup on the data
not covered by any subgroup already in model M. When no subgroup improves com-
pression (non-positive gain) the while loop stops and the subgroup list is returned.
Note that beam search is used at each iteration, instead of only once at the beginning,
as it can converge to local optima, and running the candidate search once would thus
bias our search to the top-k subgroups instead of the best at each iteration.

Algorithm 5.2 RSD algorithm
Input: Dataset D, number of cut points n.,;, beam width wy, depth max. d,,.. and
normalization 3
Output: Subgroup list S
M+ [@d(Y)]

1
2: subgroup < BeamSearch(SL, D, wy, Neut, dmaz)

3: while AgL(D, SL @ subgroup) > 0 do

4: subgroup + BeamSearch(SL, D, wy, Neyt, dmaz)
5 SL < SL & subgroup

6: return S € SL

5.2.6 Time and space complexity

In this section we analyze the time and space complexity of RSD as given in Al-
gorithm 5.2. The algorithm can be divided in three parts: 1) preprocessing of the
data; 2) the Separate and Conquer (SaC) algorithm; and 3) the beam search. Note
that depending on the type of target we have different complexities as each statistic
requires different computations.

1) Preprocessing phase. In the preprocessing phase all the coverage bitsets of the
items are generated, i.e., the indexes of the instances covered by each item generated
from numerical and nominal variables. The set of all items is ¢ and its size is given by
|¢|. Thus, we go over the data a maximum of |(| times, obtaining a time complexity
of O(|¢|n), and the results are stored in a dictionary for O(1) access. Also, there are
some constants that are cached for a fixed amount the first time they are computed,
such as the universal code of integers Ly(i), and I'(¢) for the numeric target case, and
C(4) in the categorical case.

100 5.2. The RSD Algorithm

2) SaC phase. For the SaC phase, it is clear that the algorithm runs the beam search
|S| times, and will thus multiply the time complexity of the beam search by |S]|.

3) Beam search phase. For the last d,,., — 1 iterations of the loop, each of w;, candid-
ates in the beam is refined with all |(| items, which gives a time complexity by itself
of O(dmazws|C|). Then, for each refinement, the algorithm computes its coverage,
statistics and score, where the last two depend on the number and type of target.
The coverage of the refinement is the logical conjunction of two bitsets, i.e., the bitset
of the candidate b.,,,q and that of the item b;;.,,. The computation of this new cover-
age has a time complexity of O(|bcana| + |bitem|), Which in a worst-case equals a run
over the dataset O(n+n) = O(n). Thus the time complexity of the algorithm is given
by
O (|S|dmasws|(|stats)

where stats is the time complexity associated with computing the statistics for one
candidate. Now, we will analyse the specific stats complexity depending on the type
of target.

Nominal target variables. The statistics for categorical distributions require the com-
putation of the usage for each class for each target of each subgroup rule and the new
default rule. Assuming a maximum number of classes & (for all target variables) and
t target variables, then the worst case for the coverage gives O(tnk) from which the
likelihood can be directly computed.

The nominal score requires the computation of the data and model encoding, from
which the data encoding dominates. The data encoding entails the computation of
the NML complexity and likelihood for each refinement. In general, the values of the
NML complexity are just computed once and then cached, thus in a worst-case where
one requires to compute n values for C(n;),V,,=1, ... Using the approximation of
Mononen and Myllymaki [92] for its computation, with O(1/10n; + k), gives a worst-
case complexity of O(tn(y/n + k)). This does not depend on the parameters of the
beam, as the lookup of these values is O(1). The likelihood in general dominates over
this term as it is computed for each refinement.

Thus the total time complexity for nominal targets is given by:

O (|S|dmazws|C[tnk + tn(v/n + k))

Numeric target variables. The statistics for normal distributions require the compu-
tation of the mean and variance (or residual sum of squares) for the refined subgroup

Chapter 5. Discovering subgroup lists with RSD 101

and for the default rule. The mean can be computed in O(n) and given this the vari-
ance can also be computed in O(n). Thus, for all the targets one obtains O(tn).

The numeric score requires the computation of the data and model encoding, from
which the data encoding dominates. The data encoding entails the computation of the
gamma function and the direct use of the statistics. Similar to the NML complexity,
we compute the values of the gamma function as needed and cache them afterward.
In general, the computation of the gamma function is dominated by the other terms
as we only compute it at most n times.

Thus the total time complexity for numeric targets is given by:

@ (|S|dmawwb\C|tn) .

Notice that this represents a worst case scenario and that in practice the direct use
of bitsets for the computation of the class usages in the nominal case makes it faster
than its numeric counterpart for the same dataset size.

Space Complexity. The main memory consumption resources of the algorithm are:
1) the storage of items (; 2) the beam; and 3) the cached constants. The item stor-
age requires at most the storage of |¢| bitsets, with each bitset taking O(n), thus it
totals O(|¢|n). The beam saves wj, bitsets at a time, thus having a space complexity of
O(wpn). The cached values make up a total of n values being dominated by the items
or beam part. Thus, depending on which part dominates, the space complexity of the
algorithm is
O(wpn + [¢[n).

5.3 Empirical evaluation

In this section, we will empirically validate our proposed problem formulation and
the RSD* algorithm. To do this, we will test how varying the hyperparameters of RSD
affects the subgroups found, and then we will compare RSD against state-of-the-art
algorithms in subgroup set discovery®.

This section is divided as follows. In Section 5.3.1 we evaluate the effect of changing
the different hyperparameters of RSD. Then, in Section 5.3.2 we present the setup
for validating our approach, based on algorithms compared against, and datasets and
measures used to evaluate them. After that, in Section 5.3.3, the results for univariate

4Our implementation uses the rulelist package (https://pypi.org/project/rulelist/) and can be
found on GitHub: https://github.com/HMProenca/RuleList

SFor replication of the experiments in this chapter please refer to: https://github.com/HMProenca/
RobustSubgroupDiscovery.

https://pypi.org/project/rulelist/
https://github.com/HMProenca/RuleList
https://github.com/HMProenca/RobustSubgroupDiscovery
https://github.com/HMProenca/RobustSubgroupDiscovery

102 5.3. Empirical evaluation

and multivariate nominal targets are presented. Then, in Section 5.3.4 the results for
univariate and multivariate numeric targets are shown. Finally, in Section 5.3.5 the
runtimes of the algorithms are compared.

