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7 | Polarization-dependent beam shifts upon
metallic reflection in high-contrast imagers
and telescopes

R. G. van Holstein, C. U. Keller, F. Snik, and S. P. Bos

Context. To directly image rocky exoplanets in reflected (polarized) light, future space-
and ground-based high-contrast imagers aim to reach extreme contrasts at close separa-
tions from the star. However, the achievable contrast will be limited by reflection-induced
polarization aberrations. While polarization aberrations can be modeled with numerical
codes, these computations provide little insight into the full range of effects, their origin,
and possible ways to mitigate them.
Aims. We aim to understand polarization aberrations produced by reflection off flat metal-
lic mirrors at the fundamental level.
Methods. We use polarization ray tracing to numerically compute polarization aberra-
tions and interpret the results in terms of the polarization-dependent spatial and angular
Goos-Hänchen (GH) and Imbert-Federov (IF) shifts of the beam of light as described in
the physics literature.
Results. We find that all four beam shifts are fully reproduced by polarization ray trac-
ing. We study the origin of the shifts as well as the dependence of their size and direction
on the beam intensity profile, incident polarization state, angle of incidence, mirror ma-
terial, and wavelength. Of the four beam shifts, only the spatial GH and IF shifts are
relevant because they are visible in the focal plane and create polarization structure in the
point-spread function that reduces the performance of coronagraphs and the polarimetric
speckle suppression close to the star.
Conclusions. The beam shifts in an optical system can be mitigated by keeping the f-
numbers large and angles of incidence small. Most importantly, mirror coatings should
not be optimized for maximum reflectivity, but should be designed to have a retardance
close to 180◦. Our insights can be applied to improve the performance of SPHERE-
ZIMPOL at the VLT and future telescopes and instruments such as the Roman Space
Telescope, HabEx, LUVOIR, PSI at the TMT, and PCS (or EPICS) at the ELT.
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7.1 Introduction
To directly image rocky exoplanets in (polarized) reflected visible and near-infrared light,
future space telescopes and extremely large ground-based telescopes and instruments aim
to reach extreme planet-to-star contrast ratios at diffraction-limited angular separations
from the star. Even though the optical systems of these high-contrast imagers will mini-
mize scalar aberrations, the coronagraphic performance and achievable contrast will still
be limited by polarization aberrations (e.g., Chipman, 1989; McGuire & Chipman, 1990;
Sanchez Almeida & Martinez Pillet, 1992; McGuire & Chipman, 1994a,b; Breckinridge
et al., 2015). Polarization aberrations are minute, polarization-dependent variations of
the amplitude and phase of the electromagnetic field across a beam of light that result
in polarization structure in the point-spread function (PSF). Polarization aberrations are
predominantly caused by reflection off oblique and/or curved metallic mirrors and origi-
nate directly from the Fresnel reflection coefficients. The first-order polarization aberra-
tions, that is, the sub-wavelength, polarization-dependent shifts of the beam of light, most
negatively affect the achievable contrast. Because polarization aberrations are different
for orthogonal polarization components of unpolarized light, adaptive optics cannot fully
correct these aberrations (Breckinridge et al., 2015).

Recently, it has become clear that high-angular-resolution polarimeters are also af-
fected by polarization aberrations. The polarimetric speckle suppression of the high-
contrast imaging polarimeter SPHERE-ZIMPOL at the Very Large Telescope, which is
specifically designed to search for the reflected, polarized visible light of giant exoplanets,
is limited by reflection-induced, polarization-dependent beam shifts (Schmid et al., 2018).
Such shifts also affect interferometric polarization measurements with the SPeckle Po-
larimeter at the Sternberg Astronomical Institute 2.5-m telescope (Safonov et al., 2019).
The beam shifts become apparent for these instruments due to the unprecedented polari-
metric sensitivity and spatial resolution they achieve.

The polarization aberrations of an astronomical telescope and instrument can be nu-
merically computed with polarization ray tracing (Breckinridge et al., 2015). First, the
paths of the rays of light are traced through the optical system using geometrical op-
tics, but instead of the intensity, the electric field components of the rays are computed
upon each reflection or transmission (e.g., Waluschka, 1989; Chipman, 1989; Yun et al.,
2011a,b). Each point in the exit pupil is then associated with a Jones matrix. In this way,
the Jones pupil, which maps the changes in the electric fields between the entrance and
exit pupils of the system, is calculated (Totzeck et al., 2005). Finally, the intensity in the
focal plane (i.e., the PSF) is computed, in the Fraunhofer approximation, through spatial
Fourier transforms over the Jones pupil. Several studies have used polarization ray tracing
to model the polarization aberrations of future high-contrast imagers and telescopes, such
as the Roman Space Telescope (Krist et al., 2017), HabEx (Davis et al., 2018; Breckin-
ridge et al., 2018), LUVOIR (Sabatke et al., 2018; Will & Fienup, 2019), PICTURE-C
(Mendillo et al., 2019), and the Thirty Meter Telescope (Anche et al., 2018). However,
these numerical computations give little insight into the full range of aberrations and their
origin, or the relative importance of amplitude and phase effects.

Breckinridge et al. (2015) use polarization ray tracing to analyze a three-mirror system
consisting of a Cassegrain telescope followed by a flat fold mirror, and find two beam-
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shift effects that both originate from the oblique reflection off the flat mirror. The authors
find phase gradients (i.e., wavefront tilts) in the Jones pupil that have opposite directions
for the linearly polarized components parallel and perpendicular to the plane of incidence
of the fold mirror. In the focal plane, these gradients cause the orthogonally polarized
components of the PSF to shift in opposite directions, thereby broadening the resulting
PSF in intensity. Furthermore, the authors find PSF components that couple the light from
one orthogonal polarization into the other. These PSF components, which they call ghost
PSFs, have two peaks, one on either side of the plane of incidence.

Sub-wavelength, polarization-dependent shifts of a beam of light induced by reflec-
tion off a flat metallic mirror are also extensively described in the physics literature (for
overviews, see Aiello & Woerdman, 2008; Götte & Dennis, 2012; Bliokh & Aiello, 2013).
These shifts are referred to as the Goos-Hänchen (GH) and Imbert-Federov (IF) shifts and
occur in the directions parallel and perpendicular to the plane of incidence, respectively.
Both shifts are further divided into a spatial and an angular shift. The spatial shifts are
displacements of the entire beam of light upon reflection, and the angular shifts refer to
angular deviations of the beam upon reflection. As such, the four shifts are considered
first-order corrections to the laws of geometrical optics due to diffraction within a beam
of light of finite width; the Fresnel equations only apply to infinitely extended interfaces,
and a correct description of light reflected off an interface must therefore take into ac-
count the finite beam size. The GH and IF shifts are derived from first principles through
full diffraction calculations and are described using closed-form mathematical expres-
sions specifying the centroid of the intensity of a reflected Gaussian beam (e.g., Aiello &
Woerdman, 2007, 2008). All four shifts have been experimentally validated for metallic
reflections (Merano et al., 2007; Aiello et al., 2009; Hermosa et al., 2011). Schmid et al.
(2018) show in their analysis of the beam shifts of SPHERE-ZIMPOL that the spatial
GH shift is likely the same as the shift arising from phase gradients in the Jones pupil as
described by Breckinridge et al. (2015).

The two views of the beam shifts from polarization ray tracing and full diffraction
calculations in the physics literature raise many questions. Are the GH and IF shifts re-
produced by polarization ray tracing or are they additional effects that we need to take
into account for astronomical instruments? What is the origin of the shifts? How do
the size and direction of the shifts depend on the beam intensity profile, incident polar-
ization state, angle of incidence, mirror material, and wavelength? How do these shifts
affect the performance of high-contrast imagers and how can we mitigate them in (future)
diffraction-limited astronomical telescopes and instruments? This chapter answers these
questions. To this end, we determine the beam shifts from the polarization ray tracing of
the reflection of a beam of light with a uniform (or top-hat) intensity profile (as applies
to astronomical telescopes and instruments), and compare the resulting shifts to the spa-
tial and angular GH and IF shifts as predicted by the closed-form expressions derived for
Gaussian beams.

The outline of this chapter is as follows. In Sect. 7.2 we describe the conventions and
definitions of the mathematics used throughout the chapter. Subsequently, in Sect. 7.3, we
outline the polarization ray tracing of the reflection of a beam of light off a flat metallic
mirror and the determination of the beam shifts. In Sect. 7.4 we then explain the origin
of the spatial and angular GH and IF shifts and their relation to shifts found using polar-
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ization ray tracing. We also show the dependence of the size and direction of the shifts
on the incident polarization state and angle of incidence. In Sect. 7.5, we investigate the
polarization structure in the PSF induced by the beam shifts and the effect of the beam
shifts on polarimetric measurements. In the same section we also examine the size of
the beam shifts for various mirror materials and wavelengths, and discuss and refine the
approaches to mitigate the beam shifts. Finally, we present conclusions in Sect. 7.6.

7.2 Conventions and definitions

In this section, we outline the conventions and definitions used throughout this chapter.
In the literature, the mathematical definitions underlying the descriptions of polarization
aberrations and beam shifts are often incomplete and not consistent among different stud-
ies. This can lead to errors in the physical interpretation, for example with the handedness
of the circular polarization or the direction of the beam shifts. We therefore describe our
definitions quite extensively and have carefully checked our equations for consistency.
To enable easy comparison of our results with those from the physics literature, we use
the same definitions as Aiello & Woerdman (2007), Merano et al. (2007), Aiello & Wo-
erdman (2008), Aiello et al. (2009), and Hermosa et al. (2011). For the description of
the polarization of light, these definitions are consistent with the definitions adopted by
the International Astronomical Union (see e.g., Hamaker & Bregman, 1996). We present
the mathematics to describe light and its polarization in Sect. 7.2.1 and discuss metallic
reflection in Sect. 7.2.2.

