
Exploring deep learning for intelligent image retrieval
Chen, W.

Citation
Chen, W. (2021, October 13). Exploring deep learning for intelligent image retrieval.
Retrieved from https://hdl.handle.net/1887/3217054
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3217054
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3217054


Exploring Deep Learning for
Intelligent Image Retrieval

Wei Chen



Copyright © 2021 Wei Chen, All Rights Reserved

ISBN 978-94-6419-293-3

Printed by Gildeprint, The Netherlands

Cover design: Zhihan Zhao, Wei Chen



Exploring Deep Learning for
Intelligent Image Retrieval

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op woensdag 13 oktober 2021

klokke 15.00 uur

door

Wei Chen

geboren te Guizhou, China
in 1991



Promotiecommissie

Promotors: Prof. dr. M.S. Lew
Prof. dr. A. Plaat

Overige leden: Prof. dr. T.S. Chua (National University of Singapore)
Prof. dr. B.P.F. Lelieveldt
Prof. dr. T.H.W. Bäck
Dr. E.M. Bakker
Dr. K.J. Wolstencroft

Wei Chen was financially supported through the China
Scholarship Council (CSC) to participate in the PhD
programme of Leiden University. Grant number
201703170183.

The research in this thesis was performed at the LIACS MediaLab, Leiden Univer-
sity, The Netherlands, and we would like to thank the NVIDIA Corporation for the
donation of GPU cards.



To my family





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions and Contributions . . . . . . . . . . . . . . . . . 3
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 A Comprehensive Review of Deep Image Retrieval 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Summary of progress since 2012 . . . . . . . . . . . . . . . . . 12
2.1.2 Key challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Deep Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 15
2.2.1 A brief introduction to deep learning . . . . . . . . . . . . . . 15
2.2.2 Popular backbone DCNN architectures . . . . . . . . . . . . . 16

2.3 Retrieval with Off-the-Shelf DCNN Models . . . . . . . . . . . . . . . 17
2.3.1 Deep feature extraction . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1.1 Network feedforward scheme . . . . . . . . . . . . . . 18
2.3.1.2 Deep feature selection . . . . . . . . . . . . . . . . . 19
2.3.1.3 Feature fusion strategy . . . . . . . . . . . . . . . . . 21

2.3.2 Deep feature enhancement . . . . . . . . . . . . . . . . . . . . 23
2.3.2.1 Feature aggregation . . . . . . . . . . . . . . . . . . 23
2.3.2.2 Feature embedding . . . . . . . . . . . . . . . . . . . 23
2.3.2.3 Attention mechanisms . . . . . . . . . . . . . . . . . 26
2.3.2.4 Deep hash embedding . . . . . . . . . . . . . . . . . 27

2.4 Retrieval via Learning DCNN Representations . . . . . . . . . . . . 28
2.4.1 Supervised fine-tuning . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1.1 Classification-based fine-tuning . . . . . . . . . . . . 29
2.4.1.2 Verification-based fine-tuning . . . . . . . . . . . . . 30

2.4.2 Unsupervised fine-tuning . . . . . . . . . . . . . . . . . . . . 34
2.4.2.1 Mining samples with manifold learning . . . . . . . . 35
2.4.2.2 AutoEncoder-based frameworks . . . . . . . . . . . . 36

2.5 State of the Art Performance . . . . . . . . . . . . . . . . . . . . . . 38
2.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.3 Performance comparison and analysis . . . . . . . . . . . . . . 39

vii



CONTENTS

2.6 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Domain Uncertainty based on Information Theory for Cross-modal
Hash Retrieval 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Cross-modal Hash Learning . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Domain Uncertainty Measurement via Information Theory . . . . . . 50

3.3.1 Information theory and domain uncertainty . . . . . . . . . . 50
3.3.2 Multi-level feature preserving . . . . . . . . . . . . . . . . . . 51
3.3.3 Classification-based objective function . . . . . . . . . . . . . 53

3.4 Experiments and Evaluations . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Performance and evaluation . . . . . . . . . . . . . . . . . . . 54

3.5 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Integrating Information Theory and Adversarial Learning for Cross-
modal Retrieval 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Cross-modal representation learning and matching . . . . . . . 61
4.2.2 Adversarial learning for cross-modal retrieval . . . . . . . . . . 62
4.2.3 Information-theoretical feature learning . . . . . . . . . . . . . 63

4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Integrating information theory & adversarial learning . . . . . 64

4.3.2.1 Information entropy and modality uncertainty . . . . 64
4.3.2.2 Adversarial learning and information entropy . . . . 65

4.3.3 KL-divergence for cross-modal feature projection . . . . . . . 66
4.4 Implementation and optimization . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Combining information theory & adversarial learning . . . . . . 67
4.4.2 KL-divergence for similarity preserving . . . . . . . . . . . . . 69
4.4.3 Instance label classification . . . . . . . . . . . . . . . . . . . . 70

4.4.3.1 Categorical cross-entropy loss . . . . . . . . . . . . . 70
4.4.3.2 KL-divergence for data imbalance . . . . . . . . . . . 70

4.4.4 Bi-directional triplet constraint . . . . . . . . . . . . . . . . . 71
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Datasets and settings . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2.1 Results on the Flickr30K and MS-COCO datasets . . 74
4.5.2.2 Results on CUHK-PEDES dataset . . . . . . . . . . 75
4.5.2.3 Results on Flickr8K dataset . . . . . . . . . . . . . . 76

4.5.3 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



CONTENTS

4.5.3.1 Analysis of KL-divergence for data imbalance . . . . 77
4.5.3.2 Analysis of KL-divergence for cross-modal feature

projection . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.3.3 Analysis of adversary combining . . . . . . . . . . . 77
4.5.3.4 Analysis of temperature τ . . . . . . . . . . . . . . . 78
4.5.3.5 Distribution visualization . . . . . . . . . . . . . . . 78
4.5.3.6 Analysis of complexity and stability . . . . . . . . . 80

4.5.4 Further exploring . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 On the Exploration of Incremental Learning for Fine-grained Image
Retrieval 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Semantic preserving loss . . . . . . . . . . . . . . . . . . . . . 88
5.3.2 Knowledge distillation loss . . . . . . . . . . . . . . . . . . . . 89
5.3.3 Maximum mean discrepancy loss . . . . . . . . . . . . . . . . 89

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1 Datasets and experimental settings . . . . . . . . . . . . . . . 91
5.4.2 One-step incremental learning for FGIR . . . . . . . . . . . . 91
5.4.3 Multi-step incremental learning for FGIR . . . . . . . . . . . . 94
5.4.4 Validation with image classification . . . . . . . . . . . . . . . 97
5.4.5 Training time comparison . . . . . . . . . . . . . . . . . . . . 98
5.4.6 Components analysis . . . . . . . . . . . . . . . . . . . . . . . 98

5.5 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Feature Estimations based Correlation Distillation for Incremental
Image Retrieval 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Correlations Distillation for Incremental Image Retrieval . . . . . . . 104

6.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Correlations distillation for one-task scenario . . . . . . . . . . 106
6.3.3 Feature estimation for multi-task scenario . . . . . . . . . . . 106

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.1 Datasets and experimental setup . . . . . . . . . . . . . . . . 110
6.4.2 One-task scenario evaluation . . . . . . . . . . . . . . . . . . . 111
6.4.3 Multi-task scenario evaluation . . . . . . . . . . . . . . . . . . 114
6.4.4 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4.5 Retrieval visualization . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ix



CONTENTS

7 Lifelong Image Retrieval via Dual Knowledge Distillation 125
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3 The Lifelong Image Retrieval Problem . . . . . . . . . . . . . . . . . 128
7.4 Dual Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.1 Knowledge distillation by frozen teacher . . . . . . . . . . . . 129
7.4.2 Representative data generation . . . . . . . . . . . . . . . . . 130
7.4.3 Self-motivated learning on the mixed data . . . . . . . . . . . 131
7.4.4 Auxiliary distillation by on-the-fly teacher . . . . . . . . . . . 131

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5.1 Dataset splits . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.5.2 Training details . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.5.3 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . 133
7.5.4 Further explorations . . . . . . . . . . . . . . . . . . . . . . . 141

7.6 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8 New Ideas and Trends in Deep Multimodal Content Understanding143
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2 Multimodal Applications . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2.1 Uni-directional applications . . . . . . . . . . . . . . . . . . . 145
8.2.2 Bi-directional applications . . . . . . . . . . . . . . . . . . . . 146

8.3 Recent Advances in Content Understanding . . . . . . . . . . . . . . 148
8.3.1 Deep multimodal structures . . . . . . . . . . . . . . . . . . . 148
8.3.2 Multimodal feature extraction . . . . . . . . . . . . . . . . . . 151
8.3.3 Common latent space learning . . . . . . . . . . . . . . . . . . 156

8.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.5 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9 Conclusions 169
9.1 Limitations and Possible Solutions . . . . . . . . . . . . . . . . . . . 172
9.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 172

Bibliography 175

List of Abbreviations 195

English Summary 197

Nederlandse Samenvatting 199

Curriculum Vitae 205

x



Chapter 1

Introduction

1



1. INTRODUCTION

1.1 Background

The use of images to convey information is playing a crucial role in our daily life
in diverse areas such as medicine, journalism, advertising, design, education, and
entertainment. The rapid growth of images has been facilitated by numerous tech-
nologies ranging from fast Internet to digital cameras and smartphones to inexpen-
sive solid state storage. For example, in 2020, the number of smartphone users
worldwide surpasses 3.6 billion and is forecast to further grow by several hundred
million in the next few years. It is straightforward to capture and store the visual
imagery. However, searching or retrieving the image is difficult because computers
do not understand the relationship between the image pixel representations and high
level human concepts. Image retrieval has become a major research area worldwide.
Given a query image that describes the user’s needs, image retrieval is the process of
searching for semantically matched or similar images in a large image dataset by an-
alyzing their visual content, for example, a zoologist would look for the photograph
of a particular animal, and so on.

To enable accurate and efficient retrieval in massive image collections, compact and
rich image feature representations are at the core of successful image retrieval. In
the past two decades, remarkable progress has been made, focusing more on using
primitive colour features, texture features, and shape features [1, 2, 3]. These low-
level features heavily depend on hand-engineered feature descriptors such as Scale-
Invariant Feature Transform (SIFT) [4], Speeded Up Robust Features (SURF) [5],
and Histogram of Oriented Gradients (HOG) [6]), middle-level representations such
as bag of words (BoW) [7] and Fisher Vector (FV) [8, 9]. However, the low-level
image features do not have sufficient discriminatory power to effectively bridge the
semantic gap, which characterizes the difference between the high-level concepts
of humans and the low-level features typically derived from images [10]. In re-
cent years, deep learning, particularly the influential ImageNet [11] and the Deep
Convolutional Neural Network (DCNN) AlexNet [12] enables learning powerful fea-
ture representations with multiple levels of abstraction directly from data. Deep
learning techniques have attracted enormous attention and have brought about con-
siderable breakthroughs in various computer vision tasks including image classifica-
tion [12, 13, 14], object detection [15, 16, 17, 18], semantic segmentation [19, 20, 21],
and image generation [22, 23, 24]. This has also directly impacted the field of image
retrieval [25, 26, 27, 28, 29, 30, 31, 32]. DCNNs can learn high-level semantic-aware
features to perform retrieval tasks. For instance, current literature may directly
use a pre-trained deep model to extract features for input images. Likewise, visual
features can be captured from the sub-patches of images to satisfy instance-level im-
age retrieval. Different layers (e.g. convolutional layers and fully-connected layers)
can capture different levels of features: global features (by fully-connected layers)
and local features (by convolutional layers). Model-level and layer-level feature fu-
sion schemes are further studied to incorporate multi-scale deep features by using
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1.2 Research Questions and Contributions

methods such as concatenation and weighted averaging. Despite these strategies to
improve the performance of image retrieval, there exist many other problems to be
addressed, which is the core of this thesis.

1.2 Research Questions and Contributions

Semantic information that helps us understand the world usually comes from dif-
ferent sensory modalities. In the real world, we can express the same concept using
different ways: for example by using writing text or by taking a picture. People
can search for images of interest by submitting any media content at hand (e.g. a
word, a phrase, or a sentence) as the query item. Cross-modal retrieval, as a natu-
ral search method becomes increasingly important to augment image retrieval. For
cross-modal retrieval, although raw data from two modalities (e.g. an image and a
text) have similar semantic concepts, feature vectors extracted from these data are
distributed in different spaces so that their semantics are not well associated. There-
fore, these vectors are not directly comparable, leading to inconsistent distributions.
This is what is referred to as a heterogeneity gap. The challenge of performing
cross-modal retrieval lies in how to measure the semantic similarity, which is defined
as a metric to quantify the likeness of two items. In the context of cross-modal
retrieval, these items (image and text data) are from different modalities. In terms
of this challenge, we come to our first Research Question 1 (RQ 1): How to
learn a commonly shared embedding space for visual modality and tex-
tual modality to reduce the heterogeneity gap? Focusing on the RQ 1, we
explore cross-modal retrieval by using information entropy to measure the domain
uncertainty of the shared space for visual and textual modalities. Furthermore, we
combine information theory and adversarial learning into an end-to-end framework.
This work is the first to explore information theory in reducing the heterogeneity
gap for cross-modal retrieval, a method that is beneficial for constructing a shared
space for learning commonalities between cross-modal features. In addition, we in-
troduce a regularization term based on Kullback-Leibler (KL) divergence [33] with
temperature scaling to address the issue of data imbalance. Our contributions are
based on the following publications [34, 35]:

Chen, W., Pu, N., Liu, Y., Bakker, E. M., and Lew, M. S., “Domain
Uncertainty Based On Information Theory for Cross-Modal Hash Re-
trieval.” IEEE International Conference on Multimedia and Expo, 2019,
pp. 43-48.

Chen, W., Liu, Y., Bakker, E. M., and Lew, M. S., “Integrating In-
formation Theory and Adversarial Learning for Cross-modal Retrieval.”
Pattern Recognition, 2021, 117, pp. 107983.

The existing fine-grained datasets for image retrieval have limited categories to sup-
port a retrieval system. As noted, the wide popularity of mobile devices make large
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1. INTRODUCTION

image collections available. However, the deep models are only trained and validated
on these limited image categories. The retrieval ability of deep models is limited to
the existing categories, but cannot be extended to some of new incoming categories.
Unlike the continuous learning process of human beings, deep neural networks suf-
fer from a catastrophic forgetting problem [36], a phenomenon that occurs when a
network is trained successively on a series of new data and the learning of this data
degrades the performance on previous data. To satisfy domain context constraints,
the deep models are required to learn on a series of categories sequentially. Thus
we come to our second RQ 2: What kind of knowledge is more beneficial,
for a deep model to learn fine-grained categories incrementally, in order
to reduce catastrophic forgetting of previous data? We extend fine-grained
image retrieval in the context of incremental learning and explore this question in
the following publication [37]:

Chen, W., Liu, Y., Wang, W., Tuytelaars, T., Bakker, E. M., and Lew,
M. S., “On the Exploration of Incremental Learning for Fine-grained Im-
age Retrieval.” The British Machine Vision Conference (BMVC), 2020,
pp. 1-10.

To the best of our knowledge, this is the first work to study this problem. Fur-
thermore, incremental learning has been employed to make deep models learn on
old data and newly added data successively. However, as incremental learning pro-
ceeds, each training session produces a specific model. Saving this stream of models
is memory-consuming. Thus, we come to our third RQ 3: How to utilize the
model stream in incremental learning to transfer previously learned in-
formation to the deep model trained on the new data? We investigate
this question by proposing a feature estimation method for incremental fine-grained
image retrieval, which is based on the following publication [38]:

Chen, W., Liu, Y., Pu, N., Wang, W., Liu L., and Lew, M.S., “Fea-
ture Estimations based Correlation Distillation for Incremental Image
Retrieval.” IEEE Transactions on Multimedia, 2021.

In general, deep models are trained and validated on fixed or stationary datasets.
Exploring incremental learning by adding new fine-grained categories is still far from
realizing the model’s continuous retrieval ability because the images in old categories
and new incoming categories are semantically similar. However, the images added
to the fixed datasets may have different semantic contents, for instance when a
model trained on a vehicle dataset is transferred to learn a new dataset which
includes different breeds of flowers. For the context of incremental learning, the
noted semantic shifts between different datasets (e.g. flower and car images) make
the problem of minimizing the forgetting ratio more difficult when training deep
models in a lifelong manner. In this case, we consider the fourth RQ 4: How to
perform lifelong image retrieval on different training datasets by reducing
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1.3 Thesis Overview

the impact of semantic shifts? We investigate this question by proposing a dual
knowledge distillation framework, which is based on the submitted manuscript:

Chen, W., Pu, N., Liu, Y. , Lao, M., Wang, W., Bakker, E. M., Liu
L., Tuytelaars, T., and Lew, M.S., “Lifelong Image Retrieval via Dual
Knowledge Distillation.” submitted to Thirty-Sixth AAAI Conference
on Artificial Intelligence (AAAI) (under review), 2021.

1.3 Thesis Overview

The contents of this thesis is based on the articles where I have been the primary
author. To organize this thesis for a better understanding, in Chapter 2 we first
present a comprehensive review of intelligent image retrieval via deep learning. It
includes the main challenges of intelligent image retrieval, the categorization for re-
trieval methodologies, the popular convolutional neural networks for image retrieval,
etc. This chapter aims at giving a global view for intelligent image retrieval, and is
based on the submitted manuscript:

Chen, W., Liu, Y., Wang, W., Bakker, E. M., Georgiou T., Fieguth P.,
Liu L., and Lew, M. S., “Deep Image Retrieval: A Survey.” submitted to
IEEE Transactions on Pattern Analysis and Machine Intelligence (Major
revision), 2021.

In Chapter 3 and Chapter 4, we target RQ1 and present related work on cross-
modal retrieval. We focus on cross-modal hash retrieval in Chapter 3 and propose
using information theory for measuring the domain uncertainty of binary codes in
the shared feature space for image and text. In Chapter 4, we further combine
information theory in reducing the heterogeneity gap for cross-modal retrieval. This
method is beneficial for constructing a shared space for further learning commonal-
ities between cross-modal features.

In Chapter 5, we target RQ2 and explore image retrieval in the context of in-
cremental learning. We focus on expanding the continuous retrieval ability of deep
networks, and explore using feature correlations between deep features as knowledge
to transfer from the teacher model to the student model. This research is limited to
fine-grained datasets.

In Chapter 6, we target RQ3 and explore how to utilize the model stream in
incremental fine-grained image retrieval. We propose a feature estimation method
to transfer more previous knowledge to further minimize the forgetting ratio on
previous old data. The benefit of the feature estimation method is that the streams of
deep models trained for the previous tasks are unnecessarily saved. We demonstrate
the effectiveness of the proposed method on fine-grained datasets.

In Chapter 7, we target RQ4 and explore lifelong image retrieval on different
datasets. Compared to the proposed methods in Chapter 5 and Chapter 6, lifelong
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1. INTRODUCTION

image retrieval is important to numerous practical retrieval applications. To train
a deep model on different datasets sequentially, the semantic shifts between the
training data (e.g. from flower images to vehicle images) will make the problem of
minimizing the forgetting ratio difficult. Moreover, prior works for image retrieval
mainly improve the generalization ability of the deep model, but did not consider
reducing forgetting simultaneously. To address these challenges, we propose a dual
knowledge distillation framework and utilize the stored statistics in the BatchNorm
layers of a frozen teacher model, which can minimize the forgetting ratio on the old
tasks and simultaneously improve generalization on the new task.

InChapter 8, we present recent new ideas and trends for multimodal content under-
standing. These methods can be used for intelligent image retrieval to seek perfor-
mance improvement. This chapter is based on the following publication [39]:

Chen, W., Wang, W., Liu, L., and Lew, M.S., “New Ideas and Trends
in Deep Multimodal Content Understanding: A Review.” Neurocom-
puting, 2020, pp. 195-215.

Finally, in Chapter 9 we conclude this thesis and reflect on future research direc-
tions. In addition, this thesis has been inspired by the insights and experiences from
the related works in the following publications during my PhD studies:

• Liu, Y., Chen, W., Liu, L., and Lew, M. S., “SwapGAN: A Multi-stage Gen-
erative Approach for Person-to-Person Fashion Style Transfer.” IEEE Trans-
actions on Multimedia, 2019, 21(9), pp. 2209-2222.

• Pu, N., Chen, W., Liu, Y., Bakker, E. M., and Lew, M. S. “Dual Gaussian-
based Variational Subspace Disentanglement for Visible-Infrared Person Re-
Identification.” ACM International Conference on Multimedia, 2020, pp. 2149-
2158.

• Pu, N., Chen, W., Liu, Y., Bakker, E. M., and Lew, M. S. “Lifelong Person
Re-Identification via Adaptive Knowledge Accumulation.” IEEE International
Conference on Computer Vision and Pattern Recognition, 2021.

• Liu, Y., Guo, Y., Chen, W., and Lew, M. S., “An Extensive Study of Cycle-
Consistent Generative Networks for Image-to-Image Translation.” IEEE In-
ternational Conference on Pattern Recognition, 2018, pp. 219-224.

• Georgiou T, Liu Y, Chen W, Lew M. S. “A survey of traditional and deep
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Chapter 2

A Comprehensive Review of Deep
Image Retrieval

In recent years a vast amount of visual content has been generated and shared from
various fields, such as social media platforms, medical images, and robotics. This
abundance of content creation and sharing has introduced new challenges. In par-
ticular, searching databases for similar content, i.e. content based image retrieval
(CBIR), is a long-established research area, and more efficient and accurate methods
are needed for real time retrieval. Artificial intelligence has made progress in CBIR
and has significantly facilitated the process of intelligent search. In this chapter, we
organize and review recent CBIR works that are developed based on deep learning
algorithms and techniques, including insights and techniques from recent papers.
We identify and present the commonly-used benchmarks and evaluation methods
used in the field. We collect common challenges and propose promising future direc-
tions. More specifically, we focus on image retrieval with deep learning and organize
the state of the art methods according to the types of deep network structure, deep
features, feature enhancement methods, and network fine-tuning strategies. Our
survey considers a wide variety of recent methods, aiming to promote a global view
of the field of instance-based CBIR.

Keywords
Content based image retrieval, Deep learning, Convolutional neural networks, Lit-
erature review

This chapter is based on the following publication:

• Chen, W., Liu, Y., Wang, W., Bakker, E., Georgiou T., Fieguth P., Liu L., and Lew, M.S.,
“Deep Image Retrieval: A Survey.” submitted to IEEE Transactions on Pattern Analysis
and Machine Intelligence (major revision), 2021.
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(a)

Eiffel 
Tower

(b)

Eiffel Tower Instance Level Image Retrieval

Category Level Image Retrieval

Query Image Retrieved Results from Gallery

Cat

Figure 2.1: Illustration of (a) the CBIR process and (b) categorization. The images in
green frame are retrieved correctly, while the ones in red frame are matched incorrectly.

2.1 Introduction

Content based image retrieval (CBIR) is the problem of searching for semantically
matched or similar images in a large image gallery by analyzing their visual content,
given a query image that describes the user’s needs. CBIR has been a longstanding
research topic in the computer vision and multimedia community [1, 40]. With the
present, exponentially increasing, amount of image and video data, the develop-
ment of appropriate information systems that efficiently manage such large image
collections is of utmost importance, with image searching being one of the most
indispensable techniques.

A broad categorization of CBIR methodologies depends on the level of retrieval, i.e.
instance level and category level. In instance level image retrieval, a query image of
a particular object or scene (e.g. the Eiffel Tower) is given and the goal is to find
images containing the same object or scene that may be captured under different
conditions [3, 25]. In contrast, the goal of category level retrieval is to find images
of the same class as the query (e.g. dogs, cars, etc.). Instance level retrieval is more
challenging and promising as it satisfies specific objectives for many applications.
Notice that we limit the focus of this chapter to instance-level image retrieval and
in the following, if not further specified, “image retrieval” and “instance retrieval”
are considered equivalent and will be used interchangeably.

Finding a desired image can require a search among thousands, millions, or even
billions of images. Hence, searching efficiently is as critical as searching accurately,
to which continued efforts have been devoted [3, 25, 26, 41]. To enable accurate and
efficient retrieval of massive image collections, compact yet rich feature representa-
tions are at the core of CBIR.

In the past two decades, remarkable progress has been made in image feature rep-
resentations, which mainly consist of two important periods: feature engineering
and feature learning (particularly deep learning). In the feature engineering era (i.e.
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Figure 2.2: In deep image retrieval, feature embedding and aggregation methods are
used to enhance the discrimination of deep features. Similarity is measured on these
enhanced features using Euclidean or Hamming distances.

pre-deep learning), the field was dominated by milestone hand-engineered feature
descriptors, such as the Scale-Invariant Feature Transform (SIFT) [4]. The feature
learning stage, the deep learning era since 2012, begins with artificial neural net-
works, particularly the breakthrough ImageNet and the Deep Convolutional Neural
Network (DCNN) AlexNet [12]. Since then, deep learning has impacted a broad
range of research areas, since DCNNs can learn powerful feature representations
with multiple levels of abstraction directly from data. Deep learning techniques have
attracted enormous attention and have brought about considerable breakthroughs
in many computer vision tasks, including image classification [12, 13, 14], object
detection [17], and image retrieval [26, 27, 42].

Excellent surveys for traditional image retrieval can be found in [1, 3, 40]. This
chapter, in contrast, focuses on deep learning based methods. Deep learning for
image retrieval is comprised of the essential stages shown in Figure 2.2 and various
methods, focusing on one or more stages, have been proposed to improve retrieval
accuracy and efficiency. In this chapter, we include comprehensive details about
these methods, including feature fusion methods and network fine-tuning strategies
etc, motivated by the following questions that have been driving research in this
domain:

1. By using off-the-shelf models only, how do deep features outperform hand-
crafted features?

2. In case of domain shifts across training datasets, how can we adapt off-the-shelf
models to maintain or even improve retrieval performance?

3. Since deep features are generally high-dimensional, how can we effectively uti-
lize them to perform efficient image retrieval, especially for large-scale datasets?
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Figure 2.3: Representative methods in deep image retrieval, which are most funda-
mentally categorized according to whether the DCNN parameters are updated [43].
Off-the-shelf models (left) have model parameters which are not further updated
or tuned when extracting features for image retrieval. The relevant methods focus
on improving representations quality either by feature enhancement [26, 45, 46, 47]
when using single pass schemes or by extracting representations for image patches
[48] when using multiple pass schemes. In contrast, in fine-tuned models (right) the
model parameters are updated for the features to be fine-tuned towards the retrieval
task and addresses the issue of domain shifts. The fine-tuning may be supervised
[49, 50, 51, 52, 53, 54, 55] or unsupervised [32, 56, 57, 58, 59, 60]. See Sections 2.3 and
2.4 for details.

2.1.1 Summary of progress since 2012

After a highly successful image classification implementation based on AlexNet [12],
significant exploration of DCNNs for retrieval tasks has been undertaken, broadly
along the lines of the preceding three questions just identified, above. That is,
the DCNN methods are divided into (1) off-the-shelf and (2) fine-tuned models, as
shown in Figure 2.3, with parallel work on (3) effective features. Whether a DCNN
is considered off-the-shelf or fine-tuned depends on whether the DCNN parameters
are updated [43] or are based on DCNNs with fixed parameters [29, 43, 44]. Re-
garding how to use the features effectively, researchers have proposed encoding and
aggregation methods, such as R-MAC [31], CroW [26], and SPoC [25].

Recent progress for improving image retrieval can be categorized into network-level
and feature-level perspectives, for which a detailed sub-categorization is shown in
Figure 2.4. The network-level perspective includes network architecture improve-
ment and network fine-tuning strategies. The feature-level perspective includes
feature extraction and feature enhancement methods. Broadly this chapter will
examine the four areas outlined as follows:

a. Improvements in network architectures (section 2.2.2)

Using stacked linear filters (e.g. convolution) and non-linear activation functions
(ReLU, etc.), deep networks with different depths obtain features at different levels.
Deeper networks with more layers provide a more powerful learning capacity so as to
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Deep feature extraction (section 2.3.1)

Network feedforward scheme (section 2.3.1.1)
Single feedforward pass: MAC [63], R-MAC [31]
Multiple feedforward pass: SPM [48], RPNs [54]

Deep feature selection (section 2.3.1.2)
Fully-connected layer: layer concatenation [64]
Convolutional layer: SPoC [25], CroW [26]

Feature fusion strategy (section 2.3.1.3)
Layer-level fusion: MoF [65], MOP [29]
Model-level fusion: ConvNet fusion [61]

Deep feature enhancement (section 2.3.2)
Feature aggregation (section 2.3.2.1)
Feature embedding (section 2.3.2.2)
Attention mechanism (section 2.3.2.3)

Non-parameteric: SPoC [25], TSWVF [66]
Parameteric: DeepFixNet+SAM [67, 68]

Deep hash embedding (section 2.3.2.4)
Supervised hashing: Metric Learning [51]
Unsupervised hashing: KNN [69], k-means [70]

Retrieval via learning DCNN representations (section 2.4)
Supervised fine-tuning (section 2.4.1)
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Verification-based fine-tuning (section 2.4.1.2)

Transformation matrix: Non-metric [52]
Siamese networks: [53, 71]
Triplet networks: [53, 71]

Unsupervised fine-tuning (section 2.4.2 )
Manifold learning sample mining: Diffusion Net [58]
AutoEncoder-based fine-tuning: KNN [72], GANs [60]

Figure 2.4: This chapter is organized around four key aspects in deep image retrieval,
shown in boldface.

extract high-level abstract and semantic-aware features [13, 61]. It is also possible
to concatenate multi-scale features in parallel, such as the Inception module in
GoogLeNet [62], which we refer to as widening.

b. Deep feature extraction (section 2.3.1)

Neurons of FC layers and convolutional layers have different receptive fields, thus
providing three ways to extract features: local features from convolutional layers [25,
31], global features from FC layers [48, 73] and fusions of two kinds of features [74,
75]; the fusion scheme includes layer-level and model-level methods. Deep features
can be extracted from the whole image or from image patches, which corresponds
to single pass and multiple pass feedforward schemes, respectively.

c. Deep feature enhancement (section 2.3.2)

Feature enhancement is used to improve feature’s discriminative ability. Directly,
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aggregate features can be trained simultaneously with deep networks [76]; alterna-
tively, feature embedding methods including BoW [7], VLAD [28], and FV [8] embed
local features into global ones. These methods are trained with networks separately
(codebook-based) or jointly (codebook-free). Further, hashing methods [77] encode
the real-valued features into binary codes to improve retrieval efficiency. The feature
enhancement strategy significantly influences the efficiency of image retrieval.

d. Network fine-tuning for learning representations (section 2.4)

Deep networks pre-trained on source datasets for image classification are transferred
to new datasets for retrieval tasks. However, the retrieval performance is influenced
by the domain shifts between the datasets. Therefore, it is necessary to fine-tune
the deep networks to the specific domain [50, 70, 78], which can be realized by using
supervised fine-tuning methods. However in most cases image labeling or annotation
is time-consuming and difficult, so it is necessary to develop unsupervised methods
for network fine-tuning.

2.1.2 Key challenges

Deep learning has been successful in learning powerful features. Nevertheless, several
significant challenges remain with regards to

1. reducing the semantic gap,

2. improving retrieval scalability, and

3. balancing retrieval accuracy and efficiency.

We finish the introduction to this chapter with a brief overview of each of these
challenges:

1. Reducing the semantic gap: The semantic gap characterizes the difference, in
any application, between the high-level concepts of humans and the low-level features
typically derived from images [10]. There is significant interest in learning deep
features which are higher-level and semantic-aware, to better preserve the similarities
of images [10]. In the past few years, various learning strategies, including feature
fusion [29, 65] and feature enhancement methods [25, 31, 66] have been introduced
into image retrieval. However, this area remains a major challenge and continues to
require significant effort.

2. Improving retrieval scalability: The tremendous numbers and diversity of
datasets lead to domain shifts for which existing retrieval systems may not be suited
[3]. Currently available deep networks are initially trained for classification tasks,
which leads to a challenge in extracting features. Since such features are less scalable
and perform comparatively poorly on the target retrieval datasets, so network fine-
tuning on retrieval datasets is crucial for mitigating this challenge. The current
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2.2 Deep Convolutional Neural Networks
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Figure 2.5: (a) Illustration of three operations that are repeatedly applied by a
typical CNN [79]. (b) Generic framework of CNN.

dilemma is that the increase in retrieval datasets raises the difficulty of annotation,
making the development of unsupervised fine-tuning methods a priority.

3. Balancing retrieval accuracy and efficiency: Deep features are usually
high dimensional and contain more semantic-aware information to support higher
accuracy, yet this higher accuracy is often at the expense of efficiency. Feature
enhancement methods, like hash learning, are one way to tackle this issue [50, 77],
however hashing learning needs to carefully consider the loss function design, such
as quantization loss [41], to obtain optimal codes for high retrieval accuracy.

2.2 Deep Convolutional Neural Networks

2.2.1 A brief introduction to deep learning

Deep learning depends on neural networks to learn features. Deep neural networks
have various variants. Among them, convolutional neural networks (CNNs) are used
for vision tasks. There are three types of layer in CNNs: convolutional layer, pooling
layer, and fully-connected layer [79]. The convolutional layer plays a vital role in the
way CNNs work, emphasizing the use of shared and learnable 2D linear filters. As
illustrated in Figure 2.5(a), when a filter glides through the M feature maps from
the previous layer l− 1 each time, the outputs of the convolutions for the next layer
l are calculated with its parameters θ, that includes weights w and bias b:

xl =
M l−1∑
i=1

(
wix

l−1
i + b

)
(2.1)

It is important to impose a non-linear activation function σ(·) (e.g. ReLU) on the
feature maps xl. Finally, the outputs of non-linear function is stored as inputs
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for the next layer l. Usually, the number of filters applied in the previous layer
determines the number of produced feature maps in the next layer. As illustrated
in Figure 2.5(a), the N filters produce N feature maps.

Finally, the difference between the predictive logits of the classifier and the ground-
truth label is used to compute gradients to train the network. Take supervised
training as an example, a ground-truth label yj is assigned to an input xj, the loss
function for network f(·,θ) can then be formulated as:

J(θ) =
∑

jL
(
f(xj;θ), yj

)
(2.2)

During training, the gradients are computed according to the loss function J(θ) and
are back-propagated to f(·,θ), aiming at learning the optimal parameters θ∗:

θ∗ = argmin
θ

J(θ) (2.3)

A convolutional layer represents local feature learning and yields generic features
[44], as shown in Figure 2.5(b). Specifically, the first convolutional layer learns low-
level features, such as edges and simple textures. Later intermediate convolutional
layers learn middle-level features, such as more complex textures. The deeper con-
volutional layers learn high-level features, such as objects or parts of objects. Differ-
ently, the fully-connected layer, with its larger receptive field, yields global features,
which usually are abstract and useful for category-specific discrimination.

The hierarchical structure of CNNs makes it successful in various computer vi-
sion tasks. Its feature learning capacity is improved significantly by stacking more
convolutional layers, using different filter sizes, or concatenating more convolution
operations. Among these DCNNs, there are four models that are widely used as
backbone nets for image retrieval.

2.2.2 Popular backbone DCNN architectures

The hierarchical structure and extensive parameterization of DCNNs has led to their
success in a remarkable diversity of computer vision tasks. For image retrieval, there
are four models which predominantly serve as the networks for feature extraction,
including AlexNet [12], VGG [61], GoogLeNet [62], and ResNet [13].

AlexNet is the first DCNN which improved ImageNet classification accuracy by a
significant margin compared to conventional methods in ILSVRC 2012. It consists
of 5 convolutional layers and 3 fully-connected layers. Input images are usually
resized to a fixed size during training and testing stages.

Inspired by AlexNet, VGGNet has two widely used versions: VGG-16 and VGG-
19, including 13 convolutional layers and 16 convolutional layers, respectively, but
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where all of the convolutional filters are small (local), 3 × 3 in size. VGGNet is
trained in a multi-scale manner where training images are cropped and re-scaled,
which improves the feature invariance for the retrieval task.

Compared to AlexNet and VGGNet, GoogLeNet is deeper and wider but has fewer
parameters within its 22 layers, leading to higher learning efficiency. GoogLeNet has
repeatedly-used inception modules, each of which consists of four branches where
5×5, 3×3, and 1×1 filter sizes are used. These branches are concatenated spatially
to obtain the final features for each module. It has been demonstrated that deeper
architectures are beneficial for learning higher-level abstract features to mitigate the
semantic gap [10].

Finally, ResNet is developed by adding more convolutional layers to extract more ab-
stract features. Skip connections are added between convolutional layers to address
the notorious vanishing gradient problem when training this network.

DCNN architectures have developed significantly during the past few years, for which
we refer the reader to recent surveys [79, 80]. This chapter focuses on introducing
relevant techniques including feature fusion, feature enhancement, and network fine-
tuning, based on popular DCNN backbones for performing image retrieval.

2.3 Retrieval with Off-the-Shelf DCNN Models

Because of their size, deep CNNs need to be trained on exceptionally large-scale
datasets, and the available datasets of such size are those for image recognition and
classification. One possible scheme then, is that deep models effectively trained for
recognition and classification directly serve as the off-the-shelf feature detectors for
the image retrieval task, the topic of interest in this chapter. That is, one can propose
to undertake image retrieval on the basis of DCNNs, trained for classification, and
with their pre-trained parameters frozen.

There are limitations with this approach, such that the deep features may not outper-
form classical hand-crafted features. Most fundamentally, there is a model-transfer
or domain-shift issue between tasks [3, 44, 81], meaning that models trained for
classification do not necessarily extract features well suited to image retrieval. In
particular, a classification decision can be made as long as the features remain within
the classification boundaries, therefore the layers from such models may show insuf-
ficient capacity for retrieval tasks where feature matching is more important than
the final classification probabilities. This section will survey the strategies which
have been developed to improve the quality of feature representations, particularly
based on feature extraction / fusion (Section 2.3.1) and feature enhancement (Sec-
tion 2.3.2).
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2.3.1 Deep feature extraction

2.3.1.1 Network feedforward scheme

a. Single feedforward pass methods.

Single feedforward pass methods take the whole image and feed it into an off-the-
shelf model to extract features. The approach is relatively efficient since the input
image is fed only once. For these methods, both the fully-connected layer and last
convolutional layer can be used as feature extractors [82].

The fully-connected layer has a global receptive field. After normalization and di-
mensionality reduction, these features are used for direct similarity measurement
without further processing and admitting efficient search strategies [29, 43, 50].

Using the fully-connected layer lacks geometric invariance and spatial information,
and thus the last convolutional layer can be examined instead. The research focus
associated with the use of convolutional features is to improve their discrimination,
where representative strategies are shown in Figure 2.6. For instance, one direction
is to treat regions in feature maps as different sub-vectors, thus combinations of
different sub-vectors of all feature maps are used to represent the input image.

b. Multiple feedforward pass methods.

Compared to single-pass schemes, multiple pass methods are more time-consuming
[3] because several patches are generated from an input image and are both fed into
the network before being encoded as a final global feature.

Multiple-pass strategies can lead to higher retrieval accuracy since representations
are produced from two stages: patch detection and patch description. Multi-scale
image patches are obtained using sliding windows [29, 83] or spatial pyramid model
[48], as illustrated in Figure 2.7. However, these patch detection methods lack
retrieval efficiency for large-scale datasets since irrelevant patches are also fed into
deep networks, thus it is necessary to analyze image patches [31]. As an example,
Cao et al. [84] propose to merge image patches into larger regions with different
hyper-parameters, then the hyper-parameter selection is viewed as an optimization
problem under the target of maximizing the similarity between features of the query
and the candidates.

Instead of generating multi-scale image patches randomly or densely, region proposal
methods introduce a degree of purpose in processing image objects. Region proposals
can be generated using object detectors, such as selective search [85] and edge boxes
[86]. Aside from using object detectors, region proposals can also be learned using
deep networks, such as region proposal networks (RPNs) [17, 54] and convolutional
kernel networks (CKNs) [87], and then to apply these deep networks into end-to-end
fine-tuning scenarios for learning similarity [88, 89].
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Figure 2.6: Representative methods in single feedforward frameworks, focusing on
convolutional feature maps x: MAC [63], R-MAC [31], GeM pooling [57], SPoC with
the Gaussian weighting scheme [25], CroW [26], and CAM+CroW [45]. Note that g1(·)
and g2(·) represent spatial-wise and channel-wise weighting functions, respectively.

