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2
Preliminaries

In this chapter predictive rule lists and subgroup lists are presented. To that end, we
give a gentle introduction to association rules, what constitutes a rule-based classifier
and subgroup discovery, and how to measure the quality of a rule-based model in
classification and subgroup discovery.

This chapter is divided as follows. First, in Section 2.1 we give a high-level intro-
duction of association rules, rule-based classifiers, subgroup discovery, and subgroup
set discovery. Next, in Section 2.2 the notation for supervised structured i.i.d. data
is presented together with a formal definition of prediction, subgroup discovery, and
subgroup set discovery tasks. Then, in Section 2.3 association rules and their charac-
teristics are introduced. After that, in Section 2.4 the rule list model class is defined
in general plus the specific case of the predictive rule lists and the subgroup list.
Then, in Sections 2.5, 2.6, and 2.7 performance measures for classification, quality
measures for subgroup discovery, and quality measures for subgroup set discovery are
introduced, respectively.

2.1 Introduction to rules

The main topics of this thesis, rule-based classification and subgroup discovery, are
two paradigms arising from related fields, machine learning and data mining, re-
spectively. Both topics share the fact that they are supervised tasks on structured data
that resort to association rules to construct their models. Thus, we will now inform-
ally introduce what each of these tasks encompasses, starting from what they have in
common, and finalizing with their differences.
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Association rule. An association rule a 7→ b is an assertion of a possible relationship
between the antecedent a and consequent b, which can be read in the form of “If a
appears in the data then b usually also appears” with a certain level of confidence
[2]. A classic example from market basket analysis is that people who buy bread
and butter (antecedent), usually, also buy milk (consequent) [2]. In this case, the
association rule takes the form of: {bread = yes}&{butter = yes} 7→ milk = yes.
A probabilistic extension of these rules, deemed a probabilistic association rule [81],
associates a parametric probability distribution to the consequent, thus, instead of
having a crisp decision, it has a probability associated with each possible case:

a 7→ b ∼ Dist(Θ), (2.1)

where Θ are the parameters of the distribution Dist that describe the consequent.
In the case of the previous example, where the consequent is a binary variable, this
could take the form of: {bread = yes}&{butter = yes} 7→ milk ∼ Bernouilli(pyes =

0.60; pno = 0.40); where pyes is the probability of having bought milk, and pno =

1− pyes the probability of not having bought it. A rule is said to be active in a region
of the data D if for a data instance x ∈ D its antecedent is present, such as in our
example {bread = yes}&{butter = yes}.

Rule-based classifiers. Classification is the task of predicting an unseen outcome y
of a discrete target variable from an instance of explanatory variables x [36]. In order
to learn the relationship between the variables, a classification model is learned from
a supervised dataset D = {X, Y }, which is composed of paired examples (x, y). Note
that we only talk about rule-based classifiers and not regressors because, to the best
of our knowledge, there are no competitive rule-based models for regression.

Rule-based classifiers aggregate several rules together in order to perform classifica-
tion. Combining rules in different ways leads to different rule-based models, of which
two stand out [39]: 1) rule list or sequential activation [109, 85]—the activation of
the rules for prediction follows a pre-determined order of the form if rule 1 then
Dist(Θ1)... else if rule 2 then Dist(Θ2), finishing with a default else Dist(Θm) that
captures all the data not covered by any of the previous rules; 2) rule set or over-
lapping rules [21]—an unordered set of rules where several individual rules can be
activated at the same time, overlapping. The key difference between both models is
that rule lists are ordered and only one rule is active for one data sample x, while rule
sets are unordered and multiple rules can be active for one data sample x.
The objective of a rule-based classifier is to maximize a performance measure, thus
each association rule should contribute to that global goal, i.e., each rule should
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take into account other rules to maximize the overall quality of the classifier. Look-
ing back at our example, we see that {bread = yes}&{butter = yes} 7→ milk ∼
Bernouilli(pyes = 0.60; pno = 0.40) does not seem particularly good for predic-
tion as it does not distinguish very well between both classes. On the other hand,
the rule {yoghurt = yes} 7→ milk ∼ Bernouilli(pyes = 0.90; pno = 0.10) seems
well suited for prediction. A note should be made in relation to decision lists, which
have the same format as rule lists, but instead of combining probabilistic association
rules, they are composed of decision rules, with a crisp decision as in our example
{bread = yes}&{butter = yes} 7→ milk = yes, and appeared first in the literature
[109].

Subgroup Discovery (SD). Subgroup discovery is the data mining task of finding
subgroups that stand out with respect to some given target variable(s). The definition
of standing out, also known as interestingness, is quantified by a quality measure,
which depends on the task at hand [123, 63]. In general, these measures quantify
quality by how different the target variable distribution of a subgroup is from what is
defined as ‘normal’ behavior in a dataset. In the case of structured data, a subgroup
generally takes the form of an association rule, and the ‘normal’ behavior is usually
measured by the average behavior of the target variable of that dataset [8]. Going
back to the market basket analysis example, let us consider a dataset made up of
the shopping baskets of different clients, and that has as target variable if a client
bought milk (or not). ‘Normal’ behavior can be given by the percentage of people that
buy milk over the whole dataset, and let us assume that this value is 90%. Thus, the
subgroup defined by {bread = yes}&{butter = yes} 7→ milk ∼ Bernouilli(pyes =