7.2.1 Polarization of light

Consider a monochromatic, polarized light wave propagating in the positive z-direction
of a Cartesian reference frame (or basis) xyz as shown in Fig. 7.1. The transverse electric
field components of this light wave in the vertical x- and horizontal y-directions can then
be described as (see e.g., Born & Wolf, 2013):

Ẽx(z, t) = Ax cos (kz − ωt + φx) = Re
[
Axeiφx ei(kz−ωt)

]
, (7.1)

Ẽy(z, t) = Ay cos
(
kz − ωt + φy

)
= Re

[
Ayeiφyei(kz−ωt)

]
, (7.2)

where t is time, ω > 0 is the angular frequency, k = 2π/λ is the wave number with λ
the wavelength, Ax and Ay are the amplitudes, φx and φy are the initial phases, Re[. . . ]
denotes the real part, and i is the imaginary unit. On the right side of Eqs. (7.1) and
(7.2), the factor exp [i(kz − ωt)] only describes the propagation of the light wave. The
polarization of the wave can therefore be described by a Jones vector E defined as:

E =
[
Ex

Ey

]
=

[
Axeiφx

Ayeiφy

]
, (7.3)

where Ex and Ey are the complex electric field components.
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Figure 7.1: Definition of the three reference frames (or bases) and the Stokes parameters
to describe the electric field components and polarization of an electromagnetic wave.
The light propagates along the z-axis out of the paper toward the reader. In the xyz-basis,
the x-axis (y-axis) is oriented in the vertical (horizontal) direction. In the daz-basis, the
d-axis (a-axis) is oriented in the diagonal (antidiagonal) direction, at 45◦ counterclock-
wise (clockwise) from the x-axis. In rlz-basis, r and l represent the right-handed and
left-handed circularly polarized components. For each reference frame, the basis Jones
vectors, expressed in the xyz-bases, are indicated. The Stokes parameters are shown in
orange with the plus sign (minus sign) indicating that the Stokes parameter is positive
(negative) in that direction. The angle of linear polarization χ is defined positive for a
counterclockwise rotation from the x-axis.

As an alternative way to describe the polarization, we can define a set of Stokes pa-
rameters as (see Fig. 7.1):

I = ExE∗x + EyE∗y = A2
x + A2

y = Ix + Iy = Id + Ia

= Ir + Il = 1, (7.4)

Q = ExE∗x − EyE∗y = A2
x − A2

y = Ix − Iy, (7.5)

U = ExE∗y + EyE∗x = 2AxAy cos δ = Id − Ia, (7.6)

V = i
(
ExE∗y − EyE∗x

)
= 2AxAy sin δ = Ir − Il, (7.7)

where ∗ denotes the complex conjugate, δ = φy − φx is the phase difference between the
y- and x-components of the electric field, and Ix and Iy are the intensities of the x- and
y-components of the electric field. The variables Id and Ia are the intensities of the d-
and a-components in the basis of the diagonal and antidiagonal polarizations, daz, and
Ir and Il are the intensities of the r- and l-components in the basis of the right-handed
and left-handed circular polarizations, rlz (see Fig. 7.1). Stokes I is the total intensity,
positive (negative) Stokes Q describes linear polarization in the vertical x-direction (hor-
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izontal y-direction), positive (negative) Stokes U describes linear polarization in the di-
agonal (antidiagonal) direction, 45◦ counterclockwise (clockwise) from the x-direction,
and positive (negative) Stokes V describes right-handed (left-handed) circular polariza-
tion. Whereas the xyz-basis is the natural basis of Stokes Q, the daz- and rlz-bases are the
natural bases of Stokes U and V , respectively. Because we normalize the total intensity,
that is, we set I = 1 in Eq. (7.4), Q, U, and V have values between 1 and −1. We note that
Eqs. (7.4)–(7.7) are strictly speaking only valid for 100% polarized, monochromatic light.
However, for quasi-monochromatic light, whether 100% polarized, partially polarized, or
unpolarized, we simply need to take the time averages over the terms in the equations.

From Eqs. (7.4) and (7.5) we can derive expressions for the intensities of the x- and
y-components of the electric field:

Ix =
1 + Q

2
, (7.8)

Iy =
1 − Q

2
. (7.9)

Although these two equations are simple, they are important, and we use them in all
closed-form expression for the beam shifts in Sect. 7.4. Finally, we assemble the Stokes
parameters in a Stokes vector S:

S =


I
Q
U
V

 , (7.10)

and define the degree of linear polarization P (which for I = 1 is equal to the linearly
polarized intensity) and angle of linear polarization χ (see Fig. 7.1) as:

P =
√

Q2 + U2, (7.11)

χ =
1
2

arctan
(

U
Q

)
. (7.12)

7.2.2 Metallic reflection

Using this mathematically consistent description of light and its polarization, we can de-
scribe the reflection of light using the Fresnel equations in the geometric polarization
ray-tracing approximation. Consider the central ray of a beam of light incident on a flat
metallic mirror as shown in Fig. 7.2. Describing this ray as a plane electromagnetic wave,
we decompose the incident electric field into the p- and s-polarized components that are
parallel and perpendicular to the plane of incidence, respectively. For this central ray,
the p- and s-directions correspond to the x- and y-directions, respectively. Assuming the
refractive index of the incident medium (air) to be equal to 1, we compute the complex
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Figure 7.2: Schematic of the reflection of a beam of light off a flat metallic mirror with
complex refractive index n̂ = n + iκ. The central ray of the beam hits the mirror at an
angle of incidence θ measured with respect to the normal to the surface of the mirror. The
orientation of the xyz reference frame before and after reflection is indicated.

Fresnel reflection coefficients rp and rs as (see e.g., Born & Wolf, 2013):

rp =
n̂2 cos θ −

√
n̂2 − sin2 θ

n̂2 cos θ +
√

n̂2 − sin2 θ
= Rpeiϕp , (7.13)

rs =
cos θ −

√
n̂2 − sin2 θ

cos θ +
√

n̂2 − sin2 θ
= Rseiϕs , (7.14)

where θ is the central angle of incidence (see Fig. 7.2) and n̂ = n + iκ is the complex
refractive index of the mirror material, with n and κ the real and complex parts, respec-
tively. The amplitudes Rp/s = |rp/s| specify the ratios of the amplitudes of the reflected
and incident electric fields, while the phases ϕp/s = arg (rp/s) describe the phase shifts
between the reflected and incident electric fields.

Two important quantities related to the reflection coefficients are the diattenuation and
the retardance, which can be considered to be the zeroth-order polarization aberrations.
The diattenuation ϵ is defined as:

ϵ =
R2

s − R2
p

R2
s + R2

p
, (7.15)

which ideally equals 0. When unpolarized light is incident on the mirror, a nonzero value
of the diattenuation quantifies the amount of linearly polarized light that is created, that
is, the instrumental polarization (IP). The retardance ∆ is defined as:

∆ = ϕs − ϕp , (7.16)

which ideally equals 180◦. The latter value comes from the requirement that the electro-
magnetic wave before and after reflection is described by a right-handed triplet in terms
of the electric field, the magnetic field, and the wave vector. For values other than 180◦,
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Figure 7.3: Amplitude (left) and phase (right) of the Fresnel reflection coefficients in the
p- and s-directions as a function of angle of incidence for gold with n̂ = 0.188+ i5.39 at a
wavelength of 820 nm. The gradients in the amplitude and phase for an angle of incidence
of 45◦ are indicated in blue for the p-direction and in red for the s-direction.

retardance results in the conversion of incident linearly polarized light into circularly po-
larized light and vice versa, that is, it produces polarimetric crosstalk.

The physics of the beam shifts as described in Sect. 7.4 depends on the diattenuation
and retardance as well as on the gradients of the amplitude and phase of the reflection
coefficients with the angle of incidence. Figure 7.3 shows the amplitude and phase of the
reflection coefficients as a function of angle of incidence for gold with n̂ = 0.188 + i5.39
at a wavelength of 820 nm, corresponding to the configuration studied in Sects. 7.3–7.5.
From Fig. 7.3 (left) it follows that the diattenuation, which is roughly the difference be-
tween the curves of Rs and Rp (see Eq. (7.15)), is zero at θ = 0◦, increases with increasing
angle of incidence until it reaches a maximum around θ = 80◦, and then decreases again
to zero at θ = 90◦. In Fig. 7.3 (right) we see that the retardance, which is the difference
between the curves of ϕs and ϕp (see Eq. (7.16)), is 180◦ at θ = 0◦ and remains close
to this value for small values of θ. For large θ, the retardance decreases rapidly to 0◦

at θ = 90◦. Fig. 7.3 (left and right) also show the gradients in amplitude and phase at
θ = 45◦ (similar to the phase gradients shown by Breckinridge et al. 2015). Whereas
the amplitude gradient ∂Rs/∂θ is always positive for θ > 0◦, ∂Rp/∂θ is initially negative,
then becomes zero, and finally is positive for very large angles of incidence. Lastly, for
θ > 0◦ the phase gradients ∂ϕs/∂θ and ∂ϕp/∂θ are negative and positive, respectively, and
monotonically decrease and increase with increasing angle of incidence.
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7.3 Beam shifts from polarization ray tracing

In this section, we describe the polarization ray tracing of a beam of light that reflects off
a metallic mirror, following the methodology outlined in Breckinridge et al. (2015), and
the determination of the beam shifts that result. In Sect. 7.4, we compare the resulting
shifts for various incident polarization states and angles of incidence to the predicted
spatial and angular GH and IF shifts as derived for Gaussian beams. We determine the
centroid shifts of both the focal-plane intensity (i.e., the PSF) and the intensity in the exit-
pupil plane because these planes are where the spatial shifts (shifts of the complete beam)
and angular shifts (angular deviations as measured from the focus) should be visible. To
enable a direct comparison of our results with the experimental measurements of the GH
and IF shifts by Merano et al. (2007), Aiello et al. (2009), and Hermosa et al. (2011),
we consider a (practically) identical configuration to the one used in those studies: a
converging, monochromatic beam of light with an f-number of 61.3 that reflects off a
flat golden mirror at a wavelength of 820 nm and with a focal distance of 11.9 cm. Our
configuration differs in that the beam of light is not Gaussian but has a uniform intensity
profile across the entrance pupil as is the case for astronomical telescopes and instruments.

