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3
MDL for rule lists

In this chapter1 we formalize the task of finding predictive rule lists and subgroup lists
as a model selection problem using the Minimum Description Length (MDL) principle
[107, 48, 47].

In the previous chapter, we defined the rule list model, which we recall here in Fig-
ure 3.1. Now, the remaining question is how to select adequate models. For that, we
resort to the MDL principle, which can be paraphrased as “induction by compression”
and roughly states that the best model is the one that best compresses the data. The
idea of compression can seem unintuitive at first. Still, one should notice that it is
intimately connected to the concept of probability, i.e., the model that has the highest
probability given the data is the same that maximizes compression. This idea was
first formally stated by Shannon [114], which tells us that the optimal length of the
encoding for an event A—smaller length corresponds to higher compression—equals
the negative logarithm of the probability of that event, thus

L(A) = − log Pr(A), (3.1)

where L(A) is the length of the encoding for the event. To be objective, the MDL
principle attempts to make the minimum number of assumptions about the model
class. At this point, we should recall that the models we are trying to select from the
data are rule lists and that, depending on the type of task, we use predictive rule lists
and subgroup lists for machine learning or data mining respectively. Both models have
the same model structure (that of Figure 3.1) and only differ in how the parameters
of the default rule are estimated.

1Parts of this chapter are based on Proença and van Leeuwen [96], Proença et al. [99, 100]
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In the case of a subgroup list, the default rule is fixed to the marginal distribution of
each target, making its parameters known and fixed for a certain dataset [99, 100].
In the case of a predictive rule list, however, the last rule is ‘free’ in the sense that it
depends on the estimate of its subset Yd [96].

1: IF a1 v x THEN y1 ∼ Dist(Θ̂1
1) · · · yt ∼ Dist(Θ̂1

t )
...

ω: ELSE IF aω v x THEN y1 ∼ Dist(Θ̂ω
1 ) · · · yt ∼ Dist(Θ̂ω

t )

default: ELSE y1 ∼ Dist(Θ̂d
1) · · · yt ∼ Dist(Θ̂d

t )

Figure 3.1: Generic rule list model M with ω rules and t (number of target variables)
distributions per rule.

This may seem like a subtle difference, but for subgroup lists, it allows to find sub-
groups that always differentiate themselves from the dataset marginal distribution.
In contrast, for predictive rule lists, it will enable finding predictive rules that max-
imize predictive performance. A theoretical proof of their difference, from an MDL
perspective, is given in Chapter 3.7.

Nonetheless, all the data encodings developed in this chapter can be used for both
predictive rule lists and subgroup lists. In the case of predictive rule lists, the data
encodings were only empirically tested in the classification setting. In contrast, sub-
group lists were tested for all the settings, i.e., univariate and multivariate nominal
and numeric targets. To not burden the reader, we here present two simple examples
of subgroup lists in Figures 3.2 and 3.3, which will be used throughout this chapter
to exemplify the MDL encodings.

Structure of the chapter. This chapter is organized as follows. First, in Section 3.1 the
MDL principle for supervised datasets is introduced. Next, in Section 3.2 the encoding
of the model structure is shown. Then, in Section 3.3 the high-level encoding of the
data given the model is presented. After that, the specific encodings of the data given
a model for categorical and normal distributions are given in Sections 3.4 and 3.5,
respectively. Then, in Section 3.6 a new subgroup set discovery measure is presented.
Finally, in Chapter 3.7 the theoretical difference between rule lists and subgroup lists
is studied through the MDL lens.
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Pr(animaltype = · · · | s) in %

s description ns Mammal Fish Invert. Bug Reptile Amph. Bird

1 backbone = no 18 0 0 56 44 0 0 0

2 breathes = no 14 0 93 0 0 7 0 0

3 feathers = yes 20 0 0 0 0 0 0 100

4 milk = no 8 0 0 0 0 50 50 0

5 feathers = no 41 100 0 0 0 0 0 0

dataset distribution 0∗ 41 13 10 8 5 4 2

Figure 3.2: Zoo dataset subgroup list obtained by RSD algorithm (presented in Chapter 5).
Zoo contains one nominal target variable with 7 classes, 101 instances, and 15 binary and
1 numeric variables. ns refers to the number of instances covered by subgroup ‘s’ defined
by ‘description’. Pr(animaltype = ∗ | s) denotes the estimated probability (in %) of each
class label occurring within the subgroup. The bottom row shows the marginal probability
distribution of the dataset. ∗ concerns instances not covered by any of the five subgroups. For
illustrative purposes the probabilities displayed correspond to the empirical probabilities in the
data, not to the probabilities as would be obtained using the appropriate estimator.

price (K)

s description of automobile specifications ns µ̂ σ̂

1 weight = heavy & consumption-city ≤ 8 km/L 11 35 8

2 fuel-type = gas & consumption-city ≥ 13 km/L 45 7 1

3 weight = light & wheel-base = low 35 9 1

4 length = medium & 13 ≤ consumption-city ≤ 15 km/L 27 10 2

5 peak-rpm = medium 49 16 3

6 engine-size = medium 12 26 7

dataset overall distribution 18∗ 13 8

Figure 3.3: Automobile import 1985 subgroup list obtained with RSD algorithm (presented in
Chapter 5). The dataset contains price as numeric target variable, 197 examples, and 17 vari-
ables. The dataset was modified, some variables removed and others discretized, for ease of
presentation. ns refers to the number of instances covered by subgroup ‘s’ defined by ‘descrip-
tion’, µ̂ and σ̂ its estimated mean and standard deviation for the target variable in thousands
of dollars (K). ∗ concerns instances not covered by any of the five subgroups.
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3.1 The Minimum Description Length (MDL) principle

As we are interested in finding compact yet good models that are statistically robust,
we resort to the Minimum Description Length (MDL) [107, 48] principle. The prob-
lem of selecting a concrete model from a large space of possible models is a point
hypothesis selection problem, for which we should use a two-part code [48].
In contrast to existing pattern-based modeling approaches (e.g., [120, 78]), we deal
with a supervised setting in which the goal is to learn a mapping from instances to
target variables. This implies that we are not looking for structure within instance data
X, but for structure in X that helps to explain (subgroup lists) or predict (predictive
rule lists) Y.
That is, to induce a mapping from instances to target variables, we should consider
the instance data X to be given as ‘input’ to the model and only encode the target
variables Y. Clearly, this corresponds to the rule lists that we introduced in the pre-
vious chapter. Then, given the complete space of models M, uniquely specified by
all ordered sets of patterns over X , the optimal model is the model M ∈ M that
minimizes a two-part code [48], i.e.,

