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Biopharmaceuticals as a quickly developing and expanding class of medicines 

Biopharmaceuticals are a still emerging class of therapeutics, with insulin being the first 

recombinant human protein product approved in 19821. Their origin dates back to 1890 

when Emil Behring and Shibasaburo Kitasato demonstrated on guinea pigs the curing 

effects of sera from mammals previously exposed to sub-lethal doses of Clostridium tetani 

or diphtheria toxin2. Despite this early research on serum therapies, translation into 

successful human trials was difficult to achieve because of the inconsistencies between 

produced therapeutic sera. The breakthrough came in the mid-1890s, when Paul Ehrlich 

developed standardized methods for the production of high-quality anti-diphtheria serum 

in larger animals, which became the first international standard reference preparation3. 

Since then, the advancement in our understanding and technological progress within the 

fields of medicine and pharmaceutics has allowed for optimization of the purity of protein 

drug products and for a more detailed characterization of the active pharmaceutical 

ingredients (APIs).  

With the advent of recombinant DNA technologies and emergence of other new 

technologies, the portfolio of biopharmaceuticals has expanded rapidly during the past 

few decades. Today the class encompasses a range of therapeutic modalities, such as 

hormones, cytokines, fusion proteins, monoclonal antibodies (mAbs), antibody-drug 

conjugates, viral vectors and living cells. Currently, mAbs are the dominant class within 

biopharmaceuticals with a market value of approximately $115 billion as of 20184. 

However, the elaborate manufacturing process, high susceptibility to degradation and 

difficult analytical characterization of biopharmaceuticals result in ongoing concerns with 

respect to quality, safety and efficacy of these drug products5,6. These concerns escalate 

for advanced therapy medicinal products (ATMPs), which include gene therapy products, 

cell-based products and tissue-engineered products. The intrinsic complexity of viruses, 

cells and tissues pose even greater technical challenges in delivering safe and effective 

medicinal products7. 
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Protein-based biopharmaceuticals and their formulation aspects 

Therapeutic proteins are usually formulated in a liquid or lyophilized state, most 

commonly designed for parenteral administration8. The therapeutic efficacy of proteins is 

mostly dependent on their native three-dimensional structure. However, the inherent 

conformational instability of proteins poses a threat to their therapeutic activity9. Protein 

(partial) unfolding and decline in colloidal stability leads inevitably to aggegation10. 

Aggregation of proteins may follow different types of pathways and lead to the formation 

of a variety of aggregates, which may differ in several aspects, such as size, morphology 

and reversibility10-13. Formation of protein aggregates can occur during protein expression 

and purification, formulation and filling, storage, transportation and upon administration 

to patients14.  

In order to achieve sufficient stability of native protein structures, formulation 

development is essential during the development of these drug products. The goal of 

designing a formulation for a drug candidate is to prevent instability, achieve a sufficient 

shelf-life and make the drug product convenient for administration, e.g., formulating as a 

subcutaneous instead of an intravenous injeciton15. The conformational integrity of 

protein molecules is maintained by three main stabilizing forces: hydrophobic 

interactions, electrostatic interactions and hydrogen bonding16,17. Each of these factors 

can be weakened or strengthened by altering the formulation variables, such as pH, ionic 

strength and inclusion of specific excipients in protein formulations18,19. The substances 

used for stabilization of proteins include, among others, surfactants, buffering agents, 

amino acids, salts, polyols and sugars. Despite the availability of a large number of 

chemical compounds from each category, only a few dozens of different substances are 

usually considered during formulation development20. Four groups of excipients 

frequently used in drug products formulations are briefly described below.   

➢ To successfully control the pH of protein formulations, and other pH dependent 

physical properties of the solution (e.g., solubility, viscosity and phase 

separation21-23), buffering agents are typically used. The excellent buffering 

capacity of some amino acids (e.g., histidine) or multivalent salts (e.g., phosphate 
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salts) make them popular excipients used in mAb-based formulations. 

Optimization of solution pH according to the specific mAbs formulation increases 

the stability of the liquid drug product. The highest conformational and colloidal 

stability of protein is achieved within a narrow range of pH at which the overall 

surface charges guarantee favorable electrostatic interactions24-27. Furthermore, 

in low pH solutions proteins are more susceptible to cleavage or isomerization, 

whereas at higher pH values deamidation and oxidation rates of proteins increase 

and lead to formation of chemical degradants5,28,29.  

