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Abstract 

Cell-based medicinal products (CBMPs) are rapidly gaining importance in the treatment of 

life-threatening diseases. However, the analytical toolbox for characterization of CBMPs is 

limited. The aim of our study was to develop a method based on flow imaging microscopy 

(FIM) for the detection, quantification and characterization of subvisible particulate 

impurities in CBMPs. Image analysis was performed by using an image classification 

approach based on a convolutional neural network (CNN). Jurkat cells and Dynabeads were 

used in our study as a representation of cellular material and non-cellular particulate 

impurities, respectively. We demonstrate that FIM assisted with CNN is a powerful method 

for the detection and quantification of Dynabeads and cells with other process related 

impurities, such as cell agglomerates, cell-bead adducts and debris. By using CNN we 

achieved an over 50-fold lower misclassification rate compared to the utilization of output 

parameters from the FIM software. The limit of detection was ca. 15,000 beads/ml in the 

presence of ca. 500,000 cells/ml, making this approach suitable for the detection of these 

particulate impurities in CBMPs. In conclusion, CNN-assisted FIM is a powerful method for 

the detection and quantification of cells, Dynabeads as well as other subvisible process 

impurities potentially present in CBMPs.   
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Introduction 

Technological advancements in the past decades have profoundly revolutionized the area 

of biotherapeutics1. Cell-based medicinal products (CBMPs), an important category of 

medicinal products based on cells or tissues, are rapidly gaining significance as they can 

serve as an effective cure for patients where no other treatment option is available. 

Examples of CBMPs include stem cells, (genetically modified) T-cells and (antigen loaded) 

dendritic cells2. More than a thousand of clinical trials with CBMPs are completed or 

underway (as of January 2020, www.clinicaltrials.gov) and regulatory agencies are 

expecting an increasing number of market approvals in the coming years3. A recent 

breakthrough in this field was the approval of two genetically engineered T-cells (chimeric 

antigen receptor [CAR] T-cells) in the USA in 2017 and Europe in 2018. Despite their 

clinical success, challenges with respect to manufacturing and quality control (QC) must be 

faced in order to make CBMPs commercially viable4.  

Manufacturing of CBMPs, such as the current generation of CAR T-cells, is a much more 

complex and labor intensive process compared to the production of classical protein-based 

biologics2,5. For instance, the production of CAR T-cells involves collection of cells from the 

patient via leukapheresis, ex vivo transduction with a viral vector, encoding the CAR 

transgene, T-cell activation and expansion, formulation, fill & finish, storage and QC prior to 

intravenous infusion. Moreover, the manufacturing processes involve the addition of raw 

materials, such as media, vector, cytokines or antibody-coated magnetic beads. Some of the 

raw materials can diminish the safety of the final drug product and are considered as 

impurities. An example are monoclonal antibody-coupled magnetic beads, which must be 

removed from the process to acceptable levels and need to be measured as part of product 

QC testing6.   

 

Most CBMPs consist of a suspension of living cells with a size between typically 10-30 µm. 

Lymphocytes, including T-cells, are generally smaller in diameter and can range from 7 up 

to 18 μm in diameter7. Therefore, only large-pore filters (≥ 70 μm pore size) can be used 

during manufacture. Such filtration is not capable of removing particulate impurities within 
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the micron and submicron size range. Ineffective removal of these particulates, derived 

either from raw materials or from manufacturing processes, may potentially lead to adverse 

reactions in patients8. Micrometer sized extrinsic particles (e.g., glass particles, metal 

particles, fibers)  may result in occlusion of small capillaries of the circulatory system9. 

Moreover, proteins can adsorb to such non-proteinaceous particles, which may result in 

unwanted immunogenicity10. Furthermore, micro- and submicron-sized proteinaceous 

particles, which may originate from cells or cell culture medium, have been shown to 

increase the risk of unwanted immunogenicity11. In addition, necrotic cells and cell debris 

tend to have a smaller diameter compared to healthy cells12. Therefore, monitoring the size 

of cells and other particulate matter may aid in assessing the quality of CBMPs.  

For CBMPs, because of their particulate nature, it is very challenging to fulfil specific 

pharmacopeial testing requirements. The compedial specifications set limits for the number 

of visible and subvisible (micrometer-sized) particles (USP <790> and <788>, respectively) 

in injectable drug products13,14. The current pharmacopeial methods include visual 

inspection and light obscuration or microscopic particle count test for visible and subvisible 

particles, respectively. Visual inspection may not consistently and reliably detect visible 

particles in CBMPs, as these products may be highly opalescent and viscous because of the 

high cell concentration (e.g., 105-107 cells/ml). Furthermore, CBMPs are often supplied as a 

single-dose, low-volume (µL-ml range) sterile suspension in a (cryo)vial, which has a 

relatively thick wall making visual inspection difficult. In addition, subvisible particle analysis 

by light obscuration is very challenging because light obscuration cannot differentiate cells 

from foreign and particulate impurities. Despite the above considerations, from a quality, 

safety and potentially efficacy perspective it is prudent that subvisible particles in CBMPs 

are adequately tested15.  