0.60; pno = 0.40) seems interesting, as compared with normal behavior, people that
buy bread and butter buy milk 33% times fewer times than an average client. This
is in clear contrast with rules for prediction, as subgroups that are interesting do not
have to divide well between classes: they need to stand out with respect to what is
‘normal’ behavior in the data. Sometimes, depending on the dataset and task at hand,
a good subgroup will also be a good predictive rule, but both tasks arise from differ-
ent goals and should thus not be confused. In its standard form, subgroup discovery
is called top-k mining, as the goal is to find the k top subgroups that maximize a user-
defined quality measure. As the quality measures only quantify the individual quality
of a subgroup, top-k mining is a local paradigm, as it is only concerned with the in-
dependent performance of the k subgroups on the respective data covered by each of
their descriptions. Top-k subgroup discovery usually finds subgroups that cover the
same region of the data, hence it returns redundant subgroups for many datasets. As
a solution to this, subgroup set discovery was proposed.
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Subgroup Set Discovery (SSD). The task of finding a non-redundant set of sub-
groups that are individually and collectively interesting at the same time is called
Subgroup Set Discovery (SSD) [75]. Contrary to a predictive paradigm, the objective
is that the subgroups still abide by the standard subgroup discovery principle of locally
standing out with respect to the ‘normal’ behavior, while at the same time, globally de-
scribing different regions of the dataset. To extend subgroup discovery to its set form,
two main models exist: 1) subgroup lists or ordered sets [71]—a set of subgroups that
should be interpreted sequentially and where no subgroup is allowed to overlap in
the same region of data as another, take the form of if subgroup 1 then Dist(Θ1)...
else if subgroup 2 then Dist(Θ2), etc.; and 2) subgroup sets or overlapping sets [74]—
a set of subgroups where each subgroup can be interpreted individually and over-
lap is allowed according to a definition of overlap interaction. Both extensions have
their advantages and disadvantages: while subgroup lists are less interpretable, they
have the advantage of a clear definition of the relevance of each subgroup and which
subgroup explains each data point. On the other hand, subgroup sets allow for a
(semi)independent interpretation of the subgroups, but they require an extra defin-
ition that favors non-redundant sets together with a definition of the interaction of
subgroups in the region where they overlap, e.g., as a mixture model.

Rule-based classifiers versus Subgroup Set Discovery. As was shown throughout
this section, predictive rules and subgroups share a lot of the same characteristics.
Rule-based classifiers aggregate association rules to maximize a global objective of
a good overall classification, while subgroup sets balance both a local definition of
quality with respect to the ‘normal’ behavior of the dataset and a global objective
of covering different regions of the data. It is natural that for some datasets good
subgroups will be good predictive rules and vice versa, but this is not always the case
and it should be distinguished. Throughout this work, we will be referencing them
separately to emphasize the different paradigms: 1) predictive rule will refer to an
association rule as used in rule-based models for classification in machine learning;
2) subgroup to descriptive rules in subgroup discovery; and 3) association rule or just
rule to an association rule in general, i.e., when it refers to either a predictive rule or
a subgroup. All their idiosyncrasies may not be apparent yet, but as we progress we
will continue to emphasize their similarities and differences.

2.2 Supervised data

Consider a dataset D = (X,Y) = {(x1,y1), (x2,y2), ..., (xn,yn)} of n i.i.d. instances.
Each instance (xi,yi) is composed of a vector of explanatory variable values xi and a
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vector of target variable values yi.
Each observed explanatory vector has m values x = [x1, ..., xm], one for each vari-
able X1, ..., Xm. The domain of a variable Xj , denoted Xj , can be one of two types:
nominal or numeric. Similarly, each observed target vector is composed of t values
y = [y1, ..., yt], one for each target variable Y1, ..., Yt, with associated domains Yj . The
target variables can be one of two types: nominal, or numeric. In the nominal case it
is Yj = {1, · · · , k}, with Yj the set of k classes/categories of variable Yj , and in the
numeric, the domain is Yj = R.
Note that we use subscripts on the dataset variables (D,X,Y, X, Y, x, y) to indicate
column subsets and overscripts to subset over rows. In the case of other notation, such
as number of elements n or statistics µ, σ we will not use the superscript as it can be
confused with the exponentiation of that value. Also, Xi (resp. Yi) refers to both the
properties of the ith explanatory (resp. target) variable and to all the values of this
variable for a specific column. When the dataset only contains one target variable Y

is substituted by Y .

Prediction In statistical learning, the task of prediction is to infer unseen values of
a target variable from a set of explanatory variables through the use of past evid-
ence that shows the relationship between target and explanatory variables [36].
Formally, this means that we want to find the best mapping g, from a space of
possible hypotheses G, between explanatory data X to target data Y (in the uni-
variate case and without loss of generality). This mapping can be summarized as
g : X1 × · · · × Xm → Y; and in the case of a probabilistic predictor, such as ours,
this mapping is just a conditional probability g(x) = Pr(y | x = x), and by abuse of
notation g(X) = {g(x1), · · · , g(xn)}. Assuming that we are dealing with probabilistic
mappings, we can now start making predictions ŷ for the target variable values for
each instance x, by returning the outcome with the largest probability

ŷ = arg max
y∈Y

Pr(y | x) (2.2)

The characteristics of a good mapping are: 1) capture the properties in X that allow
predicting Y ; and 2) generalize well on previously unseen dataDnew = {Xnew, Ynew}.
In order to choose the best possible mapping, we need to introduce a performance
measuremeas that empirically quantifies the quality of our mappings for a given data-
set, formally meas : Yn × Yn → R≥0. Thus the problem of finding the best mapping
g in a dataset D = {X, Y } reduces to:

g∗ = arg max
g∈G

meas(Y, g(X)), (2.3)

but then another, Dnew is required for evaluation, as this takes into account gener-
alization and avoids overfitting. Some examples of measures meas for classification
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are the accuracy or the AUC, described in Section 2.5, or the Mean Squared Error for
regression.
Several variations exist, such as using only predictions ŷ instead of g(x) or structural
measures that add an extra term to meas to penalize for the structural complexity of
the mapping [119]. E.g., in the case of nested mappings such as a polynomial regres-
sion, the use of higher-order polynomials is “more complex” than lower-order ones,
as they have extra terms. The Minimum Description Length (MDL) principle used
throughout this dissertation, is a type of probabilistic structural error minimization
principle and this mapping g is called a model M or point hypothesis in it [47].