2.3.1.2 Deep feature selection

a. Extracted from fully-connected layers
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(a) (b) (c) (d)

Figure 2.7: Image patch generation schemes: (a) Rigid grid; (b) Spatial pyramid
modeling (SPM); (c) Dense patch sampling; (d) Region proposals (RPs) from region
proposal networks.

It is straightforward to select a fully-connected layer as a feature extractor [29, 43, 50,
64]. With PCA dimensionality reduction and normalization [43], images’ similarity
can be measured. Only the fully-connected layer may limit the overall retrieval
accuracy, Jun et al. [64] concatenate features from multiple fully-connected layers,
and Song et al. [88] indicate that making a direct connection between the first
fully-connected layer and the last layer achieves coarse-to-fine improvements.

As noted, a fully-connected layer has a global receptive field in which each neuron
has connections to all neurons of the previous layer. This property leads to two
obvious limitations for image retrieval: a lack of spatial information and a lack of
local geometric invariance [64].

For the first limitation, researchers focus on the inputs of networks, i.e., using mul-
tiple feedforward passes [43]. Compared to taking as input the whole image, dis-
criminative features from the image patches better retain spatial information.

For the second limitation, a lack of local geometric invariance affects the robustness
to image transformations such as truncation and occlusion. For this, several works
introduce methods to leverage intermediate convolutional layers [25, 29, 63].

b. Extracted from convolutional layers

Features from convolutional layers (usually the last one) preserve more structural
details which are especially beneficial for instance-level retrieval [63]. The neurons in
a convolutional layer are connected only to a local region of the input feature maps.
The smaller receptive field ensures that the produced features preserve more local
structural details and are more robust to image transformations like truncation and
occlusion [25]. Usually, the robustness of features is improved after pooling.

A convolutional layer arranges the spatial information well and produces location-
adaptive features [90]. Various image retrieval methods use convolutional layers as
local detectors [25, 30, 31, 45, 63, 90]. For instance, Razavian et al. [63] make
the first attempt to perform spatial max pooling on the feature maps of an off-the-
shelf DCNN model; Babenko et al. [25] propose sum-pooling convolutional features
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(SPoC) to obtain compact descriptors pre-processed with a Gaussian center prior
(see Figure 2.6). Ng et al. [90] explore the correlations between activations at
different locations on the feature maps, thus improving the final feature descriptor.
Yue et al. [30] replace BoW [7] with VLAD [28], and are the first to encode local
features into VLAD representations. This idea inspired another milestone work [55]
where, for the first time, VLAD is used as a layer plugged into the last convolutional
layer. The plugged-in layer is end-to-end trainable via back-propagation.

2.3.1.3 Feature fusion strategy

a. Layer-level fusion

Fusing features from different layers aims at combining different feature properties
within a feature extractor. It is possible to fuse multiple fully-connected layers in a
deep network [64]: For instance, Yu et al. [91] explore different methods to fuse the
activations from different fully-connected layers and introduce the best-performed
Pi-fusion strategy to aggregate the features with different balancing weights, and
Jun et al. [64] construct multiple fully-connected layers in parallel on the top of
ResNet backbone, then concatenate the global features from these layers to obtain
the combined global features.

Features from fully-connected layers (global features) and features from convolu-
tional layers (local features) can complement each other when measuring semantic
similarity and can, to some extent, guarantee retrieval performance [92].

Global features and local features can be concatenated directly [92, 93]. Before
concatenation, convolutional feature maps are filtered by sliding windows or region
proposal nets. Pooling-based methods can be applied for feature fusion as well. For
example, Li et al. [65] propose a Multi-layer Orderless Fusion (MOF) approach,
which is inspired by Multi-layer Orderless Pooling (MOP) [29] for image retrieval.
However local features can not play a decisive role in distinguishing subtle feature
differences because global and local features are treated identically. For this lim-
itation, Yu et al. [92] propose using a mapping function to take more advantage
of local features in which they are used to refine the return ranking lists. In their
work, the exponential mapping function is the key for tapping the complementary
strengths of the convolutional layers and fully-connected layers.

It is worth introducing a scheme to explore which layer combination is better for
fusion given their differences of extracting features. For instance, Chatfield et al. [75]
demonstrate that fusing convolutional layers and fully-connected layers outperforms
the methods that fuse convolutional layers only. In the end, fusing two convolutional
layers with one fully-connected layer achieves the best performance.

b. Model-level fusion
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It is possible to combine features on different models; such fusion focuses on model
complementarity to achieve improved performance, categorized into intra-model and
inter-model.

Generally, intra-model fusion suggests multiple deep models having a similar struc-
ture, while inter-model fusion involves models with more differing structures. For
instance, Simonyan et al. [61] introduce a ConvNet fusion strategy to improve
the feature learning capacity of VGG where VGG-16 and VGG-19 are fused. This
intra-model fusion strategy reduces the top-5 error by 2.7% in image classification
compared to a single counterpart network. Similarly, Ding et al. [94] propose a
selective deep ensemble framework to combine ResNet-26 and ResNet-50 improve
the accuracy of fine-grained instance retrieval. To attend to different parts of the
object in an image, Kim et al. [95] train an ensemble of three attention modules to
learn features with different diversities. Each module is based on different Inception
blocks in GoogLeNet.

Inter-model fusion is a way to bridge different features given the fact that different
networks have different receptive fields [48, 68, 96, 97, 98]. For instance, a two-
stream attention network [68] is introduced to implement image retrieval where the
mainstream network for semantic prediction is VGG-16 while the auxiliary stream
network for predicting attention maps is DeepFixNet [99]. Considering the impor-
tance and necessity of inter-model fusion to bridge the gap between mid-level and
high-level features, Liu et al. [48] combine VGG-19 and AlexNet to learn combined
features, while Ozaki et al. [97] make an ensemble to concatenate descriptors from
six different models to boost retrieval performance. To illustrate the effect of differ-
ent parameter choices within the model ensemble, Xuan et al. [98] combine ResNet
and Inception V1 [62] for retrieval, concentrating on the embedding size and number
of embedded features.

Inter-model and intra-model fusion are relevant to model selection. There are some
strategies to determine how to combine the features from two models. It is straight-
forward to fuse all types of features from the candidate models and then learning
a metric based on the concatenated features [68], which is a kind of “early fusion”
strategy. Alternatively, it is also possible to learn optimal metrics separately for
the features from each model, and then to uniformly combine these metrics for final
retrieval ranking [49], which is a kind of “ late fusion” strategy.

Discussion. Layer-level fusion and model-level fusion are conditioned on the fact
that the involved components (layers or whole networks) have different feature de-
scription capacities. For these two fusion strategies, the key question is what features
are the best to be combined? Some explorations have been made for answering this
question based on off-the-shelf deep models. For example, Xuan et al. [98] illustrate
the effect of combining different numbers of features and different sizes within the
ensemble. Chen et al. [100] analyze the performance of embedded features from
image classification and object detection models with respect to image retrieval.
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They study the discrimination of feature embeddings of different off-the-shelf mod-
els which, to some extent, implicitly guides the model selection when conducting
the inter-model level fusion for feature learning.

2.3.2 Deep feature enhancement

2.3.2.1 Feature aggregation

Feature enhancement methods aggregate or embed features to improve the discrim-
ination of deep features. In terms of feature aggregation, sum/average pooling and
max pooling are two widely used methods applied on convolutional feature maps.
Sum/average pooling is less discriminative, because it considers all activated out-
puts from a convolutional layer, as a result it weakens the effect of highly activated
features [46]. On the contrary, max pooling is particularly well suited for sparse
features that have a low probability of being active. Max pooling may be inferior to
sum/average pooling if the output feature maps are no longer sparse [101].

Convolutional features can be directly aggregated to produce global ones by spatial
pooling. For example, Razavian et al. [63, 83] apply max pooling on the convolu-
tional features for retrieval. Babenko et al. [25] leverage sum pooling with a Gaus-
sian weighting scheme to encode convolutional features (i.e. SPoC). Note that this
operation usually is followed by L2 norm and PCA dimensionality reduction.

As an alternative to the holistic approach, it is also possible to pool some regions
in a feature map [25, 63], such as done by R-MAC [31]. Also, it is shown that the
pooling strategy used in the last convolutional layer usually yields superior accuracy
over other shallower convolutional layers and even fully-connected layers.

2.3.2.2 Feature embedding

Apart from direct pooling or regional pooling, it is possible to embed the convolu-
tional features into a high dimensional space to obtain compact ones. The widely
used methods include BoW, VLAD, and FV. The embedded features’ dimension-
ality can be reduced using PCA. Note that BoW and VLAD can be extended by
using other metrics, such as Hamming distance [102]. Here we briefly describe the
principle of the embedding methods for the case of Euclidean distance metric.

BoW [7] is a widely adopted encoding method. BoW encoding leads to a sparse
vector of occurrence. Specifically, let ~X = {~x1, ~x2, ..., ~xT} be a set of local features,
each of which has dimensionality D. BoW requires a pre-defined codebook ~C =

{~c1,~c2, ...,~cK} with K centroids to cluster these local descriptors, and maps each
descriptor ~xt to the nearest word ~ck. For each centroid ~ck, one can count and
normalize the number of occurrences by

g(~ck) =
1

T

T∑
t=1

φ(~xt,~ck) (2.4)
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φ(~xt,~ck) =

{
1 if ~ck is the closest codeword for ~xt
0 otherwise (2.5)

Thus BoW considers the number of descriptors belonging to each codebook ~ck (i.e. 0-
order feature statistics), then BoW representation is the concatenation of all mapped
vectors:

G
BoW

( ~X) =
[
g(~c1), · · · , g(~ck), · · · , g(~cK)

]> (2.6)

BoW representation is the histogram of the number of local descriptors assigned to
each visual word, so that its dimension is equal to the number of centroids. This
method is simple to implement to encode local descriptors, such as convolutional
feature maps [65, 82]. However, the embedded vectors are high dimensional and
sparse, which are not well suited to large-scale datasets in terms of efficiency.

VLAD [28] stores the sum of residuals for each visual word. Specifically, similar to
BoW, it generates K visual word centroids, then each feature ~xt is assigned to its
nearest visual centroid ~ck and computes the difference (~xt − ~ck):

g(~ck) =
1

T

T∑
t=1

φ(~xt,~ck)(~xt − ~ck) (2.7)

where φ(~xt,~ck) as defined in (2.5). Finally, the VLAD representation is stacked by
the residuals for all centroids, with dimension (D ×K), i.e.

G
V LAD

( ~X)=
[
· · · , g(~ck)

>, · · ·
]>
. (2.8)

VLAD captures first order feature statistics, i.e. (~xt − ~ck). Similar to BoW, the
performance of VLAD is affected by the number of clusters, thereby larger centroids
produce larger vectors that are harder to index. For image retrieval, for the first
time, Ng et al. [30] embed the feature maps from the last convolutional layer into
VLAD representations, which is proved to have higher effectiveness than BoW.

The FV method [8] extends BoW by encoding the first and second order statistics
continuously. FV clusters the set of local descriptors by a Gaussian Mixture Model
(GMM), with K components, to generate a dictionary C = {µk; Σk;wk}Kk=1, where
wk, µk, Σk denote the weight, mean vector, and covariance matrix of the k-th Gaus-
sian component, respectively [103]. The covariance can be simplified by keeping
only its diagonal elements, i.e., σk =

√
diag(Σk). For each local feature xt, a GMM

is given by

γk(~xt) = wk × pk(~xt)/
( K∑
j=1

wjpj(xt)
)

s.t.

K∑
j=1

wk = 1 (2.9)

where pk(~xt) = N (~xt, µk, σ
2
k). All local features are assigned into each component k
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Figure 2.8: Attention mechanisms are shown, divided into two categories. (a)-(b)
Non-parametric mechanisms: The attention is based on convolutional feature maps
x with size H × W × C. Channel-wise attention in (a) produces a C-dimensional
importance vector α1 [26, 47]. Spatial-wise attention in (b) computes a 2-dimensional
attention map α2 [26, 45, 74, 90]. (c)-(d) Parametric mechanisms: The attention
weights β are provided by a sub-network with trainable parameters (e.g. θ in (c))
[105, 106]. Likewise, some off-the-shelf models [99, 107] can predict the attention
maps from the input image directly.

in the dictionary, which is computed as

gwk
=

1

T
√
wk

T∑
t=1

(
γk(~xt)− wk

)
guk =

γk(~xt)

T
√
wk

T∑
t=1

(
~xt − µk
σk

)
,

gσ2
k

=
γk(~xt)

T
√

2wk

T∑
t=1

[(
~xt − µi
σk

)2

− 1

] (2.10)

The FV representation is produced by concatenating from the K components:

G
FV

( ~X)=
[
gw1 , · · · , gwK

, gu1 , · · · , guK , gσ2
1
, · · · , gσ2

K

]> (2.11)

The FV representation defines a kernel from a generative process and captures more
statistics than BoW and VLAD. FV representations do not increase computational
costs significantly but require more memory. Applying FV without memory controls
may lead to suboptimal performance [104].

Discussion. Traditionally, sum pooling and max pooling are directly plugged into
deep networks and the whole model is used in an end-to-end way, whereas the em-
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bedding methods, including BoW, VLAD, and FV, are initially trained separately
with pre-defined vocabularies [48, 108]. For these three methods, one needs to pay
attention to their properties before choosing one of them to embed deep features.
For instance, BoW and VLAD are computed in the rigid Euclidean space where
the performance is closely related to the number of centroids. The FV embedding
method can capture higher order statistics than BoW or VLAD, thus the FV em-
bedding improves the effectiveness of feature enhancement at the expense of a higher
memory cost. Further, when any one of these methods is used, it is necessary to
integrate them as a “layer” of deep networks so as to guarantee training and testing
efficiency. For example, the VLAD method is integrated into deep networks where
each spatial column feature is used to construct clusters via k-means [30]. This idea
led to a follow-up approach, NetVLAD [55], where deep networks are fine-tuned
with the VLAD vector.

2.3.2.3 Attention mechanisms

The core idea of attention mechanisms is to highlight the most relevant features and
to avoid the influence of irrelevant activations, realized by computing an attention
map. Approaches to obtain attention maps can be categorized into two groups: non-
parametric and parametric-based, as shown in Figure 2.8, where the main difference
is whether the importance weights in the attention map are learnable.

Non-parametric weighting is a straightforward method to highlight feature impor-
tance. The corresponding attention maps can be obtained by channel-wise or spatial
sum-pooling, as in Figure 2.8(a,b). For the spatial-wise pooling of Figure 2.8(b),
Kalantidis et al. [26] propose a more effective CroW method to weight and pool
feature maps. These spatial-wise methods only concentrate on weighting activa-
tions at different spatial locations, without considering the relations between these
activations. Instead, Ng et al. [90] explore the correlations among activations at
different spatial locations on the convolutional feature maps. In addition to spatial-
wise attention mechanisms, channel-wise weighting methods of Figure 2.8(a) are also
popular non-parametric attention mechanisms. Xu et al. [47] rank the weighted fea-
ture maps to build the “probabilistic proposals” to further select regional features.
Jimenez et al. [45] combine CroW and R-MAC to propose Classes Activation Maps
(CAM) to weight feature maps for each class. Qi et al. [66] introduce Truncated Spa-
tial Weighted FV (TSWVF) to enhance the representation of Fisher Vector.

Attention maps can be learned from deep networks, as shown in Figure 2.8(c,d),
where the input can be either image patches or feature maps from the previous
convolutional layer. The parametric attention methods are more adaptive and are
commonly used in supervised metric learning. For example, Li et al. [105] propose
stacked fully-connected layers to learn an attention model for multi-scale image
patches. Similarly, Noh et al. [106] design a 2-layer CNN with a softplus output
layer to compute scores which indicate the importance of different image regions.
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Inspired by R-MAC, Kim et al. [109] employ a pre-trained ResNet101 to train a
context-aware attention network using multi-scale feature maps.

Instead of using feature maps as inputs, a whole image can be used to learn feature
importance, for which specific networks are needed. For example, Mohedano [67]
explore different saliency models, including DeepFixNet [99] and Saliency Attentive
Model (SAM) [107], to learn salient regions for input images. Similarly, Yang et
al. [68] introduce a two-stream network for image retrieval in which the auxiliary
stream, DeepFixNet, is used specifically for predicting attention maps.

In a nutshell, attention mechanisms offer deep networks the capacity to highlight
the most important regions of a given image, widely used in computer vision. For
image retrieval specifically, attention mechanisms can be combined with supervised
metric learning [90, 95, 110].

2.3.2.4 Deep hash embedding

Real-valued features extracted by deep networks are typically high-dimensional, and
therefore are not well-satisfied to retrieval efficiency. As a result, there is significant
motivation to transform deep features into more compact codes. Hashing algorithms
have been widely used for large-scale image search due to their computational and
storage efficiency [77, 111].

Hash functions can be plugged as a layer into deep networks, so that hash codes
can be trained and optimized with deep networks simultaneously. During hash
function training, the hash codes of originally similar images are embedded as close
as possible, and the hash codes of dissimilar images are as separated as possible. A
hash function h(·) for binarizing features of an image x may be formulated as

bk = h(x) = h
(
f(x;θ)

)
k = 1, . . . , K (2.12)

then an image can be represented by the generated hash codes b ∈ {+1,−1}K .
Because hash codes are non-differentiable their optimization is difficult, so h(·) can
be relaxed to be differentiable by using tanh or sigmoid functions [77].

When binarizing real-valued features, it is crucial (1) to preserve image similarity
and (2) to improve hash code quality [77]. These two aspects are at the heart of
hashing algorithms to maximize retrieval accuracy.

a. Hash functions to preserve image similarity

Preserving similarity seeks to minimize the inconsistencies between the real-valued
features and corresponding hash codes, for which a variety of strategies have been
adopted.

The design of loss function can significantly influence similarity preservation, which
includes both supervised and unsupervised approaches. With the class label avail-
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able, many loss functions are designed to learn hash codes in a Hamming space. As a
straightforward method, one can optimize the difference between matrices computed
from the binary codes and their supervision labels [112]. Other studies regularize
hash codes with a center vector, for instance a class-specific center loss is devised to
encourage hash codes of images to be close to the corresponding centers, reducing
the intra-class variations [111]. Similarly, Kang et al. [113] introduce a max-margin
t-distribution loss which concentrates more similar data into a Hamming ball cen-
tered at the query term, such that a reduced penalization is applied to data points
within the ball, a method which improves the robustness of hash codes when the su-
pervision labels may be inaccurate. Moreover metric learning, including Siamese loss
[114], triplet loss [51, 115, 116], and adversarial learning [115, 117], is used to retain
semantic similarity where only dissimilar pairs keep their distance within a margin.
In terms of unsupervised hashing learning, it is essential to capture some relevance
among samples, which has been accomplished by using Bayes classifiers [118], KNN
graphs [69, 72], k-means algorithms [70], and network structures such as AutoEn-
coders [119, 120, 121] and generative adversarial networks [60, 69, 122, 123].

Separate from the loss function, it is also important to design deep network frame-
works for learning. For instance, Long et al. [116] apply unshared-weight CNNs on
two datasets where a triplet loss and an adversarial loss are utilized to address the
domain shifts. Considering the lack of label information, Cao et al. [117] present
coined Pair Conditional WGAN, an extension of Wasserstein generative adversarial
networks, to generate more samples conditioned on the similarity information.

b. Improving hash function quality

Improving hash function quality aims at making the binary codes uniformly dis-
tributed, that is, maximally filling and using the hash code space, normally on the
basis of bit uncorrelation and bit balance [77]. Bit uncorrelation implies that differ-
ent bits are as independent as possible and have little redundancy of information, so
that a given set of bits can aggregate more information within a given code length.
In principle, bit uncorrelation can be formulated as bb> = I in which I is an identity
matrix of size K. For example, it can be encouraged via regularization terms such
as orthogonality [124] and mutual information [125]. Bit balance means that each
bit should have a 50% chance of being +1 or -1, thereby maximizing code variance
and information [77]. Mathematically, this condition is constrained by using this
regularization term b · 1 = 0 where 1 is a K-dimensional vector with all elements
equal to 1.

2.4 Retrieval via Learning DCNNRepresentations

In Section 2.3, we presented feature fusion and enhancement strategies for which
off-the-shelf DCNNs only serve as extractors to obtain features. However, in most
cases, deep features may not be sufficient for high accuracy retrieval, even with
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Figure 2.9: Schemes of supervised fine-tuning. Anchor, positive, and negative im-
ages are indicated by xa, xp, xn, respectively. (a) classification-based; (b) using a
transformation matrix for learning the similarity of image pairs; (c) Siamese networks;
(d) triplet loss for fine-tuning; (e) an attention block into DCNNs to highlight re-
gions; (f) combining classification-based and verification-based loss for fine-tuning; (g)
region proposal networks (RPNs) to locate the RoI and highlight specific regions or
instances; (h) inserting the RPNs of (g) into DCNNs, such that the RPNs extract
regions or instances at the convolutional layer.

the strategies which were discussed. In order for models to have higher scalability
and to be more effective for retrieval, a common practice is network fine-tuning,
i.e. updating the pre-stored parameters [44, 78]. However fine-tuning does not
contradict or render irrelevant feature processing methods of Section 2.3; indeed,
those strategies are complementary and can be incorporated as part of network
fine-tuning.

This section focuses on supervised and unsupervised fine-tuning methods for the
updating of network parameters.

2.4.1 Supervised fine-tuning

2.4.1.1 Classification-based fine-tuning

When class labels of a new dataset are available, it is preferable to begin with a
previously-trained DCNN, trained on a separate dataset, with the backbone DCNN
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2. A COMPREHENSIVE REVIEW OF DEEP IMAGE RETRIEVAL

typically chosen from one of AlexNet, VGG, GoogLeNet, or ResNet. The DCNN
can then be subsequently fine-tuned, as shown in Figure 2.9(a), by optimizing its
parameters on the basis of a cross entropy loss LCE:

LCE(p̂i, yi) = −
c∑
i

(
yi×log(p̂i)

)
(2.13)

Here yi and p̂i are the ground-truth labels and the predicted logits, respectively,
and c is the total number of categories. The milestone work in such fine-tuning is
[50], in which AlexNet is re-trained on the Landmarks dataset with 672 pre-defined
categories. The fine-tuned network produces superior features on landmark-related
datasets like Holidays [126], Oxford-5k, and Oxford-105k [127]. The newly-updated
layers are used as global or local feature detectors for image retrieval.

A classification-based fine-tuning method improves the model-level adaptability for
new datasets, which, to some extent, has mitigated the issue of model transfer for
image retrieval. However, there still exists room to improve in terms of classification-
based supervised learning. On the one hand, the fine-tuned networks are quite robust
to inter-class variability, but may have some difficulties in learning discriminative
intra-class variability to distinguish particular objects. On the other hand, class label
annotation is time-consuming and labor-intensive for some practical applications.
To this end, verification-based fine-tuning methods are combined with classification
methods to further improve network capacity.

2.4.1.2 Verification-based fine-tuning

With affinity information indicating similar and dissimilar pairs, verification-based
fine-tuning methods learn an optimal metric which minimizes or maximizes the dis-
tance of pairs to validate and maintain their similarity. Compared to classification-
based learning, verification-based learning focuses on both inter-class and intra-class
samples. Verification-based learning involves two types of information [27]:

1. A pair-wise constraint, corresponding to a Siamese network as in Figure 2.9(c),
in which input images are paired with either a positive or negative sample;

2. A triplet constraint, associated with triplet networks as in Figure 2.9(e), in
which anchor images are paired with both similar and dissimilar samples [27].

These verification-based learning methods are categorized into globally supervised
approaches (Figure 2.9(c,d)) and locally supervised approaches (Figure 2.9(g,h)),
where the former learn a metric on global features by satisfying all constraints,
whereas the latter focus on local areas by only satisfying the given local constraints
(e.g. region proposals).

To be specific, consider a triplet set X={(xa, xp, xn)} in a mini-batch, where (xa, xp)

indicates a similar pair and (xa, xn) a dissimilar pair. Features f(x;θ) of one image
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Figure 2.10: Illustrations of sample mining strategies in metric learning. Here, we
illustrate three classes, where shapes indicate different classes. Multiple pairs are con-
sidered in some loss terms and assigned with distinct weights during training, indicated
by different line width. (a)-(c) have been introduced in the text. (d) Quadruplet loss
[128]: a sample similar to the anchor is used to construct a double margin. (e) Angular
loss [129]: the angle at the negative of triple triangles is computed to obtain higher
order geometric constraints. (f) N-pair loss [130]: a positive sample is identified from
N − 1 negative samples of N-1 classes. (g) Lifted structured loss [131]: the structure
relationships of three positive and three negative samples are considered. (h) Ranked
list loss [132]: all samples to explore intrinsic structured information are considered.
(i) Mixed loss [133]: three positive and three negative samples are captured which are
initially closely distributed, where another anchor-negative pair initially lies very close
to the anchor. (j) Proxy-NCA loss [134]: proxy positive and negative samples for each
class are computed and trained with a true anchor sample. (k) Proxy-anchor loss [135]:
the anchor sample is represented by a proxy. (l) Hardness-aware loss [136]: the syn-
thetic negative is mapped from an existing hard negative, the hard levels manipulated
adaptively within a certain range.

are extracted by a network f(·) with parameters θ, for which we can represent the
affinity information for each similar or dissimilar pair as

Dij = D(xi, xj) = ||f(xi;θ)− f(xj;θ)||22 (2.14)

a. Refining with transformation matrix.

Learning the similarity among the input samples can be implemented by optimizing
the weights of a linear transformation matrix [52]. It transforms the concatenated
feature pairs into a common latent space using a transformation matrix W∈R2d×1,
where d is the feature dimension. The similarity score of these pairs are predicted
via a sub-network SW (xi, xj) = fW (f(xi;θ) ∪ f(xj;θ);W ) [52, 137]. In other
words, the sub-network fW predicts how similar the feature pairs are. Given the
affinity information of feature pairs Sij = S(xi, xj)∈{0, 1}, the binary labels 0 and
1 indicate the similar (positive) or dissimilar (negative) pairs, respectively. The
training of function fW can be achieved by using a regression loss:

LW (xi, xj) = |SW (xi, xj)− Sij
(
sim(xi, xj) +m

)
− (1− Sij)

(
sim(xi, xj)−m

)
|

(2.15)
where sim(xi, xj) can be the cosine function for guiding training W and m is a
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margin. By optimizing the regression loss and updating the transformation matrix
W , deep networks maximize the similarity of similar pairs and minimize that of
dissimilar pairs. It is worth noting that the pre-stored parameters in the deep
models are frozen when optimizingW . The pipeline of this approach is depicted in
Figure 2.9(b) where the weights of the two DCNNs are not necessarily shared.

b. Fine-tuning with Siamese networks.

Siamese networks represent important options in implementing metric learning for
fine-tuning, as shown in Figure 2.9(c). It is a structure composed of two branches
that share the same weights across the layers. Siamese networks are trained on
paired data, consisting of an image pair (xi, xj) such that S(xi, xj) ∈ {0, 1}. A
Siamese loss function, illustrated in Figure 2.10(a), is formulated as

LSiam(xi, xj) =
1

2
S(xi, xj)D(xi, xj) +

1

2

(
1− S(xi, xj)

)
max

(
0, m−D(xi, xj)

)
(2.16)

A standard Siamese network and Siamese loss are used to learn the similarity be-
tween semantically relevant samples under different scenarios. For example, Simo et
al. [138] introduce a Siamese network to learn the similarity between paired image
patches, which focuses more on the specific regions within an image. Ong et al. [53]
leverage the Siamese network to learn image features which are then fed into the
Fisher Vector model for further encoding. In addition, Siamese networks can also
be applied to hashing learning in which the Euclidean distance formulation D(·) in
Eq. 2.16 is replaced by the Hamming distance [114].

c. Fine-tuning with triplet networks.

Triplet networks [137] optimize similar and dissimilar pairs simultaneously. As
shown in Figure 2.9(d) and Figure 2.10(b), the plain triplet networks adopt a ranking
loss for training:

LTriplet(xa, xp, xn) = max
(
0,m+D(xa, xp)−D(xa, xn))

)
(2.17)

which indicates that the distance of an anchor-negative pair D(xa, xn) should be
larger than that of an anchor-positive pair D(xa, xp) by a certain margin m. The
triplet loss is used to learn fine-grained image features [71, 96] and for constraining
hash code learning [51, 115, 116].

To focus on specific regions or objects, local supervised metric learning has been
explored [58, 89, 139, 140]. In these methods, some regions or objects are extracted
using region proposal networks (RPNs) [17] which subsequently can be plugged
into deep networks and trained in an end-to-end manner, such as shown in Figure
2.9(g), in which Faster R-CNN [17] is fine-tuned for instance search [89]. RPNs yield
the regressed bounding box coordinates of objects and are trained by the multi-class
classification loss. The final networks extract better regional features by RoI pooling
and perform spatial ranking for instance retrieval.

32



2.4 Retrieval via Learning DCNN Representations

RPNs [17] enable deep models to learn regional features for particular instances or
objects [54, 140]. RPNs used in the triplet formulation are shown in Figure 2.9(h).
For training, besides the triplet loss, regression loss (PRNs loss) is used to minimize
the regressed bounding box according to ground-truth region of interest. In some
cases, jointly training an RPN loss and triplet loss leads to unstable results. This
is addressed in [54] by first training a CNN to produce R-MAC using a rigid grid,
after which the parameters in convolutional layers are fixed and RPNs are trained
to replace the rigid grid.

Attention mechanisms can also be combined with metric learning for fine-tuning
[110, 139], as in Figure 2.9(e), where the attention module is typically end-to-end
trainable and takes as input the convolutional feature maps. For instance, Song et
al. [139] introduce a convolutional attention layer to explore spatial-semantic infor-
mation, highlighting regions in images to significantly improve the discrimination
for inter-class and intra-class features for image retrieval.

Recent studies [64, 93] have jointly optimized the triplet loss and classification loss
function, as shown in Figure 2.9(f). Fine-tuned models that use only a triplet con-
straint may possess inferior classification accuracy for similar instances [93], since
the classification loss does not predict the intra-class similarity, rather locates the
relevant images at different levels. Given these considerations, it is natural to com-
bine and optimize triplet constraint and classification loss jointly [64]. The overall
joint function is formulated as

LJoint =α·LTriplet(xi,a, xi,p, xi,n)+β ·LCE(p̂i, yi) (2.18)

where the cross-entropy loss (CE loss) LCE is defined in Eq. (2.13) and the triplet
loss LTriplet in Eq. (2.17). α and β are trade-off hyper-parameters to tune the two
loss functions.

An implicit drawback of the Siamese loss in Eq. 2.16 is that it may penalize similar
image pairs even if the margin between these pairs is small or zero, which may
degrade performance [141], since the constraint is too strong and unbalanced. At
the same time, it is hard to map the features of similar pairs to the same point when
images contain complex contents or scenes. To tackle this limitation, Cao et al. [142]
adopt a double-margin Siamese loss [141], illustrated in Figure 2.10(c), to relax the
penalty for similar pairs. Specifically, the threshold between the similar pairs is set
to a marginm1 instead of being zero. In this case, the original single-margin Siamese
loss is re-formulated as

L(xi, xj) =
1

2
S(xi, xj) max

(
0, D(xi, xj)−m1

)
+

1

2

(
1− S(xi, xj)

)
max

(
0,m2 −D(xi, xj)

) (2.19)
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where m1>0 and m2>0 are the margins affecting the similar and dissimilar pairs,
respectively. Therefore, the double margin Siamese loss only applies a contrastive
force when the distance of a similar pair is larger than m1. The mAP metric of
retrieval is improved when using the double margin Siamese loss [141].

Discussion. Most verification-based supervised learning methods rely on the ba-
sic Siamese or triplet networks. The follow-up studies are focusing on exploring
methods to further improve their capacities for robust feature similarity estimation.
Generally, the network structure, loss function, and sample selection are important
factors for the success of verification-based methods.

A variety of loss functions have been proposed recently [128, 130, 131, 132, 134].
Some of these use more samples or additional constraints. For example, Chen et
al. [128] incorporate Quadruplet samples for constraining relationships between
anchor, positive, negative, and similar images. The N-pair loss [130] and the lifted
structured loss [131] even define constraints on all images and employ the structural
information of samples in a mini-batch.

The sampling strategy can greatly affect the feature learning and training conver-
gence. To date, many sampling strategies such as clustering have been introduced, of
which 12 are shown in Figure 2.10. Aside from sampling within a mini-batch, other
work explores mining samples outside a mini-batch even from the whole dataset.
This may be beneficial for stabilizing optimization due to a larger data diversity
and richer training information. For example, Wang et al. [143] propose a cross-
batch memory (XBM) mechanism that memorizes the embedding of past iterations,
allowing the model to collect sufficient hard negative pairs across multiple mini-
batches. Harwood et al. [144] provide a framework named smart mining to collect
hard samples from the entire training set. It is reasonable to achieve better perfor-
mance when more samples are used to fine-tune a network. However, the possible
additional computational cost during training is a core issue to be addressed.

Directly optimizing the average precision (AP) metric using the listwise AP loss [145]
is one way to consider a large number of image simultaneously. Training with this
loss has been demonstrated to improve retrieval performance [145, 146, 147], however
average precision, as a metric, is normally non-differentiable and non-smooth. To
directly optimize the AP loss, the AP metric needs to be relaxed by using methods
such as soft-binning approximation [145, 146] or sigmoid function [147].

2.4.2 Unsupervised fine-tuning

Supervised network fine-tuning becomes infeasible when there is not enough super-
visory information because such information is costly to assemble or unavailable.
Given these limitations, unsupervised fine-tuning methods for image retrieval are
quite necessary but less studied [148].
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For unsupervised fine-tuning, two broad directions are to mine relevance among
features via manifold learning to obtain ranking information, and to devise novel
unsupervised frameworks (e.g. AutoEncoders), each discussed below.

2.4.2.1 Mining samples with manifold learning

Manifold learning focuses on capturing intrinsic correlations on the manifold struc-
ture to mine or deduce revelance, as illustrated in Figure 2.11. Initial similarities
between the original extracted features are used to construct an affinity matrix,
which is then re-evaluated and updated using manifold learning [149]. According to
the manifold similarity in the updated affinity matrix, positive and hard negative
samples are selected for metric learning using verification-based loss functions such
as pair loss [58, 150], triplet loss [151, 152], or N-pair loss [148], etcNote that this is
different from the aforementioned methods for verification-based fine-tuning meth-
ods, where the hard positive and negative samples are explicitly selected from an
ordered dataset according to the given affinity information.

It is important to capture the geometry of the manifold of deep features, generally
involving two steps [149] known as a diffusion process. First, the affinity matrix
(Figure 2.11) is interpreted as a weighted kNN graph, where each vector is repre-
sented by a node, and edges are defined by the pairwise affinities of two connected
nodes. Then, the pairwise affinities are re-evaluated in the context of all other ele-
ments by diffusing the similarity values through the graph [59, 150, 151, 152]. Some
new similarity diffusion methods have recently been proposed, like the regularized
diffusion process (RDP) [153] and the regional diffusion mechanism [150]. For more
details on diffusion methods we refer to the survey [149].

Most existing algorithms follow a similar principle (e.g. random walk [149]). The
differences among methods lie primarily in three aspects:

1. Similarity initialization, which affects the subsequent KNN graph construc-
tion in an affinity matrix. Usually, an inner product [59, 148] or Euclidean
distance [56] is directly computed for the affinities. A Guassian kernel function
can be used for affinity initialization [149, 152] or Iscen et al. [150] consider
regional similarity from image patches to build the affinity matrix.

2. Transition matrix definition, a row-stochastic matrix [149], determines
the probabilities of transiting from one node to another in the graph. These
probabilities are proportional to the affinities between nodes, which can be
measured by Geodesic distance (e.g. the summation of weights of relevant
edges).

3. Iteration scheme, to re-valuate and update the values in affinity matrix
by the manifold similarity until some kind of convergence is achieved. Most
algorithms are iteration-based [149, 151], as illustrated in Figure 2.11.
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Figure 2.11: Paradigm of manifold learning for unsupervised metric learning, based
on triplet loss.

Diffusion process algorithms are indispensable for unsupervised fine-tuning. Better
image similarity is guaranteed when it is improved based on initialization (e.g. re-
gional similarity [150] or high order information [56]). However, the diffusion process
requires more computation and searching due to the iteration scheme [152], a limita-
tion which cannot meet the efficiency requirements of image retrieval. To mitigate
this, Nicolas et al. [148] apply the closed-form convergence solution of a random
walk in each mini-batch to estimate the manifold similarities instead of running
many iterations. Some studies replace the diffusion process on a kNN graph with
a diffusion network [58], which is derived from graph convolution networks [154].
Their end-to-end framework allows efficient computation during the training and
testing stages.

Once the manifold space is learned, samples are mined by computing geodesic dis-
tances based on the Floyd-Warshall algorithm or by comparing the set difference
[151]. The selected samples are fed into deep networks to perform fine-tuning.

It is possible to explore proximity information, to cluster in Euclidean space, splitting
the training set into different groups. For example, Tzelepi et al. [155] explore a
fully unsupervised fine-tuning method by clustering, in which the kNN algorithm
is used to compute the k nearest features, then fine-tuned to minimize the squared
distance between each query feature and its k nearest features. As a second example,
Radenovic et al. [32, 57] use Structure-from-Motion (SfM) for clustering to explore
sample reconstructions to select images for triplet loss. Clustering methods depend
on the Euclidean distance, making it difficult to reveal the intrinsic relationship
between objects.

2.4.2.2 AutoEncoder-based frameworks

An AutoEncoder is a kind of neural network that aims to reconstruct its output as
closely as possible to its input. In principle, an input image is encoded as features
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into a latent space, and these features are then reconstructed to the original input
image using a decoder. The encoder and decoder can be both be convolutional
neural networks.

In an AutoEncoder, there exist different levels (e.g. pixel-level or instance-level)
of reconstruction. These different reconstructions affect the effectiveness of an Au-
toEncoder, in that pixel-level reconstructions may degrade the learned features of
an encoder by focusing on trivial variations in a reconstructed image, since natural
images typically contains many detailed factors of location, color, and pose.

An AutoEncoder is an optional framework for supporting other methods, for exam-
ple the implementation of unsupervised hash learning [60, 119, 120, 121]. Except
for the reconstruction loss [60, 121], it is highly necessary to mine feature relevance
to explore other objective functions. This is usually realized by using clustering
algorithms [121] since features from an off-the-shelf network initially contain rich
semantic information to keep their semantic structure [69, 72, 118]. For example,
Gu et al. [121] introduce a modified cross-entropy based on the k-means clustering
algorithm where a deep model learns to cluster iteratively and yields binary codes
while retaining the structures of the input data distributions. Zhou et al. [72] and
Deng et al. [69] propose a self-taught hashing algorithm using a kNN graph construc-
tion to generate pseudo labels that are used to analyze and guide network training.
Other techniques such as Bayes Nets are also used to predict sample similarity,
such as in the work of Yang et al. [118], which adopts a Bayes optimal classifier
to assign semantic similarity labels to data pairs which have a higher similarity
probability.

AutoEncoders can also be integrated into other frameworks, such as graph con-
volutional networks [154] and object detection models [156] to learn better binary
latent variables. For example, Shen et al. [60] combine graph convolutional net-
works [154] to learn the hash codes from an AutoEncoder. In this method, the
similarity matrix for graph learning is computed on the binary latent variables from
the Encoder. Generative adversarial networks (GANs) are also explored in the un-
supervised hashing framework [60, 69, 122, 123]. The adversarial loss in GANs is
the classical objective to use. By optimizing this loss, the synthesized images gener-
ated from hash codes gradually keep semantic similarity consistent for the original
images. The pixel-level and feature-level content loss are used to improve the gener-
ated image quality [122]. Some other losses are employed in GANs to enhance hash
code learning. For instance, a distance matching regularizer is utilized to propagate
the correlations between high-dimensional real-valued features and low-dimensional
hash codes [157], or two loss functions that aim at promoting independence of binary
codes [123]. In summary, using GANs for unsupervised hash learning is promising,
but there remains much room for further exploration.
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2.5 State of the Art Performance

2.5.1 Datasets

To demonstrate the effectiveness of methods, we choose four commonly-used datasets
for performance comparison: Holidays, Oxford-5k (including the extended Oxford-
105k), Paris-6k (including the extended Paris-106k) and UKBench.