Flow imaging microscopy (FIM) techniques have been widely used for the characterization 

of subvisible particles in protein-based drugs16. Using these techniques, one can derive 

concentration, size and morphological parameters of particles within the micrometer size 

range from microscopic images. Different particle populations can be discriminated based 

on particle structure and appearance17,18. Recently, FIM has been applied to study cell 

viability and confluency in cell culture as well as quality of CBMPs12,19-21. However, 
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comprehensive particle characterization reaches a limit when using the morphological 

parameters derived from the instruments´ operating software because of the complexity of 

CBMPs, which may consist of multiple particulate populations of highly heterogeneous 

morphologies. 

Deep learning for image analysis is an alternative approach, offering more insight into the 

collected data and potentially allowing for a better discrimination of particle populations. 

The increasing computing power and advancements in algorithms for pattern recognition 

have made the deep learning methods, such as convolutional neural networks (CNN), useful 

tools in many fields, including the biopharmaceutical industry22. Deep learning refers to a 

multi-layered neural network consisting of hidden layers as well as an input and output 

layer. It can be exceptionally effective in extracting intricate structures in raw (pre-

processed) data and recognition of representative features that allow categorization of 

images with minimum error23. For example, protein aggregates formed upon different 

stress methods were imaged by using FIM and successfully discriminated with the aid of 

CNN, based on the distinct particle morphology resulting from each stress method24. In the 

area of cell biology, CNN have brought microscopy to a new level, where features such as 

the type of intracellular structures or the cell cycle and type of cells, previously requiring 

immunohistochemistry, can now be recognized without fluorescent labeling25.  

In our study, we utilized a flow imaging microscope, FlowCam, to collect images of subvisible 

particulate matter in T-cell samples and developed an automated image classification 

method based on CNN for the analysis of the raw images (further referred to as FlowCam-

CNN). As a model system, we used suspensions of Jurkat cells (8-16 µm in diameter) and 

CD3/CD28 Dynabeads (4.5 µm in diameter); the latter are commonly used for T-cell 

activation and purification. We show that the developed FlowCam-CNN method enables the 

detection, quantification and characterization of process-related particulate impurities 

(e.g., Dynabeads, cell-bead adducts) as well as product-related particulates (e.g., cells, cell 

agglomerates and debris).  
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Materials and Methods 

Materials  

T-cell leukemia cells (Jurkat, Clone E6-1, ATCC® TIB152™) were provided by Leiden 

University Medical Centre (LUMC) as frozen 1-ml aliquots at a total cell concentration of 

107 cells/ml, and were stored at -140 oC in the freezer prior to usage. The Jurkat cells were 

formulated in high-glucose RPMI 1640 (RPMI medium; ThermoFisher, Waltham, USA) 

supplemented with 10% fetal bovine serum (Life Technologies, USA) and 10% dimethyl 

sulfoxide (DMSO) (Life Technologies, USA). Dynabeads Human T-Activator CD3/CD28 for T 

Cell Expansion and Activation and low-protein binding collection tubes were purchased 

from ThermoFisher (Waltham, USA). Sterile 5-ml Eppendorf tubes were purchased from 

VWR (Ismaning, Germany).  

Sample preparation 

Jurkat cells used in this study as model T- cells were thawed and freshly prepared in RPMI 

medium prior to analysis. Frozen cell aliquots were thawed at 36oC and resuspended in ca. 

40 ml of RPMI medium. To remove residual fetal bovine serum and DMSO, the cell 

suspension was centrifuged at 300 rcf for 10 minutes at 20oC. The supernatant was 

removed and the pellet was resuspended in 10 ml of RPMI medium, unless otherwise 

stated. The mean concentration of (live and dead) cells was 477,188 ± 85,914 per ml with 

a mean viability of 81% ± 9% (n=8) as determined by hemocytometry (described below), 

unless otherwise stated. Cell containing samples were measured up to 4 hours post 

thawing, a time window during which the cell viability was not affected (data not shown).  

Dynabeads were diluted to an intermediate stock concentration of 106 beads/ml (based 

on the dilution factor of the nominal Dynabead concentration) in RPMI medium and 

stored at 2-8 oC for up to 1 month. The required volume of the intermediate stock was 

added to cell samples to reach the desired Dynabead concentrations. Reference 

concentration of Dynabeads stated in the results section is the expected concentration of 

Dynabeads in the sample derived from dilution calculations and the original bead 

concentration stated by the manufacturer. It must be noted that the manufacturer does 
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not use FlowCam for quantification of Dynabeads; therefore, a systematic deviation 

between reference concentrations and measured concentrations should be anticipated. 

