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Chapter 3

Domain Uncertainty based on
Information Theory for Cross-modal
Hash Retrieval

In the previous chapter, we gave a comprehensive review about intelligent image re-
trieval. Semantic information that helps us understand the world usually comes from
different modalities. We can express the same concept by using different ways so that
we can search the images of interest by submitting any media content at hand (e.g.
a phrase, or an image) as the query item. Therefore, cross-modal hash retrieval,
as a natural searching way, has received considerable interest in the area of deep
learning. Here hash codes of data of different modalities are learned where pair-wise
loss functions control feature similarity in a shared embedding space. In this chap-
ter, we improve on feature similarity by using Shannon’s information entropy with
respect to the modality information that is present in learning superior hash codes.
We introduce a novel network for predicting the domain from the learned features
while the protagonist network uses a loss function based on Shannon’s information
entropy to learn to maximize the domain uncertainty and therefore the information
content. Additionally, according to the number of common labels between each
similar image-text pair, we define a multi-level similarity matrix as supervisory in-
formation, which constrains all similar pairs with different weights. We show with
extensive experiments that our novel approach to domain uncertainty leads to a
cross-modal hash retrieval that outperforms the state-of-the-art.

Keywords
Information entropy, cross-modal hash retrieval, domain uncertainty, multi-level
similarity

This chapter is based on the following publication [34]:

• Chen, W., Pu, N., Liu, Y., Bakker, E. and Lew, M.S., “Domain Uncertainty Based On
Information Theory for Cross-Modal Hash Retrieval.” IEEE International Conference on
Multimedia and Expo (ICME), 2019, pp 43-48.

47
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3.1 Introduction

Cross-modal retrieval has been a compelling research topic in recent years [173, 174,
175]. It aims to accurately index semantically relevant samples from one modality,
such as finding a text that describes a given image and vice versa. Meanwhile,
to optimize retrieval and storage costs, binary representation learning (a.k.a hash
code learning) has received increasing attention. Reducing the heterogeneity gap
[176] and the semantic gap [10] (i.e. retaining feature similarity) are two key issues
being explored in cross-modal hash retrieval. Since the data in different modalities
are described by different statistical properties, the heterogeneity gap characterizes
the difference between feature vectors from different modalities that have similar
semantics but are distributed in different spaces. Similarities between these feature
vectors are not well associated so that these vectors are not directly comparable,
leading to inconsistent distributions. The semantic gap characterizes the difference,
in any application, between the high-level concepts of humans and the low-level
features typically derived from images (i.e. pixels or symbols) [10].

Convolutional Neural Networks (CNNs) have demonstrated powerful feature learn-
ing capacity. Discriminative features for each modality are separately learned well
using deep learning methods. However, features from different modalities have usu-
ally heterogeneous distributions and representations. Textual features are often more
abstract than visual features. A common practice is to map features for different
modalities into a common Hamming space where hash codes can be assessed directly
and the heterogeneity gap is diminished. Existing methods for feature projection
are categorized into unsupervised [174] and supervised [173, 175]. Compared to un-
supervised methods, supervised hash approaches can achieve superior performance
with the help of semantic labels or relevant information.

In recent years, metric learning is used to retain feature similarity when projecting
modality features into a common space, such as ranking loss [177], and contrastive
loss [173, 178]. In the common space, features of similar pairs are projected together,
while for dissimilar pairs features will be pushed away. These loss functions focus on
each pair separately and learn their features according to their affinity information.
However, using these loss functions cannot guarantee that the feature distributions
for image and text are consistent. To tackle this limitation, adversarial learning is
incorporated to study the levels of agreement between feature distributions from
image and text when classified into their corresponding modality labels [175, 177,
178]. To obtain a suitable common space, the gradients need to be reversed by
the optimizing adversarial networks. However, there still exist some limitations.
First, discrimination for image and text will tend to the semantically-similar image-
text pairs far away because they belong to different modalities; Second, modality
labels are needed in adversarial learning which limits the generalization to these
cases where modalities are not just image and text; Third, the gradient reversal in
adversarial learning is not straightforward.
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Figure 3.1: The framework for cross-modal hash retrieval. Domain uncertainty loss
is based on information theory (Section 3.3.1); Pair-wise loss is constrained by binary
similarity matrix S and multi-level similarity matrix W (Section 3.3.1); Classification
loss is introduced in Section 3.3.3.

