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aos meus pais



“You look at where you’re going and where you are and it never makes sense,
but then you look back at where you’ve been and a pattern seems to emerge.

And if you project forward from that pattern, then sometimes you can come up with
something.”

Robert M. Pirsig in Zen and the Art of Motorcycle Maintenance
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1
Introduction

Rules are an essential part of what makes us humans. They are prime methods of
information storage and sharing, employed every day to assimilate complex ideas
into more manageable chunks of information. Their use can be found everywhere,
from the mental note “if I do not put the alarm, then I will not wake up” to the
intricate system of clinical diagnosis rules employed by physicians. A simple example
is a clinical rule for diagnosing the flu, given by “if a person has either a fever or sore
throat (between others), then she has the flu.”.
A rule does not need to be always correct, but in most cases, it should; otherwise,
it would not contain the essential information about the problem. Nonetheless, their
most compelling property is that they are easy to understand, i.e., interpretable. Thus,
it should not come as a surprise that researchers have long used them to describe the
world, be it in machine learning or data mining.

While machine learning is concerned with finding a representation from data that
can predict current and future events, data mining is concerned with extracting in-
teresting information from data. Even though both tasks are intertwined and rule
utilization is extensive in both fields, they stem from different intentions; hence, they
arrive at different outcomes. In machine learning, the combination of several rules
forms a model that makes predictions about future events. In data mining, sets of
rules describe patterns in data that are worth seeing.
In the wake of deep learning successes, one can question if rule-based models still
have a place; after all, deep learning models seem to make better predictions. Never-
theless, the complex nature of deep learning from which its success stems is also its
main limitation as its models are inscrutable and not accountable. For this reason, it
is imperative to find algorithms that can learn high-quality rule-based models from
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data that are competitive in prediction while at the same time interpretable.

Even though research on rule-based models started more than half a century ago,
many questions remain to be answered, such as: What is an optimal set of rules?
What is the relationship between rules in data mining and machine learning? Can we
guarantee that the models are statistically robust before seeing future data?
To answer such questions, we apply the Minimum Description Length (MDL) principle
to rule-based models, which objectively quantifies the quality of models and guaran-
tees statistical robustness. Based on information theory, the principle states that the
best model is the simplest that describes the data well. This idea is a formal restate-
ment of Occam’s Razor, the law of parsimony that directly relates to the notion that a
good rule, but now a set of rules, should only describe what matters most in the data
for a particular task.

More specifically, we focus on ordered rule sets, i.e., rule lists. These are the first rule-
based model invented, and—compared to their unordered counterparts—they have
appealing mathematical properties that allow for a suitable formulation according to
the MDL principle. This dissertation establishes a better understanding of rules and
rule lists in machine learning and data mining. To distinguish between both, rule lists
are called predictive rule lists in machine learning and subgroup lists in data mining.
Our focus in machine learning is on supervised learning and in data mining on sub-
group discovery. For the less acquainted with the last topic, subgroup discovery is the
task of finding descriptions of data subsets—rules in tabular data—that deviate from
“normal behaviour” for a target variable. In both cases, the MDL principle formalizes
their optimality for a given dataset.

Motivation. The research conducted in this dissertation was in part motivated by the
real-world problem of flight delays, and in specific by the SAPPAO (a Systems AP-
proach towards data mining and Prediction in Airlines Operations) project. Its object-
ive was to integrate flight delay predictions in optimizing airplane and crew schedules
to reduce fuel and crew costs and decrease unnecessary CO2 emissions. In our part
of the project, we focused on the characterization of subgroups of flights with above-
average delays. We show an example of utilizing our theory and algorithms in publicly
available datasets in Section 5.5.
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1.1 Predictive rule lists

Interpretable machine learning has recently witnessed a strong increase in attention
[26], both within and outside the scientific community, driven by the increased use
of machine learning in industry and society. This is especially true for applications
domains where decision making is crucial and requires transparency, such as in health
care [81, 68] and societal problems [67, 126].

While it is of interest to investigate how existing ‘black-box’ machine learning models
can be made transparent [104], the trend towards interpretability also offers op-
portunities for data mining, or Knowledge Discovery from Data (KDD), as this field
traditionally has a stronger emphasis on intelligibility.

