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Chapter 8

New Ideas and Trends in Deep
Multimodal Content
Understanding

In previous chapters, we focused the research on image retrieval and cross-modal
retrieval in the context of non-incremental or incremental learning. In the past years,
deep learning has also been explored for the field of multimodal learning.

In this Chapter, we present the recent new ideas and trends in multimodal content
understanding filed, focusing on the analysis of two modalities: image and text.
These new methods can be further used for intelligent image retrieval to seek per-
formance improvement. Unlike classic reviews of deep learning where unimodal im-
age classifiers such as VGG, ResNet, and Inception module are central topics, this
chapter examines recent multimodal deep models and structures, including auto-
encoders, generative adversarial nets and their variants. These models go beyond
the simple image classifiers in which they can do uni-directional (e.g. image caption-
ing, image generation) and bi-directional (e.g. cross-modal retrieval, visual question
answering) multimodal tasks. Besides, we analyze two aspects of the challenge in
terms of better content understanding in deep multimodal applications. We then
introduce current ideas and trends in deep multimodal feature learning, such as
feature embedding approaches and objective function design, which are crucial in
overcoming the aforementioned challenges.
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Multimodal deep learning, Ideas and trends, Content understanding

This chapter is based on the following publication [39]:

• Chen, W., Wang, W., Liu, L., and Lew, M.S., “New Ideas and Trends in Deep Multimodal
Content Understanding: A Review.” Neurocomputing, 2020, pp. 195-215.
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8. NEW IDEAS AND TRENDS IN DEEP MULTIMODAL CONTENT
UNDERSTANDING

8.1 Introduction

Multimodal content understanding aims at recognizing and localizing objects, de-
termining the attributes of objects, characterizing the relationships between objects,
and finally, describing the common semantic content among different modalities. In
the information era, rapidly developing technology makes it more convenient than
ever to access a sea of multimedia data such as text, image, video, and audio. As a
result, exploring semantic correlation to understand content for diverse multimedia
data has been attracting much attention as a long-standing research field in the
computer vision community.

Recently, the topics range from speech-video to image-text applications. Consid-
ering the wide array of topics, we restrict the scope of this survey to image and
text data specifically in the multimodal research community, including tasks at the
intersection of image and text (also called cross-modal). According to the available
modality during testing stage, multimodal applications include bi-directional tasks
(e.g. image-sentence search [264], visual question answering (VQA) [265]) and uni-
directional tasks (e.g. image captioning [266], image generation [22, 267]), both of
them will be introduced in the following sections.

Data from visual and textual modalities are represented as unimodal features us-
ing domain-specific networks. Complementary information from these unimodal
features is appealing for multimodal content understanding. For example, the uni-
modal features can be further projected into a common space by using another
neural network for an vision task. For clarity, we illustrate the flowchart of deep
multimodal research in Figure 8.1. On the one hand, the neural networks are com-
prised by successive linear layers and non-linear activation functions, the image or
text data is represented in a high abstraction way, which is helpful for reducing the
“semantic gap” [10], as defined in Chapter 3. On the other hand, different modalities
are characterized by different statistical properties. Image is 3-channel RGB array
while text is often symbolic. When represented by different neural networks, their
features have unique distributions and differences, which leads to the “heterogeneity
gap” [176]. To understand multimodal content, deep neural networks should be able
to reduce the difference between high-level semantic concepts and low-level features
in intra-modality representations, as well as construct a common latent space to
associate semantic correlations in inter-modality representations.

Much effort has gone into mitigating these two challenges to improve content under-
standing. Some works involve deep multimodal structures such as cycle-consistent
reconstruction [268, 269], while others focus on feature extraction nets such as graph
convolutional networks [270, 271]. In some algorithms, reinforcement learning is
combined with deep multimodal feature learning [272, 273]. These recent ideas are
the scope of this chapter.
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Figure 8.1: A general flowchart of deep multimodal feature learning.

8.2 Multimodal Applications

This section aims to summarize various multimodal applications where image and
text data are involved. These applications have gained a lot of attention lately and
show a natural division into uni-directional and bi-directional groups. The difference
is that for uni-directional scenarios only one modality is available at the test stage,
whereas in bi-directional scenarios, two modalities are required.

8.2.1 Uni-directional applications

a. Image-to-text tasks

Image captioning is a task that generates a sentence description for an image and
requires recognizing important objects and their attributes, then inferring their cor-
relations within the image [274]. After capturing these correlations, the captioner
yields a syntactically correct and semantically relevant sentence. To understand
the visual content, images are fed into convolutional neural networks to learn hi-
erarchical features, which constitutes the feature encoding process. The produced
hierarchical features are transformed into sequential models (e.g. RNN, LSTM) to
generate the corresponding descriptions. Subsequently, the evaluation module pro-
duces description difference as the feedback signals to update the performance of
each block. Deep neural networks are commonly used in image captioning. In the
following sections, we will examine the methods widely used to improve image cap-
tioning performance, including evolutionary algorithm [275], generative adversarial
networks [180, 276], reinforcement learning [272, 273], memory networks [277, 278],
and attention mechanisms [279, 280].

According to captioning principles, researchers focus on specific caption generation
tasks, such as image tagging [281], visual region captioning [282], and object cap-
tioning [283]. Analogously, these tasks are also highly dependent on the regional
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image patch and sentences/phrases organization. The specific correlations between
the features of objects (or regions) in one image and the word-level (or phrase-level)
embeddings are explored instead of global dependence of the holistic visual and
textual features.

b. Text-to-image tasks

Compared to generating a sentence for a given image, generating a realistic and
plausible image from a sentence is even more challenging. Namely, it is difficult
to capture semantic cues from a highly abstract text, especially when the text is
used to describe complex scenarios as found in the MS-COCO dataset [192, 284].
Text-to-image generation is such a kind of task which maps from textual modality
to visual modality.

