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Chapter 4

Integrating Information Theory and
Adversarial Learning for
Cross-modal Retrieval

In this chapter, we further explore cross-modal retrieval to address the challenges
posited by the heterogeneity gap and the semantic gap. To be specific, we propose
integrating Shannon information theory and adversarial learning. In terms of the
heterogeneity gap, we integrate modality classification and information entropy max-
imization adversarially. For this purpose, a modality classifier (as a discriminator) is
built to distinguish the text and image modalities according to their different statisti-
cal properties. This discriminator uses its output probabilities to compute Shannon
information entropy, which measures the uncertainty of the modality classification
it performs. Moreover, feature encoders (as a generator) project uni-modal features
into a commonly shared space and attempt to fool the discriminator by maximiz-
ing its output information entropy. Thus, maximizing information entropy gradu-
ally reduces the distribution discrepancy of cross-modal features, thereby achieving
a domain confusion state where the discriminator cannot classify two modalities
confidently. To reduce the semantic gap, Kullback-Leibler (KL) divergence and bi-
directional triplet loss are used to associate the intra- and inter-modality similarity
between features in the shared space. Furthermore, a regularization term based on
KL-divergence with temperature scaling is used to calibrate the biased label classi-
fier caused by the data imbalance issue.

Keywords
Cross-modal retrieval, Shannon information theory, Adversarial learning, Modality
uncertainty, Data imbalance.

This chapter is based on the following publication [35]:

• Chen, W., Liu, Y., Bakker, E., and Lew, M.S., “Integrating Information Theory and Adver-
sarial Learning for Cross-modal Retrieval.” Pattern Recognition, 2021, 117, pp. 107983.
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4. INTEGRATING INFORMATION THEORY AND ADVERSARIAL
LEARNING FOR CROSS-MODAL RETRIEVAL

4.1 Introduction

Deep learning methods can effectively embed features from different modalities into
a commonly shared space, and then measure the similarity between these embedded
features. As mentioned in Chapter 3, the “heterogeneity gap” [176] and the “semantic
gap” [10] are still challenges to be addressed for cross-modal retrieval. To achieve
better retrieval performance, it is essential to address these gaps for associating the
similarity between cross-modal features in the shared space.

To capture the semantic similarity between cross-modal features, many approaches
have been proposed in recent years. Some approaches focus on designing effective
structures from a deep networks perspective. For instance, graph convolutional
networks are employed to model the dependencies within visual or textual data.
Other approaches focus on designing similarity constraint functions from a deep
features perspective. For example, bilinear pooling-based methods are applied to
align image and text features to then accurately capture inter-modality semantic
similarity. In other examples, coordinated representation learning methods, such as
ranking loss [177, 184] are widely used to preserve similarity between cross-modal
features. These constraint functions mainly aim at reducing the semantic gap by
focusing on the similarity between two-tuple or three-tuple samples. However, they
might not directly mitigate the heterogeneity gap caused by the inconsistent feature
distributions in the different spaces.

Considering the limitations of similarity constraint functions, we propose a new
method to perform cross-modal retrieval from two aspects. First, we reduce the
heterogeneity gap by integrating Shannon information theory [179] with adversarial
learning, in order to construct a better embedding space for cross-modal represen-
tation learning. Second, we combine two loss functions, including KL-divergence
loss and bi-directional triplet loss, to preserve semantic similarity during the feature
embedding procedure, thereby reducing the semantic gap.

To do this, we combine the information entropy predictor and the modality classifier
in an adversarial manner. Information entropy maximization and modality classifi-
cation are two processes trained with competitive goals. Since uni-modal features
extracted from image or text data are characterized by different statistical proper-
ties, it can be used to distinguish the original modalities these features belong to.
As a result, when these features in the shared space are correctly classified into their
original modalities with high confidence, then their feature distributions convey less
information content, and the modality classifier performs modality classification with
lower uncertainty. In contrast, when cross-modal features become modality-invariant
and show their commonalities, these features cannot be classified into the modality
they originally belong to. In this case, the feature distributions in the shared space
conveys more information content and higher modality uncertainty.
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According to Shannon’s information theory [179], we can measure the modality
uncertainty in the shared space by computing information entropy. This basic pro-
portional relation provides the principle to mitigate the heterogeneity gap. For this
purpose, we integrate modality uncertainty measurement into cross-modal repre-
sentation learning. As shown in Figure 4.1, a modality classifier (in the following
we call it a discriminator) is devised to classify image and text modality, rather
than perform a “true/false” binary classification. This discriminator also provides
its output probabilities to calculate the information entropy of the cross-modal fea-
ture distributions. At the start of training, the discriminator can classify images
and text modalities with high confidence due to their different statistical properties.
In contrast, the feature encoders (in the following we call it a generator) project
features into a shared space and attempt to fool the discriminator and make it per-
form an incorrect modality classification until features in the shared space are fused
heavily into a confusion state, maximizing the modality uncertainty.

On the basis of this heavily-fused state, we further use similarity constraints on the
feature projector to reduce the semantic gap. Specifically, KL-divergence loss is used
to preserve semantic similarity between image and text features by using instance
labels as supervisory information. More importantly, we consider the issue of data
imbalance and introduce a regularization based on KL-divergence with temperature
scaling to calibrate the biased label classifier. Afterwards, we adopt the commonly
used bi-directional triplet loss and instance label classification loss (i.e. categorical
cross-entropy loss) to achieve good retrieval performance.

4.2 Related Work

4.2.1 Cross-modal representation learning and matching

Preserving the similarity between cross-modal features should consider two aspects:
inter-modality and intra-modality. Supervision information (e.g. class label or in-
stance label), if available, is beneficial for learning features from these two aspects.
Preserving feature similarity can be realized by using methods such as joint represen-
tation learning and coordinated representation learning. Joint representation learn-
ing methods project the uni-modal features into the shared space using straightfor-
ward strategies such as feature concatenation, summation, and inner product. Sub-
sequently, more complicated bilinear pooling methods, such as multimodal compact
bilinear (MCB) pooling, are proposed to explore the semantic similarity of cross-
modal features. To regularize the joint representations, deep networks are commonly
trained by using objective functions, such as regression-based loss [185].

Coordinated representation learning methods process image and text features sep-
arately but impose them under certain similarity constraints. In general, these
constraints can be categorized into classification-based and verification-based meth-
ods in supervised scenarios. In terms of classification-based methods, both image
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and text features are used to make a label classification by using categorical cross-
entropy loss function. Because a paired image-text input has the same class label,
their features can be associated in the shared space. However, classification-based
methods cannot preserve the similarity between inter-modality features well because
the similarity between image and text features is not directly regularized.

Image

Text

EEnnccooddeerr E1

EEnnccooddeerr E2

Feature projector

Information entropy 
predictor

Shared space

Modality classifier

semantic similarity preserving

uncertainty maximization

uncertainty minimization

Adversary
i dZ FÎ

t dZ FÎ

Figure 4.1: Illustration of combining in-
formation theory and adversarial learning.
The features Zi ∈ F d and Zt ∈ F d with di-
mension d for image-text pairs are extracted
using deep neural networks. Shape indi-
cates modality and color denotes pair-wise
similarity information.

Verification-based methods, based on
metric learning, are proposed to further
optimize inter-modality feature learn-
ing. Given a similar (or dissimi-
lar) image-text pair, their correspond-
ing features should be verified as sim-
ilar (or dissimilar). Therefore, the
goal of deep networks is to push fea-
tures of similar pairs closer, while keep-
ing features of dissimilar pairs further
apart. Verification-based methods in-
clude pair-wise constraints and triplet
constraints, which focus on inferring the
matching scores of image-text feature
pairs [185].

Triplet constraints optimize the distance between positive pairs to be smaller than
the distance between negative pairs by a margin. They can capture both intra-
modality and inter-modality semantic similarity. For example, bi-directional triplet
loss has been employed to optimize image-to-text and text-to-image ranking [177].
Although triplet constraints are widely used for cross-modal retrieval, the difficulties
are in the mining strategy for negative pairs and the selection of a margin value,
which are usually task-specific and empirically selective.

