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4
Discovering predictive rule lists with

CLASSY

In this chapter1, we propose the CLASSY algorithm based on the MDL formulation
of predictive rule lists given in Chapter 3. This algorithm uses a greedy heuristic to
find good predictive rule lists and can be applied to supervised tabular datasets with
univariate nominal targets, i.e., multiclass classification. In machine learning, a pre-
dictive rule list is an instance of interpretable machine learning models, as long as
the number of rules is reasonably small. To validate our approach, we conduct an
empirical comparison on 17 datasets against state-of-the-art-algorithms.

Note that in Chapter 3 we presented a formulation of predictive rule lists for single
and multi-nominal classification and single and multi-regression problems. However,
we only developed CLASSY for discrete explanatory variables and regular classifica-
tion, hence, we only present results for this scenario in this chapter. For regression
the greedy algorithm would require some changes in order to find good regression
rule lists.

Recapitulation of predictive rule list definition and MDL encoding. In the previous
chapters we defined what a predictive rule list is and gave its definition of optimality
according to the MDL principle. We will now restate those definitions here.

First, let us recall from Chapter 2.4 the predictive rule lists model in Figure 4.1.

The best predictive rule list RL according to the MDL principle is the one that, given

1Parts of this chapter are based on Proença and van Leeuwen [96]
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s1: IF a1 v x THEN y ∼ Cat(p̂1|1, · · · , p̂k|1)
...

sω: ELSE IF aω v x THEN y ∼ Cat(p̂1|ω, · · · , p̂k|ω)

dataset: ELSE y ∼ Cat(p̂1|d, · · · , p̂k|d)

Figure 4.1: Generic rule list model RL for classification with ω rules R = {r1, ..., rω}
and one target variable distribution per rule. Note that the parameters of the default
rule of a rule list are not fixed (in contrast to those of a subgroup list) and just de-
scribes the subset covered by it, i.e., Dd.

the dataset D, minimizes the two-part code defined in Chapter 3.1:

RL∗ = arg min
RL∈RL

L(D,RL) = arg min
RL∈RL

[
L(Y | X, RL) + L(RL)

]
,

where L(RL) is the length of encoding the predictive rule list model RL, and L(Y |
X, RL) is the length of encoding the target variables data given the predictive rule list
RL and the explanatory variables X. The model encoding is the same for predictive
rule lists and subgroup lists, as they only differ in how the default rule encodes the
data, and was defined in Chapter 3.2. Nonetheless, at the time these experiments were
developed [96], the formulation was only done for discrete explanatory variables, and
it is suboptimal compared to that of Eq. (3.3). Thus, the model encoding throughout
this chapter is:

L(RL) = LN(|R|) +
∑
ai∈R

[
LN(|ai|) + |ai| logm

]
,

where R is the list of predictive rules in RL, i.e., the model excluding the default
rule. Compared with Eq. (3.3), we here used a uniform code for the variables in ai,
i.e., |ai| logm, which is suboptimal for unordered sets compared to

(
m
|ai|
)
. Also, we do

not require
∑
v∈ai L(v) for the different types of variables, as only binary explanatory

variables were considered, and only their positive value, i.e., x = 1 is encoded.
Then, in the case of classification, where there is only one target variable Y , we use a
categorical distribution and the Prequential Plug-in encoding defined in Chapter 3.4:

L(Y | X, RL) = Lplug-in(Y d) +
∑
ρi∈R

Lplug-in(Y i),

which is asymptotically optimal. Even though the Normalized Maximum Likelihood
encoding is optimal for finite n, and thus, theoretically better than the prequential
plug-in, we did not find very significant differences in preliminary experiments, ex-
cept for a few edge cases.
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Structure of the chapter. This chapter is organized as follows. First, in Section 4.1 the
most relevant related work is covered, together with the main differences to our ap-
proach. After that, in Section 4.2 the CLASSY algorithm, a heuristic algorithm to mine
predictive rule lists is defined. Then, in Section 4.3 we empirically validate our pro-
posed method on 17 datasets when compared against the state-of-the-art algorithms
for classification. Finally, in Section 4.4 the main conclusions are presented.

4.1 Related work

We start by comparing the most important features of our algorithm to those of state-
of-the-art algorithms and then provide a brief overview of the most relevant literature,
grouped into three topics: 1) rule-based models; 2) similar approaches in pattern
mining; and 3) MDL-based data mining. For an in-depth overview of interpretable
machine learning, we refer to Molnar [91].

Table 4.1 compares the most important features of our proposed approach, called
CLASSY, to those of other rule-based classifiers, which will be described in the next
subsections. Classical methods, such as CART [15], C4.5 [103], and RIPPER [22],
lack a global optimisation criterion and thus rely on heuristics and hyperparamet-
ers to deal with overfitting. Fuzzy rule-based models [3, 59], here represented by
FURIA [55] use rule sets instead of rule lists and lack probabilistic predictions. Recent
Bayesian methods [122, 69, 122] are limited to small numbers of candidate rules and
binary classification, limiting their usability, and are here represented by SBRL [125]
(which is representative for all of them). A recent approach also using MDL and prob-
abilistic rule lists (MRL) [7] is aimed at describing rather than classifying and cannot
deal with multiclass problems or a large number of candidates. Interpretable decision
sets (IDS) [69] and certifiable optimal rules (CORELS) [5] use similar rules but do
not provide probabilistic models or predictions.

Note that methods that explain black-box models [104, 105], typically denoted by
the term explainable machine learning, also aim to make the decisions of classifiers
interpretable. However, they mostly focus on sample-wise (local interpretation) ex-
planations, while we focus on explaining the whole dataset (global interpretation)
using a single model. As these goals lead to clearly different problem formulations
and thus different results, it would not be meaningful to empirically compare our
approach to explainable machine learning methods [111].
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Table 4.1: Our approach, CLASSY, does Multiclass classification, makes Probabil-
istic predictions, has a global optimisation Criterion, can handle large numbers of
candidate rules, and does not need hyperparameter tuning. “Others” denotes classical
algorithms such as CART, CBA, C4.5, and RIPPER.

