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Chapter 6

Feature Estimations based
Correlation Distillation for
Incremental Image Retrieval

In Chapter 5, we explored incremental learning for fine-grained image retrieval in
which only the penultimate model is used for transferring previously learned knowl-
edge. As incremental learning proceeds, each training session produces a specific
model. Saving this stream of models will be memory-consuming. This raises a
question that how to utilize the stream of models in incremental learning to trans-
fer more previously learned information when learning on the current new data.
We investigate this question by proposing a feature estimation method. Similar to
the knowledge distillation framework in Chapter 5, we distill semantic correlations
knowledge among the representations extracted from the new data only so as to
regularize the parameters updates. In particular, for the case of learning multiple
tasks sequentially, aside from the correlations distilled from the penultimate model,
we estimate the representations for all prior models and further their semantic cor-
relations by using the representations extracted from the new data. To this end, the
estimated correlations are used as an additional regularization and further prevent
catastrophic forgetting over all previous tasks, and it is unnecessary to save the
stream of models trained on these tasks.

Keywords
Incremental learning, Fine-grained image retrieval, Correlations distillation, Feature
estimation

This chapter is based on the following publication [38]:

• Chen, W., Liu, Y., Pu, N., Wang, W., Liu L., and Lew, M.S., “Feature Estimations based
Correlation Distillation for Incremental Image Retrieval.” IEEE Transactions on Multime-
dia, 2021.
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6. FEATURE ESTIMATIONS BASED CORRELATION DISTILLATION FOR
INCREMENTAL IMAGE RETRIEVAL

6.1 Introduction

Learning is a life-long process for human beings so that we can learn continuously,
devoid of forgetting previously acquired knowledge. However, this is not the case for
deep neural networks, which suffer from the catastrophic forgetting problem [36].
Deep networks have been trained and validated for image retrieval on stationary
datasets. As new data increase over time, the networks trained on the stationary
datasets cannot be suited well for the non-stationary scenario.

The main challenge is to make the trained model adapt to new data without losing
the knowledge on the seen data. Most conventional solutions for tackling this chal-
lenge suffer from obvious limitations. For example, joint training achieves optimal
retrieval performance on old and new data, while it requires the presence of all the
data. This is hard to meet for several scenarios where legacy data are unrecorded
due to privacy issues or simply too cumbersome to collect old data. Moreover, re-
training old data may lead to an imbalance issue between the quantity of old data
and that of new data [229, 230].

Two incremental learning methods are developed to tackle the above limitations.
First, the rehearsal based method utilizes generative adversarial nets to synthesize
samples w.r.t. previous data distributions [231]. This method faces the difficulty
of generating images with complex semantics. Second, the regularization based
methods can either focus on network parameters or output activations. Parameters-
based regularization methods estimate the parameter importance of previous tasks,
then penalizes the drastic updates of these parameters when the model is learning a
new task. Activation-based regularization methods, relying on the teacher-student
framework, constrain the teacher model and the student model have similar outputs.
The regularization methods have been explored for tasks such as image classification
[229, 230, 232], but are less-explored for image retrieval. Recently, Parshotam et al.
[233] regularize the representations via a normalized cross-entropy loss, training with
metric learning for vehicle identification and retrieval. Chen et al. [37] propose reg-
ularizing both the representations and probabilities via the teacher-student frame-
work for fine-grained image retrieval (FGIR) [234]. As depicted in Figure 6.1(a),
they only use the penultimate model to transfer previously learned knowledge on
old tasks.

For the case where new tasks are added sequentially, which is referred to multi-task
incremental learning, only distilling on the penultimate model is insufficient to re-
duce forgetting on all previous tasks [235]. In fact, transferring additional knowledge
learned on these tasks, i.e. via multi-model distillation tackles this insufficiency, as
shown in Figure 6.1(b). In multi-task incremental learning, a stream of deep models
is produced as new tasks are added continuously. However, it becomes too cumber-
some and inefficient to store these models. Therefore, an arising question is that how
to use the model stream, not only the penultimate model, for knowledge distillation?
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Figure 6.1: Comparison of three knowledge distillation methods. We depict three
steps of distillation. (a) Single-model distillation method only stores and uses the
penultimate model; (b) Multi-model distillation method has to store all old models
and distills from them more knowledge devoid of forgetting; (c) Our method only
stores the penultimate model while can accumulate previous knowledge learned at
each model through feature estimations.

Few researchers address this problem in incremental tasks. Recently, a multi-model
and multi-level knowledge distillation strategy is presented for incremental image
classification [235]. However, the snapshots of all previous models still need to be
saved and depend on network pruning methods to reconstruct.

In this chapter, we face the above question to improve deep model’s continuous re-
trieval ability. Semantic correlations of features are transferred as knowledge from
a teacher model to a student model when new data are used only. For multi-task
incremental learning, the model stream trained on preceding tasks is unnecessar-
ily saved. Instead, we estimate representations for these models and further their
semantic correlations, using the features extracted from the current new task, as
shown in Figure 6.1(c).

6.2 Related Work

Incremental image retrieval. Incremental learning can be categorized into ar-
chitectural methods [230, 232], rehearsal methods [220, 231], and regularization
methods [227, 235]. Most of them are used for image classification, regularizing
the classification probabilities. Recently, incremental retrieval have been explored.
CIHR [236] was proposed to deal with the concept drift issue for hashing retrieval
in non-stationary environments. However, the selected images from previous train-
ing sessions are combined with new images to train hash tables. DIHN [218] is
explored for incremental hashing retrieval where old data are used as a query set.
Fine-grained incremental image retrieval is studied with only using new data [37].
However, knowledge is only transferred from the penultimate model, causing the in-
sufficiency to remember previous knowledge when performing multi-task incremental
learning. In this work, we further distill additional knowledge from the model stream
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via a simple yet effective feature estimation method when only using new data in
each incremental session.