➢ Salts are also frequently included in formulations, e.g., to achieve tonicity, to 

increase protein stability, and/or as viscosity-reducing agent30,31. One of the types 

of interactions of salts with proteins are long-range protein-protein electrostatic 

interactions. In a solution where the pH is close to the isoelectric point (pI value) 

of a protein, the overall surface charge is close to neutral, reducing the 

electrostatic interactions between molecules. This may be favorable for reducing 

the viscosity of a protein solution, but also promotes short-range hydrophobic 

interactions leading to protein unfolding and non-native aggregation32. A charged 

protein state exhibits greater colloidal stability due to the protein-protein 

electrostatic repulsion. However, addition of salt leads to charge-screening 

effects upon which hydrophobic intermolecular interactions become 

enhanced32,33.  

➢ Nonreducing sugars, such as sucrose and trehalose, are another class of 

commonly used excipients in protein formulations. The commonality of using 

these excipients relates to their excellent stabilizing properties in liquid and 

lyophilized products. Preferential exclusion of sucrose from protein surfaces via 

hydrogen bonding increases the hydration shell of protein molecules, which in 

turn promotes a more compact native state and thereby increases their 

molecular conformational stability34,35. However, the quality of sugars must be 

also considered, as even pharmaceutical-grade sucrose may contain 

nanoparticulate impurities which have been shown to destabilize mAbs36-38.  
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➢ Surfactants are often included in protein formulations to minimize the damage 

induced by interfacial stress39-43. The most commonly used surfactants in protein 

formulations are polysorbate 20 (Tween 20) and polysorbate 80 (Tween 80), and 

to a lesser extent poloxamer 188 (Pluronic F-68). Their relatively low toxicity 

profile and excellent stabilizing properties at low concentrations contribute to 

their popularity44,45. Polysorbates (PS) are non-ionic amphiphilic molecules 

comprising a sorbitan (hydrophilic) head group linked to four polyethylene glycol 

(PEG) chains. Each of these chains is esterified with a fatty acid side chain which 

vary among different types of polysorbates46. However, the complex 

manufacturing process, challenges associated with purification, and chemical 

instability of PS result in products of a highly heterogeneous chemical mixture46. 

Surfactants are believed to have a dual stabilizing effect on protein molecules40,46. 

Competitive adsorption to hydrophobic interfaces is believed to be the prevalent 

stabilization mechanism39-41. The other stabilization mechanism is the direct 

binding of PS to protein molecules40,41,47. It has been suggested that PS acts as a 

chaperone, which can catalyze the correct folding of proteins and shield their 

hydrophobic patches47,48. Despite the excellent stabilizing properties of PS, 

numerous studies have also reported destabilizing effects of PS degradants43,49,50. 

The main degradation pathways for PS are oxidation and (enzymatic) hydrolysis51. 

The latter yields free fatty acids that can form insoluble hydrophobic particles. 

Improved characterization methods are currently being developed to achieve 

greater selectivity for impurities in PS, which would allow for better evaluation of 

their stability and batch-to-batch variability. 
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Advancing analytical tools for characterization of particles in 
biopharmaceuticals 

Monitoring the stability of protein-based therapeutics can be performed by a plethora of 

analytical techniques intended for particle characterization. The hydrodynamic diameter 

of a mAb monomer is ca. 5 – 12 nm, depending on the hydration shell52. However, protein 

instability leads to physical and chemical changes of the native monomers, resulting in 

their self-association and the formation of proteinaceous particles5. The risks associated 

with the formation of protein aggregates in therapeutic drug products is not limited to the 

loss of clinical efficacy. Unwanted immunogenicity is an additional concern, as perturbed 

protein structures have been shown to be more immunogenic compared to native protein 

monomers53-56. Nano-meter and micro-meter sized protein aggregates are also potentially 

more immunogenic than the native monomer. However, in vitro and in vivo 

immunogenicity studies have so far delivered conflicting results57-61. Nevertheless, the 

presence of aggregated interferon and human growth factor in drug products has been 

linked with adverse immunological responses in human patients62-65. In addition to 

proteinaceous particles, nonproteinaceous particles originating from excipients, primary 

packaging material, manufacturing processes and production environment can also pose 

threats to the integrity of drug products66. Silicone oil droplets deriving from the coatings 

of internal surfaces of pre-filled syringes or rubber particles shed from vial stoppers may 

increase the kinetics of protein aggregation67,68, or lead to blockage of small (micro-) blood 

vessels within the lungs69,70. 