UKBench (UKB) [158] consists of 10,200 images of objects. The whole dataset
has 2,550 groups of images, each group having four images of the same object from
different viewpoints or illumination conditions. Each image in the dataset can be
used as a query image.

Holidays [126] consists of 1,491 images collected from personal holiday albums.
Most images are scene-related. The dataset comprises 500 groups of similar images
with a query image for each group. In each group, the first image is used as a query
image for performance evaluation.

Oxford-5k [127] consists of 5,062 images for 11 Oxford buildings. Each image is
represented by five queries by a hand-drawn bounding box, thus there are 55 query
Regions of Interest (RoI) in total. An additional disjoint set of 100,000 distractor
images is added to obtain Oxford-100k.

Paris-6k [159] includes 6,412 images collected from Flickr. It is categorized into
12 groups about specific Paris architectures. The dataset has 500 query images for
evaluation, and 55 queries with bounding boxes. Images are annotated with the
same four types of labels as used in the Oxford-5k dataset.

Annotations and evaluation protocols in Oxford-5k and Paris-6k are updated; ad-
ditional queries and distractor images are added into the two datasets, producing
the Revisited Oxford and Revisited Paris datasets [160]. Due to the popularity of
Oxford-5k and Paris-6k, we primarily undertake performance evaluations on the
original datasets.

2.5.2 Evaluation metrics

Average precision (AP) refers to the coverage area under the precision-recall curve.
A larger AP implies a higher precision-recall curve and better retrieval accuracy. AP
can be calculated as

AP =

∑N
k=1 P (k) · rel(k)

R
(2.20)

where R denotes the number of relevant results for the query image from the total
number N of images. P (k) is the precision of the top k retrieved images, and rel(k)

is an indicator function equal to 1 if the item within rank k is a relevant image and
0 otherwise. Mean average precision (mAP) is adopted for the evaluation over all
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query images,
1

Q

Q∑
q=1

AP (q) (2.21)

where Q is the number of query images.

Additionally, N-S score is a metric used for UKBench [158]. In this dataset, there
are four relevant images for each query. The N-S score is the average, four times,
for the top-four precision over the dataset.

2.5.3 Performance comparison and analysis

Overview. We conclude with the performance over these 4 datasets from 2014
to 2020 in Figure 2.12(a). At early period, DCNNs acted as powerful extractors
and achieved good results, e.g. mAP is 78.34% in [27] on Oxford-5k. Subsequently,
the results increased significantly when some crucial factors were adopted, including
feature fusion [161, 162, 163], feature aggregation [31, 63], and network fine-tuning
[153, 164]. For instance, the accuracy on UKBench reaches an mAP of 98.8% in [163]
when an undirected graph is defined to fuse features and estimate their correlations.
Network fine-tuning improves performance greatly. The accuracy increases steadily
from 78.34% [27] to 96.2% [165] on the Oxford-5k dataset when manifold learning
is used to fine-tune deep networks.

We evaluate the methods using off-the-shelf models (Table 2.2) and fine-tuning net-
works (Table 2.3). In Table 2.2, single pass and multiple pass are analyzed, while
supervised fine-tuning and unsupervised fine-tuning are compared in Table 2.3.

Evaluation for single feedforward pass. The common practice using this scheme
is to enhance feature discrimination. In Table 2.2, we observe that fully-connected
layers used as feature extractors may reach a lower accuracy (e.g. 74.7% on Hol-
idays in [50]), compared to the counterpart convolutional layers because the fully-
connected layers lack structural information. Layer-level feature fusion strategy im-
proves retrieval accuracy. For example, Yu et al. [92] combined three layers (Conv4,
Conv5, and FC6 ) (e.g. an mAP of 91.4% on Holidays), outperforming the perfor-
mance of non-fusion method in [25] (e.g. mAP is 80.2%). Moreover, convolutional
features embedded by BoW model reach a competitive performance on Oxford-5k
and Paris-6k (73.9% and 82.0%, respectively), while its codebook size is 25k, which
may affect the retrieval efficiency. For single pass scheme, methods shown in Figure
2.6 improve the discrimination of convolutional feature maps and perform differently
in Table 2.2 (e.g. 66.9% of R-MAC [159], 58.9% of SPoC [25] on Oxford-5k). We
view this as a critical factors and further analyze.

Evaluation for multiple feedforward pass. The methods exemplified in Figure
2.7 are reported their results in multiple pass scheme. Among them, extracting image
patches densely using Overfeat [166] can reach best results on the 4 datasets [43].
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Using rigid grid method reach competitive results (e.g. an mAP of 87.2% on Paris-
6k) [108]. These two methods consider more patches, even background information
when used for feature extraction. Instead of generating patches densely, region
proposals and spatial pyramid modeling have a degree of purpose in processing image
objects. This may be more efficient and less memory demanding. Using multiple-
pass scheme, spatial information is maintained better than the case using the single-
pass method. For example, a shallower network (AlexNet) and region proposal
networks are used in [85], its result on UKBench is 3.81 (N-Score), higher than the
one using deeper networks, such as [25, 50, 92]. Besides feeding image patches into
the same network, model-level fusion also exploit complementary spatial information
to improve the retrieval accuracy. For instance, as reported in [48], which combines
AlexNet and VGG, the results on Holidays (81.74% of mAP) and UKBench (3.32
of N-Score) are better than these in [65] (76.75% and 3.00, respectively).

(a)

20
14

20
15

20
16

20
17

20
18

20
19

20
20

80

85

90

95

80.18 [29]

89.7 [83]

94.2 [54]

95.13 [162]95.7 [153]95.5 [167]

94.0 [164]

78.34 [27]

84.4 [83]

88.95 [161]

95.8 [150]
95.8 [168]96.2 [165]96.2 [164]

91.1 [43]91.3 [25]

96.3 [81]

98.1 [169] 98.8 [163]

86.83 [27]86.5 [31]

95.8 [170]

96.0 [57]
97.0 [168]97.8 [165]97.4 [164]

m
A
P
(%

)

Holidays
Oxford-5k
UKBench
Paris-6k

(b)

SPoC MAC CroW R-MAC GeM
30

35

40

45

50

55

60

65

70

75

80

m
A

P(
%

)

Oxford5k
Oxford105k
Paris6k
Paris106k

 CAM
+CroW

Figure 2.12: (a) Performance improvement from 2014 to 2020. (b) mAP comparison
of the feature aggregation methods shown in Figure 2.6.

Evaluation for supervised fine-tuning. Compared to the off-the-shelf models,
fine-tuning deep networks usually improves accuracy, see Table 2.3. For instance,
the result on Oxford-5k [31] by using a pre-trained VGG is improved from 66.9%
to 81.5% in [53] when a single-margin Siamese loss is used. Similar trends can
be also observed on the Paris-6k dataset. Although classification-based fine-tuning
method is not excel at learning intra-class variability (e.g. an mAP of 55.7% on
Oxford-5k in [50]), its performance may be improved with powerful DCNNs and
feature enhancement methods such as the attention mechanism in [106], leading to
an mAP of 83.8% on Oxford-5k. As for verification-based fine-tuning methods, in
some cases, the loss used for fine-tuning is essential for performance improvement.
For example, RPN is re-trained using regression loss on Oxford-5k and Paris-6k
(75.1% and 80.7%, respectively) [89]. Its results are lower than the results from
[52] (88.2% and 88.2%, respectively) where a transformation matrix is used to learn
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Table 2.1: Evaluations of mAP (%), N-S score, and average search time per image.
“†” refers to the query time is evaluated in a global diffusion manner, while “‡” refers
to the time is evaluated in a regional diffusion way.

Oxford-5k (+100k) Paris-6k (+100k) Holidays UKB
mAP Time mAP Time mAP Time N-S Time

[153] 91.3
(88.4)

5.45 ms
(809 ms) - - 95.66 3.11 ms 3.93 4.91 ms

[165] 92.6
(91.8)

2 ms
(10 ms) - - - - - -

[150]† 85.7
(-)

20 ms
(-)

94.1
(-)

20 ms
(-) - - - -

[150]‡ 95.8
(-)

600 ms
(-)

96.9
(-)

700 ms
(-) - - - -

[172] 64.9
(58.8)

0.81 ms
(0.82 ms) - - - - - -

[57] 64.8
(57.9)

0.77 ms
(0.73 ms) - - - - - -

[52] 55.5
(-)

0.35 ms
(-)

71.0
(-)

0.35 ms
(-) - - - -

visual similarity. However, when RPN is trained by using triplet loss such as [140],
the effectiveness of retrieval is improved significantly where the results are 86.1%
(on Oxford-5k) and 94.5% (on Paris-6k). Further, feature embedding methods are
important for retrieval accuracy. For example, Ong et al. [53] embedded Conv5
feature maps by Fisher Vector and achieved an mAP of 81.5% on Oxford-5k, while
embedding feature maps by using VLAD achieves an mAP of 62.5% on this dataset
[32, 55].

Evaluation for unsupervised fine-tuning. Compared to supervised fine-tuning,
unsupervised fine-tuning methods are relatively less explored. The difficulty for
unsupervised fine-tuning is to mine relevance of samples without ground-truth labels.
In general, unsupervised fine-tuning methods produce lower performance than the
supervised fine-tuning methods. For instance, supervised fine-tuning network by
using Siamese loss in [171] achieves an mAP 88.4% on Holidays, while unsupervised
fine-tuning network using the same loss function in [32, 57, 151] achieve 82.5%,
83.1%, and 87.5%, respectively. However, unsupervised fine-tuning methods can
achieve a similar accuracy even outperform the supervised fine-tuning if a suited
feature embedding method is used. For instance, Zhao et al. [152] explore global
feature structure with modeling the manifold learning, producing an mAP of 85.4%
(on Oxford-5k) and 96.3% (on Paris-6k). This is similar to the supervised method
[140], whose results are 86.1% (on Oxford-5k) and 94.5% (on Paris-6k). As another
example, the precision of ResNet-101 fine-tuned by cross-entropy loss achieves to
83.8% on Oxford-5k [106], while the precision is further improved to 92.0% when IME
layer is used to embed features and fine-tuned in an unsupervised way [56]. Note that
fine-tuning strategies are related to the type of the target retrieval datasets.

Retrieval efficiency is also an important criterion for image retrieval. Deep learn-
ing methods are usually trained and validated on large-size datasets, relying on using
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GPUs. Most prior works focus more on retrieval accuracy but less on efficiency. We
report the retrieval accuracy and retrieval efficiency on the 4 datasets in Table 2.1.
The recorded time (in ms) indicates the average time for searching each query im-
age. In Table 2.1, we observe some important trends. First, in general, the average
retrieval time for each query image is less than 1s. Concretely, the recorded time
is up to 809ms on Oxford-105k in [153], whose mAP is 88.4%. The retrieval time
is 600ms on Oxford-5k and 700ms on Paris-6k in [150], whose time cost is caused
by processing 21 regional features on each query image. Second, we observe the
retrieval accuracy-efficiency balancing issue, which is significantly obvious on the
Oxford-5k dataset. The average retrieval time are both less than 1ms in prior work
[52, 57, 172], whose mAPs are lower than 70% (i.e. 55.5%, 64.8%, and 64.9%, re-
spectively). In contrast, the prior approaches [150, 153, 165], reach relatively higher
mAPs (i.e. 91.3%, 92.6%, and 95.8%, respectively), while this higher accuracy is
at the expense of efficiency (more than 2ms even up to 600ms). Therefore, the
trade-off of accuracy and efficiency is also an important factor to take into account
in deep image retrieval, especially for large-scale datasets.

In addition, we discuss other important factors, including the depth of networks,
retrieval feature dimension, and feature aggregation methods.

Network depth. We compare the efficacy of DCNNs depth, following the fine-
tuning protocols1 in [57]. For fair comparisons, all convolutional features from these
backbone DCNNs are aggregated by MAC method [63], and fine-tuned by using
the same learning rate. That means, the adopted methods are the same except the
DCNNs have different depths. We use the default feature dimension (i.e. AlexNet
(256-d), VGG (512-d), GoogLeNet (1024-d), ResNet-50/101 (2048-d)). The results
are reported in Figure 2.13(a). We observe that the deeper networks is more bene-
ficial for accuracy boosts, due to extracting more discriminative features.

Feature dimension. We vary the feature dimension of ResNet-50 from 32-d to
8192-d, by adding fully-connected layers on the top of pooled convolutional features.
The results are shown in Figure 2.13(b). It is expected that higher-dimensional
features capture much more semantics and are beneficial for retrieval. However, the
performance tends to be stable when the dimension is very large. For ResNet-50,
we observe that the 2048-d feature can already produce competitive results.

Feature aggregation methods. Here, we further discuss the methods of embed-
ding convolutional feature maps, as illustrated in Figure 2.6. We use the off-the-shelf
VGG (without updating parameters) on the Oxford and Paris datasets. The results
are reported in Figure 2.12(b). We observe that different ways to aggregate the same
off-the-shelf DCNN make differences for retrieval performance. These reported re-
sults provide a reference for feature aggregation when one uses convolutional layers
for performing retrieval tasks.

1https://github.com/filipradenovic/cnnimageretrieval-pytorch
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Figure 2.13: (a) The effectiveness of different DCNNs on 4 datasets. All models
are fine-tuned by the same loss function. The results are tested on the convolutional
features with default dimension; (b) The impact of feature dimension on retrieval
performance. These features are extracted by using ResNet-50.

2.6 Chapter Conclusions

In this chapter, we reviewed deep learning methods for image retrieval, and cate-
gorized it into deep image retrieval of off-the-shelf models and fine-tuned models
according to the parameter updates of deep networks. Concretely, the off-the-shelf
group is concerned with obtaining high-quality features by freezing the pre-stored
parameters where network feedforward schemes, layer selection, and feature fusion
methods are presented. While fine-tuned based methods deal with updating net-
works with optimal parameters for feature learning in both supervised and unsu-
pervised approaches. For each group, we presented the corresponding methods and
compared their differences. The corresponding experimental results are collected
and analyzed for all the categorized works.

Deep learning has shown significant progress and spotlighted its capacity for image
retrieval. Despite the great success, there are still many unsolved problems. Here,
we introduce some promising trends as future research directions. We hope that
this chapter not only provides a better understanding of image retrieval but also
facilitates future research activities and application developments in this field.
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Chapter 3

Domain Uncertainty based on
Information Theory for Cross-modal
Hash Retrieval

In the previous chapter, we gave a comprehensive review about intelligent image re-
trieval. Semantic information that helps us understand the world usually comes from
different modalities. We can express the same concept by using different ways so that
we can search the images of interest by submitting any media content at hand (e.g.
a phrase, or an image) as the query item. Therefore, cross-modal hash retrieval,
as a natural searching way, has received considerable interest in the area of deep
learning. Here hash codes of data of different modalities are learned where pair-wise
loss functions control feature similarity in a shared embedding space. In this chap-
ter, we improve on feature similarity by using Shannon’s information entropy with
respect to the modality information that is present in learning superior hash codes.
We introduce a novel network for predicting the domain from the learned features
while the protagonist network uses a loss function based on Shannon’s information
entropy to learn to maximize the domain uncertainty and therefore the information
content. Additionally, according to the number of common labels between each
similar image-text pair, we define a multi-level similarity matrix as supervisory in-
formation, which constrains all similar pairs with different weights. We show with
extensive experiments that our novel approach to domain uncertainty leads to a
cross-modal hash retrieval that outperforms the state-of-the-art.

Keywords
Information entropy, cross-modal hash retrieval, domain uncertainty, multi-level
similarity

This chapter is based on the following publication [34]:

• Chen, W., Pu, N., Liu, Y., Bakker, E. and Lew, M.S., “Domain Uncertainty Based On
Information Theory for Cross-Modal Hash Retrieval.” IEEE International Conference on
Multimedia and Expo (ICME), 2019, pp 43-48.
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CROSS-MODAL HASH RETRIEVAL

3.1 Introduction

Cross-modal retrieval has been a compelling research topic in recent years [173, 174,
175]. It aims to accurately index semantically relevant samples from one modality,
such as finding a text that describes a given image and vice versa. Meanwhile,
to optimize retrieval and storage costs, binary representation learning (a.k.a hash
code learning) has received increasing attention. Reducing the heterogeneity gap
[176] and the semantic gap [10] (i.e. retaining feature similarity) are two key issues
being explored in cross-modal hash retrieval. Since the data in different modalities
are described by different statistical properties, the heterogeneity gap characterizes
the difference between feature vectors from different modalities that have similar
semantics but are distributed in different spaces. Similarities between these feature
vectors are not well associated so that these vectors are not directly comparable,
leading to inconsistent distributions. The semantic gap characterizes the difference,
in any application, between the high-level concepts of humans and the low-level
features typically derived from images (i.e. pixels or symbols) [10].

Convolutional Neural Networks (CNNs) have demonstrated powerful feature learn-
ing capacity. Discriminative features for each modality are separately learned well
using deep learning methods. However, features from different modalities have usu-
ally heterogeneous distributions and representations. Textual features are often more
abstract than visual features. A common practice is to map features for different
modalities into a common Hamming space where hash codes can be assessed directly
and the heterogeneity gap is diminished. Existing methods for feature projection
are categorized into unsupervised [174] and supervised [173, 175]. Compared to un-
supervised methods, supervised hash approaches can achieve superior performance
with the help of semantic labels or relevant information.

In recent years, metric learning is used to retain feature similarity when projecting
modality features into a common space, such as ranking loss [177], and contrastive
loss [173, 178]. In the common space, features of similar pairs are projected together,
while for dissimilar pairs features will be pushed away. These loss functions focus on
each pair separately and learn their features according to their affinity information.
However, using these loss functions cannot guarantee that the feature distributions
for image and text are consistent. To tackle this limitation, adversarial learning is
incorporated to study the levels of agreement between feature distributions from
image and text when classified into their corresponding modality labels [175, 177,
178]. To obtain a suitable common space, the gradients need to be reversed by
the optimizing adversarial networks. However, there still exist some limitations.
First, discrimination for image and text will tend to the semantically-similar image-
text pairs far away because they belong to different modalities; Second, modality
labels are needed in adversarial learning which limits the generalization to these
cases where modalities are not just image and text; Third, the gradient reversal in
adversarial learning is not straightforward.
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Figure 3.1: The framework for cross-modal hash retrieval. Domain uncertainty loss
is based on information theory (Section 3.3.1); Pair-wise loss is constrained by binary
similarity matrix S and multi-level similarity matrix W (Section 3.3.1); Classification
loss is introduced in Section 3.3.3.

For multi-label datasets, an affinity matrix is used as binary supervisory information
to constrain feature similarity. Herein, all similar pairs are constrained equally [173,
178]. Each objective value in the affinity matrix is set to 1 if an image and text have
at least one common label. However, similar image-text pairs may have different
levels of similarity depending on the number of common labels they have.

In this chapter, we address above limitations by proposing a novel network, as shown
in Figure 3.1. The novelty of this chapter is summarized as two-fold. First, we
incorporate Shannon’s information entropy [179] to directly map features for image
and text into a common space where their heterogeneous modality properties are
not exhibited. Specifically, given a hash code which corresponds to image or text,
the network, after being trained well, will yield a high uncertainty with respect to
modality the hash code belongs to. To the best of our knowledge, this work is the first
to use information entropy [179] for cross-modal hash retrieval. Second, we propose a
multi-level feature similarity which considers the number of common labels between
similar image-text pairs to constrain these pairs with different weights.

3.2 Cross-modal Hash Learning

Recently, a variety of cross-modal hash learning methods are proposed to minimize
the heterogeneity gap. Regarding supervised methods to improve retrieval perfor-
mance, Jiang et al. [173] proposed DCMH to integrate deep feature learning and
hash code learning into a unified structure where a similarity matrix was used as
supervisory information. Aiming at learning a common latent space for image and
text, Li et al. [178] introduced a three stream self-supervised hashing network where
embedded features in a common space were used to predict semantic labels. For
these methods, each similar image-text pair could be well projected as semantically-
related feature vectors. However, the holistic feature distributions of two modalities
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are still inconsistent (i.e. showing a heterogeneity gap). To mitigate this issue,
adversarial learning methods are incorporated [175, 177, 178]. Chi et al. [175] intro-
duced a dual structure for common representation learning in which new samples
are generated via Generative Adversarial Networks (GANs) [180] and original ones
are reconstructed. Their method can solve the problem of adding new categories in
cross-modal retrieval; Wang et al. [177] introduced a feature projector and domain
classifier which run as minimax game with adversarial learning, but the Gradient
Reversal Layer (GRL) [181] and domain labels are needed in their approach.

We consider a holistic feature distribution in the common space and incorporate the
information entropy [179] to maximize the uncertainty of visual and textual domains,
such that modality properties are not exhibited, while preserving the semantic sim-
ilarity of hash codes by using pair-wise and classification-based loss functions.

3.3 Domain Uncertainty Measurement via Informa-
tion Theory

For the image-text dataset with n samples, we use X = {xi, li}ni=1 to denote the
images and their labels, we use Y = {yi, li}ni=1to denote the text and their labels.
Here li = [li1, li2, ..., lic] are multi-label annotations of images and text, and c is the
total number of classes. We define a binary similarity matrix S where Sij =1 when
xi and yi have at least one common label, otherwise Sij =0. Additionally, we define
a multi-level similarity weight wij = tij/c where tij is the number of common labels
between xi and yi. Given these training data and a supervised matrix, the task of
the cross-modal hash retrieval is to learn two sign functions for the two modalities:
B(xi) = sign(F (xi,θv))∈{−1,+1}K , B(yi) = sign(G(yi,θt)) ∈ {−1,+1}K , where
K is the length of hash codes, θv and θt are the network parameters for feature
learning for two modalities. According to the binary similarity matrix S, similar
pairs (F (xi), G(yi)) should be represented by similar hash codes (B(xi), B(yi)) in
the Hamming space. Usually, as B(·) is a discrete function and it is not differentiate,
a soft continuous relaxation H(·) = tanh(·) is used to replace B(·).The hash code
can be optimized using:

Lq =
(
‖Hv −Bv‖2F

)
+
(
‖Ht −Bt‖2F

)
(3.1)

The aim of our method is to learn a better common space for real-valued features
F(·), G(·) and hash codes H(·), B(·) where multi-level similarity degrees are also
preserved. The whole framework is depicted in Figure 3.1.

3.3.1 Information theory and domain uncertainty

As shown in Figure 3.2(a), real-valued features extracted from visual and textual
domains (F I and GT in Figure 3.1, respectively) are semantically similar but in-
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3.3 Domain Uncertainty Measurement via Information Theory

consistently distributed. Samples from two domains have different domain-related
properties. For example, textual data have more abstract semantics than visual
data. These properties will often result in feature distributions which still hold this
information giving higher certainty on the domain to which the input data belongs
(i.e. the visual domain or textual domain). More specifically, when it is possible to
identify a feature in the common space coming from the visual domain with higher
probability (Pi) rather than coming from textual domain with lower probability
(Pt =1−Pi), domain uncertainty is not achieved. Thus, for a given feature, it can
not be determined which domain it originally belongs to, it means that this feature
is identified from two domains with equal probability (Pi=Pt = 0.5), and the com-
mon space has highest uncertainty corresponding to highest information entropy.
As in [179], we incorporate information entropy to measure the uncertainty of two
domains. Figure 3.2(b) illustrates that two domains with equal probability leads to
highest information entropy and information content.

Domain uncertainty is in proportional to information entropy [179], as shown in Fig-
ure 3.2(c). Based on this observation, we devise a domain uncertainty loss function
using information entropy. When the objective function is minimized, the informa-
tion entropy will be maximized, which means that the common space maximizes
domain uncertainty. Specifically, we build domain predictor network D which in-
cludes three fully-connected (FC) layers. The output probability is P d

j (·) = D(·,θd),
“·” indicates features from image or text shared with the parameter θd. The output
neurons of prediction layer are M .:

min (Lr
d
+Lb

d
)︸ ︷︷ ︸

θv ,θt,θd

=
N∑
i=1

M∑
j=1

(
P rd,j

(
F(·)

)
∗log

(
P rd,j(F(·))

)
+ P bd,j

(
H(·)

)
∗log

(
P bd,j(H(·))

))
s.t. F(·) = F(x,θv) or G(y,θt),

H(·) = H(x,θv) or H(y,θt),

(3.2)

where Lrd is the loss component for the real-valued features used to predict domain
probability and Lbd indicates the loss component for the binary features used for
domain prediction. N is the number of training samples, and M is set to 2, which
denotes the number of domains in this task.

3.3.2 Multi-level feature preserving

A binary similarity matrix S can be used to preserve pair-wise similarity. Each Sij =

1 when the corresponding image and text have at least one common label. However,
similar image-text pairs may have different levels of similarity. Namely, different
pairs can have different number of common labels, but the matrix S constrains
these pairs equally. Considering this limitation of S, we define a multi-level similarity
matrix W, which holds different similarity weights for all similar pairs. We depict
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Figure 3.2: (a): Images and text are embedded via non-shared encoding sub-
networks. The domain uncertainty can be predicted by using the output probabilities
from a predictor. (b): Relationship between information entropy and predicted proba-
bility. (c): Relationship between domain uncertainty and output probabilities. When
probabilities predicted for two modalities are identical, the shared space is intertwined
into a domain confusion state (i.e. most uncertain). If one modality is identified with
a higher probability (closer to 1) while another with a lower probability (closer to 0),
the domain confusion state is not achieved.

the multi-level similarity matrix and binary similarity matrix in Figure 3.3. Each
value wij in W is normalized by the total number of class in a dataset.

The real-valued features and binary features of image xj are denoted as a triplet
vector {F xi , Hxi , Bxi}, and the feature of a text yj as triplet {Gyj , Hyj , Byj}. Then,
W can be used to regularize a more specific similar pairs by using:

min (Lr
m

+Lb
m

)︸ ︷︷ ︸
θv ,θt

=

N∑
i,j=1

((
δ(2∆r

ij)−wij
)2

+
(
δ(2Γbij)−wij

)2)
s.t. wij = tij/c,

(3.3)

where Lr
m
and Lb

m
correspond to real-valued and binary features, δ(·) is the sigmoid

function, wij is the above defined multi-level similarity weight. ∆r
ij=

1
2
(F∗i)

T (G∗j)

and Γbij = 1
2
(H∗i)

T (H∗j) denote the inner product of image and text features; H∗i
and H∗j correspond to soften visual and textual hash codes, respectively.

As suggested in [173, 178], we also use the binary similarity matrix S to define the
pair-wise objective function. Specifically, for Sij, the conditional probability for each
pair (F xi , Gyj) and (Hxi , Hyj) can be computed by using:

p(Sij |B) =

{
δ(ψij) Sij = 1,

1− δ(ψij) Sij = 0,
(3.4)
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where δ(ψij) is the sigmoid function and ψij is the inner product of input features.

Pair-wise objective function is:

min (Lr
pairs

+ Lb
pairs

)︸ ︷︷ ︸
θv ,θt

=
N∑

i,j=1

((
Sij∆

r
ij − log(1 + e∆r

ij )
)

+
(
SijΓ

b
ij − log(1 + eΓb

ij ))
)

(3.5)

where ∆r
ij and Γbij are set as in Eq. 3.3.

3.3.3 Classification-based objective function

Furthermore, as shown Figure 3.1, we build a label predictor L to output the prob-

ability P l
i (·) = L(·,θl). We only use the length-fixed real-valued feature F (·) and

G(·) for label prediction because the length of hash codes is changed. The objective

function for the label prediction is defined as:

min (Lv
l
+Lt

l
)︸ ︷︷ ︸

θv ,θt,θl

= −
N∑
i=1

(
li ·log(pv,ti )+(1−li)·log(1−pv,ti )

)
(3.6)

where pvi=L(F (xi),θl), pti=L(G(yi),θl) denote the sigmoid output probabilities of

label predictor, li are the ground-truth labels. The dimension of pvi and pti are equal

to the number of labels in each dataset.

Finally, the global objective will be:

L = α Ld + β Lpairs + γ Ll + η Lm + ε Lq (3.7)

53
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3.4 Experiments and Evaluations

3.4.1 Implementation details

We utilize the CNN-F from [75] as the backbone network for visual feature learning.
As shown in Figure 3.1, activations from FC7 layer are projected into a common
space using a 3 FC layer (4096→K → N), whereK is the dimension of the common
feature. We use BoW to embed textual features and then adopt a multi-scale (MS)
fusion FC layer (T→MS→ 2000→K→N) to learn the textual features. Following
[178], MS fusion model has five-level pooling layers. The label predictor and domain
predictor consist of 3 FC layers in which the number of neurons go from (512 →
256 → c) and (512 → 256 → 2), respectively, where c is 24 for the MIRFlickr-25K
and 21 for the NUS-WIDE dataset. For all FC layers, we set the dropout rate to
0.9. For optimizing the network, we adopt the alternating learning strategy from
[173] where we fine-tune visual parameters and fix textual parameters. Regarding
to the hyperparameters in Eq.7, we analyze the parameter sensitivity, as reported
in Figure 4. Based on these observations, we set α = 100, β = γ = ε = 1, η = 0.1.
The learning rate varies from 10−4 to 10−8.
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Figure 3.4: Sensitivity analysis of the hyperparameters in loss function in Eq. 3.7.

3.4.2 Datasets

The MIRFLICKR-25K [182] dataset contains 25,000 instances. We follow the
experiment protocols given in [173]. In total, 20,015 image-text pairs are selected
for our experiment. The text for each sample is embedded into a 1386 dimensional
BoW representation. There are 24 labels for each pair. The number of training
pairs is 10,000 and the number of query pairs is 2,000.

TheNUS-WIDE [183] dataset contains 269,648 images. There are 81 ground-truth
concepts that have been annotated manually. Following the protocols in [178], we
select the 21 most frequent concepts as the training set (190,421 in total) in which
the number of training samples is equal to 10,500 and query set has size of 2,100.
Each annotation is embedded into a 1000 dimensional BoW representation.

3.4.3 Performance and evaluation

We adopt Hamming ranking and hash lookup to evaluate the performance. For hash
based retrieval, the Hamming ranking procedure ranks the candidates in the retrieval
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Table 3.1: mAP for different feature dimension N on the MIRFlickr-25k dataset.

Feature dimension N = 64 128 256 512 1024
Image-to-Text 0.802 0.818 0.831 0.833 0.829
Text-to-Image 0.819 0.850 0.852 0.859 0.844

set according to their Hamming distance to the given query items in ascending
order. Mean average precision (mAP) is the commonly-used criteria to measure
the accuracy of the Hamming ranking distances. The accuracy of the hash look-up
returns all the candidates within a certain Hamming radius. A precision-recall curve
is widely used to implement hash look-up evaluation. For performance comparison,
we compare with recent relevant work in DCMH [173] and SSAH [178], both of
which use deep learning methods.

Common feature dimension. The dimension of the common feature is an impor-
tant parameter for cross-modal hash retrieval. Before conducting our experiments,
we evaluate the effect of the common feature dimension (i.e. the N in Figure 3.1).
The results are reported in Table 3.1 where “Image-to-Text” and “Text-to-Image”
mean that the query items are image and text, respectively. We can see that for
N = 512 , the mAP score is highest. Therefore, in our experiments, we use a 512
dimensional (i.e. N = 512) common feature.

Hamming ranking. To demonstrate the precision of our proposed method, we
conduct and compare methods using CNN-F features on the MIRFlickr-25k and
NUS-WIDE, as shown in Table 3.2. The baseline results are from SSAH [178]
and we find that our method outperforms these baseline methods. Specifically, the
proposed method achieves better significantly results than other counterparts. For
instance, when the length of the hash codes is equal to 32 bits, the results for
“Image-to-Text” and “Text-to-Image” are improved by 5.4% and 8.1%, respectively,
when compared to state-of-the-art method SSAH. Meanwhile, for another dataset
NUS-WIDE, where more instances and contents are included within an image, which
makes it hard to train and perform cross-modal retrieval. However, the proposed
method also outperforms the other methods. For instance, our method has 2.5%

Table 3.2: mAP results on MIRFlickr-25k and NUS-WIDE datasets.

Tasks and Methods MIRFlickr-25K NUS-WIDE
16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Image-to-Text
DCMH [173] 0.735 0.737 0.750 0.478 0.486 0.488
SSAH [178] 0.782 0.790 0.800 0.642 0.636 0.639

Ours 0.825 0.833 0.838 0.648 0.652 0.647

Text-to-Image
DCMH [173] 0.763 0.764 0.775 0.638 0.651 0.657
SSAH [178] 0.791 0.795 0.803 0.669 0.662 0.666

Ours 0.845 0.859 0.861 0.671 0.681 0.669
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Figure 3.5: Precision-recall curves for three methods. The code length is 16 bits.

Table 3.3: Ablation study for the proposed method.

Tasks Image-to-Text Text-to-Image
Baseline1 0.773 0.792
Baseline2 0.795 0.814
Baseline3 0.810 0.827

Full-method 0.834 0.859

and 2.9% improvement respectively, compared to SSAH using a hash codes of 32
bits. Therefore, all the results in Table 3.2 demonstrate the effectiveness of using
information entropy for mitigating the heterogeneity gap. Furthermore, we could
find that for different tasks and using a different hash code length, we can find the
retrieval performance improves when the hash code length is set to 32 bits.

Hash lookup. For this procedure, we compute the precision and recall for the
retrieval results with respect to a different Hamming radius. In this experiment, we
vary the Hamming radius from 0 to 50 with step-size 1. For each radius, the retrieval
algorithms will return the correct items, larger covered area of the precision-recall
curve indicates a better retrieval performance. The results are shown in Figure 3.5.
For fair comparison, we used the source codes provided by the authors, and a hash
code length of 16 bits for this experiment. For both the “Image-to-Text” and “Text-
to-Image” tasks, our proposed method has curves that have a larger covered areas
than these competitive deep learning methods. The result further demonstrates the
superiority of the proposed method.

Ablation study. We conduct an ablation study for our method on the MIRFlickr-
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Figure 3.6: Precision-recall curves for ablation study. The code length is 32 bits.

25k dataset with 32-bits hash codes. Specifically, we build three baselines using
different objective functions. Our Baseline1 is only based on Lpairs + Lq; Baseline2
is based on Lpairs + Lq + Ll, which illustrates the effectiveness of label predictor;
Baseline3 is based on Lpairs+Lq +Ll+Lm, demonstrating the effect of a multi-level
similarity objective function. Finally, we incorporate all loss functions as full-method.
The results are reported in Table 3.3. Furthermore, we compare the corresponding
precision-recall curves, as shown in Figure 3.6. We can see that the mAP is highest
when domain uncertainty is used.

3.5 Chapter Conclusions

In this chapter, we have exploited modality information for cross-modal hash re-
trieval. We devised a novel network to predict visual domain and textual domain
based on the features learned from these two modalities. The protagonist net-
work depends on a objective function by using Shannon’s information entropy to
maximize domain uncertainty. Maximizing the domain uncertainty is beneficial for
bridging the gap between two modalities because it minimizes the influence of the
individual modality. Furthermore, we considered multi-level similarity for feature
learning where all similar image-text pairs are constrained with different weights
according to the number of common labels between these similar pairs. Extensive
experiments implemented on two multi-label datasets demonstrate the effectiveness
of the proposed method which outperforms the state-of-the-art.
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Chapter 4

Integrating Information Theory and
Adversarial Learning for
Cross-modal Retrieval

In this chapter, we further explore cross-modal retrieval to address the challenges
posited by the heterogeneity gap and the semantic gap. To be specific, we propose
integrating Shannon information theory and adversarial learning. In terms of the
heterogeneity gap, we integrate modality classification and information entropy max-
imization adversarially. For this purpose, a modality classifier (as a discriminator) is
built to distinguish the text and image modalities according to their different statisti-
cal properties. This discriminator uses its output probabilities to compute Shannon
information entropy, which measures the uncertainty of the modality classification
it performs. Moreover, feature encoders (as a generator) project uni-modal features
into a commonly shared space and attempt to fool the discriminator by maximiz-
ing its output information entropy. Thus, maximizing information entropy gradu-
ally reduces the distribution discrepancy of cross-modal features, thereby achieving
a domain confusion state where the discriminator cannot classify two modalities
confidently. To reduce the semantic gap, Kullback-Leibler (KL) divergence and bi-
directional triplet loss are used to associate the intra- and inter-modality similarity
between features in the shared space. Furthermore, a regularization term based on
KL-divergence with temperature scaling is used to calibrate the biased label classi-
fier caused by the data imbalance issue.

Keywords
Cross-modal retrieval, Shannon information theory, Adversarial learning, Modality
uncertainty, Data imbalance.

This chapter is based on the following publication [35]:

• Chen, W., Liu, Y., Bakker, E., and Lew, M.S., “Integrating Information Theory and Adver-
sarial Learning for Cross-modal Retrieval.” Pattern Recognition, 2021, 117, pp. 107983.
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4. INTEGRATING INFORMATION THEORY AND ADVERSARIAL
LEARNING FOR CROSS-MODAL RETRIEVAL

4.1 Introduction

Deep learning methods can effectively embed features from different modalities into
a commonly shared space, and then measure the similarity between these embedded
features. As mentioned in Chapter 3, the “heterogeneity gap” [176] and the “semantic
gap” [10] are still challenges to be addressed for cross-modal retrieval. To achieve
better retrieval performance, it is essential to address these gaps for associating the
similarity between cross-modal features in the shared space.

To capture the semantic similarity between cross-modal features, many approaches
have been proposed in recent years. Some approaches focus on designing effective
structures from a deep networks perspective. For instance, graph convolutional
networks are employed to model the dependencies within visual or textual data.
Other approaches focus on designing similarity constraint functions from a deep
features perspective. For example, bilinear pooling-based methods are applied to
align image and text features to then accurately capture inter-modality semantic
similarity. In other examples, coordinated representation learning methods, such as
ranking loss [177, 184] are widely used to preserve similarity between cross-modal
features. These constraint functions mainly aim at reducing the semantic gap by
focusing on the similarity between two-tuple or three-tuple samples. However, they
might not directly mitigate the heterogeneity gap caused by the inconsistent feature
distributions in the different spaces.

Considering the limitations of similarity constraint functions, we propose a new
method to perform cross-modal retrieval from two aspects. First, we reduce the
heterogeneity gap by integrating Shannon information theory [179] with adversarial
learning, in order to construct a better embedding space for cross-modal represen-
tation learning. Second, we combine two loss functions, including KL-divergence
loss and bi-directional triplet loss, to preserve semantic similarity during the feature
embedding procedure, thereby reducing the semantic gap.

To do this, we combine the information entropy predictor and the modality classifier
in an adversarial manner. Information entropy maximization and modality classifi-
cation are two processes trained with competitive goals. Since uni-modal features
extracted from image or text data are characterized by different statistical proper-
ties, it can be used to distinguish the original modalities these features belong to.
As a result, when these features in the shared space are correctly classified into their
original modalities with high confidence, then their feature distributions convey less
information content, and the modality classifier performs modality classification with
lower uncertainty. In contrast, when cross-modal features become modality-invariant
and show their commonalities, these features cannot be classified into the modality
they originally belong to. In this case, the feature distributions in the shared space
conveys more information content and higher modality uncertainty.
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According to Shannon’s information theory [179], we can measure the modality
uncertainty in the shared space by computing information entropy. This basic pro-
portional relation provides the principle to mitigate the heterogeneity gap. For this
purpose, we integrate modality uncertainty measurement into cross-modal repre-
sentation learning. As shown in Figure 4.1, a modality classifier (in the following
we call it a discriminator) is devised to classify image and text modality, rather
than perform a “true/false” binary classification. This discriminator also provides
its output probabilities to calculate the information entropy of the cross-modal fea-
ture distributions. At the start of training, the discriminator can classify images
and text modalities with high confidence due to their different statistical properties.
In contrast, the feature encoders (in the following we call it a generator) project
features into a shared space and attempt to fool the discriminator and make it per-
form an incorrect modality classification until features in the shared space are fused
heavily into a confusion state, maximizing the modality uncertainty.

On the basis of this heavily-fused state, we further use similarity constraints on the
feature projector to reduce the semantic gap. Specifically, KL-divergence loss is used
to preserve semantic similarity between image and text features by using instance
labels as supervisory information. More importantly, we consider the issue of data
imbalance and introduce a regularization based on KL-divergence with temperature
scaling to calibrate the biased label classifier. Afterwards, we adopt the commonly
used bi-directional triplet loss and instance label classification loss (i.e. categorical
cross-entropy loss) to achieve good retrieval performance.