For multi-label datasets, an affinity matrix is used as binary supervisory information
to constrain feature similarity. Herein, all similar pairs are constrained equally [173,
178]. Each objective value in the affinity matrix is set to 1 if an image and text have
at least one common label. However, similar image-text pairs may have different
levels of similarity depending on the number of common labels they have.

In this chapter, we address above limitations by proposing a novel network, as shown
in Figure 3.1. The novelty of this chapter is summarized as two-fold. First, we
incorporate Shannon’s information entropy [179] to directly map features for image
and text into a common space where their heterogeneous modality properties are
not exhibited. Specifically, given a hash code which corresponds to image or text,
the network, after being trained well, will yield a high uncertainty with respect to
modality the hash code belongs to. To the best of our knowledge, this work is the first
to use information entropy [179] for cross-modal hash retrieval. Second, we propose a
multi-level feature similarity which considers the number of common labels between
similar image-text pairs to constrain these pairs with different weights.

3.2 Cross-modal Hash Learning

Recently, a variety of cross-modal hash learning methods are proposed to minimize
the heterogeneity gap. Regarding supervised methods to improve retrieval perfor-
mance, Jiang et al. [173] proposed DCMH to integrate deep feature learning and
hash code learning into a unified structure where a similarity matrix was used as
supervisory information. Aiming at learning a common latent space for image and
text, Li et al. [178] introduced a three stream self-supervised hashing network where
embedded features in a common space were used to predict semantic labels. For
these methods, each similar image-text pair could be well projected as semantically-
related feature vectors. However, the holistic feature distributions of two modalities
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are still inconsistent (i.e. showing a heterogeneity gap). To mitigate this issue,
adversarial learning methods are incorporated [175, 177, 178]. Chi et al. [175] intro-
duced a dual structure for common representation learning in which new samples
are generated via Generative Adversarial Networks (GANs) [180] and original ones
are reconstructed. Their method can solve the problem of adding new categories in
cross-modal retrieval; Wang et al. [177] introduced a feature projector and domain
classifier which run as minimax game with adversarial learning, but the Gradient
Reversal Layer (GRL) [181] and domain labels are needed in their approach.

We consider a holistic feature distribution in the common space and incorporate the
information entropy [179] to maximize the uncertainty of visual and textual domains,
such that modality properties are not exhibited, while preserving the semantic sim-
ilarity of hash codes by using pair-wise and classification-based loss functions.

3.3 Domain Uncertainty Measurement via Informa-
tion Theory

For the image-text dataset with n samples, we use X = {xi, li}ni=1 to denote the
images and their labels, we use Y = {yi, li}ni=1to denote the text and their labels.
Here li = [li1, li2, ..., lic] are multi-label annotations of images and text, and c is the
total number of classes. We define a binary similarity matrix S where Sij =1 when
xi and yi have at least one common label, otherwise Sij =0. Additionally, we define
a multi-level similarity weight wij = tij/c where tij is the number of common labels
between xi and yi. Given these training data and a supervised matrix, the task of
the cross-modal hash retrieval is to learn two sign functions for the two modalities:
B(xi) = sign(F (xi,θv))∈{−1,+1}K , B(yi) = sign(G(yi,θt)) ∈ {−1,+1}K , where
K is the length of hash codes, θv and θt are the network parameters for feature
learning for two modalities. According to the binary similarity matrix S, similar
pairs (F (xi), G(yi)) should be represented by similar hash codes (B(xi), B(yi)) in
the Hamming space. Usually, as B(·) is a discrete function and it is not differentiate,
a soft continuous relaxation H(·) = tanh(·) is used to replace B(·).The hash code
can be optimized using:

Lq =
(
‖Hv −Bv‖2F

)
+
(
‖Ht −Bt‖2F

)
(3.1)

The aim of our method is to learn a better common space for real-valued features
F(·), G(·) and hash codes H(·), B(·) where multi-level similarity degrees are also
preserved. The whole framework is depicted in Figure 3.1.