The heterogeneity of particulate impurities in protein-based formulations prompt for their 

classification in several different ways, e.g., based on size (nano-, micro-meter or larger 

than 100 µm sized particles) or origin (extrinsic, intrinsic or inherent particles according to 

USP <1790> and extrinsic or intrinsic according to Ph. Eur.5.17.2)12,66,71. Specifications set 

by pharmacopeial monographs for parenteral biopharmaceuticals are primarily focused on 

particle sizes and provide acceptable limits of particulates sized above 10 and 25 µm 

within a specified unit of drug product72-74. The commentary from Carpenter et al. in 2009 

was one of the first to address the safety concerns arising from sub-visible (1 – 100 µm in 

size) particles in biopharmaceutical formulations, as well as the challenges associated with 
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characterization of these impurities14. One year later, Demeule et al. published a critical 

evaluation of three characterization techniques for micro-meter sized particles for 

characterization of protein aggregates: light obscuration (LO), flow imaging microscopy 

(FIM) and electric sensing zone (ESZ)75. The authors addressed several challenges 

associated with these techniques, and other research groups further explored limitations 

of these techniques with respect to protein formulations66,76-82. For example, the small 

difference between the refractive index (RI) of proteinaceous particles and (protein-

containing) formulation buffers results in underestimation of recorded particle 

concentrations when using optical-based techniques. The underestimation is augmented 

in case of formulations with high protein concentration or presence of sugars, where the 

refractive index differences between protein aggregates and the matrix are particularly 

small78. Furthermore, the evaluation of statistical significance of measured particle 

concentrations in samples with low particle load should be performed. Even when 

considering a well homogenized sample and high precision measurements, experimental 

data of particle concentrations within single digits determined by using LO comprise high 

statistical variances83. One must also note the variability of determined particle 

concentration and size between different techniques (or even between different 

instruments of the same technique84) for a single sample75,85. Such discrepancies are to be 

expected due to the different measuring principles of each technique for detection and 

characterization of particles as well as differences in the size range covered. For instance, 

LO is known for underestimation of particle concentrations compared to FIM due to 

different sensitivities of the two techniques85,86; and samples with translucent particles 

will have higher particle counts and sizes reported by ESZ compared to optical-based 

techniques81.  

Currently, the content of particles within the lower micro-meter and nano-meter size 

range present in drug products is not regulated. However, regulatory authorities 

recommend the assessment of these particles within drug products87. In comparison to 

the characterization of micro-meter sized particles, quantification and sizing of particles 

within the nanometer-size range is associated with many more challenges. Nonetheless, 

substantial advancements in the fields of microscopy, nanotechnology and microfluidics 
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have delivered promising techniques for characterization of nano-meter sized particles. 

Transmission electron microscopy, scanning electron microscopy and atomic force 

microscopy are powerful techniques for visualization and sizing of particles over a broad 

size range. However, the low throughput of these methods, their high costs and laborious 

sample preparation requirements limit their usage for formulation screening and protein 

aggregate characterization88. Light-scattering based techniques are currently the methods 

of choice for evaluating the formation of nanoparticles in protein-based formulations. 

Dynamic light scattering (DLS), static light scattering (SLS), laser diffraction (LD) and 

nanoparticle tracking analysis (NTA) are techniques which utilize the events of particle-

light interactions (i.e., Mie scattering, Rayleigh scattering, diffraction) for measurements 

of particle size and counts. DLS and NTA measure the scattered light of particles under 

Brownian motion in a low-Reynold number liquid and determine their diffusion 

coefficients89-91. The hydrodynamic diameter of particles can then be calculated from the 

Stokes-Einstein equation, assuming that the measured particles are of spherical shape and 

the viscosity, RI and temperature are known92. Orthogonal to light scattering-based 

techniques are resonant mass measurement (RMM) and resistive pulse sensing (RPS). 