4.2.2 Adversarial learning for cross-modal retrieval

The aforementioned joint and coordinated representation learning approaches fo-
cus on two-tuple or three-tuple samples, which may be insufficient for achieving
overall good retrieval performance. Adversarial learning, as an alternative method,
has shown its powerful capability for modeling feature distributions and learning
discriminative representations between modalities when deep networks are trained
with competitive objective functions [177].

Recent progress in using adversarial learning for cross-modal retrieval can be cate-
gorized as feature-level and loss function-level discriminative models.

From a feature-level perspective, it is possible to preserve semantic consistency by
performing a min-max game between inter-modality feature pairs [177]. A straight-
forward way is to build a discriminator, making a “true/false” classification between
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image features (regarded as true), corresponding matched text features (regarded as
fake), and unmatched image features from other categories (also regarded as fake)
[177]. Alternatively, a cross-modal auto-encoder can be combined to generate fea-
tures for another modality. For example, a generator attempts to generate image
features from textual data and then regards them as true, while for a discriminator,
image features extracted from original images and these from the generated “images”
are labeled as true and fake, respectively. The adversarial training explores the se-
mantic similarity of cross-modal representations. Intra-modality discrimination also
can be considered in cross-modal adversarial learning, forcing the generator to learn
more discriminative features. In this case, the discriminator tends to discriminate
the generated features from its original input.

From a loss function-level perspective, instead of making a binary classification
(i.e. true or fake), adversarial learning is used to train two groups of loss functions
or two processes with competitive goals. This idea is applied in recent work for
cross-modal retrieval [177]. Specifically, a feature projector is trained to generate
modality-invariant representations in the shared space, while a modality classifier is
constructed to classify the generated representations into two modalities. Similarly,
we combine two networks and train them with two competitive goals.

4.2.3 Information-theoretical feature learning

As noted before, feature vectors from different modalities are distributed in different
spaces, resulting in the heterogeneity gap, which affects the accuracy of cross-modal
retrieval. Therefore, it becomes essential to reduce feature distribution discrepancies
and thereby reduce the heterogeneity gap. The solution for this is to measure and
then minimize distribution discrepancy. For example, distribution disparity of cross-
modal features can be characterized by Maximum Mean Discrepancy (MMD), which
is a differentiable distance metric between distributions. However, MMD suffers from
sensitive kernel bandwidth and weak gradients during training.

Information-theoretical based methods measure the differences of feature distribu-
tions and learn better cross-modal features. As an example, the cross-entropy loss
function is widely used to estimate the errors between inference probabilities and
ground-truth labels where the gradients are computed according to the errors. Once
the gradients are computed, deep networks can further update their parameters via
the back-propagation algorithm. KL-divergence (also called relative entropy) is an-
other popular criterion to characterize the difference between two probability distri-
butions. Minimizing the difference is beneficial for retaining the semantic similarity
between features. For example, Zhang et al. [186] employ the KL-divergence to mea-
sure the similarity between projected features and supervisory information.

Recently, Shannon information entropy [179] has been used for performing cross-
modal hash retrieval [34]. This study indicates that Shannon entropy can be used for
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multimodal representation learning by estimating uncertainty [179]. Take generative
adversarial networks as an example: if the generator makes image features and text
features close and minimizes their discrepancy, then the discriminator will become
less-certain or under-confident, i.e., having a high information entropy to predict
which modality each feature comes from. We applied this principle in our previous
work [34] to design an objective function to maximize the domain uncertainty over
cross-modal hash codes in a commonly shared space. Deep networks trained by using
information entropy construct a domain confusion state where the heterogeneity gap
can be effectively reduced. On the basis of this state, other loss functions, such as
ranking loss, can be further applied to regularize feature similarity.

4.3 Proposed Approach

4.3.1 Problem formulation

We consider a supervised scenario for cross-modal retrieval. Denote X i as the input
images and the corresponding descriptive sentences as X t. Each image and its
descriptive sentences have the same instance label Y . Therefore, we can organize
an input pair (xi, xt, y) to train a deep network. To be specific, feature encoders
E1(·;θE1) and E2(·;θE2) extract image and text features, respectively, and then
further embed these uni-modal features into a shared space by using non-shared sub-
networks. The embedded features with dimension d are denoted as Zi = E1(X i;θE1)

and Zt = E2(X t;θE2), Zi,Zt ∈ Rd. Note that the parameters in the non-shared sub-
networks for uni-modal image and text feature embedding have been included into
θE1 and θE2 , respectively. The goal is to train a deep network to make the embedded
features Zi and Zt modality-invariant and semantically discriminative, improving
the retrieval accuracy.

As shown in Figure 4.1, the networks E1, E2, and the information entropy predictor
act as a generator, while the modality classifier acts as a discriminator. The training
of the generator and the discriminator is formulated as an min-max game to miti-
gate the heterogeneity gap. The feature projector preserves feature similarity under
several constraints, which are introduced in Section 4.4.2, 4.4.3, and 4.4.4.

4.3.2 Integrating information theory & adversarial learning

4.3.2.1 Information entropy and modality uncertainty

Uni-modal features from different modalities have similar semantics but are dis-
tributed in different spaces. Their similarities are not well associated so that these
features are not directly comparable. It is required to further embed them into a
shared space (i.e. Zi and Zt in Figure 4.1). Uni-modal features are characterized by
different statistical properties. Therefore, as shown in Figure 3.2(a) in Chapter 3, it
is possible to identify a feature in the shared space coming from a visual modality
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with higher probability Pi (more certain classification) than coming from a textual
modality with lower probability Pt=1−Pi (less certain classification). In other words,
these cross-modal features are not intertwined heavily. As a result, the domain con-
fusion state is not achieved. Conversely, if a given feature can not be distinguished
which modality this feature originally comes from, it indicates that this feature has
identical probability (Pi =Pt) coming from each modality. In this case, the shared
space has highest uncertainty and the cross-modal features are intertwined into a
domain confusion state, which corresponds to highest information content. We use
information entropy [179] to measure the uncertainty of the shared space. Figure
3.2(b) in Chapter 3 illustrates that two modalities with an equal probability leads
to the highest Shannon information entropy and thus information content.

Modality uncertainty refers to the unreliability of classification that the discrimina-
tor classifies image features and text features into two modalities. It is proportional
to Shannon information entropy [179], as shown in Figure 3.2(c) in Chapter 3. Based
on this observation [34], we design the discriminator to measure its output modal-
ity uncertainty by using information entropy as a criterion. Maximizing information
entropy means that the discriminator becomes least-confident in classifying the orig-
inal modality of image and text features, resulting in the greatest reduction of the
heterogeneity gap.

4.3.2.2 Adversarial learning and information entropy

To make cross-modal features modality-invariant, we devise a generator and a dis-
criminator, as shown in Figure 4.1. The discriminator performs modality classifica-
tion to identify visual modality and textual modality based on cross-modal features.
Following [177], we define the modality label as Y ∗c for these two modalities (for
visual modality ∗ = i and textual modality ∗ = t). Using output probabilities of the
discriminator, we can compute cross-entropy loss to realize modality classification
[177]. Once the network convergences under the constraint of this loss function,
visual modality and textual modality are clearly identified and classified, thereby
minimizing the modality uncertainty.

Conversely, the generator is designed to maximize the modality uncertainty over the
cross-modal feature distributions. To achieve this, the generator learns modality-
invariant features to fool the discriminator, maximizing the uncertainty of modality
classification the discriminator performs. If the modality uncertainty is maximized,
the discriminator is most likely to make an incorrect modality classification and be
least-confident about its classification results. In this case, cross-modal features are
intertwined into a domain confusion state and become indistinguishable.

