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CHAPTER 1
Introduction

1.1 Biomedical high-dimensional prediction

High-dimensional data with tens or hundreds of thousands of variables are fre-
quently part of biomedical (or other) studies nowadays. In this thesis the main
focus is on clinical prediction from omics data, i.e., (near-)complete genetic or
molecular profiles. A common aim in omics studies is prediction of binary or
continuous quantities. Examples of predicted quantitites in clinical settings are
disease status, drug efficacy, and therapy response. Often, a secondary goal is
feature selection, without the loss of predictive power. Ultimately, the estimated,
possibly sparse, predictors guide future research, or aid medical practitioners in
their decision-making.

In addition to the primary data, researchers often have so-called complementary
data on the features available (hereafter referred to as co-data, Neuenschwander
et al., 2010). Co-data refer to any information on the features that does not involve
the predicted outcome. Some examples of co-data in the omics field are: (i) p-values
on the features in the primary data from a previous study. If the previous and current
study outcomes are related, these p-values may contain relevant information on the
features; (ii) genetic annotation on the genes involved. For example, for certain
phenotypical outcomes, features on some chromosomes are more important than
others; (iii) groupings of the primary data features based on expert knowledge,
where groups known to be involved in the outcome may be more important. Tradi-
tionally, co-data are not included in statistical analyses, although relevant co-data
have the potential to enhance model performance by guiding estimation and feature
selection. However, care must be taken, as to not let co-data bias the estimation
too much, or in the wrong direction. The methods proposed in this thesis, take the
co-data into account through modelling of the prior and differential penalization
of the model parameters. To avoid bias, the influence of co-data on estimation is
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determined in a data-driven manner.

This thesis proposes three methods to construct predictors for continuous and binary
outcomes based on a high-dimensional set of features. The three proposed methods
are in agreement on estimation principles: all three are based on Bayesian models.
Furthermore, they all rely on variational Bayes approximations, and, to some extent,
empirical Bayes estimation of hyperparameters. They differ in their observational
and prior model specifications.

1.2 Prior knowledge

An advantage of Bayesian modelling is that it allows for the inclusion of prior
knowledge into the model. In Bayesian modelling, the prior knowledge is quantified
as a prior distribution πα(θ) on the parameters θ, for some hyperparameter α. Any
potentially beneficial co-data may then be modelled through the prior. The prior is
multiplied with the data likelihood p(y|θ) and normalised to obtain the posterior
distribution of interest:

pα(θ|y) =
p(y|θ)πα(θ)∫

Θ p(y|θ)pα(θ)dθ
=
p(y|θ)pα(θ)

mα(y)
=
Lα(θ, y)

mα(y)
. (1.2.1)

Uncertainty of the prior knowledge is expressed as uncertainty in the prior distribu-
tion. A (nearly) flat prior then expresses a complete lack of prior knowledge. While
attractive in theory, in high-dimensional prediction settings, a (nearly) flat prior
leads to high (or even infinite) variance of the predictor. To counteract high variance,
the prior distribution is, to some extent, concentrated around some prior expected
value of the parameter. This deviation from flatness introduces bias. Generally the
prior can be chosen such that the decrease in variance outweighs the increase in
bias.

The choice of prior is important: the prior should balance bias and variance, such
that the predictor is optimal. In practice, the choice of prior distribution family
is based on convenience, or previous experience. The hyperparameter values
that specify the distribution are either chosen on the basis of prior knowledge, or
estimated. Choosing the hyperparameters by hand requires intricate prior knowledge
of the modelled subject. Furthermore, a quantification from prior knowledge to
hyperparmeter is necessary. If prior knowledge is both available and quantifiable,
this approach is often preferable. If such prior knowledge is not available or
difficult to quantify, estimation is a reasonable alternative. This is especially true in
predictive modelling.
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In this thesis, the hyperparameter is modelled as a function of the co-data c, i.e.,
α = f(c). In the simplest case, the co-data is categorical, so the features come in
g = 1, . . . , G groups and c is a group index. Then, the functions cosidered are of
the form f(c) =

∑G
g=1 φg1{c=g} and require to set or estimate the φg. In the case

of continuous co-data, more elaborate and setting-specific modelling of the relation
α = f(c) is required. Chapter 3 contains an example of such a continuous co-data
model.