RMM measures the size and concentration of particles passing near a resonating 

cantilever suspended within a microfluidic system93,94. If the density of particles is known, 

the volumetric diameter can be obtained. Instruments measuring particles by using RPS, 

operate on the basis of the Coulter principle that was originally employed in cell counters 

for sizing and quantifying cells using impedance measurements95-97. In microfluidic RPS 

(MRPS), sample material is loaded into chips with microfluidic passages and particles are 

directed through the orifice of a nanoconstriction. Each passage of particle induces a 

change in the electric current and its magnitude is directly related to the volumetric 

diameter of the particle98.  

Robust and accurate characterization of protein drug products requires development and 

qualification of the applied analytical methods99. For example, the particle 

characterization methods must be proven to reliably detect and/or quantify protein 

degradants. Thus, forced degradation studies to induce the formation of degradants in 

protein formulations are essential in the development of biotherapeutics100,101. These 
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studies mimic (exaggerated) real-life conditions to which drug products can be exposed to 

and usually involve freezing, thawing, thermal stress, mechanical stress, light exposure, 

oxidative stress or interaction with specific components present in the primary packaging. 

Evaluation of mechanical stress, such as stirring, pumping or shaking, on protein stability is 

necessary, as this type of stress is the most common one to which biopharmaceutical 

products are exposed to during processing and handling102. In solution under quiescent 

storage, monomeric proteins exist in an equilibrium between native folded and unfolded 

structures103. However, the balance can be disrupted upon exposure to interfaces, such as 

liquid-liquid, air-liquid and solid-liquid104,105. Manufacturing and transportation induce a 

plethora of interfacial stresses, which may cause perturbation of the native protein 

structure, leading to protein aggregation106,107. The main degradants formed in protein 

formulations exposed to mechanical stress have been shown to be proteinaceous 

particles100,108-110. Consequently, methods for reliable detection of particulate impurities in 

drug products are required for selection of the most optimal surfactant (concentrations) 

and evaluation of the stability of protein formulations against these stress conditions. 

The increasing number of available characterization techniques and the exponential 

growth of collected data requires improved data processing and analysis approaches to 

gain a better understanding of the outcome of performed analytics. Artificial intelligence 

and its subfield machine learning are becoming integrated in the biopharmaceutical field 

for evaluation of the large quantities of generated data111. The main objective of machine 

learning is to discover patterns and trends in collected data in order to obtain 

relationships between variables and set predictions. Depending on the needs and 

available data, machine learning models can be based on linear regression algorithms or 

utilize deep convolutional neural networks (CNNs). Logistic regression and decision tree 

models require modest processing power to perform predictions or weighed selections. In 

contrast, application of high-performance processor cores (i.e., graphics processing units 

[GPUs]) becomes necessary when parsing data with CNNs. These models consist of 

sophisticated architectures with multiple numbers of hidden layers and interconnected 

nodes for extraction of features from highly structured data. The teaching of machine 

learning algorithms can be done via two different approaches: unsupervised or supervised 
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learning. In unsupervised machine learning, principal component analysis (PCA) is 

commonly used for data clustering and segregation of different patterns112. Simplification 

of high-dimensional data by feature elimination and extraction, while retaining trends and 

patterns, allows for projection of correlations between certain variables, such as particle 

morphology, Raman spectrum and polymorphic states of a compound113. On the contrary, 

the supervised learning approach requires knowledge on the input fed into the model for 

learning. Labelled datasets must be provided to the model for training during which 

specific relationships between the input and output data are being recognized. For the 

testing of the model, new (i.e., not used during training) unlabeled data is inputted and 

the predictions (results) are made based on the previous learning process. Models based 

on artificial neural networks (ANNs) are particularly favored for the supervised learning 

approach. These networks consist of a group of interconnected nodes in which algorithms 

apply non-linear transformations to learn specific features or patterns in the received 

data114. To further improve model performance, ANNs were developed into CNNs in which 

the input and output layers are connected to multiple locally linked hidden layers111. The 

connectivity and distribution of units within each layer allows for generating simple local 

features and hierarchically combining them into complex high dimensional objects. The 

intricacy of CNNs makes them extremely useful for image classification where extraction 

of complex patterns allows for, e.g., identification of proteinaceous particles formed by 

different types of stress factors115,116. Similarly, CNNs were used for discrimination 

between types of particles, such as silicone oil droplets and protein aggregates117.  