To this end, we explore the ways to integrate information entropy and adversarial
learning into an end-to-end network, which is introduced in Section 4.4.1. For better
understanding, we also explore another combining paradigm in the Experimental
Section.
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4.3.3 KL-divergence for cross-modal feature projection

To reduce the semantic gap, we use KL-divergence to characterize the differences
between projected cross-modal features (Zi and Zt in Figure 4.1) and a supervisory
matrix computed from their instance labels, i.e. KL((f(Zi, Zt)||f(Y >l , Yl)), (see
Eq. 4.9). In this way, the semantic similarity among cross-modal features can be
preserved. We illustrate this process in Figure 4.2. It is important to note that
when using KL-divergence to preserve semantic similarity of cross-modal features,
all positive and negative pairs in a mini-batch are considered. As for the supervisory
matrix f(Y >l , Yl), it is computed by using matrix multiplication and is normalized
to the range from 0 and 1.

We argue that different operations to realize f(Zi, Zt) affect similarity preserving.
Directly, the operation f(·) can be an inner product on cross-modal features Zi and
Zt. However, using the inner product has some implicit drawbacks. First, when
multiplying one image feature vector with all text feature vectors, the results of
the inner product are not optimally comparable due to the non-normalized text
features, and vice versa. Second, the angles between each image feature vector and
each text feature vector, as well as their whole feature distributions, are changing
when training the deep network, which makes it problematic for an inner product
to measure feature similarity.

To tackle the above limitations, we adopt a cross-modal feature projection to char-
acterize the similarity between features. The idea is related to the work in [186].
Cross-modal feature projection is based on the same distribution and operates on
the normalized features. For instance, an image feature vector, zij ∈ Zi, can be
projected to the distribution of a text feature vector ztk ∈ Zt, then each projected
feature vector from image to text (termed “i→ t”) can be formulated as:

ẑi→tj = |zij| ∗
<zij, z

t
k>

|zij||ztk|
∗ ztk
|ztk|

=<zij, z̄
t
k> ∗z̄tk

(4.1)

where “i” and “t” represent the visual and the textual modality, respectively, “j”
and “k” represent the index of each image feature and text feature in the shared
space, respectively, z̄tk denotes the normalized feature. Therefore, the length of ẑi→tj

is equal to |ẑi→tj |= |<zij, z̄tk>|, and denotes the similarity between image feature zij
and text feature ztk. When associating each image feature zij with all text features
Zt, we obtain all different lengths, Therefore, when projecting all image features into
all text features Zt, we get a similarity matrix Ai→t, which is formulated as

Ai→t(Z
i, Zt) =

N∑
j=1

N∑
k=1

|<zij, z̄tk>| = Zi(Z̄t)> (4.2)

66



4.4 Implementation and optimization

Similarly, if projecting all text features into all image features Zi, we obtain another
similarity matrix At→i:

At→i(Z
t, Zi) =

N∑
k=1

N∑
j=1

|<ztk, z̄ij>| = Zt(Z̄i)> (4.3)

In the above two equations, Zi and Zt represent the cross-modal features from two
modalities. N is the number of samples in a mini-batch. These two similarity
matrices are normalized by a softmax function. Afterwards, we use KL-divergence
to characterize the difference between the normalized matrices and the supervisory
matrix, i.e. KL((f(Zi, Zt)||f(Y >l , Yl)). The specific objective function is introduced
in Section 4.4.2.

4.4 Implementation and optimization
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Figure 4.2: KL-divergence for cross-modal
feature projection, which considers all fea-
tures Zi and Zt in the shared space. Each
paired image feature and text feature share
the same instance label, indicated by the
same color. The cross-modal feature projec-
tion module is critical to explore the simi-
larity between image features and normalized
text features. The projection process is for-
mulated in Eqs. 4.2 and 4.3.

We introduce the implementation and
optimization of our proposed ap-
proach in this section. We employ four
convolutional neural networks such as
ResNet-152 [13] and MobileNet [187]
to obtain image features and a Bi-
directional LSTM (Bi-LSTM) [188] to
extract text features. All the ex-
tracted image and text features are
uni-modal. Later, we borrow the pro-
tocols of non-shared encoding sub-
networks (fully-connected layers) in
[186] to get the cross-modal features
Zi and Zt.

Once the cross-modal features are ob-
tained, we use the proposed algorithm
to train the networks based on the above theoretical analysis. The algorithm includes
combining information entropy and adversarial learning to mitigate the heterogene-
ity gap, and loss function terms (i.e. KL-divergence loss, categorical cross-entropy
loss, and bi-directional triplet loss) to preserve semantic similarity between cross-
modal features.

4.4.1 Combining information theory & adversarial learning

We combine information entropy predictor and modality classifier in Figure 4.1 into
a unified sub-network, as shown in Figure 4.3. In this paradigm, the discriminator D
with parameters θD performs a modality classification and computes the Shannon
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4. INTEGRATING INFORMATION THEORY AND ADVERSARIAL
LEARNING FOR CROSS-MODAL RETRIEVAL

information entropy. The backbone nets E1 and E2 for feature extraction act as
the generator G. The whole structure forms a generative adversarial network. The
information entropy computed from the discriminator back-propagates to the feature
encoders. Specifically, when the discriminator is fixed, and its parameters are θ?D,
then the information entropy H(P ?

D
) = E

i,t
(−P ?

D
∗ log(P ?

D
)) is computed from its

output probabilities P ?
D

(D|Zi,t;θ?D) across the features for all classes. Based on the
information entropy, we can design a negative entropy loss Ls = −H(P ?

D
) (see Eq.

4.4) to train the network. The gradients computed from Ls update the parameters of
feature extractors. The negative information entropy Ls is label-free during training,
and it regularizes the whole feature distribution to be modality-invariant.
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Figure 4.3: The implementation of integrat-
ing information entropy predictor and modal-
ity classifier in Figure 4.1 into a unified dis-
criminator. Together with the feature ex-
tractors, the whole framework is in the form
of generative adversarial network. For clar-
ity, we ignore the feature projector, which in-
cludes label classification loss, bi-directional
triplet loss, and KL-divergence loss.

The discriminator consists of some
fully-connected layers. The last layer
with two neurons yields probabilities
that correspond to two modalities.
This discriminator classifies whether
the input features Zi and Zt are from
the visual or the textual modality
given the pre-defined modality label
Y ∗c . In contrast, the generator (i.e. E1

and E2 ) aims at learning modality-
invariant features to fool the discrim-
inator to make an incorrect modal-
ity classification so that the generator
gradually maximizes the output infor-
mation entropy from the discrimina-
tor. Therefore, the learning process
of the discriminator affects that of the
generator in an indirect way. The ob-
jective function is calculated using the output probabilities P

D
(D|Zi,t;θD) of the

discriminator.

For the generator E1 and E2:

Ls=
1

N

N∑
j=1

M∑
m=1

(
P i
D,m(Di|Zi

j;θD)∗log(P i
D,m(Di|Zi

j;θD))

+ P t
D,m(Dt|Zt

j ;θD)∗log(P t
U,m(Dt|Zt

j ;θD))
)

s.t.

M∑
m=1

P ∗D,m(D∗|Z∗j ;θD) = 1, P ∗D,m(D∗|Z∗j ;θD) ≥ 0

(4.4)

It is expected for the generator G to maximize the information entropy H(P ?
D

), and
subsequently the modality uncertainty (see Figure 3.2 in Chapter 3). Since Ls is a
negative entropy (Ls =−H(P ?

D
)) to maximize H(P ?

D
), it is minimized to optimize
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the parameters θE1 and θE2 of the generator during training. For the discrimi-
nator D, depending on the modality label Y i

c and Y t
c and its output probabilities

P
D

(D|Zi,t;θD), the modality classification cross-entropy loss function is formulated
as:

Lc= − 1

N

N∑
j=1

(
Y i
c ∗log

(
P i
D(Di|Zi

j;θD)
)

+ Y t
c ∗log

(
P t
D(Dt|Zt

j ;θD)
))

(4.5)

Lc refers to the negative cross-entropy loss of the discriminator and is minimized to
clearly classify image and text features into two modalities during training. Note
that the gradients calculated from term Ls are only used to optimize the parame-
ters θE1 and θE2 of the generator, whereas the gradients from term Lc are only for
optimizing the parameters θD of the discriminator, as shown in Figure 4.3. Min-
imizing loss Lc and Ls when trained iteratively will reduce the heterogeneity gap.
The optimization method is straightforward, even though the gradients calculated
from Lc will not directly affect the parameters of the feature encoders E1 and E2.
The output probabilities of the discriminator change when updating its parameters,
which will affect the Shannon information entropy and affect the output features
from E1 and E2 in the end.