M∗ = arg min
M∈M

L(D,M) = arg min
M∈M

[
L(Y | X,M) + L(M)

]
, (3.2)

where L(Y | X,M) is the encoded length, in bits2, of target variables data Y given
explanatory data X and model M , L(M) is the encoded length, in bits, of the model,
and L(D,M) is the total encoded length and the sum of both terms. Note that this
definition holds up for different models, such as rule list RL or subgroup list SL. Intu-
itively, the best model M∗ is the model that results in the best trade-off between how
well the model compresses the target data and the complexity of that model—thus
minimizing redundancy and automatically selecting the best list size. This formula-
tion is similar to that previously used for two-view association discovery [73].

3.2 Model encoding

The next step is to define the two length functions; we start with L(M). Following
the MDL principle [48], we need to ensure that: 1) all models in the model class, i.e.,
all rule lists for a given dataset, can be distinguished; and 2) larger code lengths are
assigned to more complex models. To accomplish the former, we encode all elements
of a model that can change, while for the latter, we resort to two different codes: when
a larger value represents a larger complexity we use the universal code for integers

2To obtain code lengths in bits, all logarithms in this paper are to the base 2.
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[108], denoted3 LN; and when we have no prior knowledge but need to encode an
element from a set, we choose the uniform code. Note that as predictive rule lists and
subgroup lists have the same structure, their model can be defined in the same way,
as given all the rules in M , the default rule subset is completely defined.
Specifically, the encoded length of a model M over variables in X is given by

L(M) = LN(|M |) +
∑
ai∈M

LN(|ai|) + log

(
m

|ai|

)
+
∑
v∈ai

L(v)

 , (3.3)

where we first encode the number of antecedents |M |, which can symbolize predictive
rules |R| or subgroups |S|, using the universal code for integers, and then encode each
rule description individually. For each description, first, the number |ai| of variables
used is encoded, then the set of variables using a uniform code over the set of all
possible combinations of |ai| from all explanatory variables, and finally the specific
condition for a given variable. As we allow variables of two types, the latter is further
specified by

L(v) =

{
log |Xv| if v is nominal

LN|2(nop) + logN(nop, ncut) if v is numeric
(3.4)

where the code for each variable type assigns code lengths proportional to the num-
ber of possible parts the variable’s domain can partition the dataset. Note that this
seems justified, as having more parts implies more potential spurious associations
with the target that we would like to avoid. For nominal variables, this is given by the
size of the domain, i.e., the number of categories in a nominal variable. For numeric
variables, it equals the number of operators used nop|4 plus the possible number of
outcomes N(nop, ncut) given the operators and ncut cut points. The number of oper-
ators for numeric variables can be one or two, as there can be conditions with one
(e.g., x ≤ 2) or two operators (e.g., 1 ≤ x ≤ 2), which is a function of the number
of possible subsets generated by ncut cut points. Note that we here assume that equal
frequency binning is used, which means that knowing X and ncut is sufficient to de-
termine the cut points.

Example 5 (continuation): Let us assume that the subgroup list of the Automobile
example of Figure 3.3 is composed of only the first subgroup. In that case the rule list
only has one subgroup with description: {weight = heavy & consumption-city ≤ 8

3LN(i) = log k0 + log∗ i, where log∗ i = log i+ log log i+ . . . and k0 ≈ 2.865064.
4Note that we use LN|2, which is how we denote the universal code for integers with codes restricted

to n = 1 or 2. This can be obtained by applying the maximum entropy principle to LN when it is known
that it cannot take values of n > 2.
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km/L }. Taking into account that the dataset has 17 variables, |Xweight| = 3 and only
3 cut points were used for numeric attributes, the model length is given by:

L(M) = LN(1) + LN(2) + log

(
17

2

)
+ log |Xweight|+

[
LN|2(1) + log 2ncut

]
= 1.52 + 2.52 + 7.09 + 1.59 + 0.77 + 2.59

= 16.08 bits

It is important to note that the length of the model can (and should) be a real number,
as we are only concerned with the idea of compression, not with materialising and
transmitting the actually encoded data [48].

3.3 Data encoding

The remaining length function is that of the target data given the explanatory data
and model, L(Y | X,M). In this section, we show how to encode the target data Y

by dividing it into smaller subsets that can be encoded individually and then summed
together, and why there are different types of data encoding for each of the subsets.
The specifics of encoding nominal and numeric targets are described in Sections 3.4
and 3.5, respectively.

Cover of a rule in a rule list. Let us recall from Chapter 2.4 that for any given
rule list of the form of Figure 3.1, any individual instance (x,y) can only be ‘covered’
by one rule or subgroup. That is, the cover of a description in a list ai, denoted Di,
depends on the order of the list and is given by the instances where its description
occurs minus those instances covered by previous descriptions, i.e., aj ,∀j<i.
In case an instance (x,y) is not covered by any pattern a ∈ M then it is ‘covered’ by
the default rule. The number of instances covered by the default rule Dd are the ones
not covered by any description (hence the name default rule). The instances covered
by a description, also called usage, are denoted by ni = |Di|, and those covered by
the default rule, nd = |Dd|
As every description defines an individual subset, one can estimate the parameters of
its target variable distributions using the maximum likelihood estimator described in
Section 2.3.2.
Note that this shows us that a rule or subgroup is fully defined by its description ai in
a dataset D, and we will interchangeably refer to rules by their descriptions and to its
elements (statistics, parameters, distributions, etc.) by its index i when obvious from
context.



