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Chapter 2

A Comprehensive Review of Deep
Image Retrieval

In recent years a vast amount of visual content has been generated and shared from
various fields, such as social media platforms, medical images, and robotics. This
abundance of content creation and sharing has introduced new challenges. In par-
ticular, searching databases for similar content, i.e. content based image retrieval
(CBIR), is a long-established research area, and more efficient and accurate methods
are needed for real time retrieval. Artificial intelligence has made progress in CBIR
and has significantly facilitated the process of intelligent search. In this chapter, we
organize and review recent CBIR works that are developed based on deep learning
algorithms and techniques, including insights and techniques from recent papers.
We identify and present the commonly-used benchmarks and evaluation methods
used in the field. We collect common challenges and propose promising future direc-
tions. More specifically, we focus on image retrieval with deep learning and organize
the state of the art methods according to the types of deep network structure, deep
features, feature enhancement methods, and network fine-tuning strategies. Our
survey considers a wide variety of recent methods, aiming to promote a global view
of the field of instance-based CBIR.

Keywords
Content based image retrieval, Deep learning, Convolutional neural networks, Lit-
erature review

This chapter is based on the following publication:

• Chen, W., Liu, Y., Wang, W., Bakker, E., Georgiou T., Fieguth P., Liu L., and Lew, M.S.,
“Deep Image Retrieval: A Survey.” submitted to IEEE Transactions on Pattern Analysis
and Machine Intelligence (major revision), 2021.
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(a)

Eiffel 
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(b)

Eiffel Tower Instance Level Image Retrieval

Category Level Image Retrieval

Query Image Retrieved Results from Gallery

Cat

Figure 2.1: Illustration of (a) the CBIR process and (b) categorization. The images in
green frame are retrieved correctly, while the ones in red frame are matched incorrectly.

2.1 Introduction

Content based image retrieval (CBIR) is the problem of searching for semantically
matched or similar images in a large image gallery by analyzing their visual content,
given a query image that describes the user’s needs. CBIR has been a longstanding
research topic in the computer vision and multimedia community [1, 40]. With the
present, exponentially increasing, amount of image and video data, the develop-
ment of appropriate information systems that efficiently manage such large image
collections is of utmost importance, with image searching being one of the most
indispensable techniques.

A broad categorization of CBIR methodologies depends on the level of retrieval, i.e.
instance level and category level. In instance level image retrieval, a query image of
a particular object or scene (e.g. the Eiffel Tower) is given and the goal is to find
images containing the same object or scene that may be captured under different
conditions [3, 25]. In contrast, the goal of category level retrieval is to find images
of the same class as the query (e.g. dogs, cars, etc.). Instance level retrieval is more
challenging and promising as it satisfies specific objectives for many applications.
Notice that we limit the focus of this chapter to instance-level image retrieval and
in the following, if not further specified, “image retrieval” and “instance retrieval”
are considered equivalent and will be used interchangeably.

Finding a desired image can require a search among thousands, millions, or even
billions of images. Hence, searching efficiently is as critical as searching accurately,
to which continued efforts have been devoted [3, 25, 26, 41]. To enable accurate and
efficient retrieval of massive image collections, compact yet rich feature representa-
tions are at the core of CBIR.

In the past two decades, remarkable progress has been made in image feature rep-
resentations, which mainly consist of two important periods: feature engineering
and feature learning (particularly deep learning). In the feature engineering era (i.e.
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Figure 2.2: In deep image retrieval, feature embedding and aggregation methods are
used to enhance the discrimination of deep features. Similarity is measured on these
enhanced features using Euclidean or Hamming distances.

pre-deep learning), the field was dominated by milestone hand-engineered feature
descriptors, such as the Scale-Invariant Feature Transform (SIFT) [4]. The feature
learning stage, the deep learning era since 2012, begins with artificial neural net-
works, particularly the breakthrough ImageNet and the Deep Convolutional Neural
Network (DCNN) AlexNet [12]. Since then, deep learning has impacted a broad
range of research areas, since DCNNs can learn powerful feature representations
with multiple levels of abstraction directly from data. Deep learning techniques have
attracted enormous attention and have brought about considerable breakthroughs
in many computer vision tasks, including image classification [12, 13, 14], object
detection [17], and image retrieval [26, 27, 42].

Excellent surveys for traditional image retrieval can be found in [1, 3, 40]. This
chapter, in contrast, focuses on deep learning based methods. Deep learning for
image retrieval is comprised of the essential stages shown in Figure 2.2 and various
methods, focusing on one or more stages, have been proposed to improve retrieval
accuracy and efficiency. In this chapter, we include comprehensive details about
these methods, including feature fusion methods and network fine-tuning strategies
etc, motivated by the following questions that have been driving research in this
domain:

1. By using off-the-shelf models only, how do deep features outperform hand-
crafted features?

2. In case of domain shifts across training datasets, how can we adapt off-the-shelf
models to maintain or even improve retrieval performance?

3. Since deep features are generally high-dimensional, how can we effectively uti-
lize them to perform efficient image retrieval, especially for large-scale datasets?
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Figure 2.3: Representative methods in deep image retrieval, which are most funda-
mentally categorized according to whether the DCNN parameters are updated [43].
Off-the-shelf models (left) have model parameters which are not further updated
or tuned when extracting features for image retrieval. The relevant methods focus
on improving representations quality either by feature enhancement [26, 45, 46, 47]
when using single pass schemes or by extracting representations for image patches
[48] when using multiple pass schemes. In contrast, in fine-tuned models (right) the
model parameters are updated for the features to be fine-tuned towards the retrieval
task and addresses the issue of domain shifts. The fine-tuning may be supervised
[49, 50, 51, 52, 53, 54, 55] or unsupervised [32, 56, 57, 58, 59, 60]. See Sections 2.3 and
2.4 for details.

2.1.1 Summary of progress since 2012

After a highly successful image classification implementation based on AlexNet [12],
significant exploration of DCNNs for retrieval tasks has been undertaken, broadly
along the lines of the preceding three questions just identified, above. That is,
the DCNN methods are divided into (1) off-the-shelf and (2) fine-tuned models, as
shown in Figure 2.3, with parallel work on (3) effective features. Whether a DCNN
is considered off-the-shelf or fine-tuned depends on whether the DCNN parameters
are updated [43] or are based on DCNNs with fixed parameters [29, 43, 44]. Re-
garding how to use the features effectively, researchers have proposed encoding and
aggregation methods, such as R-MAC [31], CroW [26], and SPoC [25].

Recent progress for improving image retrieval can be categorized into network-level
and feature-level perspectives, for which a detailed sub-categorization is shown in
Figure 2.4. The network-level perspective includes network architecture improve-
ment and network fine-tuning strategies. The feature-level perspective includes
feature extraction and feature enhancement methods. Broadly this chapter will
examine the four areas outlined as follows:

a. Improvements in network architectures (section 2.2.2)

Using stacked linear filters (e.g. convolution) and non-linear activation functions
(ReLU, etc.), deep networks with different depths obtain features at different levels.
Deeper networks with more layers provide a more powerful learning capacity so as to
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Deep learning for image retrieval
Improvement in deep network architectures (section 2.2.2)

Deepen networks: AlexNet [12], VGG [61], ResNet [13], etc
Widen networks: GoogLeNet [62], DenseNet [14], etc

Retrieval with off-the-shelf DCNN models (section 2.3)
Deep feature extraction (section 2.3.1)

Network feedforward scheme (section 2.3.1.1)
Single feedforward pass: MAC [63], R-MAC [31]
Multiple feedforward pass: SPM [48], RPNs [54]

Deep feature selection (section 2.3.1.2)
Fully-connected layer: layer concatenation [64]
Convolutional layer: SPoC [25], CroW [26]

Feature fusion strategy (section 2.3.1.3)
Layer-level fusion: MoF [65], MOP [29]
Model-level fusion: ConvNet fusion [61]

Deep feature enhancement (section 2.3.2)
Feature aggregation (section 2.3.2.1)
Feature embedding (section 2.3.2.2)
Attention mechanism (section 2.3.2.3)

Non-parameteric: SPoC [25], TSWVF [66]
Parameteric: DeepFixNet+SAM [67, 68]

Deep hash embedding (section 2.3.2.4)
Supervised hashing: Metric Learning [51]
Unsupervised hashing: KNN [69], k-means [70]

Retrieval via learning DCNN representations (section 2.4)
Supervised fine-tuning (section 2.4.1)

Classification-based fine-tuning (section 2.4.1.1 )
Verification-based fine-tuning (section 2.4.1.2)

Transformation matrix: Non-metric [52]
Siamese networks: [53, 71]
Triplet networks: [53, 71]

Unsupervised fine-tuning (section 2.4.2 )
Manifold learning sample mining: Diffusion Net [58]
AutoEncoder-based fine-tuning: KNN [72], GANs [60]

Figure 2.4: This chapter is organized around four key aspects in deep image retrieval,
shown in boldface.

extract high-level abstract and semantic-aware features [13, 61]. It is also possible
to concatenate multi-scale features in parallel, such as the Inception module in
GoogLeNet [62], which we refer to as widening.

b. Deep feature extraction (section 2.3.1)

Neurons of FC layers and convolutional layers have different receptive fields, thus
providing three ways to extract features: local features from convolutional layers [25,
31], global features from FC layers [48, 73] and fusions of two kinds of features [74,
75]; the fusion scheme includes layer-level and model-level methods. Deep features
can be extracted from the whole image or from image patches, which corresponds
to single pass and multiple pass feedforward schemes, respectively.

c. Deep feature enhancement (section 2.3.2)

Feature enhancement is used to improve feature’s discriminative ability. Directly,
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2. A COMPREHENSIVE REVIEW OF DEEP IMAGE RETRIEVAL

aggregate features can be trained simultaneously with deep networks [76]; alterna-
tively, feature embedding methods including BoW [7], VLAD [28], and FV [8] embed
local features into global ones. These methods are trained with networks separately
(codebook-based) or jointly (codebook-free). Further, hashing methods [77] encode
the real-valued features into binary codes to improve retrieval efficiency. The feature
enhancement strategy significantly influences the efficiency of image retrieval.

d. Network fine-tuning for learning representations (section 2.4)

Deep networks pre-trained on source datasets for image classification are transferred
to new datasets for retrieval tasks. However, the retrieval performance is influenced
by the domain shifts between the datasets. Therefore, it is necessary to fine-tune
the deep networks to the specific domain [50, 70, 78], which can be realized by using
supervised fine-tuning methods. However in most cases image labeling or annotation
is time-consuming and difficult, so it is necessary to develop unsupervised methods
for network fine-tuning.