Text-to-image generation requires synthesized images to be photo-realistic and se-
mantically consistent (i.e. preserving specific object sketches and semantic textures
described in text data) through architectures such as Variational Auto-Encoders
(VAE) [285], auto-regressive models [286] and Generative Adversarial Networks
(GANs) [22, 180]. One example is to generate a semantic layout as intermedi-
ate information from text data to bridge the heterogeneity gap in image and text
[287, 288]. Some works focus on the network structure design for feature learn-
ing. For image synthesis, novel derivative architectures from GANs [180] have been
explored in hierarchically nested adversarial networks [289], perceptual pyramid ad-
versarial networks [290], iterative stacked networks [23, 291], attentional generative
networks [292, 293], cycle-consistent adversarial networks [268], and symmetrical
distillation networks [294].

One of limitations of image generation is that, while generation models work well
and achieve promising results on single category object datasets like Caltech-UCSD
CUB [295] and Oxford-102 Flower [295], existing methods are still far from promising
on complex dataset like MS-COCO where one image contains more objects and
is described by a complex sentence. To compensate for this limitation, word-level
attention [292], hierarchical text-to-image mapping [288] and memory networks [296]
have been explored. In the future, one direction may be to make use of the Capsule
idea proposed by Hinton [297] since capsules are designed to capture the concepts
of objects.

8.2.2 Bi-directional applications

a. Cross-modal retrieval

Cross-modal retrieval has been researched for decades. The aim is to return the
most relevant image (text) when given a query text (image). There are two aspects
should be considered: retrieval accuracy and retrieval efficiency.
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8.2 Multimodal Applications

For the first, it is desirable to explore semantic correlations across an image and text
features. To meet this requirement, the aforementioned heterogeneity gap and the
semantic gap are the challenges to deal with. Some novel techniques that have been
proposed are as follows: attention mechanisms and memory networks are employed
to align relevant features between image and text [298]; Bi-directional sequential
models (e.g. Bi-LSTM [188]) are used to explore spatial-semantic correlations [264];
Graph-based embedding and graph regularization are utilized to keep semantic order
in text feature extraction process [299]; Information theory is applied to reduce the
heterogeneity gap in cross-modal hashing [34]; Adversarial learning strategies and
GANs are used to estimate common feature distributions [177, 300].

For the second, recent hashing methods have been explored owing to the compu-
tation and storage advantages of binary code [178]. Essentially, methods such as
attention mechanisms and adversarial learning [178] are applied for learning com-
pact hash codes with different lengths. However, the problems should be considered
when one employs hashing methods for cross-modal retrieval are feature quantiza-
tion and non-differential binary code optimization. Focusing on the feature quanti-
zation, Wang et al. [301] introduce a hashing code learning algorithm in which the
binary codes are generated without relaxation so that the large quantization and
non-differential problems are avoided.

There still exists room for performance improvement (see Figure 8.4-8.5). For exam-
ple, to employ graph-based methods to construct semantic information within two
modalities, more context information such as objects link relationships are adopted
for more effective semantic graph construction.

b. Visual question answering

Visual question answering (VQA) is a challenging task in which an image and a
question are given, then a correct answer is inferred according to visual content and
syntactic principle. Since VQA was proposed, it has received increasing attention in
recent years. For example, there are some training datasets [302] built for this task,
and some network training tips and tricks are presented in work [303].

To infer correct answers, VQA systems need to understand the semantics and intent
of the questions completely, and also should be able to locate and link the relevant
image regions with the linguistic information in the questions. VQA applications
present two-fold difficulties: feature fusion and reasoning rationality. Thus, VQA
more closely reflects the difficulty of multimodal content understanding, which makes
VQA applications more difficult than other multimodal applications. Compared to
other applications, VQA has various and unknown questions as inputs. Specific
details (e.g. activity of a person) in the image should be identified along with the
undetermined questions. Moreover, the rationality of question answering is based
on high-level knowledge and advanced reasoning capability of deep models.
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The research on VQA includes: free-form open-ended questions [304], where the
answer could be words, phrases, and even complete sentences; object counting ques-
tions [305] where the answer is counting the number of objects in one image; multi-
choice questions [279] and Yes/No binary problems [306]. In principle, the type of
multi-choice and Yes/No can be viewed as classification problems, where deep mod-
els infer the candidate with maximum probability as the correct answer. These two
types are associated with different answer vocabularies and are solved by training
a multi-class classifier. In contrast, object counting and free-form open-ended ques-
tions can be viewed as generation problems [302] because the answers are not fixed,
only the ones related to visual content and question details.

8.3 Recent Advances in Content Understanding

Lots of remarkable progresses about exploring content understanding between image
and text have been made. In general, these advances are mainly from a viewpoint
of network structure and a viewpoint of feature extraction/enhancement. To this
end, combining the natural process pipeline of multimodal research (see Figure 8.1),
we categorize these research ideas into three groups: deep multimodal structures
presented in Section 8.3.1, multimodal feature extraction approaches introduced in
Section 8.3.2, and common latent space learning described in Section 8.3.3.

8.3.1 Deep multimodal structures

Deep multimodal structures are the fundamental frameworks to support different
deep networks for exploring visual-textual semantics. These frameworks have critical
influences for the following feature extraction and common latent space learning.
To understand the semantics between images and text, deep multimodal structures
usually involve computer vision and natural language processing (NLP) field [307].
During the past years, a variety of related methods have blossomed and accelerated
the performance of multimodal learning directly in multimodal applications.

