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Chapter 5

On the Exploration of Incremental
Learning for Fine-grained Image
Retrieval

As noted, the wide popularity of mobile devices make the large image collections
available to access. Deep models are usually trained for retrieval on limited cate-
gories and cannot be extended to new incoming data. To satisfy a more practical
retrieval, deep models are required to learn on a stream of data sequentially. This
motivates our research on what kind of knowledge is more beneficial for making a
deep model learn incrementally and reduce catastrophic forgetting.

In this chapter, we consider the problem of fine-grained image retrieval in an in-
cremental setting, when new categories are added over time. On the one hand,
repeatedly training the representation on the extended dataset is time-consuming.
On the other hand, fine-tuning the learned representation only with the new classes
leads to catastrophic forgetting. To this end, we propose an incremental learning
method to mitigate retrieval performance degradation. Without accessing any sam-
ples of the original classes, the classifier of the original network provides soft “labels”
to transfer knowledge to train the adaptive network, so as to preserve the previous
capability for classification. More importantly, a regularization function based on
Maximum Mean Discrepancy is devised to minimize the discrepancy of new classes
features from the original network and the adaptive network, respectively.

Keywords
Incremental learning, Fine-grained image retrieval, Knowledge distillation, Feature
correlation, Maximum mean discrepancy

This chapter is based on the following publication [37]:

• Chen, W., Liu, Y., Wang, W., Tuytelaars, T., Bakker, E, and Lew, M.S., “On the Ex-
ploration of Incremental Learning for Fine-grained Image Retrieval.” The British Machine
Vision Conference (BMVC), 2020, pp. 1-10.
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5. ON THE EXPLORATION OF INCREMENTAL LEARNING FOR
FINE-GRAINED IMAGE RETRIEVAL

5.1 Introduction

In an era when the number of images is increasing, deep models for fine-grained
image retrieval (FGIR) are required to be adaptable for new incoming classes. How-
ever, current image retrieval approaches are focusing mainly on static datasets and
are not suited for incremental learning scenarios. To be specific, deep networks
well-trained on original classes will under-perform on new incoming classes.

When new classes are added into an existing dataset, joint training on all classes al-
lows to guarantee the performance. However, as the number of new classes increases
sequentially, the repetitive re-training is time-consuming. Alternatively, fine-tuning
makes the network adapt to new classes and achieve good performance on these
classes. However, when the original classes become inaccessible during fine-tuning,
the performance of the original classes degrades dramatically because of catastrophic
forgetting, a phenomenon that occurs when a network is trained sequentially on a
series of new tasks and the learning of these tasks interferes with performance on
previous tasks, as shown in Figure 5.1(a).

Most of incremental learning methods are exploited for image classification, which is
robust and forgiving as long as features remain within the classification boundaries.
In contrast, image retrieval focuses more on the discrimination in the feature space
rather than the classification decisions. Especially for FGIR, small changes on visual
features may have a big impact on the retrieval performance. Additionally, we find
that standard methods like Learning without Forgetting (i.e. LwF [212]) and Elastic
Weight Consolidation (i.e. EWC [213]) are insufficient for this problem because the
distillation is not on the actual feature space (see Section 5.4.2 and 5.4.3).

Considering the above limitations, we alleviate the problem of incremental fine-
grained image retrieval. We regularize the updates of the model to simultaneously
retain preservation on original classes and adaptation on new classes. Importantly,
to avoid the repeated training, the samples of the original classes are not used when
learning the new classes. The classifier of the original network provides soft “la-
bels” to transfer knowledge to train the adaptive network using the distillation loss
function [214]. This focuses on pair-wise similarity but can not well quantify the
distance between two feature distributions. This limitation inspires us to adopt a
regularization term based on Maximum Mean Discrepancy (MMD) [215] to mini-
mize the discrepancy between the features derived from an original network and an
adaptive network, respectively. Moreover, the cross-entropy loss and triplet loss are
utilized to identify subtle differences among sub-categories.