Knowledge distillation. Knowledge can be distilled from the output of either the
final classifier or the intermediate layers, relying on the teacher-student structures
[237]. It is realized by characterizing the differences between the teacher model and
the student model through metrics such as L1 distance [216], L2 distance [217],
Gramian matrix [238], and KL-divergence [214]. For more details about knowledge
distillation, we refer readers to a recent survey [237]. Knowledge distillation provides
an effective way to retain the learned knowledge devoid of forgetting by one-teacher
or a multi-teacher frameworks [235, 239]. For example, Zhou et al. [235] introduce
using all previous models to transfer multi-level knowledge to train current new
tasks. To avoid a great memory storage requirement, they prune previous models
to get several “necessary” parameters during each training session.

Correlation learning has been used for multi-modal tasks to explore the relevance
between different layers or data samples [240, 241, 242, 243, 244]. It focuses on
the relations between feature representations rather than the features themselves.
These relations enable models to explore rich contextual information of images such
as [243] where three-level of correlations are integrated for optimal feature learning.
Correlation learning can be combined into knowledge distillation. For example, Peng
et al. [244] use a symmetric adjacency matrix to encode a knowledge graph with
category correlations and transfer them via a semantic-visual mapping network.
Similarity between activations of input pairs can also be extracted as knowledge
to transfer into the student model [245]. The successful applications of correlation
learning for knowledge distillation encourage its exploration for incremental learning
tasks.

6.3 Correlations Distillation for Incremental Image
Retrieval

6.3.1 Problem formulation

Given a dataset D = {(Xc, yc)|c = 1, 2, · · · , n} with n classes, each of which c

includes different amount of images |Xc| and they share the same ground-truth label
yc. The label is used to select a positive xp and a negative xn images for an anchor
image xa in each training iteration. A deep network f(·,θ) learns representations
F = f(X,θ) under the constraint of the triplet loss using hard sampling strategy,
whose goal is to push away the distance D(xa, xn) = ||f(xa;θ)−f(xn;θ)||22 between
xn and xa by a margin δ > 0 compared to D(xa, xp). Namely,

||f(xa;θ)− f(xp;θ)||22 + δ < ||f(xa;θ)− f(xn;θ)||22 (6.1)
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Figure 6.2: One-task incremental learning includes two training steps. Step 1: a
model f0 is well trained in advance on the n old classes using ranking loss only. Step 2:
the well-trained model f0 is frozen as a teacher network. Meanwhile, the parameters
of the Backbone and the Embedding Net included in this model f0 are copied as
initialization for a temporary model f ′1, which is updated to the final model f1 under
the constraints of correlation loss and triplet loss. At Step 2, only the m new classes
are used for training.

Before incremental training, the network is well trained on the n old classes, con-
verging at old parameters θo, i.e.,

θo = argmin
θ

Ltriplet(f0(Xc;θ)) (6.2)

where Ltriplet(xa, xp, xn) = [δ + D(xa, xp) − D(xa, xn)]+, as defined in Eq. 6.1.
To train network f0 incrementally, new data from m classes {(Xc′ ,Yc′)} where
c′ ∈ (n + 1, n + 2, ..., n + m) are added ({Xc} ∩ {Xc′} = ∅) at once or sequentially,
corresponding to one-task and multi-task cases, respectively.

The one-task case is depicted in Figure 6.2. At the start of training on m new
classes, f0 is copied into two copies. One is frozen as a teacher net, and another
is used as a temporary initialization f ′1 for further training (θo = θ

′
n, including the

parameters in the Backbone and Embedding Net). We only use the m new classes
to train to obtain f1. Thus, the core issue of the one-task case is to make the model
f1 with new parameters θn maintain a stable performance on the n old classes and
achieve competitive accuracy on the m new classes. Formally, the overall objective
for this scenario is:

L(Xc′ ;θo;θn) = λ1Ltriplet(Xc′ ;θn)︸ ︷︷ ︸
for plasticity

+λ2Lcorr(Xc′ ;θo;θn)︸ ︷︷ ︸
for stability

(6.3)

where Ltriplet makes the model perform well on new tasks while Lcorr is the cor-
relation loss to stabilize prior performance. θo and θn are the parameters for old
tasks and new tasks, respectively. λ1 and λ2 are the plasticity and stability hyper-
parameters, which tune the influence of two loss terms.
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6.3.2 Correlations distillation for one-task scenario

As shown in Figure 6.2, the model f ′1 serves as a to-be-trained student net. For
the one-task incremental scenario, we propose to distill the semantic correlations as
knowledge.

Specifically, the features with dimension d from the teacher model f0 are formu-
lated as Fo = f0(Xc′ ,θo) ∈ RN×d, and that from the student model f1 are Fn =

f1(Xc′ ,θn) ∈ RN×d. Based on the fact that semantically similar inputs produce
similar patterns in a trained network [245]. Therefore, a Gram matrix with a kernel
function K(·) for Fo and Fn is defined:

G(i,j)
o = K(F i

o, F
j
o ); G(i,j)

n = K(F i
n, F

j
n) (6.4)

Here, we further define the function K(·) as inner product, i.e., K(F i, F j)=<F i, F j>.
Each entry (i, j) in G ∈ RN×N represents the correlations of the same activation
(i = j) or these between different activations (i 6= j). To compare the difference
between Go and Gn, we first normalize these matrices with Softmax function σ(·),
and then use KL-divergence to formulate a correlation loss Lcorr.