5.3.1 Influence of RSD hyperparameters

Here we study the effect of RSD hyperparameters on the discovered subgroup lists.
To not overfit our hyperparameters to the datasets and for this reason obtain a better
performance than other methods, the values of RSD hyperparameters for the remain-
ing experiments (after this section) are fixed at the standard values of the DSSD
implementation for the beam search, i.e., beam width w;, = 100, number of cut points
Newt = 5, and maximum search depth d,,,,,, = 5, and to the compression gain nor-
malization term 8 = 1 (normalized gain). These values are assumed to be enough
to achieve convergence and to obtain good subgroup lists and are thus taken as the
standard values of RSD.

Now, to evaluate hyperparameter influence, we vary one hyperparameter value at a
time while others remain fixed at their standard values. The results of varying the
compression gain normalization hyperparameter 8 can be seen in Appendix G.2; the
results of varying the beam search hyperparameters wy, ncyut, and d,q, can be found
in Appendix G.3.

Normalization term (. The results are evaluated in terms of compression ratio, SWKL
(presented in Section 3.6), and the number of rules. For compression gain, the results
(as shown in Appendix G.2) are similar for a small number of samples but § = 1
and 0.5 obtain better results for larger datasets. In terms of SWKL, normalized gain
(8 = 1) is better. On the other hand, in terms of the number of rules 3 = 1 can obtain
one order of magnitude more rules than the others, especially for larger datasets.

Beam search hyperparameters wy, dpq., and n.,:. The results are evaluated in
terms of compression ratio and the average number of conditions per subgroup (for
dmaz). In general, increasing any of the three values result in better models according
to relative compression. It is also interesting to note that for maximum depths above
5 it is rare to have an average number of conditions above 4, backing up our decision
for the standard value d,,,. = 5.

5.3.2 Setup of the subgroup quality performance comparisons

In this section we evaluate the quality of our proposed method by comparing it to
the state-of-the-art approaches in subgroup set discovery, which may vary depend-

Chapter 5. Discovering subgroup lists with RSD 103

ing on the type of target variable(s). The comparison takes three dimensions: 1) the
algorithms used to compare against; 2) measures used to evaluate the quality of the
subgroups found by each algorithm; 3) the datasets in which the algorithms are eval-
uated. We now discuss the details of each dimension.

1) Algorithms. The algorithms we compared to and their relevant characteristic are
listed in Table 5.2. A short description of each is as follows:

1. top-k® - standard subgroup discovery miner used as a benchmark.

6

2. seq-cover® - sequential covering as implemented in the DSSD implementation.

3. CN2-SD’ - the classical sequential covering subgroup discovery algorithm, which
is only implemented for nominal targets, and only removes the examples of the
class of interest already covered (not all examples covered, as seq-cover does).

4. Diverse Subgroup Set Discovery (DSSD)® - diverse beam search for diverse sets
of subgroups [75].

5. Monte Carlo Tree Search for Data Mining (MCTS4DM) - an approach to improve
on beam search to find better subgroups without getting stuck in local optima
[14].

6. FSSD - a sequential approach for subgroup set discovery that defines a set as a
disjunction of subgroups [10].

As can be seen in Table 5.2 most algorithms can only be applied to single-target binary
problems, and besides RSD only top-k, seq-cover and CN2-SD support the use of Sum
of Weighted Kullback-Leibler (SWKL) divergence to measure the quality of the found
subgroup set. Thus we only compare against seq-cover and CN2-SD, algorithms that
output a subgroup list and can be applied to many target types, and with top-k as a
reference of a non-diverse subgroup discovery algorithm. The algorithms that output
sets do not have a stopping criterion or global formulation, and underperform in
terms of SWKL, thus those comparisons are relegated to Appendix G.4. As an example,
DSSD can indeed be applied to all types of target variables, but the fact that it uses
weighted sequential covering makes it unsuitable to use the SWKL, making it unfairly
underperform and inappropriate for a fair comparison (as shown in the Appendix).
Also, note that we do not compare with machine learning algorithms that generate
predictive rules for classification or regression, such as RIPPER or CART, as the rules

6top-k, seq-cover, and DSSD are available in the implementation of the DSSD algorithm http: //www.
patternsthatmatter.org/software.php#dssd/
7 Available in the Orange data mining toolkit https://orangedatamining.com/

http://www.patternsthatmatter.org/software.php#dssd/
http://www.patternsthatmatter.org/software.php#dssd/
https://orangedatamining.com/

104 5.3. Empirical evaluation

Table 5.2: Algorithms included in the comparison and their functionalities. Quality represents
the quality measure used to evaluate one single subgroup, search is the type of search algorithm
supported, swkl shows if it supports SWKL to measure the quality of a subgroup set, output tells
if the subgroups discovered form a list or a set, and ‘v’ and ‘—’ represent if that type of target
variable(s) is supported. MCTS stands for Monte Carlo Tree Search. * Most algorithms only
support W K L, for numeric targets (Eq. (2.24)), i.e., a Weighted Kullback-Leibler divergency
that only takes into account the mean, contrary to the one used by RSD that also uses the
variance (Eq. (2.25)). For the nominal target case there is only one WKL (the different WKL
measures are explained in Section 2.6.2).

nominal numeric

Algorithm quality search output swkl bin. nom. multi single multi

RSD WKL beam list v v v / v v
top-k WKL beam set v v v/ v v
seq-cover WKL beam list v v v/ v v
CN2-SD entropy beam list v v/ - - -
DSSD WKLy beam set - v v/ v/ v
MCTS4DM W K L}, MCTS set - v - - - -
FSSD WRAcc DFS list v /- - - -

generated aim at making the best prediction possible, and not the highest difference
from the dataset distribution, as shown theoretically in Section 3.7.

Quality measures. As the quality of a set is measured using the SWKL, the most
appropriate measure to use is the Weighted Kullback-Leibler (WKL) for the algorithms
that support it. CN2-SD supports entropy which is related to WKL. FSSD only supports
WRACcc at the moment. Note that for the case of numeric targets, except RSD, all use
a WKL that only takes into account the mean, given by WK L, (s) = ns/64(fia — tis)?,
in contrast to the deviation-aware measure of RSD in Eq. 3.25.