Deep multimodal structures include generative models, discriminative models. Gen-
erative models implicitly or explicitly represent data distributions measured by
a joint probability P (X, Y ), where both raw data X and ground-truth labels Y
are available in supervised scenarios. Discriminative models learn classification
boundaries between two different distributions indicated by conditional probability
P (Y |X). Recent representative network structures for multimodal feature learning
are auto-encoders and generative adversarial networks.

a. AutoEncoders

The main idea of auto-encoder is to first encode data from a source modality as
hidden representations and then to use a decoder to generate features (or data) for
the target modality. Thus, it is commonly used for bi-directional applications where
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Figure 8.2: Convolutional autoencoder used for deep multimodal learning. The
branch for image feature learning can adopt hierarchical networks such as CNNs; the
branch for text feature learning can capture the dependency relations in a sentence by
sequential models such as RNN and LSTM. Usually, a reconstruction loss function is
used to optimize network training.

two modalities are available at the test stage. For this structure, reconstruction
loss is the constraint for training encoder and decoder to well capture the semantic
correlations between image and text features. For clarity, we identify three ways for
correlation learning using auto-encoders in Figure 8.2. For instance, as shown in
Figure 8.2(a), the input images and text are processed separately with non-shared
encoder and decoder, after which these hidden representations from the encoder are
coordinated through a constraint such as Euclidean distance [308]. The coordinated
methods can be replaced by joint methods in Figure 8.2(b) where image and text
features are projected into a common space with a shared multilayer perceptron
(MLP). Subsequently, the joint representation is reconstructed back to the original
raw data [309]. Alternatively, feature correlations are captured by cross reconstruc-
tion with similarity constraints between hidden features. The idea of constraining
sample similarity is also incorporated with GANs into a cycle-consistent formation
for cross-modal retrieval such as CYC-DGH [269].

The neural networks contain in the encoder-decoder framework can be modality
specific. For image data, the commonly used neural networks are CNN while se-
quential networks like LSTM are most often used for text data. When applied for
multimodal learning, the decoder (e.g. LSTM) constructs hidden representations of
one modality in another modality. The goal is not to reduce reconstruction error but
to minimize the output likelihood estimation. Therefore, most works focus on the
decoding since it is a process to project the less meaningful vectorial representations
to meaningful outputs in target modality. Under this idea, several extensions have
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been introduced. The main difference among these algorithms lies in the structure
of the decoder. For example, “stack and parallel LSTM” [310] is to parallelize more
parameters of LSTMs to capture more context information. Similar ideas can be
found in “CNN ensemble learning” [311]. Instead of grabbing more information by
stacking and paralleling, “Attention-LSTM” [310] combines attention technique into
LSTM to highlight most relevant correlations. An adversarial training strategy is
employed into the decoder to make all the representations discriminative for seman-
tics but indiscriminative for modalities so that intra-modal semantic consistency is
effectively enhanced [309]. Considering the fixed structure in the decoder like RNN
might limit the performance, Wang et al. [275] introduce evolutionary algorithm to
adaptively generate neural network structures in the decoder.

b. Generative adversarial networks

Adversarial learning from generative adversarial networks [180] has been employed
into applications including image captioning [312], cross-modal retrieval [309] and
image generation [23, 289, 291], but has been less popular in VQA tasks. GANs com-
bine generative sub-models and discriminative sub-models into a unified framework
in which two components are trained in an adversary manner.

GANs can cope with the scenarios where there are some missing data. To accu-
rately explore the correlations between two modalities, multimodal research works
involving GANs have been focusing on the whole network structure and its two
components: generator and discriminator.

For the generator which also can be viewed as an encoder, an attention mechanism
is often used to capture the important key points and align cross-modal features
such as Attention-aware methods [292]. Sometimes, Gaussian noise is concatenated
with the generator’s input vector to improve the diversity of generated samples and
avoid model collapse, such as the conditioning augmentation block in StackGAN
[23]. To improve its capacity for learning hierarchical features, a generator can be
organized into different nested structures to capture multi-level semantics such as
hierarchical-nested [289] and hierarchical-pyramid [290].

The discriminator, which usually performs binary classification, attempts to dis-
criminate the ground-truth labels from the outputs of the generator. Some recent
ideas are proposed to improve the discrimination of GANs. Originally, discrimina-
tor in the first work [180] just needs to classify different distributions into “True” or
“False” [22]. However, discriminator can also make a class label classification where
a label classifier is added on the top of discriminator [313]. Apart from the label
classification, a semantic classifier is designed to further predict semantic relevances
between a synthesized image and a ground-truth image for text-to-image genera-
tion [267]. Only focusing on the paired samples leads to relatively-weak robustness.
Therefore, the unmatched image-text samples can be fed into a discriminator (e.g.
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GAN-INT-CLS [22] and AACR [300]) so that the discriminator would have a more
powerful discriminative capability.

The application of GANs in multimodal research are categorized into direct methods
[22, 313], hierarchical methods [289, 290], and iterative methods [23, 291, 292].
Contrary to direct methods, hierarchical methods divide raw data in one modality
(e.g. image) into different parts such as a “style” and “structure” stage, thereby, each
part is learned separately. Alternatively, iterative methods separate the training
into a “coarse-to-fine” process where details of the results from a previous generator
are refined. Besides, cycle-consistency [314] is introduced for unsupervised image
translation where a self-consistency (reconstruction) loss tries to retain the patterns
of input data after a cycle of feature transformation. This idea is then applied into
tasks like image generation [268] and cross-modal retrieval [269] to learn semantic
correlation in an unsupervised way.

In recent years, adversarial learning is widely used to design algorithms for deep
multimodal learning [177, 178, 309]. For these algorithms, there are no classifiers
for binary classification. Instead, two sub-networks are trained with the constraints
of competitive loss functions. As the dominant popularity of adversarial learning,
some works are performed by combining auto-encoders and GANs in which the
encoder in auto-encoders and the generator in GANs share the same sub-network
[309, 315, 316]. For example, in the first work about unsupervised image captioning
[316], the core idea of GANs is used to generate meaningful text features from
scratch of text corpus and cross-reconstruction is performed between synthesized
text features and true image features.