Lcorr =
1

N

∑
KL
(
σ(Go), σ(Gn)

)
(6.5)

6.3.3 Feature estimation for multi-task scenario

Compared to the one-task setting, the multi-task scenario is more complex where
all m new classes are divided into t groups: Xc′

0 ,..., Xc′
t . For clarity, we illustrate its

training process in Figure 6.3. As more new classes added sequentially, the model,
correspondingly, evolutes from the initial model f0 to the current one ft. In practice,
it may be difficult to save the stream of models. For this limit, we only save the
model trained on the penultimate task t − 1 when proceeding current task t for
tth new classes Xc′

t . For example, when training on the 3rd group of new classes
(task t=3), the knowledge is distilled only from the penultimate models f2, while
the previous models f0 and f1 are not saved. Due to the lack of previous models,
it causes two drawbacks: (1) the knowledge is distilled only from the penultimate
model ft−1 to the model on the current task t, and (2) the trained model ft may
forget more on old tasks prior to t−1. Therefore, it is natural to raise a question that
how to utilize these unsaved models trained prior to the penultimate task t− 1 for
transferring additional knowledge to supervise the training of current task t.

Hereafter, for better understanding, we introduce the multi-task scenario by defin-
ing an adaptive model ft for the current task t, a frozen model ft−1 trained on
penultimate task t − 1, and unsaved models ft−2, ..., f0 for earlier tasks t − 2, ..., 0,
as shown in Figure 6.4. Since the frozen model ft−1 is initialized from the previous
unsaved model ft−2 at the start of training on task t − 1, the feature distributions
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Figure 6.3: Illustration of multi-task incremental learning when three groups of new
classes are added sequentially. For each round when new classes are added, the model
trained on a previous task is frozen its parameters as a teacher net and is also copied
as initializations of the model for new classes. Each round can be viewed as one-task
incremental learning. For simplicity, the triplet loss is ignored.

of these two models have some inherent relations, which can be reflected through
their accuracy (e.g., mAP). This accuracy evolution along with training the models
stream gives a hint for feature estimation.

a. Accuracy drops and accuracy gains

We propose a simple yet effective method to estimate the feature distributions for
all unsaved models, which serve as an additional regularization term for training
on current task t (t≥ 2). For this purpose, we first focus on the accuracy change
during training from task t− 2 to task t− 1. Parameters of the penultimate model
ft−1 are copied from those of the model ft−2. Before training on task t − 1, the
accuracy on its old tasks and the new classes Xc′

t−1 are recorded as Accbo and Accbn,
respectively. Naturally, Accbn is far from accurate since the penultimate model ft−1

is not trained specifically for new data. After training on task t−1, the accuracy on
these old tasks and new classes Xc′

t−1 are recorded as Accao and Accan, respectively.
Intuitively, the model ft−1 acquires new knowledge on new classes Xc′

t−1, and the
accuracy increases from Accbn to Accan (i.e., accuracy gains). In contrast, model ft−1

may degrade accuracy from Accbo to Accao (i.e., accuracy drops) because this model
is driven towards the new data.

The accuracy drops and accuracy gains, related to the stability-plasticity trade-off,
are criteria that correspond to old tasks and new tasks, respectively. For instance, if
a model has larger stability on previous tasks, both the accuracy drops and accuracy
gains are small. In contrast, if the stability is too weak, the model suffers obvious
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Figure 6.4: Illustration of feature estimation when performing the task t. The virtual
feature distribution of unsaved model ft−2 can be estimated by that of frozen model
ft−1 under multi-task incremental learning.

accuracy drops and forgetting on previous tasks. Inspired by [246], we define the
accuracy changes using the accuracy drops and accuracy gains:

αdrop =
(Accao − Accbo)

Accbo
, αgain =

(Accan − Accbn)

Accbn
(6.6)

As the training proceeds from task t − 2 to task t − 1, their accuracy changes
on old classes (the brown-color line in Figure 6.4) and new classes (the black-
color line). Rather than saving these models, we only record their accuracy drops
αdrop|(t−2)→(t−1) and accuracy gains αgain|(t−2)→(t−1), which are meta-data of these
models and provide implicit information to estimate the feature distribution drifts.
Here, the subscript “(t − 2) → (t − 1)” means the knowledge is distilled from task
t− 2 to penultimate task t− 1.

b. Distribution drifts estimation

Estimating feature distribution drifts was explored in [247] where the attribute vec-
tors are learned based on the source set and target set, then the learned vectors
are used to estimate new features. In this work, we estimate feature drifts via the
change of model accuracy. We only save the penultimate model ft−1 when training
on current task t, see Figure 6.4. The recorded accuracy change from model ft−2

to model ft−1 has been reflected through the drifts of their feature distributions.
Based on this, we use the accuracy change (αdrop, αgain) and the available features
from the model ft−1 to estimate the feature drifts which are used to further compute
virtual features for model ft−2. To be specific, when feeding tth group of new classes
Xc′

t into the model ft−1 and the adaptive model ft, we obtain their corresponding
actual features F actual

t−1 = ft−1(Xc′
t ) and F actual

t = ft(X
c′
t ). Since the accuracy drops

and accuracy gains from model ft−2 to model ft−1 have been obtained, we estimate
their feature distribution drifts using a simple yet effective method:
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∆|(t−2)→(t−1) ≈ α · F
actual
t−1

s.t. α = Cat(α1, ..., αi, ..., αN), αi ∈ Rd,α ∈ RN×d

αi ∼ U(αdrop|(t−2)→(t−1), αgain|(t−2)→(t−1))

(6.7)

where Cat(·) means vector concatenation operation. Each raw vector αi is randomly
sampled from the uniform distribution U(·, ·) according to αdrop and αgain. Thereby,
α has the same dimension with the features F . In theory, the expectation of each
sampling in α is close to 0.5× (αdrop + αgain).