4.4.2 KL-divergence for similarity preserving

We also compute KL-divergence directly across Zi and Zt to further preserve seman-
tic similarity. KL-divergence focuses on the projections of image and text features
and is computed by Lkl = KL((f(Zi, Zt)||f(Y >l , Yl)). Here, superscript “>” means
matrix transpose. Lkl focuses on constraining the whole feature distributions and
is complementary to the following bi-directional triplet loss function. We have in-
troduced the process of cross-modal feature projection in Section 4.3.3. Given the
similarity matrices (i.e. Ai→t(Zi, Zt) and At→i(Z

t, Zi)), we use the softmax func-
tion to normalize these matrices in Eq. 4.6 and Eq. 4.7. The supervisory matrix
is normalized after matrix multiplication as in Eq. 4.8. Similar to [186], since we
project features from visual (or textual) modality into textual (or visual) modal-
ity, the KL-divergence regularizes the semantics in bi-directional feature projection,
which is formulated in Eq. 4.9 as:

Pi→t =
exp
(
Ai→t(Z

i, Zt)
)∑

exp
(
Ai→t(Zi, Zt)

) (4.6)

Pt→i =
exp
(
At→i(Z

t, Zi)
)∑

exp
(
At→i(Zt, Zi)

) (4.7)

Qy =
exp(Y >l Yl)∑
exp(Y >l Yl)

(4.8)
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Lkl = Lkli→t
+ Lklt→i

=
1

N

(∑∑
Pi→t ∗ log(

Pi→t
Qy + ε

) +
∑∑

Pt→i ∗ log(
Pt→i
Qy + ε

)
) (4.9)

where ε is a small constant to avoid division by zero. Loss Lkl refers to the KL-
divergence between the projections of image-text features and their supervisory ma-
trix. This loss is minimized and the gradients computed from Lkl are used to update
the parameters θE1 and θE2 of the generator, thereby the semantics between image
features and text features can be associated.

4.4.3 Instance label classification

4.4.3.1 Categorical cross-entropy loss

Label classification is a popular idea for cross-modal features learning [186]. We use
the instance labels provided on the datasets for label classification. For categori-
cal cross-entropy loss, we apply the norm-softmax strategy and feature projection
in [186] to learn more discriminative cross-modal features. On the one hand, the
normalized parameters θP in the label classifier encourage cross-modal features to
distribute more compactly so that the softmax classifier performs label classification
correctly. On the other hand, projection between image and text features strength-
ens their similarity association and is beneficial for label classification [186]. Feature
projection can be computed using Eq. 4.1. Subsequently, given the instance label
yl, categorical cross-entropy loss Lce is defined by Eq. 4.10 and is minimized during
training1:

Lce = E
i,t

(−yl ∗ log(p
P

(c|Zi,t;θP )))

= − 1

N

( N∑
j=1

yl,j ∗ log
( exp(W>

yl,j
ẑi→tj )∑

j exp(W
>
j ẑ

i→t
j )

)
+

N∑
j=1

yl,j ∗ log
( exp(W>

yl,j
ẑt→ij )∑

j exp(W
>
j ẑ

t→i
j )

))
s.t. ||Wj|| = 1; ẑi→tj =<zij, z̄

t
j> ∗z̄tj; ẑt→ij =<ztj, z̄

i
j> ∗z̄ij

(4.10)
where N is the number of image-text pairs in a mini-batch. Wyl,j and Wj represent
the yl,j-th and the j-th column of weights W in classifier parameters θP according
to [186]. ẑi→tj and ẑt→ij are the projections image to text and the projections text to
image, respectively, by using Eq. 4.1.

4.4.3.2 KL-divergence for data imbalance

Label classification using categorical cross-entropy loss can preserve semantic simi-
larity between cross-modal features. However, we argue that there also exists a data
imbalance issue when training the label classifier because each image is described

1We omit the bias term for simplicity
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by more than one sentence (e.g. each image has five description sentences in the
Flickr30K dataset). In the end, it causes the learned label classifier to prefer text
features.

The issue of data imbalance in cross-modal retrieval can be resolved by constructing
an augmented semantic space to re-align features. In this work, we use the tem-
perature scaling [189] to tackle the data imbalance issue. The biased label classifier
can be calibrated by re-scaling its output probabilities i.e., pi→t=softmax(W>ẑi→t

τ
)

and pt→i = softmax(W>ẑt→i

τ
), respectively. Re-scaling the probabilities with tem-

perature τ raises the output entropy so better image-text matching can be observed
[189]. Subsequently, we use KL-divergence to measure the differences between the
re-scaled probabilities. Since the magnitudes of the gradients produced by the re-
scaling probabilities scale as 1/τ 2, it is important to multiply them by τ 2. Finally,
the KL-divergence loss on the scaling probabilities for data imbalance can be for-
mulated as Ldi:

Ldi=
τ 2

N

∑∑(
pi→t∗log(

pi→t

pt→i+ε
) + pt→i∗log(

pt→i

pi→t+ε
)
)

s.t. pi→t=softmax
(W>ẑi→t

τ

)
, pt→i=softmax

(W>ẑt→i

τ

) (4.11)

where ε is a small constant to avoid division by zero. With τ = 1, we recover
the original KL-divergence. As reported in Table 4.5, we find that the parameter
τ can affect the effectiveness of loss Ldi. Minimizing loss Ldi effectively reduces
the influence of data imbalance issue and improves retrieval accuracy. The final
objective function for label classification is (Lce + Ldi). The gradients calculated
from loss (Lce + Ldi) are used to optimize the parameters θE1 , θE2 , and θP in the
generator and the label classifier, respectively.

4.4.4 Bi-directional triplet constraint

The triplet constraint is commonly used for feature learning. To achieve the baseline
performance, we use this constraint from an inter-modality and an intra-modality
perspective to strengthen the discrimination of cross-modal features.

Given cross-modal features Zi and Zt in the shared space, the cosine function is used
to measure global similarity between feature vectors, i.e. Sjk = (Zi

j)
>Zt

k. We adopt
the hard sampling strategy to select three-tuples features from an inter-modality and
an intra-modality viewpoint. Hence, the inter-modality and intra-modality triplet
loss functions are formulated as:

Linter =
1

N

( N∑
j,k+,k−

max[0,m− Sj,k+ + Sj,k− ] +
N∑

k,j+,j−

max[0,m− Sk,j+ + Sk,j− ]
)

(4.12)
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Algorithm 1: Whole network training and optimization pseudocode
1: Input: mini-batch images X i, text X t, instance label Y , modality label (Y i

c ,
Y t
c ), total training batch S, pre-trained parameters θE1 , update steps k

2: Output: the embedded cross-modal features Zi and Zt in Figure 4.1
3: Initialize hash functions: learning rate lr1, lr2, θE2 , θP , θD

For n = 1 to S
For k steps
cross-modal features embedding:

4: Zi = E1(X i;θE1) //Embed image features into the shared space
5: Zt = E2(X t;θE2) //Embed text features into the shared space
6: loss computing and feature optimization:
7: Lce, Ldi, Ltr, Lkl calculation //Eqs. 4.10, 4.11, 4.14, 4.9
8: P i

D = D(Zi;θD) //Discriminator D
9: P t

D = D(Zt;θD)
10: Ls, Lc calculation //Eqs. 4.4, 4.5
11: fix θD, update parameters θE1 , θE2 , θP :
12: θP ← θP − lr2 · ∇θP (Lce + Ldi)
13: θE1 ← θE1 − lr1 · ∇θE1

(Lce + Ldi + Ltr + Lkl + Ls)
14: θE2 ← θE2 − lr2 · ∇θE2

(Lce + Ldi + Ltr + Lkl + Ls)
End for

15: fixate θP , θE1 , θE2 , update parameters θD:
16: θD ← θD − lr2 · ∇θD(Lc)

End for

Lintra =
1

N

( N∑
j,j+,j−

max[0,m− Sj,j+ + Sj,j− ] +
N∑

k,k+,k−

max[0,m− Sk,k+ + Sk,k− ]
)

(4.13)

Ltr = Linter + Lintra (4.14)

where m is the margin in the bi-directional triplet loss function. For instance, in
case of inter-modality, Sj,k+ = (Zi

j)
>Zt

k+ , where the anchor features are selected
from the visual modality, while the positive features are selected from the textual
modality. In case of intra-modality, Sj,j+ = (Zi

j)
>Zi

j+ , both the anchor features and
the positive features are selected from the visual modality. Minimizing bi-directional
triplet loss Ltr keeps the correlated image-text pairs closer to each other, while the
uncorrelated image-text pairs are pushed away. This loss directly operates on the
cross-modal features Zi and Zt so that the gradients from it optimize the parameters
θE1 and θE2 of the generator.