The novelty of the proposed method can be summarized two-fold. First, our work
extends FGIR in the context of incremental learning. This is the first work to
study this problem, to the best of our knowledge. Second, we propose a deep net-
work, which includes a knowledge distillation loss and a MMD loss, for incremental
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Figure 5.1: (a) Illustration of catastrophic forgetting for FGIR. Our method aims
to maintain good performance on the original classes where the inaccurate returned
images are in red box and correct results are in blue box. (b) Framework of our
method. The only inputs for the adaptive net B arem new classes and labels (Xc′ ,Yc′),
c′∈(n+1, ..., n+m). The frozen net A is firstly trained on n original classes and then
copied as initialization for net B.

learning without using any samples from the original classes. It achieves significant
improvements over previous incremental learning methods.

5.2 Related Work

Incremental learning is the process of transferring learned knowledge from an origi-
nal model to an incremental model. It has been studied in lots of tasks like image
classification [212], image generation [216], object detection [217], hashing image re-
trieval [218], and semantic segmentation [219]. To overcome catastrophic forgetting,
numerous methods have been proposed. For example, a subset of data (exemplars)
of original classes are stored into an external memory, and the forgetting is thereby
avoided by replaying these exemplars [220]. Recently, GANs [180] are used to synthe-
size samples with respect to the previous data distributions [221], which avoids the
shortcomings of memory-consuming and exemplar-choosing, but generating real-like
images with complex semantics is a challenging task. Alternatively, regularization
methods constrain the objective functions or parameters of deep networks to pre-
serve the previously learned knowledge. The distillation loss function [214] is used
to transfer knowledge of old classes [212]. The importance weight per parameter is
estimated based on the old classes, and then is used as regularization to penalize
essential parameter changes when training on new incoming classes [213].

5.3 Proposed Approach

Problem formulation Given a fine-grained dataset which includes n class labels
(Xc,Yc) where c∈ (1, ..., n), each sub-category c has a different amount of images
in Xc and the ground-truth labels Yc. A deep network is trained to perform the
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retrieval task for the n classes. Consider the incremental learning scenario, images
from m new classes are added sequentially or at once. We take as input only the
images from m new incoming classes, i.e. (Xc′ ,Yc′), where c′ ∈ (n+1, ..., n+m),
to incrementally train the deep network. In this way, it is efficient to update the
network with no need of re-training the original classes again. Besides, the image
instances from the original classes are not always accessible due to privacy issue
or memory limit. Finally, the aim is to continually train the network, to make it
preserve promising performance for all seen classes.

Overall idea As shown in Figure 5.1(b), our method includes two training stages.
First, we train a network A on the original classes using cross-entropy and triplet
loss on the output logits and representations. After A is well-trained, we make two
copies of A: one freezing its parameters when incrementally training, and the other
adapting its parameters for the m incremental classes. We refer to this adaptive net-
work as B. It is initialized with parameters from A, including the feature extraction
layers Ffrozen and classifier Cfrozen, but extends the number of neurons in its classi-
fier C, from which the output logits are (o′1, o

′
2, . . . , o

′
n, o
′
n+1, . . . , o

′
n+m), and previous

n neurons are copied from Cfrozen. To overcome catastrophic forgetting, we propose
to integrate two regularization strategies based on knowledge distillation and maxi-
mum mean discrepancy, respectively. Given a query image from either the original
classes or newly added classes, we extract the features from the fully-connected layer
for image retrieval. We introduce the details of our method below.

5.3.1 Semantic preserving loss

First, we train the model with the standard cross-entropy loss. Given the log-
its (o1, o2, ..., on) and its class label (y1, y2, . . . , yn), the loss is H(y,o) = −

∑
(y ∗

log(softmax(o))). Note that we only use images from the new classes during incre-
mental training, thus the classification is performed on (o′n+1, o

′
n+2, . . . , o

′
n+m), the

categorical cross-entropy loss function Lce is

Lce = − 1

N

N∑
i=1

(
yi ∗ log

( eo
′
i(x)∑n+m

j=n+1 e
o′j(x)

))
(5.1)

To identify subtle differences among categories, we use the triplet loss Ltriplet by
mining training samples based on feature vectors R.

Ltriplet =
1

N

N∑
i=1

(
max(0, λ+ Si,neg − Si,pos)

)
(5.2)

where Si,neg and Si,pos, based on matrix multiplication (i.e. Si,neg = RiR
>
neg), indicate

the similarity of ith negative and positive pairs, respectively. λ is the margin.
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Figure 5.2: (a) The red and blue color depict the feature distributions of two cat-
egories. The dashed line indicates the distributions from the network A, the solid
line indicates that from the network B. Since A is used to initialize the network B,
MMD=0 in the beginning. As training proceeds, B changes its output features and
the MMD is expected to increase. (b) MMD for instance-to-instance similarity.