In recent years several interpretable approaches have been proposed for supervised
learning tasks, such as classification and regression. Those include approaches based
on prototype vector machines [95], generalized additive models [84], decisions sets
[69, 122], and predictive rule lists [81, 125]. Restricting our focus to classification, we
make two important observations. First, we observe that state-of-the-art algorithms
[69, 122, 81, 125, 5] are designed for binary classification; no interpretable methods
specifically aimed at multiclass classification have been proposed, despite being a
common scenario in practice. Multiclass classification is more challenging because
of 1) the increased complexity in model search, due to the uncertain consequences
of favouring one class over the others, and 2) the lack of possibilities to prune the
search such as commonly used when finding, e.g., decision lists [5] or Bayesian rule
lists [125] for binary classification. Our second observation is that although current
methods based on rules [81, 125] and decision sets [69, 122] are effective, they
tend to have 1) a fair number of hyperparameters that need to be fine-tuned and 2)
limited scalability. Especially the need for hyperparameter tuning can be problematic
in practice, as it requires significant amounts of computation power and data (i.e.,
not all data can be used for training, as a substantial part has to be reserved for
validation).

To address these shortcomings, we introduce a novel approach to finding interpretable,
probabilistic multiclass classifiers that requires very few hyperparameters and results in
compact yet accurate classifiers. In particular, we will show that our method naturally
provides a desirable trade-off between model complexity and classification perform-
ance without the need for hyperparameter tuning, which makes the application of
our approach very straightforward and the resulting models both adequate classifiers
and easy to interpret.

We use probabilistic rule lists, as both the antecedent of a rule (i.e., a pattern) and its
consequent (i.e., a probability distribution) is interpretable [81]. Using a probabilistic
model has the additional advantage that one cannot only provide a crisp prediction,
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but also make a statement about the (un)certainty of that prediction. Note that, given
a set of ordered patterns, we can trivially estimate the corresponding consequent
probability distributions from the data. The remaining question, then, is how to select
a set of patterns that together form an interpretable rule list.

Interpretable rule list discovery. Informally, the problem of finding interpretable
rule lists for prediction is: how to select a compact set of rules that together define a
predictive rule list that is accurate yet it does not overfit. Overfitting is not only im-
portant to ensure generalizability beyond the observed data, but it also aligns with
keeping the models as compact as possible: larger models are harder to interpret by a
human analyst [56] and more prone to overfit. Another layer of interpretability that
we consider is that the algorithm used to find these rule lists does not have many hy-
perparameters, and thus does not require much human intervention to obtain good
and reliable models.

Recent optimization [69] and Bayesian [125] approaches to obtain interpretable rule
lists for classification heavily rely on hyperparameters to achieve this, but those need
to be tuned by the analyst and we specifically aim to avoid this.
To accomplish this, the solution that we propose is based on the MDL principle [107,
48].

1.2 Subgroup lists

Exploratory Data Analysis (EDA) [118] aims at enhancing its practitioner’s natural
ability to recognize patterns in the data being studied. The more she explores the
more she discovers, but also the higher the risk of finding interesting results arising
out of coincidences, as, e.g., spurious relations between variables that have no con-
nection in the real world. Intuitively this corresponds to testing multiple hypothesis
without realizing it. This duality of EDA requires a thorough analysis of results and
highlights the need for statistically robust techniques that allow us to explore the
data in a responsible way. While EDA encompasses all techniques referring to data
exploration, Subgroup Discovery (SD) [63, 8] is the subfield concerned with discov-
ering interpretable descriptions of subsets of the data that stand out with respect to
a given target variable, i.e., subgroups. In this dissertation, we aim at improving the
discovery of subgroup lists, i.e., ordered sets of subsets, that describe different regions
of the data while being statistically robust at an individual level and as a whole.