Hyperparameters. Most algorithms use beam search, thus only have three main hy-
perparameters: the maximum depth of search d,,,,; the width of the beam w;; and
the number of cut points to discretize numeric explanatory variables n.,;. The larger
the values the better the performance but the slower the algorithms become, as time
complexity is linear to each of them. To be fair and not over-search the hyperpara-
meters, we selected the default values of the DSSD and seq-cover implementation for
all beam-search algorithms: d,,q. = 5, wp = 100, neyy = 5. For the case of MCTS4DM,
which requires a larger set of hyperparameters, only the number of iterations is set,
niter = 50000, to ensure good convergence, and the rest were set as default. FSSD
only requires the maximum depth, which was set at 5.

Chapter 5. Discovering subgroup lists with RSD 105

2) Measures. To ascertain the quality of the subgroup sets we use three different
measures. The first is our proposal to measure the overall quality of an ordered set of
subgroups, the Sum of Weighted Kullback-Leibler (SWKL), as defined in Eq. (3.26).
The other two are the number of subgroups |S| and the average number of conditions
per subgroup |a|, two commonly used measures for the interpretability/complexity
of a set of rules. These two measures follow the law of parsimony and assume that
fewer subgroups with fewer conditions are easier to understand by humans, which
can be an invalid assumption in some situations. Nonetheless, it is widely used and
its simple understanding typically makes for a good proxy [27]. In machine learning,
algorithms are tested on their generalization to unseen data, which is achieved by
multiple runs using different test sets (e.g., cross-validation). Even though this could
be of interest, subgroup discovery is always evaluated on the same dataset, as the goal
is to describe the current dataset well. For this reason, and for the fact that existing
implementations are not prepared to use a test set, we follow the standard approach
in subgroup discovery of only testing on the current dataset.

3) Datasets. For a thorough analysis we use a total of 54 datasets—10-univariate
binary; 10 univariate nominal; 9 multivariate nominal; 15 univariate numeric; and
9 multivariate numeric—that are listed in Tables G.1 and G.2 of Appendix G.1. The
datasets are commonly used benchmarks of machine learning and subgroup discovery,
which are publicly available from the UCI®, Keel?, and MULAN!? repositories. The
datasets were selected to be the most varied possible. In the case of the nominal
target datasets in Table G.1, the number of targets range from 1 to 374, the classes
from 2 to 28, the samples from 150 to 45 222, and the variables from 3 to 1 186. In the
case of the numeric target datasets in Table G.2, the number of targets range from 1
to 16, the samples from 154 to 22 784. Note that we used multi-label datasets instead
of multi-nominal as the latter are not widely available.

5.3.3 Nominal target results

The results obtained on binary, nominal, and multi-label datasets with sequential sub-
group set miners can be seen in Table 5.3, while the results for algorithms that output
sets can be found in Table G.3 in Appendix G.4. We can see that overall our algorithm
gets 15 out of 29 best results, compared with seq-cover in second place with 13 best
results. In terms of SWKL and per type of data, RSD achieves the smallest ranking
for binary, seq-cover for nominal, and both are tied for multi-nominal. This small

8https://archive.ics.uci.edu/ml/
Shttp://www.keel.es/
Onttp: //mulan.sourceforge.net/datasets.html

https://archive.ics.uci.edu/ml/
http://www.keel.es/
http://mulan.sourceforge.net/datasets.html

106 5.3. Empirical evaluation

difference in the results between RSD and seq-cover is important for two reasons.
First, it validates SWKL, as it shows that seq-cover is already implicitly maximizing
it without knowing it. Second, it shows that RSD can obtain on par or slightly bet-
ter results than other established approaches. Our non-diverse baseline, top-k, shows
that covering different regions of the dataset is important to maximize SWKL.
Regarding the number of found subgroups we can see that in most cases, all al-
gorithms are in the same order of magnitude, with some clear exceptions where RSD
obtains many more subgroups (for adult, nursery, kr-vs-k, and mediamill). These res-
ults can be explained by the use of normalized gain (8 = 1) by RSD, together with
the fact that these datasets have a large number of samples, few variables, and/or a
large number of categories. First, let us recall that the normalized compression gain
of Eq. (5.1) is composed of a data covering part and a model penalization part and
that both are normalized by the number of instances covered, which gives an advant-
age to subgroups that cover less data but are well-covered (only one category, or few
categories). When the datasets are larger and the number of variables is reasonably
small, like adult with 45 222 examples and 14 variables, there is a larger chance of
finding more statistically “significant” subgroups, as there can be more regions where
subgroups only (or almost only) cover one class, and the penalization of the model
encoding is small as there are not many variables. On the other hand, subgroups that
cover more data can more easily have a larger entropy in the class label distribution.
For example, kr-vs-k, which is a reasonably large dataset with 28 056 and with 18 class
labels, a subgroup that only covers one class label, as opposed to covering many class
labels, will have a higher chance of being chosen. The number of subgroups found can
be large, but it was shown in a classification setting that they generalize well [96]. It
is interesting to note that in the case of corel-5k, RSD does not find any “significant”
subgroup to add.

Regarding the number of conditions per subgroup, the two best-performing algorithms
in terms of SWKIL, RSD, and seq-cover, tend to have a similar and lower number of
conditions than the other algorithms. Top-k, only covering the same region, has a
tendency to be close to the maximum depth of 5.

5.3.4 Numeric target results

The results for the single-target and multi-target numeric datasets can be seen in
Table 5.4. In general, it can be seen that RSD obtains the best results for 23 out
of 25 datasets. This is to be expected as SWKL and RSD take into account the dis-
persion/deviation of the subgroup target while top-k and seq-cover do not. This is
clearly supported by the normalized standard deviation of the first subgroup found,
where RSD tends to find subgroups with smaller deviations for 10 out of 15 cases.

Chapter 5. Discovering subgroup lists with RSD 107

Comparing SWKL results for top-k with seq-cover and RSD shows that irrespective
of dispersion-aware (RSD) or not (seg-cover), covering different regions of the data
increases the quality of the list in terms of SWKL, validating the use of our measure.
It should be noted that both top-k and seq-cover could in practice support taking into
account the deviation but that would require several non-trivial modifications in their
source code.