Chapter 3. MDL for rule lists 39

As the default rule is the only difference between a rule list and a subgroup list, it is
also the difference in their encoding. As a rule list induces a partition of the data, the
total length of the encoded data can be given by the sum of its non-overlapping parts.
For a predictive rule list, the data encoding is given by:

L(Y | X,M) = L(Yd) +
∑
ri∈R

L(Yi), (3.5)

while for a subgroup list it is given by:

L(Y | X,M) = L(Yd | Θd) +
∑
si∈S

L(Yi), (3.6)

where Θd is the vector of parameters for each variable Θd
1, . . . ,Θ

d
t for the marginal

distribution of the target variables. Observe that we dropped Xa as these are not ne-
cessary to encode Ya but only to generate the partition of the data, and also dropped
the parameters Θi of the rules and default predictive rule as we do not know what are
their parameters until we see the data. This last part will be clarified at the end of this
section, where we describe how to encode subsets without knowing their parameters.
As can be seen, the difference between the predictive rule list and subgroup list is that
the default rule is either encoded as a regular rule, or using the dataset distribution.
This amounts to a difference in optimality between predictive rule lists and subgroup
lists, which emphasizes the discovery of different types of descriptions for each model
class.
As a side-note, note that Eq. (3.5) concerns the encoding of any supervised parti-
tion of the data, which allows to directly quantify the quality of any tree learning
method—each such tree induces a partition of the data.

Encoding data of t (assumed) independent target variables. As each target vari-
able is assumed independent from each other, the encoding of target data is given by
the sum of their individual encodings:

L(Y | X,M) = − log

 t∏
j=1

Pr(Yj | X,M)

 =

t∑
j=1

L(Yj | X,M). (3.7)

Joining (3.5) and (3.7), one obtains for predictive rule lists:

L(Y | X,M) =

t∑
j=1

L(Y dj ) +
∑
si∈S

L(Y ij )

 (3.8)

and joining (3.6) and (3.7), one obtains for subgroup lists:

L(Y | X,M) =

t∑
j=1

L(Y dj | Θd
j ) +

∑
si∈S

L(Y ij )

 (3.9)
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3.3.1 Two types of data encoding

Data encoding can be separated into two different categories: 1) with known para-
meters; and 2) with unknown parameters. In our case, known parameters correspond
to the default rule of a subgroup list, while unknown parameters correspond to the
predictive rules, subgroups, and default rule of a predictive rule list.

1) Known parameters: when the parameters of a distribution are known, one can
encode the data points directly using the probability for those points given by the
distribution with the known parameters. Thus, the encoding of points Y ij (jth variable
and ith subgroup) is equal to the negative logarithm of their probability given by
known parameters Θ̂i

j:

L(Y ij | Θ̂i
j) =

∑
y∈Y i

j

− log Pr(y | Θ̂i
j), (3.10)

which is just the minus log-likelihood of parameter Θ̂i
j given observed data Y ij . This

type of code is used in the case of the default rule of a subgroup list, as the paramet-
ers Θ̂d

j are equal to the marginal distribution of variable Yj and are constant for each
dataset. Note that this is the key difference between a subgroup list and a predictive rule
list: the last rule of a subgroup list is fixed to the marginal distribution, while in the
predictive rule list its parameters are unknown and depend on the subset Dd.

2) Unknown parameters: when the parameters are unknown we need to encode
both the parameter values and the data points. We have two possibilities: 1) crude
MDL, i.e., encoding the probabilities using a suboptimal probability distribution and
then applying the Shannon-Fano code, i.e., the logarithm of the empirical probability
[114]; or 2) employ an optimal encoding of both parameters of the distribution and
data points together [48]. In this work, we employ optimal encoding of parameters,
as it guarantees optimality in the sense that the encoding is the best possible in the
worst-case scenario, i.e., in case the sample of the data is not representative of the
population. Three types of optimal encodings exist, which are, in increasing order of
optimality guarantees: 1) prequential plug-in; 2) Bayesian; 3) Normalized Maximum
Likelihood (NML). While the first two are asymptotically optimal, the NML encoding
is optimal for fixed sample sizes.
Depending on the target type, we employ the best encoding possible while being
computationally feasible, i.e., we require adequate run-time for our algorithm. For
nominal targets, we present a prequential plug-in and an NML encoding for both the
probabilities of each class and the data points in Section 3.4, where the second is a
theoretical improvement over the first. We resort to a Bayesian encoding for numeric
targets as the NML code is not computationally feasible for that case.
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3.4 Data encoding: nominal target variables

When the data have one or more nominal targets, the target distributions of the prob-
abilistic rules (2.7) are categorical distributions Cat(Θ), each with a set of parameters
Θ = {p1, · · · , pk} representing the k classes:

Pr(y = c | p1, · · · , pk) = pc, subject to
k∑
c=1

pc = 1. (3.11)

This implies a probabilistic rule of the form:

a 7→ y1 ∼ Cat(p1, · · · , pk), · · · , yt ∼ Cat(p1′ , · · · , pk′),

where k and k′ are the number of classes Y1 and Yt, respectively. To simplify the in-
troduction of concepts we will assume we only have one target variable in Y, and
then generalize the results to multiple variables at the end. Also in line with this sim-
plification, we will only refer to association rules, and then, specialize in the end for
both predictive rule lists and subgroup lists. Thus, throughout this section Y becomes
Y , and the parameters of each rule ri become Θ̂i = {p1|i, · · · , pk|i} as there is only
one variable with k classes, where p1|i is the probability of class 1 for subgroup i, i.e.,
Pr(c = 1 | ai). The general form of a rule list with one nominal target takes the form
of Figure 3.4.

r1: IF a1 v x THEN y ∼ Cat(p̂1|1, · · · , p̂k|1)
...

rω: ELSE IF aω v x THEN y ∼ Cat(p̂1|ω, · · · , p̂k|ω)

default: ELSE y ∼ Cat(p̂1|d, · · · , p̂k|d)

Figure 3.4: Generic rule list model M with ω rules {r1, ..., rω} and a single nominal
target Y with k categories.