Subgroup discovery Subgroup discovery is the data mining task of discovering un-
kown patterns in the data that stand out with respect to a target variable [116]. In
mathematical terms the objective is to find a mapping between descriptions a of the
explanatory data X and the target variable Y (for the univariate case without loss of
generality) that stand out in relation to the ‘normal’ behavior of the target variable Y .
Formally, a description is a function a : X1×· · ·×Xm 7→ {false, true}. And in our spe-
cific case, a description a is a conjunction of conditions on X, each specifying a value
or interval on a variable. The domain of possible conditions depends on the type of
a variable: numeric variables support greater and less than {≥,≤}; nominal support
equal to {=}. E.g., from Figure 2.2, where for the Car import dataset, a description
can be “weight = heavy & consumption-city ≤ 8 km/L”, where the variable weight is
conditioned to one value (norminal variable) and consumption− city is conditioned
to one interval (numeric variable). As the dataset is made of pairs (xi, yi), for each
description a there is an associated subset of data Da = {Xa, Y a} with na = Da

instances, and an associated empirical parameter distribution of the target Y a given
by Θ̂a—where the parameters depend on the distribution selected by the user. Thus,
in the case of i.i.d. data, a subgroup is an association rule s : a 7→ y ∼ Dist(Θ̂a).
To quantify how interesting a subgroup s with description a is, we need to define a
quality measure q(na, Θ̂a, Θ̂d) that is a function of the subgroup empirical distribu-
tion Θ̂a and the dataset empirical marginal distribution Θ̂d—‘normal’ behavior of the
dataset.
Formally the best subgroup, or top-1 subgroup, is given by

s∗ = arg max
s=(a,Θ̂a)∈A

q(na, Θ̂
a, Θ̂d), (2.4)

where in the case of top-k subgroup discovery, we return the k top ranking sub-
groups that maximize q. An example of a quality measure for binary targets in the
Weighted Relative Accuracy (WRAcc) or the Weighted Kullback-Leibler (WKL) diver-
gence presented in Section 2.6. Contrary to prediction, SD does not aim at performing
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well on unseen data, but on discovering interesting patterns in the seen data.

Subgroup set discovery The objective of subgroup set discovery (SSD) is to find a
set of subgroups S that are both (individually) high-quality and non-redundant, i.e.,
cover different regions of the data [75]. Thus, it uses a local idea of quality measure
from subgroup discovery plus a global concept of covering different regions of the
dataset. Given this vague trade-off, SSD objectives have only been defined heurist-
ically in different works, either by sequentially covering or by weighting instances
[71, 75].
In the sequential approach one iteratively finds subgroups by: 1) discovering the
top-1 subgroup according to quality measure as in Eq. (2.4); 2) removing the data
covered by that subgroup—or in some cases, only the data of a certain class in binary
SSD[71]—from the dataset, thus getting D¬a = D \ Da; and 3) repeating 1 and 2

until the desired number is reached or no more subgroups can be found. The weight-
ing approach follows the same iterative approach as the sequential one, but instead
of removing the whole data in step 2, it reweighs each instance if it was already
covered by subgroups selected in previous iterations. Formally, SSD can be defined as
a dependent system of equations:

s1 = arg max
s=(a,Θ̂a)∈A

q(na, Θ̂
a, Θ̂d),

s2 = arg max
s=(a,Θ̂a)∈A|(s1)

q̃(na, Θ̂
a, Θ̂d, s1),

...

sk = arg max
s=(a,Θ̂a)∈A|(s1,··· ,sk−1)

q̃(na, Θ̂
a, Θ̂d, s1, · · · , sk−1),

(2.5)

where A|(s1, · · · , sk−1) represents that the space of possible subgroups and their em-
pirical distributions depend on the subgroups found so far, q̃ means that the quality
measure can be slightly modified by a weighting, given previous selected subgroups.
As there are no SSD global quality measures, in Section 2.7 we describe what the
characteristics of a SSD quality measure Q(S, Y ) over a whole dataset should be, and
in Section 3.6 we propose the Sum of Weighted Kullback-Leibler (SWKL) divergences
as an SSD measure for sequential subgroup sets—that could in the future be adapted
for non-sequential sets.

Tasks. Depending on the type (nominal or numeric) and number of targets (one or
multiple), and the task at hand—rule-based prediction or subgroup discovery—the
type of problem for each task can be divided into four categories.
First, for the case of rule-based prediction, it can be divided as: 1) classification:
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univariate nominal target; 2) regression: univariate numeric target; 3) multi-label or
multi-target classification: multivariate binary or nominal targets, respectively; and 4)
multi-target regression: multivariate numeric targets.
Second, for the case of subgroup discovery the names are themselves self explanatory:
1) single-nominal; 2) single-numeric; 3) multi-nominal; and 4) multi-numeric.

2.3 Association rules, predictive rules and subgroups

Association rules are the shared building block of rule-based classification and sub-
group discovery. To distinguish the tasks, when we mention and association rule r,
we are talking about its general form and it can refer to both a predictive rule ρ and
a subgroup s.