2.1.2 Key challenges

Deep learning has been successful in learning powerful features. Nevertheless, several
significant challenges remain with regards to

1. reducing the semantic gap,

2. improving retrieval scalability, and

3. balancing retrieval accuracy and efficiency.

We finish the introduction to this chapter with a brief overview of each of these
challenges:

1. Reducing the semantic gap: The semantic gap characterizes the difference, in
any application, between the high-level concepts of humans and the low-level features
typically derived from images [10]. There is significant interest in learning deep
features which are higher-level and semantic-aware, to better preserve the similarities
of images [10]. In the past few years, various learning strategies, including feature
fusion [29, 65] and feature enhancement methods [25, 31, 66] have been introduced
into image retrieval. However, this area remains a major challenge and continues to
require significant effort.

2. Improving retrieval scalability: The tremendous numbers and diversity of
datasets lead to domain shifts for which existing retrieval systems may not be suited
[3]. Currently available deep networks are initially trained for classification tasks,
which leads to a challenge in extracting features. Since such features are less scalable
and perform comparatively poorly on the target retrieval datasets, so network fine-
tuning on retrieval datasets is crucial for mitigating this challenge. The current
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2.2 Deep Convolutional Neural Networks
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Figure 2.5: (a) Illustration of three operations that are repeatedly applied by a
typical CNN [79]. (b) Generic framework of CNN.

dilemma is that the increase in retrieval datasets raises the difficulty of annotation,
making the development of unsupervised fine-tuning methods a priority.

3. Balancing retrieval accuracy and efficiency: Deep features are usually
high dimensional and contain more semantic-aware information to support higher
accuracy, yet this higher accuracy is often at the expense of efficiency. Feature
enhancement methods, like hash learning, are one way to tackle this issue [50, 77],
however hashing learning needs to carefully consider the loss function design, such
as quantization loss [41], to obtain optimal codes for high retrieval accuracy.

2.2 Deep Convolutional Neural Networks

2.2.1 A brief introduction to deep learning

Deep learning depends on neural networks to learn features. Deep neural networks
have various variants. Among them, convolutional neural networks (CNNs) are used
for vision tasks. There are three types of layer in CNNs: convolutional layer, pooling
layer, and fully-connected layer [79]. The convolutional layer plays a vital role in the
way CNNs work, emphasizing the use of shared and learnable 2D linear filters. As
illustrated in Figure 2.5(a), when a filter glides through the M feature maps from
the previous layer l− 1 each time, the outputs of the convolutions for the next layer
l are calculated with its parameters θ, that includes weights w and bias b:

xl =
M l−1∑
i=1

(
wix

l−1
i + b

)
(2.1)

It is important to impose a non-linear activation function σ(·) (e.g. ReLU) on the
feature maps xl. Finally, the outputs of non-linear function is stored as inputs
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2. A COMPREHENSIVE REVIEW OF DEEP IMAGE RETRIEVAL

for the next layer l. Usually, the number of filters applied in the previous layer
determines the number of produced feature maps in the next layer. As illustrated
in Figure 2.5(a), the N filters produce N feature maps.

Finally, the difference between the predictive logits of the classifier and the ground-
truth label is used to compute gradients to train the network. Take supervised
training as an example, a ground-truth label yj is assigned to an input xj, the loss
function for network f(·,θ) can then be formulated as:

J(θ) =
∑

jL
(
f(xj;θ), yj

)
(2.2)

During training, the gradients are computed according to the loss function J(θ) and
are back-propagated to f(·,θ), aiming at learning the optimal parameters θ∗:

θ∗ = argmin
θ

J(θ) (2.3)

A convolutional layer represents local feature learning and yields generic features
[44], as shown in Figure 2.5(b). Specifically, the first convolutional layer learns low-
level features, such as edges and simple textures. Later intermediate convolutional
layers learn middle-level features, such as more complex textures. The deeper con-
volutional layers learn high-level features, such as objects or parts of objects. Differ-
ently, the fully-connected layer, with its larger receptive field, yields global features,
which usually are abstract and useful for category-specific discrimination.

The hierarchical structure of CNNs makes it successful in various computer vi-
sion tasks. Its feature learning capacity is improved significantly by stacking more
convolutional layers, using different filter sizes, or concatenating more convolution
operations. Among these DCNNs, there are four models that are widely used as
backbone nets for image retrieval.

2.2.2 Popular backbone DCNN architectures

The hierarchical structure and extensive parameterization of DCNNs has led to their
success in a remarkable diversity of computer vision tasks. For image retrieval, there
are four models which predominantly serve as the networks for feature extraction,
including AlexNet [12], VGG [61], GoogLeNet [62], and ResNet [13].

AlexNet is the first DCNN which improved ImageNet classification accuracy by a
significant margin compared to conventional methods in ILSVRC 2012. It consists
of 5 convolutional layers and 3 fully-connected layers. Input images are usually
resized to a fixed size during training and testing stages.

Inspired by AlexNet, VGGNet has two widely used versions: VGG-16 and VGG-
19, including 13 convolutional layers and 16 convolutional layers, respectively, but
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2.3 Retrieval with Off-the-Shelf DCNN Models

where all of the convolutional filters are small (local), 3 × 3 in size. VGGNet is
trained in a multi-scale manner where training images are cropped and re-scaled,
which improves the feature invariance for the retrieval task.

Compared to AlexNet and VGGNet, GoogLeNet is deeper and wider but has fewer
parameters within its 22 layers, leading to higher learning efficiency. GoogLeNet has
repeatedly-used inception modules, each of which consists of four branches where
5×5, 3×3, and 1×1 filter sizes are used. These branches are concatenated spatially
to obtain the final features for each module. It has been demonstrated that deeper
architectures are beneficial for learning higher-level abstract features to mitigate the
semantic gap [10].

Finally, ResNet is developed by adding more convolutional layers to extract more ab-
stract features. Skip connections are added between convolutional layers to address
the notorious vanishing gradient problem when training this network.

DCNN architectures have developed significantly during the past few years, for which
we refer the reader to recent surveys [79, 80]. This chapter focuses on introducing
relevant techniques including feature fusion, feature enhancement, and network fine-
tuning, based on popular DCNN backbones for performing image retrieval.

2.3 Retrieval with Off-the-Shelf DCNN Models

Because of their size, deep CNNs need to be trained on exceptionally large-scale
datasets, and the available datasets of such size are those for image recognition and
classification. One possible scheme then, is that deep models effectively trained for
recognition and classification directly serve as the off-the-shelf feature detectors for
the image retrieval task, the topic of interest in this chapter. That is, one can propose
to undertake image retrieval on the basis of DCNNs, trained for classification, and
with their pre-trained parameters frozen.

There are limitations with this approach, such that the deep features may not outper-
form classical hand-crafted features. Most fundamentally, there is a model-transfer
or domain-shift issue between tasks [3, 44, 81], meaning that models trained for
classification do not necessarily extract features well suited to image retrieval. In
particular, a classification decision can be made as long as the features remain within
the classification boundaries, therefore the layers from such models may show insuf-
ficient capacity for retrieval tasks where feature matching is more important than
the final classification probabilities. This section will survey the strategies which
have been developed to improve the quality of feature representations, particularly
based on feature extraction / fusion (Section 2.3.1) and feature enhancement (Sec-
tion 2.3.2).
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2. A COMPREHENSIVE REVIEW OF DEEP IMAGE RETRIEVAL

2.3.1 Deep feature extraction

2.3.1.1 Network feedforward scheme

a. Single feedforward pass methods.

Single feedforward pass methods take the whole image and feed it into an off-the-
shelf model to extract features. The approach is relatively efficient since the input
image is fed only once. For these methods, both the fully-connected layer and last
convolutional layer can be used as feature extractors [82].

The fully-connected layer has a global receptive field. After normalization and di-
mensionality reduction, these features are used for direct similarity measurement
without further processing and admitting efficient search strategies [29, 43, 50].

Using the fully-connected layer lacks geometric invariance and spatial information,
and thus the last convolutional layer can be examined instead. The research focus
associated with the use of convolutional features is to improve their discrimination,
where representative strategies are shown in Figure 2.6. For instance, one direction
is to treat regions in feature maps as different sub-vectors, thus combinations of
different sub-vectors of all feature maps are used to represent the input image.

b. Multiple feedforward pass methods.

Compared to single-pass schemes, multiple pass methods are more time-consuming
[3] because several patches are generated from an input image and are both fed into
the network before being encoded as a final global feature.