Hemocytometry 

Cell viability and total cell concentration were determined by using a Bright-Line 

hemocytometer glass (Merck, Darmstadt, Germany) and an Axiostar Plus microscope 

(Zeiss, Jena, Germany) with 10x magnification (Zeiss, Jena, Germany). The washed cell 

suspension was diluted 2-fold with a sterile-filtered 0.4% trypan blue solution (Merck, 

Darmstadt, Germany). Next, 10 µl of the mixture was placed in the hemocytometer and at 

least 100 cells were counted (both viable – not stained, and non-viable – stained cells), 

following the manufacturer´s recommendations.  

Flow imaging microscopy (FIM) 

For characterization of micron-sized particles, a FlowCam 8100 (Fluid Imaging 

Technologies, Scarborough, USA) equipped with an 80-µm flow cell and a 10x objective 

was used. The instrument was operated by using a VisualSpreadsheet software (v4.10.8). 

Analysis was performed by using a flowrate of 0.18 ml/min and the detection thresholds 

were set to 17 for dark pixels and 15 for light pixels. Images were taken with a high-

resolution CMOS camera (1920x1200 pixels) at 27 frames per second. In total, a sample 

volume of 0.5 ml was analyzed with an efficiency of approximately 70% (i.e., the measured 

sample volume was ca. 0.35 ml). Cleaning steps between sample measurements involved 

thorough flushing of the flow cell with 2% Hellmanex III and highly purified water. 

Diameters are reported as equivalent spherical diameter (ESD) and filters were not 

applied for imaging pre-processing. Samples were measured in triplicate or sextuplicate, 

unless otherwise stated.  

Samples measured within this study contained particles of five distinct populations, which 

are: “single cells”, “doublet cells”, “Dynabeads”, “adducts” (defined as a combination of at 

least one bead with at least one cell) and “debris” (any other cellular and non-cellular 

types of particles). For reporting the total determined concentration of cells, we summed 

the counts of single cells, adducts and 2x doublet cells. The determined concentration of 
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Dynabeads in measured samples was derived from the summed counts of Dynabeads and 

adducts.  

Generation of particle images for population discrimination 

Establishment of threshold values and training of the CNN was performed on manually 

selected images (4,000-4,500) of each population class, which was shown to be sufficient 

for training our model to a reach high classification accuracy (>0.99). In order to facilitate 

the selection process for debris and adducts, samples with elevated numbers of the 

respective particles were generated prior to FlowCam analysis. Samples enriched in 

particles representing debris were obtained by submitting freshly resuspended 

(cryoprotectant free) cell suspensions to two freeze-thaw cycles (-140 oC – 36 oC). Samples 

with high numbers of adducts were generated by incubation of cells (ca. 500,000 cells/ml) 

in presence of Dynabeads in a number ratio of 1:1 for 1.5 hours at 37 oC and 5% CO2. 

Development of morphological filters for FlowCam 

The VisualSpreadsheet software of the FlowCam system outputs 30 morphological 

parameters for each detected particle within the measured sample. Five of these available 

parameters, i.e., intensity, sigma intensity, convexity, compactness and aspect ratio, were 

found to have the highest resolving power for particle populations. Values of particle 

properties for each population class were further clustered into 1-µm sized bins and are 

presented in box plots (Figure 1). For the development of threshold values used to assign 

each particle to its class, a similar approach as previously reported for the discrimination 

of silicone oil and protein aggregate particles was used17. Briefly, a step-wise approach 

was followed, as described below. 

Firstly, Dynabeads and adducts were separated from cells (singlets and doublets) and 

debris, based on mean particle intensity values. For each size bin of 1 µm, average values 

of the 10th quartile of “low transparent” particles (Dynabeads and adducts) and of the 90th 

quartile of “highly transparent” particles (cells and debris) were calculated as a function of 

size. For size regions where only one population was present, the cutoff threshold was 

adjusted manually below or above of the 95th quartile parameter value. Furthermore, a 4-
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degree polynomial function was fitted to these points from 3 to 35 µm and tested 

particles of a certain diameter falling above or below the threshold value set were 

assigned to either group. Secondly, threshold values for compactness, convexity and sigma 

intensity were derived in a similar manner, which allowed for separation of adducts from 

Dynabeads and cells from debris. For separation of single cells and doublet cells, the 

aspect ratio parameter was applied. Therefore, each tested particle must have fulfilled at 

least three criteria to be assigned to a specific population class. All particles with a 

diameter below 3 µm were assigned to the debris population. 