Subgroup discovery (SD) can be seen as the exploratory counterpart to rule learning or
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association rule mining, where the targets/consequent of the rules are fixed, and rules
are ranked according to quality measures combining subgroup size and deviation
of the target variable(s) with respect to the overall distribution in the data. In its
traditional form, subgroup discovery is also referred to as top-k subgroup mining [8],
which entails mining the k top-ranking subgroups according to a local quality measure
and a number k selected by the user. Since its conception, subgroup discovery has
been developed for various types of data and targets, e.g., nominal, numeric [45], and
multi-label [72] targets. SD has been applied in a wide range of different domains
[52, 8], such as identifying the properties of materials [43], unusual consumption
patterns in smart grids [60], identifying the characteristics of delayed flights [98],
and understanding the influence of pace in long-distance running [23].

Even though SD appeals to several domains, top-k mining traditionally suffers from
three main issues that make it impractical for many applications: 1) poor efficiency of
exhaustive search for more relevant quality measures [12]; 2) redundancy of mined
subgroups, i.e., the fact that subsets with the highest deviation according to a cer-
tain local quality measure tend to cover the same region of the dataset with slight
variations in their description of the subset [75]; 3) lack of generalization or statist-
ical robustness of mined subgroups [77]. In this dissertation, we focus on the last
two issues together: lowering redundancy by finding small lists of subgroups that de-
scribe the differences in the data well; and obtaining statistically robust subgroups.
First, we define what an optimal subgroup list is using the MDL principle. Second,
we propose a greedy algorithm that finds good subgroup lists using a local objective
that is equivalent to maximizing Bayesian one-sample proportions, multinomial or
t-test between each subgroup’s distribution and the dataset marginal distribution, for
binary, nominal or numeric data, respectively, plus a penalty for multiple hypothesis
testing.

In recent years both issues have been partially addressed, mostly independent of each
other; we next briefly discuss recent advances and limitations.

In terms of redundancy, the first main limitation of existing works is their focus on
one type of target variables, such as binary targets [14, 10], nominal targets [71], or
numeric targets [83], where only DSSD focuses on univariate and multivariate nom-
inal and numeric targets [75]. The second main limitation is the lack of an optimality
criterion for subgroup sets or lists, where the only exception is FSSD [10]. It is im-
portant to emphasize that some works aim to find sequential subgroups or subgroup
lists, while others aim to find unordered sets or subgroup sets. Subgroup lists are akin
to predictive rule lists [96] in the sense that each subgroup needs to be interpreted
sequentially and they are not allowed to overlap, while subgroup sets are allowed
to overlap. In this chapter, we focus solely on subgroup lists, and although previous
works often did not use this term, we retroactively rename those models that are in
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fact subgroup lists.
In terms of statistical robustness, most existing approaches consider first mining the
top-k subgroups and then post-processing them in terms of a statistical test to find if
the discovered subgroups are statistically significant [30, 77].

Robust subgroup discovery. Informally the problem of robust subgroup discovery
is to define and find the globally optimal set or list (i.e., an ordered set) of non-
redundant subgroups that together explain the most relevant local deviations in the
data with respect to specified target variables. As finding the optimal set or list will
typically be practically infeasible, the secondary problem is to construct an algorithm
that efficiently mines “good” subgroup sets or lists from the data that retains as much
from the global formulation’s statistical properties as possible.

In this dissertation we restrict our focus to finding subgroup lists, because 1) they
were one of the first model classes proposed for subgroup set discovery [71]; 2) they
allow for an optimal formulation based on the MDL principle due to its property of
unambiguously partitioning the data into non-overlapping parts; and 3) finally, they
allow an ordered interpretation of the subgroups, i.e., from most to least relevant
discovered subgroup.

1.3 Research question and contributions

This dissertation attempts to answer one overarching research question:

How to learn robust and interpretable rule-based models from data for machine learning
and data mining, and define their optimality

In pursuit of valid answers to this question, this dissertation presents contributions
on five topics: 1) predictive rule lists; 2) subgroup lists; 3) MDL learning theory; and
4) the difference between predictive rules and subgroup discovery rules.