In the following sections, we will derive the data encoding with categorical distri-
butions. First, in Section 3.4.1, it is shown how to encode a categorical distribution
when its parameters are known, which is the case for the default rule of a subgroup
list. After that, in Section 3.4.2 it is shown how to encode a categorical distribution
when the parameters of the distribution are unknown. Then, in Section 3.4.3 the
equivalence between MDL-based subgroup lists with only one subgroup and standard
(top-1) subgroup discovery with WKL as a quality measure is proven. Finally, in Sec-
tion 3.4.4, we show the data encoding of subgroup lists is equivalent to a Bayesian
test. Note that for the next section we will also use the maximum likelihood expres-
sions of Section 2.3.2.
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3.4.1 Encoding categorical distributions with known parameters

To encode target values with known parameters—as is the case for the default rule
of a subgroup list—we can directly use Eq. (3.10) with given parameter estimates
Θ̂d = p̂1|d, · · · , p̂k|d (marginal distribution over the whole dataset):

L(Y d | p̂1|d, · · · , p̂k|d) =
∑
c∈Y
−nc|d log p̂c|d = −`(Θ̂d | Y d), (3.12)

where `(Θ̂d | Y d) is the log-likelihood of the parameter set Θ̂d, and nc|d denotes the
number of points associated with each class c covered by default rule Y d.
Note that we exemplified this code using the dataset marginal distribution parameters
as these are the only known parameters used throughout this thesis, however, this
encoding can be used with any known parameters.

3.4.2 Encoding categorical distributions with unknown paramet-
ers

To encode target values for which the parameters are unknown—as is the case for each
predictive rule, subgroup, and predictive default rule—we need to encode parameters
and data together. For that, we have developed two types of codes: 1) the prequential
plug-in code that is asymptotically optimal; and 2) the Normalized Maximum Likeli-
hood (NML) code that is “optimal in the sense that it achieves the minimax optimal
codelength regret” [48, Part II]. The prequential plug-in code was developed earlier
[96], as it is easier to use and compute. Nonetheless, the NML code enjoys better
theoretical properties, and thus should be preferred when possible.

Prequential plug-in encoding. The main idea of the prequential plug-in code is to
treat each subset of labels Y i as sequential data and then predict each label as it
arrives, starting with no knowledge about their distribution and updating it each
time one receives a label. To achieve that, it requires the use of a smoothed version of
the ML estimator, as before receiving any point we already need to have a probability
distribution

Prplug-in(yu = c | Y |u−1) ..=
|{y ∈ Y |u−1 | y = c}|+ ε∑

c′∈Y |{y ∈ Y |u−1 | y = c′}|+ ε
, (3.13)

where Y |u−1 represents the ordered sequence of u− 1 class labels, ε the pseudocount
which allows us to have probabilities before seeing any label.
Intuitively, this means that one starts with a pseudocount ε for each possible element,
constructs a code using these pseudocounts, starts encoding/sending/decoding mes-
sages one by one, and then updates the count of each element after sending/receiving
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each individual message. The prequential plug-in code is asymptotically optimal even
without any prior knowledge of the probabilities [48].
Taking into account that the rule list creates a partition of the data, and applying
Eq. (3.13) to each class label in part, we obtain for each part5 Y i:

Lplug-in(Y i) = − log

 ni∏
u=1

Prplug-in(yu | Y i|u−1)


= − log

∏k
c=1

∏nc|i−1
u=0 (u+ ε)∏ni−1

j=0 (u+ kε)


= − log

(∏k
c=1(nc|i − 1 + ε)!/(ε− 1)!

(ni − 1 + kε)!/(kε− 1)!

)

= − log

(∏k
c=1 Γ(nc|i + ε)/Γ(ε)

Γ(ni + kε)/Γ(kε)

)
,

(3.14)

where Y i|u is a sequence of class labels of length u in part Di, and ni = |Di| and
nc|i = |Dc|i|. Further, Γ is the gamma function, an extension of the factorial to real
and complex numbers that is given by Γ(u) = (u−1)!. The most common values for ε,
which takes the role of a prior in the Bayesian literature [125], are the Jeffrey’s prior
of 0.5 or the uniform prior of 1. For simplicity in our experiments, the value of ε = 1

was used as it allows us to obtain natural factorials instead of gamma functions. It is
interesting to note two things: 1) we started with a sequential idea, but the final en-
coding of Eq. (3.14) is independent of the order in which the data is processed; and
2) for the case of categorical and multinomial distributions the prequential plug-in
code is equivalent to a Bayesian code with a Dirichelet prior [48, Chapter 9]

NML encoding. The expression of the NML code can be daunting, but its intuition
is very clear [65], i.e., the NML code is equivalent to first encoding all maximum
likelihood estimates of sequences Z of ni points based on their likelihoods, and then
encoding data Y i with its maximum likelihood estimate Θ̂i as in Eq. (3.12). Formally,
the NML code length of the subset Y i is given by6:

LNML(Y i) = − log

∏
y∈Y i Pr(y | Θ̂i)∑

Z∈Yni

∏
z∈Z Pr(z | Θ̂Z)

=
∑
c∈Y
−nc|i log p̂c|i + log

∑
Z∈Yni

∏
z∈Z

Pr(z | Θ̂Z)

= −`(Θ̂i | Y i) + C(ni, k)

(3.15)

5For full details and intuition on the derivations of the prequential plug-in code check Appendix B.
6For details on the derivation of Eq. (3.15), please see Appendix C.
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where Yni is the space of all possible sequences of ni points with cardinality k = |Y|
(possible values per point), Θ̂Z is the maximum likelihood estimate over Z, C(ni, k) is
the complexity—as it is called in MDL literature[48]—of the multinomial distribution
over ni points and k categories. Note that this term can be efficiently computed in
sub-linear time O(

√
dni + k) if approximated by a finite floating-point precision of d

digits [92].

Predictive rule list encoding. The total data encoding of a predictive rule list, using
the NML encoding, is obtained by inserting (3.12) and (3.15) in (3.8):

L(Y | X,M) =

t∑
j=1

LNML(Y dj ) +
∑
ρi∈R

LNML(Y ij )

 , (3.16)

where for the total data encoding using the prequential plug-in code, substitute LNML(· · · )
by Lplug-in(· · · ) of Eq. (3.14).

Subgroup list encoding. The total data encoding of a subgroup list, using the NML
encoding, is obtained by inserting (3.12) and (3.15) in (3.9):

L(Y | X,M) =

t∑
j=1

L(Y dj | Θ̂d) +
∑
si∈S

LNML(Y ij )

 , (3.17)

where Θd is the dataset marginal parameters, and for the total data encoding using
the prequential plug-in code, substitute LNML(· · · ) by Lplug-in(· · · ) of Eq. (3.14).