3.3.1 Information theory and domain uncertainty

As shown in Figure 3.2(a), real-valued features extracted from visual and textual
domains (F I and GT in Figure 3.1, respectively) are semantically similar but in-
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consistently distributed. Samples from two domains have different domain-related
properties. For example, textual data have more abstract semantics than visual
data. These properties will often result in feature distributions which still hold this
information giving higher certainty on the domain to which the input data belongs
(i.e. the visual domain or textual domain). More specifically, when it is possible to
identify a feature in the common space coming from the visual domain with higher
probability (Pi) rather than coming from textual domain with lower probability
(Pt =1−Pi), domain uncertainty is not achieved. Thus, for a given feature, it can
not be determined which domain it originally belongs to, it means that this feature
is identified from two domains with equal probability (Pi=Pt = 0.5), and the com-
mon space has highest uncertainty corresponding to highest information entropy.
As in [179], we incorporate information entropy to measure the uncertainty of two
domains. Figure 3.2(b) illustrates that two domains with equal probability leads to
highest information entropy and information content.

Domain uncertainty is in proportional to information entropy [179], as shown in Fig-
ure 3.2(c). Based on this observation, we devise a domain uncertainty loss function
using information entropy. When the objective function is minimized, the informa-
tion entropy will be maximized, which means that the common space maximizes
domain uncertainty. Specifically, we build domain predictor network D which in-
cludes three fully-connected (FC) layers. The output probability is P d

j (·) = D(·,θd),
“·” indicates features from image or text shared with the parameter θd. The output
neurons of prediction layer are M .:

min (Lr
d
+Lb

d
)︸ ︷︷ ︸

θv ,θt,θd

=
N∑
i=1

M∑
j=1

(
P rd,j

(
F(·)

)
∗log

(
P rd,j(F(·))

)
+ P bd,j

(
H(·)

)
∗log

(
P bd,j(H(·))

))
s.t. F(·) = F(x,θv) or G(y,θt),

H(·) = H(x,θv) or H(y,θt),

(3.2)

where Lrd is the loss component for the real-valued features used to predict domain
probability and Lbd indicates the loss component for the binary features used for
domain prediction. N is the number of training samples, and M is set to 2, which
denotes the number of domains in this task.

3.3.2 Multi-level feature preserving

A binary similarity matrix S can be used to preserve pair-wise similarity. Each Sij =

1 when the corresponding image and text have at least one common label. However,
similar image-text pairs may have different levels of similarity. Namely, different
pairs can have different number of common labels, but the matrix S constrains
these pairs equally. Considering this limitation of S, we define a multi-level similarity
matrix W, which holds different similarity weights for all similar pairs. We depict
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Figure 3.2: (a): Images and text are embedded via non-shared encoding sub-
networks. The domain uncertainty can be predicted by using the output probabilities
from a predictor. (b): Relationship between information entropy and predicted proba-
bility. (c): Relationship between domain uncertainty and output probabilities. When
probabilities predicted for two modalities are identical, the shared space is intertwined
into a domain confusion state (i.e. most uncertain). If one modality is identified with
a higher probability (closer to 1) while another with a lower probability (closer to 0),
the domain confusion state is not achieved.

the multi-level similarity matrix and binary similarity matrix in Figure 3.3. Each
value wij in W is normalized by the total number of class in a dataset.

The real-valued features and binary features of image xj are denoted as a triplet
vector {F xi , Hxi , Bxi}, and the feature of a text yj as triplet {Gyj , Hyj , Byj}. Then,
W can be used to regularize a more specific similar pairs by using:

min (Lr
m

+Lb
m

)︸ ︷︷ ︸
θv ,θt

=

N∑
i,j=1

((
δ(2∆r

ij)−wij
)2

+
(
δ(2Γbij)−wij

)2)
s.t. wij = tij/c,

(3.3)

where Lr
m
and Lb

m
correspond to real-valued and binary features, δ(·) is the sigmoid

function, wij is the above defined multi-level similarity weight. ∆r
ij=

1
2
(F∗i)

T (G∗j)

and Γbij = 1
2
(H∗i)

T (H∗j) denote the inner product of image and text features; H∗i
and H∗j correspond to soften visual and textual hash codes, respectively.

As suggested in [173, 178], we also use the binary similarity matrix S to define the
pair-wise objective function. Specifically, for Sij, the conditional probability for each
pair (F xi , Gyj) and (Hxi , Hyj) can be computed by using:

p(Sij |B) =

{
δ(ψij) Sij = 1,

1− δ(ψij) Sij = 0,
(3.4)
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where δ(ψij) is the sigmoid function and ψij is the inner product of input features.