The problem of integrating information theory and adversarial learning for cross-
modal retrieval is formally defined, in Eq. 4.15, as a min-max game using the pre-
viously defined loss terms. We further introduce the complete procedure of training
and optimization in Algorithm 1. Finally, when trained to convergence, the network
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yields cross-modal features Zi and Zt in the shared space, as shown in Figure 4.1.
These return cross-modal features are used for performing retrieval.


min

θ
E1
,θ

E2
,θ

P

max
θ
D

(Lce + Ldi + Lkl + Ltr + Ls)

min
θ
D

Lc
(4.15)

4.5 Experiments

4.5.1 Datasets and settings

We demonstrate the efficacy of the proposed method on the Flickr8K [190], Flickr30K
[191], Microsoft COCO [192], and CUHK-PEDES [193] datasets. Each image in
these datasets is described by several descriptive sentences. For Flickr8K, we adopt
the standard dataset splitting method to obtain a training set (6K), a validation set
(1K), and a test set (1K). For Flickr30K, we follow the previous work [186] and use
29,783 images for training, 1,000 images for validation and 1,000 images for test-
ing. For MS-COCO, we follow the training protocol in [186] and split this dataset
into 82,783 training, 30,504 validation and 5,000 test images, and then report the
performance on both 5K and 1K test set. For CUHK-PEDES, it contains 40,206
pedestrian images of 13,003 identities. Following [186], we split this dataset into
11,003 training identities with 34,054 images, 1,000 validation identities with 3,078
images and 1,000 test identities with 3,074 images. Note that all captions for the
same image are used as separate image-text pairs to train network.

Models are trained on GEFORCE TITAN X and Tesla K40 GPUs. To extract
text features, the embedded words are fed into a Bi-LSTM to capture vectors with
dimension 1024 (1024-D). We follow [186] and set the Bi-LSTM with dropout rate
0.3. For fair comparison, we adopt ResNet [13], MobileNet [187], and VGGNet
[61] as the backbone to extract image features and further fine-tune them with
learning rate lr1 = 2 × 10−5, decaying every 2 epochs exponentially. The output
2048-D image features and 1024-D text features are further projected into a shared
space. Then cross-modal features in the space are 512-D vectors (i.e. Zi and Zt

in Figure 4.1). The batch size is set to 64 or 32 depending on available GPUs
memory. For the bi-directional triplet loss function, initially, we treat the inter-
modality and intra-modality sampling identically although each of them might have
different contributions [194], we empirically set the margin to m = 0.5. The re-
scaling parameter τ for data imbalance issue is set as τ = 4 (see Table 4.5). In
practice, the discriminator can classify image and text modality easily at the start
of training, so the generator typically requires multiple (e.g., 5) update steps per
discriminator update step during training (see Algorithm 1).

Once trained to converge, the network yields image features Zi and text features
Zt. We use the cosine function to measure their similarity. We use Recall@K (K=1,
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Table 4.1: Comparison of retrieval results on the Flickr30K [191] and MS-COCO
[192] dataset (R@K (K=1,5,10)(%))

Flickr30K MS-COCO

Method Backbone Net Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

m-RNN [196] VGG 35.4 63.8 73.7 22.8 50.7 63.1 41.0 73.0 83.5 29.0 42.2 77.0
RNN+FV [197] VGG 35.6 62.5 74.2 27.4 55.9 70.0 41.5 72.0 82.9 29.2 64.7 80.4
DSPE+FV [194] VGG 40.3 68.9 79.9 29.7 60.1 72.1 50.1 79.7 89.2 39.6 75.2 86.9
CMPM+CMPC† [186] MobileNet 40.3 66.9 76.7 30.4 58.2 68.5 52.9 83.8 92.1 41.3 74.6 85.9
Word2VisualVec [198] ResNet-152 42.0 70.4 80.1 - - - - - - - - -
sm-LSTM [199] VGG 42.5 71.9 81.5 30.2 60.4 72.3 53.2 83.1 91.5 40.7 75.8 87.4
RRF-Net [200] ResNet-152 47.6 77.4 87.1 35.4 68.3 79.9 56.4 85.3 91.5 43.9 78.1 88.6
Joint learning [143] ResNet-152 48.6 73.6 83.6 32.3 62.5 74.0 55.3 82.7 90.2 41.7 75.0 87.4
CMPM+CMPC‡ [186] ResNet-152 49.6 76.8 86.1 37.3 65.7 75.5 - - - - - -
VSE++ [184] ResNet-152 52.9 80.5 87.2 39.6 70.1 79.5 51.3 82.2 91.0 40.1 75.3 86.1
TIMAM [201] ResNet-152 53.1 78.8 87.6 42.6 71.6 81.9 - - - - - -
DAN [202] ResNet-152 55.0 81.8 89.0 39.4 69.2 79.1 - - - - - -
Dual-path stage I [203] ResNet-152 44.2 70.2 79.7 30.7 59.2 70.8 52.2 80.4 88.7 37.2 69.5 80.6
Dual-path stage II [203] ResNet-152 55.6 81.9 89.5 39.1 69.2 80.9 65.6 89.8 95.5 47.1 79.9 90.0
Our ITMeetsAL VGG 38.5 66.5 76.3 30.7 59.4 70.3 44.2 76.1 86.3 37.1 72.7 85.1
Our ITMeetsAL MobileNet 46.6 73.5 82.5 34.4 63.3 74.2 54.7 84.3 91.1 41.0 76.7 88.1
Our ITMeetsAL ResNet-152 56.5 82.2 89.6 43.5 71.8 80.2 58.5 85.3 92.1 48.3 82.0 90.6
MS-COCO is tested on 1K setting. The best results are in boldface and the second best ones are

underlined.

5, 10) for evaluation and comparison. Moreover, we adopt the precision-recall and
mAP for the ablation study, and visualize their feature distributions by t-SNE [195].
Furthermore, we display the cross-modal retrieval results using our method.

4.5.2 Performance evaluation

4.5.2.1 Results on the Flickr30K and MS-COCO datasets

The retrieval results on Flickr30K and MS-COCO are reported in Table 4.1. Here-
after, “Image-to-Text” means using an image as a query item to retrieve semantically-
relevant text from the textual gallery. “Text-to-Image” means using a text as query to
retrieve images from the visual gallery. In most cases, our proposed approach shows
the best performance when using three different deep networks. For the “Image-to-
Text” task on the MS-COCO dataset, the best results are obtained by Zheng et al.
[203], which adopted a deeper network for text feature learning and used a two-stage
training strategy. However, for the “Text-to-Image” task and the “Image-to-Text”
task on the Flickr30K dataset, our method performs better. Take ResNet-152 as
an example, the results are R@1=43.5% on the Flickr30K and R@1=48.3% on the
MS-COCO for “Text-to-Image” task; the results are R@1=56.5% on the Flickr30K
dataset and R@1=58.5% on the MS-COCO dataset for “Image-to-Text” task.