Example 6 (continuation): Let us revisit the Zoo subgroup list example of Figure 3.2
and compute the length encoding of the first subgroup subset Y 1 using the NML
encoding. To compute it we just need to get the probabilities associated with each
category ({0; 0; 0.56; 0.44; 0; 0; 0}), the number of samples covered by each of them
({0; 0; 10; 8; 0; 0; 0}), and the total number of categories k = |Y| = 7. Given these, the
length of encoding of the data Y 1 is given by:

LNML(Y 1) = (−10 log 0.56− 8 log 0.44) + C(18, 7)

= 17.84 + 10.42

= 28.26 bits.

3.4.3 Relationship of MDL-optimal subgroup lists to WKL-based
SD

We now investigate the relationship between finding an MDL-optimal subgroup list
and WKL-based top-k subgroup discovery. Remember that WKL is the weighted Kulback-
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Leibler (WKL) divergence, an existing subgroup discovery measure [72] that can be
seen as an information-theoretic instance of the general form of a subgroup discovery
measure as given in Eq. (2.20); we described it in more detail in Section 2.6.2.
Assume that we have a single target variable (Y instead of Y) and a subgroup list
consisting of just one subgroup s with description a (and the default rule). Next, let
us turn the MDL minimization problem into a maximization problem by multiplying
Eq. (3.2) by minus one and adding a constant (for each dataset) L(Y | Θd) to obtain:

s∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X,M)− L(M)

]
.

In the case of a subgroup list with one subgroup and one target, the data encoding of
Eq. (3.17) can be substituted by L(Y | X,M) = L(Y d | Θd) + LNML(Y a). Also, note
that Y d is given by all the points not covered by the subgroup description a, i.e., Y ¬a.
Thus, we can further develop the maximization problem to:

L(Y | Θ̂d)− L(Y | X,M)− L(M) =

= L(Y a | Θ̂d) + ������
L(Y ¬a | Θ̂d) − LNML(Y a)−������

L(Y ¬a | Θ̂d) − L(M)

=
∑
y∈Y s

log
p̂y|a

p̂y|d
− C(na, k)− L(M)

= na
∑
c∈Y

p̂c|a log

(
p̂c|a

p̂c|d

)
− C(na, k)− L(M)

= naKL(Θ̂a; Θ̂d)− C(na, k)− L(M),

(3.18)

where naKL(Θ̂a; Θ̂d) is the Weighted Kulback-Leibler divergence from Θ̂a to Θ̂d. This
result shows that finding the MDL-optimal subgroup is equivalent to finding the sub-
group that maximizes WKL, plus two extra terms: one that defines the complexity of the
distribution C(na, k), and another that defines the complexity of the subgroup L(M).
When we consider subgroup lists having more than one subgroup, Eq. (3.18) simply
expands to:

L(Y | Θ̂d)− L(Y | X,M)− L(M) =
∑
ai∈S

niKL(Θ̂i; Θ̂d)−
∑
ai∈S
C(ni, k)− L(M)

= SWKL(S)−
∑
ai∈S
C(ni, k)− L(M),

where SWKL(S) is the Sum of Weighted Kulback-Leibler divergences of subgroup set
S, a measure for subgroup set quality that we propose later in Section 3.6, and the
other terms penalize the complexity of the subgroup list. The fact that the MDL-based
objective for the optimal subgroup list can be formulated as subgroup set quality
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minus two terms for model complexity demonstrates that our formalization naturally
aims for subgroup lists of high quality while penalizing complexity.

3.4.4 Relationship of MDL-optimal subgroup lists to Bayesian test-
ing

We will now show how our MDL criterion is related to Bayesian testing. The Bayesian
alternative to statistical testing is the Bayesian factor, denoted here byK [58, 61]. The
Bayesian factor compares two models (hypotheses) through the division of the likeli-
hood of the data given each model Pr(D | M1)/Pr(D | M2), where the more likely
model dominates. Notice that the form that we arrived at in the term naKL(Θ̂a; Θ̂d)−
C(na, k)−L(M) of Eq. (3.18) (for a list consisting of one subgroup) is very similar to
the logarithm of a Bayes factor, and indeed it can be decomposed into:

L(Y | Θ̂d)− L(Y | X,M)− L(M) = log

(
Pr(Y | X,M)

Pr(Y | Θ̂d)

)
L(M)

= logK + L(M),

where we use the Shannon-Fano code [114] to transform code length in bits L(· · · ) to
probabilities Pr(· · · ). In practice, taking into account L(M) (or Pr(M)) is equivalent
to using the posterior distributions instead of just the Bayes factor, and in our case
amounts to a penalty for multiple hypothesis testing. This tells us that when finding
the first subgroup we are indeed maximizing an MDL version of a Bayesian factor,
and thus, doing an equivalent Bayesian proportions test (with a binary target) or a
multinomial test (with a nominal target). When we consider the problem of finding
a subgroup beyond the first, it is straightforward to observe that we are testing each
subgroup in S against the marginal distribution of the dataset.

3.5 Data encoding: numeric target variables

When we have one or more numeric target variables, the consequents of probabilistic
rules as in Eq. (2.7) are now normal distributions N (Θ) with parameters Θ = {µ, σ},
and take the following form:

Pr(y | µ, σ) =
1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
,

where we use Pr(y | µ, σ) to denote the probability density function (pdf), which is a
slight abuse of notation that we admit to unify the whole work.
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This translates to a probabilistic rule of the form:

a 7→ y1 ∼ N (µ̂a1, σ̂a1), · · · , yt ∼ N (µ̂at, σ̂at) (3.19)

To simplify the introduction of concepts we will again assume we only have one target
variable in Y, and then generalize the results to multiple variables at the end. Also
in line with this simplification, we will only refer to association rules, and then, spe-
cialize in the end for both predictive rule lists and subgroup lists. Thus, throughout
this section Y becomes Y , and the parameters of each rule ri become Θi = {µi, σi}
as there is only one variable. The general form of a rule list with normal target distri-
bution is given in Figure 3.5.

r1: IF a1 v x THEN y ∼ N (µ̂1, σ̂1)
...

rω: ELSE IF aω v x THEN y ∼ N (µ̂ω, σ̂ω)

dataset: ELSE y ∼ N (µ̂d, σ̂d)

Figure 3.5: Generic rule list model M with ω rules {r1, ..., rω} and a single numeric
target Y .