Regarding the number of subgroups, seq-cover tends to have more rules than RSD for
datasets with less than 5 000 examples, while RSD tends to have more for a larger
number of examples. This makes sense as there is more evidence to identify possible
significant subgroups.

Regarding the number of antecedents, RSD tends to have, on average, one condition
fewer than seq-cover for single-target and a similar number for the multi-target case.

5.3.5 Runtime comparison

Runtimes of all algorithms compared, i.e., top-k, seq-cover, CN2-SD, and RSD are
shown in Figures 5.2a and 5.2b. In general, it can be seen that the runtime increases
with the number of samples in the dataset for a fixed data type. For the nominal
datasets, it seems that there is an increase in runtime with the number of target
variables, which does not seem to happen for numeric targets. This is because for
multivariate numeric targets the number of subgroups found was, in general, smaller.
Comparing the algorithms against each other, as expected, top-k was the fastest al-
gorithm, as it only needs to search for the subgroups once, while the others need
multiple iterations.

For nominal targets, CN2-SD was the slowest algorithm, which stems from the use of
entropy as a quality measure—experiments with WRAcc proved orders of magnitude
faster. RSD seems to perform on par with seq-cover and is often even slightly faster.
For numeric targets, RSD was one order of magnitude slower than seg-cover. One
possible reason is the extra time to compute the variance, although this does not
explain the difference between both algorithms. It seems that a further study of the
numeric implementation could make for an interesting research direction.

108 5.3. Empirical evaluation

m RSD m
S 4
10 O top-k A v
V seg-cover v
1044 A CN2-SD A s v v - v
0 A
©
S 104 - A Eh o' 8o
O A 1 (]
2 v AV A
~ A
2 5 AgD 5] <o
v Wy g p v om o v <
1S \% x A i
b= m o, _4 m vV
Sl Avogeo uvTegeE o
RIM 8% o
100 4 v AR o o
¢ o
2
10—1 4
B B O SN FCAT AN S @ISO E 9 2N € S
o CXO0 NS \Q(J@(, 09\\'00)\‘70(\-\(@?}‘0\0@@@ 3
P SR S S R
FF R & VL L& EXRIA
3 <& SO
N < ¥
(a) Nominal targets.
= g @ RSD
(=] & top-k
10° § = o] B B g Vv seq-cover
i =]
m <o
B 10° 5 vy &
c v v
S =
b =
a =
2 102 4 o v¥ = <&
) = v v =
€ v v o
S mE o -
c v o v v
S 104 v o ™
OVV < ° <o v By
LN < <
0]
10 k3 o® o .
<o
<o
N 9 & .
O&Q(,‘bbe,e\zz & 0@9\@ \\o“e’b"}\(o&@(’(\(\Q&\’b\)(,)ez COL ‘,\9 &«’&ze & {7@0 K&
®9°§‘ T LD @?60 L@ eﬁ'b {;o'b © & SELH 3
R TEE ToS e % &

(b) Numeric targets.

Figure 5.2: Runtime in seconds for all algorithms for each dataset. The black vertical
line divides the type of datasets, i.e., from left to right: univariate binary, nominal,
and multi-label for nominal targets, and univariate and multivariate for numeric.

Chapter 5. Discovering subgroup lists with RSD 109

Table 5.3: Nominal target results. This includes single-binary, single-nominal, and multi-label,
separated by horizontal lines in the table (top to bottom). The properties of the datasets can be
seen in Table G.1, and are ordered in ascending number of: 1) target variables; 2) number of
classes; and 3) number of samples. The evaluation measures are {quality of the subgroup set
swkl; number of subgroups |S|; and average number of conditions |a|}. ‘avg. rank’ stands for
the average ranking for the respective target variable type, where 1 represents the best rank.
Note that CN2-SD does not work for multi-label case and thus the empty values —. *as RSD
produced no subgroups for corel-5k, seq-cover number of subgroups was used as a reference.

top-k seq-cover CN2-SD RSD
datasets swkl |S| Ja| swkl |S| |a| swkl S| |a| swkl |S] |a
sonar 0.24 2 4 0.96 9 2 0.67 11 2 043 2 3
haberman 0.08 1 5 039 20 4 0.18 12 4 0.04 1 1
breastCancer 0.37 6 2 0.80 13 2 0.80 11 2 0.82 6 2
australian 0.26 5 3 0.69 13 3 0.54 24 3 0.55 5 2
tictactoe 0.50 16 3 073 18 3 021 21 3 087 16 2
german 0.08 4 5 030 22 4 0.42 48 4 0.14 4 3
chess 0.25 17 3 087 13 2 0.68 51 3 097 17 2
mushrooms 0.49 12 4 0.92 11 1 1.00 36 1 1.00 12 1
magic 0.16 69 5 038 35 4 042 616 3 047 69 4
adult 0.11 103 5 027 79 4 043 1230 4 031 103 4
avg. rank 3.8 1.9 3.8 2.1 24 22 2.2 3.8 25 1.9 19 15
iris 0.53 4 2 145 5 2 0.96 4 2 144 4 1
balance 0.21 9 3 080 19 3 0.18 3 3 0.69 9 3
CMC 0.07 7 3 030 38 4 0.27 42 3 0.25 7 2
page-blocks 0.19 21 5 045 26 2 0.44 12 4 049 21 3
nursery 0.92 81 2 1.36 22 3 0.87 8 4 1.63 81 3
automobile 0.38 5 4 1.61 11 3 1.54 7 4 1.25 5 2
glass 1.01 5 2 1.55 5 2 214 6 2 1.92 5 1
dermatology 0.54 9 2 228 9 2 212 7 3 211 9 2
kr-vs-k 0.45 351 5 075 43 4 0.20 61 5 1.83 351 3
abalone 0.26 16 5 062 29 4 0.60 49 3 074 16 2
avg. rank 3.7 24 3.0 1.6 3.0 22 2.8 2.3 34 1.9 24 14
emotions 0.71 17 5 1.93 22 4 - - — 2.68 17 3
scene 0.39 49 5 1.85 33 4 — — — 3.05 49 4
birds 0.49 8 5 202 20 4 — — — 1.57 8 3
flags 0.44 5 4 240 17 4 — — - 121 5 2
yeast 0.49 35 5 1.83 55 5 - - — 220 35 5
genbase 0.88 15 2 551 12 1 — - — 582 15 1
mediamill 0.43 131 5 1.44 60 5 - - — 296 131 5
CAL500 1.46 1 5 1691 36 4 — — - 124 1 5
corel5k* 5.81 144 3 539 144 4 — - — 0.00 0 0
avg. rank 2.7 19 2.7 1.7 23 1.9 - 1.7 18 14