Multiple-pass strategies can lead to higher retrieval accuracy since representations
are produced from two stages: patch detection and patch description. Multi-scale
image patches are obtained using sliding windows [29, 83] or spatial pyramid model
[48], as illustrated in Figure 2.7. However, these patch detection methods lack
retrieval efficiency for large-scale datasets since irrelevant patches are also fed into
deep networks, thus it is necessary to analyze image patches [31]. As an example,
Cao et al. [84] propose to merge image patches into larger regions with different
hyper-parameters, then the hyper-parameter selection is viewed as an optimization
problem under the target of maximizing the similarity between features of the query
and the candidates.

Instead of generating multi-scale image patches randomly or densely, region proposal
methods introduce a degree of purpose in processing image objects. Region proposals
can be generated using object detectors, such as selective search [85] and edge boxes
[86]. Aside from using object detectors, region proposals can also be learned using
deep networks, such as region proposal networks (RPNs) [17, 54] and convolutional
kernel networks (CKNs) [87], and then to apply these deep networks into end-to-end
fine-tuning scenarios for learning similarity [88, 89].
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Figure 2.6: Representative methods in single feedforward frameworks, focusing on
convolutional feature maps x: MAC [63], R-MAC [31], GeM pooling [57], SPoC with
the Gaussian weighting scheme [25], CroW [26], and CAM+CroW [45]. Note that g1(·)
and g2(·) represent spatial-wise and channel-wise weighting functions, respectively.

2.3.1.2 Deep feature selection

a. Extracted from fully-connected layers
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(a) (b) (c) (d)

Figure 2.7: Image patch generation schemes: (a) Rigid grid; (b) Spatial pyramid
modeling (SPM); (c) Dense patch sampling; (d) Region proposals (RPs) from region
proposal networks.

It is straightforward to select a fully-connected layer as a feature extractor [29, 43, 50,
64]. With PCA dimensionality reduction and normalization [43], images’ similarity
can be measured. Only the fully-connected layer may limit the overall retrieval
accuracy, Jun et al. [64] concatenate features from multiple fully-connected layers,
and Song et al. [88] indicate that making a direct connection between the first
fully-connected layer and the last layer achieves coarse-to-fine improvements.

As noted, a fully-connected layer has a global receptive field in which each neuron
has connections to all neurons of the previous layer. This property leads to two
obvious limitations for image retrieval: a lack of spatial information and a lack of
local geometric invariance [64].

For the first limitation, researchers focus on the inputs of networks, i.e., using mul-
tiple feedforward passes [43]. Compared to taking as input the whole image, dis-
criminative features from the image patches better retain spatial information.

For the second limitation, a lack of local geometric invariance affects the robustness
to image transformations such as truncation and occlusion. For this, several works
introduce methods to leverage intermediate convolutional layers [25, 29, 63].

b. Extracted from convolutional layers

Features from convolutional layers (usually the last one) preserve more structural
details which are especially beneficial for instance-level retrieval [63]. The neurons in
a convolutional layer are connected only to a local region of the input feature maps.
The smaller receptive field ensures that the produced features preserve more local
structural details and are more robust to image transformations like truncation and
occlusion [25]. Usually, the robustness of features is improved after pooling.

A convolutional layer arranges the spatial information well and produces location-
adaptive features [90]. Various image retrieval methods use convolutional layers as
local detectors [25, 30, 31, 45, 63, 90]. For instance, Razavian et al. [63] make
the first attempt to perform spatial max pooling on the feature maps of an off-the-
shelf DCNN model; Babenko et al. [25] propose sum-pooling convolutional features
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(SPoC) to obtain compact descriptors pre-processed with a Gaussian center prior
(see Figure 2.6). Ng et al. [90] explore the correlations between activations at
different locations on the feature maps, thus improving the final feature descriptor.
Yue et al. [30] replace BoW [7] with VLAD [28], and are the first to encode local
features into VLAD representations. This idea inspired another milestone work [55]
where, for the first time, VLAD is used as a layer plugged into the last convolutional
layer. The plugged-in layer is end-to-end trainable via back-propagation.

2.3.1.3 Feature fusion strategy

a. Layer-level fusion

Fusing features from different layers aims at combining different feature properties
within a feature extractor. It is possible to fuse multiple fully-connected layers in a
deep network [64]: For instance, Yu et al. [91] explore different methods to fuse the
activations from different fully-connected layers and introduce the best-performed
Pi-fusion strategy to aggregate the features with different balancing weights, and
Jun et al. [64] construct multiple fully-connected layers in parallel on the top of
ResNet backbone, then concatenate the global features from these layers to obtain
the combined global features.

Features from fully-connected layers (global features) and features from convolu-
tional layers (local features) can complement each other when measuring semantic
similarity and can, to some extent, guarantee retrieval performance [92].

Global features and local features can be concatenated directly [92, 93]. Before
concatenation, convolutional feature maps are filtered by sliding windows or region
proposal nets. Pooling-based methods can be applied for feature fusion as well. For
example, Li et al. [65] propose a Multi-layer Orderless Fusion (MOF) approach,
which is inspired by Multi-layer Orderless Pooling (MOP) [29] for image retrieval.
However local features can not play a decisive role in distinguishing subtle feature
differences because global and local features are treated identically. For this lim-
itation, Yu et al. [92] propose using a mapping function to take more advantage
of local features in which they are used to refine the return ranking lists. In their
work, the exponential mapping function is the key for tapping the complementary
strengths of the convolutional layers and fully-connected layers.

It is worth introducing a scheme to explore which layer combination is better for
fusion given their differences of extracting features. For instance, Chatfield et al. [75]
demonstrate that fusing convolutional layers and fully-connected layers outperforms
the methods that fuse convolutional layers only. In the end, fusing two convolutional
layers with one fully-connected layer achieves the best performance.

b. Model-level fusion
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It is possible to combine features on different models; such fusion focuses on model
complementarity to achieve improved performance, categorized into intra-model and
inter-model.

Generally, intra-model fusion suggests multiple deep models having a similar struc-
ture, while inter-model fusion involves models with more differing structures. For
instance, Simonyan et al. [61] introduce a ConvNet fusion strategy to improve
the feature learning capacity of VGG where VGG-16 and VGG-19 are fused. This
intra-model fusion strategy reduces the top-5 error by 2.7% in image classification
compared to a single counterpart network. Similarly, Ding et al. [94] propose a
selective deep ensemble framework to combine ResNet-26 and ResNet-50 improve
the accuracy of fine-grained instance retrieval. To attend to different parts of the
object in an image, Kim et al. [95] train an ensemble of three attention modules to
learn features with different diversities. Each module is based on different Inception
blocks in GoogLeNet.

Inter-model fusion is a way to bridge different features given the fact that different
networks have different receptive fields [48, 68, 96, 97, 98]. For instance, a two-
stream attention network [68] is introduced to implement image retrieval where the
mainstream network for semantic prediction is VGG-16 while the auxiliary stream
network for predicting attention maps is DeepFixNet [99]. Considering the impor-
tance and necessity of inter-model fusion to bridge the gap between mid-level and
high-level features, Liu et al. [48] combine VGG-19 and AlexNet to learn combined
features, while Ozaki et al. [97] make an ensemble to concatenate descriptors from
six different models to boost retrieval performance. To illustrate the effect of differ-
ent parameter choices within the model ensemble, Xuan et al. [98] combine ResNet
and Inception V1 [62] for retrieval, concentrating on the embedding size and number
of embedded features.

Inter-model and intra-model fusion are relevant to model selection. There are some
strategies to determine how to combine the features from two models. It is straight-
forward to fuse all types of features from the candidate models and then learning
a metric based on the concatenated features [68], which is a kind of “early fusion”
strategy. Alternatively, it is also possible to learn optimal metrics separately for
the features from each model, and then to uniformly combine these metrics for final
retrieval ranking [49], which is a kind of “ late fusion” strategy.

Discussion. Layer-level fusion and model-level fusion are conditioned on the fact
that the involved components (layers or whole networks) have different feature de-
scription capacities. For these two fusion strategies, the key question is what features
are the best to be combined? Some explorations have been made for answering this
question based on off-the-shelf deep models. For example, Xuan et al. [98] illustrate
the effect of combining different numbers of features and different sizes within the
ensemble. Chen et al. [100] analyze the performance of embedded features from
image classification and object detection models with respect to image retrieval.
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They study the discrimination of feature embeddings of different off-the-shelf mod-
els which, to some extent, implicitly guides the model selection when conducting
the inter-model level fusion for feature learning.

2.3.2 Deep feature enhancement

2.3.2.1 Feature aggregation

Feature enhancement methods aggregate or embed features to improve the discrim-
ination of deep features. In terms of feature aggregation, sum/average pooling and
max pooling are two widely used methods applied on convolutional feature maps.
Sum/average pooling is less discriminative, because it considers all activated out-
puts from a convolutional layer, as a result it weakens the effect of highly activated
features [46]. On the contrary, max pooling is particularly well suited for sparse
features that have a low probability of being active. Max pooling may be inferior to
sum/average pooling if the output feature maps are no longer sparse [101].

Convolutional features can be directly aggregated to produce global ones by spatial
pooling. For example, Razavian et al. [63, 83] apply max pooling on the convolu-
tional features for retrieval. Babenko et al. [25] leverage sum pooling with a Gaus-
sian weighting scheme to encode convolutional features (i.e. SPoC). Note that this
operation usually is followed by L2 norm and PCA dimensionality reduction.