Method Multiclass Probabilistic Criterion �1K cand No tuning

CLASSY 3 3 3 3 3

IDS[69] 3 - 3 3 -

CORELS [5] - - 3 - -

MRL[7] - 3 3 - 3

SBRL[125] - 3 3 - -

FURIA[55] 3 - - 3 -

Others 3 3 - 3 -

4.1.1 Rule-based classifiers

Rule lists have long been successfully applied for classification; RIPPER is one of
the best-known algorithms [22]. Similarly, decision trees, which can easily be trans-
formed to rule lists, have been used extensively; CART [15] and C4.5 [103] are prob-
ably the best-known representatives. These early approaches represent highly greedy
algorithms that use heuristic methods and pruning to find the ‘best’ models.

Fuzzy rule-based models. Fuzzy rules have been extensively studied in the context
of classification and interpretability. Several approaches to construct fuzzy rule-based
models have been proposed, such as transforming the resulting model of another
algorithm into a fuzzy model and posteriorly optimizing it [55], using genetic al-
gorithms to combine pre-mined fuzzy association rules [3], and doing a multiobject-
ive search over accuracy and comprehensibility to find Pareto-optimal solutions [59].
Although these approaches are related, the rules are aggregated in a rule set, i.e., a set
of independent if · · · then · · · rules that can be activated at the same time to classify
one instance, contrary to one rule at the time for rules lists. This makes the compar-
ison between both types of models difficult. Also, these fuzzy rule-based models do
not provide probabilistic predictions.
Global optimization approaches. Over the past years, rule learning methods that
go beyond greedy approaches have been developed, i.e., using probabilistic logic pro-
gramming for independent rule-like models [11], greedy optimization of submodular
problem formulation, or simulated annealing in the case of decision sets [69, 122],
Monte-Carlo search for Bayesian rule lists [81, 125], and through branch-and-bound
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with tight bounds for decision lists [5]. Even though in theory these approaches could
be easily extended to the multiclass scenario, in practice their algorithms do not scale
with the higher dimensionality that arises from the search in multiclass space with
optimality criteria. Also, only Bayesian rule lists [81, 125] and Bayesian decision sets
[122] provide probabilistic predictions.

All previously mentioned algorithms share some similarities with CLASSY. In partic-
ular Bayesian rule lists [81, 125] are closely related as they use the same type of
models, albeit with a different formulation, based on Bayesian statistics. This differ-
ence leads to different types of priors—for example, we use the universal code of
integers [108]—and therefore to different results; we will empirically compare the
two approaches. Certifiable optimal rules [5] have a similar rule structure but do not
provide probabilistic models or predictions. Decision sets [69] share the use of rules,
but as opposed to (ordered) lists they consider (unordered) sets of rules.

4.1.2 Pattern mining

Association rule mining [2], a form of pattern mining, is concerned with mining re-
lationships between itemsets and a target item, e.g., a class. One of its key problems
is that it suffers from the infamous pattern explosion, i.e., it tends to give enormous
amounts of rules. Several classifiers based on association rule mining have been pro-
posed. Best-known are probably CBA [85] and CMAR [82], but they tend to lack
interpretability because they use large numbers of rules. Ensembles of association
rules, such as Harmony [121] or classifiers based on emergent patterns [41], can in-
crease classification performance when compared to the previous methods, however,
they can only offer local interpretations.

Supervised pattern set mining [128]. The key difference is that these methods do not
automatically trade-off model complexity and classification accuracy, requiring the
analyst to choose the number of patterns k in advance.

Note that subgroup discovery, and specifically subgroup lists, are also related as they
share the same model structure as predictive rule lists. For more details on that, we
refer the interested reader to Chapter 4.

4.1.3 MDL-based data mining

In data mining, the MDL principle has been used to summarize different types of data,
e.g., transaction data [120, 18], and two-view data [73].
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In prediction, it has been previously used to deal with overfitting [22, 103] and in the
selection of the best compressing pattern [127].
RIPPER and C4.5 [22, 103] use the MDL principles in their post-processing phase as
a criterion for pruning, while we use it in a holistic way for model selection. Although
Krimp has been used for classification [120], it was not designed for this: it outputs
large pattern sets, one for each class, and does not give probabilistic predictions.
DiffNorm [18] creates models for combinations of classes and also uses the prequen-
tial plug-in code, but was designed for data summarization. Aoga et al. recently also
proposed to use probabilistic rule lists and MDL [7], but 1) we propose a vastly im-
proved encoding, which is tailored towards prediction (instead of summarization), 2)
our solution does multiclass classification, and 3) our algorithm has better scalability.

4.2 The CLASSY algorithm

Given our model class—predictive rule lists—and its corresponding MDL formula-
tion, what remains is to develop an algorithm that—given the training data—finds
the best model according to our MDL criterion. To this end, in this section, we present
CLASSY, a greedy search-based algorithm that iteratively finds the best predictive rules
to add to a rule list. This section is structured as follows. First, a brief description of
separate-and-conquer greedy search is given. Then compression gain, i.e., the meas-
ure that uses compression to score candidate rules, is described. After that, the CLASSY

algorithm is defined. Then, it is explained how individual rules—candidates for the
model—are generated from the data. Finally, we analyse CLASSY’s time and space
complexity.