The learning capacity of deep networks would affect retrieval performance signif-
icantly. For visual feature learning, deeper CNNs usually achieve better results
than their shallower counterparts. This can be observed from Table 4.1, the re-
trieval results based on ResNet-152 are usually higher than those of MobileNet
and VGG. Moreover, our method also has good performance using MobileNet. For
instance, regarding the “Image-to-Text” task on the Flickr30K dataset, the recall
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Table 4.2: Retrieval results on the CUHK-PEDES [193] dataset.

Method Backbone Net Text-to-Image
R@1 R@5 R@10

Latent co-attention [204] VGG 25.94 - 60.48
Local-global association [205] ResNet-50 43.58 66.93 76.26
CMPM [186] MobileNet 44.02 - 77.00
Dual-path two-stage [203] ResNet-152 44.40 66.26 75.07
MIA [206] ResNet-50 48.00 70.70 79.30
CMPM+CMPC [186] MobileNet 49.37 - 79.27
Our ITMeetsAL VGG 44.43 68.26 77.50
Our ITMeetsAL MobileNet 51.85 73.36 81.27
Our ITMeetsAL ResNet-50 50.63 73.33 81.34
Our ITMeetsAL ResNet-152 55.72 76.15 84.26

result of CMPM+CMPC [186] is R@1=40.3%, but the result from our method is
R@1=46.6%, which is a significant improvement. Likewise, for textual modality, a
powerful extractor provides better semantic-aware features, providing better results.
This can be observed on the comparisons between our proposed “ITMeetsAL”, m-
RNN [196] and RNN+FV [197]. Concretely, both of them leverage VGG to extract
image features, but m-RNN [196] and RNN+FV [197] extract textual features using
RNN, which is less powerful than the Bi-LSTM as we used in our experiments.

We obverse that the strategy for network training is critical for retrieval tasks.
Take [203] as an example, the backbone network (ResNet-152) is fixed at stage I (
R@1=44.2% on “Image-to-Text” task on Flickr30K) and then fine-tuned with a small
learning rate on stage II (R@1=55.6% on the “Image-to-Text” task on Flickr30K). In
contrast, our network structure is trained end-to-end in only one stage (we fine-tune
the backbone network with a small learning rate from the beginning). Our reported
results are close to those in two-stage dual learning [203]. When tested on the
Flickr30K dataset for the “Image-to-Text” task, the recall results are R@1=56.5%,
R@5=82.2%, R@10=89.6%, which are the best overall previous methods.

Considering the two branches of “Image-to-Text” task and the “Text-to-Image” task,
we think that the data imbalance issue still influences the performance of each
branch. More specifically, for all listed methods, the “Image-to-Text” task has better
performance, which indicates that the network still has more biases on text feature
learning as a result of the issue of data imbalance. Thus, there exists more room for
improvement using other strategies, such as data augmentation.

4.5.2.2 Results on CUHK-PEDES dataset

The “Text-to-Image” retrieval results on the CUHK-PEDES dataset are reported
in Table 4.2. We evaluate the proposed method using four deep networks. All
results indicate that our method outperforms other counterparts. The optimal re-
sults are achieved with R@1=55.72% using ResNet-152 as backbone network. The
results using MobileNet are sub-optimal but also have some improvements. For
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Table 4.3: Retrieval results on the Flickr8K [190] dataset (R@K (K=1,5,10)(%))

Method Backbone Net Image-to-Text
R@1 R@5 R@10

RNN+FV [197] VGG 23.2 53.3 67.8
GMM+HGLMM [207] VGG 31.0 59.3 73.7
Word2VisualVec [198] ResNet-152 33.4 63.1 75.3
Joint learning [143] ResNet-152 40.6 67.8 78.6
Our ITMeetsAL VGG 28.0 52.7 63.1
Our ITMeetsAL MobileNet 30.9 58.6 70.8
Our ITMeetsAL ResNet-152 40.1 67.8 79.2

The best results are in boldface and the second best results are underlined.

Table 4.4: Component analysis on the Flickr30K [191] (R@1, R@10, and mAP (%))

Flickr30K

Method using MobileNet Image-to-Text Text-to-Image
R@1 R@10 mAP R@1 R@10 mAP

Baseline1: Only Lce+Ltr 40.6 80.8 23.1 31.9 72.2 31.9
Baseline2: Lce+Ltr+Ldi 42.3 80.6 24.4 32.5 73.0 32.5
Baseline3: Lce+Ltr+Ldi+Lkl 44.7 81.0 25.2 32.6 73.2 32.6
Full method: Lce+Ltr+Ldi+Lkl+Ls+Lc 46.6 82.5 26.3 34.4 74.1 34.4

example, CMPM+CMPC achieves a recall R@1=49.37% and R@10=79.27%, while
our method obtains R@1=51.85% and R@10=81.27%. Moreover, the results of our
method show that deeper networks achieve better retrieval performance, whereas
the light-weight MobileNet has a similar performance as ResNet-50.

4.5.2.3 Results on Flickr8K dataset

The retrieval results on the Flick8K dataset are reported in Table 4.3. The best
results R@1=40.6%, R@5=67.8%, R@10=78.6% are achieved by joint correlation
learning [143] where a batch-based triplet loss, which considers all image-sentences
pairs, is used for learning correlations. The second-best results are achieved using
ResNet-152 (same as [143]) R@1=40.1%, R@5=67.8%, R@10=79.2%, which has
better R@10 performance compared to [143]. Our method shows competitive results
compared to other counterparts and also indicates that there exists room for further
performance improvement.

4.5.3 Ablation study

For analyzing the effect of each component, the ablation study are conducted on
the Flickr30K dataset using MobileNet as a backbone net, we use the commonly
used categorical cross-entropy Lce and bi-triplet loss function Ltr to construct the
baseline in Table 4.4, we call this Baseline1 configuration “Only Lce + Ltr”.

76



4.5 Experiments

4.5.3.1 Analysis of KL-divergence for data imbalance

Each image in a dataset (e.g. Flickr30k) has more than one description sentence.
We think this leads to a data imbalance issue for cross-modal feature learning. The
network has more text data for training, which causes the learned label classifier to
prefer text features. Therefore, we adopt a regularization term Ldi based on KL-
divergence to calibrate this bias. To this end, the label classifier can be re-calibrated
on the image features and text features. In Table 4.4, this Baseline2 configuration
is named “ Lce + Ltr + Ldi”. The Recall and mean Average Precision (mAP) show
the effectiveness of this loss. Compared to Baseline1, the scaling KL-divergence
loss Ldi contributes more on Recall@1 for both the “Image-to-Text” (42.3%) and
“Text-to-Image” task (32.5%).

4.5.3.2 Analysis of KL-divergence for cross-modal feature projection

KL-divergence is obtained by adding Lkl which constrains the image features and
text features in the shared space under the supervision of supervisory matrix. It
focuses on the whole feature distribution and is complementary to the bi-directional
triplet loss function. We denote Baseline3 as “Lce+Ltr+Ldi+Lkl” in Table 4.4. As
we can see, Recall@1 of the “Image-to-Text” task has been improved significantly by
2.4%. However, the KL-divergence loss shows a slight improvement on the “Text-to-
Image” task. The results indicate that the KL-divergence loss function contributes
more to image feature learning, which might be caused by the issue of data imbalance
of the dataset.

4.5.3.3 Analysis of adversary combining

The prior loss terms have been used to constrain the similarity of the image-text
features in the shared space. Intuitively, two-tuple or three-tuple feature exemplars
are helpful for reducing the “semantic gap” and further making the whole feature
distribution close at the same time. However, the constraint loss functions (e.g.
cosine similarity) cannot constrain the distribution discrepancy of the whole distri-
bution because these loss functions are symmetrical. Focusing on the whole feature
distribution, we combine the Shanon information entropy Ls and the modality clas-
sification loss Lc in an adversary training manner to reduce the heterogeneity gap.
This full method is named “Lce + Ltr + Ldi + Lkl + Ls + Lc” and corresponding
results are shown in Table 4.4. Compared to former baselines, the results obtained
by using our method are improved significantly.