 

Figure 1: Clustered morphological parameters utilized to discriminate the five particle populations (see text) by 

using the output data from the FlowCam software. Arrows with accompanying numbers show the order in which 

the separation of particle populations was carried out.  
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Deep convolutional neural networks (CNN) 

The VGG-19 architecture was used as the foundation for our CNN26. This architecture 

includes 19 convolutional (weight) layers and it can capture a large range of visual object 

features. The network weights are optimized by reformulating convolutional layers as 

learning residual functions, taking the input to layers as reference. The VGG-19 network 

used in our studies has been pre-trained on the open source ImageNet dataset found in27. 

By fine-tuning only the last two fully-connected layers, the feature complexity of the pre-

trained model can be optimized for the particle classification task. For fine-tuning the 

image dataset was split into test, validation and training sets at a 0.1, 0.1 and 0.8 ratio, 

respectively. Such division of the dataset was aimed to maintain the classes balanced and 

so the fine-tuning would not be biased towards a specific class. The deep learning model 

was fine-tuned with 30 epochs with the Adam optimization algorithm. The machine 

learning model was implemented in the Keras (2.2.4)-Tensorflow (1.13.1) Python (3.7.3) 

library and ran on a Nvidia Turing GPU with 11 GB of VRAM. A simplistic workflow for 

image analysis by using CNN is presented in Figure 2.   
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Figure 2: Illustration of the CNN work flow. Firstly, a collection of 4,000-4,500 images from each particle class is 

manually selected for training with the VGG-19 network. During training, kernels of weights in the two last layers 

of our network are updating weight parameters and extracting representative image descriptors based on the 

input data. Once training is completed, the network can be used to predict particle classes of new (not used 

during training) images. Output is given as a probability of an image assigned to the stated class. A detailed 

description of the VGG-19 network can be found in26. 

Data analysis 

Statistical analysis of data was performed in Origin 2016 (OriginLab Corporation, 

Northampton, USA). Box plots represent the distribution of data where central rectangles 

span from the first to the third quartile and whiskers range from the 5th up to the 95th 

percentile values. For comparison of mean values, a 2-sided student T-test with α= 0.05 

(95% confidence interval) was used.  

The limit of detection (LOD) and limit of quantification (LOQ) were determined by using 

values of the entire tested range for Dynabeads, where six measurement replicates were 

performed for each bead concentration. LOD and LOQ were calculated by using Eq. 1 and 

Eq. 228: 
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LOD = (3.3 * σ) / S    (Eq. 1) 

LOQ = (10 * σ) / S                    (Eq. 2) 

where σ is the standard error of the y-intercept and S is the slope of the linear regression 

line.  

Results  

Identification of particle populations in cell suspensions  

Analysis of cell suspensions supplemented with Dynabeads was performed by using 

FlowCam and representative examples of generated images of the five distinct particle 

populations are shown in Figure 3. Besides single cells, debris and Dynabeads, we 

observed a noticeable number of images with two captured cells (doublet cells) as well as 

cells with one or more adjacent Dynabeads (adducts). Particle size distributions of samples 

containing cells (without beads), Dynabeads (without cells) and a mixture of cells and 

Dynabeads are shown in Figure 3. Samples containing cells showed a broad peak between 

10 and 16 µm, representing the Jurkat cells (Figure 3 A). Furthermore, a sharp peak at the 

lower size limit of detection was observed and assigned to debris. Dynabeads showed a 

bimodal peak with maxima at 3.5 and 6.0 µm (Figure 3 B). These values represent the 

measured size of beads from in-focus (sharp) and out-of-focus (blurred) images, and are 

close to the mean bead diameter of 4.5 µm stated by the manufacturer. Particle size 

distributions of mixtures of Dynabeads and cells looked like a summation of the cells and 

the beads (Figure 3 C). Although these samples were found to contain adducts (see Figure 

3, top panel), which obviously were not present in the other samples, the number of 

adducts was relatively small and did not substantially affect the overall size distribution.  
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Figure 3: Representative images of each population class obtained by using FlowCam (top). All images were 

enlarged for presentation and actual size is not represented. Particle size distributions of samples containing (A) 

Jurkat cells (375,000 cells/ml), (B) Dynabeads (68,000 beads/ml) and (C) Jurkat cells + Dynabeads (bottom).  

Morphological parameters for particle classification 

For beads suspended in the RPMI medium, a linear relation was found between the 

measured Dynabead concentration and the expected Dynabead concentration derived 

from the dilution factor, with a linearity of r2 = 0.95 (Supplementary figure S1 A), based on 

the selected morphological parameters with the FlowCam software (cf. Figure 1). 