8.3.2 Multimodal feature extraction

Feature extraction is closer for exploring visual-textual content relations, which is
the prerequisite to discriminate the complementarity and redundancy of multiple
modalities. In this section, we introduce several effective multimodal feature extrac-
tion methods for addressing the heterogeneity gap. In general, these methods focus
on (1) learning the structural dependency information to reasoning capability of deep
neural networks and (2) storing more information for semantic correlation learning
during model execution. Moreover, (3) feature alignment schemes using attention
mechanism are also widely explored for preserving semantic correlations.

a. Graph embeddings with graph convolutional networks

Words in a sentence or objects within an image have some dependency relationships,
and graph-based visual relationship modelling is beneficial for the characteristic.
Graph Convolutional Networks (GCNs) are alternative neural networks designed
to capture this dependency information. Compared to standard neural networks
such as CNNs and RNNs, GCNs would build a graph structure which models a
set of objects (nodes) and their dependency relationships (edges) in an image or
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sentence, embed this graph into a vectorial representation, which is subsequently
integrated seamlessly into the follow-up steps for processing. Graph representations
reflect the complexity of sentence structure and are applied to natural language
processing such as text classification [154]. For deep multimodal learning, GCNs
receive increasing attention and have achieved breakthrough performance on several
applications, including cross-modal retrieval [317], image captioning [270, 271, 318],
and VQA [319].

Graph convolutional networks in multimodal learning can be employed in text fea-
ture extraction [317, 319] and image feature extraction [270, 271, 318]. Among
these methods, GCNs capture semantic relevances of intra-modality according to
the neighborhood structure. GCNs also capture correlations between two modalities
according to supervisory information. Note that vector representations from graph
convolutional networks are fed into subsequent networks (e.g. “encoder-decoder”
framework) for further learning.

GCNs are introduced to determine the attributes and subsequently characterize
the relationships between image and text [319]. To use GCNs, an image is parsed
into different objects, scenes, and actions. Also, a corresponding question is parsed
and processed to obtain its question embeddings and entity embeddings. These
embedded vectors of image and question are concatenated into node embeddings
then fed into graph convolutional networks for semantic correlation learning. Fi-
nally, the output activations from GCNs are fed into sequential networks to predict
answers.

As an alternative method, GCNs are worthy more exploration for correlations be-
tween two modalities. Moreover, there exist two limitations in GCNs. On the one
hand, graph construction process is overall time- and space-consuming; On the other
hand, the accuracy of output activations from GCNs mostly relies on supervisory
information to construct an adjacency matrix by training, which are more suitable
for structured data, so flexible graph embeddings for image and/or text remains an
open problem.

b. Memory-augmented networks

To enable deep networks to understand multimodal content and have better reason-
ing capability for various tasks, another solution that has gained attention recently is
memory-augmented networks. Directly, when much information in mini-batch even
the whole dataset is stored in a memory bank, such networks have greater capacity
to memorize correlations.

In conventional neural networks like RNNs for sequential data learning, the depen-
dency relations between samples are captured by the internal memory of recurrent
operations. These recurrent operations might be inefficient in understanding and
reasoning overextended contexts or complex images. For instance, most captioning
models are equipped with RNN-based encoders, which predict a word at every time
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step based only on the current input and hidden states used as implicit summaries
of previous histories. However, RNNs and their variants often fail to capture long-
term dependencies [278]. For this limitation, memory networks [277] are introduced
to augment the memory primarily used for text question-answering [320]. Mem-
ory networks improve understanding of both image and text, and then “remember”
temporally distant information.

Memory-augmented networks are used in cross-modal retrieval [298], image cap-
tioning [278], and VQA [321]. Memory-augmented networks can be regarded as
recurrent neural networks with explicit attention methods that select certain parts
of the information to store in their memory slots. The memory slots are a kind of
external memory to support learning. During training, a network such as LSTM or
GRU, which acts as a memory controller, refers to these memory slots to compute
reading weights. According to the weights, the essential information is obtained to
predict the output sequence. Meanwhile, the controller computes writing weights to
update values in memory slots for the next time-step of the training [322].

The performance of memory networks relates to the memory slots’ initialization
strategy and the stored information. For this aspect, memory networks have been
combined with other techniques like attention mechanisms [323] to further improve
its feature learning capability. For example, Xiong et al. [324] explore the impact of
different initialization strategies to demonstrate that initializations from the outputs
of pre-trained networks have better performance. This was verified in works [325]
where output features from image patches are stored into memory slots of spatial
memory networks for VQA. Thereby, generated answers are updated based on gath-
ering evidence from the accessed regions in memory slots. Similarly, Ma et al. [326]
adopt LSTM to obtain text features of each sentence and store into memory slots.
Then memory-augmented networks are utilized to determine the importance of con-
catenated visual and text features over the whole training data. Further considering
both two modalities, a visual knowledge memory networks is introduced in which
memory slots store key-value vectors computed from images, query questions and a
knowledge base [321]; Instead of storing the actual output features, Song et al. [298]
adopt memory slots to store a prototype concept representation from pre-trained
concept classifiers, which is inspired from the process of human memory.

c. Attention mechanism for deep multimodal learning

Attention mechanisms are widely used to tackle this issue in various multimodal
tasks, such as VQA [327, 328, 329] and image captioning [266, 270, 280]. In princi-
ple, the attention mechanisms compute different importances according to relevances
between two global (or local) multimodal features and assign different importances
to these features. Thereby, the networks are more targeted at the sub-components
of the source modality–regions of an image or words of a sentence. To further ex-
plore the relevances between two modalities, the attention mechanisms are adopted
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Figure 8.3: Diagram for different types of attention mechanisms used in deep multi-
modal learning.

on multi-level feature vectors [325], employed in a hierarchical scheme [330], and
incorporated with graph networks for modelling semantic relationships.

To elaborate on the current ideas and trends of attention algorithms, we categorize
this popular mechanism into different types. According to objective computing vec-
tors, we categorize the current attention algorithms into four types: visual attention,
textual attention, co-attention, and self-attention, as illustrated in Figure 8.3. We
further categorize the attention algorithms into single-hop and multiple-hop (i.e.
stacked attention) according to the iterations of importance calculation.