4.2.1 Separate-and-conquer greedy search

Greedy search is very commonly used for learning decision trees and predictive rule
lists [103, 22, 39], as well as for pattern-based modelling using the MDL principle
[120, 18, 73]. A few recent approaches use optimization techniques [125], but these
have the limitation that the search space must be strongly reduced, providing an
exact solution to an approximate problem (as opposed to an approximate solution to
an exact problem).
Global heuristics, such as evolutionary algorithms, have been extensively applied to
fuzzy rule-based model learning [34], and although they could also be applied here,
we found that the arguments in favor of a local search approach were stronger: 1)
local heuristics have often been successfully applied for pattern-based modelling using
the MDL principle, making it a natural approach to consider; 2) local heuristics are
typically faster than global heuristics, as much fewer candidates need to be evaluated;
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3) global heuristics typically require substantially more (hyper)parameters that need
to be tuned (e.g., population size, selection and mutation operators, etc.), while local
heuristics have very few.
Given the arguments presented here the algorithm that we propose is based on greedy
search. More specifically, it is a heuristic algorithm that, starting from a rule list with
just a default rule equal to the priors of the class labels in the data, adds rules accord-
ing to the well-known separate-and-conquer strategy [39]: 1) iteratively find and add
the rule that gives the largest change in compression; 2) remove the data covered by
that rule; and 3) repeat steps 1-2 until compression cannot be improved. This implies
that we always add rules at the end of the list, but before the default rule.

4.2.2 Compression gain

The proposed heuristic is based on the compression gain that is obtained by adding
a rule ρ = (a, Θ̂a) to a rule list RL, which will be denoted by RL ⊕ ρ. Note that for
categorical distributions Θ̂a = {p̂1|a, · · · p̂k|a}, which are just the conditional probab-
ility for each class label c ∈ {1, · · · , k}, given the description a. We will argue—and
demonstrate empirically later—that for the current task it is better to consider nor-
malized gain rather than the typically used absolute gain. Note that the gains are
defined as positive if adding a rule represents a compression improvement, and neg-
ative vice-versa.

Absolute compression gain, denoted ∆L(D,RL⊕ ρ), is defined as the difference in
code length before and after adding a rule ρ to R. The gain can be divided into two
parts: data gain, ∆L(Y | X, RL⊕ρ), and model gain, ∆L(RL⊕ρ). Together this gives

∆L(D,RL⊕ ρ) = L(D,RL)− L(D,RL⊕ ρ)

= Lplug-in(Y | X, RL)− Lplug-in(Y | X, RL⊕ ρ)︸ ︷︷ ︸
∆L(Y |X,RL⊕ρ)

+ L(R)− L(RL⊕ ρ)︸ ︷︷ ︸
∆L(RL)

,

(4.1)

where Lplug-in(· · · ) was used to refer that we use the prequential plug-in encoding of
Eq. (3.14) in this chapter (instead of the Normalized Maximum Likelihood). Using
Eq. (4) we show the model gain as:

∆L(RL⊕ ρ) =LN(|R|)− LN(|R|+ 1)

− LN(|a|)− |a| logm.
(4.2)
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Note that the model gain is always negative, as adding a rule adds additional com-
plexity to the model.

In the case of the data gain, it should be noted that adding rule ρ to RL only activates
the part of the data previously covered by the default rule, as new rules are only
added after the previous ones and before the default rule. This search strategy of
adding rules assumes that the previous rules already cover their subset well and that
improvements only need to be made where no rule is activated, which corresponds to
the region of the dataset covered by the default rule. Hence, we only need to compute
the difference in length of using the previous default rule ρd and the combination of
the new pattern a ∈ ρ with the new default rule ρ′d. Using Equation (B.3) we obtain

∆L(Y | X, RL⊕ ρ) =

Lplug-in(Y |X,RL)︷ ︸︸ ︷
�
���

���ω∑
i=1

Lplug-in(Y i) + Lplug-in(Y d)

−
��

���
��ω∑

i=1

Lplug-in(Y i) − Lplug-in(Y d
′
)− Lplug-in(Y a)︸ ︷︷ ︸

Lplug-in(Y |X,RL⊕ρ)

,

(4.3)

where Y d
′

is the subset of the data covered by the new default rule (after ρ is added
to RL) and ω = |R|.
Normalized compression gain, denoted δL(D,RL ⊕ ρ), is defined as the absolute
gain normalized by the number of instances that are activated by pattern a ∈ r, which
can be obtained by dividing absolute gain by the usage of a:

δL(Y | X, RL⊕ ρ) =
∆L(Y | X, RL⊕ ρ)

na
(4.4)

By normalizing for the number of instances that a predictive rule covers, normalized
gain favors rules that cover fewer instances but provide more accurate predictions com-
pared to absolute gain. When greedily covering the data, it is essential to prevent
choosing large but moderately accurate rules in an early stage; this is likely to lead
to local optima in the search space, from which it could be hard to escape. As this is
bound to happen when using absolute gain, we hypothesize that normalized gain will
lead to better predictive rule lists. We will empirically verify if this is indeed the case.

Note that the absolute and normalized gains are specific cases of the β-gain of Eq. (5.1)
presented later in Chapter 5, where for these specific cases, they correspond to β = 0

and β = 1, respectively.
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4.2.3 Candidate generation

Candidates are probabilistic rules of the form ρ = (a, Θ̂a) that are considered for
addition to a predictive rule list for a dataset D. The candidates are generated by
first mining a rule antecedent/pattern a using a standard frequent pattern mining
algorithm, e.g., FP-growth [13], and then finding the corresponding consequent cat-
egorical distribution Θ̂a given the dataset, i.e., using the maximum likelihood estim-
ate of Eq. (2.9). In practice, these mining algorithms have only two parameters: the
minimum support threshold nmin. and the maximum length dmax of a pattern.

Mining frequent patterns can be done efficiently due to the anti-monotone property
of their support, i.e., given a pattern a and b, if a has fewer conditions then b, i.e.,
a ⊂ b, implies that na ≥ nb. This property is also used to remove strictly redundant
rules in CLASSY.
Given all candidates from the frequent pattern mining algorithm, if antecedent a is a
strict subset of antecedent b, i.e., a ⊂ b, and they have equal support, na = nb, we
say that antecedent b is redundant and will never be selected. This is a consequence
of their encoding, i.e., as Y a = Y b =⇒ Lplug−in(Y a) = Lplug−in(Y b) in the case
they are being considered for the same position, and that the model encoding length
of b will always be larger than a, i.e., L(a) < L(b). From this, we can conclude that b
will never be preferred over a during the model search, as the gain of a will always
be greater.