As an alternative to the holistic approach, it is also possible to pool some regions
in a feature map [25, 63], such as done by R-MAC [31]. Also, it is shown that the
pooling strategy used in the last convolutional layer usually yields superior accuracy
over other shallower convolutional layers and even fully-connected layers.

2.3.2.2 Feature embedding

Apart from direct pooling or regional pooling, it is possible to embed the convolu-
tional features into a high dimensional space to obtain compact ones. The widely
used methods include BoW, VLAD, and FV. The embedded features’ dimension-
ality can be reduced using PCA. Note that BoW and VLAD can be extended by
using other metrics, such as Hamming distance [102]. Here we briefly describe the
principle of the embedding methods for the case of Euclidean distance metric.

BoW [7] is a widely adopted encoding method. BoW encoding leads to a sparse
vector of occurrence. Specifically, let ~X = {~x1, ~x2, ..., ~xT} be a set of local features,
each of which has dimensionality D. BoW requires a pre-defined codebook ~C =

{~c1,~c2, ...,~cK} with K centroids to cluster these local descriptors, and maps each
descriptor ~xt to the nearest word ~ck. For each centroid ~ck, one can count and
normalize the number of occurrences by

g(~ck) =
1

T

T∑
t=1

φ(~xt,~ck) (2.4)
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φ(~xt,~ck) =

{
1 if ~ck is the closest codeword for ~xt
0 otherwise (2.5)

Thus BoW considers the number of descriptors belonging to each codebook ~ck (i.e. 0-
order feature statistics), then BoW representation is the concatenation of all mapped
vectors:

G
BoW

( ~X) =
[
g(~c1), · · · , g(~ck), · · · , g(~cK)

]> (2.6)

BoW representation is the histogram of the number of local descriptors assigned to
each visual word, so that its dimension is equal to the number of centroids. This
method is simple to implement to encode local descriptors, such as convolutional
feature maps [65, 82]. However, the embedded vectors are high dimensional and
sparse, which are not well suited to large-scale datasets in terms of efficiency.

VLAD [28] stores the sum of residuals for each visual word. Specifically, similar to
BoW, it generates K visual word centroids, then each feature ~xt is assigned to its
nearest visual centroid ~ck and computes the difference (~xt − ~ck):

g(~ck) =
1

T

T∑
t=1

φ(~xt,~ck)(~xt − ~ck) (2.7)

where φ(~xt,~ck) as defined in (2.5). Finally, the VLAD representation is stacked by
the residuals for all centroids, with dimension (D ×K), i.e.

G
V LAD

( ~X)=
[
· · · , g(~ck)

>, · · ·
]>
. (2.8)

VLAD captures first order feature statistics, i.e. (~xt − ~ck). Similar to BoW, the
performance of VLAD is affected by the number of clusters, thereby larger centroids
produce larger vectors that are harder to index. For image retrieval, for the first
time, Ng et al. [30] embed the feature maps from the last convolutional layer into
VLAD representations, which is proved to have higher effectiveness than BoW.

The FV method [8] extends BoW by encoding the first and second order statistics
continuously. FV clusters the set of local descriptors by a Gaussian Mixture Model
(GMM), with K components, to generate a dictionary C = {µk; Σk;wk}Kk=1, where
wk, µk, Σk denote the weight, mean vector, and covariance matrix of the k-th Gaus-
sian component, respectively [103]. The covariance can be simplified by keeping
only its diagonal elements, i.e., σk =

√
diag(Σk). For each local feature xt, a GMM

is given by

γk(~xt) = wk × pk(~xt)/
( K∑
j=1

wjpj(xt)
)

s.t.

K∑
j=1

wk = 1 (2.9)

where pk(~xt) = N (~xt, µk, σ
2
k). All local features are assigned into each component k
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Figure 2.8: Attention mechanisms are shown, divided into two categories. (a)-(b)
Non-parametric mechanisms: The attention is based on convolutional feature maps
x with size H × W × C. Channel-wise attention in (a) produces a C-dimensional
importance vector α1 [26, 47]. Spatial-wise attention in (b) computes a 2-dimensional
attention map α2 [26, 45, 74, 90]. (c)-(d) Parametric mechanisms: The attention
weights β are provided by a sub-network with trainable parameters (e.g. θ in (c))
[105, 106]. Likewise, some off-the-shelf models [99, 107] can predict the attention
maps from the input image directly.

in the dictionary, which is computed as

gwk
=

1

T
√
wk

T∑
t=1

(
γk(~xt)− wk

)
guk =

γk(~xt)

T
√
wk

T∑
t=1

(
~xt − µk
σk

)
,

gσ2
k

=
γk(~xt)

T
√

2wk

T∑
t=1

[(
~xt − µi
σk

)2

− 1

] (2.10)

The FV representation is produced by concatenating from the K components:

G
FV

( ~X)=
[
gw1 , · · · , gwK

, gu1 , · · · , guK , gσ2
1
, · · · , gσ2

K

]> (2.11)

The FV representation defines a kernel from a generative process and captures more
statistics than BoW and VLAD. FV representations do not increase computational
costs significantly but require more memory. Applying FV without memory controls
may lead to suboptimal performance [104].

Discussion. Traditionally, sum pooling and max pooling are directly plugged into
deep networks and the whole model is used in an end-to-end way, whereas the em-
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bedding methods, including BoW, VLAD, and FV, are initially trained separately
with pre-defined vocabularies [48, 108]. For these three methods, one needs to pay
attention to their properties before choosing one of them to embed deep features.
For instance, BoW and VLAD are computed in the rigid Euclidean space where
the performance is closely related to the number of centroids. The FV embedding
method can capture higher order statistics than BoW or VLAD, thus the FV em-
bedding improves the effectiveness of feature enhancement at the expense of a higher
memory cost. Further, when any one of these methods is used, it is necessary to
integrate them as a “layer” of deep networks so as to guarantee training and testing
efficiency. For example, the VLAD method is integrated into deep networks where
each spatial column feature is used to construct clusters via k-means [30]. This idea
led to a follow-up approach, NetVLAD [55], where deep networks are fine-tuned
with the VLAD vector.

2.3.2.3 Attention mechanisms

The core idea of attention mechanisms is to highlight the most relevant features and
to avoid the influence of irrelevant activations, realized by computing an attention
map. Approaches to obtain attention maps can be categorized into two groups: non-
parametric and parametric-based, as shown in Figure 2.8, where the main difference
is whether the importance weights in the attention map are learnable.

Non-parametric weighting is a straightforward method to highlight feature impor-
tance. The corresponding attention maps can be obtained by channel-wise or spatial
sum-pooling, as in Figure 2.8(a,b). For the spatial-wise pooling of Figure 2.8(b),
Kalantidis et al. [26] propose a more effective CroW method to weight and pool
feature maps. These spatial-wise methods only concentrate on weighting activa-
tions at different spatial locations, without considering the relations between these
activations. Instead, Ng et al. [90] explore the correlations among activations at
different spatial locations on the convolutional feature maps. In addition to spatial-
wise attention mechanisms, channel-wise weighting methods of Figure 2.8(a) are also
popular non-parametric attention mechanisms. Xu et al. [47] rank the weighted fea-
ture maps to build the “probabilistic proposals” to further select regional features.
Jimenez et al. [45] combine CroW and R-MAC to propose Classes Activation Maps
(CAM) to weight feature maps for each class. Qi et al. [66] introduce Truncated Spa-
tial Weighted FV (TSWVF) to enhance the representation of Fisher Vector.

Attention maps can be learned from deep networks, as shown in Figure 2.8(c,d),
where the input can be either image patches or feature maps from the previous
convolutional layer. The parametric attention methods are more adaptive and are
commonly used in supervised metric learning. For example, Li et al. [105] propose
stacked fully-connected layers to learn an attention model for multi-scale image
patches. Similarly, Noh et al. [106] design a 2-layer CNN with a softplus output
layer to compute scores which indicate the importance of different image regions.
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Inspired by R-MAC, Kim et al. [109] employ a pre-trained ResNet101 to train a
context-aware attention network using multi-scale feature maps.

Instead of using feature maps as inputs, a whole image can be used to learn feature
importance, for which specific networks are needed. For example, Mohedano [67]
explore different saliency models, including DeepFixNet [99] and Saliency Attentive
Model (SAM) [107], to learn salient regions for input images. Similarly, Yang et
al. [68] introduce a two-stream network for image retrieval in which the auxiliary
stream, DeepFixNet, is used specifically for predicting attention maps.

In a nutshell, attention mechanisms offer deep networks the capacity to highlight
the most important regions of a given image, widely used in computer vision. For
image retrieval specifically, attention mechanisms can be combined with supervised
metric learning [90, 95, 110].

2.3.2.4 Deep hash embedding

Real-valued features extracted by deep networks are typically high-dimensional, and
therefore are not well-satisfied to retrieval efficiency. As a result, there is significant
motivation to transform deep features into more compact codes. Hashing algorithms
have been widely used for large-scale image search due to their computational and
storage efficiency [77, 111].

Hash functions can be plugged as a layer into deep networks, so that hash codes
can be trained and optimized with deep networks simultaneously. During hash
function training, the hash codes of originally similar images are embedded as close
as possible, and the hash codes of dissimilar images are as separated as possible. A
hash function h(·) for binarizing features of an image x may be formulated as

bk = h(x) = h
(
f(x;θ)

)
k = 1, . . . , K (2.12)

then an image can be represented by the generated hash codes b ∈ {+1,−1}K .
Because hash codes are non-differentiable their optimization is difficult, so h(·) can
be relaxed to be differentiable by using tanh or sigmoid functions [77].