Visual attention. As shown in Figure 8.3(a), visual attention schemes are used
in scenarios where text features (e.g. from a query question) are used as context
to compute their co-relevance with image features, and then the relationships are
used to construct a normalized weight matrix. Subsequently, this matrix is applied
to original image features to derive text-guided image features using element-wise
multiplication operation (linear operation). The weighted image features have been
aligned by the correlation information between image and text. Finally, these aligned
multimodal features are utilized for prediction or classification. This idea is common
in multimodal feature learning [266, 270, 279, 280, 325, 327, 328] and has been
incorporated to get different text-guided features. For example, Anderson et al.
[279] employ embedded question features to highlight the most relevant image region
features in visual question answering. The predicted answers are more accurately
related to the question type and image content. Visual attention is widely used to
learn features from two modalities.
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Textual attention. Compared to visual attention, the textual attention approach
is relatively less adopted. As shown in Figure 8.3(b), it has an opposite computing
direction [105]. The computed weights are based on text features to obtain rele-
vances for different image regions or objects. According to [320], the reason why
textual attention is necessary is that text features from the multimodal models often
lack detailed information for a given image. Meanwhile, the application of textual
attention is less dominant as it is harder to capture semantic relevances between
abstract text data and image data. Moreover, image data has always contained
more irrelevant content for similar text. In other words, the text might describe
only some parts within an image.

Co-attention. As shown in Figure 8.3(c), co-attention algorithm is viewed as a
combination of visual attention and textual attention, which is an option to ex-
plore the inter-modality correlations [202, 204, 323, 329]. Co-attention is a partic-
ular case of joint feature embedding in which image and text features are usually
treated symmetrically. Co-attention in a bi-directional way is beneficial for spatial-
semantic learning. As an example, Nguyen et al. [329] introduce a dense symmetric
co-attention method to improve the fusion performance of image and text represen-
tations for VQA. In their method, features are sampled densely to fully consider
each interaction between any word in question and any image region. Meanwhile,
several other works explore different formations of co-attention. Integrating image
feature with hierarchical text features may vary dramatically so that the complex
correlations are not fully captured. For this, Yu et al. [331] develop the co-attention
mechanism into a generalized Multi-modal Factorized High-order pooling (MFH)
block in an asymmetrical way. Thereby, higher-order correlations of multi-modal
feature achieve more discriminative image-question representation and further re-
sult in significant improvement on the VQA performance.

Self-attention. Compared to the co-attention algorithm, self-attention, which con-
siders the intra-modality relations, is less popular in deep multimodal learning. As
intra-modality relation is complementary to the inter-modality relation, its explo-
ration is considered improving the feature learning capability of deep networks. For
example, in the VQA task, the correct answers are not only based on their associ-
ated words/phrases but can also be inferred from related regions or objects in an
image. Based on this observation, a self-attention algorithm is proposed for multi-
modal learning to enhance the complementary between intra-modality relations and
the inter-modality relations [332]. Self-attention has been used in different ways.
For example, Gao et al. [333] combine the attentive vectors form self-attention with
co-attention using element-wise product. Thereby the inter- and intra-modality in-
formation flow are modeled by the linear method.

It is important to note that when these four types of attention mechanisms are
applied, they can be used to highlight the relevances between different image region
features and word-level, phrase-level or sentence-level text features. These different
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cases just need region/object proposal networks and sentence parsers. When multi-
level attended features are concatenated, the final features are more beneficial for
content understanding in multimodal learning.

As for single-hop and multiple-hop (stacked) attention, the difference lies in whether
the attention “layer” will be used one or more times. The four mentioned attention
algorithms can be applied in a single-hop manner where the relevance weights be-
tween image and text features are computed once only. However, for multiple-hop
scenarios, the attention algorithm is adopted hierarchically to perform coarse-to-fine
feature learning, that is, in a stacked way [202, 323, 325, 328]. For example, Xu et
al. [325] introduce two-hop spatial attention learning for VQA. The first hop focuses
on the whole and the second one focuses on individual words and produces word-
level features. Singh et al. [328] achieve marginal improvements using “attention on
attention” framework in which the attention module is stacked in parallel and for
image and text feature learning. Nevertheless, a stacked architecture has tendency
for gradient vanishing [323]. Regarding this, Fan et al. [323] propose stacked latent
attention for VQA. Particularly, all spatial configuration information contained in
the intermediate reasoning process is retained in a pathway of convolutional layers
so that the vanishing gradient problem is tackled.

In summary, to better understand the content in visual and textual modality, atten-
tion mechanisms provide a pathway for aligning the multimodal semantic correla-
tions. With different multimodal applications, attention mechanisms (single-hop or
multiple-hop) can have different benefits. To this end, we briefly make a comparison
for single-hop and multiple-hop with respect to their advantages, disadvantages, and
the applicable scenarios in Table 8.1.

Table 8.1: Brief comparisons of two attention categories

Hop(s) Advantages Disadvantages Applicable scenarios

Single

More straightforward and
training effective since the
visual-textual interaction
occurs a single time

Less focused on complex rela-
tions between words. Insuffi-
cient to locate words or fea-
tures on complicated sentences

No explicit constraints for visual atten-
tion. Suitable for capturing relations
in short sentences as tends to be paid
much to the most frequently words.

Multiple

More sophisticated and
accurate, especially for
complicated sentences.
Each iteration provides
newly relevant informa-
tion to discover more
fine-grained correlations
between image and text.

Less training effective due to
re-assigning attention weights
multiple times. Sharing struc-
tures and parameters leads
to attention bias (similar at-
tention weights in all hops).
Might suffer from the gradient
vanishing problem [323].

Beneficial for multimodal learning in-
volved long sentences. More suitable
for sentence embedding in text classi-
fication or machine translation tasks.
Beneficial for combining with memory
networks due to the repeatedly or iter-
atively information extraction process.

8.3.3 Common latent space learning

As illustrated in Figure 8.1, unimodal features distribute inconsistently and are not
directly comparable. It is necessary to further map these unimodal features into
a common latent space with the help of an embedding networks (e.g. MLP). Due
to this, common latent feature learning has been a critical procedure for exploiting
multimodal correlations. In the past years, various constraint and regularization
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methods have been introduced into multimodal applications. In this section, we
include these ideas, such as attention mechanisms, which aim to retain similarities
between unimodal image and text features.