4.2.4 Finding good rule lists

We are now ready to introduce CLASSY, a greedy algorithm for finding good solutions
to the MDL-based multiclass classification problem as formalized in Section 3.4. The
algorithm, outlined in Algorithm 4.1, expects as input a (supervised) training dataset
D and a set of candidate patterns, e.g., a set of frequent itemsets mined from D, and
returns a predictive rule list.
The first step of our algorithm is to remove the strictly redundant patterns as men-
tioned in Section 4.2.3 (Ln 1). After that, we initialize the predictive rule list with the
default rule (Ln 2), which acts as the baseline model to start from. Then, while there
is a predictive rule that improves compression (Ln 7), we keep iterating over three
steps: 1) we select the best rule to add (Ln 4)—we here use normalized gain for ease
of presentation, but this can be trivially replaced by absolute gain; 2) we add it to the
rule list (Ln 5); and 3) we update the usage, and gain of the candidate list (Ln 6). To
update the usage of a candidate it is necessary to remove from its usage the instances
that it has in common with the previously added rule, and then the gain of adding
the candidate can be updated. When no rule improves compression (negative gain)
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the while loop stops and the rule list is returned.

Algorithm 4.1 The CLASSY algorithm

Input: Dataset D, candidate set Cands
Output: Multiclass probabilistic rule list R

1: Cands← RemoveRedundancy(Cands)

2: RL← [∅]

3: repeat
4: ρ← arg max∀r′∈Cands : δL(D,RL⊕ ρ′)
5: RL← RL⊕ ρ
6: UpdateCandidates(D,RL,Cands)

7: until δL(D,RL⊕ ρ′) ≤ 0,∀ρ′ ∈ Cands
8: return RL

4.2.5 Time and space complexity

In this section we analyze the time and space complexity of CLASSY. In terms of time
complexity, CLASSY can be divided into two parts: 1) an initialization step, and 2) an
iterative loop where one rule is added to a predictive rule list in each iteration.

Initialization step. The time complexity of the initialization step is dominated by
sorting the candidates (ascending by length) obtained after running the frequent
pattern mining algorithm, and the computation of their instance ids, i.e., the in-
dexes of the instances where each candidate is present. Sorting all candidates takes
O(|Cands| log |Cands|) time. To compute the instance ids of the candidates, CLASSY

first computes the presence of each singleton condition, i.e., xi = 1 is tested for each
variable, in each instance, and then stores them as a bitset in a hash table. As this is
done for the whole dataset, it takes O(|D||V |) time. Then, for candidates of size equal
or greater than two and given a sorted array of candidates, it sequentially computes
the instance ids of each candidate a based on its decomposition in two candidates of
one less condition, i.e., it computes the ids of a based on two candidates b1 and b2
for which b1 ∪ b2 = a of length |b1| = |b2| = |a| − 1. The ids of a are obtained by
the intersection of the sets of instance ids of the smaller length candidates and has a
complexity of O(|(b1)ids|+ |(b2)ids|). As this is done for each class, in the worst case,
it would cover the whole dataset, and it would take O(|D| + |D|). Doing this for all
candidates gives O(|Cands||D|).

Iterative loop. After the initialization step, CLASSY iteratively finds the best rule to
add for a total of ω = |R| runs, where RL is the predictive rule list that CLASSY
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outputs at the end. The time complexity of this loop is dominated by the removal of
the instance ids that all candidates have in common with the last added rule. Using
again the fact that the intersection of instance ids is upper bounded by the dataset
size |D|, the removal of instance ids takes at most O(|R||Cands||D|) time. Given that
the rule list can grow at most to the size of the dataset, an upper bound on this
complexity is O(|Cands||D|2). Joining everything together, CLASSY has a worst-case
time complexity of

O(|Cands||D|2),

which is really a worst-case scenario, because, in general, MDL will obtain predict-
ive rule lists that are much smaller than the dataset size, i.e., |R| � |D|, making it
possible to treat it as a constant. Making this assumption, we obtain a more realistic
worst case time complexity of

O(|Cands| log |Cands|+ |Cands||D|).

Note that the time complexity associated with the Gamma function used in the com-
putation of lengths (3.14) and gains (4.4) of data encoding is not problematic when
compared with the other terms. This is due to its recursive computation for |D| val-
ues, which can be stored in a dictionary. In total, this takes O(multi(|D|) + |D|) time,
where multi(∗) is the complexity of the multiplication used; in the case of our Python
implementation, this is the Katsuraba multiplication. From then on, the lookup of a
value only takes O(1) time.

Memory complexity. In terms of memory complexity, CLASSY has to store for each
candidate for each class: their instance ids O(|(a)ids||Y|), their support O(|Y|), and
their score O(|Y|). It is easy to see that |(a)ids||Y| is upper bounded by the dataset
size |D| and that all other memory requirements will be dominated by this part. Also,
the storage of the gamma function for each integer up to |D| is only O(|D|), which
gets dwarfed by the instance storage, thus obtaining a worst-case memory complexity
of

O(|D||Cands|).

4.3 Empirical evaluation

In this section we empirically evaluate our approach2, first in terms of its sensitivity
to the candidate set provided and the relationship between compression and classific-
ation performance, and second in comparison to a set of representative, state-of-the-
art baselines in terms of classification performance, interpretability, overfitting, and

2For the reproducibility of the experiments, please check https://github.com/HMProenca/

MDLRuleLists

https://github.com/HMProenca/MDLRuleLists
https://github.com/HMProenca/MDLRuleLists
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runtime.

Data. We use 17 varied discretised datasets (see Table F.1) from the LUCS/KDD3 re-
pository, all of which are commonly used in classification papers. They were selected
to be diverse, ranging from 150 to 48 842 samples, from 16 to 157 Boolean variables,
and from 2 to 18 classes.