Our contributions on predictive rule lists and machine learning are the following:

1. Interpretable predictive rule lists using MDL (Chapter 3) – We define optimal
predictive rule lists for single- and multi-target classification and regression
using the MDL principle. For classification, we derive two optimal encodings:
the prequential plug-in; and the Normalized Maximum Likelihood (NML) (Sec-
tion 3.4.3). For regression we use a Bayesian encoding with non-informative
priors (Section 3.5.3).
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2. CLASSY algorithm (Chapter 4) – We propose a heuristic algorithm for finding
good predictive rule list for multiclass classification. The algorithm combines
a frequent pattern mining algorithm to mine all the candidate rules with a
greedy search to sequentially add rules to a list. Technically, CLASSY only has
one hyperparameter, the candidate rules taken as input to find the rule list. It
is empirically shown that Classy outperforms RIPPER, C5.0, CART, and Scalable
Bayesian Rule Lists (SBRL) [125] when it comes to the combination of classific-
ation performance and interpretability.

Our contributions on subgroup lists and subgroup discovery are the following:

3. Subgroup list model class (Chapter 2) – We define the subgroup list model class
over a tabular dataset in general, providing a global probabilistic formulation
for the problem of sequential subgroup mining, and in particular for univariate
and multivariate, nominal and numeric targets.

4. Robust subgroup lists using MDL (Chapter 3) – We define optimal subgroup lists
using the MDL principle, where we resort to the optimal Normalized Maximum
Likelihood (NML) encoding for nominal targets (Section 3.4) and the Bayesian
encoding with non-informative priors for numeric targets (Section 3.5). Not-
ably, we show that this problem formalization is equivalent to the standard
definition of top-1 subgroup discovery with Weighted Kullback-Leibler (WKL)
divergence as quality measure for the case of a subgroup list with one subgroup
(Section 3.4.3 for nominal targets and Section 3.5.3 for numeric targets).

5. RSD algorithm (Chapter 5) – We propose the Robust Subgroup Discoverer (RSD)
algorithm, which combines beam search to find subgroups with greedy search
to iteratively add the best found subgroup to the subgroup list (Section 5.2). We
show that the greedy objective is equivalent to a one-sample Bayes proportions,
multinomial, or t-test (for binary, nominal or numeric targets, respectively) plus
a penalty to compensate for multiple hypothesis testing (Section 3.4.4 for binary
and nominal targets, Section 3.5.4 for numeric targets, and Section 5.2.3 for the
greedy objective of RSD).

The contributions on MDL learning theory are the following:

6. Prequential plug-in code for partition models – Derivation of the prequential plug-
in asymptotically optimal encoding, a refined MDL encoding, for model classes
that partition the data for nominal target variables—subgroup lists, rule lists,
trees, etc. (presentation in Section 3.4 and full derivation in Appendix B).

7. Normalized Maximum Likelihood for partition models – Derivation of the Normal-
ized Maximum Likelihood (NML) optimal encoding, a refined MDL encoding,
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for model classes that partition the data for nominal target variables—subgroup
lists, rule lists, trees, etc. (presentation in Section 3.4 and full derivation in Ap-
pendix C).

8. Bayesian encoding of normal distributions for partition models – Derivation of
a Bayesian optimal encoding of normal distributions with non-informative pri-
ors for numeric targets (presentation in Section 3.5 and full derivation in Ap-
pendix D). It is shown that for large number of instances it converges to the BIC
(Appendix E). Similarly to the prequential and NML encodings, it can be used
by any model class that unambiguously partitions the data, such as subgroup
lists, rule lists, trees, etc.

9. Greedy MDL algorithms maximize local statistical test (Chapter 5) – We show that
the greedy gain commonly used in the MDL for pattern mining literature can
be interpreted as an MDL equivalent to a local Bayesian hypothesis test, a.k.a.
Bayesian factor, on the likelihood of the data being better fitted by the greedy
extended model versus the current model, plus a penalty for the extra model
complexity (Section 5.2.3).

Finally, our contribution on the difference between predictive rules and subgroup
discovery rules:

10. Subgroups discovery versus rule-based prediction – We demonstrate the differ-
ence between the formal objectives for subgroup discovery and predictive rule
models, such as classification rule lists, from the perspective of our MDL-based
approach (Section 3.7).