An association rule r, henceforth, called rule, consists of a description (also intent)
that defines a cover (also extent), i.e., a subset of dataset D. Examples of association
rules are given in Figures 2.1 and 2.2

Pr(animaltype = · · · | a) in %

description of animal n Mammal Fish Invert. Bug Reptile Amph. Bird

backbone = no 18 0 0 56 44 0 0 0

Figure 2.1: Example of one rule from the Zoo dataset with coverage n and one nom-
inal target variable characterized by a categorical distribution with parameters pi for
each class in {Mammal; Fish; Invert.; Bug; Reptile; Amph.; Bird}.

price (K)

description of automobile specifications n µ σ

weight = heavy & consumption-city ≤ 8 km/L 11 35 8

Figure 2.2: Example of one rule from the Automobile import 1985 with a numeric
target variable characterized by a normal distribution with coverage n, mean µ, and
standard deviation σ.

Rule description: A description a is a Boolean function over all explanatory vari-
ables X. Formally, it is a function a : X1 × · · · × Xm 7→ {false, true}. In our case,
a description a is a conjunction of conditions on X, each specifying a specific value
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or interval on a variable. The domain of possible conditions depends on the type of
a variable: numeric variables support greater and less than {≥,≤}; nominal support
equal to {=}. The size of a description a, denoted |a|, is the number of conditioned
variables it contains.

Example 1: In Figure 2.2, the rule description size is |a| = 2, with one condi-
tion on a nominal variable: {weigth = heavy}; and another on a numeric variable:
{consumption-city ≤ 8km/L}.

Rule cover: The cover is the bag of instances from D where the rule description holds
true. Formally, it is defined by:

Da = {(x,y) ∈ D | a v x} = {Xa
1 , · · · , Xa

m, Y
a
1 , · · · , Y at } = {Xa,Ya}, (2.6)

where we use a v x to denote a(x) = true. Further, let na = |Da| denote the coverage
of the subgroup, i.e., the number of instances it covers.
Example 2 (continuation): In Figure 2.2, the rule covers 11 instances in the dataset
which can be found by the instances in the data where its description is true, and
thus its coverage is 11.

2.3.1 Interpretation as probabilistic rule

As Da encompasses both the explanatory and target variables, the effect of a on
the target variables can be interpreted as a probabilistic rule. In this thesis, we will
assume that the target variables are independent as this simplifies the problem and is
a common approach in, e.g., multi-label classification [53]. Thus, the general form of
a rule is

a 7→ y1 ∼ Dist(Θ̂a
1), · · · , yt ∼ Dist(Θ̂a

t ), (2.7)

where yj is a value of variable Yj , Dist is a probability distribution (defined later)
and Θ̂a

j is the shorthand for the maximum likelihood estimation of the parameters of
Dist over values Y aj , i.e., Θ̂a

j = Θ̂j(Y
a). Thus, yj ∼ Dist(Θ̂a

j ) tells us that the values
of variable Yj are distributed according to a distribution Dist with parameters Θ̂a

j

estimated over the values Y aj . The vector of all parameter values of a rule is denoted
by Θa. In our case, Dist is a categorical or normal distribution for the nominal or
numeric target case, respectively. For numeric targets other distributions could have
been chosen, however, the normal distribution incorporates some of the most relevant
information of the data through the mean and variance of the data, it is well studied
for regression problems [36], and can be solved in a closed form from a Bayesian [58]
and MDL [48] perspective. For an analysis on the direct use of the numeric empirical
distribution in subgroup discovery please refer to Meeng et al. [89]. In the numeric
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case, the normal distribution is represented as N (µ̂, σ̂), where µ̂ and σ̂ are the mean
and standard deviation of the distribution estimated from the data. In the nominal
case, the distribution is Cat(p̂1, · · · , p̂k), where k is the number of classes (or categor-
ies) of the corresponding variable and p̂c the estimated probability for class c.

The categorical distribution is a natural choice for describing the probabilities of
classes [81] and the normal distribution captures two properties of interest in nu-
meric variables, i.e., center and spread, while being robust to cases where the data
violates the normality assumption [48].
Example 3 (continuation): Revisiting the Automobile import example list in Figure 2.2,
the description and corresponding statistics are a = {weight = heavy & consumption-
city≤ 8 km/L } and Θ̂a = {µ̂ = 35; σ̂ = 8}, respectively, where the units are thousands
of dollars (K). This corresponds to the following normal probability distribution:

price (K) ∼ N (µ̂ = 35; σ̂ = 8)

Example 4 (continuation): In the case of the Zoo rule of Figure 2.1, the description is
a = {backbone = no}, and its corresponding statistics are Θ̂a = {p̂1 = 0; p̂2 = 0; p̂3 =

0.56; p̂4 = 0.44; p̂5 = 0; p̂6 = 0; p̂7 = 0}, where the class labels 1, ..., 7 correspond to
the animal types in the order of Figure 2.1. The target variable follows the following
categorical distribution:

animal type ∼ Cat(p̂1 = p̂2 = p̂5 = p̂6 = p̂7 = 0.00; p̂3 = 0.56; p̂4 = 0.44)

2.3.2 Maximum likelihood estimation

The most common way to estimate the parameters of a probability distribution from
a dataset is by using the Maximum Likelihood (ML) estimator [93]. In later chapters
we also use other estimators, but the ML is still an important building block of these
more complex methods.