Candidate rules generation. Frequent pattern mining algorithms generate different
candidate sets by setting different values for the minimum support per class threshold
nmin and maximum pattern length dmax. To demonstrate that CLASSY is insensitive
to the exact settings of these parameters, we fix a single set of parameter values
for all experiments on all datasets (except when we investigate the influence of the
candidate set). Specifically, we use dmax = 4 and nmin = 5%, to obtain a desirable
trade-off between candidate set size, convergence, and runtime.

These values were objectively derived based on two criteria: making each run finish
within 10 minutes while demonstrating that CLASSY can deal with large candidate set
sizes. First, we chose dmax = 4 because this potentially results in very large candidate
sets with many redundant rules (i.e., rules that are very similar / strongly overlap-
ping). We then fixed nmin by requiring the runs for all datasets to strictly finish in
under 10 minutes and for most datasets even under 1 minute, to be comparable to
CART , C5.0, and JRip in runtime, and also to have attained (empirical) convergence
in terms of compression ratio on the training set—further lowering nmin would not
increase compression—as can be seen from the vertical dashed lines in Figure 4.3.

Candidate patterns are mined using Borgelt’s implementation of the well-known fre-
quent pattern mining algorithm FP-growth [13]. The same candidate set was used for
all experiments except when assessing its influence on CLASSY in Section 4.3.2. For
that experiment we fixed dmax = 4 and varied the minimum support threshold per
class from nmin = {0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, 25%}.

Evaluation criteria. We evaluate and compare our approach based on classification
performance, overfitting, interpretability, and runtime. Besides, we assess the influ-
ence of the candidate set on our algorithm and whether better compression corres-
ponds to better classification. All results presented are averages obtained using 10

times repeated 10-fold cross-validation (with different seeds).

MDL criterion quantification. To quantify how well a predictive rule list compresses
the class labels and be able to compare the MDL score across datasets, we define

3http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html
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relative compression as

L% =
L(D,R)

L(D | Θ̂d)
, (4.5)

where L(D | Θ̂d) is the encoding length of the data given the predictive rule list with
only a default rule, i.e., with only the dataset priors for each class. We measure relat-
ive compression on the training data, as we use that for model selection.

Classification performance. Classification performance is measured using three meas-
ures presented in Section 2.5: accuracy; balanced accuracy [17]; and Area Under the
ROC Curve (AUC). Each measure portrays different aspects of the classifier perform-
ance. Accuracy shows the total number of correct classifications. Balanced accuracy,
or averaged class accuracy, takes into account the imbalance of class distributions in
the dataset and gives the same importance to each class.

AUC, on the other hand, is not based on a fixed threshold and takes into account the
probabilities associated with each prediction. In the case of multiclass datasets, we
use weighted AUC [102], as it takes into account the class distribution in the dataset.

Interpretability. For interpretability, we follow the most commonly used measure, i.e.,
that smaller models are easier to understand [26]. With this in mind, we assess: the
number of rules and the number of conditions per rule; in all cases, fewer is better.
When analyzing decision trees, the number of leaves is given as the number of rules
(which includes the default rule), and the average depth of the leaves (except for
the longest—assumed the default rule) is given as the number of conditions per rule.
Although predictive rule lists derived from decision trees can often be simplified, we
here choose not to do this because these directly measures how it would be read by
humans.

Overfitting. Overfitting is measured in terms of the absolute difference between the
AUC performance in the training set and in the test set.

Runtime. For runtime, wall clock time in minutes is measured; no parallelization was
used.

Note on standard deviations. Given that the number of values reported both in
figures and tables is large, and that standard deviations are usually 2+ orders of
magnitude smaller than their corresponding averages, we choose not to report them—
to avoid unnecessarily cluttering the presentation. We did analyse them though and
explicitly comment on the few cases where relevant.
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Figure 4.2: Relation between compression and AUC; better compression on the train-
ing set (lower relative compression) corresponds to better classification on the test
set (higher AUC). Results obtained with CLASSY using normalized (squares) and ab-
solute (circles) gain, on all 17 datasets; each point represents the 10 times repeated
10-fold average for one dataset with one type of gain; each connected pair represents
the same dataset, for the two types of gain.

4.3.1 Compression versus classification

We first investigate the effect of using absolute (4.1) or normalized gain (4.4). To this
end, Figure 4.2 depicts how the two heuristics perform for relative compression (on
the training set) and AUC (on the test set).
The first observation is that better compression of the training data corresponds to
better classification performance on the test data. This is backed by a correlation
of −0.92 and a corresponding p-value lower than 0.0001 for the independence test
between both variables for the normalized gain data. This is a crucial observation,
as it constitutes an independent, empirical validation of using the MDL principle for
predictive rule list selection. Moreover, it also shows that MDL successfully protects
against overfitting: using normalized gain leads to models that not only compress the
training data better but also provides accurate predictions on the test data.
The second observation is that normalized gain performs better overall than absolute
gain: AUC is higher in 15 out of 17 cases and relative compression is lower or equal
in 11 out of 17 times. This confirms that normalized gain is, as we hypothesized, the
best choice. We will therefore use normalized gain for the remaining experiments.
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4.3.2 Candidate set influence

In this set of experiments, we study the influence of the candidate set on CLASSY,
which technically is its only “hyperparameter”, as it is the only part that can influ-
ence its output given the same dataset. In order to vary the candidate set objectively,
the minimum support threshold ranges over nmin. = {0.1%, 0.5%, 1%, 2%, 5%, 10%,

15%, 20%, 25%} and the maximum pattern length was fixed at dmax = 4, allowing the
generation of large candidate sets.
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The results can be seen in the set of Figures 4.3, which show the influence of the can-
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didate set on CLASSY through: the size of candidates mined in Figure 4.3a; runtime
in Figure 4.3b; compression on the training set in Figure 4.3c; AUC in the test set in
Figure 4.3d; and the number of rules in a rule list in Figure 4.3e.