Pair-wise objective function is:

min (Lr
pairs

+ Lb
pairs

)︸ ︷︷ ︸
θv ,θt

=
N∑

i,j=1

((
Sij∆

r
ij − log(1 + e∆r

ij )
)

+
(
SijΓ

b
ij − log(1 + eΓb

ij ))
)

(3.5)

where ∆r
ij and Γbij are set as in Eq. 3.3.

3.3.3 Classification-based objective function

Furthermore, as shown Figure 3.1, we build a label predictor L to output the prob-

ability P l
i (·) = L(·,θl). We only use the length-fixed real-valued feature F (·) and

G(·) for label prediction because the length of hash codes is changed. The objective

function for the label prediction is defined as:

min (Lv
l
+Lt

l
)︸ ︷︷ ︸

θv ,θt,θl

= −
N∑
i=1

(
li ·log(pv,ti )+(1−li)·log(1−pv,ti )

)
(3.6)

where pvi=L(F (xi),θl), pti=L(G(yi),θl) denote the sigmoid output probabilities of

label predictor, li are the ground-truth labels. The dimension of pvi and pti are equal

to the number of labels in each dataset.

Finally, the global objective will be:

L = α Ld + β Lpairs + γ Ll + η Lm + ε Lq (3.7)
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3.4 Experiments and Evaluations

3.4.1 Implementation details

We utilize the CNN-F from [75] as the backbone network for visual feature learning.
As shown in Figure 3.1, activations from FC7 layer are projected into a common
space using a 3 FC layer (4096→K → N), whereK is the dimension of the common
feature. We use BoW to embed textual features and then adopt a multi-scale (MS)
fusion FC layer (T→MS→ 2000→K→N) to learn the textual features. Following
[178], MS fusion model has five-level pooling layers. The label predictor and domain
predictor consist of 3 FC layers in which the number of neurons go from (512 →
256 → c) and (512 → 256 → 2), respectively, where c is 24 for the MIRFlickr-25K
and 21 for the NUS-WIDE dataset. For all FC layers, we set the dropout rate to
0.9. For optimizing the network, we adopt the alternating learning strategy from
[173] where we fine-tune visual parameters and fix textual parameters. Regarding
to the hyperparameters in Eq.7, we analyze the parameter sensitivity, as reported
in Figure 4. Based on these observations, we set α = 100, β = γ = ε = 1, η = 0.1.
The learning rate varies from 10−4 to 10−8.
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Figure 3.4: Sensitivity analysis of the hyperparameters in loss function in Eq. 3.7.

3.4.2 Datasets

The MIRFLICKR-25K [182] dataset contains 25,000 instances. We follow the
experiment protocols given in [173]. In total, 20,015 image-text pairs are selected
for our experiment. The text for each sample is embedded into a 1386 dimensional
BoW representation. There are 24 labels for each pair. The number of training
pairs is 10,000 and the number of query pairs is 2,000.

TheNUS-WIDE [183] dataset contains 269,648 images. There are 81 ground-truth
concepts that have been annotated manually. Following the protocols in [178], we
select the 21 most frequent concepts as the training set (190,421 in total) in which
the number of training samples is equal to 10,500 and query set has size of 2,100.
Each annotation is embedded into a 1000 dimensional BoW representation.

3.4.3 Performance and evaluation

We adopt Hamming ranking and hash lookup to evaluate the performance. For hash
based retrieval, the Hamming ranking procedure ranks the candidates in the retrieval
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Table 3.1: mAP for different feature dimension N on the MIRFlickr-25k dataset.

Feature dimension N = 64 128 256 512 1024
Image-to-Text 0.802 0.818 0.831 0.833 0.829
Text-to-Image 0.819 0.850 0.852 0.859 0.844

set according to their Hamming distance to the given query items in ascending
order. Mean average precision (mAP) is the commonly-used criteria to measure
the accuracy of the Hamming ranking distances. The accuracy of the hash look-up
returns all the candidates within a certain Hamming radius. A precision-recall curve
is widely used to implement hash look-up evaluation. For performance comparison,
we compare with recent relevant work in DCMH [173] and SSAH [178], both of
which use deep learning methods.

Common feature dimension. The dimension of the common feature is an impor-
tant parameter for cross-modal hash retrieval. Before conducting our experiments,
we evaluate the effect of the common feature dimension (i.e. the N in Figure 3.1).
The results are reported in Table 3.1 where “Image-to-Text” and “Text-to-Image”
mean that the query items are image and text, respectively. We can see that for
N = 512 , the mAP score is highest. Therefore, in our experiments, we use a 512
dimensional (i.e. N = 512) common feature.