As shown previously, each description a uniquely defines a subset Da given by its
cover Eq. (2.6). Next, we will show how to estimate the parameters for each type of
target variable.
In the nominal case, the parameters of the distribution Cat(Θa) are the probab-
ilities associated with each class c, i.e., Θa = {pc=1|a, · · · , pc=k|a}, for a domain
Y = {1, · · · , k}. Note that we use ·|a as a shorthand for conditional on a, as e.g.,
pc=1|a = Pr(c = 1 | a v x). Thus, for each class label c, we need to find its subset of
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the data Dc|a, formally given by:

Dc|a = {(x, y) ∈ Da | y = c}. (2.8)

which allows us to compute the usage over each class nc|a = |Dc|a|. Now, we are in
a position to use the maximum likelihood estimator for the parameters Θ̂a of each
categorical distribution as:

p̂c|a =
nc|a

na
, (2.9)

where na is the total number of instances and nc|a is the number of instances of class
c in the dataset subset Da.
In the numeric case the parameters of the distribution N (Θa) are the mean and
standard deviation, i.e., Θa = {µ, σ}. They can be directly estimated from the target
data Y a:

µ̂a =
1

ni

∑
y∈Y a

y, (2.10)

σ̂2
a =

1

ni

∑
y∈Y a

(y − µ̂a)2, (2.11)

where σ̂2
a is the biased estimator such that the estimate times na equals the Residual

Sum of Squares, i.e., naσ̂2
a =

∑
y∈Y a(y − µ̂a)2 = RSSa.

2.4 Rule lists, predictive rule lists, and subgroup lists

Sequentially aggregating rules for prediction and subgroup discovery seamlessly leads
to predictive rule lists and subgroup lists, respectively. They have the same structural
format and share the same model class, dubbed rule list model class, which takes the
format of Figure 2.3, with the only difference being how the parameters of the last
rule, also known as default rule, are chosen.

The rule list is an ordered set of rules, and it contains two parts: 1) the part of the rule
list that contains the ω ordered rule descriptions {a1, · · · , aω}, which is denoted by R
for predictive rule lists and S for subgroup lists; and 2) the default rule rd. Together,
both parts form the whole model M . In a rule list, only one rule is activated for each
instance, hence each rule only activates in a unique part (subset) of the dataset. If
no rule gets activated, that instance will activate the default rule. As an example, to
characterize an instance x with a rule list, one starts by checking the first rule and
verify if a1 v x is true or false. In case it is true, x belongs to that rule. In case it is
false, we proceed to check the second rule and so forth, until finding one that returns
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1: IF a1 v x THEN y1 ∼ Dist(Θ̂1
1) · · · yt ∼ Dist(Θ̂1

t )
...

ω: ELSE IF aω v x THEN y1 ∼ Dist(Θ̂ω
1 ) · · · yt ∼ Dist(Θ̂ω

t )

default: ELSE y1 ∼ Dist(Θ̂d
1) · · · yt ∼ Dist(Θ̂d

t )

Figure 2.3: Generic rule list model M with ω rules and t (number of target variables)
distributions per rule.

true. In case no rule is true, that instance activates the default rule.

Cover of a rule in a rule list. We observe that for any given rule list of the form of
Figure 2.3, any individual instance (xi,yi) can only be ‘covered’ by one rule. That is, the
cover of ai, denoted Da, depends on the order of the list and is given by the instances
where its description occurs minus those instances covered by previous descriptions:

Di = {Xi,Yi} = {(x,y) ∈ D | ai v x ∧

 ∧
∀i′<i

ai′ 6v x

}. (2.12)

Next, let ni = |Di| be the number of instances covered by the ith description (also
known as usage). In case an instance (xi,yi) is not covered by any rule then it is
‘covered’ by the default rule. The instances covered by the default rule Dd are the ones
not covered by any rule (hence the name default rule), formally defined as:

Dd = {Xd,Yd} = {(x,y) ∈ D | ∀ai∈Mai 6v x}. (2.13)

Maximum Likelihood estimator. Given the partition property of the rule lists, it is
straightforward to see that the ML estimators of Eq. (2.9), (2.10), and (2.11) still
hold if Da is replaced by Di.
What predictive rule lists and subgroup lists have in common is that they are
interpreted in order and that each predictive rule or subgroup distribution parameter,
with the exception of the default rule, is estimated in their respective subsets Di.
The difference between predictive rule lists and subgroup lists is how the default
rule distributions parameter are estimated! In the case of a predictive rule list, the
default rule is just an ordinary rule that characterizes its subset, thus its parameters
Θ̂d

1 · · · Θ̂d
t are estimated in that subset. In the case of a subgroup list, the default rule

is fixed to the marginal distribution of the target and it is constant for a dataset.
If the mean and standard deviation of a numeric target in a dataset are 18 and 13,
respectively, the subgroup list default rule will be fixed at those values, independently
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of the (number of) subgroups in the list. This may seem like a subtle difference, but
it represents a radical difference in what defines an optimal predictive rule list or
subgroup list.
The intuition is the following: in a predictive rule list, the goal is to predict as best as
possible an unseen data point, thus each rule should represent homogeneous subsets
of the data, and the way the default rule predicts best is if its distribution represents
well its subset of the data. In a subgroup list, the goal is to find subsets of the data
that have different distributions than the marginal distribution of the dataset, and the
default rule covers and represents well all data that follows the marginal distribution.
This, in turn, incentivizes the optimal subgroup list to have subgroups that follow
distributions different than the default rule distribution, as instances well represented
by the default will not be covered by subgroups. Structurally both models look very
similar, but by having different definitions of optimality, each model type will favor
different types of association rules.
As an example, one can look at Figures 2.4a and 2.4b. Given that the dataset has
few distinguishing variables and few samples both predictive rules and subgroups
are mostly the same, as good predictive rules are also good subgroups in this case.
Nonetheless, one can see that the default rules are different. In the predictive rule
list, the default rule is clearly predictive, while in the subgroup list it is the original
distribution of the dataset.