In the following subsections, we will derive the data encoding with normal distribu-
tions. First, in Section 3.5.1 we show how to encode a normal distribution when its
parameters µ and σ are known, such as is the case for the default rule of a subgroup
list. After that, in Section 3.5.2 we show how to encode a normal distribution using
an uninformative prior when the parameters of the distribution are unknown. Then,
in Section 3.5.3 the equivalence between MDL-based subgroup lists with only one
subgroup and standard (top-1) subgroup discovery with WKL as a quality measure
is proven. Finally, in Section 3.5.4, we show the data encoding and corresponding
criterion are equivalent to a Bayesian test. Note that for the next section we will also
use the maximum likelihood expressions of Section 2.3.2.

3.5.1 Encoding normal distributions with known parameters

To encode target values with known parameters—as is the case for the default rule
of a subgroup list—we can directly use Eq. (3.10) with given parameter estimates
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Θ̂d = {µ̂d, σ̂d} (marginal distribution over the whole dataset):

L(Y d | µ̂d, σ̂d) = − log

 ∏
y∈Y d

1√
2πσ̂2

d

exp

(
(y − µ̂d)2

2σ̂2
d

)
=
nd
2

log 2π +
nd
2

log σ̂2
d +

 1

2σ̂2
d

∑
y∈Y d

(y − µ̂d)2

 log e

= −`(Θ̂d | Y d),

(3.20)

where `(Θ̂d | Y d) is the log-likelihood of the parameter set Θ̂d. The first two terms
are normalization terms of a normal distribution, while the last term represents the
Residual Sum of Squares (RSS) normalized by the variance of the data. Note that
when Yd = Y , i.e., the whole dataset target, RSS is equal to ndσd, and the last term
reduces to nd/2 log e.
Note that we exemplified this code using the dataset marginal distribution parameters
as these are the only known parameters used throughout this thesis, however, this
encoding can be used with any known parameters.

3.5.2 Encoding normal distributions with unknown parameters

In contrast to the previous case, here we do not know a priori the statistics defining
the probability distribution corresponding to the rule, i.e., µ̂ and σ̂ are not given by
the model, and thus both need to be encoded. For this, we resort to the Bayesian
encoding of a normal distribution with mean µ and standard deviation σ unknown,
which was shown to be asymptotically optimal [48]. The optimal code length is given
by the negative logarithm of a probability, and the optimal Bayesian probability for
Y i is given by

LBayes(Y
i) =

− log

∫ +∞

−∞

∫ +∞

0

(2πσ)−
ni
2 exp

− 1

2σ2

∑
y∈Y i

(y − µ)2

w(µ, σ) dµdσ,
(3.21)

where w(µ, σ) is the prior on the parameters, which needs to be chosen.

Choosing the prior. The MDL principle requires the encoding to be as unbiased as
possible for any values of the parameters, which leads to the use of uninformative
priors. The most uninformative prior is Jeffrey’s prior, which is 1/σ2 and therefore
constant for any value of µ and σ, but unfortunately its integral is undefined, i.e.,∫ ∫

σ−2 dσ dµ =∞. Thus, we need to make the integral finite, which we will do next.
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It should be noted that when using normal distributions with Bayes factors—Bayesian
equivalent to traditional statistical testing—the authors tend to also add a normal
prior on the effect size, as e.g., δ = µ/σ ∼ N (0, τ) [58, 44, 110]. Nonetheless, this
prior gives a higher probability to values of µ closer to zero, which is a bias that we do
not want to impose. Thus we only use Jeffrey’s prior, which converges7 to the Bayes
Information Criterion (BIC) for large n.

Now, given the our prior w(µ, σ) = 1
σ2
√

2π
—where

√
2π was added for normaliza-

tion reasons—the remaining question is how we can make the integral finite. The
most common solution, which we also employ, is to use u data points from Y i, de-
noted Y i|u, to create a proper conditional prior w(µ, σ | Y i|u). As there are only two
unknown parameters, we only need two points hence u = 2 [48]; for more on the in-
terpretation of such “priors conditional on initial data points”, see [47]. Consequently,
we first encode Y i|2 with a non-optimal code that is readily available—i.e., the dataset
distribution of Eq. (3.20)—and then use the Bayesian rule to derive the total encoded
length of Y i as

LBayes2.0(Y i) = − log
PBayes(Y

i)

PBayes(Y i|2)
P (Y i|2 | µd, σd)

= LBayes(Y
i) + Lcost(Y

i|2),

(3.22)

where Lcost(Y
i|2) = L(Y i|2 | µd, σd) − LBayes(Y

i|2) is the extra cost incurred by
encoding two points non-optimally. After some re-writing8 we obtain the encoded
length of the y values covered by a subgroup Y i as

LBayes2.0(Y i) = LBayes(Y
i) + Lcost(Y

i|2)

= 1 +
ni
2

log π − log Γ

(
ni
2

)
+

1

2
log(ni) +

ni
2

log niσ̂
2
i + Lcost(Y

i|2),
(3.23)

where Γ is the Gamma function that extends the factorial to the real numbers (Γ(n) =

(n−1)! for integer n) and µ̂i and σ̂i are the statistics of Eqs. (2.10) and (2.11), respect-
ively. Note that for Y i|2 any two unequal values (otherwise σ̂2 = 0 and LBayes(Y i|2) =

∞) can be chosen from Y a, thus we choose them such that they minimize Lcost(Y i|2).

Predictive rule list encoding. The total data encoding of a predictive rule list, is
obtained by inserting Eq. (3.20) and (3.23) in (3.8):

L(Y | X,M) =

t∑
j=1

L(Y dj | Θd) +
∑
si∈S

LBayes2.0(Y ij )

 .

7See proof in Appendix E.
8The full derivation of the Bayesian encoding and an in-depth explanation are given in Appendix D.
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Subgroup list encoding. The total data encoding of a subgroup list, is obtained by
inserting Eq. (3.20) and (3.23) in (3.9):

L(Y | X,M) =

t∑
j=1

L(Y dj | Θd) +
∑
si∈S

LBayes2.0(Y ij )

 ,

where Θd is the dataset marginal parameters.