As the first step in our analysis, we compute the Jones pupil that describes the electric-
field response in the exit pupil upon reflection. We only describe this computation briefly
here (for detailed descriptions see e.g., Waluschka, 1989; Götte & Dennis, 2012). We use
the definitions as shown in Fig. 7.2 and decompose the beam of light into a set of rays that
each can be described by a plane electromagnetic wave. For each ray, we compute the
angle of incidence and, using Eqs. (7.13) and (7.14), the corresponding Fresnel reflection
coefficients in the local p- and s-directions. Subsequently, we calculate the orientation of
the local plane of incidence for each ray. Finally, we compute the Jones pupil as the set
of Jones matrices describing the reflection of each ray, taking into account the orientation
of the local plane of incidence and the change of sign of the x-coordinate of the ray upon
reflection. The resulting Jones pupil Jxyz, which is expressed in the xyz-basis, can be
written as:

Jxyz =

[
Jxx Jxy

Jyx Jyy

]
=

[
Rxxeiϕxx Rxyeiϕxy

Ryxeiϕyx Ryyeiϕyy

]
, (7.17)

where Jxx to Jyy are the complex Jones-pupil elements describing the contribution of the
x- or y-polarized components of the incident electric field (in the entrance pupil) to the x-
or y-polarized components of the reflected electric field (in the exit pupil). The amplitudes
and phases of the Jones-pupil elements, which define the ratios of the amplitudes and the
phase shifts of the reflected and incident electric fields, are denoted Rxx to Ryy and ϕxx to
ϕyy, respectively. The Jones pupil Jxyz for reflection with an angle of incidence of 45◦ is
shown in Fig. 7.4 (top).

The Jones pupil is a crucial ingredient for our understanding of the beam shifts in
Sect. 7.4. In that context, it is useful to also express the Jones pupil in the basis of the
diagonal and antidiagonal polarizations, daz, and the basis of the right-handed and left-
handed circular polarizations, rlz, as defined in Fig. 7.1. The Jones pupils in the daz- and



7

216 Beam shifts from polarization ray tracing

Gradient in amplitude in x-direction: angular Goos-Hänchen

Gradient in amplitude in y-direction: angular Imbert-Federov

Gradient in phase in x-direction: spatial Goos-Hänchen

Gradient in phase in y-direction: spatial Imbert-Federov

Rxx

0.98247

0.98254

0.98260

0.98267

0.98273
Rxy

0.0161

0.5319

1.0478

1.5636

2.0794×10 3

Ryx

0.0161

0.5319

1.0478

1.5636

2.0794×10 3 Ryy

0.99119

0.99123

0.99126

0.99130

0.99134

xx (rad)

0.5127

0.5148

0.5168

0.5189

0.5209
xy (rad)

1.9912

1.9917

1.9922

1.9926

1.9931

yx (rad)

1.9912

1.9917

1.9922

1.9926

1.9931
yy (rad)

2.8853

2.8843

2.8832

2.8822

2.8811

+π

+π

Vertical ─ horizontal (xyz) basis

-

-

Rdd 
0.1303 

0.1288 

0.1273 

0.1257 

0.1242 

Rad 
0.9791 

0.9789 

0.9787 

0.9785 

0.9783 

Rda

Raa

0.9791 

0.9789 

0.9787 

0.9785 

0.9783 

0.1303 

0.1288 

0.1273 

0.1257 

0.1242 

</Jdd (rad) 

</Jad (rad) 

1.9931 

1.9926 

1.9922 

1.9917 

1.9912 

0.3894 

0.3882 

0.3870 

0.3859 

0.3847 

</Jda (rad) 

</Jaa (rad) 

0.3894 

0.3882 

0.3870 

0.3859 

0.3847 

1.9931 

1.9926 

1.9922 

1.9917 

1.9912 

Diagonal ─ antidiagonal (daz) basis

Rrr

0.1242

0.1257

0.1273

0.1288

0.1303
Rrl

0.9783

0.9785

0.9787

0.9789

0.9791

Rlr

0.9783

0.9785

0.9787

0.9789

0.9791
Rll

0.1242

0.1257

0.1273

0.1288

0.1303

rr (rad)

1.9757

1.9839

1.9921

2.0003

2.0086
rl (rad)

0.3861

0.3865

0.3870

0.3875

0.3880

lr (rad)

0.3861

0.3865

0.3870

0.3875

0.3880
ll (rad)

1.9757

1.9839

1.9921

2.0003

2.0086

Right-handed circular ─ left-handed circular (rlz) basis

Figure 7.4: Jones pupil expressed in the xyz- (top), daz- (center), and rlz-bases (bottom)
at a wavelength of 820 nm for a converging beam of light with an f-number of 61.3
that reflects off gold at an angle of incidence of 45◦. The panels in the first and second
(third and fourth) columns show the amplitude (phase) of the Jones-pupil elements. The
positive x- and y-directions are upward and to the left, respectively. The values of the
color maps are different among the panels. The red, orange, blue, and green borders
around the panels indicate the gradients that are visible and the specific beam shifts that
these gradients cause (see the legend above the top panels). To reveal the gradient in the
panels of ϕxy and ϕyx, π has been added to the phase in the left and right halves of the
pupil, respectively.
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rlz-bases, Jdaz and Jrlz, are defined as:

Jdaz = TdazJxyzT−1
daz =

[
Rddeiϕdd Rdaeiϕda

Radeiϕad Raaeiϕaa

]
, (7.18)

Jrlz = TrlzJxyzT−1
rlz =

[
Rrreiϕrr Rrleiϕrl

Rlreiϕlr Rlleiϕll

]
, (7.19)

where Rdd to Rll and ϕdd to ϕll are the amplitudes and phases of the Jones-pupil elements
and −1 denotes the inverse of a matrix. The matrices Tdaz and Trlz describe the transfor-
mations from the xyz-basis to the daz- and rlz-bases, respectively, and are defined as:

Tdaz =
1
√

2

[
1 1
1 −1

]
, (7.20)

Trlz =
1
√

2

[
1 −i
1 i

]
. (7.21)

The Jones pupils Jdaz and Jrlz for reflection with an angle of incidence of 45◦ are shown
in Fig. 7.4 (center) and Fig. 7.4 (bottom), respectively.

Next, we compute the amplitude-response matrix, ARM, specifying the electric-field
response in the focal plane. The ARM is computed as:

ARM =
[
F (Jxx) F (Jxy)
F (Jyx) F (Jyy)

]
, (7.22)

where F (. . . ) denotes the spatial Fourier transform over a Jones-pupil element. For
the computation of the ARM we therefore assume that the Fraunhofer approximation to
diffraction applies, which is the case for beams with absolute f-numbers larger than ∼5
(see e.g., McGuire & Chipman, 1990). Subsequently, we calculate the point-spread ma-
trix, PSM, which is the Mueller-matrix representation of the PSF and describes the inten-
sity response in the focal plane for any incident Stokes vector, whether 100% polarized,
partially polarized, or unpolarized. The PSM is calculated as:

PSM = C(ARM ⊗ ARM∗)C−1 (7.23)

where ⊗ denotes the Kronecker product, ∗ indicates the element-wise complex conjugate,
and the matrix C is defined as (see e.g., Espinosa-Luna et al., 2008):

C =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (7.24)

The PSM can be written as:

PSM =


I→ I Q→ I U→ I V→ I
I→Q Q→Q U→Q V→Q
I→U Q→U U→U V→U
I→V Q→V U→V V→V

 , (7.25)
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where each element A→B describes the contribution of the incident Stokes parameter A
to the resulting Stokes parameter B. The PSM for reflection with an angle of incidence of
45◦ is shown in Fig. 7.5. We note that the same PSM can also be obtained from the Jones
pupil expressed in the daz- or rlz-bases when replacing the matrix C in Eq. (7.24) with
the appropriate matrix corresponding to those bases.

As the final step, we determine the beam shifts in the exit pupil and the focal plane.
To this end, we define an incident Jones vector or Stokes vector with a uniform intensity
profile and polarization state. For the determination of the shift in the exit pupil, we right-
multiply the Jones pupil by the incident Jones vector to obtain the Jones vector in the pupil
plane. Subsequently, we compute the intensity distribution in the pupil plane as the sum
of squares of the amplitudes of the latter Jones vector. Finally, we calculate the beam shift
as the offset of the centroid of the intensity distribution with respect to the beam position
in the absence of diffraction and aberrations. To determine the beam shift in the focal
plane, we compute the Stokes vector after reflection by right-multiplying the PSM by the
incident Stokes vector. We then retrieve the intensity image from the first element of the
resulting Stokes vector and determine the shift as the offset of the centroid with respect to
the beam position in the absence of diffraction and aberrations.

7.4 Explanation of beam shifts and comparison to
polarization ray tracing

In this section, we explain the spatial and angular GH and IF shifts and compare them
to the shifts found using polarization ray tracing. We analytically describe the four shifts
using the closed-form expressions from Aiello & Woerdman (2008). These expressions
are derived (see Aiello & Woerdman, 2007) by decomposing an incident, uniformly po-
larized Gaussian beam of light into the angular spectrum of plane waves (e.g., Born &
Wolf, 2013) and computing the effect of the reflection on each wave. Because the plane
waves are infinitely extended, the Fresnel equations can be applied without making any
approximations. The decomposition into plane waves is equivalent to a Fourier transform
of the electric field at the mirror interface. The resulting reflected plane waves are then
integrated over, and the shift is calculated as the shift of the centroid of the intensity of the
beam. The expressions depend on the Fresnel reflection coefficients at the central angle
of incidence and the complex electric-field components of the incident beam. We have
rewritten the expressions in terms of the more familiar Stokes parameters to make the
expressions easier to understand and enable the computation of the shifts for any incident
polarization state.