Measurements of beads in the presence of cells (ca. 500,000 total cells/ml by using a 

hemocytometer) resulted in a similar linear correlation (r2 = 0.98). However, unexpectedly 

high numbers of unclassified particles (i.e., particles with morphological parameters not 

falling into any of the 5 classes) were found. The coefficient of variation for measured 

concentrations of Dynabeads in presence of cells was noticeably higher as compared to 

the control samples.  Additionally, the recovery of Dynabeads in cell suspensions at the 

lowest three reference concentrations was above 100%, suggesting a number of debris 

and other particles were misclassified as Dynabeads (or adducts) when using this 
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approach. Dynabeads suspended in RPMI medium showed recovery rates from 25% 

(lowest Dynabead concentration) up to 85% (highest Dynabead concentration) (data not 

shown). Altogether, using the morphological particle parameters output from the 

FlowCam software resulted in a good correlation between detected concentrations and 

reference concentrations of Dynabeads. However, the high numbers of unclassified 

particles and the noticeable variation in determined particle concentrations illustrate the 

friability of this classification approach. 

CNN for particle classification 

Since accurate discrimination of particle populations, present in cell suspensions, was not 

satisfactory with conventional morphological filters, we applied CNN for analysis of raw 

FlowCam images. The fine-tuned FlowCam-CNN model with the pre-selected datasets (see 

methods section above and Figure 2) was used to classify on average 140,000 images per 

sample into individual particle classes.  

Detection and quantification of Dynabeads 

In contrast to the results based on the morphological particle parameters output 

described above, FlowCam-CNN analysis resulted in classification of all particles present 

cell suspensions (500,000 cell/ml counted by using a hemocytometer) with or without 

Dynabeads (Figure 4). Linearity over the entire tested Dynabead concentration range was 

> 0.95 for both sample sets and slope values were about 0.8. Samples containing cells and 

>50,000 beads/ml had recovery values above 80% and a coefficient of variation below 

15%. The relative error of the determined bead concentration was apparently random and 

showed a uniform distribution around 0 for samples with cells, except for the lowest bead 

concentrations measured (data not shown). Dynabeads suspended in cell-free RPMI 

medium at reference concentrations below 60,000 beads/ml showed lower recoveries 

compared to samples containing cells, which exceeded a recovery rate of 75% within the 

tested range. The coefficient of variation of determined Dynabead concentrations was 

>10% for samples with less than 50,000 beads/ml and below 10% for the higher tested 

bead concentrations. Therefore, the optimal Dynabead concentration for quantification of 
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beads by using FlowCam-CNN was determined to be from ca. 45,000 beads/ml to at least 

200,000 beads/ml. 

  

Figure 4. Presented data on classified Dynabeads (DB) by using CNN. (A) Determined concentration of Dynabeads 

in a concentration series of Dynabeads suspended in RPMI medium (DB ctrl, gray) and in Jurkat cell suspensions 

(DB + cells, black). (B) Recovery (left y-axis, black) and corresponding coefficient of variation (CV; right y-axis, red) 

of Dynabeads in RPMI medium (open squares) and Jurkat cell suspensions (closed squares). Error bars represent 

the standard deviation of mean values of six replicates. The coefficient of variation values (%) were calculated 

from the six replicate measurements. 

The FlowCam method assisted with automated image classification (FlowCam-CNN) was 

examined in alignment with the ICH Q2 (R1) guideline for validation of analytical 

procedures.  Accuracy, precision, LOD, LOQ and linear relationship for Dynabeads 

detection in absence and presence of cells were evaluated and the results are presented 

in Table 1.  

The LOD and LOQ were about 15,000 and 45,000 beads/ml, respectively, where slightly 

higher values were found for Dynabead suspensions in absence of cells.  
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Accuracy and precision (repeatability) were calculated for Dynabead concentrations above 

the LOQ and the values present averages of two intra-day sets of triplicate measurements. 

Accuracy was determined as the recovery of spiked in Dynabeads with respect to the 

reference concentrations (Recovery%). Accuracy was found to be substantially lower for 

beads in absence of cells at reference concentrations below 50,000 beads/ml. Above this 

concentration, the presence of cells did not have an impact on the accuracy of 

quantification. Furthermore, precision of Dynabeads concentration determination was 

evaluated as the coefficient of variation (CV%) and overall values were <10%.  

Table 4. Parameters determined by FlowCam-CNN based on mean values of two inter-day triplicate 

measurements. The LOD and LOQ were deteremined for Dynabead concentrations tested in the study and 

presented in Figure 4. Accuracy and precision were determined for Dynabead concentrations above the LOQ. Cell 

concentration was ca. 375,000 cells per ml. 