It is assumed that the features change uniformly during sequential training and
the changes can be reflected through the accuracy drops and accuracy gains. With
this hypothesis, the feature drifts ∆|(t−2)→(t−1) can be evaluated according to the
actual features F actual

t−1 . With the feature drifts, inspired by [247], the virtual feature
distributions for unsaved model ft−2 are estimated:

F virtual
t−2 = F actual

t−1 + k∆|(t−2)→(t−1) (6.8)

where k is a scaling factor, we set k = 1. The reason why we can estimate the virtual
features F virtual

t−2 from F actual
t−1 is because the parameters of model ft−1 are initialized

from model ft−2 at the start of training ft−1.

Similarly, we can further approximate the virtual feature F virtual
t−3 for model ft−3

according to the already-estimated F virtual
t−2 , its accuracy drops αdrop|(t−3)→(t−2) and

accuracy gains αgain|(t−3)→(t−2) from task t − 3 to task t − 2. Normally, with a re-
cursive scheme, the virtual features of all previous unsaved models can be estimated
using their recorded accuracy drops, accuracy gains, and already-estimated virtual
features. Finally, the features of first model f0 are estimated as:

F virtual
0 = (1 + kα|(t−2)→(t−1))(1 + kα|(t−3)→(t−2))

...(1 + kα|(0)→(1))F
actual
t−1

(6.9)

c. Importance for estimated features

The estimated features for all previous unsaved models serve as additional regu-
larization terms. Thus, more Gram matrices Gvirtual are computed based on these
estimated features, as illustrated in Figure 6.5. To this end, the additional correla-
tion loss, such as L(t−2)→t

corr , based on the estimated features is formulated as:

L(t−2)→t
corr =

1

N

∑(
KL
(
σ(Gvirtual

t−2 ), σ(Gactual
t )

))
(6.10)
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Gram matrix of task (t − 2) is used as su-
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When more new classes are added se-
quentially, more Gram matrices are
computed through the recursively-
estimated features. However, these
Gram matrices cannot be treated
identically when used for regularizing
the current task t since the accumu-
lated errors may make the recursively
estimated features more and more un-
reliable. For this limitation, the esti-
mations for earlier tasks are assigned
with a smaller importance. Naturally,
the importance is related to the in-
dices of old tasks. Finally, we formu-
late the correlation loss terms with dif-
ferent importance factors:

Lcorr = L
(t−1)→t

corr +
1

(t− 1)
L

(t−2)→t

corr +
0.1

(t− 2)
L

(t−3)→t

corr + ...+
(0.1)t−2

1
L

1→t

corr︸ ︷︷ ︸
Feature estimation for prior sequential tasks(t≥2)

(6.11)

For one-task incremental scenario (t=1), Eq. 6.11 can be re-written as Eq. 6.5.
If more tasks are performed (t ≥ 2), each semantic correlation loss based on the
estimated virtual features are constrained with importance factors ( 1

(t−1)
, 0.1

(t−2)
,...).

Substituting the term Eq. 6.11 into Eq. 6.3, we obtain the overall objective function
for incremental FGIR.

6.4 Experiments

6.4.1 Datasets and experimental setup

We evaluate the method on two datasets: Caltech-UCSD Birds-200 (CUB-200) [224]
and Stanford-Dogs-120 (Dogs-120) [223]. We choose 60% images from each category
as training sets and 40% as testing sets. Afterwards, we split the first 100 categories
(60 for the Dogs dataset) as the old classes (i.e., n=100 or 60) and the remaining
100 (60 for the Dogs dataset) categories as new classes (i.e., m=100 or 60). For the
multi-task case, these new classes are divided into several groups evenly. All splits
are in the order of official classes. In the following text, we use the class index of
each dataset to denote a group of new classes. For example, “classes (101-125)”
in italic means that the m=25 new classes from the index 101 to 125 are used for
training, the corresponding trained model is f1(101-125). The details of datasets
are followed the splitting methodology in Table 5.1 in Chapter 5.
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Implementation details. We utilize Google Inception as a backbone net. The
whole process includes two stages: initial training and incremental training. In the
first stage, the initial model f0 is trained on the n old classes by using the Adam
optimizer with a learning rate of 1 × 10−6, its embedding net is updated with a
learning rate of 1 × 10−5. In the second stage, we train a new model f1 based on
the converged f0 on the m new classes using Eq. 6.3, with the same learning rate in
the first stage. The model f0 trained on the n old classes (1-100) or (1-60) is wrote
as f0(1-100) or f0(1-60). Likewise, the model f1 is represented by the added m

new classes, such as f1(101-200) or f1(61-120). Following the practice in [131, 226],
the output 512-d features (F d in Figure 6.2) are used for retrieval1. We set the
plasticity factor λ1 = 1 and stability factor λ2 = 10 in Eq. 6.3 for the following
experiments.

Evaluation metrics. We use the Recall@1 [131, 248] and mean Average Precision
(mAP) as retrieval metrics, and use average incremental accuracy [232, 249] and
average forgetting [246] to evaluate incremental learning.

Table 6.1: Recall@1 and mAP (%) of incremental FGIR trained for the one-task
scenario, “Initial model f0(1-100)” indicates model trained on the first 100 classes on
the CUB-200 datasets. “Reference model” indicates the model f0(1-200) trained on
all classes of CUB-200. The best performance is reported in boldface.