1.4 Outline of this dissertation

The structure of this dissertation is as follows. Chapter 2 presents the fundamental
problem definitions and mathematical notation necessary to understand later chapters.
It starts with a gentle introduction of association rules in rule-based classifiers, sub-
group discovery, and subgroup set discovery, posteriorly formalizing these tasks for
supervised data. Moreover, it presents the rule list model class and specializes this
generic model class to the predictive rule list in machine learning and the subgroup
list in subgroup discovery. Then, it shows how to empirically measure the quality of
classification models, subgroups, and subgroup sets.
Chapter 3 presents how to encode rules, predictive rule lists, and subgroup lists using
the MDL principle for univariate and multivariate nominal and numeric target vari-
ables. Then, it proceeds to prove the equivalence of MDL-based subgroup lists with
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one subgroup and the standard definition of subgroup discovery—top-1 mining—with
the Weighted Kullback-Leibler (WKL) divergence as a quality measure. Finally, we use
our MDL formulation of predictive rule lists and subgroup lists to find the similarities
and differences between rule-based prediction and subgroup discovery.
Chapter 4 introduces CLASSY, a heuristic algorithm based on the MDL principle to find
good predictive rule lists for multiclass classification. Then, extensive empirical com-
parisons validate our proposed MDL formulation and algorithm in terms of classific-
ation performance, interpretability, overfitting, and runtime. They show that CLASSY

is competitive in classification performance against state-of-the-art algorithms that
produce rule-based models (or trees) while usually finding simpler models.
In Chapter 5, we propose the Robust Subgroup Discoverer (RSD) algorithm finds good
subgroup lists based on our MDL formulation. It combines beam search for candidate
generation with greedy search to add one subgroup at a time. Moreover, this greedy
gain equals an MDL equivalent of Bayesian testing. Then, our MDL formulation and
RSD show that they obtain high-quality subgroup lists on 54 datasets compared to
state-of-the-art algorithms. In the end, we conduct three case studies to show how
RSD works on real-world problems.
Finally, Chapter 6 presents the main conclusions of this dissertation and possible fu-
ture work directions.

1.5 Publications

The chapters of this thesis are based on the following publications:

• H. M. Proença and M. van Leeuwen. Interpretable multiclass classification by
mdl-based rule lists. Information Sciences, 512:1372–1393, 2020

• H. M. Proença, P. Grünwald, T. Bäck, and M. van Leeuwen. Discovering out-
standing subgroup lists for numeric targets using mdl. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, pages 19–35.
Springer, 2020

• H. M. Proença, T. Bäck, and M. van Leeuwen. Robust subgroup discovery. Data
Mining and Knowledge Discovery (preprint available in arXiv:2103.13686), sub-
mitted

Other publications

• H. M. Proença, R. Klijn, T. Bäck, and M. van Leeuwen. Identifying flight delay
patterns using diverse subgroup discovery. In 2018 IEEE SSCI, pages 60–67.
IEEE, 2018





2
Preliminaries

In this chapter predictive rule lists and subgroup lists are presented. To that end, we
give a gentle introduction to association rules, what constitutes a rule-based classifier
and subgroup discovery, and how to measure the quality of a rule-based model in
classification and subgroup discovery.

This chapter is divided as follows. First, in Section 2.1 we give a high-level intro-
duction of association rules, rule-based classifiers, subgroup discovery, and subgroup
set discovery. Next, in Section 2.2 the notation for supervised structured i.i.d. data
is presented together with a formal definition of prediction, subgroup discovery, and
subgroup set discovery tasks. Then, in Section 2.3 association rules and their charac-
teristics are introduced. After that, in Section 2.4 the rule list model class is defined
in general plus the specific case of the predictive rule lists and the subgroup list.
Then, in Sections 2.5, 2.6, and 2.7 performance measures for classification, quality
measures for subgroup discovery, and quality measures for subgroup set discovery are
introduced, respectively.