110

5.3. Empirical evaluation

Table 5.4: Numeric target results. This includes single-numeric and multi-numeric, separated
by a horizontal line in the table (top to bottom). The properties of the datasets can be seen in

Table G.2, and are ordered in ascending number of: 1) target variables; 2) number of classes;
and 3) number of samples. The evaluation measures are { quality of the subgroup set swkl;

number of subgroups |S|; normalized standard deviation of the first subgroup 6+,; and average
number of conditions |a|}. ‘avg. rank’ stands for the average ranking for the respective target

variable type, where 1 represents the best ranking. Note that 5;; is not shown for the multi-
numeric case as it is not easy to understand.

top-k seq-cover RSD
datasets swkl 64 |S| Ja] swkl Ga |S| la] swkl &u |S| g
baseball 0.26 0.82 7 4 1.40 1.22 26 4 1.86 0.01 7 2
autoMPG8 0.43 0.54 8 4 145 1.85 22 4 1.57 0.18 8 2
dee 0.46 0.50 9 4 1.29 201 20 4 1.35 0.32 9 2
ele-1 0.29 1.06 8 4 1.14 0.94 22 4 122 1.24 8 2
forestFires 0.61 6.84 22 4 273 015 57 4 391 757 22 3
concrete 0.28 0.65 18 4 1.27 1.53 35 4 1.31 0.21 18 3
treasury 0.43 0.68 31 4 2.74 1.46 21 4 3.85 0.01 31 2
wizmir 0.70 0.31 22 4 2.15 3.22 26 4 2.72 0.15 22 2
abalone 0.23 059 26 4 047 1.68 126 5 071 132 26 3
puma32h 0.55 0.59 48 4 1.39 1.68 70 5 1.44 0.29 48 3
ailerons 0.24 1.23 98 4 1.04 0.82 105 4 1.44 0.98 98 4
elevators 0.23 1.44 158 4 0.83 0.69 150 5 131 1.40 158 4
bikesharing 0.26 1.09 136 4 1.24 0.92 91 4 1.70 0.02 136 4
california 0.19 090 174 4 0.69 1.11 116 5 1.14 0.00 174 4
house 0.19 1.59 269 4 091 0.63 143 5 2.02 283 269 5
avg. rank 3.0 21 1.8 20 2.0 23 23 27 1.0 1.6 18 1.3
edm 0.47 — 5 5 081 — 9 2 188 — 5 2
enb 2.73 — 41 2 3.54 — 19 2 8.71 — 41 2
slump 1.38 — 4 5 2.74 - 17 4 257 — 4 3
sfl 0.16 — 3 5 2.06 — 47 4 1.24 — 3 3
sf2 0.86 — 2 5 2.29 — 18 4 091 — 2 4
jura 0.47 - 15 5 238 - 28 4 3.52 - 15 3
osales 2.17 - 45 4 18.09 — 48 3 26.44 — 45 3
oes97 6.55 — 16 3 30.79 - 19 4 34.36 — 16 4
oesl0 6.56 — 23 3 29.11 — 27 4 40.65 - 23 3
wq 0.87 - 62 5 206 - 47 4 11.14 - 62 4
avg. rank 3.0 - 17 24 1.7 - 26 18 1.3 - 17 18

Chapter 5. Discovering subgroup lists with RSD 111

5.4 Case Study: Hotel Bookings

To assess the usefulness of our method, we apply it to understand the type of clients
that make a hotel booking based on how much time in advance (lead time in days)
this was done. To this end, we used the “Hotel booking demand dataset” by Antonio
et al. [6] and analysed the data of a resort hotel in the year of 2016. The first four
subgroups of a total of 260 obtained with SSD+ + can be seen in Figure 5.3 and its
subgroups versus the dataset in Figure 5.4. Only the first 4 subgroups are shown here
for clarity, and given that greedy search is used, they are also the 4 most interesting
subgroups.

s description of client bookings n [& overlap

1 month = 9 & customer_type = Transient-Party 22 533 34 —
& meal = Half Board & country = GBR & adults > 2 days days

2 month € [7,9] & market_segment = Groups 29 336 ~0 0%
& weekend _nights = 1 & distribution_channel = Direct

3 month = 9 & week_nights =4 16 343 3 0%

& distribution_channel = Corporate

4 week nights = 0 & deposit_type = Refundable 20 9 ~0 0%
& repeated_guest = no & adults> 2

dataset overall distribution 18 550 92 99 -

Figure 5.3: First 4 subgroups of a subgroup list obtained by RSD with normalize gain (3 = 1)
on the Hotel booking dataset with target lead days—number of days in advance the bookings
were done. Description contains information regarding client bookings, n the number of in-
stances covered, /i and & are the mean and standard deviation in days, and overlap is the
percentage of the subgroup description that is covered by subgroups that come before in the
list, i.e., how independently can the subgroups be interpreted. The last line represents the data-
set overall probability distribution. * The n of the dataset is the total number of instances in
the dataset.

The results show us a very detailed picture of the dataset and at first glance, one
notices that most subgroups cover a small number of instances. Nevertheless, this is
normal as they represent highly defined subgroups, with a very different mean and an
almost zero standard deviation, compared with the dataset iy = 92 and 6, = 99. As
an example, subgroup 1 has an average lead time circa 6 times higher than the dataset
distribution, together with a standard deviation that is 3 times smaller. This subgroup
seems to represent a group of people that travelled together from Great Britain and
all chose the same type of booking, while with some slight days of difference in their
bookings. Another interesting subgroup is the 4*" which shows that there is a group

112 5.5. Case study: flight delay analysis

of around 20 similar bookings for groups of 2 or more adults done with only 9 days
before arrival when the deposit type is refundable. If one would follow the whole
subgroup list one would have a complete summary of the bookings done.