Dataset Caltech-UCSD Birds-200

Configuration and Results (%) Old classes (1-100) New classes (101-200) Average
Recall@1 mAP Recall@1 mAP Recall@1 mAP

Initial model f0(1-100) 79.24 55.78 46.93 19.54 63.09 37.66
⇒ Model f1 w fine-tuning 70.21 42.57 75.13 48.90 72.67 45.74
⇒ Model f1 w EWC [213] 73.32 45.73 72.84 44.14 73.08 44.94
⇒ Model f1 w ALASSO [227] 72.88 43.87 72.94 45.50 72.91 44.69
⇒ Model f1 w NCEEWC [233] 72.63 43.80 73.07 45.15 72.85 44.48
⇒ Model f1 w L2 loss [219] 75.93 50.23 74.12 47.47 75.03 48.85
⇒ Model f1 w MMD loss [37] 77.03 51.10 74.12 45.05 75.58 48.08
⇒ Model f1 w Our method 77.71 52.25 75.00 46.51 76.36 49.38
Reference model f0(1-200) 78.18 52.17 79.24 50.99 78.71 51.58

6.4.2 One-task scenario evaluation

Baselines. CIHR [236] and DIHN [218] have been explored for incremental hashing
retrieval. The main difference with ours is that they used old data for training, while
we use new data only. For a fair comparison, we take [37] as a baseline in which the
feature-level regularization (i.e., maximum mean discrepancy (MMD) loss) is used.
We also compare to the popular algorithms including EWC2, ALASSO3, NCE loss4,
and L2 loss. Specifically, EWC [213] and ALASSO [227] are the network parameters

1Code available at: https://github.com/cw1091293482/Deep-Incremental-Image-Retrieval
2https://github.com/joansj/hat/tree/master/src/approaches
3https://github.com/dmpark04/alasso
4https://github.com/ProsusAI/continual-object-instances
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Table 6.2: Recall@1 and mAP (%) of incremental FGIR trained for the one-task
scenario, “Initial model f0(1-60)” indicates model trained on the first 60 classes on the
Stanford-Dogs datasets. “Reference model” indicates the model f0(1-120) trained on
all classes of Stanford-Dogs. The best performance is reported in boldface.

Dataset Stanford-Dogs-120

Configuration and Results (%) Old classes (1-60) New classes (61-120) Average
Recall@1 mAP Recall@1 mAP Recall@1 mAP

Initial model f0(1-60) 81.27 66.05 69.28 34.13 75.28 50.09
⇒ Model f1 w fine-tuning 73.96 45.24 83.69 67.25 78.83 56.25
⇒ Model f1 w EWC [213] 74.76 46.92 81.45 62.69 78.11 54.81
⇒ Model f1 w ALASSO [227] 75.92 48.35 81.50 63.40 78.71 55.88
⇒ Model f1 w NCEEWC [233] 75.12 47.88 81.62 62.99 78.37 55.44
⇒ Model f1 w L2 loss [219] 78.99 56.57 83.23 66.63 81.11 61.60
⇒ Model f1 w MMD loss [37] 79.49 59.43 83.35 65.21 81.42 62.32
⇒ Model f1 w Our method 79.92 58.37 83.48 66.01 81.70 62.19
Reference model f0(1-120) 80.37 62.48 83.10 66.78 81.74 64.63

regularization methods. To deploy these methods, we further train a classifier on
the top of the embedding net. NCE loss [233] regularizes the inner product of an
anchor-positive pair and anchor-negative pairs via a normalized cross-entropy loss.
This method is combined into EWC algorithm. We follow this protocol by mining
9 hard negative samples (termed as NCEEWC). L2 loss [217] focuses on minimizing
the Euclidean distance between the features from the teacher-student models. For a
fair comparison, the above four methods are trained with triplet loss Ltriplet, having
the same hyper-parameter λ1 = 1. In terms of the plasticity factor λ2, we tune this
factor for four methods in incremental FGIR until we get their optimal performance.
As a result, the corresponding plasticity factors are tuned as 8000, 0.2, 10, and 0.1,
respectively. Moreover, the “Reference” by joint learning serves as an upper-bound
performance. The fine-tuning method is also used as a reference for the new tasks
since there is no knowledge distillation regularization.

One-task incremental learning (m=100 or m=60) is similar to transfer learning,
while incremental training further emphasizes reducing forgetting on the n old
classes. The results are reported in Tables 6.1 and 6.2. Note that only model
f0 is available, thereby it is unnecessary to estimate virtual features.

Naturally, the initial model f0 trained on the n old classes performs poorly on the m
new unseen classes. Take the CUB-200 dataset as an example, mAP is 19.54% when
the initial model f0(1-100) is tested on the m new classes without any re-training.
Using the initial model f0, we further re-train on the m new classes using different
incremental algorithms to obtain the model f1, whose performance is distinct on the
old and new classes, as shown in Table 6.1. The fine-tuning method achieves the best
accuracy on the new classes, it improves the accuracy (19.54%→48.90% in mAP)
on the new classes on the CUB-200 dataset but degrades accuracy (i.e., forgetting)
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on the old classes (55.78%→42.57% in mAP). Similar trends can be observed on the
Stanford-Dogs dataset in Table 6.2.