For each of the four shifts, which generally occur simultaneously, we explain the
origin and analytically compute the size and direction as a function of angle of incidence
for different incident polarization states. We consider 100% linearly polarized light with
angles of linear polarization χ ranging from 0◦ to 180◦ in steps of 22.5◦, 100% right-
handed and left-handed circularly polarized light (i.e., V = 1 and V = −1, respectively),
and unpolarized light. For these same polarization states, we numerically compute the
shifts from the polarization ray tracing as outlined in Sect. 7.3 and compare the results to
the analytical computations. We also explain the shifts using the Jones pupil and the PSM.
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We discuss the spatial and angular GH shifts in Sects. 7.4.1 and 7.4.2 and the spatial and
angular IF shifts in Sects. 7.4.3 and 7.4.4.

7.4.1 Spatial Goos-Hänchen shift
The spatial GH shift, XsGH, is a displacement of the entire beam of light upon reflection
and occurs in the plane of incidence (e.g., Goos & Hänchen, 1947; Merano et al., 2007;
Aiello & Woerdman, 2008; Aiello et al., 2009; Götte & Dennis, 2012; Bliokh & Aiello,
2013). Figure 7.6 (top) shows a schematic with the definition of the spatial GH shift.
The shift is independent of the divergence angle of the incident beam (i.e., the f-number)
and does not depend on whether the reflection occurs in the focus or the converging or
diverging parts of the beam. From the perspective of the plane-wave decomposition,
the spatial GH shift can be understood from a 2D picture of the beam of light, looking
from a direction perpendicular to the plane of incidence (i.e., the side view as shown
in Fig. 7.6, top). Each plane wave of the beam has a different angle of incidence and
therefore acquires a correspondingly different phase shift upon reflection. This results in
a gradient in phase over the range of angles of incidence (see Fig. 7.3, right). Integrating
over all reflected plane waves, this then results in a shift of the entire beam parallel to the
plane of incidence. The integration is equivalent to an inverse Fourier transform, which
explains how a phase gradient is equivalent to a shift of the entire beam on the mirror.

The spatial GH shift can be analytically computed as:

XsGH =
λ

2π

∂ϕp

∂θ
R2

pIx +
∂ϕs

∂θ
R2

s Iy

R2
pIx + R2

s Iy
, (7.26)

where Rp and Rs (from Eqs. (7.13) and (7.14)) and the phase gradients ∂ϕp/∂θ and ∂ϕs/∂θ
(see Fig. 7.3, right) are computed at the central angle of incidence of the beam, and Ix and
Iy are the intensities of the components of the light polarized in the x- and y-direction,
respectively. These intensities only depend on the incident Stokes Q and follow from
Eqs. (7.8) and (7.9). The factor R2

pIx + R2
s Iy in Eq. (7.26) is the intensity of the reflected

beam and returns in the expressions of all shifts. The spatial GH shift is produced by the
phase gradients, whereas Rp and Rs can be considered to be small corrections. Indeed, if
we set either Ix or Iy equal to zero in Eq. (7.26), we obtain:

XsGH,x/y =
λ

2π
∂ϕp/s

∂θ
, (7.27)

which shows that the spatial GH shift consists of two components: XsGH,x for the light
polarized in the x-direction and XsGH,y for the light polarized in the y-direction. The total
spatial GH shift as computed from Eq. (7.26) can then be understood as the intensity-
weighted average of these two shifts.

Figure 7.7 shows the spatial GH shift as a function of angle of incidence for different
incident polarization states as computed from Eq. (7.26). The figure also shows the shifts
in the focal plane (data points) as obtained from the numerical computations using the po-
larization ray tracing as outlined in Sect. 7.3. The close agreement between the analytical
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Figure 7.6: Schematic showing the definitions of the spatial and angular GH shifts, XsGH
and ΘaGH (top), and the spatial and angular IF shifts, XsIF and ΘaIF (bottom), for an (ini-
tially converging) beam of light incident on a metallic mirror. Darker colors within the
reflected beam indicate a higher relative intensity. The orientation of the xyz reference
frame before and after reflection is indicated. Positive spatial GH and IF shifts are di-
rected in the positive x- and y-directions, respectively, after reflection (the spatial GH
shift is shown in the negative direction). The angular GH and IF shifts are positive for
a right-handed rotation around the y-axis and a left-handed rotation around the x-axis,
respectively. For clarity the size of the shifts is extremely exaggerated.
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Figure 7.7: Spatial GH shift as a function of angle of incidence for reflection off gold
at a wavelength of 820 nm as obtained from the closed-form expression of Eq. (7.26)
(curves) and polarization ray tracing (data points). The shift is shown for an incident beam
of light that is completely unpolarized, 100% linearly polarized with various angles of
linear polarization χ, and 100% right-handed (V = 1) or left-handed (V = −1) circularly
polarized.

and numerical results shows that the spatial GH shift is reproduced very closely by the
polarization ray tracing and that Eq. (7.26) is not only valid for Gaussian beams, but is
also accurate for beams with a uniform intensity profile. Small deviations between the an-
alytical and numerical results are only visible for very large angles of incidence (θ ≳ 80◦).
These deviations are higher-order effects due to the beam intensity profile deviating from
a Gaussian profile. Indeed, when performing the polarization ray tracing for a Gaussian
beam, the data points agree exactly with the analytical curves for all angles of incidence.

Figure 7.7 shows that, although the size of the spatial GH shift is generally less than
the wavelength, the shift can be larger than a wavelength for large angles of incidence
and certain incident polarization states. At normal incidence, the shift is always zero.
The spatial GH shift is largest for light polarized in the x-direction (i.e., for χ = 0◦ and
χ = 180◦, or Q = 1) and increases with increasing angle of incidence. Because the shift
for light polarized in the x-direction is directly proportional to ∂ϕp/∂θ (see Eq. (7.27)),
this behavior can be understood from the increasing gradient seen in Fig. 7.3 (right). For
incident light polarized in the y-direction (i.e., for χ = 90◦ or Q = −1), the shift is much
smaller and in the opposite direction, which also agrees with ∂ϕs/∂θ being smaller than
and opposite to ∂ϕp/∂θ in Fig. 7.3 (right). In case of light with Q = 0 (e.g., for unpolarized
light or 100% polarized light with χ = 45◦, χ = 135◦, V = 1, or V = −1), the intensities
of the light polarized in the x- and y-directions are equal and the resulting shift is the
intensity-weighted average of the shifts of the x- and y-polarizations. Finally, for light
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with 0 < |Q| < 1 (e.g., for 100% polarized light with χ = 22.5◦, χ = 67.5◦, χ = 112.5◦, or
χ = 157.5◦, and also partially polarized light), the resulting shift is in between the three
aforementioned shifts.

As can be seen from Fig. 7.4 (top), which shows the Jones pupil expressed in the
xyz-basis, the spatial GH shift produces gradients in the phase of all Jones-pupil elements
(blue borders). These phase gradients represent wavefront tilts in the exit pupil and as
such result in shifts of the centroid of the PSF in the focal plane. This confirms the claim
by Schmid et al. (2018) that the spatial GH shift is the shift that arises from the phase
gradient in the x-direction in the Jones pupil as described by Breckinridge et al. (2015).
However, we note that Fig. 27 of Schmid et al. (2018) suggests that the spatial GH shift
is caused by both a shift on the mirror and a directional change of the beam due to a
wavefront tilt induced upon reflection. This depiction is inaccurate: The spatial GH shift
is a shift of the entire beam that occurs on the mirror surface, which, in the Fraunhofer
approximation, can be described as a wavefront tilt in the exit pupil.

From the Jones pupil, it may seem that the spatial GH shift depends on the f-number,
but this is not the case. Although a two times smaller f-number gives a two times larger
phase gradient in the pupil plane, the focal distance is also two times smaller, resulting
in the same shift in the focal plane. Similarly, for a diverging beam (i.e., a beam with
a negative f-number) the phase gradients have the opposite sign but then the focal plane
is imaginary and located in front of the mirror (i.e., the focal distance is negative), again
yielding the same shift. A more mathematical approach to showing the independence of
the shift from the f-number is presented in Schmid et al. (2018). We note that the size
of the shift (which scales with λ, see Eq. (7.26)) relative to the size of the PSF (which
scales with λ|F|, with F the f-number) does depend on the f-number and is proportional
to 1/|F|. This means that a more strongly converging or diverging beam results in a larger
shift relative to the PSF.

Finally, we show that the spatial GH shift is visible in the PSM as well (see Fig. 7.5).
As described in Sect. 7.3, the focal-plane shifts are determined from the intensity image
constructed by right-multiplying the PSM by the incident Stokes vector. In other words,
the shifts are determined from the image constructed as a linear combination of the PSM-
elements in the top row, weighted with the incident Stokes parameters. Whereas both the
(I→ I)- and (Q→ I)-elements have their centroids shifted in the x-direction, the (U→ I)-
and (V→ I)-elements do not exhibit such shifts. For incident light with Q = 0, the shift we
find is that of the (I→ I)-element. On the other hand, for light with Q , 0, a scaled version
of the (Q→ I)-element, which shows a relatively large shift, is added to or subtracted from
the (I→ I)-element. This results in either a larger or smaller shift than that of the (I→ I)-
element, in agreement with the curves of Fig. 7.7.