2.1 Introduction to rules

The main topics of this thesis, rule-based classification and subgroup discovery, are
two paradigms arising from related fields, machine learning and data mining, re-
spectively. Both topics share the fact that they are supervised tasks on structured data
that resort to association rules to construct their models. Thus, we will now inform-
ally introduce what each of these tasks encompasses, starting from what they have in
common, and finalizing with their differences.
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Association rule. An association rule a 7→ b is an assertion of a possible relationship
between the antecedent a and consequent b, which can be read in the form of “If a
appears in the data then b usually also appears” with a certain level of confidence
[2]. A classic example from market basket analysis is that people who buy bread
and butter (antecedent), usually, also buy milk (consequent) [2]. In this case, the
association rule takes the form of: {bread = yes}&{butter = yes} 7→ milk = yes.
A probabilistic extension of these rules, deemed a probabilistic association rule [81],
associates a parametric probability distribution to the consequent, thus, instead of
having a crisp decision, it has a probability associated with each possible case:

a 7→ b ∼ Dist(Θ), (2.1)

where Θ are the parameters of the distribution Dist that describe the consequent.
In the case of the previous example, where the consequent is a binary variable, this
could take the form of: {bread = yes}&{butter = yes} 7→ milk ∼ Bernouilli(pyes =

0.60; pno = 0.40); where pyes is the probability of having bought milk, and pno =

1− pyes the probability of not having bought it. A rule is said to be active in a region
of the data D if for a data instance x ∈ D its antecedent is present, such as in our
example {bread = yes}&{butter = yes}.

Rule-based classifiers. Classification is the task of predicting an unseen outcome y
of a discrete target variable from an instance of explanatory variables x [36]. In order
to learn the relationship between the variables, a classification model is learned from
a supervised dataset D = {X, Y }, which is composed of paired examples (x, y). Note
that we only talk about rule-based classifiers and not regressors because, to the best
of our knowledge, there are no competitive rule-based models for regression.

Rule-based classifiers aggregate several rules together in order to perform classifica-
tion. Combining rules in different ways leads to different rule-based models, of which
two stand out [39]: 1) rule list or sequential activation [109, 85]—the activation of
the rules for prediction follows a pre-determined order of the form if rule 1 then
Dist(Θ1)... else if rule 2 then Dist(Θ2), finishing with a default else Dist(Θm) that
captures all the data not covered by any of the previous rules; 2) rule set or over-
lapping rules [21]—an unordered set of rules where several individual rules can be
activated at the same time, overlapping. The key difference between both models is
that rule lists are ordered and only one rule is active for one data sample x, while rule
sets are unordered and multiple rules can be active for one data sample x.
The objective of a rule-based classifier is to maximize a performance measure, thus
each association rule should contribute to that global goal, i.e., each rule should



Chapter 2. Preliminaries 13

take into account other rules to maximize the overall quality of the classifier. Look-
ing back at our example, we see that {bread = yes}&{butter = yes} 7→ milk ∼
Bernouilli(pyes = 0.60; pno = 0.40) does not seem particularly good for predic-
tion as it does not distinguish very well between both classes. On the other hand,
the rule {yoghurt = yes} 7→ milk ∼ Bernouilli(pyes = 0.90; pno = 0.10) seems
well suited for prediction. A note should be made in relation to decision lists, which
have the same format as rule lists, but instead of combining probabilistic association
rules, they are composed of decision rules, with a crisp decision as in our example
{bread = yes}&{butter = yes} 7→ milk = yes, and appeared first in the literature
[109].

Subgroup Discovery (SD). Subgroup discovery is the data mining task of finding
subgroups that stand out with respect to some given target variable(s). The definition
of standing out, also known as interestingness, is quantified by a quality measure,
which depends on the task at hand [123, 63]. In general, these measures quantify
quality by how different the target variable distribution of a subgroup is from what is
defined as ‘normal’ behavior in a dataset. In the case of structured data, a subgroup
generally takes the form of an association rule, and the ‘normal’ behavior is usually
measured by the average behavior of the target variable of that dataset [8]. Going
back to the market basket analysis example, let us consider a dataset made up of
the shopping baskets of different clients, and that has as target variable if a client
bought milk (or not). ‘Normal’ behavior can be given by the percentage of people that
buy milk over the whole dataset, and let us assume that this value is 90%. Thus, the
subgroup defined by {bread = yes}&{butter = yes} 7→ milk ∼ Bernouilli(pyes =