When binarizing real-valued features, it is crucial (1) to preserve image similarity
and (2) to improve hash code quality [77]. These two aspects are at the heart of
hashing algorithms to maximize retrieval accuracy.

a. Hash functions to preserve image similarity

Preserving similarity seeks to minimize the inconsistencies between the real-valued
features and corresponding hash codes, for which a variety of strategies have been
adopted.

The design of loss function can significantly influence similarity preservation, which
includes both supervised and unsupervised approaches. With the class label avail-
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able, many loss functions are designed to learn hash codes in a Hamming space. As a
straightforward method, one can optimize the difference between matrices computed
from the binary codes and their supervision labels [112]. Other studies regularize
hash codes with a center vector, for instance a class-specific center loss is devised to
encourage hash codes of images to be close to the corresponding centers, reducing
the intra-class variations [111]. Similarly, Kang et al. [113] introduce a max-margin
t-distribution loss which concentrates more similar data into a Hamming ball cen-
tered at the query term, such that a reduced penalization is applied to data points
within the ball, a method which improves the robustness of hash codes when the su-
pervision labels may be inaccurate. Moreover metric learning, including Siamese loss
[114], triplet loss [51, 115, 116], and adversarial learning [115, 117], is used to retain
semantic similarity where only dissimilar pairs keep their distance within a margin.
In terms of unsupervised hashing learning, it is essential to capture some relevance
among samples, which has been accomplished by using Bayes classifiers [118], KNN
graphs [69, 72], k-means algorithms [70], and network structures such as AutoEn-
coders [119, 120, 121] and generative adversarial networks [60, 69, 122, 123].

Separate from the loss function, it is also important to design deep network frame-
works for learning. For instance, Long et al. [116] apply unshared-weight CNNs on
two datasets where a triplet loss and an adversarial loss are utilized to address the
domain shifts. Considering the lack of label information, Cao et al. [117] present
coined Pair Conditional WGAN, an extension of Wasserstein generative adversarial
networks, to generate more samples conditioned on the similarity information.

b. Improving hash function quality

Improving hash function quality aims at making the binary codes uniformly dis-
tributed, that is, maximally filling and using the hash code space, normally on the
basis of bit uncorrelation and bit balance [77]. Bit uncorrelation implies that differ-
ent bits are as independent as possible and have little redundancy of information, so
that a given set of bits can aggregate more information within a given code length.
In principle, bit uncorrelation can be formulated as bb> = I in which I is an identity
matrix of size K. For example, it can be encouraged via regularization terms such
as orthogonality [124] and mutual information [125]. Bit balance means that each
bit should have a 50% chance of being +1 or -1, thereby maximizing code variance
and information [77]. Mathematically, this condition is constrained by using this
regularization term b · 1 = 0 where 1 is a K-dimensional vector with all elements
equal to 1.

2.4 Retrieval via Learning DCNNRepresentations

In Section 2.3, we presented feature fusion and enhancement strategies for which
off-the-shelf DCNNs only serve as extractors to obtain features. However, in most
cases, deep features may not be sufficient for high accuracy retrieval, even with
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Figure 2.9: Schemes of supervised fine-tuning. Anchor, positive, and negative im-
ages are indicated by xa, xp, xn, respectively. (a) classification-based; (b) using a
transformation matrix for learning the similarity of image pairs; (c) Siamese networks;
(d) triplet loss for fine-tuning; (e) an attention block into DCNNs to highlight re-
gions; (f) combining classification-based and verification-based loss for fine-tuning; (g)
region proposal networks (RPNs) to locate the RoI and highlight specific regions or
instances; (h) inserting the RPNs of (g) into DCNNs, such that the RPNs extract
regions or instances at the convolutional layer.

the strategies which were discussed. In order for models to have higher scalability
and to be more effective for retrieval, a common practice is network fine-tuning,
i.e. updating the pre-stored parameters [44, 78]. However fine-tuning does not
contradict or render irrelevant feature processing methods of Section 2.3; indeed,
those strategies are complementary and can be incorporated as part of network
fine-tuning.

This section focuses on supervised and unsupervised fine-tuning methods for the
updating of network parameters.

2.4.1 Supervised fine-tuning

2.4.1.1 Classification-based fine-tuning

When class labels of a new dataset are available, it is preferable to begin with a
previously-trained DCNN, trained on a separate dataset, with the backbone DCNN
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typically chosen from one of AlexNet, VGG, GoogLeNet, or ResNet. The DCNN
can then be subsequently fine-tuned, as shown in Figure 2.9(a), by optimizing its
parameters on the basis of a cross entropy loss LCE:

LCE(p̂i, yi) = −
c∑
i

(
yi×log(p̂i)

)
(2.13)

Here yi and p̂i are the ground-truth labels and the predicted logits, respectively,
and c is the total number of categories. The milestone work in such fine-tuning is
[50], in which AlexNet is re-trained on the Landmarks dataset with 672 pre-defined
categories. The fine-tuned network produces superior features on landmark-related
datasets like Holidays [126], Oxford-5k, and Oxford-105k [127]. The newly-updated
layers are used as global or local feature detectors for image retrieval.

A classification-based fine-tuning method improves the model-level adaptability for
new datasets, which, to some extent, has mitigated the issue of model transfer for
image retrieval. However, there still exists room to improve in terms of classification-
based supervised learning. On the one hand, the fine-tuned networks are quite robust
to inter-class variability, but may have some difficulties in learning discriminative
intra-class variability to distinguish particular objects. On the other hand, class label
annotation is time-consuming and labor-intensive for some practical applications.
To this end, verification-based fine-tuning methods are combined with classification
methods to further improve network capacity.

2.4.1.2 Verification-based fine-tuning

With affinity information indicating similar and dissimilar pairs, verification-based
fine-tuning methods learn an optimal metric which minimizes or maximizes the dis-
tance of pairs to validate and maintain their similarity. Compared to classification-
based learning, verification-based learning focuses on both inter-class and intra-class
samples. Verification-based learning involves two types of information [27]:

1. A pair-wise constraint, corresponding to a Siamese network as in Figure 2.9(c),
in which input images are paired with either a positive or negative sample;

2. A triplet constraint, associated with triplet networks as in Figure 2.9(e), in
which anchor images are paired with both similar and dissimilar samples [27].

These verification-based learning methods are categorized into globally supervised
approaches (Figure 2.9(c,d)) and locally supervised approaches (Figure 2.9(g,h)),
where the former learn a metric on global features by satisfying all constraints,
whereas the latter focus on local areas by only satisfying the given local constraints
(e.g. region proposals).

To be specific, consider a triplet set X={(xa, xp, xn)} in a mini-batch, where (xa, xp)

indicates a similar pair and (xa, xn) a dissimilar pair. Features f(x;θ) of one image
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Figure 2.10: Illustrations of sample mining strategies in metric learning. Here, we
illustrate three classes, where shapes indicate different classes. Multiple pairs are con-
sidered in some loss terms and assigned with distinct weights during training, indicated
by different line width. (a)-(c) have been introduced in the text. (d) Quadruplet loss
[128]: a sample similar to the anchor is used to construct a double margin. (e) Angular
loss [129]: the angle at the negative of triple triangles is computed to obtain higher
order geometric constraints. (f) N-pair loss [130]: a positive sample is identified from
N − 1 negative samples of N-1 classes. (g) Lifted structured loss [131]: the structure
relationships of three positive and three negative samples are considered. (h) Ranked
list loss [132]: all samples to explore intrinsic structured information are considered.
(i) Mixed loss [133]: three positive and three negative samples are captured which are
initially closely distributed, where another anchor-negative pair initially lies very close
to the anchor. (j) Proxy-NCA loss [134]: proxy positive and negative samples for each
class are computed and trained with a true anchor sample. (k) Proxy-anchor loss [135]:
the anchor sample is represented by a proxy. (l) Hardness-aware loss [136]: the syn-
thetic negative is mapped from an existing hard negative, the hard levels manipulated
adaptively within a certain range.

are extracted by a network f(·) with parameters θ, for which we can represent the
affinity information for each similar or dissimilar pair as

Dij = D(xi, xj) = ||f(xi;θ)− f(xj;θ)||22 (2.14)

a. Refining with transformation matrix.

Learning the similarity among the input samples can be implemented by optimizing
the weights of a linear transformation matrix [52]. It transforms the concatenated
feature pairs into a common latent space using a transformation matrix W∈R2d×1,
where d is the feature dimension. The similarity score of these pairs are predicted
via a sub-network SW (xi, xj) = fW (f(xi;θ) ∪ f(xj;θ);W ) [52, 137]. In other
words, the sub-network fW predicts how similar the feature pairs are. Given the
affinity information of feature pairs Sij = S(xi, xj)∈{0, 1}, the binary labels 0 and
1 indicate the similar (positive) or dissimilar (negative) pairs, respectively. The
training of function fW can be achieved by using a regression loss:

LW (xi, xj) = |SW (xi, xj)− Sij
(
sim(xi, xj) +m

)
− (1− Sij)

(
sim(xi, xj)−m

)
|

(2.15)
where sim(xi, xj) can be the cosine function for guiding training W and m is a
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margin. By optimizing the regression loss and updating the transformation matrix
W , deep networks maximize the similarity of similar pairs and minimize that of
dissimilar pairs. It is worth noting that the pre-stored parameters in the deep
models are frozen when optimizingW . The pipeline of this approach is depicted in
Figure 2.9(b) where the weights of the two DCNNs are not necessarily shared.

b. Fine-tuning with Siamese networks.