For other algorithms, the models trained by network parameters regularization meth-
ods such as EWC and ALASSO show a similar trend that they reduce forgetting
on the n old classes, but their performance on the m new classes is less competi-
tive compared to the fine-tuning method. NCEEWC regularises metric learning via
cross-entropy loss on the feature embeddings. We find this method has some limited
benefits. For example, it improves on the Stanford-Dogs dataset in terms of the
average performance. L2 loss and MMD loss regularize the features directly. For L2
loss, it regularizes the model f1 to forget less on the old classes of two datasets. For
instance, on the CUB-200 dataset, it reduces the degradation by 3.31% of Recall@1
(79.24%→75.93%) and 5.55% of mAP (55.78%→50.23%), see Table 6.2 and Table
6.1 for details.

MMD loss is more similar to our method in which feature correlations are also consid-
ered [37]. Compared to MMD loss, our method, in most cases, suffers less accuracy
degradation on two datasets. For instance, our method degrades the Recall@1 on the
n old classes by 1.53% (79.24%→77.71%) and 1.35% (81.27%→79.92%) on CUB-200
and Stanford-Dogs, respectively, whereas the MMD loss degrades the Recall@1 on
the old classes by 2.21% (79.24%→77.03%) and 1.78% (81.27%→79.49%) on two
datasets. Moreover, in terms of the performance on the m new classes, our method
also achieves closer accuracy to that of the fine-tuning method.
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Figure 6.6: (a) mAP evolution of old classes (1-100) tested on the CUB-200 dataset
under one-task scenario. (b) The Gram matrices of four representative methods (best
viewed in color). More brightness indicates higher semantic correlations between two
samples. The reference performance is obtained by joint training. Our method retains
most semantics (higher brightness) compared to EWC and L2 loss.

Besides, we report the mAP evolution during incremental training in Figure 6.6(a).
The activation regularization methods (e.g., L2 loss) outperform the network param-
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eters regularization methods (e.g., EWC). Moreover, we visualize the Gram matrices
of three methods. As the training proceeds, their differences with respect to the ref-
erence Gram matrices are maximized. Namely, the bright area in the three methods
becomes ambiguous. However, our method retains most semantics of old classes
(more brightness) than the other two continual learning strategies even at the last
training epoch.

6.4.3 Multi-task scenario evaluation

Multi-task scenario refers to the case that m new classes are divided evenly into
several groups and added sequentially. For the CUB-200 dataset, the remaining
100 new classes are split into 4 disjoint groups, with 25 classes per group; For
the Stanford-Dogs dataset, we also get 4 groups with 15 classes per group. Thus,
there are 4 steps incremental training for each dataset. For each step, the model
is trained only on the images from a new class group (e.g., classes (126-150) of
the CUB dataset) and is tested separately in prior groups (e.g., classes (1-100) and
classes (101-125)) to evaluate the forgetting rate of this step. Note that incremental
performance is insensitive to the arrival order and choice of new classes since the
tasks do not depend on softmax-based probabilities [250].

Accuracy change range. We estimate the features of previous models (using Eqs.
6.7 and 6.8) based on the accuracy change defined in Eq. 6.6. Concretely, we
use mAP to calculate the accuracy range. For instance, on the CUB-200 dataset,
model f0(1-100) takes as input the first group of new classes (see Figure 6.3) and
produces an incrementally-trained model f1(101-125). In terms of mAP, it degrades
from 54.20% to 52.44% on the n= 100 old classes while increases from 29.82% to
52.27% on the m= 25 new classes. These recorded mAPs are used to calculate
the accuracy change range (αdrop, αgain) using Eq. 6.6. Finally, the mAP change
range is (-0.0325, 0.7528) during task t = 1 and is used to estimate the features
for model f0 when training the next task t = 2, without storing this model. The
estimated features serve as an extra regularization for training task t=2 in which the
knowledge is mainly transferred from the model f1(101-125) to f2(126-150). This
process is performed repeatedly until all new class groups are added. The earlier
feature estimation procedure becomes less reliable as more groups of new classes
are added. We solve this issue by decreasing importance factors in Eq. 6.11. For
multi-task scenario, we keep the plasticity factor λ1 and stability factor λ2 in Eq.
6.3 as 1 and 10, respectively.

We adopt forgetting measurement [246] to quantify the forgetting ratio. Specifically,
the forgetting ratio for a particular task is defined as the difference between the
maximum accuracy gained throughout the incremental training process in the past
and the accuracy the currently-trained model has, then all t tasks forgetting ratios
are averaged:
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forgetting =
1

t− 1

t−1∑
j=1

(
max

l∈{1,...,t−1}
Accl,j − Acct,j

)
,∀j < t (6.12)

where Acct,j denotes the accuracy of jth group of new classes evaluated by the model
trained on the task t. Concretely, we employ the mAP metric as Acc for evaluation.
When the model has been incrementally trained up to task t, we measure and then
average all previous forgetting ratios (1, 2, ..., t−1) using Eq. 6.12 as final forgetting
evaluation.

The average forgetting ratios are depicted in Figure 6.7. Note that we use the task
index to indicate the group of new classes being added. For example, “t = 2” on
the CUB-200 dataset means the model is training on the 2nd group of new classes
and then tested on classes (1-100) and classes (101-125) separately. Obviously, all
methods suffer catastrophic forgetting on two datasets. In particular, fine-tuning on
a new task leads to significant forgetting on the old tasks. EWC and ALASSO cannot
reduce the forgetting issue ideally in the multi-task scenario. By contrast, activation
regularization methods perform better on two datasets. Particularly, MMD loss and
our method, by distilling feature correlations, can significantly reduce the forgetting
ratio compared to the L2-regularized feature alignment method. Our method can
further largely mitigate the forgetting ratio when feature estimation is considered
into correlations distillation. Finally, our method has the least forgetting ratio (up
to 10%) on these two datasets.
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Figure 6.7: Average forgetting evaluation. “w/o EST.” indicates that feature ES-
Timation strategy is not included in our method (see Eq. 6.11). The forgetting is
measured on previous old classes after training on current new classes. The forgetting
ratios over all previous tasks are averaged to show. The higher value indicates the
more severe forgetting.