Parameter 
Dynabeads 

(in cell suspension) 

Dynabeads 

(in RPMI 1640 medium) 

Accuracy (Recovery%) 86.9 ± 5.4  80.5 ± 12.6  

Precision (CV%) 4.7 ± 0.9  8.0 ± 3.2  

LOD (beads/ml) 15,229 13,661 

LOQ (beads/ml) 46,149 41,396 

Linearity (R2) 0.988 0.959 

 

Characterization of cellular particulate matter  

In addition to developing a method for characterization of non-cellular particles, we aimed 

to quantify debris (a potential impurity) as well as cells and adducts.  

The tested concentrations of Dynabeads in Jurkat cell suspensions, presented in Figure 4, 

were studied at a constant cell concentration (385,711 ± 59,337 cells per ml as 

determined with FlowCam). The presence of Dynabeads did not have a significant impact 

on the number of quantified total number of cells (T-test, 2-sided, p > 0.17; 

Supplementary figure S2 A). Moreover, the numbers of detected particles classified as 

debris in cell samples without and with Dynabeads were highly comparable. Furthermore, 



Particulates impurities in CBMPs traced by FIM-CNN 
 

159 

as expected, the number of detected adducts increased with higher concentrations of 

beads present in cell samples (Supplementary figure S2 B and S2 C).  

Misclassifications 

The misclassification rate was calculated in an indirect manner because of the large 

number of acquired images per measurement (>100,000 per measurement). Debris 

particles were present in all measured samples (Dynabeads and cell suspensions); 

therefore, we did not consider the misclassification rate for this population. Figure 5 A 

represents the rates of erroneously detected cells (singlets, doublets and adducts) and of 

unclassified particles within Dynabead suspensions of different reference concentrations. 

Figure 5 B presents the error rates of detected Dynabeads and adducts as well as 

unclassified particles within cell only suspensions at a cell concentration of approximately 

375,000 cells/ml (as measured by FlowCam). In both cases, the misclassification rates 

were very low (< 2%) when the data was processed by using CNN. Furthermore, the error 

rate was independent of the spiked-in amount of Dynabeads, as the fraction of 

misclassified particles was similar for each of the tested concentration of beads in cell 

suspensions. Particles analyzed by using morphological parameters showed a much higher 

inaccuracy and unclassified fraction, which is reflected by the relatively high error rates 

(up to 50-fold higher compared to CNN). 
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Figure 5. Error rates of particles classified as (A) cells or adducts in Dynabead suspensions with different 

Dynabead target concentrations (x-axis) and (B) Dynabeads and adducts in cell suspensions at 375,000 cells/ml 

(as determined by using FlowCam). Error rates are based on misclassified particles by using CNN (filled bars), and 

on mis- and unclassified particles by using particle morphological parameters (empty bars). Error bars are 

standard deviations of mean values of six replicates.  

 

Figure 6 presents the probability distribution, as determined by deep learning 

classification, of particle images classified as Dynabeads. Particle images were collected 

during FlowCam measurements of Dynabeads (80,000 beads/ml) in presence and absence 

of cells. In our classification network the Softmax regression function was integrated, 

which is an activation function converting calculated weights into probability distributions 

and rejecting all cases with probabilities below 0.2. For the sample with suspended 

Dynabeads in RPMI medium, the vast majority of images classified to the bead class had a 

probability equal to 1, which confirmed that the network made the assignment with very 

high confidence. Moreover, this high confidence was not impacted by the presence of 

cellular material in the sample, as similar counts of beads with a probability of 1 were 

found in samples containing Jurkat cells. In conclusion, these data demonstrate that image 

classification by using FlowCam-CNN is highly accurate. 
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Figure 6. Probability distribution (binned in units of 0.01) of classified particle images determined by FlowCam-

CNN for Dynabead suspension (filled) and cell suspension suplemented with Dynabeads (empty) at a 

concentration of 80,000 beads per ml. Representative images are shown with their asssgned probability of 

belonging to the Dynabead class.  

Effect of cell concentration on measurement  

The impact of the Jurkat cell concentration on the quantification of Dynabeads in cell 

suspensions by FlowCam-CNN was investigated and the results are presented in Figure 7. 

Dynabeads spiked into samples with cell concentrations up to ca. 500,000 cells/ml (as 

determined by using a hemocytometer) resulted in similar measured bead concentrations 

in presence of cells. At the highest tested cell concentration (900,000 cells/ml), we 

observed an underestimation of detected beads at reference Dynabead concentrations of 

50,000 and 100,000 beads/ml. Such an underestimation was not observed for the lowest 

tested Dynabead concentration (20,000 beads/ml). Furthermore, control samples showed 

lower Dynabead recoveries compared to samples with cell suspensions. 
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Figure 7. Determined concentration of Dynabeads in RPMI medium (control; filled bars) and cell suspensions 

(empty bars). Three different cell concentrations (x- axis; determined by using hemocytometry) were tested with 

reference concentrations of Dynabeads of A) 20,000, B) 50,000 and C) 100,000 Dynabeads/ml. Error bars 

represent standard deviations of triplicate measurements of Dynabeads in cell suspensions and of nonuplet 

measurements of Dynabeads in RPMI medium.  