5.3.2 Knowledge distillation loss

We rewrite (Ffrozen, Cfrozen) as (F
f
, C

f
) for simplicity. Knowledge distillation loss

[214] is defined to regularize the activations of the output layer in both the old and
new model. To be specific, we constrain the first n values in (o′1, o

′
2, ..., o

′
n, o
′
n+1, ..., o

′
n+m)

as close as possible to the logits (o1, o2, ..., on) from the frozen network A. Follow-
ing the method in [212], when m new classes are added at once, we compute the
knowledge distillation loss by

Ldist= −
1

|Xc′ |

|Xc′ |∑
x∈Xc′

n∑
k=1

(
pk(x) ∗ log[p′k(x)]

)
(5.3)

where pk(x) = eok(x)/T∑n
j e

oj(x)/T
and p′k(x) = eo

′
k(x)/T∑n

j e
o′
j
(x)/T

, T is a temperature factor that is

normally set to 2 [212]. p={p}n and p′={p′}n refer to the probabilities produced
by the modified Softmax function in [214]. F

f
and C

f
denote the parameters of

network A. Similarly, F and C denote the parameters of network B, as shown
in Figure 5.1(b). |Xc′| indicates the number of images from the new m classes in
a mini-batch. n denotes the number of the original classes. Note that n will be
extended accordingly when more new classes are added.

5.3.3 Maximum mean discrepancy loss

Knowledge distillation loss focuses on constraining classification boundaries to mit-
igate the forgetting issue. However, for FGIR, it is more important to reduce the
difference between feature distributions. For this, we adopt maximum mean dis-
crepancy (MMD) [215] to capture the correlation of feature distributions between
network A and B. MMD has been used to bridge source and target distributions
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such as in domain adaptation [222]. However, our work is the first to impose MMD
to regularize the forgetting issue for FGIR.

Given the features Rd (d is feature dimension) from network A and B, MMD mea-
sures the distance between the means of two feature distributions after mapping
them into a reproducing kernel Hilbert space (RKHS). In Figure 5.2(a), we il-
lustrate how MMD mitigates the catastrophic forgetting issue. Note that, in the
Hilbert space H, norm operation can be equal to the inner product [215]. Finally,
the squared MMD distance is:

MMD2(R,R′) = || 1
N

N∑
i=1

φ(Ri)−
1

N

N∑
j=1

φ(R′j)||2H

=
1

N2
<

N∑
i=1

φ(Ri)−
N∑
j=1

φ(R′j),
N∑
i=1

φ(Ri)−
N∑
j=1

φ(R′j)>H

=
1

N2

[ N∑
i=1

N∑
j=1

<φ(Ri), φ(Rj)>H+
N∑
i=1

N∑
j=1

<φ(R′i), φ(R′j)>H−2
N∑
i=1

N∑
j=1

<φ(Ri), φ(R′j)>H

]
s.t. R = F

f
(x), R′ = F (x)

(5.4)
where N is batch size, and φ(·) denotes the mapping function. However, it is hard
to determine φ(·). In RKHS, the kernel trick is used to replace the inner product in
Eq. 5.4, i.e.<φ(R), φ(R′)>=k(R,R′). Considering all the features in a mini-batch,
R={R}N and R′={R′}N , we define the MMD loss Lmmd as:

Lmmd = MMD(R,R′) =
1

N

[ N∑
i=1

N∑
j=1

k(Ri, Rj)− 2
N∑
i=1

N∑
j=1

k(Ri, R
′
j)+

N∑
i=1

N∑
j=1

k(R′i, R
′
j)
] 1

2

(5.5)
where k(R,R′)=exp(−(||R−R′||22)/(2σ2

m)), σm means m variances in the Gaussian
kernel.

Discussion. Knowledge distillation loss focuses on constraining pair-wise similarity.
However, MMD loss measures the distance between each feature vector, as depicted
in Figure 5.2(b). Finally, it captures the distance of two feature distributions from
the frozen net and the adaptive net. Thus, MMD loss is more powerful to quantize
the correlation of two models.