In a predictive setting, (frequentist) estimation of hyperparameters is often done
through cross-validation. In (K-fold) cross-validation, the available data is divided
into K subsets, or folds. For each fold k, the model is estimated on the remaining
K − 1 folds, excluding fold k, for a grid of hyperparameters. Then, an empirical
measure of predictive performance, or loss, `k(α) is calculated on fold k for each
value of α in the grid. Finally, the losses are averaged over the folds, and minimised

α̂ = argmin
α∈grid

K−1
K∑
k=1

`k(α),

to obtain an estimate of the hyperparameter. This estimate balances bias and
variance of the estimator to empirically maximise predictive performance.

1.3 Empirical Bayes

Although a versatile solution, cross validation requires lK model evaluations, with
l the size of the hyperparameter grid. In high dimensions, model evaluation is
computationally expensive. Furthermore, the number of model evaluations increases
exponentially with the dimension of α, thereby increasing the computational burden
even further. An alternative to cross-validation of hyperparameters is empirical
Bayes estimation. In empirical Bayes the prior is fit to the data, generally by means
of marginal likelihood maximisation. The marginal likelihood, or model evidence,
is the frequentist likelihood for the hyperparameter α. It is the denominator in
the right-hand side of (1.2.1) and computed by integration of the product of data
likelihood p(y|θ) and prior πα(θ) with respect to the random parameters:

mα(y) =

∫
Θ
p(y|θ)πα(θ)dθ. (1.3.1)

Maximisation of the (log) marginal likelihood with respect to the hyperparameter
then gives the empirical Bayes estimate:

α̂ = argmax
α

logmα(y). (1.3.2)
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Empirical Bayes is especially appealing in high dimensional models (van de Wiel
et al., 2019). Empirical Bayes involves learning the hyperparameter of the prior
distribution over the p-dimensional model parameter θ. Generally, the dimension
of hyperparameter α does not grow with model parameter dimension p, so large p
leads to more efficient estimation of α.

A common criticism of empirical Bayes, as compared to full Bayes, is the lack
of error propagation. Once estimated, the hyperparameters are assumed fixed and
known. A full Bayesian treatment expresses uncertainty in the hyperparameters
through an extra layer of hyperpriors. The extra uncertainty in the hyperparameters
then propagates through the model to increase the uncertainty in the model para-
meters of interest. In principal, the lack of hyperparameter uncertainty results in
underestimated uncertainties for the model parameters and predictions. However,
Carlin and Louis (2000) and van de Wiel et al. (2019) show that uncertainty quanti-
fication through credible intervals for empirical Bayes is competitive to full Bayes
in terms of frequentist coverage probabilities.

Fong and Holmes (2020) show that the marginal likelihood is equivalent to a cross-
validation score, averaged over all possible fold configurations. This correspondence
between empirical Bayes estimation and cross validation implies that the estimated
hyperparameter α̂ is optimised for prediction and the subsequent model parameters
and predictions are competitive to the full Bayesian posterior point estimates in
terms of predictive performance.

In contrast to the cross-validation approach, the empirical Bayes approach requires,
in principal, just one model fit. Depending on the specific problem this may be
much more computationally feasible, even for higher dimensionional α parameters.
For most models, the bottleneck in this approach is computation of the integral in
(1.3.1). Generally, it is not available in closed form, and the high dimension of θ
complicates numerical or Monte Carlo approximations. Casella (2001) proposes
and expectation-maximisation (EM) algorithm that computes (1.3.2) by iterating
the steps

α(k+1) = argmax
α

E[log πα(θ)], (1.3.3)

until convergence, where the expectation is with respect to the posterior pα(k)(θ|y).

Computation of the expectation in (1.3.3) requires access to the posterior distribution
pα(θ|y). In general (as well as in Casella, 2001) the posterior is approximated
with Markov chain Monte Carlo (MCMC) samples. In high dimensions, MCMC
becomes computationally demanding; even more so if repeated at every iteration
(1.3.3). A fast alternative to MCMC approximation is variational Bayes.
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1.4 Variational Bayes

This Section provides a concise introduction into variational Bayes. For a more
complete review of the topic we refer the reader to Blei et al. (2017). Furthermore,
Beal (2003) provides a more in-depth analysis and various examples for a wide
range of applications. Variational Bayesian methods approximate the posterior with
an alternative q(θ), that minimises the Kullback-Leibler divergence of the posterior
from the approximation, where the Kullback-Leibler divergence is

DKL(q ‖ pα) = Eq[log q(θ)]− Eq[log pα(θ|y)] (1.4.1a)

= Eq[log q(θ)]− Eq[logLα(θ, y)] + logmα(y) (1.4.1b)

= −ELBO(q) + logmα(y). (1.4.1c)

The quantity ELBO(q) is termed the evidence lower bound, as by the non-negativity
of the Kullback-Leibler divergence, we have

logmα(y) ≥ ELBO(q).