0.009

—— dataset
0.008 4 A
0.007 — f

— i
— Ha

0.006

0.005 4

0.004 4

0.003 4

0.002 4

o
o
<1
pt

probability density of dataset distribution

0.000 - T T T T T T T
0 100 200 300 400 500 600 700 800

Lead time of booking (days) before arrival

Figure 5.4: Hotel bookings kernel density estimation of the dataset distribution and
location (not density) of the mean value of the first 4 subgroups obtained with RSD
and normalized gain.

5.5 Case study: flight delay analysis

In this section, we apply RSD to the problem of describing flight delays, specifically
how to identify subgroups of flights that can (or do not need to) be improved. This
case study is part of the SAPPAO (a Systems APproach towards data mining and
Prediction in Airlines Operations) project, which aims to combine the prediction of
flight delays with the optimization of airplanes and crew scheduling. In our part of
the project, we focus on finding sets of flights with an above-average delay, as it is
impractical to optimize all flight schedules.

Typically, each airline needs to schedule their airplanes and crews 6 and 2 months
in advance of the actual flight departure, respectively [98], and they would like to
minimize the number of delayed flights scheduled. However, at the time of planning,
the only variables available are the origin and destination airports and the proposed
schedule. Thus, the variables highly correlated with delays, such as weather data, are
not available. Nonetheless, as flight delays are additional expenses that airlines would
like to reduce [94], they would still like to identify some of the characteristics of those
flights. For the identified subgroups to impact, they should cover a sizeable amount

Chapter 5. Discovering subgroup lists with RSD 113

of their annual flights.

Dataset. Historical data of flights in the United States is freely available through the
Bureau of Transportation Statistics (BTS) [1]. Specifically, we restrict our analysis
to a single airline and a single year. The reason for this is that airlines have differ-
ent strategies when choosing the scheduled time for their routes, and these can also
change with a periodicity of six months [62]. Also, the results should reveal which
schedules are associated with more delays so that an airline can improve, and using
multiple airlines with different strategies can muddle these insights. The restriction
to the busiest airports comes from the fact that they are more prone to chronic delays
than smaller ones while also covering most airline flights. We selected the year 2017,
a typical year of airline operation compared with 2007 to 2008 and 2020 to 2021 where
the recession and the COVID-19 pandemic have affected flight operations [1]. After
that, we selected one of the major US airlines with a high percentage of delayed
flights: United Airlines (UA), with 16% of flights delayed [1].

After cancelled and diverged flights have been removed, the acquired data totals
577 213 samples. The variables used—with original names from the BTS—are: date;
CRS (Computerized Reservation System) departure time; CRS arrival time; CRS elapsed
time; origin airport; destination airport; and arrival delay. The date was transformed
into six variables: the meteorological season, the respective month, day of the week,
and weekday (or weekend).

Hyperparameters. The goal is to find the characteristics of a large number of delayed
flights. Thus, there are two main ways to use RSD to find subgroups that cover large
numbers of flights: 1) using the absolute-normalize trade-off hyperparameter; 2) us-
ing minimum support threshold. The first approach is flexible as the number of flights
covered depends on the quality of the subgroups, while the second is rigid, as no sub-
group with coverage below the threshold will be admitted. In this case, we choose to
use a strict threshold to simulate an airline engineer looking for a precise number of
flights to influence. Also, we combine the minimum support with normalized gain, as
it will favour finding subgroups with coverage similar to the threshold. As the “size-
able” number of flights depends on the engineer, airline, and budget to make changes,
we fixed it to 1%, a value we thought reasonable to demonstrate the abilities of RSD.

5.5.1 Analysis of subgroups obtained with RSD

The first four subgroups with normalized gain and a minimum support of 1% are
shown in Figure 5.5 and their respective probability density functions (pdf) in Fig-

114 5.5. Case study: flight delay analysis

ures 5.6a, 5.6b, 5.6¢, and 5.6d.

Interpretation of the results. As expected, the subgroups’ pdfs follow a similar shape
as the dataset distribution, which makes sense given that the variables used do not
have a strong association. Also, the number of flights covered is around the value of
our minimum support, which agrees with our use of normalized gain. Nonetheless,
the four subgroups represent arrival delays above the dataset’s average, which could
mean chronic delays for those routes. We can see that the pdf of the first subgroup
is the most different, and as we progress towards the least, their pdfs resemble more
the dataset pdf. In terms of the descriptions, it is interesting to notice that all the four
subgroups have either an origin or destination, months, and an arrival or departure
time. Not surprisingly, this seems to point out that chronic delays are associated with
certain airports at specific times of the year. Specifically, three subgroups contain Ne-
wark Liberty International (EWR) airport as origin or destination airport, making it
an airport with a tendency for above-average delay. According to these subgroups, it
would be interesting to investigate flights from or to this airport in the earlier months
of the year.

Violation of the model assumptions. Figures 5.6a, 5.6b,5.6c, and 5.6d show that
the pdfs are right-tailed distributions. Although the means do not describe the pdf
completely, they still obtained what we were looking for, subgroups different from
the dataset distribution. RSD users should be cautious of this and always compare the
presented statistics with the subgroup’s original distribution to avoid wrong conclu-
sions.

Chapter 5. Discovering subgroup lists with RSD 115

s description of a flight route n Arr. Delay
1 dest. = EWR & month € [March; Sep.[& dep. € [13:00;19:00] 5259 45+ 90
& arrival > 15:22 & travel_time < 03: 36 min.
2 origin = EWR & month € [May; Sep.| & weekday = yes 5047 37+75
& departure > 16:03
dest = SFO & month € [Jan.; May.| & departure > 16: 03 5448 27+ 76
4 dest = EWR & month € [Jan.; Sep.[& departure € [10:11;13:00] 5243 23+ 77
dataset distribution 556 215" 2447

Figure 5.5: United Airlines (UA) arrival flight delay analysis. The results were obtained
by RSD with normalized gain (8 = 0) and a minimum support of 5000. UA dataset
contains one numeric target variable arrival delay in minutes. The dataset is made of
all 2017 flights of United Airlines that were not cancelled , totalling 577 213 flights.
Description contains information regarding flight routes and schedules, n the number
of instances covered, and Arr. Delay the arrival delay in minutes. EWR — Newark
Liberty international airport; SFO = San Francisco international airport airport. * The
n of the dataset is the total number of instances in the dataset.