 

Discussion 

Characterization of cellular and non-cellular (i.e., foreign) particulate matter in CBMPs is 

important to guarantee a good quality and safe product8. Additionally, with the limited 

time available for analytical testing of some cell products, straightforward, rapid and 

comprehensive methods are urgently needed5. 

In this study we used a model system containing Jurkat cells, serving as a surrogate for T-

cells, such as CAR-T cells29, and Dynabeads CD3/CD28, serving as a representative 

potential process-related particulate impurity in CAR-T cell products30. These super-

paramagnetic beads coupled to CD3 and CD28 monoclonal antibodies are used in the 

production of CBMPs31. However, their removal prior to the final formulation step remains 

difficult32. More importantly, taking into consideration reports on the potential toxicity of 

Dynabeads30, methods showing effective and consistent removal of these impurities in the 

manufacturing process are required. Therefore, in our study, we assessed the feasibility of 

FIM for the discrimination of Dynabeads and cells, and for the assessment of the 
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Dynabead concentration. We hypothesized this should be possible, because Dynabeads 

differ in size and morphological properties from T cells. It must be noted that the full 

production protocol, where beads are present in cell medium for days/weeks, was not 

mimicked here and Dynabeads were spiked into cell suspensions shortly before analysis. 

Therefore, monitoring the stability of beads in the suspension and their interactions with 

cells over time was beyond the scope of this study.   

The FIM-based method may offer advantages for characterizing CBMPs, as it is a high-

throughput technique capable of rapid measurements of high sample numbers without 

laborious preparative steps. The two most commonly used FIM systems are FlowCam and 

Micro-Flow Imaging (MFI). Previously, it has been shown that FIM techniques have the 

potential in determination of cell concentration and viability12. For our study FlowCam was 

chosen because of its capability of recording images of high quality and its high accuracy 

and precision in particle concentration determination33. A downside of the FlowCam 

technique can be the relatively inaccurate particle sizing, resulting from a narrow depth of 

focus within the field of the imaging system. As a result, particles of a homogenous 

diameter may show a bimodal distribution34, which was also observed in the present study 

(Figure 3). Accurate sizing was not of key importance in our study. However, blurry and 

non-blurry images should both be assigned to the same particle class, implying an increase 

in complexity of the classification process.   

The verification of viability and total concentration of cells used in our study was 

performed by using a hemocytometer. As shown in previous studies12,21, cell 

concentrations determined by using FlowCam were lower compared to manual counting 

and in our case the difference was ca. 20%. Furthermore, the concentration of Dynabeads 

detected by FlowCam deviated from the reference concentrations stated by the 

manufacturer, i.e., the recovery was always below 100% especially for Dynabeads at lower 

concentrations. This, however, can be most likely ascribed to a loss of beads during 

sample preparation, as measurements with a Multisizer 4e Coulter-Counter analyzer 

(method used by the manufacturer for quantification) showed similar results (data not 

shown). Moreover, preliminary studies showed a significant impact of used lab 
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disposables (e.g., low-protein binding materials, volume-to-surface ratios) on the 

determined concentration of Dynabeads. The high affinity of the antibody coated beads to 

surfaces resulted most probably to adherence of Dynabeads to polypropylene tubes and 

tips used for sample handling. Interestingly, a more consistent and higher recovery rate 

was observed for Dynabeads in presence of cells compared to Dynabeads in cell-free RPMI 

buffer (control) over the measured concentration range. In particular, a pronounced loss 

of beads at low concentrations (< 60,000 beads/ml) was observed in our cell-free control 

samples, resulting in a recovery below 50%. Such high losses of Dynabeads were not 

observed in the cell-containing samples, in which most likely debris and other cell-related 

materials occupied free surfaces and competitively decreased bead adsorption. Because 

the bead-to-T-cell ratio is critical for T cell activation or T-cell purificiation35, bead-

preparative steps where dilutions in cell-free media are involved should be carefully 

considered to reach the desired bead concentration and assure a consistent 

manufacturing process.  

When using FIM, a capable demarcation approach is required for accurate quantification 

of specific particle populations found within highly heterogeneous samples. Output 

parameters by the instruments’ operating software can be helpful in discriminating 

particles based on morphology, but may be prone to high error rates18. The uniformity of 

Dynabead images resulted in similar values of each particle parameter and developed 

filters had close to no misclassifications and 5% of unclassified particles for Dynabead-only 

samples. However, the morphological nature of cells, cell aggregates and debris is highly 

heterogeneous and the distribution of each of these particle parameters was highly 

disperse (Figure 1). Furthermore, adducts and cells had in many cases interchangeable 

values for most particle parameters. The error rates (misclassifications and unclassified 

particles) for images containing only cells were approximately 20% with datasets used for 

developing morphological filters. Error rates for cell and Dynabead suspensions were ca. 