According to [334], multimodal feature learning methods include joint and coordi-
nated methods. The joint feature embeddings are defined as:

J = J (x1, ..., xn, y1, ..., yn) (8.1)

while coordinated feature embeddings are represented as:
F = F(x1, ..., xn) ∼ G(y1, ..., yn) = G (8.2)

where J refers to the jointly embedded features, F and G denote the coordinated
features. x1, ..., xn and y1, ..., yn are n-dimension unimodal feature representations
from two modalities. The mapping functions J (·), F(·), and G(·) denote the deep
networks to be learned, “∼” indicates that the two unimodal features are separated
but are related by some similarity constraints.

a. Joint feature embedding

In deep multimodal learning, joint feature embedding is a straightforward way in
which unimodal features are combined into the same presentation. The fused fea-
tures are used to make a classification in cross-modal retrieval. It also can be used
for performing sentence generation in VQA [279, 304].

In early studies, some basic methods are employed for joint feature embedding such
as feature summation, feature concatenation [23, 291, 292], and element-wise inner
product [324, 329], the resultant features are then fed into a multi-layer perceptron
to predict similarity scores. These approaches construct a common latent space for
features from different modalities but cannot preserve their similarities while fully
understanding the multimodal content. Alternatively, more complicated bilinear
pooling methods such as Multimodal Compact Bilinear (MCB) pooling [335]. How-
ever, the performance of MCB is based on a higher-dimensional space. Regarding
this demerit, Multimodal Low-rank Bilinear pooling [336] and Multimodal Factor-
ized Bilinear pooling [331] are proposed to overcome the high computational com-
plexity when learning joint feature. Moreover, Hedi et al. [337] introduce a tensor-
based Tucker decomposition strategy, MUTAN, to efficiently parameterized bilinear
interactions between visual and textual representations so that the model complexity
is controlled and the model size is tractable. In general, to train an optimal model to
understand semantic correlations, classification-based objective functions [313] and
regression-based objective functions [23, 292] are commonly adopted.

Bilinear pooling methods are based on outer products to explore correlations of
multimodal features. Alternatively, neural networks are used for jointly embedding
features since its learnable ability for modelling the complicated interactions between
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image and text. For instance, auto-encoder methods, as shown in Figure 8.2(b), are
used to project image and text features with a shared multi-layer perceptron (MLP).
The similar multimodal transformer introduced in [332] constructs a unified joint
space for image and text. In addition, sequential networks are also adopted for the
latent space construction. Take visual question answering as an example, based
on the widely-used “encoder-decoder” framework, image features extracted from the
encoder are fed into the decoder (i.e. RNNs [310]), and finally combined with text
features to predict correct answers [302, 312, 326]. There are several ways to combine
features. Image features can be viewed as the first “word” and concatenate all real
word embeddings from the sentences. Alternatively, image features can be concate-
nated with each word embedding then fed them into RNNs for likelihood estimation.
Considering the gradient vanishing in RNNs, CNNs are used to explore complicated
relations between features [203, 338]. For example, convolutional kernels are initial-
ized under the guidance of text features. Then, these text-guided kernels operate
on extracted image features to maintain semantic correlations [338].

The attention mechanisms in Section 8.3.2 can also be regarded as a kind of joint
feature alignment method and are widely used for common latent space learning.
Theoretically, these feature alignment schemes aim at finding relationships and cor-
respondences between instances from visual and textual modalities [320, 334]. In
particular, the mentioned co-attention mechanism is a case of joint feature em-
bedding in which image and text features are usually treated symmetrically. The
attended multimodal features are beneficial for understanding the inter-modality
correlations. Attention mechanisms for common latent space learning can be ap-
plied in different formations, including bi-directional [329], hierarchical [331], and
stacked [202, 325]. More importantly, the metrics for measuring similarity are cru-
cial in attentive importance estimation. For example, the importance estimation
by simple linear operation may fail to capture the complex correlations between
visual and textual modality while the Multi-modal Factorized High-order pooling
(MFH) method can learn higher-order semantic correlations and achieve marginal
performance.

To sum up, joint feature embedding methods are basic and straightforward ways to
allow learning interactions and perform inference over multimodal features. Thus,
joint feature embedding methods are more suitable for situations where image and
text raw data are available during inference, and joint feature embedding meth-
ods can be expanded into situations when more than two modalities are present.
However, for content understanding among inconsistently distributed features, as
reported in previous work [302], there is potential for improvement in the embed-
ding space.

b. Coordinated feature embedding

Instead of embedding features jointly into a common space, an alternative method is
to embed them separately but with some constraints on features according to their
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similarity (i.e. coordinated embedding). For example, the above-noted reconstruc-
tion loss in auto-encoders can be used to constraining multimodal feature learning
in the common space. Using traditional canonical correlation analysis, as an alter-
native, the correlations between two kinds of features can be measured and then
maintained. To explore semantic correlation in a coordinated way, generally, there
are two commonly used categories: classification-based methods and verification-
based methods.

For classification-based methods when class label information is available, these
projected image and text features in the common latent space are used for la-
bel prediction [177, 178]. Cross-entropy loss between the inference labels and the
ground-truth labels is computed to optimize the deep networks, see Figure 8.1, via
the back-propagation algorithm. For classification-based methods, class labels or
instance labels are needed. They map each image feature and text feature into a
common space and guarantee the semantic correlations between two types of fea-
tures. Classification-based methods mainly concern the image-text pair with the
same class label. For the image and unmatched text (vice versa), classification-
based methods have less constraints.

Different from classification-based methods, the verification-based methods can con-
strain both the matched image-text pairs (similar or have the same class labels) and
unmatched pairs (dissimilar or have the different class labels). Verification-based
methods are based on metric learning among multimodal features. Given simi-
lar/dissimilar supervisory information between image and text, these projected mul-
timodal features should be mapped based on their corresponding similar/dissimilar
information. In principle, the goal of the deep networks is to make similar image-
text features close to each other while mapped dissimilar image-text features further
away from each other. Verification-based methods include pair-wise constraint and
triplet constraint, both of which form different objective functions.