116 5.5. Case study: flight delay analysis
— fg fa
0.025 H 0.025 Ha
[dataset [dataset
1st subgroup 2nd subgroup
0.020 0.020
> >
= =
@ 0.015 @ 0.015
o 3
) o
0.010 0.010
0.005 0.005
0.000 0.000 j
-100 =50 0 50 100 150 200 250 300 -100 =50 0 50 100 150 200 250 300
Arrival delay (minutes) Arrival delay (minutes)
st nd
(a) 1°" subgroup. (b) 2™* subgroup.
— g — Ha
0.025 Hs 0.025 Ha
[dataset [dataset
3rd subgroup 4th subgroup
0.020 0.020
> >
= =
@ 0.015 @ 0.015
3 3
a) fa)
0.010 0.010
0.005] 0.005 j
0.000 0.000

-100

-50 0 50 100 150 200 250 300
Arrival delay (minutes)

(©) 3" subgroup.

—100

-50 0 50 100 150 200 250 300
Arrival delay (minutes)

(d) 4" subgroup.

Figure 5.6: Probability density plot of the United Airlines arrival delay for the whole
dataset and for the first four subgroups in the subgroup list. The subgroups were
obtained with RSD normalized gain and a minimum support of 5 000. The vertical
lines represent the mean of the dataset and subgroup arrival delays.

Chapter 5. Discovering subgroup lists with RSD 117

5.6 Case study: socioeconomic background and uni-
versity performance

In this section we apply RSD to a real use case to assess its usefulness and limitations.
To this end, we aim at understanding how socioeconomic factors affect the grades
of engineering university students in Colombia on their national exams. The dataset
used to study this is fully described by Delahoz-Dominguez et al. [24]. It contains
socioeconomic variables and grades in national exams done at high school and uni-
versity level for engineering students in Colombia. For this specific case study, we
have selected two of their exam grades at the university for two reasons. First, the re-
lationship between socioeconomic variables and university grades is weaker (than for
high school grades), thus more interesting to see if we can find relations, and second,
only having two exam grades improves the visualization of the results.

Dataset. The dataset used is composed of 12 412 samples, 22 explanatory variables,
and 2 numeric target variables. The explanatory variables refer to the socioeconomic
background of the students at the time of high school, and they are made of vari-
ables such as parents level of education, the household income, which type of high
school they attended, the utilities available at home (e.g., internet and television),
and their neighborhood stratum!!. The numeric targets represent their grades, from
0% to 100%, in two national university-level exams, namely quantitative reasoning
and English.

An additional reason for selecting this dataset is that it violates two of our model
assumptions: 1) the target variables values are truncated between 0 and 100, thus
violating the use of a continuous normal distribution to describe them; and 2) the
target variables are not independent, as suggested by a correlation of 53%. If our
approach is shown to work despite these violations, we may consider this is a good
result.

5.6.1 Analysis of subgroups obtained with RSD

The first four subgroups with absolute (5 = 0) and normalized (8 = 1) gain can
be seen in Figures 5.7a and 5.7b, respectively. The distributions of the first two sub-
groups for both gains can be seen in Figures 5.8a, 5.8b, 5.8¢c, and 5.8d. The two
extreme gains were used to show that from a user perspective it can be interesting to

HStratum is a classification system unique to Colombia, where districts are ranked based on their
affluence level from 1 to 6, where 1 is the lowest level https://www.dane.gov.co/index.php/
servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica (Accessed on

19 April 2021).

https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica
https://www.dane.gov.co/index.php/servicios-al-ciudadano/servicios-informacion/estratificacion-socioeconomica

118 5.6. Case study: socioeconomic background and university performance

use different gains depending on the goal of the data exploration, i.e., coarse versus
fine-grained perspective.

Comparison of absolute and normalized gain. Overall, with absolute and normal-
ized gain our method finds 7 and 34 subgroups that cover a total of 84% and 92% of
the data, respectively. Looking at Figures 5.8a, 5.8b, 5.8c, and 5.8d, it can be seen
that normalized gain favors smaller and compact subgroups that deviate more from
the dataset distribution, while absolute gain favors larger subgroups that deviate less
from the dataset distribution. These conclusions can be verified by noting that nor-
malized gain subgroups tend to have a smaller standard deviation, between 5% and
9%, while absolute gain has values in the same order of magnitude of the dataset
distribution, i.e., around 23%.

Interpretation of the results. Both normalized and absolute gain results point to
the fact that having a ‘better’ socioeconomic background is associated with higher
grades on average in both types of exams, and the contrary is associated with lower
grades. This is clearer in the absolute gain case, as each subgroup covers more data.
It is noticeable in Figure 5.8b that a subgroup with a standard deviation similar to
the dataset leads to subgroups that are spread throughout the whole range of values.
Nonetheless, that subgroup covers more regions with lower grades than the dataset,
making it a relevant result to understand the dataset better.

In general, it can be seen that some conditions appear often in the subgroups, such
as household_income above and below 5 minimum wages and education of one of
the parents parents equal or above high school. It seems that the presence or absence
of these variables is highly associated with above or below-average performance, re-
spectively.

Looking at specific subgroups, it is interesting to see that in the 4*" subgroup of the
absolute gain, the Quantitative reasoning grade is equal to the average behavior of
the dataset (77%), while the English grade is 8% above average. Looking at the sub-
groups with normalized gain, we see that there are only slight variations of their
descriptions and that they belong to a similar socioeconomic macro group but with
slight differences in their descriptions, which corresponds to small differences in their
grades distribution.

Violation of the model assumptions. Here we can observe how our method behaves
when some modeling assumptions are violated. Regarding the truncated values, it
seems that the normalized gain is affected by grades around 100 (as seen in Figures
5.8c and 5.8d) as most of its subgroups capture these students, which increases the
average and lowers the standard deviation, making them rank higher. Our method

Chapter 5. Discovering subgroup lists with RSD 119

was not developed for highly stratified target values, but the results seem to show
that it does not seem prohibitive to the use of RSD in these cases as long as the
stratification is mild and the user takes into account this fact.