Furthermore, we compare the precision-recall curves for the above four configura-
tions and baselines, the results are shown in Figure 4.4. The larger the area under
the curve, the better the algorithm. Regarding the different tasks, the improve-
ments are slightly different. Overall, we can see that each added component helps
to improve the overall performance of the retrieval algorithm.
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Figure 4.4: The precision_recall curves from “Baseline1” to “Full method” on
Flickr30K, each line corresponds one experimental configuration in Table 4.4. The
larger area under the line indicates better performance.

Table 4.5: Temperature scaling analysis for loss Ldi (R@1, R@10, and mAP (%))

Flickr30K
Temperature Image-to-Text Text-to-Image

R@1 R@10 mAP R@1 R@10 mAP
τ=1 44.0 80.6 24.8 32.9 73.5 32.9
τ=2 45.3 80.9 25.6 33.6 73.6 33.6
τ=3 46.2 83.2 25.7 33.3 73.4 33.3
τ=4 46.6 82.5 26.3 34.4 74.2 34.4
τ=5 46.0 81.6 26.1 34.3 73.9 34.3
τ=6 45.9 80.2 26.1 33.1 73.4 33.1

4.5.3.4 Analysis of temperature τ

We analyze the temperature parameter τ in loss Ldi in Eq. 4.11. Other loss terms
are kept the same with the full method, i.e. “Lce + Ltr + Ldi + Lkl + Ls + Lc”. We
vary this parameter τ from 1 to 6, and their corresponding results are reported in
Table 4.5. We can observe that the optimal results are achieved if the classifier’s
output probabilities are re-scaled by τ = 4. As claimed in [189], the temperature
scaling raises the output entropy of the classifier with τ > 1. In our experiments,
we found it is beneficial for improving the image-text matching.

4.5.3.5 Distribution visualization

We choose 40 image-text pairs from the Flickr30K dataset to visualize their feature
distributions using t-SNE [195]. We only choose the first description caption among
the five sentences. In Figure 4.5, the circle and the triangle shape denote text
features and image features, respectively. Label information is represented by a
different color.
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(a) (b)

(c) (d)

Figure 4.5: Feature distribution visualizations for the ablation study. The shape
represents modality and the color indicates the label information. Sub-figures (a)∼(d)
correspond to the four experimental configurations in Table 4.4. When each loss
function is gradually applied, the paired image features and text features have smaller
distances. Best viewed in color.

This distribution indicates the effectiveness of each component (e.g. KL-divergence

for cross-modal feature projection, and the Shannon information entropy trained in

an adversarial manner). In Figure 4.5(a), there exist several feature outliers within

the distribution and the proximity relationship between pair-wise features is not

obvious. When using the proposed components, the features distribute much better.

For example, in Figure 4.5(d), all loss functions are utilized to constrain feature

learning, the pair-wise feature shows a close proximity relationship. Moreover, image

features and text features are distributed within smaller ranges (-60 ∼ 60). Few

outliers exist among the whole distribution.

Qualitative retrieval results on the Flickr30K and the CUHK-PEDES dataset are

shown in Figure 4.9. For the “Image-to-Text” task, the proposed method can return

almost all paired text of the query image. The “Image-to-Text” task also has good

performance, the proposed method retrieves the paired image correctly. Also, other

retrieved images show contents relevant to the query sentence.
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4.5.3.6 Analysis of complexity and stability

We analyze the complexity of the proposed method by evaluating FLOPs (net-
work forward pass), parameter size, and inference time for each image-text pair on
Flickr8k. The results are reported in Table 4.6. The complexity of the proposed
framework, implemented by three networks, performs differently. It is well known
that VGG has a larger model size and more parameters, which increase computation
cost. As a result, the FLOPs of the VGG-based framework achieve 3.1 × 1010, while
the lightweight MobileNet reaches FLOPs to 1.1 × 109. Although ResNet-152 has
more layers than VGG and MobileNet, it achieves in-between FLOPs to 2.2 × 1010.
The model complexity also leads to different inference times for each image-text
input. Take MobileNet on Flickr30k as an example, its inference time is 14.8±3.2
ms, relatively faster than these of VGG and ResNet-152.

Table 4.6: Comparisons of model size and computation complexity. FLOPs: the
number of FLoating-point OPerations;

Dataset Backbone Net FLOPs
(forward pass)

#Parameters
(million)

Inference time (ms)
(per image-text pair)

Flickr8k
Based on VGG 3.1 × 1010 147.2 114.32±2.5

Based on MobileNet 1.1 × 109 14.6 15.6±3.1
Based on ResNet-152 2.2 × 1010 70.1 110.6±2.3
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Figure 4.6: The means of the input image
and text data (after normalization).

An algorithm is stable if it produces
consistent predictions with respect to
small perturbations of training sam-
ples [208, 209, 210]. Therefore, sta-
bility of a learning algorithm holds
if statistical conclusions are robust or
stable to appropriate perturbations to
data [209]. According to this defini-
tion, we conduct a stability analysis
based on Flickr8k using MobileNet.
We add Gaussian noise N ∼ N (µ, σ2)

to change the image-text pairs, with a
varying σ. For this purpose, first, we
build up an upper-bound performance
where no Gaussian noise is added.
Second, we vary the σ and collect the
corresponding output and then evalu-
ate its Recall rate.

Since the training data have been normalized before feeding into the network and
they have small means, as depicted in Figure 4.6. Since the magnitude of image
and text inputs are small, we determine the mean of the Gaussian noise by the
corresponding means of image and text inputs in each training epoch.
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Table 4.7: Stability evaluation on Flickr8k using MobileNet as a backbone net.

Gaussian distribution Text-to-Image Image-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

With no noise added 23.8 49.7 61.3 30.8 58.9 70.3

µx = Mean(Xi)
µy = Mean(Xt)

σ = 0.025 23.8 50.3 61.3 30.7 58.9 71.2
σ = 0.05 22.7 47.5 59.0 30.3 56.6 68.6
σ = 0.075 22.7 48.0 59.2 29.8 54.8 66.7
σ = 0.1 22.2 46.6 58.3 27.7 54.0 65.3
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Figure 4.7: Error analysis for the proposed model on Flickr8k based on ResNet-152.

The averaged results are reported in Table 4.7. We vary the variance from 0.025 to
0.1, the performance of the proposed framework is relatively stable. For example,
for the “Text-to-Image” task, when varying σ = 0.025 to σ = 0.1, the result of R@1
changes from 23.8% to 22.2%, decreasing by about 6.7%.

Besides, we also perform error analysis for the performed framework on Flickr8k
using ResNet-152. For “Text-to-Image” and “Image-to-Text” tasks, we consider the
error bar calculation based on three times running. The results of R@K (K=1,5,10)
are illustrated in Figure 4.7. In this error analysis, we observe that the recall results
for “Text-to-Image” and “Image-to-Text” tasks have small variations.

4.5.4 Further exploring

We propose to integrate Shannon information entropy with the discriminator for
cross-modal retrieval. That is, the discriminator performs modality classification
and measures the information entropy at the same time (see Figure 4.3). Herein, we
further explore a paradigm to integrate information entropy with adversarial learn-
ing. This combining paradigm is more straightforward to the structure in Figure
4.1. Concretely, we build two branches of sub-networks: an uncertainty predictor for
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modality uncertainty prediction and a modality classifier for modality classification.
Then adversarial learning is implemented as an interplay between these two sub-
networks with competitive objectives. The uncertainty predictor aims at maximiz-
ing the modality uncertainty of the shared space (measured by information entropy),
while the modality classifier is to identify image inputs and text inputs by modality
classification. We illustrate this combining paradigm in Figure 4.8. Compared to
the former paradigm depicted in Figure 4.3, the optimization depicted in Figure 4.8
is different and more complex. The gradients computed by the classifier are used to
update parameters θI and θT in the feature extractor. To learn modality-invariant
features, the feature extractor minimizes the loss of the uncertainty predictor and it
maximizes the loss Ld = Lc (Eq. 4.5) of the modality classifier, which aims to make
image features and text features as similar as possible [211]. The parameters of the
modality classifier minimize its loss Ld. This training process needs to depend on
the gradient reversal layer [211], which would multiply gradient values by -1 when
executing back-propagating.
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Figure 4.8: The illustration of independent
combining information entropy and modality
classification into an adversary, which is an
intuitive structure of the diagram in Figure
4.1. Other loss functions are kept the same,
but we do not show in this graph for simplic-
ity. The gradients computed from the modal-
ity classifier in this combining paradigm are
used to optimize the parameters θI and θT of
the feature extractor.