Inspection of (1.4.1) learns that minimisation of the Kullback-Leibler divergence
with respect to q is equivalent to maximisation of the ELBO(q).

In this thesis, the mean-field variant of variational Bayes is used. In mean-field
variational Bayes, the approximating posterior is assumed to factorise with respect
to some partitioning of the parameters θ = {θ1, . . . , θM}, i.e.,

pα(θ|y) ≈ q(θ) =
M∏
m=1

qm(θm).

This factorisation results in

ELBO(q) = Eq[logLα(θ, y)]− Eq[log q(θ)]

=

∫
Θ1

· · ·
∫

ΘM

M∏
m=1

qm(θm) logLα(θ, y)dθ1 · · · dθM

−
∫

Θ1

· · ·
∫

ΘM

M∏
m=1

qm(θm)
M∑
m=1

log qm(θm)dθ1 · · · dθM .

If we focus on θl, and denote Em 6=l(·) the expectation with respect to
∏
m6=l qm(θm),
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we have

ELBO(q) =

∫
Θ1

· · ·
∫

ΘM

ql(θl)
∏
m 6=l

qm(θm) logLα(θ, y)dθ1 · · · dθM

−
∫

Θ1

· · ·
∫

ΘM

ql(θl)
∏
m 6=l

qm(θm)

M∑
m=1

log qm(θm)dθ1 · · · dθM

=

∫
Θl

ql(θl)Em6=l[logLα(θ, y)]dθl −
∫

Θl

ql(θl) log ql(θl)dθl

= −DKL(q ‖ exp{Em6=l[logLα(θ, y)]}) + c,

where all terms not involving ql(θl) have been combined in constant c. By the
non-negativitiy of the Kullback-Leibler divergence, the ELBO(q) is maximised
with respect to ql(θl) at

ql(θl) ∝ exp{Em 6=l[logLα(θ, y)] ∝ exp{Em 6=l[log p̃α(θl|θ−l, y)], (1.4.2)

where θ−l denotes all parameters, excluding θl.

If the full conditionals p̃α(θl|θ−l, y) are exponential family distributions, the com-
putations simplify significantly. Exponential family full conditional densities may
be written as:

p̃α(θl|θ−l, y) ∝ h(θl) exp
[
ηl(θ−l, y)Tθl

]
, (1.4.3)

with natural parameter ηl(θ−l, y) and base function h(θl). Inserting (1.4.3) into
(1.4.2) leaves us with

ql(θl) ∝ h(θl) exp
{
Em 6=l[ηl(θ−l, y)]Tθl

}
. (1.4.4)

In other words, the mean-field variational posterior is in the same exponential family
as the full conditional distribution with natural parameter Em 6=l[ηl(θ−l, y)]. Many
common models are full conditional exponential familiy models. In fact, the models
introduced in Chapters 3 and 4 are full conditional exponential family models.

For exponential family full conditional models, the variational update (1.4.4) shows
a connection between variational inference and Gibbs sampling, where samples are
drawn iteratively from (1.4.3). It also highlights the difference with Gibbs sampling:
the variational update (1.4.4) collapses all previous iterations into one expectated
natural parameter Em 6=l[ηl(θ−l, y)]. As a result the variational posterior generally
concentrates around the posterior expectation of the true model (and the converged
Gibbs samples) and underestimates posterior variances.