4.2 Related Work

4.2.1 Cross-modal representation learning and matching

Preserving the similarity between cross-modal features should consider two aspects:
inter-modality and intra-modality. Supervision information (e.g. class label or in-
stance label), if available, is beneficial for learning features from these two aspects.
Preserving feature similarity can be realized by using methods such as joint represen-
tation learning and coordinated representation learning. Joint representation learn-
ing methods project the uni-modal features into the shared space using straightfor-
ward strategies such as feature concatenation, summation, and inner product. Sub-
sequently, more complicated bilinear pooling methods, such as multimodal compact
bilinear (MCB) pooling, are proposed to explore the semantic similarity of cross-
modal features. To regularize the joint representations, deep networks are commonly
trained by using objective functions, such as regression-based loss [185].

Coordinated representation learning methods process image and text features sep-
arately but impose them under certain similarity constraints. In general, these
constraints can be categorized into classification-based and verification-based meth-
ods in supervised scenarios. In terms of classification-based methods, both image
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and text features are used to make a label classification by using categorical cross-
entropy loss function. Because a paired image-text input has the same class label,
their features can be associated in the shared space. However, classification-based
methods cannot preserve the similarity between inter-modality features well because
the similarity between image and text features is not directly regularized.

Image

Text

EEnnccooddeerr E1

EEnnccooddeerr E2

Feature projector

Information entropy 
predictor

Shared space

Modality classifier

semantic similarity preserving

uncertainty maximization

uncertainty minimization

Adversary
i dZ FÎ

t dZ FÎ

Figure 4.1: Illustration of combining in-
formation theory and adversarial learning.
The features Zi ∈ F d and Zt ∈ F d with di-
mension d for image-text pairs are extracted
using deep neural networks. Shape indi-
cates modality and color denotes pair-wise
similarity information.

Verification-based methods, based on
metric learning, are proposed to further
optimize inter-modality feature learn-
ing. Given a similar (or dissimi-
lar) image-text pair, their correspond-
ing features should be verified as sim-
ilar (or dissimilar). Therefore, the
goal of deep networks is to push fea-
tures of similar pairs closer, while keep-
ing features of dissimilar pairs further
apart. Verification-based methods in-
clude pair-wise constraints and triplet
constraints, which focus on inferring the
matching scores of image-text feature
pairs [185].

Triplet constraints optimize the distance between positive pairs to be smaller than
the distance between negative pairs by a margin. They can capture both intra-
modality and inter-modality semantic similarity. For example, bi-directional triplet
loss has been employed to optimize image-to-text and text-to-image ranking [177].
Although triplet constraints are widely used for cross-modal retrieval, the difficulties
are in the mining strategy for negative pairs and the selection of a margin value,
which are usually task-specific and empirically selective.

4.2.2 Adversarial learning for cross-modal retrieval

The aforementioned joint and coordinated representation learning approaches fo-
cus on two-tuple or three-tuple samples, which may be insufficient for achieving
overall good retrieval performance. Adversarial learning, as an alternative method,
has shown its powerful capability for modeling feature distributions and learning
discriminative representations between modalities when deep networks are trained
with competitive objective functions [177].

Recent progress in using adversarial learning for cross-modal retrieval can be cate-
gorized as feature-level and loss function-level discriminative models.

From a feature-level perspective, it is possible to preserve semantic consistency by
performing a min-max game between inter-modality feature pairs [177]. A straight-
forward way is to build a discriminator, making a “true/false” classification between
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image features (regarded as true), corresponding matched text features (regarded as
fake), and unmatched image features from other categories (also regarded as fake)
[177]. Alternatively, a cross-modal auto-encoder can be combined to generate fea-
tures for another modality. For example, a generator attempts to generate image
features from textual data and then regards them as true, while for a discriminator,
image features extracted from original images and these from the generated “images”
are labeled as true and fake, respectively. The adversarial training explores the se-
mantic similarity of cross-modal representations. Intra-modality discrimination also
can be considered in cross-modal adversarial learning, forcing the generator to learn
more discriminative features. In this case, the discriminator tends to discriminate
the generated features from its original input.

From a loss function-level perspective, instead of making a binary classification
(i.e. true or fake), adversarial learning is used to train two groups of loss functions
or two processes with competitive goals. This idea is applied in recent work for
cross-modal retrieval [177]. Specifically, a feature projector is trained to generate
modality-invariant representations in the shared space, while a modality classifier is
constructed to classify the generated representations into two modalities. Similarly,
we combine two networks and train them with two competitive goals.

4.2.3 Information-theoretical feature learning

As noted before, feature vectors from different modalities are distributed in different
spaces, resulting in the heterogeneity gap, which affects the accuracy of cross-modal
retrieval. Therefore, it becomes essential to reduce feature distribution discrepancies
and thereby reduce the heterogeneity gap. The solution for this is to measure and
then minimize distribution discrepancy. For example, distribution disparity of cross-
modal features can be characterized by Maximum Mean Discrepancy (MMD), which
is a differentiable distance metric between distributions. However, MMD suffers from
sensitive kernel bandwidth and weak gradients during training.

Information-theoretical based methods measure the differences of feature distribu-
tions and learn better cross-modal features. As an example, the cross-entropy loss
function is widely used to estimate the errors between inference probabilities and
ground-truth labels where the gradients are computed according to the errors. Once
the gradients are computed, deep networks can further update their parameters via
the back-propagation algorithm. KL-divergence (also called relative entropy) is an-
other popular criterion to characterize the difference between two probability distri-
butions. Minimizing the difference is beneficial for retaining the semantic similarity
between features. For example, Zhang et al. [186] employ the KL-divergence to mea-
sure the similarity between projected features and supervisory information.

Recently, Shannon information entropy [179] has been used for performing cross-
modal hash retrieval [34]. This study indicates that Shannon entropy can be used for
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multimodal representation learning by estimating uncertainty [179]. Take generative
adversarial networks as an example: if the generator makes image features and text
features close and minimizes their discrepancy, then the discriminator will become
less-certain or under-confident, i.e., having a high information entropy to predict
which modality each feature comes from. We applied this principle in our previous
work [34] to design an objective function to maximize the domain uncertainty over
cross-modal hash codes in a commonly shared space. Deep networks trained by using
information entropy construct a domain confusion state where the heterogeneity gap
can be effectively reduced. On the basis of this state, other loss functions, such as
ranking loss, can be further applied to regularize feature similarity.

4.3 Proposed Approach

4.3.1 Problem formulation

We consider a supervised scenario for cross-modal retrieval. Denote X i as the input
images and the corresponding descriptive sentences as X t. Each image and its
descriptive sentences have the same instance label Y . Therefore, we can organize
an input pair (xi, xt, y) to train a deep network. To be specific, feature encoders
E1(·;θE1) and E2(·;θE2) extract image and text features, respectively, and then
further embed these uni-modal features into a shared space by using non-shared sub-
networks. The embedded features with dimension d are denoted as Zi = E1(X i;θE1)

and Zt = E2(X t;θE2), Zi,Zt ∈ Rd. Note that the parameters in the non-shared sub-
networks for uni-modal image and text feature embedding have been included into
θE1 and θE2 , respectively. The goal is to train a deep network to make the embedded
features Zi and Zt modality-invariant and semantically discriminative, improving
the retrieval accuracy.

As shown in Figure 4.1, the networks E1, E2, and the information entropy predictor
act as a generator, while the modality classifier acts as a discriminator. The training
of the generator and the discriminator is formulated as an min-max game to miti-
gate the heterogeneity gap. The feature projector preserves feature similarity under
several constraints, which are introduced in Section 4.4.2, 4.4.3, and 4.4.4.

4.3.2 Integrating information theory & adversarial learning

4.3.2.1 Information entropy and modality uncertainty

Uni-modal features from different modalities have similar semantics but are dis-
tributed in different spaces. Their similarities are not well associated so that these
features are not directly comparable. It is required to further embed them into a
shared space (i.e. Zi and Zt in Figure 4.1). Uni-modal features are characterized by
different statistical properties. Therefore, as shown in Figure 3.2(a) in Chapter 3, it
is possible to identify a feature in the shared space coming from a visual modality
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with higher probability Pi (more certain classification) than coming from a textual
modality with lower probability Pt=1−Pi (less certain classification). In other words,
these cross-modal features are not intertwined heavily. As a result, the domain con-
fusion state is not achieved. Conversely, if a given feature can not be distinguished
which modality this feature originally comes from, it indicates that this feature has
identical probability (Pi =Pt) coming from each modality. In this case, the shared
space has highest uncertainty and the cross-modal features are intertwined into a
domain confusion state, which corresponds to highest information content. We use
information entropy [179] to measure the uncertainty of the shared space. Figure
3.2(b) in Chapter 3 illustrates that two modalities with an equal probability leads
to the highest Shannon information entropy and thus information content.

Modality uncertainty refers to the unreliability of classification that the discrimina-
tor classifies image features and text features into two modalities. It is proportional
to Shannon information entropy [179], as shown in Figure 3.2(c) in Chapter 3. Based
on this observation [34], we design the discriminator to measure its output modal-
ity uncertainty by using information entropy as a criterion. Maximizing information
entropy means that the discriminator becomes least-confident in classifying the orig-
inal modality of image and text features, resulting in the greatest reduction of the
heterogeneity gap.

4.3.2.2 Adversarial learning and information entropy

To make cross-modal features modality-invariant, we devise a generator and a dis-
criminator, as shown in Figure 4.1. The discriminator performs modality classifica-
tion to identify visual modality and textual modality based on cross-modal features.
Following [177], we define the modality label as Y ∗c for these two modalities (for
visual modality ∗ = i and textual modality ∗ = t). Using output probabilities of the
discriminator, we can compute cross-entropy loss to realize modality classification
[177]. Once the network convergences under the constraint of this loss function,
visual modality and textual modality are clearly identified and classified, thereby
minimizing the modality uncertainty.

Conversely, the generator is designed to maximize the modality uncertainty over the
cross-modal feature distributions. To achieve this, the generator learns modality-
invariant features to fool the discriminator, maximizing the uncertainty of modality
classification the discriminator performs. If the modality uncertainty is maximized,
the discriminator is most likely to make an incorrect modality classification and be
least-confident about its classification results. In this case, cross-modal features are
intertwined into a domain confusion state and become indistinguishable.

To this end, we explore the ways to integrate information entropy and adversarial
learning into an end-to-end network, which is introduced in Section 4.4.1. For better
understanding, we also explore another combining paradigm in the Experimental
Section.
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4.3.3 KL-divergence for cross-modal feature projection

To reduce the semantic gap, we use KL-divergence to characterize the differences
between projected cross-modal features (Zi and Zt in Figure 4.1) and a supervisory
matrix computed from their instance labels, i.e. KL((f(Zi, Zt)||f(Y >l , Yl)), (see
Eq. 4.9). In this way, the semantic similarity among cross-modal features can be
preserved. We illustrate this process in Figure 4.2. It is important to note that
when using KL-divergence to preserve semantic similarity of cross-modal features,
all positive and negative pairs in a mini-batch are considered. As for the supervisory
matrix f(Y >l , Yl), it is computed by using matrix multiplication and is normalized
to the range from 0 and 1.

We argue that different operations to realize f(Zi, Zt) affect similarity preserving.
Directly, the operation f(·) can be an inner product on cross-modal features Zi and
Zt. However, using the inner product has some implicit drawbacks. First, when
multiplying one image feature vector with all text feature vectors, the results of
the inner product are not optimally comparable due to the non-normalized text
features, and vice versa. Second, the angles between each image feature vector and
each text feature vector, as well as their whole feature distributions, are changing
when training the deep network, which makes it problematic for an inner product
to measure feature similarity.

To tackle the above limitations, we adopt a cross-modal feature projection to char-
acterize the similarity between features. The idea is related to the work in [186].
Cross-modal feature projection is based on the same distribution and operates on
the normalized features. For instance, an image feature vector, zij ∈ Zi, can be
projected to the distribution of a text feature vector ztk ∈ Zt, then each projected
feature vector from image to text (termed “i→ t”) can be formulated as:

ẑi→tj = |zij| ∗
<zij, z

t
k>

|zij||ztk|
∗ ztk
|ztk|

=<zij, z̄
t
k> ∗z̄tk

(4.1)

where “i” and “t” represent the visual and the textual modality, respectively, “j”
and “k” represent the index of each image feature and text feature in the shared
space, respectively, z̄tk denotes the normalized feature. Therefore, the length of ẑi→tj

is equal to |ẑi→tj |= |<zij, z̄tk>|, and denotes the similarity between image feature zij
and text feature ztk. When associating each image feature zij with all text features
Zt, we obtain all different lengths, Therefore, when projecting all image features into
all text features Zt, we get a similarity matrix Ai→t, which is formulated as

Ai→t(Z
i, Zt) =

N∑
j=1

N∑
k=1

|<zij, z̄tk>| = Zi(Z̄t)> (4.2)
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Similarly, if projecting all text features into all image features Zi, we obtain another
similarity matrix At→i:

At→i(Z
t, Zi) =

N∑
k=1

N∑
j=1

|<ztk, z̄ij>| = Zt(Z̄i)> (4.3)

In the above two equations, Zi and Zt represent the cross-modal features from two
modalities. N is the number of samples in a mini-batch. These two similarity
matrices are normalized by a softmax function. Afterwards, we use KL-divergence
to characterize the difference between the normalized matrices and the supervisory
matrix, i.e. KL((f(Zi, Zt)||f(Y >l , Yl)). The specific objective function is introduced
in Section 4.4.2.

4.4 Implementation and optimization
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Figure 4.2: KL-divergence for cross-modal
feature projection, which considers all fea-
tures Zi and Zt in the shared space. Each
paired image feature and text feature share
the same instance label, indicated by the
same color. The cross-modal feature projec-
tion module is critical to explore the simi-
larity between image features and normalized
text features. The projection process is for-
mulated in Eqs. 4.2 and 4.3.

We introduce the implementation and
optimization of our proposed ap-
proach in this section. We employ four
convolutional neural networks such as
ResNet-152 [13] and MobileNet [187]
to obtain image features and a Bi-
directional LSTM (Bi-LSTM) [188] to
extract text features. All the ex-
tracted image and text features are
uni-modal. Later, we borrow the pro-
tocols of non-shared encoding sub-
networks (fully-connected layers) in
[186] to get the cross-modal features
Zi and Zt.

Once the cross-modal features are ob-
tained, we use the proposed algorithm
to train the networks based on the above theoretical analysis. The algorithm includes
combining information entropy and adversarial learning to mitigate the heterogene-
ity gap, and loss function terms (i.e. KL-divergence loss, categorical cross-entropy
loss, and bi-directional triplet loss) to preserve semantic similarity between cross-
modal features.

4.4.1 Combining information theory & adversarial learning

We combine information entropy predictor and modality classifier in Figure 4.1 into
a unified sub-network, as shown in Figure 4.3. In this paradigm, the discriminator D
with parameters θD performs a modality classification and computes the Shannon
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information entropy. The backbone nets E1 and E2 for feature extraction act as
the generator G. The whole structure forms a generative adversarial network. The
information entropy computed from the discriminator back-propagates to the feature
encoders. Specifically, when the discriminator is fixed, and its parameters are θ?D,
then the information entropy H(P ?

D
) = E

i,t
(−P ?

D
∗ log(P ?

D
)) is computed from its

output probabilities P ?
D

(D|Zi,t;θ?D) across the features for all classes. Based on the
information entropy, we can design a negative entropy loss Ls = −H(P ?

D
) (see Eq.

4.4) to train the network. The gradients computed from Ls update the parameters of
feature extractors. The negative information entropy Ls is label-free during training,
and it regularizes the whole feature distribution to be modality-invariant.
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Figure 4.3: The implementation of integrat-
ing information entropy predictor and modal-
ity classifier in Figure 4.1 into a unified dis-
criminator. Together with the feature ex-
tractors, the whole framework is in the form
of generative adversarial network. For clar-
ity, we ignore the feature projector, which in-
cludes label classification loss, bi-directional
triplet loss, and KL-divergence loss.

The discriminator consists of some
fully-connected layers. The last layer
with two neurons yields probabilities
that correspond to two modalities.
This discriminator classifies whether
the input features Zi and Zt are from
the visual or the textual modality
given the pre-defined modality label
Y ∗c . In contrast, the generator (i.e. E1

and E2 ) aims at learning modality-
invariant features to fool the discrim-
inator to make an incorrect modal-
ity classification so that the generator
gradually maximizes the output infor-
mation entropy from the discrimina-
tor. Therefore, the learning process
of the discriminator affects that of the
generator in an indirect way. The ob-
jective function is calculated using the output probabilities P

D
(D|Zi,t;θD) of the

discriminator.

For the generator E1 and E2:

Ls=
1

N

N∑
j=1

M∑
m=1

(
P i
D,m(Di|Zi

j;θD)∗log(P i
D,m(Di|Zi

j;θD))

+ P t
D,m(Dt|Zt

j ;θD)∗log(P t
U,m(Dt|Zt

j ;θD))
)

s.t.

M∑
m=1

P ∗D,m(D∗|Z∗j ;θD) = 1, P ∗D,m(D∗|Z∗j ;θD) ≥ 0

(4.4)

It is expected for the generator G to maximize the information entropy H(P ?
D

), and
subsequently the modality uncertainty (see Figure 3.2 in Chapter 3). Since Ls is a
negative entropy (Ls =−H(P ?

D
)) to maximize H(P ?

D
), it is minimized to optimize
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the parameters θE1 and θE2 of the generator during training. For the discrimi-
nator D, depending on the modality label Y i

c and Y t
c and its output probabilities

P
D

(D|Zi,t;θD), the modality classification cross-entropy loss function is formulated
as:

Lc= − 1

N

N∑
j=1

(
Y i
c ∗log

(
P i
D(Di|Zi

j;θD)
)

+ Y t
c ∗log

(
P t
D(Dt|Zt

j ;θD)
))

(4.5)

Lc refers to the negative cross-entropy loss of the discriminator and is minimized to
clearly classify image and text features into two modalities during training. Note
that the gradients calculated from term Ls are only used to optimize the parame-
ters θE1 and θE2 of the generator, whereas the gradients from term Lc are only for
optimizing the parameters θD of the discriminator, as shown in Figure 4.3. Min-
imizing loss Lc and Ls when trained iteratively will reduce the heterogeneity gap.
The optimization method is straightforward, even though the gradients calculated
from Lc will not directly affect the parameters of the feature encoders E1 and E2.
The output probabilities of the discriminator change when updating its parameters,
which will affect the Shannon information entropy and affect the output features
from E1 and E2 in the end.

4.4.2 KL-divergence for similarity preserving

We also compute KL-divergence directly across Zi and Zt to further preserve seman-
tic similarity. KL-divergence focuses on the projections of image and text features
and is computed by Lkl = KL((f(Zi, Zt)||f(Y >l , Yl)). Here, superscript “>” means
matrix transpose. Lkl focuses on constraining the whole feature distributions and
is complementary to the following bi-directional triplet loss function. We have in-
troduced the process of cross-modal feature projection in Section 4.3.3. Given the
similarity matrices (i.e. Ai→t(Zi, Zt) and At→i(Z

t, Zi)), we use the softmax func-
tion to normalize these matrices in Eq. 4.6 and Eq. 4.7. The supervisory matrix
is normalized after matrix multiplication as in Eq. 4.8. Similar to [186], since we
project features from visual (or textual) modality into textual (or visual) modal-
ity, the KL-divergence regularizes the semantics in bi-directional feature projection,
which is formulated in Eq. 4.9 as:

Pi→t =
exp
(
Ai→t(Z

i, Zt)
)∑

exp
(
Ai→t(Zi, Zt)

) (4.6)

Pt→i =
exp
(
At→i(Z

t, Zi)
)∑

exp
(
At→i(Zt, Zi)

) (4.7)

Qy =
exp(Y >l Yl)∑
exp(Y >l Yl)

(4.8)
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Lkl = Lkli→t
+ Lklt→i

=
1

N

(∑∑
Pi→t ∗ log(

Pi→t
Qy + ε

) +
∑∑

Pt→i ∗ log(
Pt→i
Qy + ε

)
) (4.9)

where ε is a small constant to avoid division by zero. Loss Lkl refers to the KL-
divergence between the projections of image-text features and their supervisory ma-
trix. This loss is minimized and the gradients computed from Lkl are used to update
the parameters θE1 and θE2 of the generator, thereby the semantics between image
features and text features can be associated.

4.4.3 Instance label classification

4.4.3.1 Categorical cross-entropy loss

Label classification is a popular idea for cross-modal features learning [186]. We use
the instance labels provided on the datasets for label classification. For categori-
cal cross-entropy loss, we apply the norm-softmax strategy and feature projection
in [186] to learn more discriminative cross-modal features. On the one hand, the
normalized parameters θP in the label classifier encourage cross-modal features to
distribute more compactly so that the softmax classifier performs label classification
correctly. On the other hand, projection between image and text features strength-
ens their similarity association and is beneficial for label classification [186]. Feature
projection can be computed using Eq. 4.1. Subsequently, given the instance label
yl, categorical cross-entropy loss Lce is defined by Eq. 4.10 and is minimized during
training1:

Lce = E
i,t

(−yl ∗ log(p
P

(c|Zi,t;θP )))

= − 1

N

( N∑
j=1

yl,j ∗ log
( exp(W>

yl,j
ẑi→tj )∑

j exp(W
>
j ẑ

i→t
j )

)
+

N∑
j=1

yl,j ∗ log
( exp(W>

yl,j
ẑt→ij )∑

j exp(W
>
j ẑ

t→i
j )

))
s.t. ||Wj|| = 1; ẑi→tj =<zij, z̄

t
j> ∗z̄tj; ẑt→ij =<ztj, z̄

i
j> ∗z̄ij

(4.10)
where N is the number of image-text pairs in a mini-batch. Wyl,j and Wj represent
the yl,j-th and the j-th column of weights W in classifier parameters θP according
to [186]. ẑi→tj and ẑt→ij are the projections image to text and the projections text to
image, respectively, by using Eq. 4.1.

4.4.3.2 KL-divergence for data imbalance

Label classification using categorical cross-entropy loss can preserve semantic simi-
larity between cross-modal features. However, we argue that there also exists a data
imbalance issue when training the label classifier because each image is described

1We omit the bias term for simplicity
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by more than one sentence (e.g. each image has five description sentences in the
Flickr30K dataset). In the end, it causes the learned label classifier to prefer text
features.

The issue of data imbalance in cross-modal retrieval can be resolved by constructing
an augmented semantic space to re-align features. In this work, we use the tem-
perature scaling [189] to tackle the data imbalance issue. The biased label classifier
can be calibrated by re-scaling its output probabilities i.e., pi→t=softmax(W>ẑi→t

τ
)

and pt→i = softmax(W>ẑt→i

τ
), respectively. Re-scaling the probabilities with tem-

perature τ raises the output entropy so better image-text matching can be observed
[189]. Subsequently, we use KL-divergence to measure the differences between the
re-scaled probabilities. Since the magnitudes of the gradients produced by the re-
scaling probabilities scale as 1/τ 2, it is important to multiply them by τ 2. Finally,
the KL-divergence loss on the scaling probabilities for data imbalance can be for-
mulated as Ldi:

Ldi=
τ 2

N

∑∑(
pi→t∗log(

pi→t

pt→i+ε
) + pt→i∗log(

pt→i

pi→t+ε
)
)

s.t. pi→t=softmax
(W>ẑi→t

τ

)
, pt→i=softmax

(W>ẑt→i

τ

) (4.11)

where ε is a small constant to avoid division by zero. With τ = 1, we recover
the original KL-divergence. As reported in Table 4.5, we find that the parameter
τ can affect the effectiveness of loss Ldi. Minimizing loss Ldi effectively reduces
the influence of data imbalance issue and improves retrieval accuracy. The final
objective function for label classification is (Lce + Ldi). The gradients calculated
from loss (Lce + Ldi) are used to optimize the parameters θE1 , θE2 , and θP in the
generator and the label classifier, respectively.

4.4.4 Bi-directional triplet constraint

The triplet constraint is commonly used for feature learning. To achieve the baseline
performance, we use this constraint from an inter-modality and an intra-modality
perspective to strengthen the discrimination of cross-modal features.

Given cross-modal features Zi and Zt in the shared space, the cosine function is used
to measure global similarity between feature vectors, i.e. Sjk = (Zi

j)
>Zt

k. We adopt
the hard sampling strategy to select three-tuples features from an inter-modality and
an intra-modality viewpoint. Hence, the inter-modality and intra-modality triplet
loss functions are formulated as:

Linter =
1

N

( N∑
j,k+,k−

max[0,m− Sj,k+ + Sj,k− ] +
N∑

k,j+,j−

max[0,m− Sk,j+ + Sk,j− ]
)

(4.12)
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Algorithm 1: Whole network training and optimization pseudocode
1: Input: mini-batch images X i, text X t, instance label Y , modality label (Y i

c ,
Y t
c ), total training batch S, pre-trained parameters θE1 , update steps k

2: Output: the embedded cross-modal features Zi and Zt in Figure 4.1
3: Initialize hash functions: learning rate lr1, lr2, θE2 , θP , θD

For n = 1 to S
For k steps
cross-modal features embedding:

4: Zi = E1(X i;θE1) //Embed image features into the shared space
5: Zt = E2(X t;θE2) //Embed text features into the shared space
6: loss computing and feature optimization:
7: Lce, Ldi, Ltr, Lkl calculation //Eqs. 4.10, 4.11, 4.14, 4.9
8: P i

D = D(Zi;θD) //Discriminator D
9: P t

D = D(Zt;θD)
10: Ls, Lc calculation //Eqs. 4.4, 4.5
11: fix θD, update parameters θE1 , θE2 , θP :
12: θP ← θP − lr2 · ∇θP (Lce + Ldi)
13: θE1 ← θE1 − lr1 · ∇θE1

(Lce + Ldi + Ltr + Lkl + Ls)
14: θE2 ← θE2 − lr2 · ∇θE2

(Lce + Ldi + Ltr + Lkl + Ls)
End for

15: fixate θP , θE1 , θE2 , update parameters θD:
16: θD ← θD − lr2 · ∇θD(Lc)

End for

Lintra =
1

N

( N∑
j,j+,j−

max[0,m− Sj,j+ + Sj,j− ] +
N∑

k,k+,k−

max[0,m− Sk,k+ + Sk,k− ]
)

(4.13)

Ltr = Linter + Lintra (4.14)

where m is the margin in the bi-directional triplet loss function. For instance, in
case of inter-modality, Sj,k+ = (Zi

j)
>Zt

k+ , where the anchor features are selected
from the visual modality, while the positive features are selected from the textual
modality. In case of intra-modality, Sj,j+ = (Zi

j)
>Zi

j+ , both the anchor features and
the positive features are selected from the visual modality. Minimizing bi-directional
triplet loss Ltr keeps the correlated image-text pairs closer to each other, while the
uncorrelated image-text pairs are pushed away. This loss directly operates on the
cross-modal features Zi and Zt so that the gradients from it optimize the parameters
θE1 and θE2 of the generator.

The problem of integrating information theory and adversarial learning for cross-
modal retrieval is formally defined, in Eq. 4.15, as a min-max game using the pre-
viously defined loss terms. We further introduce the complete procedure of training
and optimization in Algorithm 1. Finally, when trained to convergence, the network
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yields cross-modal features Zi and Zt in the shared space, as shown in Figure 4.1.
These return cross-modal features are used for performing retrieval.


min

θ
E1
,θ

E2
,θ

P

max
θ
D

(Lce + Ldi + Lkl + Ltr + Ls)

min
θ
D

Lc
(4.15)

4.5 Experiments

4.5.1 Datasets and settings

We demonstrate the efficacy of the proposed method on the Flickr8K [190], Flickr30K
[191], Microsoft COCO [192], and CUHK-PEDES [193] datasets. Each image in
these datasets is described by several descriptive sentences. For Flickr8K, we adopt
the standard dataset splitting method to obtain a training set (6K), a validation set
(1K), and a test set (1K). For Flickr30K, we follow the previous work [186] and use
29,783 images for training, 1,000 images for validation and 1,000 images for test-
ing. For MS-COCO, we follow the training protocol in [186] and split this dataset
into 82,783 training, 30,504 validation and 5,000 test images, and then report the
performance on both 5K and 1K test set. For CUHK-PEDES, it contains 40,206
pedestrian images of 13,003 identities. Following [186], we split this dataset into
11,003 training identities with 34,054 images, 1,000 validation identities with 3,078
images and 1,000 test identities with 3,074 images. Note that all captions for the
same image are used as separate image-text pairs to train network.

Models are trained on GEFORCE TITAN X and Tesla K40 GPUs. To extract
text features, the embedded words are fed into a Bi-LSTM to capture vectors with
dimension 1024 (1024-D). We follow [186] and set the Bi-LSTM with dropout rate
0.3. For fair comparison, we adopt ResNet [13], MobileNet [187], and VGGNet
[61] as the backbone to extract image features and further fine-tune them with
learning rate lr1 = 2 × 10−5, decaying every 2 epochs exponentially. The output
2048-D image features and 1024-D text features are further projected into a shared
space. Then cross-modal features in the space are 512-D vectors (i.e. Zi and Zt

in Figure 4.1). The batch size is set to 64 or 32 depending on available GPUs
memory. For the bi-directional triplet loss function, initially, we treat the inter-
modality and intra-modality sampling identically although each of them might have
different contributions [194], we empirically set the margin to m = 0.5. The re-
scaling parameter τ for data imbalance issue is set as τ = 4 (see Table 4.5). In
practice, the discriminator can classify image and text modality easily at the start
of training, so the generator typically requires multiple (e.g., 5) update steps per
discriminator update step during training (see Algorithm 1).

Once trained to converge, the network yields image features Zi and text features
Zt. We use the cosine function to measure their similarity. We use Recall@K (K=1,
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Table 4.1: Comparison of retrieval results on the Flickr30K [191] and MS-COCO
[192] dataset (R@K (K=1,5,10)(%))

Flickr30K MS-COCO

Method Backbone Net Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

m-RNN [196] VGG 35.4 63.8 73.7 22.8 50.7 63.1 41.0 73.0 83.5 29.0 42.2 77.0
RNN+FV [197] VGG 35.6 62.5 74.2 27.4 55.9 70.0 41.5 72.0 82.9 29.2 64.7 80.4
DSPE+FV [194] VGG 40.3 68.9 79.9 29.7 60.1 72.1 50.1 79.7 89.2 39.6 75.2 86.9
CMPM+CMPC† [186] MobileNet 40.3 66.9 76.7 30.4 58.2 68.5 52.9 83.8 92.1 41.3 74.6 85.9
Word2VisualVec [198] ResNet-152 42.0 70.4 80.1 - - - - - - - - -
sm-LSTM [199] VGG 42.5 71.9 81.5 30.2 60.4 72.3 53.2 83.1 91.5 40.7 75.8 87.4
RRF-Net [200] ResNet-152 47.6 77.4 87.1 35.4 68.3 79.9 56.4 85.3 91.5 43.9 78.1 88.6
Joint learning [143] ResNet-152 48.6 73.6 83.6 32.3 62.5 74.0 55.3 82.7 90.2 41.7 75.0 87.4
CMPM+CMPC‡ [186] ResNet-152 49.6 76.8 86.1 37.3 65.7 75.5 - - - - - -
VSE++ [184] ResNet-152 52.9 80.5 87.2 39.6 70.1 79.5 51.3 82.2 91.0 40.1 75.3 86.1
TIMAM [201] ResNet-152 53.1 78.8 87.6 42.6 71.6 81.9 - - - - - -
DAN [202] ResNet-152 55.0 81.8 89.0 39.4 69.2 79.1 - - - - - -
Dual-path stage I [203] ResNet-152 44.2 70.2 79.7 30.7 59.2 70.8 52.2 80.4 88.7 37.2 69.5 80.6
Dual-path stage II [203] ResNet-152 55.6 81.9 89.5 39.1 69.2 80.9 65.6 89.8 95.5 47.1 79.9 90.0
Our ITMeetsAL VGG 38.5 66.5 76.3 30.7 59.4 70.3 44.2 76.1 86.3 37.1 72.7 85.1
Our ITMeetsAL MobileNet 46.6 73.5 82.5 34.4 63.3 74.2 54.7 84.3 91.1 41.0 76.7 88.1
Our ITMeetsAL ResNet-152 56.5 82.2 89.6 43.5 71.8 80.2 58.5 85.3 92.1 48.3 82.0 90.6
MS-COCO is tested on 1K setting. The best results are in boldface and the second best ones are

underlined.

5, 10) for evaluation and comparison. Moreover, we adopt the precision-recall and
mAP for the ablation study, and visualize their feature distributions by t-SNE [195].
Furthermore, we display the cross-modal retrieval results using our method.

4.5.2 Performance evaluation

4.5.2.1 Results on the Flickr30K and MS-COCO datasets

The retrieval results on Flickr30K and MS-COCO are reported in Table 4.1. Here-
after, “Image-to-Text” means using an image as a query item to retrieve semantically-
relevant text from the textual gallery. “Text-to-Image” means using a text as query to
retrieve images from the visual gallery. In most cases, our proposed approach shows
the best performance when using three different deep networks. For the “Image-to-
Text” task on the MS-COCO dataset, the best results are obtained by Zheng et al.
[203], which adopted a deeper network for text feature learning and used a two-stage
training strategy. However, for the “Text-to-Image” task and the “Image-to-Text”
task on the Flickr30K dataset, our method performs better. Take ResNet-152 as
an example, the results are R@1=43.5% on the Flickr30K and R@1=48.3% on the
MS-COCO for “Text-to-Image” task; the results are R@1=56.5% on the Flickr30K
dataset and R@1=58.5% on the MS-COCO dataset for “Image-to-Text” task.

The learning capacity of deep networks would affect retrieval performance signif-
icantly. For visual feature learning, deeper CNNs usually achieve better results
than their shallower counterparts. This can be observed from Table 4.1, the re-
trieval results based on ResNet-152 are usually higher than those of MobileNet
and VGG. Moreover, our method also has good performance using MobileNet. For
instance, regarding the “Image-to-Text” task on the Flickr30K dataset, the recall
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Table 4.2: Retrieval results on the CUHK-PEDES [193] dataset.

Method Backbone Net Text-to-Image
R@1 R@5 R@10

Latent co-attention [204] VGG 25.94 - 60.48
Local-global association [205] ResNet-50 43.58 66.93 76.26
CMPM [186] MobileNet 44.02 - 77.00
Dual-path two-stage [203] ResNet-152 44.40 66.26 75.07
MIA [206] ResNet-50 48.00 70.70 79.30
CMPM+CMPC [186] MobileNet 49.37 - 79.27
Our ITMeetsAL VGG 44.43 68.26 77.50
Our ITMeetsAL MobileNet 51.85 73.36 81.27
Our ITMeetsAL ResNet-50 50.63 73.33 81.34
Our ITMeetsAL ResNet-152 55.72 76.15 84.26

result of CMPM+CMPC [186] is R@1=40.3%, but the result from our method is
R@1=46.6%, which is a significant improvement. Likewise, for textual modality, a
powerful extractor provides better semantic-aware features, providing better results.
This can be observed on the comparisons between our proposed “ITMeetsAL”, m-
RNN [196] and RNN+FV [197]. Concretely, both of them leverage VGG to extract
image features, but m-RNN [196] and RNN+FV [197] extract textual features using
RNN, which is less powerful than the Bi-LSTM as we used in our experiments.

We obverse that the strategy for network training is critical for retrieval tasks.
Take [203] as an example, the backbone network (ResNet-152) is fixed at stage I (
R@1=44.2% on “Image-to-Text” task on Flickr30K) and then fine-tuned with a small
learning rate on stage II (R@1=55.6% on the “Image-to-Text” task on Flickr30K). In
contrast, our network structure is trained end-to-end in only one stage (we fine-tune
the backbone network with a small learning rate from the beginning). Our reported
results are close to those in two-stage dual learning [203]. When tested on the
Flickr30K dataset for the “Image-to-Text” task, the recall results are R@1=56.5%,
R@5=82.2%, R@10=89.6%, which are the best overall previous methods.

Considering the two branches of “Image-to-Text” task and the “Text-to-Image” task,
we think that the data imbalance issue still influences the performance of each
branch. More specifically, for all listed methods, the “Image-to-Text” task has better
performance, which indicates that the network still has more biases on text feature
learning as a result of the issue of data imbalance. Thus, there exists more room for
improvement using other strategies, such as data augmentation.

4.5.2.2 Results on CUHK-PEDES dataset

The “Text-to-Image” retrieval results on the CUHK-PEDES dataset are reported
in Table 4.2. We evaluate the proposed method using four deep networks. All
results indicate that our method outperforms other counterparts. The optimal re-
sults are achieved with R@1=55.72% using ResNet-152 as backbone network. The
results using MobileNet are sub-optimal but also have some improvements. For
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Table 4.3: Retrieval results on the Flickr8K [190] dataset (R@K (K=1,5,10)(%))

Method Backbone Net Image-to-Text
R@1 R@5 R@10

RNN+FV [197] VGG 23.2 53.3 67.8
GMM+HGLMM [207] VGG 31.0 59.3 73.7
Word2VisualVec [198] ResNet-152 33.4 63.1 75.3
Joint learning [143] ResNet-152 40.6 67.8 78.6
Our ITMeetsAL VGG 28.0 52.7 63.1
Our ITMeetsAL MobileNet 30.9 58.6 70.8
Our ITMeetsAL ResNet-152 40.1 67.8 79.2

The best results are in boldface and the second best results are underlined.

Table 4.4: Component analysis on the Flickr30K [191] (R@1, R@10, and mAP (%))

Flickr30K

Method using MobileNet Image-to-Text Text-to-Image
R@1 R@10 mAP R@1 R@10 mAP

Baseline1: Only Lce+Ltr 40.6 80.8 23.1 31.9 72.2 31.9
Baseline2: Lce+Ltr+Ldi 42.3 80.6 24.4 32.5 73.0 32.5
Baseline3: Lce+Ltr+Ldi+Lkl 44.7 81.0 25.2 32.6 73.2 32.6
Full method: Lce+Ltr+Ldi+Lkl+Ls+Lc 46.6 82.5 26.3 34.4 74.1 34.4

example, CMPM+CMPC achieves a recall R@1=49.37% and R@10=79.27%, while
our method obtains R@1=51.85% and R@10=81.27%. Moreover, the results of our
method show that deeper networks achieve better retrieval performance, whereas
the light-weight MobileNet has a similar performance as ResNet-50.

4.5.2.3 Results on Flickr8K dataset

The retrieval results on the Flick8K dataset are reported in Table 4.3. The best
results R@1=40.6%, R@5=67.8%, R@10=78.6% are achieved by joint correlation
learning [143] where a batch-based triplet loss, which considers all image-sentences
pairs, is used for learning correlations. The second-best results are achieved using
ResNet-152 (same as [143]) R@1=40.1%, R@5=67.8%, R@10=79.2%, which has
better R@10 performance compared to [143]. Our method shows competitive results
compared to other counterparts and also indicates that there exists room for further
performance improvement.

4.5.3 Ablation study

For analyzing the effect of each component, the ablation study are conducted on
the Flickr30K dataset using MobileNet as a backbone net, we use the commonly
used categorical cross-entropy Lce and bi-triplet loss function Ltr to construct the
baseline in Table 4.4, we call this Baseline1 configuration “Only Lce + Ltr”.
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4.5.3.1 Analysis of KL-divergence for data imbalance

Each image in a dataset (e.g. Flickr30k) has more than one description sentence.
We think this leads to a data imbalance issue for cross-modal feature learning. The
network has more text data for training, which causes the learned label classifier to
prefer text features. Therefore, we adopt a regularization term Ldi based on KL-
divergence to calibrate this bias. To this end, the label classifier can be re-calibrated
on the image features and text features. In Table 4.4, this Baseline2 configuration
is named “ Lce + Ltr + Ldi”. The Recall and mean Average Precision (mAP) show
the effectiveness of this loss. Compared to Baseline1, the scaling KL-divergence
loss Ldi contributes more on Recall@1 for both the “Image-to-Text” (42.3%) and
“Text-to-Image” task (32.5%).