For pair-wise constraint, the key point lies in constructing an inference function to
infer similarity of features. For example, Li et al. [178] construct a Bayesian network,
rather than a simple linear operation, to preserve the similarity relationship of image-
text pairs. In addition, triplet constraint is also widely used for building the common
latent space. Typically, bi-directional triplet loss function is applied to learn feature
relevances between two modalities [177, 339]. Inter-modality correlations are learned
well when triplet samples interchange within image and text. However, a complete
deep multimodal model should also be able to capture intra-modality similarity,
which is a complementary part for inter-modality correlation. Therefore, several
works consider combining intra-modal triplet loss in feature learning in which all
triplet samples are from the same modality (i.e. image or text data).

These classification-based and verification-based approaches are widely used for deep
multimodal learning. Although the verification-based methods overcome some lim-
its of classification-based methods, they still face some disadvantages such as the
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negative samples and margin selection, which inherit from metric learning [186].
Recently, new ideas on coordinated feature embedding methods have combined ad-
versarial learning, reinforcement learning, cycle-consistent constraints to pursue high
performance.

Combined with adversarial learning. Classification- and verification-based
methods focus on the semantic relevance between similar/dissimilar pairs. Adver-
sarial learning focuses on the overall distributions of two different modalities instead
of just focusing on each pair. The primary idea in GANs is to determine whether
the input image-text pairs are matched [287, 288, 300].

In new ideas of adversarial learning for multimodal learning, an implicit generator
and a discriminator are designed with competitively goals (i.e. the generator en-
forces similar image-text features be close while the discriminator separates them
into two clusters). Therefore, the aim of adversarial learning is not to make a bi-
nary classification (“True/False”), but to train two groups of objective functions
adversarially, it will enable the deep networks with powerful ability and focus on
holistic features. For example, in recent works [177, 178, 309], a modality classifier
is constructed to distinguish the visual modality and textual modality according to
the input multimodal features. This classifier is trained adversarially with other
sub-networks which constrain similar image-text feature to be close. Furthermore,
adversarial learning is also combined with a self-attention mechanism to obtain at-
tended regions and unattended regions. This idea is imposed on the formation of a
bi-directional triplet loss to perform cross-modal retrieval.

Combined with reinforcement learning. Reinforcement learning has been in-
corporated into deep network structures (e.g. encoder-decoder framework) for image
captioning [272, 273], VQA [340] and cross-modal retrieval. Because reinforcement
learning avoids exposure bias [273, 339] and non-differentiable metric issue [272, 339].
It is adopted to promote multimodal correlation modeling. To incorporate rein-
forcement learning, its basic components are defined (i.e. “agent”, “environment”,
“action”, “state”, and “reward”). Usually, the deep models such as CNNs or RNNs
are viewed as the “agent”, which interacts with an external “environment” (i.e. text
features and image features), while the “action” is the prediction probabilities or
words of the deep models, which influence the internal “state” of the deep models
(i.e. the weights and bias). The “agent” observes a “reward” to motivate the train-
ing process. The “reward” is an evaluation value through measuring the difference
between the predictive distribution and ground-truth distribution. For example,
the “reward” in image captioning is computed from the CIDEr (Consensus-based
Image Description Evaluation) score of a generated sentence and a true descriptive
sentence. The “reward” plays an important role for adjusting the goal of predictive
distribution towards the ground-truth distribution.
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Reinforcement learning is commonly used in generative models in which image patch
features or word-level features are regarded as sequential inputs. When incorporat-
ing reinforcement learning into deep multimodal learning, it is important to define
an algorithm to compute the expected gradients and the “reward” as a reasonable
optimization goal.

For the first term, the expected gradients, REINFORCE algorithm [341] is widely
used as a policy gradient method to compute gradients, then to update these “states”
via back-propagation algorithms [340, 342]. For the second term, there are several
different alternatives. For example, the difference, evaluated by the popular metric
CIDEr, between the generated captions and true description sentences in image
captioning is used as a “reward” [272, 342]. Instead of measuring the difference,
sample similarity is more straightforward to track. As an example, visual-textual
similarity is used as “reward” after deep networks are trained under the ranking loss
(e.g. a triplet loss) [339]. The design of triplet ranking loss function is diverse, such
as in a bi-directional manner or based on inter-modal triplet sampling [339].

Combined with cycle-consistent constraint. Class label information or rele-
vance information between image and text is crucial for understanding semantic con-
tent. However, this supervisory information sometimes is not available for training
deep networks. In this case, a cycle-consistent constraint is employed for unpaired
image-text inputs. The basic idea of a cycle-consistent constraint is dual learning
in which a closed translation loop is used to regularize the training process. This
self-consistency constraint allows a predictive distribution to retain most of the cor-
relations of the original distribution to improve the stability of network training.
In principle, a cycle-consistent constraint includes a forward cycle and backward
cycle. The former relies on the loss function F (G(X)) ≈ X, while the latter relies
on another loss function G(F (Y )) ≈ Y . In these two functions, F (·) is a mapping
process from Y to X and G(·) is a reversed process from X to Y . Cycle-consistency
has been used on several tasks such as cross-modal retrieval [269], image generation
[268], and VQA [343].

Cycle-consistency is an unsupervised learning method for exploring semantic cor-
relation in the common latent space. To ensure predictive distribution and retain
as many correlations as possible, the aforementioned forward and backward cycle-
consistent objective functions are necessary. The feature reconstruction loss func-
tion acts as the cycle-consistency objective function. For example, Gorti et al. [268]
utilize the cross-entropy loss between generated words and the actual words as cycle-
consistency loss values to optimize the process text-to-image-to-text translation. For
cross-modal retrieval tasks, Li et al. [344] adopt Euclidean distance between predic-
tive features and reconstructed features as the cycle-consistency loss where the two
cycle loss functions interact in a coupled manner to produce reliable codes.

Currently, the application of cycle-consistent constraints for deep multimodal learn-
ing can be categorized as structure-oriented and task-oriented. The former group
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focuses on making several components in a whole network into a close loop in which
output of each component is used as the input for another component. Differently,
task-oriented group concerns to exploit the complementary relations between tasks.
Thus, there are two independent tasks (e.g. VQA and VQG) in the close loop.