7.4.2 Angular Goos-Hänchen shift
The angular GH shift, ΘaGH, is an angular deviation of the beam of light upon reflection
and, similar to the spatial GH shift, occurs in the plane of incidence (e.g., Aiello & Wo-
erdman, 2008; Aiello et al., 2009; Götte & Dennis, 2012; Bliokh & Aiello, 2013). The
definition of the angular GH shift is shown in Fig. 7.6 (top). Similar to the spatial GH
shift, the angular GH shift can be understood from a 2D picture of the beam of light.
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Each ray in the incident beam hits the mirror at a different angle of incidence and there-
fore experiences a different reflection coefficient. Over the range of angles of incidence
this results in a gradient in the amplitude across the reflected beam (see Fig. 7.3, left),
which translates into a shift of the centroid in intensity. Contrary to the spatial GH shift,
the size of the angular shift depends on the divergence angle, and thus the f-number, of
the incident beam. This is because a more strongly converging or diverging beam covers a
larger range of angles of incidence and therefore yields a larger gradient. The angular GH
shift is truly a deflection of the beam centroid as described by an angle, which is the same
whether the reflection occurs in the focus or the converging or diverging part of the beam
(see Fig. 7.6, top). The resulting physical displacement of the beam centroid vanishes in
the focus and increases with distance from the focus. That the physical displacement of
the beam centroid is zero in the focus can easily be understood in the Fraunhofer approx-
imation: The amplitude gradient in the exit pupil will lead to a point-symmetric change
in the PSF, which cannot change the centroid of the intensity distribution.

The angular GH shift can be computed as:

ΘaGH =
−α2

2

Rp
∂Rp

∂θ
Ix + Rs

∂Rs

∂θ
Iy

R2
pIx + R2

s Iy
, (7.28)

where, similar to the spatial GH shift, Ix and Iy are functions of Stokes Q (see Eqs. (7.8)
and (7.9)), and Rp, Rs, and the amplitude gradients ∂Rp/∂θ and ∂Rs/∂θ (see Fig. 7.3, left)
are evaluated at the central angle of incidence. The divergence angle of the beam, α, is
computed as:

α = arctan
(

1
2|F|

)
, (7.29)

with F the f-number of the beam. Contrary to the spatial GH shift, the angular GH shift
only depends on the amplitude of the reflection coefficients, and not on the phase. The
angular GH shift is produced by the amplitude gradients, whereas Rp and Rs only have
a small effect. The structure of Eq. (7.28) is quite similar to that of Eq. (7.26), which
describes the spatial GH shift. Indeed, when setting Ix = 0 or Iy = 0 in Eq. (7.28), we see
that the angular GH shift also consists of two components for the light polarized in the x-
and y-directions:

ΘaGH,x/y =
−α2

2
1

Rp/s

∂Rp/s

∂θ
. (7.30)

Equation (7.28) therefore constitutes the intensity-weighted average of these two shifts.
Finally, the physical displacement of the beam centroid at a distance zf from the focus of
the beam is given by:

XaGH = zf ΘaGH, (7.31)

where zf > 0 in the diverging part of the beam and zf < 0 in the converging part. We can
compute the physical displacement of the centroid of the intensity in the pupil plane by
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Figure 7.8: Angular GH shift as a function of angle of incidence at a wavelength of
820 nm for a beam of light with an f-number of 61.3 that reflects off gold as obtained
from the closed-form expression of Eq. (7.28) (curves) and polarization ray tracing (data
points). The shift is shown for an incident beam that is completely unpolarized, 100%
linearly polarized with various angles of linear polarization χ, and 100% right-handed
(V = 1) or left-handed (V = −1) circularly polarized.

inserting zf = − f in Eq. (7.31), where f is the focal distance ( f > 0 in a converging beam
and f < 0 in a diverging beam).

Figure 7.8 shows the angular GH shift as a function of angle of incidence for differ-
ent polarization states as computed from Eq. (7.28). The figure also shows the shifts as
obtained from the exit pupil (data points) using the polarization ray tracing as explained
in Sect. 7.3. We have computed these numerical shifts by dividing the physical displace-
ments of the centroid in the pupil plane by the negative value of the focal distance (see
Eq. (7.31)). Contrary to the analytically computed shifts, we have computed the numeri-
cal shifts only for 100% polarized light (i.e., not for unpolarized light), because the Jones
calculus used cannot describe unpolarized or partially polarized light. Similar to the spa-
tial GH shift, the analytical and numerical results in Fig. 7.8 agree closely and small
deviations are only visible for very large angles of incidence. These deviations are due
to the angular GH shift depending on the precise beam intensity profile and vanish when
performing the polarization ray tracing for a Gaussian beam.

Figure 7.8 indicates that the angular GH shift is on the order of microradians for the
particular configuration studied. For normal incidence, the shift is zero. The largest shifts
are found for light polarized in the x-direction (i.e., for χ = 0◦ and χ = 180◦, or Q = 1),
whereas the shifts of the light polarized in the y-direction (i.e., for χ = 90◦ or Q = −1)
are much smaller. The curves can be understood from the amplitude gradients governing
the angular GH shift as shown in Fig. 7.3 (left): Whereas ∂Rs/∂θ increases monotonically
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with increasing angle of incidence, ∂Rp/∂θ is initially negative, reaches a value of zero,
and then attains large positive values. The curves in Fig. 7.8 follow a similar pattern as
those of the spatial GH shift (see Fig. 7.7), with the shifts for incident light that is not
100% x- or y-polarized being an intensity-weighted average of the shifts of the x- and
y-polarizations.

As shown in the Rxx- and Ryy-elements of Fig. 7.4 (top; red borders), the amplitude
gradients associated with the angular GH shift are visible in the Jones pupil expressed
in the xyz-basis. In the antidiagonal elements Rxy and Ryx these amplitude gradients also
exist, but they are overshadowed by the left-right symmetric structure visible in those
elements. For a diverging rather than converging beam, the amplitude gradients have
opposite signs (see also Fig. 7.6, top). Because a diverging beam implies a negative focal
distance, that is, the focal plane is virtual and located in front of the mirror, the signs of
the angular shifts themselves do not change (see Eq. (7.31)). Finally, the angular GH shift
is not visible in the PSM (Fig. 7.5) because it is zero in the focus.

7.4.3 Spatial Imbert-Federov shift
The spatial IF shift, YsIF, is a displacement of the entire beam of light upon reflection
and occurs in the direction perpendicular to the plane of incidence (e.g., Federov, 1955;
Imbert, 1972; Bliokh & Bliokh, 2006; Aiello & Woerdman, 2008; Hermosa et al., 2011;
Götte & Dennis, 2012; Bliokh & Aiello, 2013; Bliokh et al., 2015). A schematic with
the definition of the spatial IF shift is shown in Fig. 7.6 (bottom). Similar to the spatial
GH shift, the spatial IF shift is independent of the f-number of the beam and the position
within the beam where the reflection occurs. To understand the spatial IF shift from a
plane-wave decomposition, it is necessary to consider the full 3D picture (e.g., Aiello &
Woerdman, 2008; Bliokh & Aiello, 2013). Each plane wave in the incident beam has
a different (3D) propagation direction. Therefore, not only the angles of incidence (and
thus the reflection coefficients) are different among the waves, but also the orientations of
the local planes of incidence. These rotations of the planes of incidence induce different
geometric (Berry) phases among the circularly polarized components of the waves. This
results in a gradient of the geometric phases in the direction perpendicular to the plane
of incidence, with the gradient having opposite sign for the right-handed and left-handed
circular polarizations. Accounting for the reflection coefficients of each wave as well as
the geometric phases within the reflected beam, the reflected beam is found to be shifted
in the direction perpendicular to the plane of incidence when integrating over all waves.

The spatial IF shift is more easily understood in terms of conservation of total angular
momentum (e.g., Bliokh & Bliokh, 2006; Bliokh & Aiello, 2013; Bliokh & Nori, 2015;
Bliokh et al., 2015). Disregarding vortex beams, the total angular momentum of a beam
of light consists of the spin angular momentum (SAM) and the external orbital angular
momentum. In the quantum-mechanical description of light, photons carry one of two
spin states that correspond to right-handed and left-handed circular polarization. The
SAM of a beam of light is a vector quantity pointing in the direction of propagation
that is proportional to the difference between the number of right-handed and left-handed
photons, that is, it is proportional to Stokes V . The external orbital angular momentum is
given by the cross product of the radius vector of the beam centroid with respect to some
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origin and the (linear) momentum of the beam, with the latter pointing in the direction
of propagation. Upon reflection, the total angular momentum in the direction normal to
the surface of the mirror is conserved. As a result, any change in the SAM of the beam,
that is, in the circular polarization, must be compensated for by a shift of the beam in the
direction perpendicular to the plane of incidence. This shift is the spatial IF shift, which
is therefore considered to be a spin-orbit interaction of light.

The spatial IF shift can be calculated as:

YsIF =
−λ

2π
cot θ

R2
pIx + R2

s Iy

V R2
p + R2

s

2

 + RpRs (V cos∆ + U sin∆)

 , (7.32)

where Rp, Rs, and the retardance ∆ (see Eq. (7.16) and Fig. 7.3) are evaluated at the
central angle of incidence θ, and cot θ is the transverse gradient of the induced geometric
phase. Although the spatial IF shift has a weak dependence on Stokes Q through Ix and
Iy (see Eqs. (7.8) and (7.9)), the shift depends primarily on the incident Stokes U and V .
So, whereas the GH shift consists of two separate shifts for light polarized in the x- and
y-directions, the spatial IF shift comprises separate and opposite shifts for the diagonally
and antidiagonally polarized components (because U = Id−Ia, see Eq. (7.6)) as well as for
the right-handed and left-handed circularly polarized components (because V = Ir − Il,
see Eq. (7.7)). For metallic reflections, the spatial IF shift results primarily from the
retardance, whereas Rp and Rs can be considered to be small corrections. Indeed, we
can simplify Eq. (7.32) by assuming that the incident beam is totally reflected. Setting
Rp = Rs = 1 and inserting Ix + Iy = 1 (see Eq. (7.4)), we obtain:

YsIF =
−λ

2π
cot θ

[
V (1 + cos∆) + U sin∆

]
. (7.33)

In this equation, the factor [V(1+cos∆)+U sin∆] is proportional to the change of the SAM
upon reflection, with V(1) proportional to the incident SAM and −(V cos∆ + U sin∆),
which gives Stokes V after reflection, proportional to the SAM of the reflected beam. The
spatial IF shift thus depends on the crosstalk from U to V (U sin∆) and the crosstalk from
V to U or even the crosstalk creating a change of handedness of the circular polarization
(V cos∆).