Minimum support. Figure 4.3a shows the growth of the candidate set size with the
minimum support threshold used, and that, as expected, its growth is exponential
with the change in minimum support. Figure 4.3b shows that in general, the runtime
increases at a rate similar to the increase in candidate size of Figure 4.3a. This follows
our analysis of time complexity in Section 4.2.5, which tells us that the time complex-
ity of CLASSY grows proportionally to the dataset size times the candidate set size,
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Figure 4.3: Influence of the minimum support threshold on {candidate set size;
runtime (in minutes); relative compression on the training set; AUC in the test set;
number of rules} for a maximum rule length of 4 and a minimum support threshold
per class of nmin. = {0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, 25%}. The values were
averaged over 10 times repeated 10-fold crossvalidation and each dataset is connec-
ted by a line to aid visualization. The vertical dashed line represents the selected
minimum support of 5% used in the experiments section for predictive rule lists (Sec-
tion 4.3).

thus, given a fixed dataset size it becomes proportional only to the candidate set size.
Compression and classification. Figures 4.3c and 4.3d show how CLASSY performs
in classification in terms of compression in the training set and AUC in the test set,
respectively. The values for both plots remain constant for most cases, and when a
value deteriorates in terms of compression (increase in compression ratio) for smaller
candidate sets, it also deteriorates accordingly in terms of AUC (decrease in AUC) in
the test set.
We make two important observations: 1) the minimum in compression is achieved at
the minimum support used for 13 out of 17 datasets, and in the cases where it does
not happen the difference in relative compression is below 1%, which tells us that
CLASSY can find a good description of the data using large candidate sets, without too
greedily using rules that only cover few instances; 2) the minimum in compression
and maximum in AUC are achieved for the same support value for 12 out 17 cases,
and in the other cases, the difference is usually smaller than 2% in both measures,
revealing the robustness of our MDL formulation at obtaining models that generalize
well. The main exception is ionosphere, where the best AUC is found at the minimum
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support threshold of 10%, while the lowest threshold finds a predictive rule list with
3% lower AUC, without almost any change in compression. This can be explained by
the relatively small number of examples of ionosphere (351 instances) combined with
its peculiar structure.

Number of rules. Figure 4.3e shows the number of rules selected based on the can-
didate set. As expected, the number of rules selected only decreases or remains con-
stant with the candidate set, except for mushroom. Upon closer inspection, we observe
that this is due to the disappearance of a rule with good performance but low cover-
age from the candidate set, which has to be replaced by a combination of other rules.
The cases where many more rules are selected for lower minimum support thresholds,
such as chessbig and adult, have lower compression and higher AUC values for these
large number of rules, which makes these selections sustainable.

4.3.3 Classification performance

We now compare the classification performance of CLASSY to Scalable Bayesian Rule
Lists (SBRL) [125], JRip4, FURIA4, CART5, C5.06, and Support Vector Machines7

(SVM). These methods are state-of-the-art classifiers, and SBRL, CART, C5.0, JRip,
and FURIA—a fuzzy unordered rule induction algorithm—are clearly related to our
approach. C5.0 is a newer version of C4.5, and JRip is a Java-implementation of RIP-
PER.

Hyperparameters tuning. CLASSY has no hyperparameters apart from the candidate
set, which was generated using FP-growth with nmin = 5% and dmax = 4 for each
dataset (as described at the beginning of Section 4.3). We tuned CART by selecting
the best performing model on the training set from the models generated with the
following complexity parameters: {0.001; 0.003; 0.01; 0.03; 0.1}. The same was done
for C5.0, with confidence factors: {0.05; 0.15; 0.25; 0.35; 0.45}. The SVM, with the ra-
dial kernel, was tuned using 3-fold cross-validation and a grid search on γ = {2−6:0}
and c = {2−4:4} within the training set. JRip and FURIA were tuned by setting their
hyperparameters to 3 folds, a minimum weight of 2, and 2 optimization runs.
SBRL was trained using the guidelines provided by the authors [125]: the number of
chains was set to 25; iterations to 5000; η, representing the average size of patterns
in a rule, to 1; and λ, representing the average number of rules, to 5. The algorithm
was first run on the training set and then re-run with λ changed to the number of

4 https://cran.r-project.org/package=RWeka
5https://cran.r-project.org/package=rpart
6https://cran.r-project.org/package=C50
7https://cran.r-project.org/package=e1071

https://cran.r-project.org/package=RWeka
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=C50
https://cran.r-project.org/package=e1071
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predictive rules obtained. In an attempt to follow their guidelines to use around 300

candidate rules, minimum and maximum itemset length were set to 1 and 2 (or 3

if possible) respectively, while the minimum threshold for the negative and posit-
ive classes was set to one of {5%, 10%, 15%}. Note that we initially attempted a fair
comparison by using the same candidates for SBRL as for CLASSY, but due to the lim-
itations on the number of rules that SBRL could practically handle this, unfortunately,
turned out to be infeasible.

Analyse of results. The results are presented in Table 4.2. The SVM models achieve
the best ranking overall, but they do not belong to the class of interpretable models.
CLASSY performs on par with most tree- and rule-based models in terms of accuracy
and balanced accuracy, worst than FURIA for these two measures, and better than
these in terms of AUCs for multiclass datasets. The better performance of FURIA can
be explained by the fact that it uses fuzzy rule sets rather than probabilistic rule lists;
this allows for multiple rules to be activated and aggregated for a single classifica-
tion, which improves predictive performance but makes interpretability less straight-
forward. This also means that the number of rules and conditions cannot be directly
compared: a FURIA rule set consisting of 5 rules translates to up to 32 unique rules in
the rule list setting. Further, FURIA does not provide probabilistic predictions, unlike
our approach.
Comparing to other predictive rule list models, such as SBRL and JRip, CLASSY per-
forms better for most of the measures used. When viewed against the tree-based
models, we can see that our method performs on par with CART for most measures
and slightly worse than C5.0, except for AUC in the multiclass scenario. Also, as we
will show later, C5.0 tends to obtain equivalent rule lists that are much bigger than
the ones produced by CLASSY, which makes them perform better in general (but not
always).