10% with testing datasets. The lack of a high capability in discrimination of different 

particle population groups by using morphological parameters prompted us to use an 

automated image classification method based on CNN.  
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In comparison with other machine learning techniques, deep learning is straightforward in 

usage and achieves high accuracies with minimal refinements to the network layers22. The 

high performance of neural networks is in most cases based on large data sets to train the 

networks. For successful training of an entire CNN, such as VGG-19, several million of 

labeled images per class are required. Although FIM techniques are well suited for 

applications where comparably large numbers of images can be collected within a 

relatively short period of time and with low sample consumption, cleaning and labeling a 

high-quality training dataset remains a challenge. Because the pre-trained VGG-19 was 

able to differentiate features on the ImageNet dataset very efficiently, fine-tuning of the 

last two fully-connected layers by using a relatively small number of labeled FlowCam 

images resulted in a powerful CNN for differentiation and quantification of Dynabeads. 

The misclassification rate was significantly reduced with the CNN and was only 0.2% for 

cell samples spiked with Dynabeads. FlowCam-CNN was capable of quantifying a wide 

concentration range of Dynabeads in cell suspensions, demonstrating a large dynamic 

range. Furthermore, the high precision (CV% < 5%) in determination of Dynabead 

concentration in cell suspensions above the LOQ presents this method as a robust 

approach for quantification of process-related particulates. 

The determined total cell and debris concentration was not impacted by the number of 

Dynabeads spiked into the suspension (Supplementary figure S2). As expected, the 

number of detected adducts increased with increasing concentration of Dynabeads in the 

sample because of the higher probability of beads interacting with cells. Furthermore, a 

concentration of 500,000 cells/ml showed to have no impact on the quantification of 

Dynabeads in cell suspensions. However, at the highest cell concentration tested, we 

observed a clear decrease in recovery of Dynabeads which were spiked to a target 

concentration 50,000 and 100,000 beads/ml. This loss in recovery was not observed for 

the lowest Dynabead concentration of 20,000 beads/ml. A possible explanation could be 

the approach for counting Dynabead(s) attached to a single cell. Cases in which a particle 

was classified as “adduct” were considered to consist of a single cell and a single 

Dynabead, which was true in the majority of cases. However, with increasing number of 

cells or Dynabeads, the probability of capturing a cell with two or more adhering 
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Dynabeads per image becomes higher. Therefore, the underestimation of Dynabeads 

could have been related to the inaccurate counting of beads in dense cell populations.  

Conclusions and Outlook 

In our study we developed a reliable method based on FIM coupled with CNN for 

detection, characterization and quantification of relevant particulate impurities, 

specifically Dynabeads. We showed that small amounts of Dynabeads can be detected in 

cell suspensions and a high precision in counting is achieved if the bead concentration is 

above the determined LOQ. Moreover, cells and cellular impurities, such as cell aggregates 

and adducts, can be easily classified by using CNN. Quantification of these particles can 

assist in monitoring manufacturing processes of CBMPs and assist in process and product 

characterization, such as stability testing.  

Further work is being carried out to enhance the capabilities of the method for other cell 

lines, the identification of multiple beads adhering to cells, as well as to characterize other 

populations of particulates potentially present in CBMPs, such as leachables, extractables 

and beads used as carriers for the ex vivo expansion of adherent cells.  In addition, further 

evaluation of the presented method by using orthogonal methods could endorse the 

results obtained from the currently opaque processing algorithm, such as CNN36. This 

would increase confidence and understanding of FlowCam-CNN, presumably supporting 

in-process and quality control analyses at first, and potentially becoming a critical release 

test. Currently, we are not aware of other methods with similar performance and we 

believe that CBMP development can benefit from FlowCam-CNN in its current state. 
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Supplementary materials 

 
Supplementary figure S1: Presented data on classified Dynabeads by using morphological parameters output 

from the FlowCam software.  (A) Determined concentration of Dynabeads in a concentration series of Dynabeads 

suspended in RPMI buffer (DB ctrl, gray) and in cell suspensions (DB + cells, black). (B) Recovery (left y-axis) and 

coefficient of variation (right y-axis) of Dynabeads in RPMI buffer (gray) and cell suspensions (black). Error bars 

represent the standard deviation of mean values of six replicates. Coefficients of variation (%) were calculated 

from six replicate measurements. 
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