Siamese networks represent important options in implementing metric learning for
fine-tuning, as shown in Figure 2.9(c). It is a structure composed of two branches
that share the same weights across the layers. Siamese networks are trained on
paired data, consisting of an image pair (xi, xj) such that S(xi, xj) ∈ {0, 1}. A
Siamese loss function, illustrated in Figure 2.10(a), is formulated as

LSiam(xi, xj) =
1

2
S(xi, xj)D(xi, xj) +

1

2

(
1− S(xi, xj)

)
max

(
0, m−D(xi, xj)

)
(2.16)

A standard Siamese network and Siamese loss are used to learn the similarity be-
tween semantically relevant samples under different scenarios. For example, Simo et
al. [138] introduce a Siamese network to learn the similarity between paired image
patches, which focuses more on the specific regions within an image. Ong et al. [53]
leverage the Siamese network to learn image features which are then fed into the
Fisher Vector model for further encoding. In addition, Siamese networks can also
be applied to hashing learning in which the Euclidean distance formulation D(·) in
Eq. 2.16 is replaced by the Hamming distance [114].

c. Fine-tuning with triplet networks.

Triplet networks [137] optimize similar and dissimilar pairs simultaneously. As
shown in Figure 2.9(d) and Figure 2.10(b), the plain triplet networks adopt a ranking
loss for training:

LTriplet(xa, xp, xn) = max
(
0,m+D(xa, xp)−D(xa, xn))

)
(2.17)

which indicates that the distance of an anchor-negative pair D(xa, xn) should be
larger than that of an anchor-positive pair D(xa, xp) by a certain margin m. The
triplet loss is used to learn fine-grained image features [71, 96] and for constraining
hash code learning [51, 115, 116].

To focus on specific regions or objects, local supervised metric learning has been
explored [58, 89, 139, 140]. In these methods, some regions or objects are extracted
using region proposal networks (RPNs) [17] which subsequently can be plugged
into deep networks and trained in an end-to-end manner, such as shown in Figure
2.9(g), in which Faster R-CNN [17] is fine-tuned for instance search [89]. RPNs yield
the regressed bounding box coordinates of objects and are trained by the multi-class
classification loss. The final networks extract better regional features by RoI pooling
and perform spatial ranking for instance retrieval.

32



2.4 Retrieval via Learning DCNN Representations

RPNs [17] enable deep models to learn regional features for particular instances or
objects [54, 140]. RPNs used in the triplet formulation are shown in Figure 2.9(h).
For training, besides the triplet loss, regression loss (PRNs loss) is used to minimize
the regressed bounding box according to ground-truth region of interest. In some
cases, jointly training an RPN loss and triplet loss leads to unstable results. This
is addressed in [54] by first training a CNN to produce R-MAC using a rigid grid,
after which the parameters in convolutional layers are fixed and RPNs are trained
to replace the rigid grid.

Attention mechanisms can also be combined with metric learning for fine-tuning
[110, 139], as in Figure 2.9(e), where the attention module is typically end-to-end
trainable and takes as input the convolutional feature maps. For instance, Song et
al. [139] introduce a convolutional attention layer to explore spatial-semantic infor-
mation, highlighting regions in images to significantly improve the discrimination
for inter-class and intra-class features for image retrieval.

Recent studies [64, 93] have jointly optimized the triplet loss and classification loss
function, as shown in Figure 2.9(f). Fine-tuned models that use only a triplet con-
straint may possess inferior classification accuracy for similar instances [93], since
the classification loss does not predict the intra-class similarity, rather locates the
relevant images at different levels. Given these considerations, it is natural to com-
bine and optimize triplet constraint and classification loss jointly [64]. The overall
joint function is formulated as

LJoint =α·LTriplet(xi,a, xi,p, xi,n)+β ·LCE(p̂i, yi) (2.18)

where the cross-entropy loss (CE loss) LCE is defined in Eq. (2.13) and the triplet
loss LTriplet in Eq. (2.17). α and β are trade-off hyper-parameters to tune the two
loss functions.

An implicit drawback of the Siamese loss in Eq. 2.16 is that it may penalize similar
image pairs even if the margin between these pairs is small or zero, which may
degrade performance [141], since the constraint is too strong and unbalanced. At
the same time, it is hard to map the features of similar pairs to the same point when
images contain complex contents or scenes. To tackle this limitation, Cao et al. [142]
adopt a double-margin Siamese loss [141], illustrated in Figure 2.10(c), to relax the
penalty for similar pairs. Specifically, the threshold between the similar pairs is set
to a marginm1 instead of being zero. In this case, the original single-margin Siamese
loss is re-formulated as

L(xi, xj) =
1

2
S(xi, xj) max

(
0, D(xi, xj)−m1

)
+

1

2

(
1− S(xi, xj)

)
max

(
0,m2 −D(xi, xj)

) (2.19)
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where m1>0 and m2>0 are the margins affecting the similar and dissimilar pairs,
respectively. Therefore, the double margin Siamese loss only applies a contrastive
force when the distance of a similar pair is larger than m1. The mAP metric of
retrieval is improved when using the double margin Siamese loss [141].

Discussion. Most verification-based supervised learning methods rely on the ba-
sic Siamese or triplet networks. The follow-up studies are focusing on exploring
methods to further improve their capacities for robust feature similarity estimation.
Generally, the network structure, loss function, and sample selection are important
factors for the success of verification-based methods.

A variety of loss functions have been proposed recently [128, 130, 131, 132, 134].
Some of these use more samples or additional constraints. For example, Chen et
al. [128] incorporate Quadruplet samples for constraining relationships between
anchor, positive, negative, and similar images. The N-pair loss [130] and the lifted
structured loss [131] even define constraints on all images and employ the structural
information of samples in a mini-batch.

The sampling strategy can greatly affect the feature learning and training conver-
gence. To date, many sampling strategies such as clustering have been introduced, of
which 12 are shown in Figure 2.10. Aside from sampling within a mini-batch, other
work explores mining samples outside a mini-batch even from the whole dataset.
This may be beneficial for stabilizing optimization due to a larger data diversity
and richer training information. For example, Wang et al. [143] propose a cross-
batch memory (XBM) mechanism that memorizes the embedding of past iterations,
allowing the model to collect sufficient hard negative pairs across multiple mini-
batches. Harwood et al. [144] provide a framework named smart mining to collect
hard samples from the entire training set. It is reasonable to achieve better perfor-
mance when more samples are used to fine-tune a network. However, the possible
additional computational cost during training is a core issue to be addressed.

Directly optimizing the average precision (AP) metric using the listwise AP loss [145]
is one way to consider a large number of image simultaneously. Training with this
loss has been demonstrated to improve retrieval performance [145, 146, 147], however
average precision, as a metric, is normally non-differentiable and non-smooth. To
directly optimize the AP loss, the AP metric needs to be relaxed by using methods
such as soft-binning approximation [145, 146] or sigmoid function [147].

2.4.2 Unsupervised fine-tuning

Supervised network fine-tuning becomes infeasible when there is not enough super-
visory information because such information is costly to assemble or unavailable.
Given these limitations, unsupervised fine-tuning methods for image retrieval are
quite necessary but less studied [148].
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For unsupervised fine-tuning, two broad directions are to mine relevance among
features via manifold learning to obtain ranking information, and to devise novel
unsupervised frameworks (e.g. AutoEncoders), each discussed below.

2.4.2.1 Mining samples with manifold learning

Manifold learning focuses on capturing intrinsic correlations on the manifold struc-
ture to mine or deduce revelance, as illustrated in Figure 2.11. Initial similarities
between the original extracted features are used to construct an affinity matrix,
which is then re-evaluated and updated using manifold learning [149]. According to
the manifold similarity in the updated affinity matrix, positive and hard negative
samples are selected for metric learning using verification-based loss functions such
as pair loss [58, 150], triplet loss [151, 152], or N-pair loss [148], etcNote that this is
different from the aforementioned methods for verification-based fine-tuning meth-
ods, where the hard positive and negative samples are explicitly selected from an
ordered dataset according to the given affinity information.

It is important to capture the geometry of the manifold of deep features, generally
involving two steps [149] known as a diffusion process. First, the affinity matrix
(Figure 2.11) is interpreted as a weighted kNN graph, where each vector is repre-
sented by a node, and edges are defined by the pairwise affinities of two connected
nodes. Then, the pairwise affinities are re-evaluated in the context of all other ele-
ments by diffusing the similarity values through the graph [59, 150, 151, 152]. Some
new similarity diffusion methods have recently been proposed, like the regularized
diffusion process (RDP) [153] and the regional diffusion mechanism [150]. For more
details on diffusion methods we refer to the survey [149].

Most existing algorithms follow a similar principle (e.g. random walk [149]). The
differences among methods lie primarily in three aspects:

1. Similarity initialization, which affects the subsequent KNN graph construc-
tion in an affinity matrix. Usually, an inner product [59, 148] or Euclidean
distance [56] is directly computed for the affinities. A Guassian kernel function
can be used for affinity initialization [149, 152] or Iscen et al. [150] consider
regional similarity from image patches to build the affinity matrix.

2. Transition matrix definition, a row-stochastic matrix [149], determines
the probabilities of transiting from one node to another in the graph. These
probabilities are proportional to the affinities between nodes, which can be
measured by Geodesic distance (e.g. the summation of weights of relevant
edges).

3. Iteration scheme, to re-valuate and update the values in affinity matrix
by the manifold similarity until some kind of convergence is achieved. Most
algorithms are iteration-based [149, 151], as illustrated in Figure 2.11.