Overall, the objective function in our method for incremental FGIR learning is:

L = αLdist + βLmmd + (Lce + Ltriplet) (5.6)
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5.4 Experiments

5.4.1 Datasets and experimental settings

Datasets. We evaluate our method on the Stanford-Dogs [223] and Caltech-UCSD
Birds-200 (CUB-200) [224] datasets. For the former, we use the official train/test
splits. When training incrementally, we split the first 60 sub-categories (in the
order of official classes) as the original classes and images from the remaining 60
sub-categories are added at once or sequentially. For the latter, we choose 60% of
images from each sub-category as training set and 40% as testing set. Afterwards,
we split the first 100 sub-categories (in the order of official classes) as the original
classes and the remaining 100 sub-categories as new classes. The details are shown
in Table 5.1.

Table 5.1: Statistics of the datasets used in our experiments.

Datasets
Training set

(#Image/#Class)
Testing set

(#Image/#Class)
Original cls. New cls. Total Original cls. New cls. Total

Stanford-Dogs 6000/60 6000/60 12000/120 4651/60 3929/60 8580/120
CUB-200 3504/100 3544/100 7048/200 2360/100 2380/100 4740/200

Experimental settings. We use the Recall@K [131] (K is the number of retrieved
samples), mean Average Precision (mAP), the precision-recall (PR) curve and fea-
ture distribution visualizations for evaluation. We adopt the Google Inception [62]
to extract image features. During training, the parameters in Inception are updated
using the Adam optimizer [225] with a learning rate of 1 × 10−6, while parameters
in fully-connected layers and classifier are updated with a learning rate of 1× 10−5.
We follow the sampling strategy in [226] and each incremental process is trained 800
epochs. Following the practice in [131, 226], the output 512-D features (Rd) from
fully-connected layers are used for retrieval. We set the hyper-parameters α=β=1

in Eq. 5.6, and the margin λ = 0.5 in Eq. 5.2.

5.4.2 One-step incremental learning for FGIR

We report the results for multiple classes added at once. The process includes two
stages. First, we use the cross-entropy and triplet loss to train the network A on the
original classes (100 classes for the CUB-200 dataset, 60 classes for the Stanford-
Dogs dataset), denoted as A(1-100) and A(1-60), respectively. Second, only im-
ages of new classes are added at once to train network B, denoted as B(101-200)

for CUB-200 and B(61-120) for Stanford-Dogs. DIHN [218] has been explored the
incremental learning for hashing-based image retrieval. However, its main difference
with ours is to depend on the usage of old data as query set to avoid forgetting in
their assumption. Considering no previous works for the fine-grained incremental
image retrieval, we apply Learning without Forgetting (LwF) [212], Elastic Weight
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5. ON THE EXPLORATION OF INCREMENTAL LEARNING FOR
FINE-GRAINED IMAGE RETRIEVAL

Consolidation (EWC) [213], ALASSO [227], and the incremental learning for seman-
tic segmentation (dubbed L2 loss) [219] for comparison. LwF, EWC, and ALASSO
distill knowledge on classifier and network parameters, which are insufficient for in-
cremental FGIR. L2 loss in [219] is more similar with ours where the knowledge is
distilled on the classifier and intermediate feature space. Note that cross-entropy
and triplet loss (i.e. semantic preserving loss) are combined with these three al-
gorithms for fair comparison. The Recall@K results for the CUB-200 dataset are
reported in Table 5.2.

Table 5.2: Recall@K (%) of incremental FGIR on the CUB-200 dataset when new
classes are added at once. The best performance in the original class and the new class
are in boldface.

Configurations Original classes New classes
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) w feature extraction - - - 47.02 57.44 67.86
+B(101-200) w fine-tuning 53.90 64.56 73.56 76.18 82.56 87.39
+B(101-200) w LwF (i.e. Ldist) 54.92 66.40 75.42 75.76 82.69 86.93
+B(101-200) w ALASSO 56.91 66.65 76.57 72.48 79.50 85.67
+B(101-200) w EWC 62.03 72.16 80.08 73.32 80.92 86.01
+B(101-200) w L2 loss 66.48 75.68 82.67 77.44 83.78 88.07
+B(101-200) w Our method 74.41 82.57 88.52 73.11 80.84 86.64
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12