4.3.4 Interpretability

The results are shown in Table 4.3, where we use AUC, the number of rules, and the
number of conditions to compare the trade-off between AUC and model complexity of
the tree- and rule-based models. Note that we choose AUC for predictive performance
as it agrees with our goal of using the probabilities output of CLASSY to explain the
decisions made. Also, note that we intentionally removed FURIA from the rankings of
the number of rules and conditions as its models are rule sets—not rule lists.
For binary datasets, CLASSY is in a middle-ranking, better than SBRL and JRip, and
worst than CART, C5.0, and FURIA. On the other hand, in multiclass datasets, it
achieves a much lower (=better) ranking than all the other algorithms.
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CLASSY tends to find more compact models, with a similar number of rules and fewer
logical conditions in total, than C5.0, CART, and JRip, that are as accurate or better
than these. This can be seen by its average rank of 2 and 1.9 for rules and 1.7 and 1.5

for the total number of conditions, for binary and multiclass datasets respectively. It
also can be seen that for most datasets it obtained the lowest number of conditions of
all tree- and rule-based classifiers. Although SBRL also finds very compact rule lists,
with a small number of rules and conditions, the low variance between the reported
values for the different datasets suggests that this strongly depends on the hyper-
parameter settings, which penalize too strongly the number of rules not around the
user-defined expected average number of rules. Indeed, the compact rule lists exhibit
subpar classification performance for some datasets (i.e., hepatitis and tictactoe). This
suggests that without additional (computation-intensive) tuning of these hyperpara-
meters, the recommended procedure for SBRL may lead to underfitting. As expected,
C5.0, with its tendency to maximize the classification performance as much as pos-
sible, tends to create overgrown models, such as the almost 3000 rules for chessbig,
that do not necessarily generalize well, such is the case in adult, where it obtained
the same number of rules as CLASSY but with a 2% lower AUC, and for pendigits were
it obtained a number of rules around 4 times higher than CLASSY and CART for the
same performance.

4.3.5 Statistical significance testing

To analyze whether the results of Tables 4.2 and 4.3 are statistically different [25], we
use two non-parametric multiple hypothesis tests, namely Friedman’s test [37] and
Iman and Davenport’s test [57], on the rankings of the algorithms.
The results can be seen in the left side of Table 4.4, which divides the datasets into
two groups, for binary and multiclass datasets respectively. The results show that
there are significant differences for most measures (significance level 0.05). The only
exceptions are balanced accuracy in the binary case, AUC of rule-based models in the
binary case, and the number of rules for the multi-class case.

For those cases where the null hypothesis—stating that the algorithms perform on
par—is rejected we proceed with a post-hoc Holm’s test [54] for pairwise comparisons
with CLASSY as control algorithm.
The results of these pairwise comparisons can be seen in the right side of Table 4.4.
For most of these tests the null hypothesis—stating that CLASSY and its competitor
perform on par—can not be rejected. This can be mostly explained by the relatively
small number of datasets; the power of the tests is not very high. We therefore can-
not draw strong conclusions from these results, but this is not necessarily a negative
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outcome: we aimed at showing that CLASSY performs as well as other rule- and tree-
based algorithms while obtaining simpler models. The results show that CLASSY does
use significantly fewer conditions than C5.0 for both multiclass and binary datasets,
and then CART for the binary case. Also, as expected the SVM obtained always better
results than CLASSY except for multiclass AUC. FURIA was better in terms of accuracy
but worse in terms of AUC.

4.3.6 Overfitting

To study overfitting, we compared the averages of the absolute difference between
the AUC values in the training and test set over 10 times repeated 10-folds for each al-
gorithm. The results can be seen in Table 4.5. In general, CLASSY together with SVM,
seem to be the most consistent algorithms in obtaining the lowest values. The usual
performance of CLASSY is 5% or lower, 12 out of 17 times, except in the case of hep-
atitis where it got 13%, which was the best value after SVM. SBRL is very consistent,
clearly achieving the lowest values for binary datasets, however, this can be explained
by its more conservative choice of rules and thus lower AUC on the test set as shown
in Table 4.2. Comparing with all rule- and tree-based models, CLASSY obtained the
lowest ranking for multiclass datasets, being, from these ones, the algorithm that less
overfits overall.

4.3.7 Runtime

All runtimes are averages over ten times repetitions of ten folds, run on a 64-bit
Windows Server 2012R2, with Intel Xeon E5-2630v3 CPU at 2.4GHz and 512GB
RAM. Runtimes include parameter tuning where applicable and candidate mining
for CLASSY and SBRL.
The results are depicted in Figure 4.4. CART, C5.0, JRip, and FURIA are the fastest,
with most runtimes under 1 minute with CLASSY being at a maximum one order
of magnitude slower. Comparing to SBRL, CLASSY is 10 times faster, even though it
considers around 100 times more candidates than this and performs better in terms
of AUC. The worst runtimes were obtained for SVM, due to its costly grid search.
It should be noticed that reducing the candidate set size of CLASSY would have an
exponential reduction in its runtimes without much deterioration of its classification
performance, as can be seen in Figures 4.3b and 4.3d.

4.3.8 Discussion

From the classification and interpretability results of Table 4.2 and 4.3, it can be seen
that CLASSY can provide a good trade-off between classification performance and rule
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Table 4.5: Overfitting average results (10 times repeated 10-fold cross-validation)
using the absolute difference between AUC performance in training and test sets as a
measure, per fold, for each algorithm and each dataset. Rank gives the average rank
of each algorithm for binary and multiclass datasets. Note that SBRL does not have
values for multiclass datasets.