The combination of empirical and variational Bayesian techniques is convenient.
Many priors (and all priors considered in this thesis) are independent over the
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parameters of interest, i.e., πα(θ) =
∏p
j=1 πα(θj). Furthermore, many priors may

be written as hierarchical mixtures of the form πα(φ|ψ)π(ψ), with θ = {φ, ψ}.
The combination of these postulates leads to:

Eq[log πα(θ)] =

p∑
j=1

Eq[log πα(φj |ψj)], (1.4.5)

where terms not involving α have been omitted. The expectation in the right-hand
side of (1.4.5) is often easy to compute under the mean-field variational Bayes
posterior. Consider, for example, the class of scale mixtures of Gaussians, with
φj |ψj ∼ N (0, αψj). Then,

Eq[log πα(θ)] = −p
2

logα− α−1

2

p∑
j=1

Eq(ψ−1
j φ2

j ) + c,

again combining terms not involving α in the constant c. Now hyperparameter
update (1.3.3) becomes

α(k+1) = p−1
p∑
j=1

E(ψ−1
j φ2

j ), (1.4.6)

where the expectation is with respect to q(θ). For many variational posteriors of
the form q(θ) = qφ(φ)qψ(ψ), the expectation in the right-hand side of (1.4.6) is
straightforward to calculate.

1.5 Observational models & outline

In this thesis three different observational models are considered: logistic regression,
multivariate linear regression, and factor regression.

Chapter 2 investigates logistic regression. Logistic regression models binary, or
sums ofm independent binary Bernoulli trials. The model then relates the outcomes
to a p-dimensional fixed, covariate vector x through the logistic mean function:

y ∼ B
(
m, expit(xTβ)

)
,

where B(m,π) denotes the Binomial distribution with number of trials m and
probability π, and expit(x) = exp(x)/[1 + exp(x)] is the logistic function. The
model parameter β determines the strength and direction of the relation between x

and y. Binary outcomes are common in biomedical high-dimensional prediction
problems. They appear in, for example, diagnostics tests, prognostic modelling,
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and therapy resonse studies. In this chapter, the co-data is categorical and included
in the model through the prior variance of an elastic net prior. Simulations and
applications to several cancer studies and one Alzheimer’s study show that the
inclusion of co-data does indeed benefit classification.

Chapter 3 considers multivariate continuous outcomes. The D outcomes are related
to the fixed covariate vector x as independent Gaussians with identity link:

yd ∼ N
(
xTβd, σ

2
d

)
, d = 1, . . . , D.

Parameters βd and σd determine the strength and direction of the relation between
yd and x. Multivariate continuous outcomes occur in biomedical high-dimensional
prediction in the form of, for example, expression quantitative trait loci (eQTL) stud-
ies, where gene expressions are explained with single-nucleotide polymorphisms
(SNPs). Another application, presented in Chapter 3, is drug sensitivity screening,
where molecular profiles are screened for sensitivity to multiple drugs simultan-
eously. Such screening programmes guide future drug research and are a first step
in the direction of personalised medicine. The co-data that are included through
a normal inverse Gaussian prior model are both categorical and continous. The
multivariate drug response prediction application presented in the chapter benefits
from the inclusion of these co-data.

The last observational models covered in Chapter 4, are two types of factor regres-
sions. In linear factor regresssion, the continuous outcome y and p-dimensional
feature vector x are both random and related to latent factors λ:

y|λ ∼ N (βTλ, σ2), (1.5.1)

x|λ ∼ Np(BTλ,Ψ),

λ ∼ Nd(0d×1, Id),

where Ψ = diag(ψj), j = 1, . . . , p. Factor loadings β, B, and variances σ2 and
ψj , j = 1, . . . , p determine the strength and direction of the marginal relationship
between y and x. The logistic factor regression extension for binary, or sums of m
disjoint binary Bernoulli trials outcomes, exchanges (1.5.1) with:

y|λ ∼ B
(
m, expit(βTλ)

)
.

These factor regression models are appropriate if the features and outcomes admit a
lower dimensional latent representation. Examples are genes that are organised in
functional networks, and a phenotype outcome that is driven by these functional
networks. The Gaussian prior model includes categorical co-data through a prior
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variance model. Two applications are considered: an influenze efficacy study and
an oral cancer classification problem. In both applications, the inclusion of co-data
improves performance of the model.

1.6 Contributions

This thesis makes several contributions: (i) it expands on the promising direction
of data-driven inclusion of prior knowledge on the features in high-dimensional
prediction problems, (ii) it illustrates several new and relevant application areas for
variational Bayesian techniques, especially in combination with empirical Bayesian
techniques, and (iii) it implements fast and easy-to-use software of the proposed
methods in the form of R packages and an R shiny web app.

Contributions (i) and (ii) are more technical and promote the future development
of methodology in the directions of this thesis, while contribution (iii) has a direct
influence on applied research. The developed software allows applied researchers
and consulting statisticians to apply the proposed methods in their research, thereby
directly influencing biomedical research, or even clinical practice.
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