In Table 5.2, the “w feature extraction” depicts when A directly extracts features
on the new classes without re-training. The “w fine-tuning” depicts using Lce and
Ltriplet to train A on the new classes but without using Ldist. Overall, the network
B suffers from the catastrophic forgetting issue and has lower performance on the
original classes, whereas our method outperforms the others. As for the new classes,
other three algorithms outperform ours. For example, “ w L2 loss” method achieves
on Recall@1 by 4.33% compared to ours (77.44%→73.11%). However, it suffers from
significant performance degradation on the original classes with Recall@1 dropping
by 12.93% compared to the initial model (79.41%→66.48%). For our method, the
Recall@1 on the original classes is 74.41% (dropped by 5.00% from 79.41% of the
initial model); the Recall@1 on the new classes is 73.11% compared to the reference
model from A(1-200) (i.e. Recall@1=76.64%). Similarly, the Recall@K results for
the Stanford-Dogs dataset are reported in Table 5.3. We observe similar trends as
the results we shown in main paper, when our method achieves good performance on
the original classes and new classes with Recall@1= 76.67% and Recall@1=81.88%,
respectively. Compared to the initial model on the original classes, our method has
dropped Recall@1 performance by 4.00% (80.67%→76.67%).

We report the PR curves and mAP results in Figure 5.3(a), 5.3(b), and 5.3(c),
respectively. Overall, when tested on the new classes, all methods share similar
trends. When tested on the original classes, our method has better performance
although it still has gap to reference performance. For mAP results, the reference
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Table 5.3: Recall@K (%) of incremental FGIR on the Stanford-Dogs dataset when
new classes are added at once. The best performance are in boldface.

Configurations Original classes New classes
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-60) (initial model) 80.67 87.27 92.20 - - -
+B(61-120) w feature extraction - - - 75.64 83.91 90.48
+B(61-120) w fine-tuning 61.43 72.80 81.70 78.93 86.99 91.55
+B(61-120) w LwF (i.e. Ldist) 61.77 72.72 81.70 78.52 86.38 91.12
+B(61-120) w EWC 62.24 73.30 82.82 78.90 86.59 91.19
+B(61-120) w ALASSO 62.61 74.49 82.98 78.14 85.98 91.02
+B(61-120) w L2 loss 72.07 81.44 87.47 82.21 88.75 92.52
+B(61-120) w Our method 76.67 85.10 91.14 81.88 88.98 93.36
A(1-120) (reference model) 79.29 86.86 91.61 82.57 88.75 93.13

results are the same as in Table 5.2. We utilize the well-trained network A at
epoch=700 as initial model to train B on the new classes until convergence, we test
the mAP of network B on the original classes. As the curves show, the network
trends to degrade its accuracy on the original classes during incremental training.
Similarly, we report the precision-recall curves and mAP results in Figure 5.4. We
can observe these curves share with the similar trends with those from the CUB-200
dataset. Overall, our method can effectively address the catastrophic forgetting issue
on the original classes while achieve ideal performance on the new classes.

Furthermore, we explore the influence of the number of the added new classes.
Specifically, on the CUB-200 dataset, we choose 100 classes and 25 classes as new
categories. The results are reported in Table 5.4. Likewise, for the Stanford-Dogs
dataset, we choose 60 new classes and 5 classes for incremental learning, whose
results are reported in Table 5.5. For CUB-Brids, we observe that larger newly-
added classes lead to heavier forgetting. For example, when only 25 new classes
are used, the Recall@1 drops from 79.41% to 76.65%, compared to the one drops
from 79.41% to 74.41% where 100 new classes are added. Note that the reference
models are trained jointly on all classes and tested on the original and new classes
separately. For Stanford-Dogs, we observe these two datasets share with similar
trends that larger new coming classes lead to heavier forgetting issue. For the
Stanford-Dogs dataset, when only 5 new classes are added, the Recall@1 drops from
80.67% to 79.75%, compared to the one drops from 80.67% to 76.67% when 60 new
classes are added.

We visualize the feature distributions using t-SNE [195] under two experimental
settings: with and without MMD loss in Figure 5.5, which demonstrate the MMD
loss reduces the distance between distributions and effectiveness for mitigating the
forgetting issue.
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Figure 5.3: Performance evaluation on the CUB-200 dataset. (a)-(b) denote the PR
curves tested on the original classes and new classes. (c) depicts the mAP results for
different methods as the training proceeds. We only show the results tested on the
original classes. (d) training time comparison during each epoch.