For structure-oriented groups, the cycle-consistent idea is combined with some pop-
ular deep networks, such as GANs, to make some specific combinations. In these
methods, image features are projected as “text features” and then reconstructed back
to itself. Currently, the combination with GANs is a popular option since paired
correspondence of modalities can be learned in the absence of a certain modality (i.e.
via generation). For example, Wu et al. [269] plug a cycle-consistent constraint into
feature projection between image and text. The inversed feature-learning process is
constrained using the least absolute deviation. The whole process is just to learn a
couple of generative hash functions through the cycle-consistent adversarial learning.
For this limit, Li et al. [344] devise an outer-cycle (for feature representation) and
an inner-cycle (for hash code learning) constraint to combine GANs for cross-modal
retrieval. Thereby, the objects for which the cycle-consistency loss constrains have
increased. Moreover, in their method, the discriminator should distinguish if the
input feature is original (viewed as True) or generated (viewed as False).

For task-oriented groups, cycle-consistency is adopted into dual tasks. In cycle-
consistency, we use an inverse process (task A to task B to task A) to improve the
results. When a whole network performs both tasks well, it indicates that the learned
features between the tasks have captured the semantic correlations of two modalities.
For example, Li et al. [343] combine visual question answering (VQA) and visual
question generation (VQG), in which the predicted answer is more accurate through
combining image content to predict the question. In the end, the complementary
relations between questions and answers lead to performance gains. For text-image
translation, a captioning network is used to produce a caption which corresponds
to a generated image from a sentence using GANs [268]. The distances between
the ground truth sentences and the generated captions are exploited to improve
the network further. The inverse translation is beneficial for understanding text
context and the synthesized images. To sum up, there are still some questions to be
explored in task-oriented ideas, such as the model parameter sharing scheme, and
these implicit problems make the model more difficult to train and might encounter
gradient vanishing problems, the task-oriented cycle-consistent constraint is applied
to unify multi-task applications into a whole framework and attracts more research
attention.

8.4 Results and Discussions

The aforementioned ideas have made some progress on various multimodal tasks.
For example, for cross-modal retrieval, we presented the achieved progress and state-
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of-the-art of recent methods on the Flickr30K [345] and the MS-COCO [192] datasets
in Figure 8.4. For hashing retrieval methods, we presented the achievement on the
MIRFlickr25k [182] and the NUS-WIDE [183] datasets in Figure 8.5. As we can
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see from these statistics, the progress is notable in recall rate (i.e. the fraction of
queries for which the top K nearest neighbors are retrieved correctly) and mAP (i.e.
the mean of the average precision scores for each query) in cross-modal retrieval.
As can be seen from the results, there is still room for improvement in the current
limitations of multimodal content understanding. In terms of other three tasks, (i.e.
image generation, image captioning and VQA), the achieved performance in recent
years are reported in Tables 8.2, 8.3, and 8.4, respectively.

Multi-task integrated networks might be helpful and complementary for content
understanding as different applications capture semantic correlations from different
perspectives. Effort has been made on integrating image captioning and cross-modal
retrieval tasks, image captioning and visual question answering, image generation
and image retrieval. Nevertheless, these combined applications are only based on
two modalities. Considering the complementary characteristic among modalities
(conveying the same concept), it might be promising to fuse more than two modal-
ities to enable machines to understand their semantic correlations. Undoubtedly,
it will be more challenging for aligning these diverse data. There are some explo-
rations in this direction. Aytar et al. [367] present a deep cross-modal convolutional
network to learn a representation that is aligned across three modalities: sound,
image, and text. The network is only trained with “image + text” and “image +
sound” pairs. He et al. [368] construct a new benchmark for cross-media retrieval
in which image, text, video, and audio are included. It is the first benchmark with
4 media types for fine-grained cross-media retrieval. However, this direction is still
far from satisfactory.

Deep neural networks, including convolutional neural networks and recurrent neu-
ral networks, have made the unimodal feature extraction and multimodal feature
learning end-to-end trainable. The representations from multimodal data can be
automatically learned effectively, without the need of requiring expert knowledge
in a certain field, which makes the process of understanding of multimodal content
more intelligent. However, the disadvantages of deep networks for multimodal learn-
ing are obvious. It is well-known that the deep networks depend on a massive of
multiple-modality data to train, but the less biased datasets are not so common.
More importantly, deep networks for multimodal learning lacks of interpretability
to some extent. Although joint embedding or coordinated embeddings methods can
be utilized, it still needs to figure out which modality (or its features) plays more
important role for the final content understanding.

From a technical viewpoint, graph-based networks are an important direction for fu-
ture research. Currently, graph representation is constructed within intra-modality
to present the semantic relations, which can be further explored in the future. Mean-
while, the exploration of graph-based networks can be deepened by examining scal-
ability and heterogeneity. Finally, generation-based tasks such as image generation
and image captioning are effective for unsupervised learning, since numerous labeled
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training data can be generated from the deep networks. Combined with reinforce-
ment learning, the image generation process is more controllable. For example,
some fine-grained attributes including texture, shape and color can be specified dur-
ing deep network training. Once it understands the content between modalities, the
deep network, like an agent, will synthesize photo-realistic images, which can be
used in other applications.

8.5 Chapter Conclusions

In this chapter, we have conducted a review of recent ideas and trends in deep mul-
timodal learning (image and text) including popular structures and algorithms. We
analyzed two major challenges in deep multimodal learning for which these popular
structures and algorithms target. Specifically, popular structures including auto-
encoders, generative adversarial nets and their variants perform uni-directional and
bi-directional multimodal tasks. Based on these popular structures, we introduced
current ideas about multimodal feature extraction and common latent feature learn-
ing which plays crucial roles for better content understanding within a visual and
textual modality. For multimodal feature extraction, we introduced graph convo-
lutional networks and memory-augmented networks. For common latent feature
learning, we presented the joint and coordinated feature embedding methods in-
cluding the recently proposed objective functions.
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