After all new tasks are added sequentially (i.e. t = 4), we get the final model
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f4(176-200) or f4(106-120) for this task. We measure the accuracy of each prior
task (i.e., class group) using the final model. We take Recall@1 as a metric for
demonstration, as shown in Figure 6.8, including the performance for the previous
tasks and the last new task. In this experiment, we use the performance of joint
training as reference upper bound. In terms of Recall rate tested on the last new
class group (i.e., classes (176-200) and classes (106-120)), we find all six incremental
learning algorithms and the fine-tuning method (without any knowledge distillation)
have similar performance, close to the upper bound, especially for the Stanford-Dogs
dataset. However, in terms of Recall on previous tasks, feature correlations used as
knowledge can lead to a better-performing performance than other counterparts,
closer to the upper bound, which means that our method suffers less forgetting on
these preceding tasks. For instance, when tested the final model f4(176-200) on the
old classes (1-100) of the CUB-200 dataset, our method achieves around 73% of
Recall@1, 7% lower than the upper bound (80%), whereas other methods achieve
less than 70%.

We have demonstrated that our method can reduce the catastrophic forgetting on
the previous tasks effectively. Also, the performance of the new task is essential to
evaluate. As the incremental training proceeds, we report the Recall@1 on the new
task during each incremental step in Figure 6.9. That is, we record the accuracy of
new classes every time these classes are added. The results illustrate the evolution
of performance on new classes. Obviously, we observe that all methods have similar
Recall evolution and their performance is close to each other, especially for the
Stanford-Dogs dataset.

We evaluate the case when more tasks are added sequentially on the CUB-200
dataset. Concretely, the remaining m=100 new classes are divided into 10 groups
evenly. We focus on activation regularization algorithms and compare with L2 and
MMD loss regularized methods. After the final model f10(191-200) is trained at
the end of the task sequence (i.e., new classes (191-200)), we test this model on
the original classes (1-100), which suffer the most severe forgetting. The results
are reported in Figure 6.10. Obviously, on the original classes (1-100), correlations
distillation with feature estimation method reduces the forgetting on classes (1-100)
effectively.

6.4.4 Ablation study

a. Efficacy of feature estimation

Feature estimation is introduced in Eq. 6.11 to reduce forgetting in the multi-task
scenario. Here, we explore the efficacy of feature estimation. For this purpose, we
consider a vanilla correlations distillation only from task (t−1) to task t, i.e., without
using the feature estimation. Therefore, the loss for training is L = λ1Ltriplet +

λ2L
(t−1)→t

corr .
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Figure 6.8: The Recall@1 evaluation of each task (class group) at the end of the 4-
step incremental learning. For instance, the model f4(176-200) incrementally-trained
on 4th new classes (176-200) at task t = 4 and is tested on all previously seen class
groups. (a) Tested on the CUB-200 dataset; (b) Tested on the Stanford-Dogs dataset.

We follow previous experimental protocols and conduct this study on the CUB-200
dataset. We depict the Recall@1 and mAP evolution in Figure 6.11. Note that it is
unnecessary to estimate feature drifts when task t = 1. When more new classes are
added, distilling as knowledge feature correlations like MMD loss and our vanilla
distillation method is more effective than L2 loss for reducing performance degrada-
tion. Also, vanilla distillation without feature estimation has a higher performance
than MMD loss. When feature estimation strategy is used, additional regulariza-
tion from unsaved models can effectively retain more previously-learned knowledge,
thereby leading to less forgetting on the original classes (1-100).

b. Influence of hyper-parameter

We show the efficacy of feature estimation in Figure 6.11. However, it seems that
the estimated features in Eq. 6.11 act as augmented components for reducing catas-
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Figure 6.9: The Recall@1 evolution tested on each new incoming class group during
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Figure 6.10: 10-task performance comparison on the old classes (1-100). The test-
ing model is trained at the end of 10 tasks sequence on CUB-200. (a) Evolution of
Recall@1; (b) Forgetting ratio evaluated on Recall@1.

trophic forgetting. In other words, the forgetting ratio reducing on the old classes
might be realized by the hyper-parameter. To this end, we explore the influence of
hyper-parameter. Following previous experimental protocols, we consider two-step
incremental training on the CUB-200 dataset where only new classes (101-125) and
classes (126-150) are sequentially added. We do not consider task t=1 is because
there is no feature estimation in this task. When new classes (126-150) are adding
at task t= 2, the deep network is trained, using Eqs. 6.3 and 6.11, under four
conditions: case (a) without feature estimation, case (b) with hyper-parameter
augmented, case (c) with feature estimation, and case (d) with two-model distil-
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lation. The case (a) is viewed as a baseline where the correlations are distilled only
from the penultimate model f1(101-125) to the to-be-trained model f2(126-150) by
using their actual features. The case (d) is a complete method, similar to [235] in
which the previous models f0(1-100) and f1(101-125) are both saved for regulariz-
ing the training of current task t = 2. In contrast, it is unnecessary for our method
(case (c)) to save the model f0(1-100).
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Figure 6.11: Efficacy exploration for (a) Recall@1
and (b) mAP evolution only tested on the original
classes (1-100). We show the correlation matrices at
the end of incremental training. This visualization
further indicates that learning with feature estimation
makes its performance closer to the upper bound.