5.4.3 Multi-step incremental learning for FGIR

We split all new classes into 4 groups and added each sequentially. The training
procedures are as follows: the initial model A is pre-trained on the original classes
(1-100), and used as an initial model to train on newly-added classes (101-125) until

Table 5.4: Recall@K (%) on CUB-200 when 25 or 100 new classes are added at once.
Correspondingly, † indicates the results are tested on different new classes.

Configurations Original classes New classes†
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-125) w Our method 76.65 83.47 88.86 73.13 82.31 88.44
+B(101-200) w Our method 74.41 82.57 88.52 73.11 80.84 86.64
A(1-125) (reference model) 77.84 83.94 87.80 79.25 85.54 91.96
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12
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Figure 5.4: Performance evaluation on the Stanford-Dogs dataset. Figure (a)-(b)
denote the precision-recall curves tested on the original classes and new classes. The
larger the area under each curve, the better performance of the method. Figure (c)
depicts the mAP results for different methods as the training proceeds. We only show
the results tested on the original classes. Being closer to the reference curve (red one)
indicates less performance degradation, i.e., the method can maintain its previous
performance on the original classes.

convergence to produce a new model B(101-125). Afterwards, the newly-trained
model B(101-125) is used as an initial model to train on other new classes (126-150)

Table 5.5: Recall@K (%) on the Stanford-Dogs dataset when 5 or 60 new classes are
added at once. Similar to the settings in Table 5.4, † indicates the results are tested
on different new classes.

Configurations Original classes New classes†
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-60) (initial model) 80.67 87.27 92.20 - - -
+B(61-65) w Our full method 79.75 87.23 91.92 97.45 98.55 99.27
+B(61-120) w Our full method 76.67 85.10 91.14 81.88 88.98 93.36
A(1-65) (reference model) 79.62 86.15 90.91 96.73 97.82 98.55
A(1-120) (reference model) 79.29 86.86 91.61 82.57 88.75 93.13
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Figure 5.5: t-SNE visualization for feature distribution of 6 categories. The circle
indicates the features from reference model, which has the same distribution in two
cases. The triangle denotes the feature from models trained with/without MMD loss.
(a): model trained without MMD loss; (b): model trained with MMD loss.

to produce B(101-125)(126-150). This process is repeated until 4 groups of classes
are added sequentially.

We compare to three representative methods (we choose EWC rather than ALASSO
since EWC obtains higher performance on the CUB-200 dataset) and report the re-
sults in Table 5.9. The reference performances are achieved by jointly training all
the classes, and then tested on each group (including the original classes). Overall,
the model suffers from the catastrophic forgetting issue when sequentially training.
However, our method achieves a minimal performance degradation. For instance,
when 4 groups have been added, the model B(101-125)(126-150)(151-175)(176-200)
is tested on the original classes(1-100). The “L2 loss” algorithm Recall@1 drops
79.41%→67.37%→58.14%→53.86%→ 45.85%, the average degradation is 8.39%.
Our method Recall@1 drops 79.41%→76.65%→73.77%→70.47%→66.40%. The av-
erage performance degrades by 3.25%, which indicates that our method significantly
mitigates the forgetting problem. Furthermore, our method has good performance
on new classes, which are closer to the reference performance. When the model
B(101-125)(126-150)(151-175)(176-200) is tested on new classes (176-200), the re-
sults are achieved with Recall@1=85.21%, Recall@2=89.92% and Recall@4=93.28%,
respectively, while the reference results are Recall@1=83.70%, Recall@2=90.25%
and Recall@4=93.78%.

Similarly, we report the results on the Stanford-Dogs dataset in Table 5.10 when
new classes are added sequentially. We observe similar trends as those for the CUB-
200 dataset. Compared to the other two methods, the proposed method has ideal
retrieval performance on the newly added classes and the original classes.
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Table 5.6: Average top-1 accuracy of incremental learning for image classification on
CIFAR-100 dataset [228].