4.5.3.2 Analysis of KL-divergence for cross-modal feature projection

KL-divergence is obtained by adding Lkl which constrains the image features and
text features in the shared space under the supervision of supervisory matrix. It
focuses on the whole feature distribution and is complementary to the bi-directional
triplet loss function. We denote Baseline3 as “Lce+Ltr+Ldi+Lkl” in Table 4.4. As
we can see, Recall@1 of the “Image-to-Text” task has been improved significantly by
2.4%. However, the KL-divergence loss shows a slight improvement on the “Text-to-
Image” task. The results indicate that the KL-divergence loss function contributes
more to image feature learning, which might be caused by the issue of data imbalance
of the dataset.

4.5.3.3 Analysis of adversary combining

The prior loss terms have been used to constrain the similarity of the image-text
features in the shared space. Intuitively, two-tuple or three-tuple feature exemplars
are helpful for reducing the “semantic gap” and further making the whole feature
distribution close at the same time. However, the constraint loss functions (e.g.
cosine similarity) cannot constrain the distribution discrepancy of the whole distri-
bution because these loss functions are symmetrical. Focusing on the whole feature
distribution, we combine the Shanon information entropy Ls and the modality clas-
sification loss Lc in an adversary training manner to reduce the heterogeneity gap.
This full method is named “Lce + Ltr + Ldi + Lkl + Ls + Lc” and corresponding
results are shown in Table 4.4. Compared to former baselines, the results obtained
by using our method are improved significantly.

Furthermore, we compare the precision-recall curves for the above four configura-
tions and baselines, the results are shown in Figure 4.4. The larger the area under
the curve, the better the algorithm. Regarding the different tasks, the improve-
ments are slightly different. Overall, we can see that each added component helps
to improve the overall performance of the retrieval algorithm.
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Figure 4.4: The precision_recall curves from “Baseline1” to “Full method” on
Flickr30K, each line corresponds one experimental configuration in Table 4.4. The
larger area under the line indicates better performance.

Table 4.5: Temperature scaling analysis for loss Ldi (R@1, R@10, and mAP (%))

Flickr30K
Temperature Image-to-Text Text-to-Image

R@1 R@10 mAP R@1 R@10 mAP
τ=1 44.0 80.6 24.8 32.9 73.5 32.9
τ=2 45.3 80.9 25.6 33.6 73.6 33.6
τ=3 46.2 83.2 25.7 33.3 73.4 33.3
τ=4 46.6 82.5 26.3 34.4 74.2 34.4
τ=5 46.0 81.6 26.1 34.3 73.9 34.3
τ=6 45.9 80.2 26.1 33.1 73.4 33.1

4.5.3.4 Analysis of temperature τ

We analyze the temperature parameter τ in loss Ldi in Eq. 4.11. Other loss terms
are kept the same with the full method, i.e. “Lce + Ltr + Ldi + Lkl + Ls + Lc”. We
vary this parameter τ from 1 to 6, and their corresponding results are reported in
Table 4.5. We can observe that the optimal results are achieved if the classifier’s
output probabilities are re-scaled by τ = 4. As claimed in [189], the temperature
scaling raises the output entropy of the classifier with τ > 1. In our experiments,
we found it is beneficial for improving the image-text matching.

4.5.3.5 Distribution visualization

We choose 40 image-text pairs from the Flickr30K dataset to visualize their feature
distributions using t-SNE [195]. We only choose the first description caption among
the five sentences. In Figure 4.5, the circle and the triangle shape denote text
features and image features, respectively. Label information is represented by a
different color.
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(a) (b)

(c) (d)

Figure 4.5: Feature distribution visualizations for the ablation study. The shape
represents modality and the color indicates the label information. Sub-figures (a)∼(d)
correspond to the four experimental configurations in Table 4.4. When each loss
function is gradually applied, the paired image features and text features have smaller
distances. Best viewed in color.

This distribution indicates the effectiveness of each component (e.g. KL-divergence

for cross-modal feature projection, and the Shannon information entropy trained in

an adversarial manner). In Figure 4.5(a), there exist several feature outliers within

the distribution and the proximity relationship between pair-wise features is not

obvious. When using the proposed components, the features distribute much better.

For example, in Figure 4.5(d), all loss functions are utilized to constrain feature

learning, the pair-wise feature shows a close proximity relationship. Moreover, image

features and text features are distributed within smaller ranges (-60 ∼ 60). Few

outliers exist among the whole distribution.

Qualitative retrieval results on the Flickr30K and the CUHK-PEDES dataset are

shown in Figure 4.9. For the “Image-to-Text” task, the proposed method can return

almost all paired text of the query image. The “Image-to-Text” task also has good

performance, the proposed method retrieves the paired image correctly. Also, other

retrieved images show contents relevant to the query sentence.
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4.5.3.6 Analysis of complexity and stability

We analyze the complexity of the proposed method by evaluating FLOPs (net-
work forward pass), parameter size, and inference time for each image-text pair on
Flickr8k. The results are reported in Table 4.6. The complexity of the proposed
framework, implemented by three networks, performs differently. It is well known
that VGG has a larger model size and more parameters, which increase computation
cost. As a result, the FLOPs of the VGG-based framework achieve 3.1 × 1010, while
the lightweight MobileNet reaches FLOPs to 1.1 × 109. Although ResNet-152 has
more layers than VGG and MobileNet, it achieves in-between FLOPs to 2.2 × 1010.
The model complexity also leads to different inference times for each image-text
input. Take MobileNet on Flickr30k as an example, its inference time is 14.8±3.2
ms, relatively faster than these of VGG and ResNet-152.

Table 4.6: Comparisons of model size and computation complexity. FLOPs: the
number of FLoating-point OPerations;

Dataset Backbone Net FLOPs
(forward pass)

#Parameters
(million)

Inference time (ms)
(per image-text pair)

Flickr8k
Based on VGG 3.1 × 1010 147.2 114.32±2.5

Based on MobileNet 1.1 × 109 14.6 15.6±3.1
Based on ResNet-152 2.2 × 1010 70.1 110.6±2.3
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Figure 4.6: The means of the input image
and text data (after normalization).

An algorithm is stable if it produces
consistent predictions with respect to
small perturbations of training sam-
ples [208, 209, 210]. Therefore, sta-
bility of a learning algorithm holds
if statistical conclusions are robust or
stable to appropriate perturbations to
data [209]. According to this defini-
tion, we conduct a stability analysis
based on Flickr8k using MobileNet.
We add Gaussian noise N ∼ N (µ, σ2)

to change the image-text pairs, with a
varying σ. For this purpose, first, we
build up an upper-bound performance
where no Gaussian noise is added.
Second, we vary the σ and collect the
corresponding output and then evalu-
ate its Recall rate.

Since the training data have been normalized before feeding into the network and
they have small means, as depicted in Figure 4.6. Since the magnitude of image
and text inputs are small, we determine the mean of the Gaussian noise by the
corresponding means of image and text inputs in each training epoch.

80



4.5 Experiments

Table 4.7: Stability evaluation on Flickr8k using MobileNet as a backbone net.

Gaussian distribution Text-to-Image Image-to-Text
R@1 R@5 R@10 R@1 R@5 R@10

With no noise added 23.8 49.7 61.3 30.8 58.9 70.3

µx = Mean(Xi)
µy = Mean(Xt)

σ = 0.025 23.8 50.3 61.3 30.7 58.9 71.2
σ = 0.05 22.7 47.5 59.0 30.3 56.6 68.6
σ = 0.075 22.7 48.0 59.2 29.8 54.8 66.7
σ = 0.1 22.2 46.6 58.3 27.7 54.0 65.3
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Figure 4.7: Error analysis for the proposed model on Flickr8k based on ResNet-152.

The averaged results are reported in Table 4.7. We vary the variance from 0.025 to
0.1, the performance of the proposed framework is relatively stable. For example,
for the “Text-to-Image” task, when varying σ = 0.025 to σ = 0.1, the result of R@1
changes from 23.8% to 22.2%, decreasing by about 6.7%.

Besides, we also perform error analysis for the performed framework on Flickr8k
using ResNet-152. For “Text-to-Image” and “Image-to-Text” tasks, we consider the
error bar calculation based on three times running. The results of R@K (K=1,5,10)
are illustrated in Figure 4.7. In this error analysis, we observe that the recall results
for “Text-to-Image” and “Image-to-Text” tasks have small variations.

4.5.4 Further exploring

We propose to integrate Shannon information entropy with the discriminator for
cross-modal retrieval. That is, the discriminator performs modality classification
and measures the information entropy at the same time (see Figure 4.3). Herein, we
further explore a paradigm to integrate information entropy with adversarial learn-
ing. This combining paradigm is more straightforward to the structure in Figure
4.1. Concretely, we build two branches of sub-networks: an uncertainty predictor for
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modality uncertainty prediction and a modality classifier for modality classification.
Then adversarial learning is implemented as an interplay between these two sub-
networks with competitive objectives. The uncertainty predictor aims at maximiz-
ing the modality uncertainty of the shared space (measured by information entropy),
while the modality classifier is to identify image inputs and text inputs by modality
classification. We illustrate this combining paradigm in Figure 4.8. Compared to
the former paradigm depicted in Figure 4.3, the optimization depicted in Figure 4.8
is different and more complex. The gradients computed by the classifier are used to
update parameters θI and θT in the feature extractor. To learn modality-invariant
features, the feature extractor minimizes the loss of the uncertainty predictor and it
maximizes the loss Ld = Lc (Eq. 4.5) of the modality classifier, which aims to make
image features and text features as similar as possible [211]. The parameters of the
modality classifier minimize its loss Ld. This training process needs to depend on
the gradient reversal layer [211], which would multiply gradient values by -1 when
executing back-propagating.
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Figure 4.8: The illustration of independent
combining information entropy and modality
classification into an adversary, which is an
intuitive structure of the diagram in Figure
4.1. Other loss functions are kept the same,
but we do not show in this graph for simplic-
ity. The gradients computed from the modal-
ity classifier in this combining paradigm are
used to optimize the parameters θI and θT of
the feature extractor.

The training procedure is almost the
same as used in Algorithm 1 except for
the gradients from the modality clas-
sification loss that updates the back-
bone network, leading to a slower
training process. The retrieval perfor-
mance of these two combined meth-
ods presented in Figure 4.3 and Figure
4.8 (named as unified and separate, re-
spectively) are given in Table 4.8. The
backbone net for image feature extrac-
tion is ResNet-152. These two com-
bined strategies show different per-
formances on the four datasets when
combining information entropy and
modality classification into a unified
discriminator. The performance im-
proves slightly on the Flickr30K, MS-
COCO, and Flickr8K datasets when
adopting the combining strategy of
Figure 4.3. However, the method depicted in Figure 4.8 has better performance on
the CUHK-PEDES dataset, which is not the common objects dataset. This method
has R@1 improved by 3.3% (from 65.58% to 67.79%), Also, the mAP has improved
by 1.8% compared to the unified method depicted in Figure 4.3. In summary, the
proposed framework of combining information entropy and adversarial learning in
Figure 4.3 has better performance and has faster convergence during training.
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Table 4.8: Comparison of two combining paradigms on four retrieval datasets (R@1,
R@10, and mAP(%))

Image-to-Text

Combining strategy Backbone Net Flickr30K MS-COCO CUHK-PEDES Flickr8K
R@1 R@10 mAP R@1 R@10 mAP R@1 R@10 mAP R@1 R@10 mAP

Method in Figure 4.8 ResNet-152 55.30 88.30 32.23 57.00 92.10 35.12 67.79 93.75 34.79 39.00 77.70 22.33
Method in Figure 4.3 ResNet-152 56.50 89.60 32.58 58.50 92.10 36.28 65.58 93.60 34.17 39.90 77.90 22.46

4.6 Chapter Conclusions

In this work, we explored methods to improve the performance of cross-modal re-
trieval by integrating information theory and adversarial learning by analyzing the
relation between information entropy and modality uncertainty. Based on this re-
lation, we explored two different paradigms to combine information entropy maxi-
mization and modality classification in an adversarial manner. Training these two
components iteratively reduces feature distribution discrepancies and further the
heterogeneity gap. This is beneficial for preserving semantic similarity between
cross-modal features by using bi-directional triplet loss and cross-entropy loss. In
addition, we also considered the issue of data imbalance, which leads to a biased
classifier and affects label classification. KL-divergence is used as an additional loss
term to regularize the re-scaled probabilities computed from image features and text
features. It is also used to constrain the cross-modal feature projections and is help-
ful for learning modality-invariant features. The efficacy of the proposed method
was demonstrated by thorough experimental results on four well-known datasets
using four deep models.

Successfully combining information entropy and adversarial learning depends on
the competitive goals between the information entropy predictor and the modality
classifier, and this leads to challenging directions worth further investigation. For
example, we used instance labels as supervisory information in this work. Then
the information entropy loss was computed only based on image modality and text
modality. However, retrieval performance depends on the matching of each image-
text feature pair. For some large-scale datasets, each category may include a large
number of image-text pairs. Thus, it is valuable to make the information entropy
loss specific for each category so that the discrepancy between two modalities can be
reduced more granularly. Moreover, the problem of data imbalance leads to training
a biased label classifier, which is an issue that can also be resolved by training
strategies like data augmentation or by using other loss functions, e.g. knowledge
distillation loss.
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Text queryImage query
Black dog paddles through the water with a bright ball 
in its mouth.
A black dog swims in water with a colorful ball in his 
mouth.
A black dog is swimming with a ball in his mouth.
A black dog carrying a colorful ball swims
A black dog is retrieving a ball in water.

A young blond 
man and another 
young man are
 playing guitars  
hooked up to 
amps.
The woman is 
blowing the pods 
off a flower in a 
green field

The children are 
getting off the 
bus.

A woman in a red 
shirt raising her 
arm to the passing 
crowd below.

A guy wearing 
shorts and a white 
t-shirt is 
skateboarding 
down the road, 
while someone sits 
and watches him 
from the curb.

A young man with a denim jacket and writing on his 
hand smiles in front of a bookcase full of videos.
A boy with a bruised nose and writing on his hands is 
standing in a video rental store.
A boy wearing a jean jacket with his hand on his chest 
smiling at the camera.
A young man looks at a coffee marker on the shelf of 
a department store.
A boy with writing on his hand is standing in a store.

A woman with short black hair in a blue t-shirt holds a 
baby in pink clothes with a pacifier.
A woman with short hair holds a small baby in her 
arms.
The woman with the blue shirt is holding a baby

A woman in a blue shirt talking to a baby.

A woman holds the hand of a wide-eyed baby, in a 
christmas themed outfit

A bald man in gray is holding out a stick whilst a black 
and brown dog jumps up to catch it.
A bald man demonstarting how high his brown and 
black dog can jump.

Man holding a stick while a dog jumps up to grab it.
A man holds a stick above a jumping dog.
A dog jumps by a tree while another lays on the 
ground.

A man wearing a light 
blue shirt, a pair of gray 
and black shorts and a 
pair of brown sandals. 
The man is bald.  He is 
wearing a white collared 
shirt, gray shorts, and flip 
flops.  He is carrying a 
black backpack.

A woman wearing a white 
and black plaid shirt, a 
black and white plaid pair 
of pants and  a pair of 
black and white shoes. 
The woman is wearing a 
jumpsuit with a white 
background and blue 
stripes while carrying a 
large backpack.

The man wears a orange t 
shirt blue jean shorts with 
black and grey sneakers 
as he walks along the 
pavement. This boy 
follows behind a larger 
man.  The boy is stocky in 
build.  He wears a light 
orange shirt, dark blue 
pants and athletic shoes.

A man looks down at his lifted hands and wears a 
white dinner jacket over a white shirt and over black 
trousers with part of a black bow tie revealed at the 
neck while he leans with legs apart.', 'A white man 
with black hair wears white and black suit with a 
necktie color black.

This man is facing the camera and is wearing a white 
blazer, a white shirt, black bow tie and black pants 
and shoes.The man is wearing black dress shoes, 
black pants and a white button down with a white 
blazer and a black bow tie.

A man is lifting his left arm and his other hand over 
his body while he is formally dressed. He wears a 
white jacket over a white shirt and black bow tie with 
black trousers and shiny black shoes. A man wearing 
a white shirt, a black bow tie, a white suit jacket, a 
pair of black slacks and a pair of black shoes.

She  is  also wearing a colorful shirt   and  light 
colored pants .A woman with a ponytail carries a tan 
shoulder bag over her back with the strap across her 
right shoulder while she is dressed in a short-sleeve 
blouse with a marbled print in black and pink over 
gray pants that end mid-calf with gray sandals.

A dark haired girl with a brown bag on her shoulder.The 
girl is wearing a multi colored short sleeved top and 
white capris and sandals on her feet and she has a large 
brown should bag.

A woman wearing a gray, red and green shirt, a pair 
of blue jeans and a pair of black shoes.This man is 
wearing a flowery short sleeved shirt, light blue 
jeans, and plain black shoes.

Return text ranking Return image ranking 

A person with a 
purple head 
covering and 
purple shirt is 
standing outside a 
restaurant.

Figure 4.9: Qualitative test results on the Flikcr30K and CUHK-PEDES datasets.
We report Recall@5 of the “Image-to-Text” task and the “Text-to-Image” task from
left to right. The correct retrieval images or text are in red and a red box, while the
failure retrieval are in green. For Flickr30K, each image is described by 5 sentences.
Hence, each text query also has a correct retrieved image, but other retrieved images
have similar content as described by the sentence. For the CUHK-PEDES dataset,
each category has more than one image, thus almost all correct images are retrieved
according to the text query. The list is best viewed in color.
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Chapter 5

On the Exploration of Incremental
Learning for Fine-grained Image
Retrieval

As noted, the wide popularity of mobile devices make the large image collections
available to access. Deep models are usually trained for retrieval on limited cate-
gories and cannot be extended to new incoming data. To satisfy a more practical
retrieval, deep models are required to learn on a stream of data sequentially. This
motivates our research on what kind of knowledge is more beneficial for making a
deep model learn incrementally and reduce catastrophic forgetting.

In this chapter, we consider the problem of fine-grained image retrieval in an in-
cremental setting, when new categories are added over time. On the one hand,
repeatedly training the representation on the extended dataset is time-consuming.
On the other hand, fine-tuning the learned representation only with the new classes
leads to catastrophic forgetting. To this end, we propose an incremental learning
method to mitigate retrieval performance degradation. Without accessing any sam-
ples of the original classes, the classifier of the original network provides soft “labels”
to transfer knowledge to train the adaptive network, so as to preserve the previous
capability for classification. More importantly, a regularization function based on
Maximum Mean Discrepancy is devised to minimize the discrepancy of new classes
features from the original network and the adaptive network, respectively.

Keywords
Incremental learning, Fine-grained image retrieval, Knowledge distillation, Feature
correlation, Maximum mean discrepancy

This chapter is based on the following publication [37]:

• Chen, W., Liu, Y., Wang, W., Tuytelaars, T., Bakker, E, and Lew, M.S., “On the Ex-
ploration of Incremental Learning for Fine-grained Image Retrieval.” The British Machine
Vision Conference (BMVC), 2020, pp. 1-10.
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5. ON THE EXPLORATION OF INCREMENTAL LEARNING FOR
FINE-GRAINED IMAGE RETRIEVAL

5.1 Introduction

In an era when the number of images is increasing, deep models for fine-grained
image retrieval (FGIR) are required to be adaptable for new incoming classes. How-
ever, current image retrieval approaches are focusing mainly on static datasets and
are not suited for incremental learning scenarios. To be specific, deep networks
well-trained on original classes will under-perform on new incoming classes.

When new classes are added into an existing dataset, joint training on all classes al-
lows to guarantee the performance. However, as the number of new classes increases
sequentially, the repetitive re-training is time-consuming. Alternatively, fine-tuning
makes the network adapt to new classes and achieve good performance on these
classes. However, when the original classes become inaccessible during fine-tuning,
the performance of the original classes degrades dramatically because of catastrophic
forgetting, a phenomenon that occurs when a network is trained sequentially on a
series of new tasks and the learning of these tasks interferes with performance on
previous tasks, as shown in Figure 5.1(a).

Most of incremental learning methods are exploited for image classification, which is
robust and forgiving as long as features remain within the classification boundaries.
In contrast, image retrieval focuses more on the discrimination in the feature space
rather than the classification decisions. Especially for FGIR, small changes on visual
features may have a big impact on the retrieval performance. Additionally, we find
that standard methods like Learning without Forgetting (i.e. LwF [212]) and Elastic
Weight Consolidation (i.e. EWC [213]) are insufficient for this problem because the
distillation is not on the actual feature space (see Section 5.4.2 and 5.4.3).

Considering the above limitations, we alleviate the problem of incremental fine-
grained image retrieval. We regularize the updates of the model to simultaneously
retain preservation on original classes and adaptation on new classes. Importantly,
to avoid the repeated training, the samples of the original classes are not used when
learning the new classes. The classifier of the original network provides soft “la-
bels” to transfer knowledge to train the adaptive network using the distillation loss
function [214]. This focuses on pair-wise similarity but can not well quantify the
distance between two feature distributions. This limitation inspires us to adopt a
regularization term based on Maximum Mean Discrepancy (MMD) [215] to mini-
mize the discrepancy between the features derived from an original network and an
adaptive network, respectively. Moreover, the cross-entropy loss and triplet loss are
utilized to identify subtle differences among sub-categories.

The novelty of the proposed method can be summarized two-fold. First, our work
extends FGIR in the context of incremental learning. This is the first work to
study this problem, to the best of our knowledge. Second, we propose a deep net-
work, which includes a knowledge distillation loss and a MMD loss, for incremental
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Figure 5.1: (a) Illustration of catastrophic forgetting for FGIR. Our method aims
to maintain good performance on the original classes where the inaccurate returned
images are in red box and correct results are in blue box. (b) Framework of our
method. The only inputs for the adaptive net B arem new classes and labels (Xc′ ,Yc′),
c′∈(n+1, ..., n+m). The frozen net A is firstly trained on n original classes and then
copied as initialization for net B.

learning without using any samples from the original classes. It achieves significant
improvements over previous incremental learning methods.

5.2 Related Work

Incremental learning is the process of transferring learned knowledge from an origi-
nal model to an incremental model. It has been studied in lots of tasks like image
classification [212], image generation [216], object detection [217], hashing image re-
trieval [218], and semantic segmentation [219]. To overcome catastrophic forgetting,
numerous methods have been proposed. For example, a subset of data (exemplars)
of original classes are stored into an external memory, and the forgetting is thereby
avoided by replaying these exemplars [220]. Recently, GANs [180] are used to synthe-
size samples with respect to the previous data distributions [221], which avoids the
shortcomings of memory-consuming and exemplar-choosing, but generating real-like
images with complex semantics is a challenging task. Alternatively, regularization
methods constrain the objective functions or parameters of deep networks to pre-
serve the previously learned knowledge. The distillation loss function [214] is used
to transfer knowledge of old classes [212]. The importance weight per parameter is
estimated based on the old classes, and then is used as regularization to penalize
essential parameter changes when training on new incoming classes [213].

5.3 Proposed Approach

Problem formulation Given a fine-grained dataset which includes n class labels
(Xc,Yc) where c∈ (1, ..., n), each sub-category c has a different amount of images
in Xc and the ground-truth labels Yc. A deep network is trained to perform the
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retrieval task for the n classes. Consider the incremental learning scenario, images
from m new classes are added sequentially or at once. We take as input only the
images from m new incoming classes, i.e. (Xc′ ,Yc′), where c′ ∈ (n+1, ..., n+m),
to incrementally train the deep network. In this way, it is efficient to update the
network with no need of re-training the original classes again. Besides, the image
instances from the original classes are not always accessible due to privacy issue
or memory limit. Finally, the aim is to continually train the network, to make it
preserve promising performance for all seen classes.

Overall idea As shown in Figure 5.1(b), our method includes two training stages.
First, we train a network A on the original classes using cross-entropy and triplet
loss on the output logits and representations. After A is well-trained, we make two
copies of A: one freezing its parameters when incrementally training, and the other
adapting its parameters for the m incremental classes. We refer to this adaptive net-
work as B. It is initialized with parameters from A, including the feature extraction
layers Ffrozen and classifier Cfrozen, but extends the number of neurons in its classi-
fier C, from which the output logits are (o′1, o

′
2, . . . , o

′
n, o
′
n+1, . . . , o

′
n+m), and previous

n neurons are copied from Cfrozen. To overcome catastrophic forgetting, we propose
to integrate two regularization strategies based on knowledge distillation and maxi-
mum mean discrepancy, respectively. Given a query image from either the original
classes or newly added classes, we extract the features from the fully-connected layer
for image retrieval. We introduce the details of our method below.

5.3.1 Semantic preserving loss

First, we train the model with the standard cross-entropy loss. Given the log-
its (o1, o2, ..., on) and its class label (y1, y2, . . . , yn), the loss is H(y,o) = −

∑
(y ∗

log(softmax(o))). Note that we only use images from the new classes during incre-
mental training, thus the classification is performed on (o′n+1, o

′
n+2, . . . , o

′
n+m), the

categorical cross-entropy loss function Lce is

Lce = − 1

N

N∑
i=1

(
yi ∗ log

( eo
′
i(x)∑n+m

j=n+1 e
o′j(x)

))
(5.1)

To identify subtle differences among categories, we use the triplet loss Ltriplet by
mining training samples based on feature vectors R.

Ltriplet =
1

N

N∑
i=1

(
max(0, λ+ Si,neg − Si,pos)

)
(5.2)

where Si,neg and Si,pos, based on matrix multiplication (i.e. Si,neg = RiR
>
neg), indicate

the similarity of ith negative and positive pairs, respectively. λ is the margin.
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Figure 5.2: (a) The red and blue color depict the feature distributions of two cat-
egories. The dashed line indicates the distributions from the network A, the solid
line indicates that from the network B. Since A is used to initialize the network B,
MMD=0 in the beginning. As training proceeds, B changes its output features and
the MMD is expected to increase. (b) MMD for instance-to-instance similarity.

5.3.2 Knowledge distillation loss

We rewrite (Ffrozen, Cfrozen) as (F
f
, C

f
) for simplicity. Knowledge distillation loss

[214] is defined to regularize the activations of the output layer in both the old and
new model. To be specific, we constrain the first n values in (o′1, o

′
2, ..., o

′
n, o
′
n+1, ..., o

′
n+m)

as close as possible to the logits (o1, o2, ..., on) from the frozen network A. Follow-
ing the method in [212], when m new classes are added at once, we compute the
knowledge distillation loss by

Ldist= −
1

|Xc′ |

|Xc′ |∑
x∈Xc′

n∑
k=1

(
pk(x) ∗ log[p′k(x)]

)
(5.3)

where pk(x) = eok(x)/T∑n
j e

oj(x)/T
and p′k(x) = eo

′
k(x)/T∑n

j e
o′
j
(x)/T

, T is a temperature factor that is

normally set to 2 [212]. p={p}n and p′={p′}n refer to the probabilities produced
by the modified Softmax function in [214]. F

f
and C

f
denote the parameters of

network A. Similarly, F and C denote the parameters of network B, as shown
in Figure 5.1(b). |Xc′| indicates the number of images from the new m classes in
a mini-batch. n denotes the number of the original classes. Note that n will be
extended accordingly when more new classes are added.

5.3.3 Maximum mean discrepancy loss

Knowledge distillation loss focuses on constraining classification boundaries to mit-
igate the forgetting issue. However, for FGIR, it is more important to reduce the
difference between feature distributions. For this, we adopt maximum mean dis-
crepancy (MMD) [215] to capture the correlation of feature distributions between
network A and B. MMD has been used to bridge source and target distributions
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such as in domain adaptation [222]. However, our work is the first to impose MMD
to regularize the forgetting issue for FGIR.

Given the features Rd (d is feature dimension) from network A and B, MMD mea-
sures the distance between the means of two feature distributions after mapping
them into a reproducing kernel Hilbert space (RKHS). In Figure 5.2(a), we il-
lustrate how MMD mitigates the catastrophic forgetting issue. Note that, in the
Hilbert space H, norm operation can be equal to the inner product [215]. Finally,
the squared MMD distance is:

MMD2(R,R′) = || 1
N

N∑
i=1

φ(Ri)−
1

N

N∑
j=1

φ(R′j)||2H

=
1

N2
<

N∑
i=1

φ(Ri)−
N∑
j=1

φ(R′j),
N∑
i=1

φ(Ri)−
N∑
j=1

φ(R′j)>H

=
1

N2

[ N∑
i=1

N∑
j=1

<φ(Ri), φ(Rj)>H+
N∑
i=1

N∑
j=1

<φ(R′i), φ(R′j)>H−2
N∑
i=1

N∑
j=1

<φ(Ri), φ(R′j)>H

]
s.t. R = F

f
(x), R′ = F (x)

(5.4)
where N is batch size, and φ(·) denotes the mapping function. However, it is hard
to determine φ(·). In RKHS, the kernel trick is used to replace the inner product in
Eq. 5.4, i.e.<φ(R), φ(R′)>=k(R,R′). Considering all the features in a mini-batch,
R={R}N and R′={R′}N , we define the MMD loss Lmmd as:

Lmmd = MMD(R,R′) =
1

N

[ N∑
i=1

N∑
j=1

k(Ri, Rj)− 2
N∑
i=1

N∑
j=1

k(Ri, R
′
j)+

N∑
i=1

N∑
j=1

k(R′i, R
′
j)
] 1

2

(5.5)
where k(R,R′)=exp(−(||R−R′||22)/(2σ2

m)), σm means m variances in the Gaussian
kernel.

Discussion. Knowledge distillation loss focuses on constraining pair-wise similarity.
However, MMD loss measures the distance between each feature vector, as depicted
in Figure 5.2(b). Finally, it captures the distance of two feature distributions from
the frozen net and the adaptive net. Thus, MMD loss is more powerful to quantize
the correlation of two models.

Overall, the objective function in our method for incremental FGIR learning is:

L = αLdist + βLmmd + (Lce + Ltriplet) (5.6)
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5.4 Experiments

5.4.1 Datasets and experimental settings

Datasets. We evaluate our method on the Stanford-Dogs [223] and Caltech-UCSD
Birds-200 (CUB-200) [224] datasets. For the former, we use the official train/test
splits. When training incrementally, we split the first 60 sub-categories (in the
order of official classes) as the original classes and images from the remaining 60
sub-categories are added at once or sequentially. For the latter, we choose 60% of
images from each sub-category as training set and 40% as testing set. Afterwards,
we split the first 100 sub-categories (in the order of official classes) as the original
classes and the remaining 100 sub-categories as new classes. The details are shown
in Table 5.1.

Table 5.1: Statistics of the datasets used in our experiments.

Datasets
Training set

(#Image/#Class)
Testing set

(#Image/#Class)
Original cls. New cls. Total Original cls. New cls. Total

Stanford-Dogs 6000/60 6000/60 12000/120 4651/60 3929/60 8580/120
CUB-200 3504/100 3544/100 7048/200 2360/100 2380/100 4740/200

Experimental settings. We use the Recall@K [131] (K is the number of retrieved
samples), mean Average Precision (mAP), the precision-recall (PR) curve and fea-
ture distribution visualizations for evaluation. We adopt the Google Inception [62]
to extract image features. During training, the parameters in Inception are updated
using the Adam optimizer [225] with a learning rate of 1 × 10−6, while parameters
in fully-connected layers and classifier are updated with a learning rate of 1× 10−5.
We follow the sampling strategy in [226] and each incremental process is trained 800
epochs. Following the practice in [131, 226], the output 512-D features (Rd) from
fully-connected layers are used for retrieval. We set the hyper-parameters α=β=1

in Eq. 5.6, and the margin λ = 0.5 in Eq. 5.2.

5.4.2 One-step incremental learning for FGIR

We report the results for multiple classes added at once. The process includes two
stages. First, we use the cross-entropy and triplet loss to train the network A on the
original classes (100 classes for the CUB-200 dataset, 60 classes for the Stanford-
Dogs dataset), denoted as A(1-100) and A(1-60), respectively. Second, only im-
ages of new classes are added at once to train network B, denoted as B(101-200)

for CUB-200 and B(61-120) for Stanford-Dogs. DIHN [218] has been explored the
incremental learning for hashing-based image retrieval. However, its main difference
with ours is to depend on the usage of old data as query set to avoid forgetting in
their assumption. Considering no previous works for the fine-grained incremental
image retrieval, we apply Learning without Forgetting (LwF) [212], Elastic Weight
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Consolidation (EWC) [213], ALASSO [227], and the incremental learning for seman-
tic segmentation (dubbed L2 loss) [219] for comparison. LwF, EWC, and ALASSO
distill knowledge on classifier and network parameters, which are insufficient for in-
cremental FGIR. L2 loss in [219] is more similar with ours where the knowledge is
distilled on the classifier and intermediate feature space. Note that cross-entropy
and triplet loss (i.e. semantic preserving loss) are combined with these three al-
gorithms for fair comparison. The Recall@K results for the CUB-200 dataset are
reported in Table 5.2.

Table 5.2: Recall@K (%) of incremental FGIR on the CUB-200 dataset when new
classes are added at once. The best performance in the original class and the new class
are in boldface.

Configurations Original classes New classes
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) w feature extraction - - - 47.02 57.44 67.86
+B(101-200) w fine-tuning 53.90 64.56 73.56 76.18 82.56 87.39
+B(101-200) w LwF (i.e. Ldist) 54.92 66.40 75.42 75.76 82.69 86.93
+B(101-200) w ALASSO 56.91 66.65 76.57 72.48 79.50 85.67
+B(101-200) w EWC 62.03 72.16 80.08 73.32 80.92 86.01
+B(101-200) w L2 loss 66.48 75.68 82.67 77.44 83.78 88.07
+B(101-200) w Our method 74.41 82.57 88.52 73.11 80.84 86.64
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12

In Table 5.2, the “w feature extraction” depicts when A directly extracts features
on the new classes without re-training. The “w fine-tuning” depicts using Lce and
Ltriplet to train A on the new classes but without using Ldist. Overall, the network
B suffers from the catastrophic forgetting issue and has lower performance on the
original classes, whereas our method outperforms the others. As for the new classes,
other three algorithms outperform ours. For example, “ w L2 loss” method achieves
on Recall@1 by 4.33% compared to ours (77.44%→73.11%). However, it suffers from
significant performance degradation on the original classes with Recall@1 dropping
by 12.93% compared to the initial model (79.41%→66.48%). For our method, the
Recall@1 on the original classes is 74.41% (dropped by 5.00% from 79.41% of the
initial model); the Recall@1 on the new classes is 73.11% compared to the reference
model from A(1-200) (i.e. Recall@1=76.64%). Similarly, the Recall@K results for
the Stanford-Dogs dataset are reported in Table 5.3. We observe similar trends as
the results we shown in main paper, when our method achieves good performance on
the original classes and new classes with Recall@1= 76.67% and Recall@1=81.88%,
respectively. Compared to the initial model on the original classes, our method has
dropped Recall@1 performance by 4.00% (80.67%→76.67%).

We report the PR curves and mAP results in Figure 5.3(a), 5.3(b), and 5.3(c),
respectively. Overall, when tested on the new classes, all methods share similar
trends. When tested on the original classes, our method has better performance
although it still has gap to reference performance. For mAP results, the reference
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Table 5.3: Recall@K (%) of incremental FGIR on the Stanford-Dogs dataset when
new classes are added at once. The best performance are in boldface.

Configurations Original classes New classes
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-60) (initial model) 80.67 87.27 92.20 - - -
+B(61-120) w feature extraction - - - 75.64 83.91 90.48
+B(61-120) w fine-tuning 61.43 72.80 81.70 78.93 86.99 91.55
+B(61-120) w LwF (i.e. Ldist) 61.77 72.72 81.70 78.52 86.38 91.12
+B(61-120) w EWC 62.24 73.30 82.82 78.90 86.59 91.19
+B(61-120) w ALASSO 62.61 74.49 82.98 78.14 85.98 91.02
+B(61-120) w L2 loss 72.07 81.44 87.47 82.21 88.75 92.52
+B(61-120) w Our method 76.67 85.10 91.14 81.88 88.98 93.36
A(1-120) (reference model) 79.29 86.86 91.61 82.57 88.75 93.13

results are the same as in Table 5.2. We utilize the well-trained network A at
epoch=700 as initial model to train B on the new classes until convergence, we test
the mAP of network B on the original classes. As the curves show, the network
trends to degrade its accuracy on the original classes during incremental training.
Similarly, we report the precision-recall curves and mAP results in Figure 5.4. We
can observe these curves share with the similar trends with those from the CUB-200
dataset. Overall, our method can effectively address the catastrophic forgetting issue
on the original classes while achieve ideal performance on the new classes.

Furthermore, we explore the influence of the number of the added new classes.
Specifically, on the CUB-200 dataset, we choose 100 classes and 25 classes as new
categories. The results are reported in Table 5.4. Likewise, for the Stanford-Dogs
dataset, we choose 60 new classes and 5 classes for incremental learning, whose
results are reported in Table 5.5. For CUB-Brids, we observe that larger newly-
added classes lead to heavier forgetting. For example, when only 25 new classes
are used, the Recall@1 drops from 79.41% to 76.65%, compared to the one drops
from 79.41% to 74.41% where 100 new classes are added. Note that the reference
models are trained jointly on all classes and tested on the original and new classes
separately. For Stanford-Dogs, we observe these two datasets share with similar
trends that larger new coming classes lead to heavier forgetting issue. For the
Stanford-Dogs dataset, when only 5 new classes are added, the Recall@1 drops from
80.67% to 79.75%, compared to the one drops from 80.67% to 76.67% when 60 new
classes are added.

We visualize the feature distributions using t-SNE [195] under two experimental
settings: with and without MMD loss in Figure 5.5, which demonstrate the MMD
loss reduces the distance between distributions and effectiveness for mitigating the
forgetting issue.
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Figure 5.3: Performance evaluation on the CUB-200 dataset. (a)-(b) denote the PR
curves tested on the original classes and new classes. (c) depicts the mAP results for
different methods as the training proceeds. We only show the results tested on the
original classes. (d) training time comparison during each epoch.

5.4.3 Multi-step incremental learning for FGIR

We split all new classes into 4 groups and added each sequentially. The training
procedures are as follows: the initial model A is pre-trained on the original classes
(1-100), and used as an initial model to train on newly-added classes (101-125) until

Table 5.4: Recall@K (%) on CUB-200 when 25 or 100 new classes are added at once.
Correspondingly, † indicates the results are tested on different new classes.

Configurations Original classes New classes†
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-125) w Our method 76.65 83.47 88.86 73.13 82.31 88.44
+B(101-200) w Our method 74.41 82.57 88.52 73.11 80.84 86.64
A(1-125) (reference model) 77.84 83.94 87.80 79.25 85.54 91.96
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12
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Figure 5.4: Performance evaluation on the Stanford-Dogs dataset. Figure (a)-(b)
denote the precision-recall curves tested on the original classes and new classes. The
larger the area under each curve, the better performance of the method. Figure (c)
depicts the mAP results for different methods as the training proceeds. We only show
the results tested on the original classes. Being closer to the reference curve (red one)
indicates less performance degradation, i.e., the method can maintain its previous
performance on the original classes.

convergence to produce a new model B(101-125). Afterwards, the newly-trained
model B(101-125) is used as an initial model to train on other new classes (126-150)

Table 5.5: Recall@K (%) on the Stanford-Dogs dataset when 5 or 60 new classes are
added at once. Similar to the settings in Table 5.4, † indicates the results are tested
on different new classes.

Configurations Original classes New classes†
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-60) (initial model) 80.67 87.27 92.20 - - -
+B(61-65) w Our full method 79.75 87.23 91.92 97.45 98.55 99.27
+B(61-120) w Our full method 76.67 85.10 91.14 81.88 88.98 93.36
A(1-65) (reference model) 79.62 86.15 90.91 96.73 97.82 98.55
A(1-120) (reference model) 79.29 86.86 91.61 82.57 88.75 93.13
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Figure 5.5: t-SNE visualization for feature distribution of 6 categories. The circle
indicates the features from reference model, which has the same distribution in two
cases. The triangle denotes the feature from models trained with/without MMD loss.
(a): model trained without MMD loss; (b): model trained with MMD loss.

to produce B(101-125)(126-150). This process is repeated until 4 groups of classes
are added sequentially.