The results are reported in
Table 6.3. Naturally, the
complete method in the case
(d) produces an optimal per-
formance on the old classes
because all models are avail-
able. In terms of the baseline
method, due to no distillation
regularization, the trained
model f2(126-150) has the
best performance on the new
classes. For instance, its
mAP reaches the maximal
52.45%. However, this model
degrades performance heav-
ily on the old classes to a
minimal mAP (48.09%). In
contrast, when the hyper-
parameter of the baseline is
augmented from λ2 to λ2(1 +

1
(t−1)

). The trained model
f2(126-150) reduces forget-
ting on the old classes but
limits the learning on the new classes. In particular, compared to the baseline
method, the mAP of the case (b) on the old classes (1-100) reaches a maximal
50.71%, while it has the lowest Recall@1 (75.00%) and mAP (50.87%) on the new
classes (126-150). Therefore, Simply increasing the hyper-parameter of the stabil-
ity term λ2 in Eq. 6.3 cannot tackle well the stability-plasticity dilemma on the old
tasks and new task because no extra knowledge is transferred. By contrast, training
by using the feature estimation method can achieve competitive accuracy, taking
both the old classes and new classes into account. Specifically, the model trained
using the feature estimation method has a similar performance to the “two-model
distillation” method on the old classes (76.19%→ 76.91% of Recall@1). Meanwhile,
the performance on the new classes is close to that of the baseline method (76.33%
→ 76.83% of Recall@1).
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Table 6.3: Hyper-parameter analysis (%) on CUB-200 where training task t = 2. We
set λ1 = 1 and λ2 = 10. Lactual means that the loss term is computed by using actual
features, whereas Lvirtual denotes the one computed by using estimated features.

Configurations Old classes (1-100) New classes (126-150)
Conditions The form of loss function L = Recall@1 mAP Recall@1 mAP
Case (a) λ1Ltriplet + λ2

(
L

(t−1)→t

actual

)
74.75 48.09 76.83 52.45

Case (b) λ1Ltriplet + λ2

(
L

(t−1)→t

actual + 1
(t−1)L

(t−1)→t

actual

)
76.69 50.71 75.00 50.87

Case (c) λ1Ltriplet + λ2

(
L

(t−1)→t

actual + 1
(t−1)L

(t−2)→t

virtual

)
76.19 50.45 76.33 51.79

Case (d) λ1Ltriplet + λ2

(
L

(t−1)→t

actual + L
(t−2)→t

actual

)
76.61 50.49 76.50 51.92
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Figure 6.12: Visualization of retrieved images and their class names on the CUB-200
dataset. The Top 6 images tested on classes (1-100) are listed from left to right.

6.4.5 Retrieval visualization

We visualize the retrieval results for different methods on 4-tasks sequentially incre-
mental learning on the CUB-200 dataset. For all methods on different incremental
stages, the query image is the same. The red box means an image is retrieved in-
correctly, while the green box indicates the retrieved image has the same class label
as the query image. We use the model trained at the end of the 4-step sequentially
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incremental training, i.e., the model f4(176-200), and test this model on the old
classes (1-100). Considering the differences among images are subtle, we report the
retrieved images and corresponding class names. We select an image from class “Pied
Billed Grebe” as the query item. This image is difficult to retrieve and is prone to
cause forgetting issue because the color of the object in this image is similar to the
background, as well as its incomplete appearance. The top 6 retrieved results are
shown in Figure 6.12. Overall, all methods can return images with similar scenes.
Other incremental algorithms suffer catastrophic forgetting and return more incor-
rect images. By contrast, our method effectively reduces the forgetting ratio and
still returns more correct images of the old tasks after a process of 4-step incremental
learning. When the model f4(176-200) are validated on on previous tasks: classes
(101-125), classes (126-150), and classes (151-175). Note that classes (176-200)
are used as the current new classes. The visualizations are depicted in Figure 6.13,
Figure 6.14, Figure 6.15, and Figure 6.16, respectively.

6.5 Chapter Conclusions

In this chapter, we explored fine-grained image retrieval in the context of incremen-
tal learning, where one-task and multi-task scenarios are validated. To achieve a
trade-off performance for old tasks and new tasks, we used new data only and reg-
ularized their features extracted from the teacher model and the student model. In
terms of multi-task incremental learning, saving all previous models for correlations
distillation may cause a great demand in memory storage. We made an attempt
to address the issue via a feature estimation method. That is, instead of storing
a stream of old models, we saved the accuracy of models to compute the accuracy
change during training each task. The semantic correlations of the estimated fea-
tures, as an additional regularization, further mitigated the catastrophic forgetting
ratio on previous tasks. Compared to previous approaches, the advantages of the
proposed method were verified by thorough quantitative and qualitative results on
two fine-grained datasets. Now, incremental image retrieval methods still need su-
pervisory information. In the future, it is potentially valuable to explore incremental
image retrieval in an unsupervised learning manner. Further, the data used in old
tasks and new tasks share similar semantic commonalities, it is also interesting to
examine for heterogeneous data.
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Task t=1,  tested on the Classes (101-125)
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Figure 6.13: The top-6 retrieval results of the model f4(176-200) tested on the
previous old classes (101-125).

Task t=2, tested on the Classes (126-150)
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Figure 6.14: The top-6 retrieval results of the model f4(176-200) tested on the
previous old classes (126-150).
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6.5 Chapter Conclusions

Task t=3,  tested on the Classes (151-175)
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Figure 6.15: The top-6 retrieval results of the model f4(176-200) tested on the
previous old classes (151-175).

Task t=4,  tested on the Classes (176-200)
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Figure 6.16: The top-6 retrieval results of the model f4(176-200) tested on the
current new classes (176-200).
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