2.5 Classification performance measures

Classification is a global predictive paradigm, thus its measures quantify the quality
of a model over the whole dataset [36]. As classification is expected to generalize to
unseen points, the quality of a classifier should be measured in data that is different
than the one used for training and choosing the classifier. In order to achieve this and
have some statistical guarantees of the generalization, each dataset is usually divided
into different parts, using some of its parts to train and the rest to test. The most
well-known of these techniques is called k-fold cross-validation, where one randomly
divides the data into k (approximately) equal parts. Then, one uses k−1 parts to train
the model, and the 1 part left to test the performance of that trained model, repeating
the process k times, until all data was used to test. In the end, the performance over
k folds is averaged out.
Classification measures can broadly be divided into two types: 1) aggregators of clas-
sifier decisions, such as accuracy, precision, or recall; 2) measures of how a classi-
fier discriminates between classes, taking into account the confidence with which it
classifies different classes, such as Area Under the receiver operator Curve (AUC) or
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Pr(animaltype = · · · | r) in %

ρ description nρ Mammal Fish Invert. Bug Reptile Amph. Bird

1 backbone = no 18 0 0 56 44 0 0 0

2 breathes = no 14 0 93 0 0 7 0 0

3 feathers = yes 20 0 0 0 0 0 0 100

4 milk = no 8 0 0 0 0 50 50 0

default rule 41∗ 100 0 0 0 0 0 0

(a) Predictive rule list for zoo dataset. Default rule with distribution estimated from its subset.

Pr(animaltype = · · · | s) in %

s description ns Mammal Fish Invert. Bug Reptile Amph. Bird

1 backbone = no 18 0 0 56 44 0 0 0

2 breathes = no 14 0 93 0 0 7 0 0

3 feathers = yes 20 0 0 0 0 0 0 100

4 milk = no 8 0 0 0 0 50 50 0

5 feathers = no 41 100 0 0 0 0 0 0

dataset distribution 0∗ 41 13 10 8 5 4 2

(b) Subgroup list for zoo dataset. Dataset rule with distribution equal to the marginal distri-
bution of the dataset.

Figure 2.4: Illustrative example of a predictive rule list and subgroup list with the Zoo
dataset obtained with our method. Zoo contains one nominal target variable with 7

classes, 101 instances, and 15 binary and 1 numeric variables. ni refers to the num-
ber of instances covered by ith predictive rule or subgroup defined by ‘description’.
Pr(animaltype = ∗ | r) denotes the estimated probability (in %) of each class label
occurring within the subgroup. Zoo is a highly structured dataset, thus both rule list
and subgroup list found mostly the same descriptions, as in these case good subgroups
are also good predictive rules. However, it is important to check that the ‘default rules’
are indeed different and thus incite the method to find different types of rules. ∗ con-
cerns instances not covered by any of the five subgroups. For illustrative purposes the
probabilities displayed correspond to the empirical probabilities in the data, not to
the probabilities as would be obtained using the appropriate estimators.



Chapter 2. Preliminaries 25

likelihood. In this thesis, we will focus on accuracy, from the first group, as it gives
an overall idea of how the classifier takes decisions and AUC from the second group.
It should be noted that likelihood is more related to the MDL theory we use, but its
interpretation is not as easy, and so it will not be used for ranking classifiers.

The building blocks for describing the measures are the terms defined by the inter-
section of the true class label and the predicted class label. We will start with the
binary setting, when just two classes exist, the positive class, also known as the class
of interest, and the negative class. With two classes, there are four possible character-
izations of decisions based on which class it is and if it is correctly predicted by the
classifier or not:

• True Positives (TP) - Number of instances (correctly) predicted as positive that
are positive.

• True Negatives (TN) - Number of instances (correctly) predicted as negative that
are negative.

• False Positives (FP) - Number of instances (incorrectly) predicted as positive that
are negative.

• False Negatives (FN) - Number of instances (incorrectly) predicted as negative
that are positive.

In the multiclass scenario, we can define all these terms per class c, where the pos-
itive class represents the class of interest c and the negative class, either represents
all the other classes in a one-versus-all or another class in a one-versus-one setting. In
one-versus-all, the performance of each class is measured by creating two classes, pos-
itive class (class of interest), and negative class, where the negative class is all classes
except the positive one. In the second case, one-versus-one requires comparing each
class against each class. In this work, we will focus on one-versus-all as it is the most
common and simpler to understand [106]. Thus, for class c we can define True Posit-
ive of c (TPc), True Negative of c (TNc), False Positives of c (FPc), and False Negatives
of c (FNc).

Accuracy. Given the previous definitions, Accuracy can be immediately defined as the
ratio of correctly identified points to all points, formally:

Accuracy =

∑
c∈Y TPc∑

c∈Y TPc + FNc
, (2.14)

where for the binary case we have TP+TN in the numerator and TP+TN+FP+FN

in the denominator. Even though accuracy gives us an idea of how the classifier makes
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predictions on the data, it has one main problem: if the original data is imbalanced it
can give an erroneous idea of the quality of the classifier. As an example, if the target
class is binary, and the majority class is made of 90% of the points, it is straightforward
to see that an accuracy of 90% just requires us to choose all the points as the majority
class, and that is not a very interesting classifier. In order to correct this, balanced
accuracy was introduced [17].