|AUCtrain −AUCtest|

datasets CLASSY SBRL JRip CART C5.0 FURIA SVM

hepatitis 0.13 0.16 0.19 0.14 0.21 0.22 0.13

ionosphere 0.06 0.05 0.07 0.04 0.05 0.08 0.04

horsecolic 0.06 0.06 0.08 0.06 0.09 0.08 0.10

cylBands 0.07 0.06 0.09 0.11 0.18 0.13 0.12

breast 0.02 0.02 0.02 0.02 0.02 0.02 0.02

pima 0.06 0.05 0.05 0.06 0.07 0.05 0.05

tictactoe 0.01 0.03 0.01 0.02 0.02 0.00 0.00

mushroom 0.00 0.00 0.00 0.00 0.00 0.00 0.00

adult 0.01 0.00 0.01 0.00 0.01 0.01 0.03

rank 3.6 2.7 4.4 4.2 5.2 4.3 3.6

iris 0.02 0.02 0.02 0.02 0.04 0.01

wine 0.03 0.05 0.04 0.04 0.03 0.00

waveform 0.02 0.02 0.02 0.03 0.02 0.02

heart 0.05 0.04 0.07 0.15 0.04 0.06

pageblocs 0.00 0.00 0.00 0.00 0.00 0.00

led7 0.01 0.01 0.01 0.01 0.01 0.01

pendigits 0.00 0.01 0.00 0.00 0.01 0.00

chessbig 0.00 0.02 0.00 0.02 0.00 0.00

rank 2.4 4.8 4.4 4.1 3.6 1.8

list size. Particularly, in the case of multiclass datasets, such as chessbig, where clas-
sical algorithms like JRip find a model with double the number of rules, or in the case
of mushroom, where CART and C5.0 find more complex models with the same per-
formance. It is interesting to notice that CLASSY performs better in terms of AUC than
accuracy. This shows that when it makes a wrong prediction it does so with a small
probability, which is reassuring. Moreover, CLASSY has only one hyperparameter—its
candidate set—which its tuning is hardly needed as the algorithm has no problem in
dealing with large numbers of candidates. This is quite different from the extensive
tuning done for the other methods. It is important to observe that all methods except
for CLASSY were tuned.
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Figure 4.4: Average runtime per fold in minutes for each algorithm and each dataset.
The datasets are ordered first by the number classes and then by number of samples
(ascending). The vertical dashed line separates binary (to the left) from multiclass
datasets. Note that SBRL does not have a runtime for multiclass datasets.

Candidate set influence. In the set of Figures 4.3, it is shown that larger candidate
sets do not result in worse models, as our formalization in terms of the MDL principle
is well-suited to avoid overfitting without the need for cross-validation and/or para-
meter tuning. In other words, CLASSY is insensitive to its only hyperparameter—its
candidate set—making it virtually parameter-free. This is a big advantage, as one can
simply run CLASSY on all training data with as many candidates as possible, without
worrying about any parameters. It also means that all training data can be used for
training, which is important in the case of small data: no data needs to be reserved
for validation.

Compression and classification. From Figure 4.2 we can observe that better com-
pression corresponds to better classification, which is a strong empirical validation
of our formalization. As expected, the normalized gain is the best heuristic to use in
combination with our greedy rule selection strategy, as it results in better classifiers
for 88% of the datasets.
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Runtime. From the runtimes of Figure 4.4, it can be seen that CLASSY runtimes are
slower by an order of magnitude than other (fast) algorithms, such as C5.0, CART,
and JRip, and similar to SBRL. This is expected for the size of candidate sets used in
our experiments, as can be seen in Table F.1.

Classification and interpretability. In terms of classification and interpretability,
comparing the average ranking with other rule- and tree-based methods in Table 4.3,
it is shown that CLASSY performs equally well while also able to find rule lists with
fewer conditions, without any parameter tuning. CART creates models with fewer rules
that have more conditions per rule, while C5.0 has a high AUC at the expense of
over-complex rules. FURIA has a better performance in terms of both standard and
balanced accuracy, and worst in terms of AUC, which is expected as it is not a prob-
abilistic classifier. Also, it is hard to compare its interpretability as all its rules can
interact with each other, generating a much larger equivalent rule list than CLASSY.
SBRL on the other hand seems to be able to find simple models that underperform in
terms of AUC compared with CLASSY, which can be either a result of its formalization
or because it cannot use larger candidate sets.
The experiments also revealed that the Poisson distribution used as prior in SBRL, for
the number of conditions per rule and the number of rules, creates tight constraints
from which the results hardly deviate. Our results suggest that if the ‘optimal’ val-
ues for these hyperparameters are not known in advance, the best model may not be
found. An indicative example of this is the tictactoe dataset in Table 4.2, a determ-
inistic dataset for which SBRL can only find the right amount of rules and logical
conditions per rule when given these exact values in advance. The results obtained
with CLASSY demonstrate that using the universal prior for integers alleviates this
strong dependence on hyperparameter tuning.

Overfitting. In terms of overfitting, Table 4.5 shows that CLASSY tends to select mod-
els that generalize well and that are not overconfident in the training set. It obtains
low differences between training and test compared with the other rule- and tree-
based models.

4.4 Conclusions

We proposed CLASSY, a heuristic algorithm that finds good probabilistic rule lists
for multiclass classification by greedily approximating our MDL-based formulation of
the problem. CLASSY naturally trades off model complexity with predictive accuracy,
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effectively avoiding overfitting with very few hyperparameters.
We empirically demonstrated, on a variety of datasets, that CLASSY finds predictive
rule lists that perform on par with state-of-the-art interpretable classifiers for pre-
dictive accuracy, even though some form of hyperparameter tuning is done for all
methods except for CLASSY. Moreover, the models found by our approach are more
compact than those obtained by the other methods, which we expect to make them
more understandable in practice. Finally, we show that compression strongly correl-
ates with predictive accuracy, which can be regarded as an empirical validation of the
MDL-based selection criterion.

Limitations. The CLASSY algorithm is restricted to discretized input variables and
multiclass problems. Most machine learning problems in tabular data involve a mix of
binary, nominal and numeric input variables. Nonetheless, the formulation for those
problems is available in Chapter 3, and one could directly use the RSD algorithm of
Chapter 5 for multiclass problems. However, extending it to regression would require
adaptations of the greedy gain used, as the problem is not as well defined as classific-
ation. In terms of statistical properties, and contrary to RSD, each rule added to the
list per iteration does not minimize a specific statistical test, except decreasing the
overall MDL score.