We compare to three representative methods (we choose EWC rather than ALASSO
since EWC obtains higher performance on the CUB-200 dataset) and report the re-
sults in Table 5.9. The reference performances are achieved by jointly training all
the classes, and then tested on each group (including the original classes). Overall,
the model suffers from the catastrophic forgetting issue when sequentially training.
However, our method achieves a minimal performance degradation. For instance,
when 4 groups have been added, the model B(101-125)(126-150)(151-175)(176-200)
is tested on the original classes(1-100). The “L2 loss” algorithm Recall@1 drops
79.41%→67.37%→58.14%→53.86%→ 45.85%, the average degradation is 8.39%.
Our method Recall@1 drops 79.41%→76.65%→73.77%→70.47%→66.40%. The av-
erage performance degrades by 3.25%, which indicates that our method significantly
mitigates the forgetting problem. Furthermore, our method has good performance
on new classes, which are closer to the reference performance. When the model
B(101-125)(126-150)(151-175)(176-200) is tested on new classes (176-200), the re-
sults are achieved with Recall@1=85.21%, Recall@2=89.92% and Recall@4=93.28%,
respectively, while the reference results are Recall@1=83.70%, Recall@2=90.25%
and Recall@4=93.78%.

Similarly, we report the results on the Stanford-Dogs dataset in Table 5.10 when
new classes are added sequentially. We observe similar trends as those for the CUB-
200 dataset. Compared to the other two methods, the proposed method has ideal
retrieval performance on the newly added classes and the original classes.
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5.4 Experiments

Table 5.6: Average top-1 accuracy of incremental learning for image classification on
CIFAR-100 dataset [228].

Method Number of the added new classes
20 40 60 80 100

L2 loss 77.3 47.5 40.5 36.6 32.8
EWC 77.3 60.5 50.9 43.3 39.5
LwF 77.3 62.5 52.9 46.2 41.0
Ours 77.3 64.6 55.8 49.2 43.3

Table 5.7: Ablation study for different components of loss function

Configurations Original classes New classes
Recall@K(%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) w Lce + Ltriplet 53.90 64.56 73.56 76.18 82.56 87.39
+B(101-200) w Lce + Ltriplet + Ldist 54.92 66.40 75.42 75.76 82.69 86.93
+B(101-200) w Lce + Ltriplet + Lmmd 73.36 81.25 87.43 73.40 81.60 86.64
+B(101-200) w Lce+Ltriplet+Ldist+Lmmd 74.41 82.57 88.52 73.11 80.84 86.64
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12

5.4.4 Validation with image classification

We evaluate the effectiveness of our method on CIFAR-100 [228] which is the popular
benchmark for class-incremental learning in image classification. We split 100 classes
into a sequence of 5 tasks, and each task includes 20 classes. In Table 5.6, the results
indicate the average top-1 accuracy of the classes from seen tasks. In the last column,
the test set evaluates the classes from all the five tasks. Note that, the 20 classes
in the first task (the second column) achieve the same performance, as it has no
incremental learning yet. We observe that our method outperforms other methods
across the tasks. It suggests our method generalizes well to various applications.
Notably, our improvement for image retrieval is more significant than that for image
classification. The reason is that the proposed MMD loss is imposed on the feature
representation, which largely benefits the metric learning for image retrieval. This
also explains why our method is focused mainly on image retrieval.

Table 5.8: Sensitivity analysis of the hyper-parameters α, β. The better trade-off
performance of the hyper-parameters are in bold face.

Configurations Original classes New classes
Recall@K (%) K=1 K=2 K=4 K=1 K=2 K=4

A(1-100) (initial model) 79.41 85.64 89.63 - - -
+B(101-200) (α = 0.1, β = 0.1) 56.53 66.31 75.59 77.52 83.82 88.15
+B(101-200) (α = 0.1, β = 1) 73.31 82.00 87.14 72.77 80.92 87.14
+B(101-200) (α = 0.1, β = 10) 79.58 85.76 90.47 49.50 61.51 70.59
+B(101-200) (α = 1, β = 0.1) 55.81 67.25 75.59 77.02 83.91 87.90
+B(101-200) (α = 1, β = 1) 74.41 82.57 88.52 73.11 80.84 86.64
+B(101-200) (α = 1, β = 10) 79.41 86.31 90.51 48.82 61.09 71.05
A(1-200) (reference model) 77.33 85.08 89.03 76.64 83.53 89.12
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5. ON THE EXPLORATION OF INCREMENTAL LEARNING FOR
FINE-GRAINED IMAGE RETRIEVAL

5.4.5 Training time comparison

We compare the average training time on the CUB-200 dataset and the Stanford-
Dogs dataset when 100 and 60 new classes are added at once. The results are
shown in Figure 5.3(d) and 5.4(d), respectively. Note that all models in five meth-
ods are starting from the same initial model trained on the original 100 classes as
initialization. The reference time is from joint training where the initial model is
trained on all classes. The other four methods are incrementally learning the new
classes only. We observe that our method saves more time by 50% as expected.
EWC and ALASSO algorithms take more time than reference because the gradients
computation during back-propagation process is time-consuming.

5.4.6 Components analysis

Ablation study. We have done an ablation study on the CUB-200 dataset when
multiple classes are added at once. Note that the component “Lce+Ltriplet” comprises
our baseline performance, thus we analyze the different loss items in Eq. 5.6. We
can observe the influence of difference components for the original and new classes.
The results are shown in Table 5.7.

Hyper-parameters sensitivity analysis. We explore the sensitivity of hyper-
parameters α, β in Eq. 5.6, which affect significantly the trade-off performance. We
conduct this experiment on the CUB-200 dataset. As shown in Table 5.8, we find
that the incrementally-trained model is more sensitive to β than α. For instance,
when α is set as 0.1, but β changes from 0.1 to 1, model B performs better on the
new classes and significantly retains its previous performance. However, this obvious
trend cannot be observed when β is set as 0.1, but α changes from 0.1 to 1 where
the model B performs almost the same on the original and new classes. Finally, if
α=β=1, the incrementally-trained model B keeps a better trade-off performance
between the original and the new classes.

5.5 Chapter Conclusions

In this chapter, for the first time, we have exploited incremental learning for fine-
grained image retrieval in several scenarios for increasing numbers of image cat-
egories when only images of new classes are used. To overcome the catastrophic
forgetting, we adopted the distillation loss function to constrain the classifier in
the original network and the incremental classifier in the adaptive network. More-
over, we introduced a regularization function, based on MaximumMean Discrepancy
(MMD), to minimize the discrepancy between features of newly added classes from
the original and the adaptive network. Comprehensive and empirical experiments on
two fine-grained datasets show the effectiveness of our method that is superior over
existing methods. In the future, it is promising to investigate incremental learning
between different fine-grained datasets for image retrieval.
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Chapter 6

Feature Estimations based
Correlation Distillation for
Incremental Image Retrieval

In Chapter 5, we explored incremental learning for fine-grained image retrieval in
which only the penultimate model is used for transferring previously learned knowl-
edge. As incremental learning proceeds, each training session produces a specific
model. Saving this stream of models will be memory-consuming. This raises a
question that how to utilize the stream of models in incremental learning to trans-
fer more previously learned information when learning on the current new data.
We investigate this question by proposing a feature estimation method. Similar to
the knowledge distillation framework in Chapter 5, we distill semantic correlations
knowledge among the representations extracted from the new data only so as to
regularize the parameters updates. In particular, for the case of learning multiple
tasks sequentially, aside from the correlations distilled from the penultimate model,
we estimate the representations for all prior models and further their semantic cor-
relations by using the representations extracted from the new data. To this end, the
estimated correlations are used as an additional regularization and further prevent
catastrophic forgetting over all previous tasks, and it is unnecessary to save the
stream of models trained on these tasks.

Keywords
Incremental learning, Fine-grained image retrieval, Correlations distillation, Feature
estimation

This chapter is based on the following publication [38]:

• Chen, W., Liu, Y., Pu, N., Wang, W., Liu L., and Lew, M.S., “Feature Estimations based
Correlation Distillation for Incremental Image Retrieval.” IEEE Transactions on Multime-
dia, 2021.
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INCREMENTAL IMAGE RETRIEVAL

6.1 Introduction

Learning is a life-long process for human beings so that we can learn continuously,
devoid of forgetting previously acquired knowledge. However, this is not the case for
deep neural networks, which suffer from the catastrophic forgetting problem [36].
Deep networks have been trained and validated for image retrieval on stationary
datasets. As new data increase over time, the networks trained on the stationary
datasets cannot be suited well for the non-stationary scenario.

The main challenge is to make the trained model adapt to new data without losing
the knowledge on the seen data. Most conventional solutions for tackling this chal-
lenge suffer from obvious limitations. For example, joint training achieves optimal
retrieval performance on old and new data, while it requires the presence of all the
data. This is hard to meet for several scenarios where legacy data are unrecorded
due to privacy issues or simply too cumbersome to collect old data. Moreover, re-
training old data may lead to an imbalance issue between the quantity of old data
and that of new data [229, 230].

Two incremental learning methods are developed to tackle the above limitations.
First, the rehearsal based method utilizes generative adversarial nets to synthesize
samples w.r.t. previous data distributions [231]. This method faces the difficulty
of generating images with complex semantics. Second, the regularization based
methods can either focus on network parameters or output activations. Parameters-
based regularization methods estimate the parameter importance of previous tasks,
then penalizes the drastic updates of these parameters when the model is learning a
new task. Activation-based regularization methods, relying on the teacher-student
framework, constrain the teacher model and the student model have similar outputs.
The regularization methods have been explored for tasks such as image classification
[229, 230, 232], but are less-explored for image retrieval. Recently, Parshotam et al.
[233] regularize the representations via a normalized cross-entropy loss, training with
metric learning for vehicle identification and retrieval. Chen et al. [37] propose reg-
ularizing both the representations and probabilities via the teacher-student frame-
work for fine-grained image retrieval (FGIR) [234]. As depicted in Figure 6.1(a),
they only use the penultimate model to transfer previously learned knowledge on
old tasks.

For the case where new tasks are added sequentially, which is referred to multi-task
incremental learning, only distilling on the penultimate model is insufficient to re-
duce forgetting on all previous tasks [235]. In fact, transferring additional knowledge
learned on these tasks, i.e. via multi-model distillation tackles this insufficiency, as
shown in Figure 6.1(b). In multi-task incremental learning, a stream of deep models
is produced as new tasks are added continuously. However, it becomes too cumber-
some and inefficient to store these models. Therefore, an arising question is that how
to use the model stream, not only the penultimate model, for knowledge distillation?
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Figure 6.1: Comparison of three knowledge distillation methods. We depict three
steps of distillation. (a) Single-model distillation method only stores and uses the
penultimate model; (b) Multi-model distillation method has to store all old models
and distills from them more knowledge devoid of forgetting; (c) Our method only
stores the penultimate model while can accumulate previous knowledge learned at
each model through feature estimations.

Few researchers address this problem in incremental tasks. Recently, a multi-model
and multi-level knowledge distillation strategy is presented for incremental image
classification [235]. However, the snapshots of all previous models still need to be
saved and depend on network pruning methods to reconstruct.

In this chapter, we face the above question to improve deep model’s continuous re-
trieval ability. Semantic correlations of features are transferred as knowledge from
a teacher model to a student model when new data are used only. For multi-task
incremental learning, the model stream trained on preceding tasks is unnecessar-
ily saved. Instead, we estimate representations for these models and further their
semantic correlations, using the features extracted from the current new task, as
shown in Figure 6.1(c).

6.2 Related Work

Incremental image retrieval. Incremental learning can be categorized into ar-
chitectural methods [230, 232], rehearsal methods [220, 231], and regularization
methods [227, 235]. Most of them are used for image classification, regularizing
the classification probabilities. Recently, incremental retrieval have been explored.
CIHR [236] was proposed to deal with the concept drift issue for hashing retrieval
in non-stationary environments. However, the selected images from previous train-
ing sessions are combined with new images to train hash tables. DIHN [218] is
explored for incremental hashing retrieval where old data are used as a query set.
Fine-grained incremental image retrieval is studied with only using new data [37].
However, knowledge is only transferred from the penultimate model, causing the in-
sufficiency to remember previous knowledge when performing multi-task incremental
learning. In this work, we further distill additional knowledge from the model stream
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via a simple yet effective feature estimation method when only using new data in
each incremental session.

Knowledge distillation. Knowledge can be distilled from the output of either the
final classifier or the intermediate layers, relying on the teacher-student structures
[237]. It is realized by characterizing the differences between the teacher model and
the student model through metrics such as L1 distance [216], L2 distance [217],
Gramian matrix [238], and KL-divergence [214]. For more details about knowledge
distillation, we refer readers to a recent survey [237]. Knowledge distillation provides
an effective way to retain the learned knowledge devoid of forgetting by one-teacher
or a multi-teacher frameworks [235, 239]. For example, Zhou et al. [235] introduce
using all previous models to transfer multi-level knowledge to train current new
tasks. To avoid a great memory storage requirement, they prune previous models
to get several “necessary” parameters during each training session.

Correlation learning has been used for multi-modal tasks to explore the relevance
between different layers or data samples [240, 241, 242, 243, 244]. It focuses on
the relations between feature representations rather than the features themselves.
These relations enable models to explore rich contextual information of images such
as [243] where three-level of correlations are integrated for optimal feature learning.
Correlation learning can be combined into knowledge distillation. For example, Peng
et al. [244] use a symmetric adjacency matrix to encode a knowledge graph with
category correlations and transfer them via a semantic-visual mapping network.
Similarity between activations of input pairs can also be extracted as knowledge
to transfer into the student model [245]. The successful applications of correlation
learning for knowledge distillation encourage its exploration for incremental learning
tasks.

6.3 Correlations Distillation for Incremental Image
Retrieval

6.3.1 Problem formulation

Given a dataset D = {(Xc, yc)|c = 1, 2, · · · , n} with n classes, each of which c

includes different amount of images |Xc| and they share the same ground-truth label
yc. The label is used to select a positive xp and a negative xn images for an anchor
image xa in each training iteration. A deep network f(·,θ) learns representations
F = f(X,θ) under the constraint of the triplet loss using hard sampling strategy,
whose goal is to push away the distance D(xa, xn) = ||f(xa;θ)−f(xn;θ)||22 between
xn and xa by a margin δ > 0 compared to D(xa, xp). Namely,

||f(xa;θ)− f(xp;θ)||22 + δ < ||f(xa;θ)− f(xn;θ)||22 (6.1)
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Figure 6.2: One-task incremental learning includes two training steps. Step 1: a
model f0 is well trained in advance on the n old classes using ranking loss only. Step 2:
the well-trained model f0 is frozen as a teacher network. Meanwhile, the parameters
of the Backbone and the Embedding Net included in this model f0 are copied as
initialization for a temporary model f ′1, which is updated to the final model f1 under
the constraints of correlation loss and triplet loss. At Step 2, only the m new classes
are used for training.

Before incremental training, the network is well trained on the n old classes, con-
verging at old parameters θo, i.e.,

θo = argmin
θ

Ltriplet(f0(Xc;θ)) (6.2)

where Ltriplet(xa, xp, xn) = [δ + D(xa, xp) − D(xa, xn)]+, as defined in Eq. 6.1.
To train network f0 incrementally, new data from m classes {(Xc′ ,Yc′)} where
c′ ∈ (n + 1, n + 2, ..., n + m) are added ({Xc} ∩ {Xc′} = ∅) at once or sequentially,
corresponding to one-task and multi-task cases, respectively.

The one-task case is depicted in Figure 6.2. At the start of training on m new
classes, f0 is copied into two copies. One is frozen as a teacher net, and another
is used as a temporary initialization f ′1 for further training (θo = θ

′
n, including the

parameters in the Backbone and Embedding Net). We only use the m new classes
to train to obtain f1. Thus, the core issue of the one-task case is to make the model
f1 with new parameters θn maintain a stable performance on the n old classes and
achieve competitive accuracy on the m new classes. Formally, the overall objective
for this scenario is:

L(Xc′ ;θo;θn) = λ1Ltriplet(Xc′ ;θn)︸ ︷︷ ︸
for plasticity

+λ2Lcorr(Xc′ ;θo;θn)︸ ︷︷ ︸
for stability

(6.3)

where Ltriplet makes the model perform well on new tasks while Lcorr is the cor-
relation loss to stabilize prior performance. θo and θn are the parameters for old
tasks and new tasks, respectively. λ1 and λ2 are the plasticity and stability hyper-
parameters, which tune the influence of two loss terms.

105



6. FEATURE ESTIMATIONS BASED CORRELATION DISTILLATION FOR
INCREMENTAL IMAGE RETRIEVAL

6.3.2 Correlations distillation for one-task scenario

As shown in Figure 6.2, the model f ′1 serves as a to-be-trained student net. For
the one-task incremental scenario, we propose to distill the semantic correlations as
knowledge.

Specifically, the features with dimension d from the teacher model f0 are formu-
lated as Fo = f0(Xc′ ,θo) ∈ RN×d, and that from the student model f1 are Fn =

f1(Xc′ ,θn) ∈ RN×d. Based on the fact that semantically similar inputs produce
similar patterns in a trained network [245]. Therefore, a Gram matrix with a kernel
function K(·) for Fo and Fn is defined:

G(i,j)
o = K(F i

o, F
j
o ); G(i,j)

n = K(F i
n, F

j
n) (6.4)

Here, we further define the function K(·) as inner product, i.e., K(F i, F j)=<F i, F j>.
Each entry (i, j) in G ∈ RN×N represents the correlations of the same activation
(i = j) or these between different activations (i 6= j). To compare the difference
between Go and Gn, we first normalize these matrices with Softmax function σ(·),
and then use KL-divergence to formulate a correlation loss Lcorr.

Lcorr =
1

N

∑
KL
(
σ(Go), σ(Gn)

)
(6.5)

6.3.3 Feature estimation for multi-task scenario

Compared to the one-task setting, the multi-task scenario is more complex where
all m new classes are divided into t groups: Xc′

0 ,..., Xc′
t . For clarity, we illustrate its

training process in Figure 6.3. As more new classes added sequentially, the model,
correspondingly, evolutes from the initial model f0 to the current one ft. In practice,
it may be difficult to save the stream of models. For this limit, we only save the
model trained on the penultimate task t − 1 when proceeding current task t for
tth new classes Xc′

t . For example, when training on the 3rd group of new classes
(task t=3), the knowledge is distilled only from the penultimate models f2, while
the previous models f0 and f1 are not saved. Due to the lack of previous models,
it causes two drawbacks: (1) the knowledge is distilled only from the penultimate
model ft−1 to the model on the current task t, and (2) the trained model ft may
forget more on old tasks prior to t−1. Therefore, it is natural to raise a question that
how to utilize these unsaved models trained prior to the penultimate task t− 1 for
transferring additional knowledge to supervise the training of current task t.

Hereafter, for better understanding, we introduce the multi-task scenario by defin-
ing an adaptive model ft for the current task t, a frozen model ft−1 trained on
penultimate task t − 1, and unsaved models ft−2, ..., f0 for earlier tasks t − 2, ..., 0,
as shown in Figure 6.4. Since the frozen model ft−1 is initialized from the previous
unsaved model ft−2 at the start of training on task t − 1, the feature distributions

106



6.3 Correlations Distillation for Incremental Image Retrieval

t = 0 t = 1 t = 2 t = 3

Copied as 
initialization

update

Correlation 
loss

update

new classes #3

old classes

new classes #1

new classes #2

Sequential tasks proceed

update

Copied as 
initialization

Copied as 
initialization

Correlation 
loss

Correlation 
loss

dedda sessalc 
we

N
0f 0f

1f 1f

2f 

1f

2f 2f

3f 3f

only for t = 1

only for t = 2

only for t = 3

Step 2 in Fig. 1

0f 0f

1f

Figure 6.3: Illustration of multi-task incremental learning when three groups of new
classes are added sequentially. For each round when new classes are added, the model
trained on a previous task is frozen its parameters as a teacher net and is also copied
as initializations of the model for new classes. Each round can be viewed as one-task
incremental learning. For simplicity, the triplet loss is ignored.

of these two models have some inherent relations, which can be reflected through
their accuracy (e.g., mAP). This accuracy evolution along with training the models
stream gives a hint for feature estimation.

a. Accuracy drops and accuracy gains

We propose a simple yet effective method to estimate the feature distributions for
all unsaved models, which serve as an additional regularization term for training
on current task t (t≥ 2). For this purpose, we first focus on the accuracy change
during training from task t− 2 to task t− 1. Parameters of the penultimate model
ft−1 are copied from those of the model ft−2. Before training on task t − 1, the
accuracy on its old tasks and the new classes Xc′

t−1 are recorded as Accbo and Accbn,
respectively. Naturally, Accbn is far from accurate since the penultimate model ft−1

is not trained specifically for new data. After training on task t−1, the accuracy on
these old tasks and new classes Xc′

t−1 are recorded as Accao and Accan, respectively.
Intuitively, the model ft−1 acquires new knowledge on new classes Xc′

t−1, and the
accuracy increases from Accbn to Accan (i.e., accuracy gains). In contrast, model ft−1

may degrade accuracy from Accbo to Accao (i.e., accuracy drops) because this model
is driven towards the new data.

The accuracy drops and accuracy gains, related to the stability-plasticity trade-off,
are criteria that correspond to old tasks and new tasks, respectively. For instance, if
a model has larger stability on previous tasks, both the accuracy drops and accuracy
gains are small. In contrast, if the stability is too weak, the model suffers obvious
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Figure 6.4: Illustration of feature estimation when performing the task t. The virtual
feature distribution of unsaved model ft−2 can be estimated by that of frozen model
ft−1 under multi-task incremental learning.

accuracy drops and forgetting on previous tasks. Inspired by [246], we define the
accuracy changes using the accuracy drops and accuracy gains:

αdrop =
(Accao − Accbo)

Accbo
, αgain =

(Accan − Accbn)

Accbn
(6.6)

As the training proceeds from task t − 2 to task t − 1, their accuracy changes
on old classes (the brown-color line in Figure 6.4) and new classes (the black-
color line). Rather than saving these models, we only record their accuracy drops
αdrop|(t−2)→(t−1) and accuracy gains αgain|(t−2)→(t−1), which are meta-data of these
models and provide implicit information to estimate the feature distribution drifts.
Here, the subscript “(t − 2) → (t − 1)” means the knowledge is distilled from task
t− 2 to penultimate task t− 1.

b. Distribution drifts estimation

Estimating feature distribution drifts was explored in [247] where the attribute vec-
tors are learned based on the source set and target set, then the learned vectors
are used to estimate new features. In this work, we estimate feature drifts via the
change of model accuracy. We only save the penultimate model ft−1 when training
on current task t, see Figure 6.4. The recorded accuracy change from model ft−2

to model ft−1 has been reflected through the drifts of their feature distributions.
Based on this, we use the accuracy change (αdrop, αgain) and the available features
from the model ft−1 to estimate the feature drifts which are used to further compute
virtual features for model ft−2. To be specific, when feeding tth group of new classes
Xc′

t into the model ft−1 and the adaptive model ft, we obtain their corresponding
actual features F actual

t−1 = ft−1(Xc′
t ) and F actual

t = ft(X
c′
t ). Since the accuracy drops

and accuracy gains from model ft−2 to model ft−1 have been obtained, we estimate
their feature distribution drifts using a simple yet effective method:
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∆|(t−2)→(t−1) ≈ α · F
actual
t−1

s.t. α = Cat(α1, ..., αi, ..., αN), αi ∈ Rd,α ∈ RN×d

αi ∼ U(αdrop|(t−2)→(t−1), αgain|(t−2)→(t−1))

(6.7)

where Cat(·) means vector concatenation operation. Each raw vector αi is randomly
sampled from the uniform distribution U(·, ·) according to αdrop and αgain. Thereby,
α has the same dimension with the features F . In theory, the expectation of each
sampling in α is close to 0.5× (αdrop + αgain).

It is assumed that the features change uniformly during sequential training and
the changes can be reflected through the accuracy drops and accuracy gains. With
this hypothesis, the feature drifts ∆|(t−2)→(t−1) can be evaluated according to the
actual features F actual

t−1 . With the feature drifts, inspired by [247], the virtual feature
distributions for unsaved model ft−2 are estimated:

F virtual
t−2 = F actual

t−1 + k∆|(t−2)→(t−1) (6.8)

where k is a scaling factor, we set k = 1. The reason why we can estimate the virtual
features F virtual

t−2 from F actual
t−1 is because the parameters of model ft−1 are initialized

from model ft−2 at the start of training ft−1.

Similarly, we can further approximate the virtual feature F virtual
t−3 for model ft−3

according to the already-estimated F virtual
t−2 , its accuracy drops αdrop|(t−3)→(t−2) and

accuracy gains αgain|(t−3)→(t−2) from task t − 3 to task t − 2. Normally, with a re-
cursive scheme, the virtual features of all previous unsaved models can be estimated
using their recorded accuracy drops, accuracy gains, and already-estimated virtual
features. Finally, the features of first model f0 are estimated as:

F virtual
0 = (1 + kα|(t−2)→(t−1))(1 + kα|(t−3)→(t−2))

...(1 + kα|(0)→(1))F
actual
t−1

(6.9)

c. Importance for estimated features

The estimated features for all previous unsaved models serve as additional regu-
larization terms. Thus, more Gram matrices Gvirtual are computed based on these
estimated features, as illustrated in Figure 6.5. To this end, the additional correla-
tion loss, such as L(t−2)→t

corr , based on the estimated features is formulated as:

L(t−2)→t
corr =

1

N

∑(
KL
(
σ(Gvirtual

t−2 ), σ(Gactual
t )

))
(6.10)
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mated from the actual features. For instance,
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When more new classes are added se-
quentially, more Gram matrices are
computed through the recursively-
estimated features. However, these
Gram matrices cannot be treated
identically when used for regularizing
the current task t since the accumu-
lated errors may make the recursively
estimated features more and more un-
reliable. For this limitation, the esti-
mations for earlier tasks are assigned
with a smaller importance. Naturally,
the importance is related to the in-
dices of old tasks. Finally, we formu-
late the correlation loss terms with dif-
ferent importance factors:

Lcorr = L
(t−1)→t

corr +
1

(t− 1)
L

(t−2)→t

corr +
0.1

(t− 2)
L

(t−3)→t

corr + ...+
(0.1)t−2

1
L

1→t

corr︸ ︷︷ ︸
Feature estimation for prior sequential tasks(t≥2)

(6.11)

For one-task incremental scenario (t=1), Eq. 6.11 can be re-written as Eq. 6.5.
If more tasks are performed (t ≥ 2), each semantic correlation loss based on the
estimated virtual features are constrained with importance factors ( 1

(t−1)
, 0.1

(t−2)
,...).

Substituting the term Eq. 6.11 into Eq. 6.3, we obtain the overall objective function
for incremental FGIR.

6.4 Experiments

6.4.1 Datasets and experimental setup

We evaluate the method on two datasets: Caltech-UCSD Birds-200 (CUB-200) [224]
and Stanford-Dogs-120 (Dogs-120) [223]. We choose 60% images from each category
as training sets and 40% as testing sets. Afterwards, we split the first 100 categories
(60 for the Dogs dataset) as the old classes (i.e., n=100 or 60) and the remaining
100 (60 for the Dogs dataset) categories as new classes (i.e., m=100 or 60). For the
multi-task case, these new classes are divided into several groups evenly. All splits
are in the order of official classes. In the following text, we use the class index of
each dataset to denote a group of new classes. For example, “classes (101-125)”
in italic means that the m=25 new classes from the index 101 to 125 are used for
training, the corresponding trained model is f1(101-125). The details of datasets
are followed the splitting methodology in Table 5.1 in Chapter 5.
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Implementation details. We utilize Google Inception as a backbone net. The
whole process includes two stages: initial training and incremental training. In the
first stage, the initial model f0 is trained on the n old classes by using the Adam
optimizer with a learning rate of 1 × 10−6, its embedding net is updated with a
learning rate of 1 × 10−5. In the second stage, we train a new model f1 based on
the converged f0 on the m new classes using Eq. 6.3, with the same learning rate in
the first stage. The model f0 trained on the n old classes (1-100) or (1-60) is wrote
as f0(1-100) or f0(1-60). Likewise, the model f1 is represented by the added m

new classes, such as f1(101-200) or f1(61-120). Following the practice in [131, 226],
the output 512-d features (F d in Figure 6.2) are used for retrieval1. We set the
plasticity factor λ1 = 1 and stability factor λ2 = 10 in Eq. 6.3 for the following
experiments.

Evaluation metrics. We use the Recall@1 [131, 248] and mean Average Precision
(mAP) as retrieval metrics, and use average incremental accuracy [232, 249] and
average forgetting [246] to evaluate incremental learning.

Table 6.1: Recall@1 and mAP (%) of incremental FGIR trained for the one-task
scenario, “Initial model f0(1-100)” indicates model trained on the first 100 classes on
the CUB-200 datasets. “Reference model” indicates the model f0(1-200) trained on
all classes of CUB-200. The best performance is reported in boldface.

Dataset Caltech-UCSD Birds-200

Configuration and Results (%) Old classes (1-100) New classes (101-200) Average
Recall@1 mAP Recall@1 mAP Recall@1 mAP

Initial model f0(1-100) 79.24 55.78 46.93 19.54 63.09 37.66
⇒ Model f1 w fine-tuning 70.21 42.57 75.13 48.90 72.67 45.74
⇒ Model f1 w EWC [213] 73.32 45.73 72.84 44.14 73.08 44.94
⇒ Model f1 w ALASSO [227] 72.88 43.87 72.94 45.50 72.91 44.69
⇒ Model f1 w NCEEWC [233] 72.63 43.80 73.07 45.15 72.85 44.48
⇒ Model f1 w L2 loss [219] 75.93 50.23 74.12 47.47 75.03 48.85
⇒ Model f1 w MMD loss [37] 77.03 51.10 74.12 45.05 75.58 48.08
⇒ Model f1 w Our method 77.71 52.25 75.00 46.51 76.36 49.38
Reference model f0(1-200) 78.18 52.17 79.24 50.99 78.71 51.58

6.4.2 One-task scenario evaluation

Baselines. CIHR [236] and DIHN [218] have been explored for incremental hashing
retrieval. The main difference with ours is that they used old data for training, while
we use new data only. For a fair comparison, we take [37] as a baseline in which the
feature-level regularization (i.e., maximum mean discrepancy (MMD) loss) is used.
We also compare to the popular algorithms including EWC2, ALASSO3, NCE loss4,
and L2 loss. Specifically, EWC [213] and ALASSO [227] are the network parameters

1Code available at: https://github.com/cw1091293482/Deep-Incremental-Image-Retrieval
2https://github.com/joansj/hat/tree/master/src/approaches
3https://github.com/dmpark04/alasso
4https://github.com/ProsusAI/continual-object-instances
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Table 6.2: Recall@1 and mAP (%) of incremental FGIR trained for the one-task
scenario, “Initial model f0(1-60)” indicates model trained on the first 60 classes on the
Stanford-Dogs datasets. “Reference model” indicates the model f0(1-120) trained on
all classes of Stanford-Dogs. The best performance is reported in boldface.

Dataset Stanford-Dogs-120

Configuration and Results (%) Old classes (1-60) New classes (61-120) Average
Recall@1 mAP Recall@1 mAP Recall@1 mAP

Initial model f0(1-60) 81.27 66.05 69.28 34.13 75.28 50.09
⇒ Model f1 w fine-tuning 73.96 45.24 83.69 67.25 78.83 56.25
⇒ Model f1 w EWC [213] 74.76 46.92 81.45 62.69 78.11 54.81
⇒ Model f1 w ALASSO [227] 75.92 48.35 81.50 63.40 78.71 55.88
⇒ Model f1 w NCEEWC [233] 75.12 47.88 81.62 62.99 78.37 55.44
⇒ Model f1 w L2 loss [219] 78.99 56.57 83.23 66.63 81.11 61.60
⇒ Model f1 w MMD loss [37] 79.49 59.43 83.35 65.21 81.42 62.32
⇒ Model f1 w Our method 79.92 58.37 83.48 66.01 81.70 62.19
Reference model f0(1-120) 80.37 62.48 83.10 66.78 81.74 64.63

regularization methods. To deploy these methods, we further train a classifier on
the top of the embedding net. NCE loss [233] regularizes the inner product of an
anchor-positive pair and anchor-negative pairs via a normalized cross-entropy loss.
This method is combined into EWC algorithm. We follow this protocol by mining
9 hard negative samples (termed as NCEEWC). L2 loss [217] focuses on minimizing
the Euclidean distance between the features from the teacher-student models. For a
fair comparison, the above four methods are trained with triplet loss Ltriplet, having
the same hyper-parameter λ1 = 1. In terms of the plasticity factor λ2, we tune this
factor for four methods in incremental FGIR until we get their optimal performance.
As a result, the corresponding plasticity factors are tuned as 8000, 0.2, 10, and 0.1,
respectively. Moreover, the “Reference” by joint learning serves as an upper-bound
performance. The fine-tuning method is also used as a reference for the new tasks
since there is no knowledge distillation regularization.

One-task incremental learning (m=100 or m=60) is similar to transfer learning,
while incremental training further emphasizes reducing forgetting on the n old
classes. The results are reported in Tables 6.1 and 6.2. Note that only model
f0 is available, thereby it is unnecessary to estimate virtual features.

Naturally, the initial model f0 trained on the n old classes performs poorly on the m
new unseen classes. Take the CUB-200 dataset as an example, mAP is 19.54% when
the initial model f0(1-100) is tested on the m new classes without any re-training.
Using the initial model f0, we further re-train on the m new classes using different
incremental algorithms to obtain the model f1, whose performance is distinct on the
old and new classes, as shown in Table 6.1. The fine-tuning method achieves the best
accuracy on the new classes, it improves the accuracy (19.54%→48.90% in mAP)
on the new classes on the CUB-200 dataset but degrades accuracy (i.e., forgetting)
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on the old classes (55.78%→42.57% in mAP). Similar trends can be observed on the
Stanford-Dogs dataset in Table 6.2.

For other algorithms, the models trained by network parameters regularization meth-
ods such as EWC and ALASSO show a similar trend that they reduce forgetting
on the n old classes, but their performance on the m new classes is less competi-
tive compared to the fine-tuning method. NCEEWC regularises metric learning via
cross-entropy loss on the feature embeddings. We find this method has some limited
benefits. For example, it improves on the Stanford-Dogs dataset in terms of the
average performance. L2 loss and MMD loss regularize the features directly. For L2
loss, it regularizes the model f1 to forget less on the old classes of two datasets. For
instance, on the CUB-200 dataset, it reduces the degradation by 3.31% of Recall@1
(79.24%→75.93%) and 5.55% of mAP (55.78%→50.23%), see Table 6.2 and Table
6.1 for details.

MMD loss is more similar to our method in which feature correlations are also consid-
ered [37]. Compared to MMD loss, our method, in most cases, suffers less accuracy
degradation on two datasets. For instance, our method degrades the Recall@1 on the
n old classes by 1.53% (79.24%→77.71%) and 1.35% (81.27%→79.92%) on CUB-200
and Stanford-Dogs, respectively, whereas the MMD loss degrades the Recall@1 on
the old classes by 2.21% (79.24%→77.03%) and 1.78% (81.27%→79.49%) on two
datasets. Moreover, in terms of the performance on the m new classes, our method
also achieves closer accuracy to that of the fine-tuning method.
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Figure 6.6: (a) mAP evolution of old classes (1-100) tested on the CUB-200 dataset
under one-task scenario. (b) The Gram matrices of four representative methods (best
viewed in color). More brightness indicates higher semantic correlations between two
samples. The reference performance is obtained by joint training. Our method retains
most semantics (higher brightness) compared to EWC and L2 loss.

Besides, we report the mAP evolution during incremental training in Figure 6.6(a).
The activation regularization methods (e.g., L2 loss) outperform the network param-
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eters regularization methods (e.g., EWC). Moreover, we visualize the Gram matrices
of three methods. As the training proceeds, their differences with respect to the ref-
erence Gram matrices are maximized. Namely, the bright area in the three methods
becomes ambiguous. However, our method retains most semantics of old classes
(more brightness) than the other two continual learning strategies even at the last
training epoch.

6.4.3 Multi-task scenario evaluation

Multi-task scenario refers to the case that m new classes are divided evenly into
several groups and added sequentially. For the CUB-200 dataset, the remaining
100 new classes are split into 4 disjoint groups, with 25 classes per group; For
the Stanford-Dogs dataset, we also get 4 groups with 15 classes per group. Thus,
there are 4 steps incremental training for each dataset. For each step, the model
is trained only on the images from a new class group (e.g., classes (126-150) of
the CUB dataset) and is tested separately in prior groups (e.g., classes (1-100) and
classes (101-125)) to evaluate the forgetting rate of this step. Note that incremental
performance is insensitive to the arrival order and choice of new classes since the
tasks do not depend on softmax-based probabilities [250].

Accuracy change range. We estimate the features of previous models (using Eqs.
6.7 and 6.8) based on the accuracy change defined in Eq. 6.6. Concretely, we
use mAP to calculate the accuracy range. For instance, on the CUB-200 dataset,
model f0(1-100) takes as input the first group of new classes (see Figure 6.3) and
produces an incrementally-trained model f1(101-125). In terms of mAP, it degrades
from 54.20% to 52.44% on the n= 100 old classes while increases from 29.82% to
52.27% on the m= 25 new classes. These recorded mAPs are used to calculate
the accuracy change range (αdrop, αgain) using Eq. 6.6. Finally, the mAP change
range is (-0.0325, 0.7528) during task t = 1 and is used to estimate the features
for model f0 when training the next task t = 2, without storing this model. The
estimated features serve as an extra regularization for training task t=2 in which the
knowledge is mainly transferred from the model f1(101-125) to f2(126-150). This
process is performed repeatedly until all new class groups are added. The earlier
feature estimation procedure becomes less reliable as more groups of new classes
are added. We solve this issue by decreasing importance factors in Eq. 6.11. For
multi-task scenario, we keep the plasticity factor λ1 and stability factor λ2 in Eq.
6.3 as 1 and 10, respectively.

We adopt forgetting measurement [246] to quantify the forgetting ratio. Specifically,
the forgetting ratio for a particular task is defined as the difference between the
maximum accuracy gained throughout the incremental training process in the past
and the accuracy the currently-trained model has, then all t tasks forgetting ratios
are averaged:
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forgetting =
1

t− 1

t−1∑
j=1

(
max

l∈{1,...,t−1}
Accl,j − Acct,j

)
,∀j < t (6.12)

where Acct,j denotes the accuracy of jth group of new classes evaluated by the model
trained on the task t. Concretely, we employ the mAP metric as Acc for evaluation.
When the model has been incrementally trained up to task t, we measure and then
average all previous forgetting ratios (1, 2, ..., t−1) using Eq. 6.12 as final forgetting
evaluation.

The average forgetting ratios are depicted in Figure 6.7. Note that we use the task
index to indicate the group of new classes being added. For example, “t = 2” on
the CUB-200 dataset means the model is training on the 2nd group of new classes
and then tested on classes (1-100) and classes (101-125) separately. Obviously, all
methods suffer catastrophic forgetting on two datasets. In particular, fine-tuning on
a new task leads to significant forgetting on the old tasks. EWC and ALASSO cannot
reduce the forgetting issue ideally in the multi-task scenario. By contrast, activation
regularization methods perform better on two datasets. Particularly, MMD loss and
our method, by distilling feature correlations, can significantly reduce the forgetting
ratio compared to the L2-regularized feature alignment method. Our method can
further largely mitigate the forgetting ratio when feature estimation is considered
into correlations distillation. Finally, our method has the least forgetting ratio (up
to 10%) on these two datasets.
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Figure 6.7: Average forgetting evaluation. “w/o EST.” indicates that feature ES-
Timation strategy is not included in our method (see Eq. 6.11). The forgetting is
measured on previous old classes after training on current new classes. The forgetting
ratios over all previous tasks are averaged to show. The higher value indicates the
more severe forgetting.

After all new tasks are added sequentially (i.e. t = 4), we get the final model
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f4(176-200) or f4(106-120) for this task. We measure the accuracy of each prior
task (i.e., class group) using the final model. We take Recall@1 as a metric for
demonstration, as shown in Figure 6.8, including the performance for the previous
tasks and the last new task. In this experiment, we use the performance of joint
training as reference upper bound. In terms of Recall rate tested on the last new
class group (i.e., classes (176-200) and classes (106-120)), we find all six incremental
learning algorithms and the fine-tuning method (without any knowledge distillation)
have similar performance, close to the upper bound, especially for the Stanford-Dogs
dataset. However, in terms of Recall on previous tasks, feature correlations used as
knowledge can lead to a better-performing performance than other counterparts,
closer to the upper bound, which means that our method suffers less forgetting on
these preceding tasks. For instance, when tested the final model f4(176-200) on the
old classes (1-100) of the CUB-200 dataset, our method achieves around 73% of
Recall@1, 7% lower than the upper bound (80%), whereas other methods achieve
less than 70%.