35



2. A COMPREHENSIVE REVIEW OF DEEP IMAGE RETRIEVAL

DCNN

Original
Feature 

Representations

Affinity
Matrix

Transition
Matrix

Converge

No

Yes

Iterative 
Manifold  

Representations

DCNN

DCNN

DCNN

Triplet
Loss

Stage I: Manifold Learning Stage II: Model Fine-tuning

Shared
Weights

Initial
Probability

xx

Random Walk

ax
nx

px

DCNN model is 
transferred to stage II

KNN Graph
Construction

Affinity
Update

Manifold 
Similarity 

Computing

Manifold
Guided 

Selection

Triplets

Shared
Weights

DatasetDataset

Figure 2.11: Paradigm of manifold learning for unsupervised metric learning, based
on triplet loss.

Diffusion process algorithms are indispensable for unsupervised fine-tuning. Better
image similarity is guaranteed when it is improved based on initialization (e.g. re-
gional similarity [150] or high order information [56]). However, the diffusion process
requires more computation and searching due to the iteration scheme [152], a limita-
tion which cannot meet the efficiency requirements of image retrieval. To mitigate
this, Nicolas et al. [148] apply the closed-form convergence solution of a random
walk in each mini-batch to estimate the manifold similarities instead of running
many iterations. Some studies replace the diffusion process on a kNN graph with
a diffusion network [58], which is derived from graph convolution networks [154].
Their end-to-end framework allows efficient computation during the training and
testing stages.

Once the manifold space is learned, samples are mined by computing geodesic dis-
tances based on the Floyd-Warshall algorithm or by comparing the set difference
[151]. The selected samples are fed into deep networks to perform fine-tuning.

It is possible to explore proximity information, to cluster in Euclidean space, splitting
the training set into different groups. For example, Tzelepi et al. [155] explore a
fully unsupervised fine-tuning method by clustering, in which the kNN algorithm
is used to compute the k nearest features, then fine-tuned to minimize the squared
distance between each query feature and its k nearest features. As a second example,
Radenovic et al. [32, 57] use Structure-from-Motion (SfM) for clustering to explore
sample reconstructions to select images for triplet loss. Clustering methods depend
on the Euclidean distance, making it difficult to reveal the intrinsic relationship
between objects.

2.4.2.2 AutoEncoder-based frameworks

An AutoEncoder is a kind of neural network that aims to reconstruct its output as
closely as possible to its input. In principle, an input image is encoded as features
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into a latent space, and these features are then reconstructed to the original input
image using a decoder. The encoder and decoder can be both be convolutional
neural networks.

In an AutoEncoder, there exist different levels (e.g. pixel-level or instance-level)
of reconstruction. These different reconstructions affect the effectiveness of an Au-
toEncoder, in that pixel-level reconstructions may degrade the learned features of
an encoder by focusing on trivial variations in a reconstructed image, since natural
images typically contains many detailed factors of location, color, and pose.

An AutoEncoder is an optional framework for supporting other methods, for exam-
ple the implementation of unsupervised hash learning [60, 119, 120, 121]. Except
for the reconstruction loss [60, 121], it is highly necessary to mine feature relevance
to explore other objective functions. This is usually realized by using clustering
algorithms [121] since features from an off-the-shelf network initially contain rich
semantic information to keep their semantic structure [69, 72, 118]. For example,
Gu et al. [121] introduce a modified cross-entropy based on the k-means clustering
algorithm where a deep model learns to cluster iteratively and yields binary codes
while retaining the structures of the input data distributions. Zhou et al. [72] and
Deng et al. [69] propose a self-taught hashing algorithm using a kNN graph construc-
tion to generate pseudo labels that are used to analyze and guide network training.
Other techniques such as Bayes Nets are also used to predict sample similarity,
such as in the work of Yang et al. [118], which adopts a Bayes optimal classifier
to assign semantic similarity labels to data pairs which have a higher similarity
probability.

AutoEncoders can also be integrated into other frameworks, such as graph con-
volutional networks [154] and object detection models [156] to learn better binary
latent variables. For example, Shen et al. [60] combine graph convolutional net-
works [154] to learn the hash codes from an AutoEncoder. In this method, the
similarity matrix for graph learning is computed on the binary latent variables from
the Encoder. Generative adversarial networks (GANs) are also explored in the un-
supervised hashing framework [60, 69, 122, 123]. The adversarial loss in GANs is
the classical objective to use. By optimizing this loss, the synthesized images gener-
ated from hash codes gradually keep semantic similarity consistent for the original
images. The pixel-level and feature-level content loss are used to improve the gener-
ated image quality [122]. Some other losses are employed in GANs to enhance hash
code learning. For instance, a distance matching regularizer is utilized to propagate
the correlations between high-dimensional real-valued features and low-dimensional
hash codes [157], or two loss functions that aim at promoting independence of binary
codes [123]. In summary, using GANs for unsupervised hash learning is promising,
but there remains much room for further exploration.
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2.5 State of the Art Performance

2.5.1 Datasets

To demonstrate the effectiveness of methods, we choose four commonly-used datasets
for performance comparison: Holidays, Oxford-5k (including the extended Oxford-
105k), Paris-6k (including the extended Paris-106k) and UKBench.

UKBench (UKB) [158] consists of 10,200 images of objects. The whole dataset
has 2,550 groups of images, each group having four images of the same object from
different viewpoints or illumination conditions. Each image in the dataset can be
used as a query image.

Holidays [126] consists of 1,491 images collected from personal holiday albums.
Most images are scene-related. The dataset comprises 500 groups of similar images
with a query image for each group. In each group, the first image is used as a query
image for performance evaluation.

Oxford-5k [127] consists of 5,062 images for 11 Oxford buildings. Each image is
represented by five queries by a hand-drawn bounding box, thus there are 55 query
Regions of Interest (RoI) in total. An additional disjoint set of 100,000 distractor
images is added to obtain Oxford-100k.

Paris-6k [159] includes 6,412 images collected from Flickr. It is categorized into
12 groups about specific Paris architectures. The dataset has 500 query images for
evaluation, and 55 queries with bounding boxes. Images are annotated with the
same four types of labels as used in the Oxford-5k dataset.

Annotations and evaluation protocols in Oxford-5k and Paris-6k are updated; ad-
ditional queries and distractor images are added into the two datasets, producing
the Revisited Oxford and Revisited Paris datasets [160]. Due to the popularity of
Oxford-5k and Paris-6k, we primarily undertake performance evaluations on the
original datasets.

2.5.2 Evaluation metrics

Average precision (AP) refers to the coverage area under the precision-recall curve.
A larger AP implies a higher precision-recall curve and better retrieval accuracy. AP
can be calculated as

AP =

∑N
k=1 P (k) · rel(k)

R
(2.20)

where R denotes the number of relevant results for the query image from the total
number N of images. P (k) is the precision of the top k retrieved images, and rel(k)

is an indicator function equal to 1 if the item within rank k is a relevant image and
0 otherwise. Mean average precision (mAP) is adopted for the evaluation over all
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query images,
1

Q

Q∑
q=1

AP (q) (2.21)

where Q is the number of query images.

Additionally, N-S score is a metric used for UKBench [158]. In this dataset, there
are four relevant images for each query. The N-S score is the average, four times,
for the top-four precision over the dataset.

2.5.3 Performance comparison and analysis

Overview. We conclude with the performance over these 4 datasets from 2014
to 2020 in Figure 2.12(a). At early period, DCNNs acted as powerful extractors
and achieved good results, e.g. mAP is 78.34% in [27] on Oxford-5k. Subsequently,
the results increased significantly when some crucial factors were adopted, including
feature fusion [161, 162, 163], feature aggregation [31, 63], and network fine-tuning
[153, 164]. For instance, the accuracy on UKBench reaches an mAP of 98.8% in [163]
when an undirected graph is defined to fuse features and estimate their correlations.
Network fine-tuning improves performance greatly. The accuracy increases steadily
from 78.34% [27] to 96.2% [165] on the Oxford-5k dataset when manifold learning
is used to fine-tune deep networks.

We evaluate the methods using off-the-shelf models (Table 2.2) and fine-tuning net-
works (Table 2.3). In Table 2.2, single pass and multiple pass are analyzed, while
supervised fine-tuning and unsupervised fine-tuning are compared in Table 2.3.

Evaluation for single feedforward pass. The common practice using this scheme
is to enhance feature discrimination. In Table 2.2, we observe that fully-connected
layers used as feature extractors may reach a lower accuracy (e.g. 74.7% on Hol-
idays in [50]), compared to the counterpart convolutional layers because the fully-
connected layers lack structural information. Layer-level feature fusion strategy im-
proves retrieval accuracy. For example, Yu et al. [92] combined three layers (Conv4,
Conv5, and FC6 ) (e.g. an mAP of 91.4% on Holidays), outperforming the perfor-
mance of non-fusion method in [25] (e.g. mAP is 80.2%). Moreover, convolutional
features embedded by BoW model reach a competitive performance on Oxford-5k
and Paris-6k (73.9% and 82.0%, respectively), while its codebook size is 25k, which
may affect the retrieval efficiency. For single pass scheme, methods shown in Figure
2.6 improve the discrimination of convolutional feature maps and perform differently
in Table 2.2 (e.g. 66.9% of R-MAC [159], 58.9% of SPoC [25] on Oxford-5k). We
view this as a critical factors and further analyze.