Balanced Accuracy. Contrary to accuracy, balanced accuracy takes into account the
classification of each class separately, by giving the same importance to each class of
the positive correctly predicted ratio, True Positive Rate (TPR), or recall. Formally, it
is given by:

bAcc =
1

|Y|
∑
c∈Y

TPc
TPc + FNc

(2.15)

Area under the ROC Curve (AUC). The area under the receiver operator curve,
which is only properly defined for binary problems, is given by the two-dimensional
plot of True Positive Rate (TPR) against the False Positive Rate (FPR), as one varies
the threshold T of classification. The FPR is just FP/(FN + TP ), and the threshold
is a value above which a point is classified as belonging to the positive class, i.e., x

is classified as positive c = 1 if Pr(1 | x) > T . AUC is not restricted to probabilistic
classifiers but for ease of presentation we only consider these. Formally, the AUC is
the area under the curve of TPR and FPR as a function of the threshold, which is given
by the integral:

AUC =

∫ 1

0

TPR(T )FPR(T ) dT = Pr(xpos. > xneg.), (2.16)

where T ∈ [0, 1] as we only consider probabilistic classifiers and Pr(x1 > x0) is the
probability that a randomly selected positive class example will rank higher than a
randomly selected negative class example in terms of [33]. An easier way to interpret
the AUC is through the Wilcoxon-Mann-Whitney statistic [20], an unbiased estimator
given by:

AUC =

∑
x0∈D0

∑
x1∈D1

1[Pr(1 | x0) < Pr(1 | x1)]

|D0| · |D1|
, (2.17)

where D0 and D1 are the negative and positive labeled examples in D, respectively,
and 1 is the indicator function that is 1 if Pr(1 | x0) < Pr(1 | x1) and zero other-
wise. Contrary to accuracy, and similarly to balanced accuracy, AUC gives the same
importance to both classes. Nonetheless, in its current format, AUC is not suited for
multiclass.
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Multiclass AUC. To extend binary AUC to multiclass two things have to be taken
into account: how to compare different classes, and how to average performance per
class. To compare different classes, the two most common approaches are one-versus-
all and one-versus-one. As mentioned before, in this work, we will focus on one-versus-
all. Regarding how to average the performance per class, three methods exist: micro
average; macro average; and weighted average. Micro average takes into account each
example, and in the case of one-versus-all transforms the dataset into a binary prob-
lem, where 1 is the positive class of interest, and 0 otherwise, and computes the AUC
for the whole data. Macro average computes one AUC per class by, for each class,
transforming the dataset into a positive class versus negative class (all other classes),
and then computing the average of all AUCs. Weighted average computes one AUC per
class like the macro average, but then averages all AUCs weighted with the percent-
age of class examples in the data. For macro and weighted AUC (easier to present),
the formulas are:

AUCmacro =
1

|Y|
∑
c∈Y

AUC(c), (2.18)

and

AUCweighted =
∑
c∈Y

AUC(c)
|Dc|
|D|

, (2.19)

where AUC(c) is the one-versus-all AUC for class label c and |D
c|
|D| is the frequency of

that same class label.

2.6 Subgroup discovery measures

As shown before, subgroup discovery can broadly be divided into two categories: its
classic form, also known as top-k mining; and Subgroup Set Discovery (SSD). In the
first, only the individual quality of a subgroup is measured, hence quality is quantified
independently and locally for each subgroup. In the second, SSD takes into account
the local quality of individual subgroups while also taking into a account how well
they cover the whole dataset.
Contrary to classification and prediction in general, the goal of subgroup discovery is
to describe the dataset well and not to measure the prediction quality on unseen data
points. Thus, the quality of the subgroups or subgroup sets is traditionally measured in
the dataset where the model is trained. We will first introduce the quality measures for
top-k subgroup discovery, and then in Section 2.7 proceed to generalize for subgroup
sets.
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2.6.1 Top-k quality measures

Top-k stands for finding the k subgroups that maximize a certain quality measure
[8]. To assess the quality (or interestingness) of a subgroup description a, a measure
that scores subsets Da needs to be chosen. The measures used vary depending on
the target and task, but in general they have two components: 1) representativeness
of the subgroup in the data, based on coverage na = |Da|; and 2) a function of
the difference between statistics of the empirical target distribution of the pattern,
Θ̂a = Θ̂(Ya), and the overall empirical target distribution of the dataset, Θ̂d = Θ̂(Y).
The latter corresponds to the statistics estimated over the whole data, e.g., in the case
of the Automobile import subgroup list of Figure 3.3 it is Θ̂d = {µ̂ = 13; σ̂ = 8} and it
is estimated over all 197 instances of the dataset.
The general form of a quality measure to be maximized is

q(a) = (na)αf(Θ̂a, Θ̂d), α ∈ [0, 1], (2.20)

where α allows to control the trade-off between coverage and the difference of the
distributions, and f(Θ̂a, Θ̂d) is a function that measures how different the subgroup
and dataset distributions are. As an example, the most commonly adopted quality
measure for single-numeric targets is Weighted Relative Accuracy (WRAcc)[70], with
α = 1 and f(Θ̂a, Θ̂d) = µ̂a − µ̂d (the difference between subgroup and dataset aver-
ages).