Example 7 (continuation): We revisit the Automobile subgroup list of Figure 3.3
and find the length of the Bayes2.0 encoding (Eq. (3.23)) of the first subgroup. To
compute it we need to get the statistics of the subgroup (Θ̂1 = {µ̂1 = 35; σ̂1 = 8}), the
number of samples it covers (n1 = 11), the dataset statistics (Θ̂d = {µ̂d = 13; σ̂d =

8}), and the two points closest to the dataset mean Y 1|2 = {14; 31} that make the
encoding proper (and which are not available in the example information). Assuming
that Lcost(Y i|2) = 0.69bits for simplicity, the length of the encoding of Y 1 is given by:

LBayes2.0(Y 1) =1 +
11

2
log π − log Γ

(
11

2

)
+

1

2
log(11 + 1) +

11

2
log 11 · 82

+ Lcost(Y
i|2)

=58.06 + 0.69

=58.75 bits.

3.5.3 Relationship of MDL-optimal subgroup lists to WKL-based
SD

As in Section 3.4 we next investigate the relationship between finding an MDL-
optimal subgroup list and WKL-based top-1 subgroup discovery, but now for the nu-
meric case.
First, we show that Eq. (3.23)—with mean and variance unknown—converges, for
large n, to Eq. (3.20)—with mean and variance known—plus an additional term.
Using the Stirling approximation of Γ(n+ 1) ∼

√
2πn

(
n
e

)n
leads to9

LBayes2.0(Y a) ∼ na
2

log 2π +
na
2

log σ̂2
a +

na
2

log e+ log
na
e
, (3.24)

where log n
e is equal to the penalty term of BIC and similar to the usual MDL com-

plexity of a distribution [48].
Now, we can show that minimizing our MDL criterion is equivalent to maximizing a
subgroup discovery quality function of the form of Eq (2.20). Focusing on the case

9The complete derivation can be found in the Appendix E



Chapter 3. MDL for rule lists 51

where M = {s} contains only one subgroup with description a and statistics Θ̂a =

{µ̂a, σ̂a}, we start with L(Y | X,M) (Eq. (3.2)), multiply it by minus one to make it
a maximization problem, and add a constant L(Y | µ̂d, σ̂d), i.e., the encoded size of
the whole target Y using the overall distribution dataset. We then get

s∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X,M)− L(M)

]
.

Developing this further, the subgroup s that maximizes this expression is equivalent
to the one that maximizes

L(Y | Θ̂d)− L(Y | X,M)

= L(Y a | Θ̂d)− LBayes2.0(Y a | Xa)− L(M)

∼ na
2

log
σ̂2
d

σ̂2
a

+

 1

2σ̂2
d

∑
yi∈Y a

(yi − µ̂d)2

 log e− na
2

log e− log na − L(M)

=
na
2

log
σ̂2
d

σ̂2
a

+

[∑
yi∈Y a(yi)2 − nµ̂2

a + nµ̂2
a − 2nµ̂aµ̂d − µ̂d)2

2σ̂2
d

]
log e

− na
2

log e− log na − L(M)

= na

[
log

σ̂d
σ̂a

+
σ̂2
a + (µa − µd)2

2σ̂2
d

log e− log e

2

]
− log(na)− L(M)

= naKL(Θ̂a; Θ̂d)− log na − L(M),

(3.25)

where naKL(Θ̂a; Θ̂d) is the usage-weighted Kullback-Leibler divergence between the
normal distributions specified by the respective parameter vectors. Similar to the res-
ult for the nominal target in Section 3.4.3, this shows that finding the MDL-optimal
subgroup is equivalent to finding the subgroup that maximizes the weighted Kullback-
Leibler (WKL) divergence, an existing subgroup discovery quality measure [72], plus
two terms. The first defines the complexity of the subgroup distribution with two
parameters, the second compensates for multiple hypothesis testing (i.e., the num-
ber of possible subgroups). When we have a list with multiple subgroups, Eq. (3.18)
expands to

L(Y | Θ̂d)− L(Y | X,M)− L(M) ∼
∑
ai∈S

niKL(Θ̂i; Θ̂d)−
∑
ai∈S

log(ni)− L(M)

= SWKL(S)−
∑
ai∈S

log(ni)− L(M),

where SWKL(S) is the measure of subgroup set qualities that we proposed in Sec-
tion 3.6, and the other terms penalize the complexity of the subgroup list.
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Dispersion-correction quality measure. Importantly, we can observe from Eq. (3.18)
that the measure based on the Kullback-Leibler divergence of normal distributions is
part of the family of dispersion-corrected subgroup quality measures, as it takes into
account both the centrality and the spread of the target values [12].

3.5.4 Relationship of MDL-optimal subgroup lists to Bayesian test-
ing

When we have only one subgroup s in a subgroup list, the data encoding for numeric
targets of Eq. (3.5.2) is equivalent to the negative logarithm of a Bayes factor [44,
110]. Indeed, the choice of the prior was based on the Bayesian one-sample t-test by
Gönen et al. [44], and we effectively perform a one-sample t-test (including two extra
terms) for each subgroup. Formally—and similar to the nominal case as described in
Section 3.4.4—a Bayes factor K [58, 61] is given by the division of the likelihoods of
the data given each hypothesis: Pr(D |M1)/Pr(D |M2). If we use the maximization
equivalent of Eq. (3.25),

L(Y | Θ̂d)− L(Y | X,M)− L(M) = log

(
Pr(Y | X,M)

Pr(Y | Θ̂d)

)
L(M)

= logK + L(M),

we can see that we have the Bayes factor plus the model encoding. To transform
code lengths in bits L(· · · ) to probabilities Pr(· · · ) we used the Shannon-Fano code
[114], which states that the best encoding is given by the negative logarithm of its
probability for an event A, i.e., L(A) = − log Pr(A). Our MDL-based criterion aims at
maximizing a one-sample t-test for numeric targets between the subgroup distribution
and the marginal distribution of the dataset while taking into account L(M), which
is equivalent to using the posterior distribution and penalizes for multiple hypothesis
testing. When we aim to find subgroups beyond the first, it is trivial to see that we are
testing each subgroup in S against the marginal distribution of the dataset.