We have demonstrated that our method can reduce the catastrophic forgetting on
the previous tasks effectively. Also, the performance of the new task is essential to
evaluate. As the incremental training proceeds, we report the Recall@1 on the new
task during each incremental step in Figure 6.9. That is, we record the accuracy of
new classes every time these classes are added. The results illustrate the evolution
of performance on new classes. Obviously, we observe that all methods have similar
Recall evolution and their performance is close to each other, especially for the
Stanford-Dogs dataset.

We evaluate the case when more tasks are added sequentially on the CUB-200
dataset. Concretely, the remaining m=100 new classes are divided into 10 groups
evenly. We focus on activation regularization algorithms and compare with L2 and
MMD loss regularized methods. After the final model f10(191-200) is trained at
the end of the task sequence (i.e., new classes (191-200)), we test this model on
the original classes (1-100), which suffer the most severe forgetting. The results
are reported in Figure 6.10. Obviously, on the original classes (1-100), correlations
distillation with feature estimation method reduces the forgetting on classes (1-100)
effectively.

6.4.4 Ablation study

a. Efficacy of feature estimation

Feature estimation is introduced in Eq. 6.11 to reduce forgetting in the multi-task
scenario. Here, we explore the efficacy of feature estimation. For this purpose, we
consider a vanilla correlations distillation only from task (t−1) to task t, i.e., without
using the feature estimation. Therefore, the loss for training is L = λ1Ltriplet +

λ2L
(t−1)→t

corr .
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Figure 6.8: The Recall@1 evaluation of each task (class group) at the end of the 4-
step incremental learning. For instance, the model f4(176-200) incrementally-trained
on 4th new classes (176-200) at task t = 4 and is tested on all previously seen class
groups. (a) Tested on the CUB-200 dataset; (b) Tested on the Stanford-Dogs dataset.

We follow previous experimental protocols and conduct this study on the CUB-200
dataset. We depict the Recall@1 and mAP evolution in Figure 6.11. Note that it is
unnecessary to estimate feature drifts when task t = 1. When more new classes are
added, distilling as knowledge feature correlations like MMD loss and our vanilla
distillation method is more effective than L2 loss for reducing performance degrada-
tion. Also, vanilla distillation without feature estimation has a higher performance
than MMD loss. When feature estimation strategy is used, additional regulariza-
tion from unsaved models can effectively retain more previously-learned knowledge,
thereby leading to less forgetting on the original classes (1-100).

b. Influence of hyper-parameter

We show the efficacy of feature estimation in Figure 6.11. However, it seems that
the estimated features in Eq. 6.11 act as augmented components for reducing catas-
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Figure 6.9: The Recall@1 evolution tested on each new incoming class group during
incremental learning. “cls (1-100)” indicates “classes (1-100)”.
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Figure 6.10: 10-task performance comparison on the old classes (1-100). The test-
ing model is trained at the end of 10 tasks sequence on CUB-200. (a) Evolution of
Recall@1; (b) Forgetting ratio evaluated on Recall@1.

trophic forgetting. In other words, the forgetting ratio reducing on the old classes
might be realized by the hyper-parameter. To this end, we explore the influence of
hyper-parameter. Following previous experimental protocols, we consider two-step
incremental training on the CUB-200 dataset where only new classes (101-125) and
classes (126-150) are sequentially added. We do not consider task t=1 is because
there is no feature estimation in this task. When new classes (126-150) are adding
at task t= 2, the deep network is trained, using Eqs. 6.3 and 6.11, under four
conditions: case (a) without feature estimation, case (b) with hyper-parameter
augmented, case (c) with feature estimation, and case (d) with two-model distil-
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lation. The case (a) is viewed as a baseline where the correlations are distilled only
from the penultimate model f1(101-125) to the to-be-trained model f2(126-150) by
using their actual features. The case (d) is a complete method, similar to [235] in
which the previous models f0(1-100) and f1(101-125) are both saved for regulariz-
ing the training of current task t = 2. In contrast, it is unnecessary for our method
(case (c)) to save the model f0(1-100).
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Figure 6.11: Efficacy exploration for (a) Recall@1
and (b) mAP evolution only tested on the original
classes (1-100). We show the correlation matrices at
the end of incremental training. This visualization
further indicates that learning with feature estimation
makes its performance closer to the upper bound.

The results are reported in
Table 6.3. Naturally, the
complete method in the case
(d) produces an optimal per-
formance on the old classes
because all models are avail-
able. In terms of the baseline
method, due to no distillation
regularization, the trained
model f2(126-150) has the
best performance on the new
classes. For instance, its
mAP reaches the maximal
52.45%. However, this model
degrades performance heav-
ily on the old classes to a
minimal mAP (48.09%). In
contrast, when the hyper-
parameter of the baseline is
augmented from λ2 to λ2(1 +

1
(t−1)

). The trained model
f2(126-150) reduces forget-
ting on the old classes but
limits the learning on the new classes. In particular, compared to the baseline
method, the mAP of the case (b) on the old classes (1-100) reaches a maximal
50.71%, while it has the lowest Recall@1 (75.00%) and mAP (50.87%) on the new
classes (126-150). Therefore, Simply increasing the hyper-parameter of the stabil-
ity term λ2 in Eq. 6.3 cannot tackle well the stability-plasticity dilemma on the old
tasks and new task because no extra knowledge is transferred. By contrast, training
by using the feature estimation method can achieve competitive accuracy, taking
both the old classes and new classes into account. Specifically, the model trained
using the feature estimation method has a similar performance to the “two-model
distillation” method on the old classes (76.19%→ 76.91% of Recall@1). Meanwhile,
the performance on the new classes is close to that of the baseline method (76.33%
→ 76.83% of Recall@1).
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Table 6.3: Hyper-parameter analysis (%) on CUB-200 where training task t = 2. We
set λ1 = 1 and λ2 = 10. Lactual means that the loss term is computed by using actual
features, whereas Lvirtual denotes the one computed by using estimated features.

Configurations Old classes (1-100) New classes (126-150)
Conditions The form of loss function L = Recall@1 mAP Recall@1 mAP
Case (a) λ1Ltriplet + λ2

(
L

(t−1)→t

actual

)
74.75 48.09 76.83 52.45

Case (b) λ1Ltriplet + λ2

(
L

(t−1)→t

actual + 1
(t−1)L

(t−1)→t

actual

)
76.69 50.71 75.00 50.87

Case (c) λ1Ltriplet + λ2

(
L

(t−1)→t

actual + 1
(t−1)L

(t−2)→t

virtual

)
76.19 50.45 76.33 51.79

Case (d) λ1Ltriplet + λ2

(
L

(t−1)→t

actual + L
(t−2)→t

actual

)
76.61 50.49 76.50 51.92
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Figure 6.12: Visualization of retrieved images and their class names on the CUB-200
dataset. The Top 6 images tested on classes (1-100) are listed from left to right.

6.4.5 Retrieval visualization

We visualize the retrieval results for different methods on 4-tasks sequentially incre-
mental learning on the CUB-200 dataset. For all methods on different incremental
stages, the query image is the same. The red box means an image is retrieved in-
correctly, while the green box indicates the retrieved image has the same class label
as the query image. We use the model trained at the end of the 4-step sequentially
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incremental training, i.e., the model f4(176-200), and test this model on the old
classes (1-100). Considering the differences among images are subtle, we report the
retrieved images and corresponding class names. We select an image from class “Pied
Billed Grebe” as the query item. This image is difficult to retrieve and is prone to
cause forgetting issue because the color of the object in this image is similar to the
background, as well as its incomplete appearance. The top 6 retrieved results are
shown in Figure 6.12. Overall, all methods can return images with similar scenes.
Other incremental algorithms suffer catastrophic forgetting and return more incor-
rect images. By contrast, our method effectively reduces the forgetting ratio and
still returns more correct images of the old tasks after a process of 4-step incremental
learning. When the model f4(176-200) are validated on on previous tasks: classes
(101-125), classes (126-150), and classes (151-175). Note that classes (176-200)
are used as the current new classes. The visualizations are depicted in Figure 6.13,
Figure 6.14, Figure 6.15, and Figure 6.16, respectively.

6.5 Chapter Conclusions

In this chapter, we explored fine-grained image retrieval in the context of incremen-
tal learning, where one-task and multi-task scenarios are validated. To achieve a
trade-off performance for old tasks and new tasks, we used new data only and reg-
ularized their features extracted from the teacher model and the student model. In
terms of multi-task incremental learning, saving all previous models for correlations
distillation may cause a great demand in memory storage. We made an attempt
to address the issue via a feature estimation method. That is, instead of storing
a stream of old models, we saved the accuracy of models to compute the accuracy
change during training each task. The semantic correlations of the estimated fea-
tures, as an additional regularization, further mitigated the catastrophic forgetting
ratio on previous tasks. Compared to previous approaches, the advantages of the
proposed method were verified by thorough quantitative and qualitative results on
two fine-grained datasets. Now, incremental image retrieval methods still need su-
pervisory information. In the future, it is potentially valuable to explore incremental
image retrieval in an unsupervised learning manner. Further, the data used in old
tasks and new tasks share similar semantic commonalities, it is also interesting to
examine for heterogeneous data.
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Task t=1,  tested on the Classes (101-125)
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Figure 6.13: The top-6 retrieval results of the model f4(176-200) tested on the
previous old classes (101-125).

Task t=2, tested on the Classes (126-150)
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Figure 6.14: The top-6 retrieval results of the model f4(176-200) tested on the
previous old classes (126-150).
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Task t=3,  tested on the Classes (151-175)
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Figure 6.15: The top-6 retrieval results of the model f4(176-200) tested on the
previous old classes (151-175).

Task t=4,  tested on the Classes (176-200)
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Figure 6.16: The top-6 retrieval results of the model f4(176-200) tested on the
current new classes (176-200).
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Chapter 7

Lifelong Image Retrieval via Dual
Knowledge Distillation

In Chapters 5-6, we explored incremental learning on fine-grained datasets. However,
this is still far from realizing the model’s continuous retrieval ability because the
images in old categories and new categories are similar semantically. Instead, the
images in new categories may have different semantic contents (i.e. semantic shifts).
For the context of incremental learning, the semantic shifts make the problem of
minimizing the forgetting ratio more difficult.

In this chapter, we investigate RQ 4, with a goal of gradually transferring acquired
knowledge for any new task while minimizing the forgetting ratio on old tasks. To
this end, we propose a Dual Knowledge Distillation (DKD) framework consisting of
two professional teachers and a self-motivated student. One teacher is trained on
previous datasets and then freezes its parameters. This frozen teacher is responsible
for transferring previous knowledge. The other teacher is trained jointly with the
student by using samples from the new incoming dataset only. This “on the fly”
teacher is responsible for learning new knowledge and acts as an assistant model to
improve the student’s generalization ability. As the incremental learning proceeds,
the semantic drifts between the old and new datasets often weaken the effectiveness
of knowledge distillation by the frozen teacher. To mitigate this problem, we lever-
age the stored statistics in the BatchNorm layers of the frozen teacher to generate
representative images of the old datasets.

Keywords
Lifelong image retrieval, Dual knowledge distillation, Data generation, BatchNorm
statistics

This chapter is based on the following publication:

• Chen, W., Pu, N., Liu, Y. , Lao, M., Wang, W., Bakker, E. M., Liu L., Tuytelaars, T.,
and Lew, M.S., “Lifelong Image Retrieval via Dual Knowledge Distillation.” submitted to
Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI) (under review), 2021.
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7. LIFELONG IMAGE RETRIEVAL VIA DUAL KNOWLEDGE DISTILLATION

7.1 Introduction

Image retrieval have been widely explored in the literature since the emergence of
deep learning [130, 131, 132, 226]. Typically, existing retrieval works focus on im-
proving the networks’ generalization ability and assume that the target dataset is
stationary and fixed. This assumption, however, is infeasible for many real-world
scenarios, where the environment is non-stationary. To this end, lifelong learning
[251] is proposed to make deep networks learn sequential tasks and adapt to stream-
ing data.
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Figure 7.1: Illustration of lifelong image re-
trieval. A deep model is trained on differ-
ent sequential datasets D1,D2,D3, · · · . Each
dataset is split into a set of seen categories S
and a set of unseen categories U . The seman-
tic difference (e.g. birds v.s. cars) results in
forgetting when the model is trained on a se-
quence of task. Thus, the goal is to train the
model to minimize the forgetting ratio on the
old tasks and simultaneously improve gener-
alization on the new task.

The main challenge for lifelong learn-
ing systems is to overcome catas-
trophic forgetting [252]. Knowledge
distillation [214] can be used to reduce
forgetting, by transferring the learned
information from a trained network
(i.e. teacher) to a new one (i.e. stu-
dent) [212]. It has been researched for
various classification-based tasks, in-
cluding image classification [213], ob-
ject detection [217], image generation
[216]. However, its efficiency on image
retrieval is still less studied due to the
challenges below.

First, a deep model learns to retrieve
incrementally on different tasks, and
the semantic drifts between the train-
ing data lead to tasks that maybe very
weakly related, for example the birds,
dogs and cars in Figure 7.1. Thus,
knowledge distillation cannot effectively prevent the forgetting on streaming data
across different tasks. Second, the weak relatedness between tasks results in sig-
nificant updates of model’s parameters when this model learns a new task. Image
retrieval is highly sensitive to the matching between features. Thus a small change
in the features would have a significant impact on feature matching. The changes
in output features make the problem of minimizing forgetting more difficult. Third,
conventional knowledge distillation framework pays more attention on preserving
the knowledge in the teacher network. This may make it hard to pursue an optimal
balance between minimizing the forgetting ratio and improving network’s retrieval
generalization capacity.

In this chapter, we focus on the three challenges and propose a Dual Knowledge
Distillation (DKD) framework which includes two professional teachers and a stu-
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dent. On the one hand, the first teacher has been trained on previous tasks to
transfer old knowledge. To further alleviate the forgetting of the student, we use
the statistics stored in the BatchNorm layers of the frozen teacher to generate im-
ages used as representatives for the previous datasets. Instead of storing a small
budget of exemplars derived from the old data or synthesizing images via training
additional generative networks, the representative images can be directly generated
from the frozen teacher, without any other operations. On the other hand, the sec-
ond teacher is trained jointly with the student by using samples from the new task
only. This “on-the-fly” teacher acts as an assistant model to improve the student’s
generalization ability on the new task. Finally, the student can achieve an opti-
mal balance between minimizing the forgetting ratio and improving generalization
performance.

7.2 Related Work

Lifelong learning a.k.a. incremental learning, has been explored in image clas-
sification [213], object detection [217], image generation [216], and image retrieval
[37, 218] etcThe methods can be broadly divided into three methodologies: network
architecture-based [230], memory replay-based [221, 231], and regularization-based
methods [213, 227]. Knowledge distillation is one of the regularization-based meth-
ods, which can be performed on either the final classifier or the intermediate layers.
The key is to minimize the differences between the teacher and the student, which
can be characterized by cross-entropy [214], L1 loss [216], L2 loss [253], Gramian
matrix [238], and KL-divergence [214]. Multi-teacher knowledge distillation meth-
ods have been explored [237]. The ensemble of multiple teachers, e.g. by averaging
their responses, can provide more powerful prior information for supervising the
student. In this chapter, we propose a dual knowledge distillation framework which
includes two professional teachers for transferring both old and new knowledge in-
formation.

Metric learning has been explored broadly for image retrieval [130, 131, 132,
226]. Given binary indicator information for samples (i.e. positive or negative),
deep networks learn an embedding space for the features which should be verified
as positive pairs or negative pairs [254]. To date, the mainstream methods train
deep networks on the seen classes of a fixed dataset and then their generalization
performance are validated on the unseen classes of this dataset. Therefore, metric
learning for image retrieval focuses on the forward transfer [230], i.e. transferring a
positive influence to improve the performance on future unseen data. Nevertheless,
these methods do not consider the negative backward transfer issue (i.e. catastrophic
forgetting). Therefore, we explore lifelong image retrieval, with the goal to reduce
forgetting and simultaneously improve generalization ability.
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BatchNorm statistics utilization. The statistics stored in the BatchNorm lay-
ers of a pre-trained model are used for data-free knowledge distillation [255] and
data-free model compression [256]. These statistics are relevant to the statistical
characteristics of the datasets trained in the past. They have been used as a refer-
ence to generate images. For instance, Yin et al. [255] introduced Adaptive Deep-
Inversion (ADI) which is a feature map regularizer based on BatchNorm statistics
that enables image synthesis from random noise. The generated images have similar
semantics to the images of ImageNet. The images generated in [255] depend on
optimizing the gradients computed from cross-entropy loss based on the given class
labels. This is not directly applicable to lifelong image retrieval because (1) the
order of given class labels may affect the softmax-based probabilities of a classifier
as the tasks are added sequentially; (2) lifelong image retrieval tasks do not depend
on softmax-based probabilities to perform. Instead, we apply a clustering loss to
generate images.

7.3 The Lifelong Image Retrieval Problem

Preliminary. To perform image retrieval, a dataset D is split into a training
set Dtr and a testing set Dte. A deep network f(·,θ) is trained on Dtr to learn
representations F =f(X,θ) by using a certain objective function. To date, ranking
loss has been widely used as a constraint to train the network f . Taking the triplet
loss as an example, each ground-truth label in Dtr is used to mine a positive xp,
a hard negative xn, and an anchor image xa. The network f is trained to learn
a feature space, where the distance between xn and xa denoted by D(xa, xn) =

||f(xa;θ)− f(xn;θ)||22 is pushed away by a margin δ > 0 from D(xa, xp):

Ltriplet(xa, xp, xn)=max
(
δ+D(xa, xp)−D(xa, xn), 0

)
(7.1)

Problem definition. We use the triplet loss as a basic constraint to train a model
to perform tasks incrementally. The flowchart is illustrated in Figure 7.1. Each task
t corresponds to the training of a whole dataset Dt (e.g. birds). During the tth task,
dataset Dt is split into a set of seen categories St and a set of unseen categories U t.
For the seen part, St includes ns categories, i.e. St = {(Xc, yc)|c = 1, 2, · · · , ns},
each class c includes a different amount of images |Xc| sharing the same label yc. The
St part is further split into a training set and a testing set. Likewise, the unseen part
U t includes nu categories, all of which are used to evaluate the model’s generalization
ability, similar to the general practice in metric learning for image retrieval. For
lifelong image retrieval, suppose a deep model has been trained sequentially on the
training sets S1,S2, · · · ,St (current task t). On the one hand, it is required that
the trained model is able to minimize the forgetting ratios on the previous tasks
S1,S2, · · · ,St−1 and U1,U2, · · · ,U t−1, thereby retaining its retrieval capacity on
the previous datasets D1,D2, · · · ,Dt−1. On the other hand, it is required that the
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Figure 7.2: The dual knowledge distillation (DKD) framework. The stored statis-
tics in the BatchNorm layers of the frozen teacher are used to generate representative
images, optimized by the Lg. The on-the-fly teacher is initialized its parameters differ-
ently from the frozen teacher and trained jointly with the student by using Lte2 . For
clarity, the ReLU activation function and pooling layers are not depicted.

trained model achieves good accuracy on the seen part St and, more importantly,
generalizes well on the unseen part U t of current dataset Dt.

7.4 Dual Knowledge Distillation

To minimize the forgetting ratio and simultaneously improve generalization perfor-
mance, we propose a dual knowledge distillation (DKD) framework which includes
two teachers and a student, as shown in Figure 7.2. In the following, we will intro-
duce each component in more detail.

7.4.1 Knowledge distillation by frozen teacher

Prior to training task t, a teacher model has been trained on the previous task (t−1)

and has its parameters fixed. Training the student on the new task t leads to a nega-
tive backward transfer which may degrade the performance of preceding tasks [230].
Knowledge distillation by using the frozen teacher f t−1

te1 can prevent this degrada-
tion. As shown in Figure 7.2, knowledge distillation by using the frozen teacher is
performed on the embedded D-dimension features from the fully-connected layers,
formulated as Fo=f t−1

te1 (Xc,θt−1
te1 ) ∈ RN×D, whereN is the size of a mini-batch. Like-

wise, the feature representations from the student f ts are Fn = f ts(X
c,θts) ∈ RN×D.

As suggested in [245, 257, 258], semantically similar inputs produce similar patterns
on features extracted from the frozen teacher and the student. Therefore, we adopt
the Gram matrix with a kernel function to measure the feature correlations:
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G(i,j)
o = K(F i

o, F
j
o ); G(i,j)

n = K(F i
n, F

j
n) (7.2)

K(·) refers to inner product, i.e., K(F i, F j) =<F i, F j>. Each entry (i, j) in G ∈
RN×N represents the correlations of the same activation (i = j) or these between
different activations (i 6=j). We use KL-divergence to measure the difference between
Go andGn, normalized by a Softmax function σ(·). Thus, the knowledge distillation
loss by the frozen teacher f t−1

te1 is formulated as Lkd1 , weighted by a factor λkd1 :

Lkd1 = λkd1

N∑
KL
(
σ(Go), σ(Gn)

)
(7.3)

7.4.2 Representative data generation

When the student learns task t, the performance degradation of preceding tasks
is prevented by using the KL-divergence in Eq. 7.3. However, when the student
is trained incrementally on the data with large semantic drifts (e.g. birds and
cars in Figure 7.1), Lkd1 cannot effectively prevent the degradation by transferring
more previously learned information. To overcome this problem, we use the stored
statistics in BatchNorm layers to generate samples as representatives for the previous
tasks. Representative data generation is performed by the frozen teacher itself,
instead of selecting exemplars from these already-trained datasets.

Suppose the frozen teacher includes L convolutional layers, each of which is followed
by a BatchNorm layer, as shown in Figure 7.2. Each BatchNorm layer l includes
channel-wise running means µ̂l and running variances σ̂2

l . Prior to training the
student, a batch of Gaussian noise Z with random class labels Y ′ are fed into the
teacher. Outputs of each convolutional layer l of the teacher are used to compute the
batch means µl and batch variances σ2

l . Similar to [255], we define a BN loss LBN
to measure the difference between the stored statistics and the current statistics of
Z:

LBN =λBN
∑L

l=1

(
‖µl(Z)− µ̂l‖2

2 + ‖σ2
l (Z)− σ̂2

l ‖
2
2

)
(7.4)

Different from ADI in [255] which is limited only from the classification networks.
We apply a K-means clustering loss Lcluster, together with LBN to optimize Z. Given
a mini-batch of N noise tensors with K classes, containing P tensors of each given
class, the mean Mk for a class k ∈ K is defined as Mk = 1

P

∑P
p=1 f

t−1
te1 (zkp ,θ

t−1
te1 ),

where zkp is a sample from the tensors Z. The number of clusters is set to the number
of classes in tensors Z (i.e. K classes). We cluster features of Z via computing
intra-class and inter-class distances. Specifically, for a given class k ∈ K, a set
of intra-class distances dintrak is formulated as {||f t−1

te1 (zkp ,θ
t−1
te1 ) − Mk||2|}, where

p= 1, 2, ..., P and the number of elements in dintrak is equal to P . Likewise, a set of
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inter-class distances dinterk is computed according to all other (N −P ) samples from
k′p classes (k′p∈K and k′p 6=k). Clustering all the elements in dintrak and dinterk leads
to a low training efficiency. Instead, we mine the hardest samples in these distance
sets. For dintrak , we mine the sample that lies farthest from its class mean Mk. For
dinterk , we mine the sample that lies closest from the considered class mean Mk. For
all K classes, we use a clustering loss Lcluster to regularize the inter-class variations
to become larger than the intra-class variations by a margin ∆ > 0:

Lcluster=λ
cluster

K∑
k=1

max
(

∆+max
P

dintrak −min
N−P

dinterk , 0
)

(7.5)

Afterwards, the loss Lg=LBN +Lcluster is used to optimize Z based on the frozen
teacher f t−1

te1 (·,θt−1
te1 ) to generate representative images X ′ of the previous task (t−1),

i.e. X ′ ← argmin
z∈Z

∑
(Lg;θ

t−1
te1 ). Images X ′ and class labels Y ′ can be used to build

a mixed dataset Xmix = X ∪ X ′. X belongs to the origin training set in Dt. The
mixed labels are Ymix = Y ∪ Y ′. In this case, the mixed data are fed into the frozen
teacher f t−1

te1 to transfer richer previous knowledge to the student.

7.4.3 Self-motivated learning on the mixed data

At the start of task t, the parameters of the student are copied from the frozen
teacher, as shown in Figure 7.1. The self-motivated learning for the student is
important for guaranteeing the performance on the current task t, as can be seen
from the results for Case 4 in Table 7.6. Consistent to the training scheme for the
frozen teacher, we employ the triplet loss in a similar form as Eq. 7.1 to train the
student.

Ls = λs

N∑
Ltriplet

(
f ts(x

′
a), f

t
s(x
′
p), f

t
s(x
′
n)
)

(7.6)

Note that the anchor, positive, and negative images (x′a, x′p, x′n) are from the mixed
dataset Xmix according to the mixed labels Ymix in each training session.

7.4.4 Auxiliary distillation by on-the-fly teacher

During training, the student needs to learn new information and simultaneously
protect previous knowledge. However, knowledge distillation from the mixed data
using the frozen teacher is a strong regularization by the time it reaches the student,
making the student be prone to remembering previous knowledge but having lower
generalization on the new task t, as demonstrated by Case 2 in Table 7.6. As a
result, an optimal balance between reducing forgetting and improving generalization
is hard to achieve. Therefore, we propose a second teacher f tte2 which is trained
together with the student. Its parameters θtte2 are initialized differently from these
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of the frozen teacher and the student. This teacher is constrained by a triplet loss
Lte2 :

Lte2 =λte2

N∑
Ltriplet

(
f tte2(xa), f

t
te2

(xp), f
t
te2

(xn)
)

(7.7)

For Lte2 , the training images (xa, xp, xn) are mined only from St = {(Xc, yc)|c =

1, 2, · · · , ns} of the dataset Dt, rather than the mixed data Xmix, see Figure 7.2.
The on-the-fly teacher is designed to transfer new information to the student to
improve its generalization ability. Thus, an auxiliary knowledge distillation loss
Lkd2 is defined as:

Lkd2 = λkd2

N∑
KL
(
σ(G′n), σ(Gn)

)
where G′n = K(F ′n, F

′
n), F ′n=f tte2(x,θ

t
te2

);

Gn = K(Fn, Fn), Fn=f ts(x,θ
t
s);x ∈ X

(7.8)

Note that during training the gradients computed from Lkd2 are detached for the
on-the-fly teacher. This operation can guarantee the on-the-fly teacher to be fully
dedicated to capturing new information from the new dataset Dt.

Full objective. When training with dataset Dt on task t, together with the gen-
erated images, the DKD framework is running by using the full objective func-
tion:

L = λsLs + λkd1Lkd1 + λkd2Lkd2 + λte2Lte2 (7.9)

7.5 Experiments

7.5.1 Dataset splits

Our experimental methodology involves using sequences of two tasks and sequences
of three tasks in a roughly similar way as the recent lifelong learning research [259].
We perform experiments on three datasets: Caltech-UCSD Birds (CUB-200) [224],
Stanford-Dogs [223], and Stanford-Cars [260].

• CUB-200 includes 11,788 images of 200 classes. We select 150 classes (8,822
images) as the seen set S and use the remaining 50 classes as unseen set U
(2,966 images). For the seen set, we select ∼60% of each class for training
(5,274 images), while the remaining ∼40% (3,548 images) are used to evaluate
the forgetting ratio.

• Stanford-Dogs includes 20,580 images of 120 classes. We select 100 classes
(17,028 images) as the seen set and use the remaining 20 classes as unseen set
U (3,552 images). For the seen set, we select ∼80% of each class for training
(13,063 images), while the remaining ∼20% (3,965 images) are for testing.
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• Stanford-Cars includes 16,185 images of 196 classes. We select 160 classes
(10,038 images) as the seen set and use the remaining 36 classes as unseen set
U (3,040 images). For the seen set, we select ∼80% images of each class for
training (10,038 images), while the remaining ∼20% (3,107 images) are used
at test.

7.5.2 Training details

We utilize the pre-trained Google Inception with BatchNorm as a backbone net. The
on-the-fly teacher is always initialized from the pre-stored parameters learned from
ImageNet before training each task. Following the practice in [131, 226], the final
retrieval features are 512-D. The model is trained for 1500 epochs on the first dataset
to get the initial frozen teacher. The training is constrained by the triplet loss with a
margin δ = 0.5 as given in Eq. 7.1, optimized by the Adam optimizer with a learning
rate of 1 × 10−6 and a batch size of 32, The fully-connected layers for dimension
reducing are updated with a learning rate of 1 × 10−5. Representative images are
generated by using Eqs. 7.4 and 7.5 where factors λBN and λcluster are set to 0.01
and 0.1, respectively. ∆ in Eq. 7.5 is set to 1.0. The image generation process is
optimized by an additional Adam optimizer with a learning rate of 0.5. The factors
λs, λte2 , λkd1 , and λkd2 in Eq. 7.9 are set to 1, 1, 80, 20, respectively. We include
the main steps of the Dual Knowledge Distillation (DKD) framework in Algorithm
2. Before training each task, the student initializes its parameters from the frozen
teacher. Differently, the on-the-fly teacher is always initialized from the pre-stored
parameters of Google Inception learned from the ImageNet. In addition, its fully-
connected layers are initialized randomly. Image generation process is performed
prior to training the student model. The whole framework is trained in an end-to-
end manner.

7.5.3 Performance evaluation

Baseline. To the best of our knowledge, there is no prior work for lifelong image
retrieval performed on different datasets. We build the sequential fine-tuning (SFT)
method as a baseline, which is performed by using a triplet loss as defined in Eq
7.1. We compare 3 knowledge distillation methods, including L1 loss [216], L2 loss
[217], and maximum mean discrepancy loss (Lmmd in short) [37]. We claim the work
of incremental fine-grained image retrieval [37] is less challenging than ours because
the new data and old are from the same dataset in [37]. Similar to [259], we use the
joint training on the training sets of 3 datasets as the upper-bound reference for all
compared methods.

Metrics. We evaluate the performance of seen set s and that of unseen set u by
using the standard performance metric Recall@K (i.e. R@K ). The evaluation for u
is the same as the one widely explored in deep metric learning [130, 131, 132, 226]
which aims at demonstrating the generalization ability. The evaluation for s aims
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Algorithm 2: Dual Knowledge Distillation (DKD) framework
1: Input:
2: Frozen teacher f t−1

te1
(·,θt−1

te1
) has been trained on the previous task t− 1;

3: New training images X ∈ RN×H×W×3 and labels Y ∈ RN×1 on the training set of St
on the current dataset Dt;

4: Initialization:
5: θts = θt−1

te1
//Copied the frozen teacher as the initial student;

6: θtte2 ← Google Inception //Initialize on-the-fly teacher;
7: Random noise tensor Z ∈ RN×H×W×3;
8: Random labels Y ′ ∈ RN×1 for input noise Z //Include K classes in total;
9: Iterations Iter of image generation; Training epochs Epoch; Mini-batch size N ;
10: Optimizer with a learning rate lr1;
11: Training:

For iter = 0 to Iter
12: F (Z) = f t−1

te1
(Z,θt−1

te1
) ∈ RN×D //Features to calculate cluster means, inter-class

distance sets, and intra-class distance sets;
13: LBN =

∑L
l=1

(
‖µl(Z)− µ̂l‖22 +

∥∥σ2
l (Z)− σ̂2

l

∥∥2

2

)
//BN loss in Eq. 7.4;

14: Lcluster=
∑K

k=1max
(

∆+max
P

dintrak −min
N−P

dinterk , 0
)
//Clustering loss in Eq. 7.5;

15: X ′ ← argmin
Z

∑(
(LBN+Lcluster);θ

t−1
te1

)
//Using the optimizer with lr1;

End for
For epoch = 0 to Epoch

16: Xmix = X ∪X ′, Ymix=Y ∪ Y ′ //Build a mixed dataset via data concatenation;
17: Fo=f t−1

te1
(Xmix,θ

t−1
te1

) ∈ R2N×D //2N ×D-dim features from the frozen teacher;
18: Fn=f ts(Xmix,θ

t
s) ∈ R2N×D //2N ×D-dim features from the student;

19: F ′n=f tte2(X,θtte2) ∈ RN×D //N ×D-dim features from the on-the-fly teacher;
20: Lkd1 = KL(Fo,Fn) //Knowledge distillation from the frozen teacher in Eq. 7.3;
21: Ls = Triplet(Fn, Ymix) //Triplet loss from the student in Eq. 7.6;
22: Lte2 = Triplet(F ′n, Y ) //Triplet loss from the on-the-fly teacher in Eq. 7.7;
23: Lkd2 = KL(F ′n, {Fn}n=1,...,N ) //Knowledge distillation in Eq. 7.8;
24: L = Ls + Lkd1 + Lkd2 + Lte2 //Weighted full loss function in Eq. 7.9;

End for
25: Output: The optimized student model f ts(·,θts).

to analyze the forgetting ratio of a considered model. Similar to [261], we use
the harmonic mean H of s and u to evaluate the trained model, which the most
important metrics for each task.

H =
2× s × u

s + u
(7.10)

Results. We consider the two-task scenario and three-task scenario. For the two-
task scenario, we use CUB-200 as the first task, and consider the task sequences:
CUB-200→ Stanford-Dogs and CUB-200→ Stanford-Cars. The results are reported
in Tables 7.1 and 7.2. For the three-task scenario, we randomly select a task sequence
starting with CUB-200: CUB-200 → Stanford-Dogs → Stanford-Cars. The results
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are reported in Table 7.3. For clarity, we report the Recall@1 results.

(1) Two-task evaluation. As shown in Tables 7.1 and 7.2, three experimental
comparisons are reported. Compared to the reference, fine-tuning on the Stanford-
Dogs and Stanford-Cars achieves a Recall@1 of 78.0% and 77.5% of H on the second
task, respectively, while fine-tuning suffers from forgetting on the first task. If “one-
teacher” knowledge distillation methods are performed, the student suffers less from
forgetting. However, the improvements on the first task are limited due to the se-
mantic drifts. When BatchNorm statistics are used to address this limitation, we
observe that the students regularized by different methods are both prone to remem-
bering the first task but degrading their generalization ability on the second task.
This is caused by the strong regularization from the frozen teacher, together with
the representative images. If the on-the-fly teacher is used (i.e. “DKD + BN statis-
tics”), the generalization performance on the second task is improved or even surpass
that from the baseline. For instance, on sequence “CUB-200 → Stanford-Dogs” in
Table 7.1, when knowledge distillation in the DKD framework is realized by using
KL-divergence in Eqs. 7.3 and 7.8, the overall Recall@1 reaches to 80.0%, higher
than the 78.0% of the baseline. This demonstrates the efficiency of the auxiliary
distillation. At the same time, the student suffers from the minimal degradation on
the first task, with a Recall@1 of 67.0%, compared to the 68.7% of the reference.
Likewise, on sequence “CUB-200 → Stanford-Cars” in Table 7.2, the student has
a Recall@1 of 60.7% compared to 67.7% of the reference. This larger difference is
caused by the different distributions between training data of Stanford-Dogs and
that of Stanford-Cars.

(2) Three-task evaluation. When three tasks are performed incrementally, the
student trained on the final task is tested on the previous two datasets. The results
are reported in Table 7.3. Specifically, the generalization performance of the DKD
framework on the last task (i.e. on Stanford-Cars) is close to or even surpasses the
reference performance of joint training (i.e. 78.1% and 77.8%). Compared to the
two-task scenario, training on the sequence of three tasks leads to more forgetting
on the preceding tasks due to the accumulated semantic drifts, especially for the
first task. We compare the forgetting ratios of the compared methods on CUB-200.
As depicted in Figure 7.3, the initial model is converged at 1500 training epochs on
CUB-200, with Recall@1=74.8% on seen set and Recall@1=61.6% on unseen set.
We observe that the SFT method degrades performance significantly. Training on
the sequence of three tasks also causes forgetting on the unseen set, as shown in
Figure 7.3(b). In comparison, the proposed DKD reduces the degradation greatly
and is closer to the upper-bound reference.

(3) Evaluation of the on-the-fly teacher. Due to the gradients detach opera-
tion, the on-the-fly teacher learns the new task, only being regularized by the term
Lte2 in Eq. 7.7. We follow the setup of the two-task scenario in Table 7.1, and
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Table 7.1: Recall@K (K=1) comparison (%) of s and u for the sequence “CUB-200
→ Stanford-Dogs”. “KD” represents that one frozen teacher is used for knowledge
distillation only. For all cases, the student is regularized by triplet loss only. “KL-
divergence” denotes that the knowledge is transferred by using Eq. 7.3. The best
balanced results are highlighted in boldface.

CUB-200 → Stanford-Dogs
Test on CUB-200 Test on Stanford-Dogs
s u H s u H

Recall@K K=1 K=1 K=1 K=1 K=1 K=1
Baseline FT [226] 56.0 47.5 51.4 72.2 84.9 78.0

KD

L1 loss [216] 52.1 47.4 49.6 71.1 78.7 74.7
Lmmd loss [37] 62.3 52.2 56.8 73.3 85.3 78.9
L2 loss [217] 60.5 49.9 54.7 73.7 85.0 78.9
KL-divergence 62.2 52.1 56.7 73.6 85.0 78.9

KD
+

BN statistics

L1 loss [216] 72.0 60.7 65.9 49.8 76.8 60.4
Lmmd loss [37] 73.1 61.7 66.9 49.7 76.3 60.2
L2 loss [217] 72.5 62.3 67.0 49.4 75.5 59.7
KL-divergence 73.5 63.8 68.3 60.0 80.3 68.7

DKD
+

BN statistics

L1 loss [216] 64.1 53.3 58.2 74.3 84.8 79.2
Lmmd loss [37] 68.6 60.1 64.1 73.8 85.9 79.4
L2 loss [217] 71.7 61.1 66.0 72.1 85.2 78.1
KL-divergence 72.0 62.7 67.0 74.4 86.5 80.0

Reference Joint training 74.1 64.1 68.7 74.5 86.7 80.1

Table 7.2: Recall@K (K=1) comparison (%) of s and u for the sequence “CUB-200
→ Stanford-Cars”. “KD” represents that one frozen teacher is used for knowledge
distillation only. For all cases, the student is regularized by triplet loss only. “KL-
divergence” denotes that the knowledge is transferred by using Eq. 7.3. The best
balanced results are highlighted in boldface.

CUB-200 → Stanford-Cars
Test on CUB-200 Test on Stanford-Cars
s u H s u H

Recall@K K=1 K=1 K=1 K=1 K=1 K=1
Baseline FT [226] 41.8 38.4 40.0 74.9 80.2 77.5

KD

L1 loss [216] 43.9 37.1 40.2 72.6 79.2 75.8
Lmmd loss [37] 46.4 39.2 42.5 75.4 79.0 77.2
L2 loss [217] 44.5 38.4 41.2 74.7 80.2 77.4
KL-divergence 45.0 40.5 42.6 74.3 80.6 77.3

KD
+

BN statistics

L1 loss [216] 58.7 50.8 54.5 68.4 75.4 71.7
Lmmd loss [37] 64.5 57.2 60.6 64.3 73.6 68.6
L2 loss [217] 63.4 56.0 59.5 69.9 76.4 73.0
KL-divergence 64.5 57.1 60.6 69.8 78.5 73.9

DKD
+

BN statistics

L1 loss [216] 54.9 45.4 49.7 73.3 80.6 76.8
Lmmd loss [37] 52.0 63.8 57.3 72.7 79.5 76.0
L2 loss [217] 57.2 49.9 53.3 74.1 80.4 77.1
KL-divergence 64.6 57.3 60.7 74.6 83.5 78.8

Reference Joint training 72.1 63.8 67.7 77.5 82.2 79.8

report the performance of the on-the-fly teacher under the training sequence: CUB-
200 → Stanford-Dogs. Since this teacher is specific for transferring newly-learned
information of a new dataset, we only report its performance on the second task (i.e.
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Figure 7.3: The performance degradation evaluation on the CUB-200 dataset: (a)
on the seen set; and (b) on the unseen set.

Stanford-Dogs), which are shown in Table 7.4. The “Student model” refers to the
model trained by our DKD. We observe that this on-the-fly teacher achieves good
generalization performance on the new task.