0.60; pno = 0.40) seems interesting, as compared with normal behavior, people that
buy bread and butter buy milk 33% times fewer times than an average client. This
is in clear contrast with rules for prediction, as subgroups that are interesting do not
have to divide well between classes: they need to stand out with respect to what is
‘normal’ behavior in the data. Sometimes, depending on the dataset and task at hand,
a good subgroup will also be a good predictive rule, but both tasks arise from differ-
ent goals and should thus not be confused. In its standard form, subgroup discovery
is called top-k mining, as the goal is to find the k top subgroups that maximize a user-
defined quality measure. As the quality measures only quantify the individual quality
of a subgroup, top-k mining is a local paradigm, as it is only concerned with the in-
dependent performance of the k subgroups on the respective data covered by each of
their descriptions. Top-k subgroup discovery usually finds subgroups that cover the
same region of the data, hence it returns redundant subgroups for many datasets. As
a solution to this, subgroup set discovery was proposed.
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Subgroup Set Discovery (SSD). The task of finding a non-redundant set of sub-
groups that are individually and collectively interesting at the same time is called
Subgroup Set Discovery (SSD) [75]. Contrary to a predictive paradigm, the objective
is that the subgroups still abide by the standard subgroup discovery principle of locally
standing out with respect to the ‘normal’ behavior, while at the same time, globally de-
scribing different regions of the dataset. To extend subgroup discovery to its set form,
two main models exist: 1) subgroup lists or ordered sets [71]—a set of subgroups that
should be interpreted sequentially and where no subgroup is allowed to overlap in
the same region of data as another, take the form of if subgroup 1 then Dist(Θ1)...
else if subgroup 2 then Dist(Θ2), etc.; and 2) subgroup sets or overlapping sets [74]—
a set of subgroups where each subgroup can be interpreted individually and over-
lap is allowed according to a definition of overlap interaction. Both extensions have
their advantages and disadvantages: while subgroup lists are less interpretable, they
have the advantage of a clear definition of the relevance of each subgroup and which
subgroup explains each data point. On the other hand, subgroup sets allow for a
(semi)independent interpretation of the subgroups, but they require an extra defin-
ition that favors non-redundant sets together with a definition of the interaction of
subgroups in the region where they overlap, e.g., as a mixture model.

Rule-based classifiers versus Subgroup Set Discovery. As was shown throughout
this section, predictive rules and subgroups share a lot of the same characteristics.
Rule-based classifiers aggregate association rules to maximize a global objective of
a good overall classification, while subgroup sets balance both a local definition of
quality with respect to the ‘normal’ behavior of the dataset and a global objective
of covering different regions of the data. It is natural that for some datasets good
subgroups will be good predictive rules and vice versa, but this is not always the case
and it should be distinguished. Throughout this work, we will be referencing them
separately to emphasize the different paradigms: 1) predictive rule will refer to an
association rule as used in rule-based models for classification in machine learning;
2) subgroup to descriptive rules in subgroup discovery; and 3) association rule or just
rule to an association rule in general, i.e., when it refers to either a predictive rule or
a subgroup. All their idiosyncrasies may not be apparent yet, but as we progress we
will continue to emphasize their similarities and differences.

2.2 Supervised data

Consider a dataset D = (X,Y) = {(x1,y1), (x2,y2), ..., (xn,yn)} of n i.i.d. instances.
Each instance (xi,yi) is composed of a vector of explanatory variable values xi and a
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vector of target variable values yi.
Each observed explanatory vector has m values x = [x1, ..., xm], one for each vari-
able X1, ..., Xm. The domain of a variable Xj , denoted Xj , can be one of two types:
nominal or numeric. Similarly, each observed target vector is composed of t values
y = [y1, ..., yt], one for each target variable Y1, ..., Yt, with associated domains Yj . The
target variables can be one of two types: nominal, or numeric. In the nominal case it
is Yj = {1, · · · , k}, with Yj the set of k classes/categories of variable Yj , and in the
numeric, the domain is Yj = R.
Note that we use subscripts on the dataset variables (D,X,Y, X, Y, x, y) to indicate
column subsets and overscripts to subset over rows. In the case of other notation, such
as number of elements n or statistics µ, σ we will not use the superscript as it can be
confused with the exponentiation of that value. Also, Xi (resp. Yi) refers to both the
properties of the ith explanatory (resp. target) variable and to all the values of this
variable for a specific column. When the dataset only contains one target variable Y

is substituted by Y .