The training procedure is almost the
same as used in Algorithm 1 except for
the gradients from the modality clas-
sification loss that updates the back-
bone network, leading to a slower
training process. The retrieval perfor-
mance of these two combined meth-
ods presented in Figure 4.3 and Figure
4.8 (named as unified and separate, re-
spectively) are given in Table 4.8. The
backbone net for image feature extrac-
tion is ResNet-152. These two com-
bined strategies show different per-
formances on the four datasets when
combining information entropy and
modality classification into a unified
discriminator. The performance im-
proves slightly on the Flickr30K, MS-
COCO, and Flickr8K datasets when
adopting the combining strategy of
Figure 4.3. However, the method depicted in Figure 4.8 has better performance on
the CUHK-PEDES dataset, which is not the common objects dataset. This method
has R@1 improved by 3.3% (from 65.58% to 67.79%), Also, the mAP has improved
by 1.8% compared to the unified method depicted in Figure 4.3. In summary, the
proposed framework of combining information entropy and adversarial learning in
Figure 4.3 has better performance and has faster convergence during training.
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Table 4.8: Comparison of two combining paradigms on four retrieval datasets (R@1,
R@10, and mAP(%))

Image-to-Text

Combining strategy Backbone Net Flickr30K MS-COCO CUHK-PEDES Flickr8K
R@1 R@10 mAP R@1 R@10 mAP R@1 R@10 mAP R@1 R@10 mAP

Method in Figure 4.8 ResNet-152 55.30 88.30 32.23 57.00 92.10 35.12 67.79 93.75 34.79 39.00 77.70 22.33
Method in Figure 4.3 ResNet-152 56.50 89.60 32.58 58.50 92.10 36.28 65.58 93.60 34.17 39.90 77.90 22.46

4.6 Chapter Conclusions

In this work, we explored methods to improve the performance of cross-modal re-
trieval by integrating information theory and adversarial learning by analyzing the
relation between information entropy and modality uncertainty. Based on this re-
lation, we explored two different paradigms to combine information entropy maxi-
mization and modality classification in an adversarial manner. Training these two
components iteratively reduces feature distribution discrepancies and further the
heterogeneity gap. This is beneficial for preserving semantic similarity between
cross-modal features by using bi-directional triplet loss and cross-entropy loss. In
addition, we also considered the issue of data imbalance, which leads to a biased
classifier and affects label classification. KL-divergence is used as an additional loss
term to regularize the re-scaled probabilities computed from image features and text
features. It is also used to constrain the cross-modal feature projections and is help-
ful for learning modality-invariant features. The efficacy of the proposed method
was demonstrated by thorough experimental results on four well-known datasets
using four deep models.

Successfully combining information entropy and adversarial learning depends on
the competitive goals between the information entropy predictor and the modality
classifier, and this leads to challenging directions worth further investigation. For
example, we used instance labels as supervisory information in this work. Then
the information entropy loss was computed only based on image modality and text
modality. However, retrieval performance depends on the matching of each image-
text feature pair. For some large-scale datasets, each category may include a large
number of image-text pairs. Thus, it is valuable to make the information entropy
loss specific for each category so that the discrepancy between two modalities can be
reduced more granularly. Moreover, the problem of data imbalance leads to training
a biased label classifier, which is an issue that can also be resolved by training
strategies like data augmentation or by using other loss functions, e.g. knowledge
distillation loss.
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Text queryImage query
Black dog paddles through the water with a bright ball 
in its mouth.
A black dog swims in water with a colorful ball in his 
mouth.
A black dog is swimming with a ball in his mouth.
A black dog carrying a colorful ball swims
A black dog is retrieving a ball in water.

A young blond 
man and another 
young man are
 playing guitars  
hooked up to 
amps.
The woman is 
blowing the pods 
off a flower in a 
green field

The children are 
getting off the 
bus.

A woman in a red 
shirt raising her 
arm to the passing 
crowd below.

A guy wearing 
shorts and a white 
t-shirt is 
skateboarding 
down the road, 
while someone sits 
and watches him 
from the curb.

A young man with a denim jacket and writing on his 
hand smiles in front of a bookcase full of videos.
A boy with a bruised nose and writing on his hands is 
standing in a video rental store.
A boy wearing a jean jacket with his hand on his chest 
smiling at the camera.
A young man looks at a coffee marker on the shelf of 
a department store.
A boy with writing on his hand is standing in a store.

A woman with short black hair in a blue t-shirt holds a 
baby in pink clothes with a pacifier.
A woman with short hair holds a small baby in her 
arms.
The woman with the blue shirt is holding a baby

A woman in a blue shirt talking to a baby.

A woman holds the hand of a wide-eyed baby, in a 
christmas themed outfit

A bald man in gray is holding out a stick whilst a black 
and brown dog jumps up to catch it.
A bald man demonstarting how high his brown and 
black dog can jump.

Man holding a stick while a dog jumps up to grab it.
A man holds a stick above a jumping dog.
A dog jumps by a tree while another lays on the 
ground.

A man wearing a light 
blue shirt, a pair of gray 
and black shorts and a 
pair of brown sandals. 
The man is bald.  He is 
wearing a white collared 
shirt, gray shorts, and flip 
flops.  He is carrying a 
black backpack.

A woman wearing a white 
and black plaid shirt, a 
black and white plaid pair 
of pants and  a pair of 
black and white shoes. 
The woman is wearing a 
jumpsuit with a white 
background and blue 
stripes while carrying a 
large backpack.

The man wears a orange t 
shirt blue jean shorts with 
black and grey sneakers 
as he walks along the 
pavement. This boy 
follows behind a larger 
man.  The boy is stocky in 
build.  He wears a light 
orange shirt, dark blue 
pants and athletic shoes.

A man looks down at his lifted hands and wears a 
white dinner jacket over a white shirt and over black 
trousers with part of a black bow tie revealed at the 
neck while he leans with legs apart.', 'A white man 
with black hair wears white and black suit with a 
necktie color black.

This man is facing the camera and is wearing a white 
blazer, a white shirt, black bow tie and black pants 
and shoes.The man is wearing black dress shoes, 
black pants and a white button down with a white 
blazer and a black bow tie.

A man is lifting his left arm and his other hand over 
his body while he is formally dressed. He wears a 
white jacket over a white shirt and black bow tie with 
black trousers and shiny black shoes. A man wearing 
a white shirt, a black bow tie, a white suit jacket, a 
pair of black slacks and a pair of black shoes.

She  is  also wearing a colorful shirt   and  light 
colored pants .A woman with a ponytail carries a tan 
shoulder bag over her back with the strap across her 
right shoulder while she is dressed in a short-sleeve 
blouse with a marbled print in black and pink over 
gray pants that end mid-calf with gray sandals.

A dark haired girl with a brown bag on her shoulder.The 
girl is wearing a multi colored short sleeved top and 
white capris and sandals on her feet and she has a large 
brown should bag.

A woman wearing a gray, red and green shirt, a pair 
of blue jeans and a pair of black shoes.This man is 
wearing a flowery short sleeved shirt, light blue 
jeans, and plain black shoes.

Return text ranking Return image ranking 

A person with a 
purple head 
covering and 
purple shirt is 
standing outside a 
restaurant.

Figure 4.9: Qualitative test results on the Flikcr30K and CUHK-PEDES datasets.
We report Recall@5 of the “Image-to-Text” task and the “Text-to-Image” task from
left to right. The correct retrieval images or text are in red and a red box, while the
failure retrieval are in green. For Flickr30K, each image is described by 5 sentences.
Hence, each text query also has a correct retrieved image, but other retrieved images
have similar content as described by the sentence. For the CUHK-PEDES dataset,
each category has more than one image, thus almost all correct images are retrieved
according to the text query. The list is best viewed in color.
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