2.6.2 Weighted Kullback-Leibler divergence

Another commonly adopted measure is the Weighted-Kullback Leibler divergence
(WKL) [74]. This is also the measure that we consider throughout this dissertation
because of its: 1) flexibility in terms of (number and types of) supported target vari-
ables; and 2) relationship to the MDL principle (see Chapter 3).
WKL is defined as the Kullback-Leibler (KL) divergence [66] between a subgroup’s
and dataset target distribution KL(Θ̂a; Θ̂d) linearly weighted by its coverage. Revis-
iting Eq. (2.20) this corresponds to f(.) = KL(.) and α = 1. The definition of WKL
for a univariate target variable Y is given by:

WKL(Θ̂a; Θ̂d) = naKL(Θ̂a; Θ̂d), (2.21)

where KL(Θ̂a; Θ̂d) is the Kullback-Leibler divergence between subgroup and dataset
for target Y . The KL divergence in Eq. (2.21) depends on the probabilistic model
chosen to describe the target variables. In its general form the KL divergence can be
defined as

KL(Θ̂a
j ; Θ̂d

j ) =
∑
y∈Y a

Pr(y | Θ̂a
j ) log

Pr(y | Θ̂a
j )

Pr(y | Θ̂d
j )

 , (2.22)
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where the logarithm is to the base two (like all logarithms used in this thesis). Thus
the choice of the distribution used to describe the target is of great importance and
should reflect what the user deems interesting. Now, depending of the type of target
we will see show how to computeWKL(Θ̂a; Θ̂d). It is easy to see that for multivariate
targets we either use a multivariate distribution, e.g., a multivariate normal distribu-
tion, or assume that they are independent target variables, where the total WKL turns
out to be just the sum the WKL for each target variable.

We will now provide the definitions of WKL for univariate categorical and normal
distributions.

Weighted Kullback-Leibler for categorical distributions. In the case of a univariate
nominal target Y , the distribution can be uniquely described by a categorical distribu-
tion with the probability of each category Θ̂a = {p̂1|a, ..., p̂k|a}, so that theKL(Θ̂a; Θ̂d)

of Eq. (2.21) takes the form of

KLCat(Θ̂
a; Θ̂d) =

∑
c∈Y

p̂c|a log

(
p̂c|a

p̂c

)
, (2.23)

where p̂c|a = Pr(c | a) is the maximum likelihood estimate of the conditional probab-
ility of the target c given the subgroup a, and p̂c is the marginal probability for that
category.

Weighted Kullback-Leibler for normal distributions. In the case of a univariate
numeric target Y , many distributions could be used for modelling. We resort to the
normal distribution for its robustness and analytical properties, as mentioned before.
Nonetheless, still two possibilities remain: a location distribution Θ̂a = {µa} that
only accounts for the mean, or a ‘complete’ normal distribution Θ̂a = {µa, σa} that
accounts for the mean and the variance. With the location distribution KL(Θ̂a; Θ̂d)

equals1:

KLµ(s) =
(µ̂d − µ̂a)2

σ̂d
, (2.24)

while with the normal distribution one obtains:

KLµ,σ(s) =

[
log

σ̂d
σ̂a

+
σ̂2
a + (µ̂a − µ̂d)2

2σ̂2
d

log e− log e

2

]
. (2.25)

Note that since σ̂d is a constant for each dataset, there is a strong resemblance
between WKLµ(s) and WRAcc, where the only difference is the square of the dif-
ference of the means. Also notice that WKLµ,σ directly takes into account the vari-
ance of a subgroup and penalizes for a larger variance, while WKLµ(s) (and also

1The derivations of these formulas can be found in Appendix A.
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WRAcc) does not take into account the variance, and thus fail to give importance
to the spread of subgroup values. This is a key point as this makes a quality measure
like WKLµ,σ(s) dispersion-aware, while measures like WKLµ(s) and WRAcc are not
[12].

2.7 Subgroup set discovery measures

Subgroup set discovery [75] is the task of finding a set of high-quality, non-redundant
subgroups that together describe all substantial deviations in the target distribution.
That is, given a quality function Q for subgroup sets and the set of all possible
subgroup sets S, the task is to find that subgroup set S∗ = {s1, . . . , sk} given by
S∗ = arg maxS∈S Q(S,Y). Note that Q should not only take into account the in-
dividual quality of subgroups q(a), but also the overlap of their coverages Da and
quantify the contribution of each instance only once, as opposed to top-k mining
where only their individual qualities are taken into account, and thus there is no
global definition of the quality of a set.
Ideally, a quality measure for subgroup sets Q should: 1) be global, i.e., for a given
dataset it should be possible to compare subgroup set qualities regardless of subgroup
set size or coverage; 2) maximize the individual qualities of the subgroups; and 3)
minimize redundancy of the subgroup set, i.e., the subgroups covers should overlap as
little as possible while ensuring the previous point.
Subgroup sets quality has mostly only been defined heuristically, by iteratively finding
one subgroup at the time and after each discovery removing/weighting the instances
covered by these [71, 75].

Nonetheless, there have been attempts to formally define the quality of a subgroup
set, although, they are usually not universal, i.e., independent of the number of sub-
groups, and usually rely on some heuristic definitions. For example, in Knobbe and
Ho [64], the authors propose to first mine the top-k patterns with k very large and
then filter out a subset k′ according to some measure that takes into account overlap
and individual quality. This is an effective approach to find a non-redundant set, but
by using top-k in the first step and fixing k′, they are first, biasing the search to a
certain region of the data that is highly redundant, and second, defining optimality
dependent on k′. In van Leeuwen and Ukkonen [76], the authors avoid defining one
measure, by treating the problem of finding a diverse set as a multi-objective, and
thus using two measures instead of one, one for quality and another for diversity of
subgroup set of size k. In the case of Belfodil et al. [10], the authors define a sub-
group set as a disjunction of subgroups and based on that, propose a global measure
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for this type of set. However, this subgroup set definition does not match with pre-
vious works, as a disjunction of subgroups is just a subgroup that uses both logical
conjunctions and disjunctions to form a description. Thus, each set describes only the
global behaviour of this definition of subgroup.

Based on this limitation, in Section 3.6 we propose a new subgroup set measure called
the Sum of Weighted Kullback-Leibler (SWKL) divergences that is straightforward to
compute for a subgroup list. To extend it to subgroup sets, however, it would re-
quire defining the overlap of subgroups distributions in a probabilistic format, such
as through a mixture model.