Prediction In statistical learning, the task of prediction is to infer unseen values of
a target variable from a set of explanatory variables through the use of past evid-
ence that shows the relationship between target and explanatory variables [36].
Formally, this means that we want to find the best mapping g, from a space of
possible hypotheses G, between explanatory data X to target data Y (in the uni-
variate case and without loss of generality). This mapping can be summarized as
g : X1 × · · · × Xm → Y; and in the case of a probabilistic predictor, such as ours,
this mapping is just a conditional probability g(x) = Pr(y | x = x), and by abuse of
notation g(X) = {g(x1), · · · , g(xn)}. Assuming that we are dealing with probabilistic
mappings, we can now start making predictions ŷ for the target variable values for
each instance x, by returning the outcome with the largest probability

ŷ = arg max
y∈Y

Pr(y | x) (2.2)

The characteristics of a good mapping are: 1) capture the properties in X that allow
predicting Y ; and 2) generalize well on previously unseen dataDnew = {Xnew, Ynew}.
In order to choose the best possible mapping, we need to introduce a performance
measuremeas that empirically quantifies the quality of our mappings for a given data-
set, formally meas : Yn × Yn → R≥0. Thus the problem of finding the best mapping
g in a dataset D = {X, Y } reduces to:

g∗ = arg max
g∈G

meas(Y, g(X)), (2.3)

but then another, Dnew is required for evaluation, as this takes into account gener-
alization and avoids overfitting. Some examples of measures meas for classification
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are the accuracy or the AUC, described in Section 2.5, or the Mean Squared Error for
regression.
Several variations exist, such as using only predictions ŷ instead of g(x) or structural
measures that add an extra term to meas to penalize for the structural complexity of
the mapping [119]. E.g., in the case of nested mappings such as a polynomial regres-
sion, the use of higher-order polynomials is “more complex” than lower-order ones,
as they have extra terms. The Minimum Description Length (MDL) principle used
throughout this dissertation, is a type of probabilistic structural error minimization
principle and this mapping g is called a model M or point hypothesis in it [47].

Subgroup discovery Subgroup discovery is the data mining task of discovering un-
kown patterns in the data that stand out with respect to a target variable [116]. In
mathematical terms the objective is to find a mapping between descriptions a of the
explanatory data X and the target variable Y (for the univariate case without loss of
generality) that stand out in relation to the ‘normal’ behavior of the target variable Y .
Formally, a description is a function a : X1×· · ·×Xm 7→ {false, true}. And in our spe-
cific case, a description a is a conjunction of conditions on X, each specifying a value
or interval on a variable. The domain of possible conditions depends on the type of
a variable: numeric variables support greater and less than {≥,≤}; nominal support
equal to {=}. E.g., from Figure 2.2, where for the Car import dataset, a description
can be “weight = heavy & consumption-city ≤ 8 km/L”, where the variable weight is
conditioned to one value (norminal variable) and consumption− city is conditioned
to one interval (numeric variable). As the dataset is made of pairs (xi, yi), for each
description a there is an associated subset of data Da = {Xa, Y a} with na = Da

instances, and an associated empirical parameter distribution of the target Y a given
by Θ̂a—where the parameters depend on the distribution selected by the user. Thus,
in the case of i.i.d. data, a subgroup is an association rule s : a 7→ y ∼ Dist(Θ̂a).
To quantify how interesting a subgroup s with description a is, we need to define a
quality measure q(na, Θ̂a, Θ̂d) that is a function of the subgroup empirical distribu-
tion Θ̂a and the dataset empirical marginal distribution Θ̂d—‘normal’ behavior of the
dataset.
Formally the best subgroup, or top-1 subgroup, is given by

s∗ = arg max
s=(a,Θ̂a)∈A

q(na, Θ̂
a, Θ̂d), (2.4)

where in the case of top-k subgroup discovery, we return the k top ranking sub-
groups that maximize q. An example of a quality measure for binary targets in the
Weighted Relative Accuracy (WRAcc) or the Weighted Kullback-Leibler (WKL) diver-
gence presented in Section 2.6. Contrary to prediction, SD does not aim at performing