Method Number of the added new classes
20 40 60 80 100

L2 loss 77.3 47.5 40.5 36.6 32.8
EWC 77.3 60.5 50.9 43.3 39.5
LwF 77.3 62.5 52.9 46.2 41.0
Ours 77.3 64.6 55.8 49.2 43.3

Table 5.7: Ablation study for different components of loss function

Configurations Original classes New classes
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) w Lce + Ltriplet 53.90 64.56 73.56 76.18 82.56 87.39
+B(101-200) w Lce + Ltriplet + Ldist 54.92 66.40 75.42 75.76 82.69 86.93
+B(101-200) w Lce + Ltriplet + Lmmd 73.36 81.25 87.43 73.40 81.60 86.64
+B(101-200) w Lce+Ltriplet+Ldist+Lmmd 74.41 82.57 88.52 73.11 80.84 86.64
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12

5.4.4 Validation with image classification

We evaluate the effectiveness of our method on CIFAR-100 [228] which is the popular
benchmark for class-incremental learning in image classification. We split 100 classes
into a sequence of 5 tasks, and each task includes 20 classes. In Table 5.6, the results
indicate the average top-1 accuracy of the classes from seen tasks. In the last column,
the test set evaluates the classes from all the five tasks. Note that, the 20 classes
in the first task (the second column) achieve the same performance, as it has no
incremental learning yet. We observe that our method outperforms other methods
across the tasks. It suggests our method generalizes well to various applications.
Notably, our improvement for image retrieval is more significant than that for image
classification. The reason is that the proposed MMD loss is imposed on the feature
representation, which largely benefits the metric learning for image retrieval. This
also explains why our method is focused mainly on image retrieval.

Table 5.8: Sensitivity analysis of the hyper-parameters α, β. The better trade-off
performance of the hyper-parameters are in bold face.

Configurations Original classes New classes
Recall@K (%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) (α = 0.1, β = 0.1) 56.53 66.31 75.59 77.52 83.82 88.15
+B(101-200) (α = 0.1, β = 1) 73.31 82.00 87.14 72.77 80.92 87.14
+B(101-200) (α = 0.1, β = 10) 79.58 85.76 90.47 49.50 61.51 70.59
+B(101-200) (α = 1, β = 0.1) 55.81 67.25 75.59 77.02 83.91 87.90
+B(101-200) (α = 1, β = 1) 74.41 82.57 88.52 73.11 80.84 86.64
+B(101-200) (α = 1, β = 10) 79.41 86.31 90.51 48.82 61.09 71.05
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12
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5.4.5 Training time comparison

We compare the average training time on the CUB-200 dataset and the Stanford-
Dogs dataset when 100 and 60 new classes are added at once. The results are
shown in Figure 5.3(d) and 5.4(d), respectively. Note that all models in five meth-
ods are starting from the same initial model trained on the original 100 classes as
initialization. The reference time is from joint training where the initial model is
trained on all classes. The other four methods are incrementally learning the new
classes only. We observe that our method saves more time by 50% as expected.
EWC and ALASSO algorithms take more time than reference because the gradients
computation during back-propagation process is time-consuming.

5.4.6 Components analysis

Ablation study. We have done an ablation study on the CUB-200 dataset when
multiple classes are added at once. Note that the component “Lce+Ltriplet” comprises
our baseline performance, thus we analyze the different loss items in Eq. 5.6. We
can observe the influence of difference components for the original and new classes.
The results are shown in Table 5.7.

Hyper-parameters sensitivity analysis. We explore the sensitivity of hyper-
parameters α, β in Eq. 5.6, which affect significantly the trade-off performance. We
conduct this experiment on the CUB-200 dataset. As shown in Table 5.8, we find
that the incrementally-trained model is more sensitive to β than α. For instance,
when α is set as 0.1, but β changes from 0.1 to 1, model B performs better on the
new classes and significantly retains its previous performance. However, this obvious
trend cannot be observed when β is set as 0.1, but α changes from 0.1 to 1 where
the model B performs almost the same on the original and new classes. Finally, if
α=β=1, the incrementally-trained model B keeps a better trade-off performance
between the original and the new classes.

5.5 Chapter Conclusions

In this chapter, for the first time, we have exploited incremental learning for fine-
grained image retrieval in several scenarios for increasing numbers of image cat-
egories when only images of new classes are used. To overcome the catastrophic
forgetting, we adopted the distillation loss function to constrain the classifier in
the original network and the incremental classifier in the adaptive network. More-
over, we introduced a regularization function, based on MaximumMean Discrepancy
(MMD), to minimize the discrepancy between features of newly added classes from
the original and the adaptive network. Comprehensive and empirical experiments on
two fine-grained datasets show the effectiveness of our method that is superior over
existing methods. In the future, it is promising to investigate incremental learning
between different fine-grained datasets for image retrieval.
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