Figure 7.9 shows the spatial IF shift as a function of angle of incidence for different
incident polarization states as computed from Eq. (7.32). Also shown are the shifts in
the focal plane (data points) as numerically determined using polarization ray tracing (see
Sect. 7.4), which agree closely with the analytical computations. The small deviations
among the results vanish when performing the polarization ray tracing with a Gaussian
beam.

Figure 7.9 illustrates that the spatial IF shift is (somewhat) smaller than the spa-
tial GH shift and is always smaller than the wavelength. At normal incidence, where
∆ = 180◦ (see Fig. 7.3), the spatial IF shift is zero. For nonzero angles of incidence,
where ∆ , 180◦, changes in the SAM occur for incident U- or V-polarized light, thus
leading to spatial IF shifts. The spatial IF shifts are in opposite directions for opposite
signs of U (e.g., for χ = 45◦ and χ = 135◦) and V (for right-handed and left-handed cir-
cular polarization). The shifts initially become larger with increasing angle of incidence
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Figure 7.9: Spatial IF shift as a function of angle of incidence for reflection off gold
at a wavelength of 820 nm as obtained from the closed-form expression of Eq. (7.32)
(curves) and polarization ray tracing (data points). The shift is shown for an incident beam
of light that is completely unpolarized, 100% linearly polarized with various angles of
linear polarization χ, and 100% right-handed (V = 1) or left-handed (V = −1) circularly
polarized. The shifts for χ = 67.5◦ and χ = 157.5◦ are not shown, but are very close
to the shifts for χ = 22.5◦ and χ = 112.5◦, respectively. The colors indicate different
polarization states than in Figs. 7.7 and 7.8.

(because ∆ monotonically decreases), but then become smaller again for (very) large an-
gles of incidence as cot θ → 0 when θ → 90◦, resulting in no shift at θ = 90◦. The spatial
IF shift for U (χ = 45◦ and χ = 135◦) reaches larger values than that of V with the maxi-
mum of U occurring at a smaller angle of incidence than the maximum of V . The maxima
of the curves are lower for partially polarized light or light with both Q and U nonzero
(e.g., χ = 22.5◦, χ = 67.5◦, χ = 112.5◦ or χ = 157.5◦). Although the light with χ = 22.5◦

and χ = 67.5◦ (and similar for χ = 112.5◦ and χ = 157.5◦) have the same value for U,
small differences in the size of the shifts occur due to the dependence on Q via Ix and Iy.
The curves of incident light with both U and V nonzero are combinations of the curves
for the individual Stokes parameters. Finally, for unpolarized light or light polarized in
the x- or y-direction (i.e., Q-polarized light), the spatial IF shift is always zero because
the incident beam carries no SAM and no SAM can be created upon reflection.

Similar to the spatial GH shift, the spatial IF shift is expected to create gradients in
phase in the Jones pupil. However, in the Jones pupil expressed in the xyz-basis (see
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Fig. 7.4, top), phase gradients in the y-direction are not visible. This is because the spa-
tial IF shift primarily depends on Stokes U and V (see Eq. (7.33)), and therefore results
from the complex linear combination of all four Jones-pupil elements in this basis. Nev-
ertheless, a hint of a gradient in the y-direction is visible in the Rxy-, Ryx-, ϕxy-, and ϕyx-
elements when considering that a phase difference of π between the left and right sides of
the pupil implies that the reflection coefficients on either side have opposite signs. Actual
phase gradients in the y-direction naturally appear in the Jones pupils expressed in the
bases of Stokes U and V , that is, in the Jones pupils expressed in the daz- and rlz-bases
(see Fig. 7.4, center and bottom). The gradients are visible in the ϕda-, ϕad-, ϕrr-, and
ϕll-elements (green borders). The Jones pupils also show the phase gradient in the x-
direction produced by the spatial GH shift (blue borders), with the ϕda- and ϕad-elements
exhibiting a combination of gradients in the x- and y-directions. In Fig. 7.4 (center and
bottom), the amplitude gradient in the x-direction due to the angular GH is visible as well
(red borders). Lastly, we note that although the spatial IF shift does not depend on the
f-number, its size relative to the PSF scales as 1/|F|, analogous to the spatial GH shift (see
Sect. 7.4.1).

Finally, we show how the spatial IF shift is visible in the PSM (see Fig. 7.5). As
explained in Sect. 7.4.1, the focal-plane shifts are determined from the image created as a
linear combination of the PSM-elements in the top row, weighted with the incident Stokes
parameters. Because the (I→ I)- and (Q→ I)-elements are symmetric with respect to the
x-axis (i.e., they are left-right symmetric in Fig. 7.5), no shift results for unpolarized light
or light that is polarized in the x- or y-direction. The (U→ I)- and (V→ I)-elements on
the other hand are asymmetric, with positive and negative signals on opposite sides of the
x-axis. For incident light with nonzero U and/or V , scaled versions of these elements are
added to or subtracted from the (I→ I)-element, producing a PSF with the centroid shifted
in the y-direction. We note that the relative intensity of the (U→ I)-element is larger than
that of the (V→ I)-element, in agreement with the spatial IF shift being larger for U than
for V at an angle of incidence of 45◦ (see Fig. 7.9).

7.4.4 Angular Imbert-Federov shift
The angular IF shift, ΘaIF, is an angular deviation of the beam of light upon reflection
directed away from the plane of incidence (e.g., Bliokh & Bliokh, 2007; Aiello & Wo-
erdman, 2008; Hermosa et al., 2011; Götte & Dennis, 2012; Bliokh & Aiello, 2013). The
definition of the angular IF shift is shown in Fig. 7.6 (bottom). Similar to the angular GH
shift, the size of the angular IF shift depends on the f-number of the incident beam and is
the same whether the beam is reflected in the focus or in the converging or diverging parts
of the beam. The physical displacement of the centroid of the beam is zero in the focus
and increases with distance from the focus. The angular IF shift is related to the con-
servation of (linear) momentum in the direction perpendicular to the plane of incidence,
and, similar to the spatial IF shift, results from the differences in induced geometric phase
across the beam.
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The angular IF shift can be calculated as:

ΘaIF =
α2

4
cot θ

R2
pIx + R2

s Iy
U

(
R2

p − R2
s

)
, (7.34)

where Rp and Rs are computed at the central angle of incidence, and the divergence angle
α is given by Eq. (7.29). Similar to the angular GH shift, the angular IF shift does not de-
pend on the phases of the reflection coefficients, but only on the amplitudes. The angular
IF shift depends primarily on the incident Stokes U, although small Q-dependent correc-
tions take place through Ix and Iy (see Eqs. (7.8) and (7.9)). If Q = 0, that is, Ix = Iy = 1/2,
Eq. (7.34) reduces to:

ΘaIF =
−α2

2
Uϵ cot θ, (7.35)

with ϵ the diattenuation from Eq. (7.15). Finally, the physical displacement of the centroid
of the beam is computed as:

YaIF = zf ΘaIF, (7.36)

with zf the distance from the focus, similar to Eq. (7.31).
Figure 7.10 shows the angular IF shift as a function of angle of incidence for various

polarization states as computed from Eq. (7.34). The shifts as obtained from the exit pupil
(data points) using polarization ray tracing (see Sect. 7.3) are also shown. These numerical
shifts are computed using Eq. (7.36) and are only calculated for 100% polarized light,
similarly to the angular GH shifts (see Sect. 7.4.2). The analytical and numerical results
agree closely, with the small deviations vanishing when performing the polarization ray
tracing for a Gaussian beam.

Figure 7.10 shows that the angular IF shift is on the order of less than a microradian
for the particular configuration considered. For incident light with U nonzero, angular IF
shifts occur that are in the opposite direction for opposite signs of U. The shifts are zero
for angles of incidence of 0◦ and 90◦. The shape of the curves is related to the diattenua-
tion (roughly the difference between Rs and Rp in Fig. 7.3), which initially increases with
increasing angle of incidence, reaches a maximum, and then decreases again to zero at
θ = 90◦. For incident light with U = 0 (i.e., χ = 0◦, χ = 90◦, χ = 180◦, V = 1, V = −1,
or unpolarized light), the shift is zero for any angle of incidence.

Finally, the amplitude gradients in the y-direction associated with the angular IF shift
are visible in the Rda- and Rad-elements of the Jones pupil expressed in the daz-basis (see
Fig. 7.4, center). The gradients of these elements are a combination of gradients in the
y-direction and the x-direction, with the latter due to the angular GH shift (red borders).
Because the angular IF shift is zero in the focus, it is not visible in the PSM.
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Figure 7.10: Angular IF shift as a function of angle of incidence at a wavelength of 820 nm
for a beam of light with an f-number of 61.3 that reflects off gold as obtained from the
closed-form expression of Eq. (7.34) (curves) and polarization ray tracing (data points).
The shift is shown for an incident beam that is completely unpolarized, 100% linearly
polarized with various angles of linear polarization χ, and 100% right-handed (V = 1) or
left-handed (V = −1) circularly polarized. The shifts for χ = 67.5◦ and χ = 157.5◦ are
not shown, but are very close to the shifts for χ = 22.5◦ and χ = 112.5◦, respectively.
Except for the circular polarization, the colors used indicate the same polarization states
as in Fig. 7.9.