Regarding the independence assumption, it seems that the subgroups found are still
relevant although both grades are almost always taken into account together, i.e.,
as the values are positively correlated it is more likely to find subgroups with mean
values that are high or low for both exams, but not high for one and low for the
other. This is expected as the encoding of independent normal distributions does not
take into account the covariance between target variables, and thus that case is not
deemed a deviation by the current model formulation.

120 5.6. Case study: socioeconomic background and university performance

s description of a student socioeconomic background ns Quant.(%) English(%)

1 household_income > 5 min. wage & public_school = no 1676 87+ 16 88 + 14
& edu_mother > high_school & Microwave = yes

2 household_income < 5 min. wage 4031 72+ 25 54 4+ 26
& stratum < 5 & public_school = yes

3 gender = M & edu_father > high_school 1478 85 £ 17 78 £20
& social_support = None & stratum > 3
& public_school = no

4 social_support = None & edu_father > high_school 997 77 £ 22 76 £ 19
& public_school = no & internet = yes
& mobile = yes

dataset distribution 1945 77 £ 23 68 + 26

(a) Subgroup list with absolute gain (8 = 0). First 4 subgroups of a total of 7 and swkl = 0.41

s description of a student socioeconomic background ns Quant.(%) English(%)

1 household_income > 5 min. wage & gender = M & 39 96 + 5 92+6
household size < 3 & edu_father > high-school
& mobile = yes

2 household_income > 5 min. wage 23 96+ 5 95+ 4
& school_type = academic & occ._mother = retired
& edu_father > Undergrad

3 household_income > 5 min. wage 30 96 £ 5 93£6
& job_mother = independent & stratum > 4 & gender = M
& job_father = independent

4 job_mother = executive & stratum > 4 & mobile = yes 32 93+9 94+6
& job_father = independent & public_school = no

dataset distribution 942* 77+ 23 68 + 26

(b) Subgroup list with normalized gain (8 = 1). First 4 subgroups of a total of 34 and swkl
=0.52

Figure 5.7: Colombia engineering students performance in Quantitative Reasoning and English
exams. The results of Fig. 5.7a and 5.7b were obtained by RSD with absolute gain (3 = 0) and
normalized gain (8 = 1). The dataset contains two numeric target variable Quantitative Reas-
oning and English exams in a 0-100% scale. The dataset represents 12412 engineering students
in Colombia, their grades in university national exams and their social-economic background.
Description contains information regarding students socio-enconomic background, n, the num-
ber of instances covered, Quant. and English the average grade and standard deviation in the
respective exams. * The n of the dataset is the total number of instances in the dataset.

Chapter 5. Discovering subgroup lists with RSD 121

100 4

a 100
dataset ° dataset
X udataset . X udataset o
[odataset . [o dataset °
© subgroup 1 © subgroup 2 P
X psubgroup 1 X subgroup 2 1.
80 1 E_ o subgroup 1 80 : ﬂ??b?lloupz
° © o . © ecee
8 604 R e
[} [}
] °
e e
o o
< <
°o]
=) =)
S 40 & 40
20 204
e
0 0+
0 4 6
Quantitative reasoning grade (%) Quantitative reasoning grade ()
(a) 1°* subgroup with absolute gain. (b) 2" subgroup with absolute gain.
100 A 100 A
dataset ° o, © dataset
X udataset X udataset
[o dataset [o dataset
© subgroup 1 © subgroup 2 F
X psubgroup 1 . X psubgroup 2 l.
8o —1 afubgroup 1 80 — u“stjb_gr:)upz
° —'7 '(‘ D © J\J
g R 60
9} [}
] k]
e °
=) =)
< <
w @
=) °
5 & 40
20
- 0
40 60 0
Quantitative reasoning grade (%) Quantitative reasoning grade (%)
(c) 1% subgroup with normalized gain. (d) 2™* subgroup with normalized gain.

Figure 5.8: Scatter plot of the grades of students for Quantitative Reasoning and
English exam, together with the grades associated with the descriptions of the 15¢
and 2" with absolute and normalized gain.

122 5.7. Conclusions

5.7 Conclusions

We showed that finding good subgroup lists (ordered sets) that are both non-redundant
and statistically robust, i.e., robust subgroup discovery, is computationally feasible. To
achieve this, we proposed a heuristic algorithm dubbed RSD that approximates our
MDL-based formulation of the problem using a greedy search that adds the subgroup
that locally minimizes the MDL criteria to the list in each consecutive iteration. This
approximation was shown to be equivalent to a Bayesian test (factor) between sub-
group and dataset marginal target distributions plus a penalty for multiple hypothesis
testing, which guarantees that each subgroup added to the list is statistically sound.
These assertions are supported by empirical evidence obtained on a varied set of 54
datasets. In the case of nominal targets, our method performed on par in terms of
subgroup list quality, while obtaining smaller lists with fewer conditions. In the case
of numeric targets and through the use of a deviation-aware measure, our method
dominated in 92% of the cases.

Through a case study relating the socioeconomic background and national exams
grades for Colombia engineering university students, we showed that RSD can be
flexibly adapted to different goals of the user. In particular, it can change from a fine-
grained perspective of the data that finds many subgroups that cover small parts of
the data well, to a coarse perspective that finds few subgroups that cover large parts
of the data. Also, it was shown that our method is robust to mild violations of our
model assumptions.

Limitations. Even though the RSD algorithm has some appealing local statistical
properties, we do not know how far the found models are from the optimal sub-
group lists as defined by the global MDL criteria we proposed. Also, it does not scale
very well for numeric targets, which was to be expected from the time complexity
analysis. At the moment, multiple target variables are assumed to be independent,
which can produce erroneous results when this assumption is violated. Preliminary
experiments show that for moderately correlated variables (e.g., with a correlation of
0.5) this does not seem to be an issue, but there is no quantification of its implications.
Similarly, for numeric targets, we use a normal distribution, and several datasets vi-
olate this assumption, either by behaving like a multi-modal or truncated distribution.