Hamming ranking. To demonstrate the precision of our proposed method, we
conduct and compare methods using CNN-F features on the MIRFlickr-25k and
NUS-WIDE, as shown in Table 3.2. The baseline results are from SSAH [178]
and we find that our method outperforms these baseline methods. Specifically, the
proposed method achieves better significantly results than other counterparts. For
instance, when the length of the hash codes is equal to 32 bits, the results for
“Image-to-Text” and “Text-to-Image” are improved by 5.4% and 8.1%, respectively,
when compared to state-of-the-art method SSAH. Meanwhile, for another dataset
NUS-WIDE, where more instances and contents are included within an image, which
makes it hard to train and perform cross-modal retrieval. However, the proposed
method also outperforms the other methods. For instance, our method has 2.5%

Table 3.2: mAP results on MIRFlickr-25k and NUS-WIDE datasets.

Tasks and Methods MIRFlickr-25K NUS-WIDE
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Image-to-Text
DCMH [173] 0.735 0.737 0.750 0.478 0.486 0.488
SSAH [178] 0.782 0.790 0.800 0.642 0.636 0.639

Ours 0.825 0.833 0.838 0.648 0.652 0.647

Text-to-Image
DCMH [173] 0.763 0.764 0.775 0.638 0.651 0.657
SSAH [178] 0.791 0.795 0.803 0.669 0.662 0.666

Ours 0.845 0.859 0.861 0.671 0.681 0.669
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Figure 3.5: Precision-recall curves for three methods. The code length is 16 bits.

Table 3.3: Ablation study for the proposed method.

Tasks Image-to-Text Text-to-Image
Baseline1 0.773 0.792
Baseline2 0.795 0.814
Baseline3 0.810 0.827

Full-method 0.834 0.859

and 2.9% improvement respectively, compared to SSAH using a hash codes of 32
bits. Therefore, all the results in Table 3.2 demonstrate the effectiveness of using
information entropy for mitigating the heterogeneity gap. Furthermore, we could
find that for different tasks and using a different hash code length, we can find the
retrieval performance improves when the hash code length is set to 32 bits.

Hash lookup. For this procedure, we compute the precision and recall for the
retrieval results with respect to a different Hamming radius. In this experiment, we
vary the Hamming radius from 0 to 50 with step-size 1. For each radius, the retrieval
algorithms will return the correct items, larger covered area of the precision-recall
curve indicates a better retrieval performance. The results are shown in Figure 3.5.
For fair comparison, we used the source codes provided by the authors, and a hash
code length of 16 bits for this experiment. For both the “Image-to-Text” and “Text-
to-Image” tasks, our proposed method has curves that have a larger covered areas
than these competitive deep learning methods. The result further demonstrates the
superiority of the proposed method.

Ablation study. We conduct an ablation study for our method on the MIRFlickr-
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Figure 3.6: Precision-recall curves for ablation study. The code length is 32 bits.

25k dataset with 32-bits hash codes. Specifically, we build three baselines using
different objective functions. Our Baseline1 is only based on Lpairs + Lq; Baseline2
is based on Lpairs + Lq + Ll, which illustrates the effectiveness of label predictor;
Baseline3 is based on Lpairs+Lq +Ll+Lm, demonstrating the effect of a multi-level
similarity objective function. Finally, we incorporate all loss functions as full-method.
The results are reported in Table 3.3. Furthermore, we compare the corresponding
precision-recall curves, as shown in Figure 3.6. We can see that the mAP is highest
when domain uncertainty is used.

3.5 Chapter Conclusions

In this chapter, we have exploited modality information for cross-modal hash re-
trieval. We devised a novel network to predict visual domain and textual domain
based on the features learned from these two modalities. The protagonist net-
work depends on a objective function by using Shannon’s information entropy to
maximize domain uncertainty. Maximizing the domain uncertainty is beneficial for
bridging the gap between two modalities because it minimizes the influence of the
individual modality. Furthermore, we considered multi-level similarity for feature
learning where all similar image-text pairs are constrained with different weights
according to the number of common labels between these similar pairs. Extensive
experiments implemented on two multi-label datasets demonstrate the effectiveness
of the proposed method which outperforms the state-of-the-art.
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