7.5 Discussion

In Sect. 7.4 we explained the origin of the spatial and angular GH and IF shifts and investi-
gated their size and direction as a function of angle of incidence and incident polarization
state. We also showed that these four beam shifts are fully reproduced by polarization ray
tracing as described in Sect. 7.3 and that the exact beam intensity profile (i.e., whether
it is Gaussian or uniform) has a negligible effect. Of the four beam shifts, only the spa-
tial GH and IF shifts are relevant for high-contrast imagers because they are visible in
the focal plane; the angular GH and IF shifts are not important because, besides a small
point-symmetric deformation of the PSF for angles of incidence close to grazing inci-
dence (which do not occur in high-contrast imagers), they have no effect in the focus. We
thus find that the polarization structure in the PSF that limits the performance of corona-
graphs and the speckle suppression of polarimetric imagers is created by the spatial GH
and IF shifts. In Sect. 7.5.1, we investigate the polarization structure in the PSF created
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by the spatial GH and IF shifts. Subsequently, in Sect. 7.5.2, we examine the effect of the
spatial GH and IF shifts on polarimetric measurements. In Sect. 7.5.3, we then briefly dis-
cuss the size of the spatial GH and IF shifts for various mirror materials and wavelengths.
Finally, we use our understanding of the spatial GH and IF shifts to discuss and refine the
approaches to mitigate the shifts in Sect. 7.5.4.

7.5.1 Polarization structure in the PSF due to beam shifts
In this section, we investigate the polarization structure in the PSF created by the spa-
tial GH and IF shifts. This polarization structure must be taken into account when de-
signing the coronagraphs of high-contrast imagers that aim to detect planets in reflected
light (Breckinridge et al., 2015). For our analysis, we consider the reflection off a single
flat mirror at an angle of incidence of 45◦, using the same configuration as examined in
Sects. 7.3 and 7.4.

The observed light of the stars around which high-contrast imagers search for planets
is unpolarized or has a degree of polarization of only several percent (see e.g., Heiles,
2000). For this case of (nearly) unpolarized incident light, the Stokes vector after reflec-
tion off a flat mirror is given by the elements in the left column of the PSM in Fig. 7.5, that
is, the (I→ I)-, (I→Q)-, (I→U)-, and (I→V)-elements. These elements are the same as
those in the top row of the PSM, except for the (I→U)-element which has opposite sign.
Because the spatial GH and IF shifts follow from these top-row elements (see Sects. 7.4.1
and 7.4.3), the polarization-dependent structures visible in the Stokes vector for reflection
of incident unpolarized light must be created by the spatial GH and IF shifts. In the fol-
lowing, we refer to the (I→ I)-, (I→Q)-, (I→U)-, and (I→V)-elements as the intensity
image and the Q-, U-, and V-images, respectively.

As outlined in Sect. 7.4.1, the spatial GH shift is described by two opposite shifts of
different size for the incident light polarized in the x- and y-directions, that is, for the
incident Ix- and Iy-components of the light. Because unpolarized light can be described
as the sum of equal amounts of the Ix- and Iy-components (see Eqs. (7.4), (7.8), and
(7.9)), the intensity image consists of two PSF components that are slightly shifted in
opposite directions along the x-axis. As a result, the PSF in intensity is not only shifted
(see Fig. 7.7, black curve), but also broadened in the x-direction. The Q-image is equal
to the difference of the Ix- and Iy-components (see Eq. (7.5)). Due to the diattenuation
(see Eq. (7.15)), the two components are not reflected by an equal amount. Therefore, an
overall negative signal with a minimum of ∼0.9% remains in the image, which constitutes
the IP. But because the Ix- and Iy-components are also shifted in opposite directions, this
IP signal itself also has a large shift (see also Breckinridge et al., 2015).

As explained in Sect. 7.4.3, the spatial IF shift is opposite for incident diagonally (d)
and antidiagonally (a) polarized light (i.e., for positive and negative 100% U-polarized
light) as well as for incident right-handed (r) and left-handed (l) circularly polarized light
(i.e., for positive and negative 100% V-polarized light). Unpolarized light can be de-
scribed as the sum of equal amounts of these Id- and Ia-components as well as the sum
of equal amounts of the Ir- and Il-components (see Eqs. (7.4), (7.6), and (7.7)). There-
fore, the intensity image consists of PSF components that are slightly shifted by equal
amounts in opposite direction parallel to the y-axis. So although the PSF in intensity is
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not shifted (see Fig. 7.9, black curve), it is broadened in the y-direction in addition to
the broadening in the x-direction (due to the spatial GH shift). The opposite shifts of the
Id- and Ia-components and the Ir- and Il-components can also be seen in the U- and V-
images, respectively, where for the configuration considered they create structures below
0.1% of the intensity (with the U-image having larger values than the V-image as can
be expected from Fig. 7.9). Breckinridge et al. (2015) refer to these structures as ghost
PSFs (see Sect. 7.1), although the authors describe them as components of the ARM. Our
results show that these ghost PSFs are created by the spatial IF shifts and are elliptically
polarized. Finally, we note that due to the splitting of the orthogonal circular polarization
states in the V-image, the spatial IF shift is often also referred to as the spin Hall effect
of light (e.g., Hermosa et al., 2011; Bliokh & Aiello, 2013; Bliokh & Nori, 2015; Bliokh
et al., 2015).

The PSM in Fig. 7.5 as calculated with polarization ray tracing includes all orders
of polarization aberrations. Still, we find that the polarization structure in the PSF for
the case of unpolarized incident light is adequately described by the diattenuation and
the first-order polarization aberrations in the focus, that is, the spatial GH and IF shifts.
We therefore conclude that only for curved mirrors the higher-order polarization aberra-
tions, such as polarization-dependent astigmatism (Breckinridge et al., 2015), come into
play. For a discussion on the combined effect of a series of flat mirrors and the polariza-
tion aberrations of curved mirrors with normal incidence, we refer to Breckinridge et al.
(2015).

7.5.2 Effect of beam shifts on polarimetric measurements
In this section, we investigate the effect of the spatial GH and IF shifts on polarimetric
measurements with high-contrast imagers. The physics literature does not describe beam
shifts for the case of incident unpolarized light measured by a polarimeter following the
mirror reflection. However, our approach enables us to understand that case based on our
insight into the beam shifts as well as our results from the polarization ray tracing.

Consider placing a rotatable linear polarizer behind the mirror that we analyzed in
Sect. 7.5.1. In that case, the Stokes vector incident on the polarizer is the same Stokes
vector as examined in Sect. 7.5.1: It is equal to the left column of the PSM in Fig. 7.5. If
we then align the transmission axis of the polarizer with the x-, y-, d-, and a-directions,
we measure the Ix-, Iy-, Id-, and Ia-components of the beam. Also, if we replace the
polarizer with a right-handed or left-handed circular polarizer, we measure the Ir- and Il-
components of the beam. As a result, these six measurements are sensitive to exactly the
same spatial GH and IF shifts of these components as described in Sect. 7.5.1. Therefore,
when we compute the differences of the x- and y-, d- and a-, and r- and l-measurements,
we obtain the Q-, U-, and V-images of the Stokes vector after reflection.

Because stars are generally unpolarized, polarimetric measurements strongly suppress
the light from the star, thereby making the detection of planets in reflected light easier.
However, the maximum gain in contrast from polarimetry is limited by the spatial GH
and IF shifts and the polarization structure that they create. Although the IP is a larger
aberration, this effect is routinely subtracted in the data reduction and/or removed by using
a half-wave plate in front of the optical path in current high-contrast imaging polarimeters
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(Witzel et al., 2011; Canovas et al., 2011; Wiktorowicz et al., 2014; Millar-Blanchaer
et al., 2016; de Boer et al., 2020; Chapters 2 and 3).

To quantify the maximum gain in contrast from polarimetry as limited by the spatial
GH and IF shifts, we compute the mirror-induced fractional polarization in Q, U, and V
over the PSF. To this end, we convolve the intensity image and the Q-, U-, and V-images
using a top-hat kernel with a diameter equal to the full width at half maximum of the
PSF in the intensity image. This diameter is equal to the diameter of the apertures one
would use to extract the fluxes of detected planets and determine the noise level in the
images (e.g., Mawet et al., 2014). After convolving the images, we compute the IP in the
Q-image by dividing the total flux in the Q-image by the total flux in the intensity image.
We then subtract the IP from the Q-image by multiplying the intensity image by the IP and
subtracting the resulting image from the Q-image. Subsequently, we compute the images
of the normalized Stokes q = Q/I, u = U/I, and v = V/I by dividing the (IP-subtracted)
Q-, U-, and V-images by the intensity image. The resulting images as well as the images
of the intensity and the degree and angle of linear polarization P and χ (see Eqs. (7.11)
and (7.12)) are shown in Fig. 7.11.

Figure 7.11 (top) shows that the spatial GH and IF shifts create polarization structures
with significant fractional-polarization levels in the PSF. Whereas the structure in the q-
image is produced by the spatial GH shift, the orthogonally oriented structures in the
u- and v-images are induced by the spatial IF shift. In all images the PSF core and the
Airy rings contain successive positively and negatively polarized regions. The fractional-
polarization levels are largest in the q-image and smallest in the v-image. The relative
strength of the fractional polarizations in the q-, u-, and v-images are directly related to
the relative sizes of the spatial GH and IF shifts at an angle of incidence of 45◦ (see
Figs. 7.7 and 7.9). Figure 7.11 (bottom) indicates that the degree of linear polarization in
the PSF reaches a maximum of 0.56%. Finally, we see that the angle of linear polarization
rotates 180◦ when moving in a circle around the center of the PSF and that it differs by
90◦ between the inner and outer regions of the Airy rings.

The fractional polarizations in the q-, u-, and v-images limit the local gain in contrast
achievable with polarimetry. The degree of (linear) polarization is several tenths of a
percent on average; hence the average contrast gain is a factor of ∼350, which is the gain
compared to the contrast in intensity including the effects of seeing. This is because any
speckles due to the seeing are also polarized at approximately this level. We stress that the
exact numerical values presented in Fig. 7.11 are only valid for the specific configuration
considered. For example, for a series of mirrors and/or beams with smaller f-numbers,
the fractional-polarization levels are much higher and therefore the gain in contrast due to
polarimetry is much lower.