 

Cell-based medicinal products and new challenges in formulation and analytical 
characterization 

Cell-based medicinal products (CBMPs) are therapeutics that are rapidly gaining importance 

in the treatment of chronic and life-threatening diseases, for which often no other 

treatment options are available. Several CBMPs have reached the market and a few 

thousand CBMPs are currently in clinical development118. Cell therapy products involve 

somatic cells of autologous (patient) or of allogenic (healthy donors) origin. The APIs of 

these products are (mainly) living cells which have been submitted to substantial 
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manipulation to achieve the desired therapeutic effect119. Irrespective of the class of 

therapeutics cells, manufacturing and administration of these products are associated with 

multiple processing steps that may include the addition/removal of various raw materials, 

several handling steps, cryopreservation and transportation. Cells as living units respond to 

their local environment and interact with each other120. The sensitivity of cells to external 

stimuli (stress factors) makes them uniquely fragile and susceptible to abrupt death 

(necrosis), resulting in a release of intracellular components and formation of debris 

particles. Formulation development for CBMPs may help to achieve maximal stability and 

efficacy of these therapeutics. Several of the current common additives used for 

stabilization of cells, such as dimethylsufoxide (DMSO) and human serum albumin (HSA), 

have multiple drawbacks and examining alternative excipients is required121. The 

complexity of CBMPs combined with the intricate features of living and dead cells pose 

greater challenges for analytical characterization compared to protein-based products. 

Therefore, gaining better understanding of the critical quality attributes of CBMPs, and the 

development of robust, low-volume and high-throughput analytical methods is essential in 

order to achieve safe, effective and high-quality formulations.  

 

Subvisible particle analysis of CBMPs is very challenging because of the presence of cells in 

the size range of interest. Nonetheless, particulate impurities, whether process- or cell-

derived, remain a concern and should be accurately characterized118,122. The concern is 

amplified by the fact that only large-pore filters (≥ 70 μm pore size) can be used during 

manufacturing to remove particles (if present). Process and product particle impurities and 

contaminants within the micro-meter size range, cannot be removed by filtration without 

compromising quality and potentially efficacy of the product. Consequently, control 

measures must be in place to prevent or minimize particulate contamination from sources 

like instruments, raw materials, processes, environment and people123. Verification of the 

particle load in CBMPs from a quality (e.g., to demonstrate batch-to-batch consistency and 

stability), safety and potentially efficacy perspective is prudent118. This involves micrometer-

size particle characterization not only with respect to the cell concentration and cell 

viability, but also potential particulate impurities. FIM is emerging as an attractive tool for 
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characterization of particles in cell suspensions, owing to its capability of generating high-

resolution images and processing samples with a high particle load124.  

 

Aims and outline of the thesis  

The objective of this thesis is to investigate novel analytical approaches for the 

characterization of particulates in biopharmaceutical products, in particular therapeutic 

proteins and CBMPs. Chapter 2 focuses on the comparison of the novel MRPS against the 

three other more established nanoparticle characterization techniques for 

biopharmaceutical product characterization, namely RMM, NTA and DLS. It includes an 

assessment of the applicability of each of these techniques and describes their advantages 

and limitations. Chapter 3 continues to focus on nanoparticle characterization techniques, 

specifically tunable RPS and MRPS, which require a minimum electrical conductivity of the 

samples. The colloidal stability of a mAb formulation is assessed upon spiking histidine and 

sodium chloride. Chapter 4 explores the in vitro immunogenicity of nanoparticulate 

impurities found in pharmaceutical-grade sucrose. Chapter 5 describes the 

implementation of shaking, free-fall and syringe pump stress methods for the evaluation 

of mAbs stability and particle formation. Moreover, the performance of two grades of 

polysorbate 80 is compared with respect to their stabilizing properties towards a model 

mAb upon mechanical stress. Chapter 6 and 7 describe the characterization of particulate 

impurities in CBMPs. In Chapter 6 a novel method, based on FIM and machine learning, 

was introduced to detect and quantify antibody-coated magnetic beads (Dynabeads) 

within cell suspensions. In Chapter 7 the developed FIM method was used alongside other 

cell characterization techniques for the assessment of cell stability after exposure to 

different thawing temperatures, freeze-thawing and shaking stress. Chapter 8 summarizes 

the work performed in this thesis and gives an outlook on further potential developments 

in the field of particle analysis within protein- and cell-based medicinal products.   
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