Evaluation for multiple feedforward pass. The methods exemplified in Figure
2.7 are reported their results in multiple pass scheme. Among them, extracting image
patches densely using Overfeat [166] can reach best results on the 4 datasets [43].
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Using rigid grid method reach competitive results (e.g. an mAP of 87.2% on Paris-
6k) [108]. These two methods consider more patches, even background information
when used for feature extraction. Instead of generating patches densely, region
proposals and spatial pyramid modeling have a degree of purpose in processing image
objects. This may be more efficient and less memory demanding. Using multiple-
pass scheme, spatial information is maintained better than the case using the single-
pass method. For example, a shallower network (AlexNet) and region proposal
networks are used in [85], its result on UKBench is 3.81 (N-Score), higher than the
one using deeper networks, such as [25, 50, 92]. Besides feeding image patches into
the same network, model-level fusion also exploit complementary spatial information
to improve the retrieval accuracy. For instance, as reported in [48], which combines
AlexNet and VGG, the results on Holidays (81.74% of mAP) and UKBench (3.32
of N-Score) are better than these in [65] (76.75% and 3.00, respectively).
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Figure 2.12: (a) Performance improvement from 2014 to 2020. (b) mAP comparison
of the feature aggregation methods shown in Figure 2.6.

Evaluation for supervised fine-tuning. Compared to the off-the-shelf models,
fine-tuning deep networks usually improves accuracy, see Table 2.3. For instance,
the result on Oxford-5k [31] by using a pre-trained VGG is improved from 66.9%
to 81.5% in [53] when a single-margin Siamese loss is used. Similar trends can
be also observed on the Paris-6k dataset. Although classification-based fine-tuning
method is not excel at learning intra-class variability (e.g. an mAP of 55.7% on
Oxford-5k in [50]), its performance may be improved with powerful DCNNs and
feature enhancement methods such as the attention mechanism in [106], leading to
an mAP of 83.8% on Oxford-5k. As for verification-based fine-tuning methods, in
some cases, the loss used for fine-tuning is essential for performance improvement.
For example, RPN is re-trained using regression loss on Oxford-5k and Paris-6k
(75.1% and 80.7%, respectively) [89]. Its results are lower than the results from
[52] (88.2% and 88.2%, respectively) where a transformation matrix is used to learn
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Table 2.1: Evaluations of mAP (%), N-S score, and average search time per image.
“†” refers to the query time is evaluated in a global diffusion manner, while “‡” refers
to the time is evaluated in a regional diffusion way.

Oxford-5k (+100k) Paris-6k (+100k) Holidays UKB
mAP Time mAP Time mAP Time N-S Time

[153] 91.3
(88.4)

5.45 ms
(809 ms) - - 95.66 3.11 ms 3.93 4.91 ms

[165] 92.6
(91.8)

2 ms
(10 ms) - - - - - -

[150]† 85.7
(-)

20 ms
(-)

94.1
(-)

20 ms
(-) - - - -

[150]‡ 95.8
(-)

600 ms
(-)

96.9
(-)

700 ms
(-) - - - -

[172] 64.9
(58.8)

0.81 ms
(0.82 ms) - - - - - -

[57] 64.8
(57.9)

0.77 ms
(0.73 ms) - - - - - -

[52] 55.5
(-)

0.35 ms
(-)

71.0
(-)

0.35 ms
(-) - - - -

visual similarity. However, when RPN is trained by using triplet loss such as [140],
the effectiveness of retrieval is improved significantly where the results are 86.1%
(on Oxford-5k) and 94.5% (on Paris-6k). Further, feature embedding methods are
important for retrieval accuracy. For example, Ong et al. [53] embedded Conv5
feature maps by Fisher Vector and achieved an mAP of 81.5% on Oxford-5k, while
embedding feature maps by using VLAD achieves an mAP of 62.5% on this dataset
[32, 55].

Evaluation for unsupervised fine-tuning. Compared to supervised fine-tuning,
unsupervised fine-tuning methods are relatively less explored. The difficulty for
unsupervised fine-tuning is to mine relevance of samples without ground-truth labels.
In general, unsupervised fine-tuning methods produce lower performance than the
supervised fine-tuning methods. For instance, supervised fine-tuning network by
using Siamese loss in [171] achieves an mAP 88.4% on Holidays, while unsupervised
fine-tuning network using the same loss function in [32, 57, 151] achieve 82.5%,
83.1%, and 87.5%, respectively. However, unsupervised fine-tuning methods can
achieve a similar accuracy even outperform the supervised fine-tuning if a suited
feature embedding method is used. For instance, Zhao et al. [152] explore global
feature structure with modeling the manifold learning, producing an mAP of 85.4%
(on Oxford-5k) and 96.3% (on Paris-6k). This is similar to the supervised method
[140], whose results are 86.1% (on Oxford-5k) and 94.5% (on Paris-6k). As another
example, the precision of ResNet-101 fine-tuned by cross-entropy loss achieves to
83.8% on Oxford-5k [106], while the precision is further improved to 92.0% when IME
layer is used to embed features and fine-tuned in an unsupervised way [56]. Note that
fine-tuning strategies are related to the type of the target retrieval datasets.

Retrieval efficiency is also an important criterion for image retrieval. Deep learn-
ing methods are usually trained and validated on large-size datasets, relying on using
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GPUs. Most prior works focus more on retrieval accuracy but less on efficiency. We
report the retrieval accuracy and retrieval efficiency on the 4 datasets in Table 2.1.
The recorded time (in ms) indicates the average time for searching each query im-
age. In Table 2.1, we observe some important trends. First, in general, the average
retrieval time for each query image is less than 1s. Concretely, the recorded time
is up to 809ms on Oxford-105k in [153], whose mAP is 88.4%. The retrieval time
is 600ms on Oxford-5k and 700ms on Paris-6k in [150], whose time cost is caused
by processing 21 regional features on each query image. Second, we observe the
retrieval accuracy-efficiency balancing issue, which is significantly obvious on the
Oxford-5k dataset. The average retrieval time are both less than 1ms in prior work
[52, 57, 172], whose mAPs are lower than 70% (i.e. 55.5%, 64.8%, and 64.9%, re-
spectively). In contrast, the prior approaches [150, 153, 165], reach relatively higher
mAPs (i.e. 91.3%, 92.6%, and 95.8%, respectively), while this higher accuracy is
at the expense of efficiency (more than 2ms even up to 600ms). Therefore, the
trade-off of accuracy and efficiency is also an important factor to take into account
in deep image retrieval, especially for large-scale datasets.

In addition, we discuss other important factors, including the depth of networks,
retrieval feature dimension, and feature aggregation methods.

Network depth. We compare the efficacy of DCNNs depth, following the fine-
tuning protocols1 in [57]. For fair comparisons, all convolutional features from these
backbone DCNNs are aggregated by MAC method [63], and fine-tuned by using
the same learning rate. That means, the adopted methods are the same except the
DCNNs have different depths. We use the default feature dimension (i.e. AlexNet
(256-d), VGG (512-d), GoogLeNet (1024-d), ResNet-50/101 (2048-d)). The results
are reported in Figure 2.13(a). We observe that the deeper networks is more bene-
ficial for accuracy boosts, due to extracting more discriminative features.

Feature dimension. We vary the feature dimension of ResNet-50 from 32-d to
8192-d, by adding fully-connected layers on the top of pooled convolutional features.
The results are shown in Figure 2.13(b). It is expected that higher-dimensional
features capture much more semantics and are beneficial for retrieval. However, the
performance tends to be stable when the dimension is very large. For ResNet-50,
we observe that the 2048-d feature can already produce competitive results.

Feature aggregation methods. Here, we further discuss the methods of embed-
ding convolutional feature maps, as illustrated in Figure 2.6. We use the off-the-shelf
VGG (without updating parameters) on the Oxford and Paris datasets. The results
are reported in Figure 2.12(b). We observe that different ways to aggregate the same
off-the-shelf DCNN make differences for retrieval performance. These reported re-
sults provide a reference for feature aggregation when one uses convolutional layers
for performing retrieval tasks.

1https://github.com/filipradenovic/cnnimageretrieval-pytorch

42



2.6 Chapter Conclusions

AlexNet VGG GoogLeNet ResNet-50 ResNet-101
40

45

50

55

60

65

70

75

80

85

m
A

P 
(%

)

Oxford5k
Oxford105k
Paris6k
Paris106k

0

10

20

30

40

50

60

70

80

90

m
A

P 
(%

)

Oxford5k
Oxford105k
Paris6k
Paris106k

6432 8192128 256 512 1024 2048 
Feature dimension

4096

(b)(a)

Figure 2.13: (a) The effectiveness of different DCNNs on 4 datasets. All models
are fine-tuned by the same loss function. The results are tested on the convolutional
features with default dimension; (b) The impact of feature dimension on retrieval
performance. These features are extracted by using ResNet-50.

2.6 Chapter Conclusions

In this chapter, we reviewed deep learning methods for image retrieval, and cate-
gorized it into deep image retrieval of off-the-shelf models and fine-tuned models
according to the parameter updates of deep networks. Concretely, the off-the-shelf
group is concerned with obtaining high-quality features by freezing the pre-stored
parameters where network feedforward schemes, layer selection, and feature fusion
methods are presented. While fine-tuned based methods deal with updating net-
works with optimal parameters for feature learning in both supervised and unsu-
pervised approaches. For each group, we presented the corresponding methods and
compared their differences. The corresponding experimental results are collected
and analyzed for all the categorized works.

Deep learning has shown significant progress and spotlighted its capacity for image
retrieval. Despite the great success, there are still many unsolved problems. Here,
we introduce some promising trends as future research directions. We hope that
this chapter not only provides a better understanding of image retrieval but also
facilitates future research activities and application developments in this field.
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