Finally, as discussed in Sect. 7.1, the polarimetric speckle suppression of the high-
contrast imaging polarimeter SPHERE-ZIMPOL is limited by polarization-dependent
beam shifts (Schmid et al., 2018). Indeed, the structures visible in the on-sky polari-
metric images of Fig. 26 of Schmid et al. (2018) agree very well with those in the q- and
u-images of Fig. 7.11 (top). Therefore, the polarimetric contrast of SPHERE-ZIMPOL at
small angular separations from the star is clearly limited by both the spatial GH and IF
shifts.
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Figure 7.11: Images of the PSF structures visible in normalized Stokes q (without IP), u,
and v (top), degree of linear polarization P, angle of linear polarization χ, and intensity
(bottom) at a wavelength of 820 nm for a converging beam of light with an f-number of
61.3 that reflects off gold at an angle of incidence of 45◦. The images are convolved with
a top-hat kernel with a diameter equal to the full width at half maximum of the PSF in
intensity. The images show the core of the PSF and the first three complete Airy rings.
The positive x- and y-directions are upward and to the left, respectively.

7.5.3 Size of beam shifts for various mirror materials and
wavelengths

So far we have only considered the beam shifts for reflection off gold at a wavelength
of 820 nm. Here we briefly discuss the maximum size of the spatial GH and IF shifts
as a function of wavelength from the ultraviolet to the near-infrared for the three most
common (bulk) mirror materials used in astronomical telescopes and instruments. We
note, however, that actual mirrors in astronomical telescopes and instruments are likely
to consist of a stack of thin films and so the exact sizes of the shifts will be different. To
compute the shifts, we use the complex refractive indices of gold, silver, and aluminum for
the range of wavelengths from Rakić et al. (1998). The spatial GH shift for x-polarized
light (from Eq. (7.26)) and the spatial IF shift for anti-diagonally polarized light (from
Eq. (7.32)) for angles of incidence θ of 45◦ and 70◦, normalized with the wavelength, are
shown in Fig. 7.12.

We conclude that the spatial GH shift is larger than the spatial IF shift for all mirror
materials, that the size of the shifts is always less than the wavelength, and that the shifts
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Figure 7.12: Maximum wavelength-normalized spatial GH (top) and IF (bottom) shifts
as a function of wavelength at an angle of incidence θ of 45◦ and 70◦ for reflection off
gold, silver, and aluminum. The legend in the bottom panel is valid for both panels. The
shifts for gold and silver are only shown for wavelengths longer than 600 nm and 400 nm,
respectively, because the reflectivity drops below 90% at shorter wavelengths.
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relative to the wavelength are larger for shorter wavelengths. Of the three materials, alu-
minum produces the smallest shifts, whereas gold and silver create larger shifts. For all
materials and wavelengths, the spatial GH shift is smaller for θ = 45◦ than for θ = 70◦.
The same is true for the spatial IF shift, except for the shortest wavelengths where the
shift for θ = 45◦ becomes larger than that of θ = 70◦.

7.5.4 Mitigation of beam shifts
Breckinridge et al. (2015) provide an overview of possible approaches to mitigate polar-
ization aberrations in optical systems, which includes using beams with large f-numbers,
keeping the angles of incidence small, and tuning the coatings of the mirrors. In this sec-
tion, we discuss and refine these approaches based on our fundamental understanding of
the beam shifts. Breckinridge et al. (2015) also discuss the use of possible optical devices
that could compensate polarization aberrations (see also Clark & Breckinridge, 2011; Sit
et al., 2017; Dai et al., 2019), but a discussion of these devices is beyond the scope of
this chapter. We also note that Schmid et al. (2018) and Hunziker et al. (2020) are able
to correct the beam shifts of SPHERE-ZIMPOL by measuring them in on-sky data. This
correction significantly reduces the speckle noise at angular separations >0.6′′ from the
star, but residuals remain at separations <0.6′′. These residuals are particularly strong
for broadband data because the beam shifts are wavelength dependent and thus cannot
be corrected with a simple shift for a broad wavelength range. Therefore, mitigating the
beam shifts already during the optical design is the preferred approach.

The size of the spatial GH and IF shifts relative to the size of the PSF is inversely
proportional to the f-number F of the beam of light incident on a mirror (see Sect. 7.4.1).
Therefore, to limit the effect of beam shifts, the absolute f-numbers of the beams falling
onto the mirrors in the optical system should be large; the beams should converge or
diverge slowly. In the limit of a perfectly collimated beam (F = ∞) incident on a flat
mirror followed by a focusing optical element, the spatial GH and IF shifts even vanish
in the focal plane. Because any beam of finite extent corresponds to an angular spectrum
of plane waves, the spatial GH and IF shifts still occur, independent of the f-number, but
shifts in the pupil plane do not lead to shifts in the focal plane. We find the same result
with polarization ray tracing: A perfectly collimated incident beam has the same angle
of incidence for all rays, and therefore in the Jones pupil there are no phase gradients
(for the spatial GH shift) or rotations of the planes of incidence (for the spatial IF shift).
Unfortunately, placing mirrors in collimated beams is generally not possible because the
limited number of collimated beams in astronomical instruments are used for other optical
components such as coronagraphs and pupil stops. Finally, we note that magnifications
in the optical system after the reflection off the mirror do not affect the size of the beam
shifts relative to the PSF, because magnifications change the size of the shifts and the PSF
by an equal amount.

The spatial GH and IF shifts are created by respectively the phase gradient and the
retardance of the mirror at the central angle of incidence of the beam; the amplitudes
of the reflection coefficients have only a marginal effect and are therefore not important.
Hence, to minimize the spatial GH and IF shifts, the phase gradient should be kept small
and the retardance should have a value close to 180◦ (see Eqs. (7.26) and (7.33)). Fortu-



7

238 Conclusions

nately, the values of the phase gradient and the retardance are closely related: A retardance
close to 180◦ automatically implies small phase gradients in both the p- and s-directions.
Figure 7.3 shows that this situation occurs at small angles of incidence. Therefore, to
minimize the spatial GH and IF shifts, the central angle of incidence of the beams should
be kept small.

Keeping the f-numbers large and the central angles of incidence small may not always
be possible because optical systems need to fit in a limited volume. Therefore, also the
design of the coatings of the mirrors should be considered to minimize the spatial GH
and IF shifts. In general, mirror coatings are optimized for large reflectivity to maximize
the throughput of the optical system. However, highly reflective coatings almost always
have retardances significantly different from 180◦ and therefore such coatings produce
large spatial GH and IF shifts. But for high-contrast imaging, a high system throughput
is of little use when one cannot attain the contrast to image exoplanets. Therefore, a
paradigm shift in the design of the mirror coatings for high-contrast imagers is necessary:
Rather than maximizing the reflectivity, the retardance should be optimized to have values
close to 180◦ for the central angle of incidence of the mirror and the wavelength range
of interest. For linear polarimeters such a design philosophy has the added advantage
that it also prevents large losses of signal due to strong polarimetric crosstalk, such as
those found for the image derotators of SPHERE and SCExAO-CHARIS (de Boer et al.,
2020; Chapters 2 and 3). The larger IP resulting from the suboptimal reflectivity is not an
issue because it can be easily removed by adding a half-wave plate to the optical path or
subtracting it in the data reduction.

7.6 Conclusions

We used polarization ray tracing to numerically compute the beam shifts for reflection off
a flat metallic mirror and compared the resulting shifts to the closed-form expressions of
the spatial and angular GH and IF shifts from the physics literature. We find that all four
beam shifts are fully reproduced by polarization ray tracing. In particular, we find that the
phase gradients in the Jones pupil and the ghost PSFs as described by Breckinridge et al.
(2015) are produced by the spatial GH and IF shifts, respectively. We also studied the ori-
gin of the four shifts and the dependence of their size and direction on the beam intensity
profile, incident polarization state, angle of incidence, mirror material, and wavelength.

Whereas the spatial GH and IF shifts depend on the phase of the Fresnel reflection
coefficients, the angular GH and IF shifts depend on the amplitude. Only the spatial
GH and IF shifts are relevant for astronomical telescopes and instruments because they
are visible in the focal plane. The angular GH and IF shifts on the other hand are not
important because they only change the intensity distribution across the reflected beam.
As such, the angular shifts have no significant effect in the focus and only create a small
point-symmetric deformation of the PSF. We thus conclude that only phase aberrations
are important; amplitude aberrations have an almost negligible effect.

The spatial GH and IF shifts create polarization structure in the PSF that reduces
the performance of coronagraphs. In fact, we find that the polarization structure for the
case of unpolarized light incident on a flat metallic mirror is adequately described by
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the diattenuation (i.e., the IP) and the spatial GH and IF shifts. The spatial GH and IF
shifts can also significantly reduce the speckle suppression of polarimetric measurements,
thereby limiting the maximum attainable gain in contrast from polarimetry. To mitigate
the spatial GH and IF shifts in optical systems, the beams of light reflecting off the mirrors
should have large f-numbers and small central angles of incidence. Most importantly,
mirror coatings should not be optimized for maximum reflectivity, but should instead be
designed to have a retardance close to 180◦.

Our study provides a fundamental understanding of the polarization aberrations result-
ing from reflection off flat metallic mirrors in terms of beam shifts. In addition, we have
created the analytical and numerical tools to describe these shifts. The next step is to study
the combined effect and wavelength dependence of the beam shifts of complete optical
paths of (polarimetric) high-contrast imaging instruments and telescopes with multiple
inclined components with varying orientation as well as rotating half-wave plates. In par-
ticular, we plan to use our tools to create a detailed model of the beam shifts affecting
the polarimetric mode of SPHERE-ZIMPOL and enable accurate corrections of on-sky
observations. The insights from our work can be applied to understand and improve
the performance of many future space- and ground-based high-contrast imagers and po-
larimeters, such as the Roman Space Telescope, HabEx, LUVOIR, PSI at the Thirty Meter
Telescope, and PCS (or EPICS) at the Extremely Large Telescope.
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