3.6 A new measure for subgroup sets: the sum of WKL
divergences

As discussed in Section 2.7, there is no SSD measure, to the best of our knowledge,
that takes into account the individual quality of subgroups and their global quality
over the whole dataset. Therefore, based on the results of Section 3.4.3 and 3.5.3,
it is natural to extend the flexible WKL measure in subgroup discovery (described in
Section 2.6.2) to subgroup sets.
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That is, we propose the Sum of Weighted Kullback-Leibler divergences (SWKL), which
can be interpreted as the sum of weighted KL divergences for the individual sub-
groups:

SWKL(S) =

∑ω
i=1 niKL(Θ̂i

j ; Θ̂d
j )

|D|
, (3.26)

where i is the index of each subgroup in a subgroup list, ω is the number of subgroups
in S, and |D| is the number of instances in D. The latter is used to normalize the
measure and make values comparable across datasets. In the case of multiple target
variables, the normalization could also include the number of targets, but that is
not used in this thesis. The SWKL measure assumes that the data is partitioned per
subgroup and that subgroups can be interpreted sequentially as a list, i.e., the second
subgroup is interpreted as the description of the second subgroup is active, while the
one of the first is not active.
An advantage of the SWKL measure is that it can be used for any type of target vari-
able(s), as long as they are described by a probabilistic model. Note that computing
SWKL is straightforward for subgroup lists, but not for subgroup sets as instances can
be covered by multiple subgroups. For subgroup sets, it would be necessary to expli-
citly define the type of probabilistic overlap, e.g., additive or multiplicative mixtures
of the individual subgroup models.

It should be noted that this measure only quantifies how well a list of subgroups
capture the deviations in a given dataset and is prone to overfitting: the higher the
number of subgroups, the easier it is to obtain a higher value as there is no penalty
for the number of subgroups (or their complexities, for that matter). As such, SWKL
can be seen as a measure for ‘goodness of fit’ for subgroup lists. This turns out to not
be an issue for our approach though, as our MDL-based criterion naturally penalizes
for multiple hypothesis testing and complexity of the individual subgroups. Further, it
is neither an issue in our empirical comparisons in Section 5.3, as the number of sub-
groups found was similar for most algorithms, rendering the SWKL-based comparison
valid.

3.7 Theoretical difference between subgroup list and
predictive rule list

In this section, we show the difference between the objectives for subgroup discovery
and predictive rules. We do this through the comparison of the equivalent maxim-
ization MDL scores for subgroup lists and classification rule lists [96] with only one
rule—without loss of generality for greater sizes or regression tasks. To differentiate
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both model classes SL and RL will be used for subgroup lists and classification rule
lists, respectively.
First, let us recall the form of a subgroup list SL as given in:

subgroup 1 : IF a v x THEN y ∼ Cat(Θ̂a)

dataset : ELSE y ∼ Cat(Θ̂d)

where Θ̂a are the estimated parameters of subgroup 1 and Θ̂d are the estimated para-
meters of the marginal distribution of the dataset and are thus constant for each
dataset. On the other hand, the model form of a classification rule list RL takes the
following form:

predictive rule 1 : IF a v x THEN Cat(Θ̂a)

default : ELSE y ∼ Cat(Θ̂¬a)

where Θ̂¬a was used to emphasize that the default rule of a predictive rule list is not
fixed, and is equivalent to the ‘not rule 1’. This is the key difference between these two
types of models: for subgroup lists the default rule is fixed to the marginal distribution
of the dataset, while for predictive rule lists the default rule has the distribution of the
negative set of the rules in the list. It should be noted that there are many definitions
of rule lists for classification that use a fixed default rule, however having a variable
default rule that maximizes the prediction quality is the best representative of pre-
dictive rule lists and of the objective of finding the best machine learning model, i.e.,
returning the best partition of the data with the smallest error possible. Note that a
decision tree also belongs to this family of models, as any path starting at the root of
the tree to one of its leaves also forms a rule, and thus, a decision tree is equivalent to
a set of disjoint rules, i.e., none of the rules described in this way overlap on a dataset.
For the type of classification rule lists defined above, the encoding of the first rule and
default rule is given by Eq. (3.15) as for both rules the parameters are unknown.
Thus the MDL score of a predictive rule list can be rewritten as:

L(D,RL) = L(Y a | Xa) + L(Y ¬a | X¬a) + L(RL), (3.27)

and note that the model encoding L(RL) = L(SL) when having the same association
rules.
Following the same steps as in Section 3.4.3, turning the MDL score objective from a
minimization to maximization by multiplying by minus one and adding the constant
L(Y d | Θd), we obtain the same objective as in Eq. (3.4.3):

ρ∗ = arg max
s∈M

[
L(Y d | Θd)− L(Y | X, RL)− L(RL)

]
,
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where ρ is the classification rule that maximizes the objective. Working out this equa-
tion, maximization objective of a classification rule list for a target variable of k class
labels is given by:

L(Y | Θ̂d)− L(Y | X,M)− L(RL)

= L(Y a | Θ̂d) + LNML(Y ¬a | Θ̂d)− L(Y a | Xa)− LNML(Y ¬a | X¬a)− L(RL)

= naKL(Θ̂a; Θ̂d)− C(na, k) + n¬aKL(Θ̂¬a; Θ̂d)− C(n¬a, k)− L(RL),

(3.28)

This should be contrasted with the maximization objective of subgroup list of Eq. 3.18,
which is given by:

L(Y | Θ̂d)− L(Y | X,M)− L(SL) =

naKL(Θ̂a; Θ̂d)− C(na, k)− L(SL).

Comparing the two previous equations, we can notice the most important distinction
between subgroup discovery and classification: the local nature of subgroup discovery
and the global nature of the classification task. In other words, subgroup discovery
aims at finding subgroups that locally maximize their quality, independently of the
rest of the dataset, and even though classification rules try to maximize their local
quality also, they have to take into account the quality of their negative set, i.e., a
classification rule cannot be considered by its quality alone, it has to be considered in
terms of its global impact in the dataset.
On the other hand, this result also shows the similarity between both tasks and where
the confusion sometimes arises, i.e., in particular cases the best subgroup can also be
the best predictive rule. An example of this would be a very large dataset (relatively
to the number of observations covered by the rule), and the best rule would cover a
small number of observations compared to the rule formed by the negative set of that
rule, i.e., D¬a, as a similar distribution to Θ̂d, making Θ̂¬a ∼ Θ̂d.