(4) Evaluation of the generated images. One benefit of using BatchNorm layers
is that the representative images can be directly generated using the frozen teacher,
without any other operations or additional generative networks. For evaluation,
we select the generated images by using the frozen teacher trained on CUB-200,
evaluated by using the inception score [262] and Fréchet Inception Distance (FID)
[263]. The origin images are chosen randomly from previous 70 classes (4076 images)
on CUB-200. These class labels are used to generate equal representative images.
As shown in Table 7.5, these results demonstrate that the efficacy of loss terms LBN
and Lcluster for generating images. Moreover, several generated birds images for the
CUB-200 dataset are visualized in Figure 7.4. The generated representative images
for the Stanford-Dogs dataset are listed in Figure 7.5). As required by lifelong image
retrieval, this student needs to remember previously learned knowledge and capture
new information on the new dataset (i.e. Stanford-Dogs). As a result, the images
generated by this trained student model share some properties for Birds images and
Dog images. Similarly, the representative images generated for the Stanford-Cars
dataset are shown in Figure 7.6. We observe that these representative images show
more semantics for the Cars images. The reason is that the student is prone to
learning new information on the Stanford-Cars dataset. Furthermore, the image
generation process on the CUB-200 dataset is illustrated in Figure 7.7. The initial
input is random Gaussian noise, which is optimized iteratively until Iter = 2000, as
can be seen in Algorithm 2.

(5) Ablation study. We perform an ablation analysis of the proposed method,
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Table 7.3: Recall@K (K=1) comparison (%) of s and u on three datasets. The results
are reported when the model is trained on Stanford-Cars and then tested backward
on the previous two datasets. ‡ refers to BatchNorm statistics are used for enhancing
the knowledge distillation using the frozen teacher only. Likewise, ‡ refers to Batch-
Norm statistics are used to enhance the frozen teacher. The best balanced results are
highlighted in boldface.

CUB-200 → Stanford-Dogs → Stanford-Cars
Test on CUB-200 Test on Stanford-Dogs Test on Stanford-Cars
s u H s u H s u H

Recall@K K=1 K=1 K=1 K=1 K=1 K=1 K=1 K=1 K=1
SFT [226] 28.9 28.1 28.5 40.6 63.3 49.5 72.6 78.1 75.3

KD+L1 loss [216] 34.0 32.8 33.4 44.5 68.3 53.9 71.8 79.3 75.4
KD+Lmmd loss[37] 37.0 34.4 35.7 46.1 69.7 55.5 72.0 76.9 74.4
KD+L2 loss[217] 37.9 34.4 36.1 43.8 67.8 53.2 74.9 80.8 77.7
KD+ KL div. 37.3 34.3 35.7 45.9 69.1 55.2 71.9 80.6 76.0
KD+L1 loss† 69.7 58.5 63.6 44.2 74.2 55.4 37.9 58.1 45.9

KD+Lmmd loss† 70.7 60.8 65.4 47.9 76.1 58.8 40.3 58.4 47.7
KD+L2 loss† 70.9 62.3 66.3 53.8 79.8 64.3 40.2 58.3 47.6
KD+KL div.† 71.1 65.6 68.2 55.8 80.2 65.8 40.8 58.9 48.2
DKD+L1 loss‡ 46.9 41.9 44.3 59.5 77.8 67.4 74.1 80.8 77.3
DKD+Lmmd

‡ 49.6 43.6 46.4 58.7 77.4 66.8 71.5 78.9 75.0
DKD+L2 loss‡ 54.1 52.2 53.1 58.8 78.6 67.3 75.1 80.8 77.9
DKD+KL div.‡ 62.4 58.6 60.5 67.4 84.3 74.9 73.2 83.7 78.1
Joint training 71.5 62.5 66.7 71.2 83.3 76.8 74.3 81.6 77.8

Table 7.4: Evaluation for the on-the-fly teacher on the second task.

CUB-200 → Stanford-Dogs
Test on Stanford-Dogs

s u H
Recall@K K=1 K=1 K=1
Fine-tuning 72.2 84.9 78.0

Student model 74.4 86.5 80.0
On-the-fly teacher 74.6 86.3 80.0
Joint training 74.5 86.7 80.1

Figure 7.4: The generated representative images for CUB-200.
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Table 7.5: Evaluation of the generated images

Inception score FID
Input random noise 0.93±0.01 401
Generated birds images 3.09±0.39 198
Origin birds images 5.24±0.30 0

Figure 7.5: The generated images for the Stanford-Dogs dataset.

Figure 7.6: The generated images for the Stanford-Cars dataset.

as shown in Table 7.6. Consistent to previous experiments, we use the sequence
of two tasks: CUB-200 → Stanford-Dogs. We build the fine-tuning method as a
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Iteration=0 Iteration=400 Iteration=800 Iteration=1200 Iteration=1600 Iteration=2000

Figure 7.7: Illustration of image generation process on the CUB-200 dataset.

Baseline by using Ls only. As noted, the baseline model suffers from forgetting
on the first task. Case 1 is the knowledge distillation using Lkd1 from the frozen
teacher only. As a result, the previously learned knowledge is transferred to the
student (improving R@K=1 from 51.4% to 56.7% on CUB-200). To demonstrate
the efficacy of BatchNorm statistics, we study Case 2 where representative images
are generated using (LBN + Lcluster). Compared to Case 1, the student trained
under this condition is prone to the first task and has its performance improved
from 56.7% to 68.3% significantly, while performance on the second task degrade
from 78.9% to 68.7%. Case 3 is designed for the scenario where the self-motivated
student is regularized only by the on-the-fly teacher when learns the second task.
Consequently, the student improves on the second task (from 78.0% to 79.6%) and
keeps the performance on the first task similar to the Baseline. We exploreCase 4 to
study the importance of self-motivated learning of the student, which is regularized
by dual knowledge distillation, but without using Ls. As a result, the student
remembers the previous knowledge well and has a good generalization accuracy
Recall@1 of 76.6% on the second task. Furthermore, Case 5 refers to the network
is regularized by two teachers but without using the BatchNorm statistics to enhance
the frozen teacher. Compared to Case 3, the student improves its performance on
the first task (e.g. from 50.8% to 56.9%), while the performance on the second task
is kept unchanged. Finally, when the student is self-motivated to learn by using the
term Ls, i.e. our DKD full method, whose generalization performance is improved
from 76.6% in Case 4 to 80.0% while the performance on the first task is close to
the reference.
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Table 7.6: Ablation study for lifelong image retrieval on the two-task setup. As
defined in Eqs. 7.4 and 7.5, the representative image generation process is constrained
by Lg = LBN + Lcluster.

CUB-200 → Stanford-Dogs
Test on CUB-200 Test on Stanford-Dogs

s u H s u H
Recall@K K=1 K=1 K=1 K=1 K=1 K=1

Baseline Fine-tuning by using Ls 56.0 47.5 51.4 72.2 84.9 78.0
Case 1 Ls + Lkd1

62.2 52.1 56.7 73.6 85.0 78.9
Case 2 Ls + Lkd1

+ Lg 73.5 63.8 68.3 60.0 80.3 68.7
Case 3 Ls + Lkd2 + Lte2 55.1 47.1 50.8 74.0 86.2 79.6
Case 4 Lkd1

+Lg+Lkd2
+Lte2 73.2 62.4 67.3 69.0 86.1 76.6

Case 5 Ls + Lkd1
+Lkd2

+Lte2 59.7 54.5 56.9 74.0 86.2 79.6
Ours Ls+Lkd1+Lg+Lkd2+Lte2 72.0 62.7 67.0 74.4 86.5 80.0

Reference Joint training by using Ls 74.1 64.1 68.7 74.5 86.7 80.1
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Figure 7.8: Sensitivity comparisons of image classification and image retrieval. (a)
Recall rate / classification accuracy; (b) Performance degradation ratios for different
noise ratios. (c) Dataset distributions visualization; (d) Performance evolution of two
training orders, evaluated on the first task, i.e. on the CUB-200 dataset.

7.5.4 Further explorations

(1) Comparison with classification-based tasks. In terms of reducing forget-
ting, we observe that lifelong image retrieval is more challenging than classification-
based tasks that focus on classification probabilities. The classification model is
more stable, as long as image features of old data are classified within the range
of prior boundaries, whereas image retrieval is sensitive to the matching between
features. A small change in features would have a significant impact on feature
matching. This makes the problem of minimizing forgetting more difficult. As a
demonstration, we build an additional classifier on top of the fully-connected layers
and use the LwF method [212] to train under the sequence: CUB-200 → Stanford-
Dogs. During testing, we sample Gaussian noise from N (0, 0.1) and add it to each
image, which affects the retrieval features and the final classification probabilities of
the same model. We vary the ratio of the Gaussian noise and consider the evolution
of retrieval recall and classification accuracy on the seen set of CUB-200. The results
are reported in Figure 7.8. As can be seen, image retrieval task is more sensitive
than image classification task for same levels of noise distraction.
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(2) Training order exploration. We consider the training order 1: CUB-200
→ Stanford-Dogs → Stanford-Cars in Table 7.3. To examine the effect of the task
training order, we keep starting with CUB-200 and explore the other training order
2: CUB-200 → Stanford-Cars → Stanford-Dogs. We visualize all training samples
of three datasets in Figure 7.8(c). For the two training orders, we evaluate the per-
formance on the seen set of the first task (i.e. CUB-200) by using the model trained
at the end of tasks (i.e. Stanford-Cars and Stanford-Dogs). The results are depicted
in Figure 7.8(d). In general, the model suffers from performance degradation with
respect to these two training orders. Due to the different distributions of datasets,
the training order affects the performance greatly. In case of training order 1, the
samples from Stanford-Dogs on task 2 are distributed closely to the samples from
CUB-200. Therefore, the degradation during the “task 1 → task 2” session is rela-
tively slow. However, the vehicle images from task 3 are distributed farther away
from the bird images in task 1, which causes serious degradation during the “task
2 → task 3” session. In contrast, for training order 2, the performance degrades
significantly from CUB-200 to Stanford-Cars during the “task 1 → task 2” session
and whereas it becomes slow again during the “task 2 → task 3” session.

7.6 Chapter Conclusions

In this chapter, we explored image retrieval in a lifelong scenario and considered
reducing catastrophic forgetting and simultaneously improving generalization per-
formance. This goal is achieved by training a dual knowledge distillation framework
to transfer previously learned knowledge and newly captured information. We used
the stored statistics in the BatchNorm layers of the frozen teacher to generate repre-
sentatives images to further reduce catastrophic forgetting on preceding tasks. The
efficacy of the proposed method was demonstrated by thorough experimental results
on three datasets. A limitation of this work is that the semantic drifts between train-
ing data in the task sequence still result in significant forgetting. In future work,
more efficient approaches need to be investigated to realize lifelong image retrieval
without forgetting. Furthermore, it would be very valuable to explore lifelong image
retrieval on non-fine grained datasets or practical applications such as commercial
shopping and recommendation systems.
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Chapter 8

New Ideas and Trends in Deep
Multimodal Content
Understanding

In previous chapters, we focused the research on image retrieval and cross-modal
retrieval in the context of non-incremental or incremental learning. In the past years,
deep learning has also been explored for the field of multimodal learning.

In this Chapter, we present the recent new ideas and trends in multimodal content
understanding filed, focusing on the analysis of two modalities: image and text.
These new methods can be further used for intelligent image retrieval to seek per-
formance improvement. Unlike classic reviews of deep learning where unimodal im-
age classifiers such as VGG, ResNet, and Inception module are central topics, this
chapter examines recent multimodal deep models and structures, including auto-
encoders, generative adversarial nets and their variants. These models go beyond
the simple image classifiers in which they can do uni-directional (e.g. image caption-
ing, image generation) and bi-directional (e.g. cross-modal retrieval, visual question
answering) multimodal tasks. Besides, we analyze two aspects of the challenge in
terms of better content understanding in deep multimodal applications. We then
introduce current ideas and trends in deep multimodal feature learning, such as
feature embedding approaches and objective function design, which are crucial in
overcoming the aforementioned challenges.

Keywords
Multimodal deep learning, Ideas and trends, Content understanding

This chapter is based on the following publication [39]:

• Chen, W., Wang, W., Liu, L., and Lew, M.S., “New Ideas and Trends in Deep Multimodal
Content Understanding: A Review.” Neurocomputing, 2020, pp. 195-215.
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8.1 Introduction

Multimodal content understanding aims at recognizing and localizing objects, de-
termining the attributes of objects, characterizing the relationships between objects,
and finally, describing the common semantic content among different modalities. In
the information era, rapidly developing technology makes it more convenient than
ever to access a sea of multimedia data such as text, image, video, and audio. As a
result, exploring semantic correlation to understand content for diverse multimedia
data has been attracting much attention as a long-standing research field in the
computer vision community.

Recently, the topics range from speech-video to image-text applications. Consid-
ering the wide array of topics, we restrict the scope of this survey to image and
text data specifically in the multimodal research community, including tasks at the
intersection of image and text (also called cross-modal). According to the available
modality during testing stage, multimodal applications include bi-directional tasks
(e.g. image-sentence search [264], visual question answering (VQA) [265]) and uni-
directional tasks (e.g. image captioning [266], image generation [22, 267]), both of
them will be introduced in the following sections.

Data from visual and textual modalities are represented as unimodal features us-
ing domain-specific networks. Complementary information from these unimodal
features is appealing for multimodal content understanding. For example, the uni-
modal features can be further projected into a common space by using another
neural network for an vision task. For clarity, we illustrate the flowchart of deep
multimodal research in Figure 8.1. On the one hand, the neural networks are com-
prised by successive linear layers and non-linear activation functions, the image or
text data is represented in a high abstraction way, which is helpful for reducing the
“semantic gap” [10], as defined in Chapter 3. On the other hand, different modalities
are characterized by different statistical properties. Image is 3-channel RGB array
while text is often symbolic. When represented by different neural networks, their
features have unique distributions and differences, which leads to the “heterogeneity
gap” [176]. To understand multimodal content, deep neural networks should be able
to reduce the difference between high-level semantic concepts and low-level features
in intra-modality representations, as well as construct a common latent space to
associate semantic correlations in inter-modality representations.

Much effort has gone into mitigating these two challenges to improve content under-
standing. Some works involve deep multimodal structures such as cycle-consistent
reconstruction [268, 269], while others focus on feature extraction nets such as graph
convolutional networks [270, 271]. In some algorithms, reinforcement learning is
combined with deep multimodal feature learning [272, 273]. These recent ideas are
the scope of this chapter.
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Figure 8.1: A general flowchart of deep multimodal feature learning.

8.2 Multimodal Applications

This section aims to summarize various multimodal applications where image and
text data are involved. These applications have gained a lot of attention lately and
show a natural division into uni-directional and bi-directional groups. The difference
is that for uni-directional scenarios only one modality is available at the test stage,
whereas in bi-directional scenarios, two modalities are required.

8.2.1 Uni-directional applications

a. Image-to-text tasks

Image captioning is a task that generates a sentence description for an image and
requires recognizing important objects and their attributes, then inferring their cor-
relations within the image [274]. After capturing these correlations, the captioner
yields a syntactically correct and semantically relevant sentence. To understand
the visual content, images are fed into convolutional neural networks to learn hi-
erarchical features, which constitutes the feature encoding process. The produced
hierarchical features are transformed into sequential models (e.g. RNN, LSTM) to
generate the corresponding descriptions. Subsequently, the evaluation module pro-
duces description difference as the feedback signals to update the performance of
each block. Deep neural networks are commonly used in image captioning. In the
following sections, we will examine the methods widely used to improve image cap-
tioning performance, including evolutionary algorithm [275], generative adversarial
networks [180, 276], reinforcement learning [272, 273], memory networks [277, 278],
and attention mechanisms [279, 280].

According to captioning principles, researchers focus on specific caption generation
tasks, such as image tagging [281], visual region captioning [282], and object cap-
tioning [283]. Analogously, these tasks are also highly dependent on the regional
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image patch and sentences/phrases organization. The specific correlations between
the features of objects (or regions) in one image and the word-level (or phrase-level)
embeddings are explored instead of global dependence of the holistic visual and
textual features.

b. Text-to-image tasks

Compared to generating a sentence for a given image, generating a realistic and
plausible image from a sentence is even more challenging. Namely, it is difficult
to capture semantic cues from a highly abstract text, especially when the text is
used to describe complex scenarios as found in the MS-COCO dataset [192, 284].
Text-to-image generation is such a kind of task which maps from textual modality
to visual modality.

Text-to-image generation requires synthesized images to be photo-realistic and se-
mantically consistent (i.e. preserving specific object sketches and semantic textures
described in text data) through architectures such as Variational Auto-Encoders
(VAE) [285], auto-regressive models [286] and Generative Adversarial Networks
(GANs) [22, 180]. One example is to generate a semantic layout as intermedi-
ate information from text data to bridge the heterogeneity gap in image and text
[287, 288]. Some works focus on the network structure design for feature learn-
ing. For image synthesis, novel derivative architectures from GANs [180] have been
explored in hierarchically nested adversarial networks [289], perceptual pyramid ad-
versarial networks [290], iterative stacked networks [23, 291], attentional generative
networks [292, 293], cycle-consistent adversarial networks [268], and symmetrical
distillation networks [294].

One of limitations of image generation is that, while generation models work well
and achieve promising results on single category object datasets like Caltech-UCSD
CUB [295] and Oxford-102 Flower [295], existing methods are still far from promising
on complex dataset like MS-COCO where one image contains more objects and
is described by a complex sentence. To compensate for this limitation, word-level
attention [292], hierarchical text-to-image mapping [288] and memory networks [296]
have been explored. In the future, one direction may be to make use of the Capsule
idea proposed by Hinton [297] since capsules are designed to capture the concepts
of objects.

8.2.2 Bi-directional applications

a. Cross-modal retrieval

Cross-modal retrieval has been researched for decades. The aim is to return the
most relevant image (text) when given a query text (image). There are two aspects
should be considered: retrieval accuracy and retrieval efficiency.
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For the first, it is desirable to explore semantic correlations across an image and text
features. To meet this requirement, the aforementioned heterogeneity gap and the
semantic gap are the challenges to deal with. Some novel techniques that have been
proposed are as follows: attention mechanisms and memory networks are employed
to align relevant features between image and text [298]; Bi-directional sequential
models (e.g. Bi-LSTM [188]) are used to explore spatial-semantic correlations [264];
Graph-based embedding and graph regularization are utilized to keep semantic order
in text feature extraction process [299]; Information theory is applied to reduce the
heterogeneity gap in cross-modal hashing [34]; Adversarial learning strategies and
GANs are used to estimate common feature distributions [177, 300].

For the second, recent hashing methods have been explored owing to the compu-
tation and storage advantages of binary code [178]. Essentially, methods such as
attention mechanisms and adversarial learning [178] are applied for learning com-
pact hash codes with different lengths. However, the problems should be considered
when one employs hashing methods for cross-modal retrieval are feature quantiza-
tion and non-differential binary code optimization. Focusing on the feature quanti-
zation, Wang et al. [301] introduce a hashing code learning algorithm in which the
binary codes are generated without relaxation so that the large quantization and
non-differential problems are avoided.

There still exists room for performance improvement (see Figure 8.4-8.5). For exam-
ple, to employ graph-based methods to construct semantic information within two
modalities, more context information such as objects link relationships are adopted
for more effective semantic graph construction.

b. Visual question answering

Visual question answering (VQA) is a challenging task in which an image and a
question are given, then a correct answer is inferred according to visual content and
syntactic principle. Since VQA was proposed, it has received increasing attention in
recent years. For example, there are some training datasets [302] built for this task,
and some network training tips and tricks are presented in work [303].

To infer correct answers, VQA systems need to understand the semantics and intent
of the questions completely, and also should be able to locate and link the relevant
image regions with the linguistic information in the questions. VQA applications
present two-fold difficulties: feature fusion and reasoning rationality. Thus, VQA
more closely reflects the difficulty of multimodal content understanding, which makes
VQA applications more difficult than other multimodal applications. Compared to
other applications, VQA has various and unknown questions as inputs. Specific
details (e.g. activity of a person) in the image should be identified along with the
undetermined questions. Moreover, the rationality of question answering is based
on high-level knowledge and advanced reasoning capability of deep models.
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The research on VQA includes: free-form open-ended questions [304], where the
answer could be words, phrases, and even complete sentences; object counting ques-
tions [305] where the answer is counting the number of objects in one image; multi-
choice questions [279] and Yes/No binary problems [306]. In principle, the type of
multi-choice and Yes/No can be viewed as classification problems, where deep mod-
els infer the candidate with maximum probability as the correct answer. These two
types are associated with different answer vocabularies and are solved by training
a multi-class classifier. In contrast, object counting and free-form open-ended ques-
tions can be viewed as generation problems [302] because the answers are not fixed,
only the ones related to visual content and question details.

8.3 Recent Advances in Content Understanding

Lots of remarkable progresses about exploring content understanding between image
and text have been made. In general, these advances are mainly from a viewpoint
of network structure and a viewpoint of feature extraction/enhancement. To this
end, combining the natural process pipeline of multimodal research (see Figure 8.1),
we categorize these research ideas into three groups: deep multimodal structures
presented in Section 8.3.1, multimodal feature extraction approaches introduced in
Section 8.3.2, and common latent space learning described in Section 8.3.3.

8.3.1 Deep multimodal structures

Deep multimodal structures are the fundamental frameworks to support different
deep networks for exploring visual-textual semantics. These frameworks have critical
influences for the following feature extraction and common latent space learning.
To understand the semantics between images and text, deep multimodal structures
usually involve computer vision and natural language processing (NLP) field [307].
During the past years, a variety of related methods have blossomed and accelerated
the performance of multimodal learning directly in multimodal applications.

Deep multimodal structures include generative models, discriminative models. Gen-
erative models implicitly or explicitly represent data distributions measured by
a joint probability P (X, Y ), where both raw data X and ground-truth labels Y
are available in supervised scenarios. Discriminative models learn classification
boundaries between two different distributions indicated by conditional probability
P (Y |X). Recent representative network structures for multimodal feature learning
are auto-encoders and generative adversarial networks.

a. AutoEncoders

The main idea of auto-encoder is to first encode data from a source modality as
hidden representations and then to use a decoder to generate features (or data) for
the target modality. Thus, it is commonly used for bi-directional applications where
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Figure 8.2: Convolutional autoencoder used for deep multimodal learning. The
branch for image feature learning can adopt hierarchical networks such as CNNs; the
branch for text feature learning can capture the dependency relations in a sentence by
sequential models such as RNN and LSTM. Usually, a reconstruction loss function is
used to optimize network training.

two modalities are available at the test stage. For this structure, reconstruction
loss is the constraint for training encoder and decoder to well capture the semantic
correlations between image and text features. For clarity, we identify three ways for
correlation learning using auto-encoders in Figure 8.2. For instance, as shown in
Figure 8.2(a), the input images and text are processed separately with non-shared
encoder and decoder, after which these hidden representations from the encoder are
coordinated through a constraint such as Euclidean distance [308]. The coordinated
methods can be replaced by joint methods in Figure 8.2(b) where image and text
features are projected into a common space with a shared multilayer perceptron
(MLP). Subsequently, the joint representation is reconstructed back to the original
raw data [309]. Alternatively, feature correlations are captured by cross reconstruc-
tion with similarity constraints between hidden features. The idea of constraining
sample similarity is also incorporated with GANs into a cycle-consistent formation
for cross-modal retrieval such as CYC-DGH [269].

The neural networks contain in the encoder-decoder framework can be modality
specific. For image data, the commonly used neural networks are CNN while se-
quential networks like LSTM are most often used for text data. When applied for
multimodal learning, the decoder (e.g. LSTM) constructs hidden representations of
one modality in another modality. The goal is not to reduce reconstruction error but
to minimize the output likelihood estimation. Therefore, most works focus on the
decoding since it is a process to project the less meaningful vectorial representations
to meaningful outputs in target modality. Under this idea, several extensions have
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been introduced. The main difference among these algorithms lies in the structure
of the decoder. For example, “stack and parallel LSTM” [310] is to parallelize more
parameters of LSTMs to capture more context information. Similar ideas can be
found in “CNN ensemble learning” [311]. Instead of grabbing more information by
stacking and paralleling, “Attention-LSTM” [310] combines attention technique into
LSTM to highlight most relevant correlations. An adversarial training strategy is
employed into the decoder to make all the representations discriminative for seman-
tics but indiscriminative for modalities so that intra-modal semantic consistency is
effectively enhanced [309]. Considering the fixed structure in the decoder like RNN
might limit the performance, Wang et al. [275] introduce evolutionary algorithm to
adaptively generate neural network structures in the decoder.

b. Generative adversarial networks

Adversarial learning from generative adversarial networks [180] has been employed
into applications including image captioning [312], cross-modal retrieval [309] and
image generation [23, 289, 291], but has been less popular in VQA tasks. GANs com-
bine generative sub-models and discriminative sub-models into a unified framework
in which two components are trained in an adversary manner.

GANs can cope with the scenarios where there are some missing data. To accu-
rately explore the correlations between two modalities, multimodal research works
involving GANs have been focusing on the whole network structure and its two
components: generator and discriminator.

For the generator which also can be viewed as an encoder, an attention mechanism
is often used to capture the important key points and align cross-modal features
such as Attention-aware methods [292]. Sometimes, Gaussian noise is concatenated
with the generator’s input vector to improve the diversity of generated samples and
avoid model collapse, such as the conditioning augmentation block in StackGAN
[23]. To improve its capacity for learning hierarchical features, a generator can be
organized into different nested structures to capture multi-level semantics such as
hierarchical-nested [289] and hierarchical-pyramid [290].

The discriminator, which usually performs binary classification, attempts to dis-
criminate the ground-truth labels from the outputs of the generator. Some recent
ideas are proposed to improve the discrimination of GANs. Originally, discrimina-
tor in the first work [180] just needs to classify different distributions into “True” or
“False” [22]. However, discriminator can also make a class label classification where
a label classifier is added on the top of discriminator [313]. Apart from the label
classification, a semantic classifier is designed to further predict semantic relevances
between a synthesized image and a ground-truth image for text-to-image genera-
tion [267]. Only focusing on the paired samples leads to relatively-weak robustness.
Therefore, the unmatched image-text samples can be fed into a discriminator (e.g.
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GAN-INT-CLS [22] and AACR [300]) so that the discriminator would have a more
powerful discriminative capability.

The application of GANs in multimodal research are categorized into direct methods
[22, 313], hierarchical methods [289, 290], and iterative methods [23, 291, 292].
Contrary to direct methods, hierarchical methods divide raw data in one modality
(e.g. image) into different parts such as a “style” and “structure” stage, thereby, each
part is learned separately. Alternatively, iterative methods separate the training
into a “coarse-to-fine” process where details of the results from a previous generator
are refined. Besides, cycle-consistency [314] is introduced for unsupervised image
translation where a self-consistency (reconstruction) loss tries to retain the patterns
of input data after a cycle of feature transformation. This idea is then applied into
tasks like image generation [268] and cross-modal retrieval [269] to learn semantic
correlation in an unsupervised way.

In recent years, adversarial learning is widely used to design algorithms for deep
multimodal learning [177, 178, 309]. For these algorithms, there are no classifiers
for binary classification. Instead, two sub-networks are trained with the constraints
of competitive loss functions. As the dominant popularity of adversarial learning,
some works are performed by combining auto-encoders and GANs in which the
encoder in auto-encoders and the generator in GANs share the same sub-network
[309, 315, 316]. For example, in the first work about unsupervised image captioning
[316], the core idea of GANs is used to generate meaningful text features from
scratch of text corpus and cross-reconstruction is performed between synthesized
text features and true image features.

8.3.2 Multimodal feature extraction

Feature extraction is closer for exploring visual-textual content relations, which is
the prerequisite to discriminate the complementarity and redundancy of multiple
modalities. In this section, we introduce several effective multimodal feature extrac-
tion methods for addressing the heterogeneity gap. In general, these methods focus
on (1) learning the structural dependency information to reasoning capability of deep
neural networks and (2) storing more information for semantic correlation learning
during model execution. Moreover, (3) feature alignment schemes using attention
mechanism are also widely explored for preserving semantic correlations.

a. Graph embeddings with graph convolutional networks

Words in a sentence or objects within an image have some dependency relationships,
and graph-based visual relationship modelling is beneficial for the characteristic.
Graph Convolutional Networks (GCNs) are alternative neural networks designed
to capture this dependency information. Compared to standard neural networks
such as CNNs and RNNs, GCNs would build a graph structure which models a
set of objects (nodes) and their dependency relationships (edges) in an image or
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sentence, embed this graph into a vectorial representation, which is subsequently
integrated seamlessly into the follow-up steps for processing. Graph representations
reflect the complexity of sentence structure and are applied to natural language
processing such as text classification [154]. For deep multimodal learning, GCNs
receive increasing attention and have achieved breakthrough performance on several
applications, including cross-modal retrieval [317], image captioning [270, 271, 318],
and VQA [319].

Graph convolutional networks in multimodal learning can be employed in text fea-
ture extraction [317, 319] and image feature extraction [270, 271, 318]. Among
these methods, GCNs capture semantic relevances of intra-modality according to
the neighborhood structure. GCNs also capture correlations between two modalities
according to supervisory information. Note that vector representations from graph
convolutional networks are fed into subsequent networks (e.g. “encoder-decoder”
framework) for further learning.

GCNs are introduced to determine the attributes and subsequently characterize
the relationships between image and text [319]. To use GCNs, an image is parsed
into different objects, scenes, and actions. Also, a corresponding question is parsed
and processed to obtain its question embeddings and entity embeddings. These
embedded vectors of image and question are concatenated into node embeddings
then fed into graph convolutional networks for semantic correlation learning. Fi-
nally, the output activations from GCNs are fed into sequential networks to predict
answers.

As an alternative method, GCNs are worthy more exploration for correlations be-
tween two modalities. Moreover, there exist two limitations in GCNs. On the one
hand, graph construction process is overall time- and space-consuming; On the other
hand, the accuracy of output activations from GCNs mostly relies on supervisory
information to construct an adjacency matrix by training, which are more suitable
for structured data, so flexible graph embeddings for image and/or text remains an
open problem.

b. Memory-augmented networks

To enable deep networks to understand multimodal content and have better reason-
ing capability for various tasks, another solution that has gained attention recently is
memory-augmented networks. Directly, when much information in mini-batch even
the whole dataset is stored in a memory bank, such networks have greater capacity
to memorize correlations.

In conventional neural networks like RNNs for sequential data learning, the depen-
dency relations between samples are captured by the internal memory of recurrent
operations. These recurrent operations might be inefficient in understanding and
reasoning overextended contexts or complex images. For instance, most captioning
models are equipped with RNN-based encoders, which predict a word at every time
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step based only on the current input and hidden states used as implicit summaries
of previous histories. However, RNNs and their variants often fail to capture long-
term dependencies [278]. For this limitation, memory networks [277] are introduced
to augment the memory primarily used for text question-answering [320]. Mem-
ory networks improve understanding of both image and text, and then “remember”
temporally distant information.

Memory-augmented networks are used in cross-modal retrieval [298], image cap-
tioning [278], and VQA [321]. Memory-augmented networks can be regarded as
recurrent neural networks with explicit attention methods that select certain parts
of the information to store in their memory slots. The memory slots are a kind of
external memory to support learning. During training, a network such as LSTM or
GRU, which acts as a memory controller, refers to these memory slots to compute
reading weights. According to the weights, the essential information is obtained to
predict the output sequence. Meanwhile, the controller computes writing weights to
update values in memory slots for the next time-step of the training [322].

The performance of memory networks relates to the memory slots’ initialization
strategy and the stored information. For this aspect, memory networks have been
combined with other techniques like attention mechanisms [323] to further improve
its feature learning capability. For example, Xiong et al. [324] explore the impact of
different initialization strategies to demonstrate that initializations from the outputs
of pre-trained networks have better performance. This was verified in works [325]
where output features from image patches are stored into memory slots of spatial
memory networks for VQA. Thereby, generated answers are updated based on gath-
ering evidence from the accessed regions in memory slots. Similarly, Ma et al. [326]
adopt LSTM to obtain text features of each sentence and store into memory slots.
Then memory-augmented networks are utilized to determine the importance of con-
catenated visual and text features over the whole training data. Further considering
both two modalities, a visual knowledge memory networks is introduced in which
memory slots store key-value vectors computed from images, query questions and a
knowledge base [321]; Instead of storing the actual output features, Song et al. [298]
adopt memory slots to store a prototype concept representation from pre-trained
concept classifiers, which is inspired from the process of human memory.

c. Attention mechanism for deep multimodal learning

Attention mechanisms are widely used to tackle this issue in various multimodal
tasks, such as VQA [327, 328, 329] and image captioning [266, 270, 280]. In princi-
ple, the attention mechanisms compute different importances according to relevances
between two global (or local) multimodal features and assign different importances
to these features. Thereby, the networks are more targeted at the sub-components
of the source modality–regions of an image or words of a sentence. To further ex-
plore the relevances between two modalities, the attention mechanisms are adopted
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Figure 8.3: Diagram for different types of attention mechanisms used in deep multi-
modal learning.

on multi-level feature vectors [325], employed in a hierarchical scheme [330], and
incorporated with graph networks for modelling semantic relationships.

To elaborate on the current ideas and trends of attention algorithms, we categorize
this popular mechanism into different types. According to objective computing vec-
tors, we categorize the current attention algorithms into four types: visual attention,
textual attention, co-attention, and self-attention, as illustrated in Figure 8.3. We
further categorize the attention algorithms into single-hop and multiple-hop (i.e.
stacked attention) according to the iterations of importance calculation.

Visual attention. As shown in Figure 8.3(a), visual attention schemes are used
in scenarios where text features (e.g. from a query question) are used as context
to compute their co-relevance with image features, and then the relationships are
used to construct a normalized weight matrix. Subsequently, this matrix is applied
to original image features to derive text-guided image features using element-wise
multiplication operation (linear operation). The weighted image features have been
aligned by the correlation information between image and text. Finally, these aligned
multimodal features are utilized for prediction or classification. This idea is common
in multimodal feature learning [266, 270, 279, 280, 325, 327, 328] and has been
incorporated to get different text-guided features. For example, Anderson et al.
[279] employ embedded question features to highlight the most relevant image region
features in visual question answering. The predicted answers are more accurately
related to the question type and image content. Visual attention is widely used to
learn features from two modalities.
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Textual attention. Compared to visual attention, the textual attention approach
is relatively less adopted. As shown in Figure 8.3(b), it has an opposite computing
direction [105]. The computed weights are based on text features to obtain rele-
vances for different image regions or objects. According to [320], the reason why
textual attention is necessary is that text features from the multimodal models often
lack detailed information for a given image. Meanwhile, the application of textual
attention is less dominant as it is harder to capture semantic relevances between
abstract text data and image data. Moreover, image data has always contained
more irrelevant content for similar text. In other words, the text might describe
only some parts within an image.

Co-attention. As shown in Figure 8.3(c), co-attention algorithm is viewed as a
combination of visual attention and textual attention, which is an option to ex-
plore the inter-modality correlations [202, 204, 323, 329]. Co-attention is a partic-
ular case of joint feature embedding in which image and text features are usually
treated symmetrically. Co-attention in a bi-directional way is beneficial for spatial-
semantic learning. As an example, Nguyen et al. [329] introduce a dense symmetric
co-attention method to improve the fusion performance of image and text represen-
tations for VQA. In their method, features are sampled densely to fully consider
each interaction between any word in question and any image region. Meanwhile,
several other works explore different formations of co-attention. Integrating image
feature with hierarchical text features may vary dramatically so that the complex
correlations are not fully captured. For this, Yu et al. [331] develop the co-attention
mechanism into a generalized Multi-modal Factorized High-order pooling (MFH)
block in an asymmetrical way. Thereby, higher-order correlations of multi-modal
feature achieve more discriminative image-question representation and further re-
sult in significant improvement on the VQA performance.

Self-attention. Compared to the co-attention algorithm, self-attention, which con-
siders the intra-modality relations, is less popular in deep multimodal learning. As
intra-modality relation is complementary to the inter-modality relation, its explo-
ration is considered improving the feature learning capability of deep networks. For
example, in the VQA task, the correct answers are not only based on their associ-
ated words/phrases but can also be inferred from related regions or objects in an
image. Based on this observation, a self-attention algorithm is proposed for multi-
modal learning to enhance the complementary between intra-modality relations and
the inter-modality relations [332]. Self-attention has been used in different ways.
For example, Gao et al. [333] combine the attentive vectors form self-attention with
co-attention using element-wise product. Thereby the inter- and intra-modality in-
formation flow are modeled by the linear method.

It is important to note that when these four types of attention mechanisms are
applied, they can be used to highlight the relevances between different image region
features and word-level, phrase-level or sentence-level text features. These different
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cases just need region/object proposal networks and sentence parsers. When multi-
level attended features are concatenated, the final features are more beneficial for
content understanding in multimodal learning.

As for single-hop and multiple-hop (stacked) attention, the difference lies in whether
the attention “layer” will be used one or more times. The four mentioned attention
algorithms can be applied in a single-hop manner where the relevance weights be-
tween image and text features are computed once only. However, for multiple-hop
scenarios, the attention algorithm is adopted hierarchically to perform coarse-to-fine
feature learning, that is, in a stacked way [202, 323, 325, 328]. For example, Xu et
al. [325] introduce two-hop spatial attention learning for VQA. The first hop focuses
on the whole and the second one focuses on individual words and produces word-
level features. Singh et al. [328] achieve marginal improvements using “attention on
attention” framework in which the attention module is stacked in parallel and for
image and text feature learning. Nevertheless, a stacked architecture has tendency
for gradient vanishing [323]. Regarding this, Fan et al. [323] propose stacked latent
attention for VQA. Particularly, all spatial configuration information contained in
the intermediate reasoning process is retained in a pathway of convolutional layers
so that the vanishing gradient problem is tackled.

In summary, to better understand the content in visual and textual modality, atten-
tion mechanisms provide a pathway for aligning the multimodal semantic correla-
tions. With different multimodal applications, attention mechanisms (single-hop or
multiple-hop) can have different benefits. To this end, we briefly make a comparison
for single-hop and multiple-hop with respect to their advantages, disadvantages, and
the applicable scenarios in Table 8.1.

Table 8.1: Brief comparisons of two attention categories

Hop(s) Advantages Disadvantages Applicable scenarios

Single

More straightforward and
training effective since the
visual-textual interaction
occurs a single time

Less focused on complex rela-
tions between words. Insuffi-
cient to locate words or fea-
tures on complicated sentences

No explicit constraints for visual atten-
tion. Suitable for capturing relations
in short sentences as tends to be paid
much to the most frequently words.

Multiple

More sophisticated and
accurate, especially for
complicated sentences.
Each iteration provides
newly relevant informa-
tion to discover more
fine-grained correlations
between image and text.

Less training effective due to
re-assigning attention weights
multiple times. Sharing struc-
tures and parameters leads
to attention bias (similar at-
tention weights in all hops).
Might suffer from the gradient
vanishing problem [323].

Beneficial for multimodal learning in-
volved long sentences. More suitable
for sentence embedding in text classi-
fication or machine translation tasks.
Beneficial for combining with memory
networks due to the repeatedly or iter-
atively information extraction process.

8.3.3 Common latent space learning

As illustrated in Figure 8.1, unimodal features distribute inconsistently and are not
directly comparable. It is necessary to further map these unimodal features into
a common latent space with the help of an embedding networks (e.g. MLP). Due
to this, common latent feature learning has been a critical procedure for exploiting
multimodal correlations. In the past years, various constraint and regularization
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methods have been introduced into multimodal applications. In this section, we
include these ideas, such as attention mechanisms, which aim to retain similarities
between unimodal image and text features.

According to [334], multimodal feature learning methods include joint and coordi-
nated methods. The joint feature embeddings are defined as:

J = J (x1, ..., xn, y1, ..., yn) (8.1)

while coordinated feature embeddings are represented as:
F = F(x1, ..., xn) ∼ G(y1, ..., yn) = G (8.2)

where J refers to the jointly embedded features, F and G denote the coordinated
features. x1, ..., xn and y1, ..., yn are n-dimension unimodal feature representations
from two modalities. The mapping functions J (·), F(·), and G(·) denote the deep
networks to be learned, “∼” indicates that the two unimodal features are separated
but are related by some similarity constraints.

a. Joint feature embedding

In deep multimodal learning, joint feature embedding is a straightforward way in
which unimodal features are combined into the same presentation. The fused fea-
tures are used to make a classification in cross-modal retrieval. It also can be used
for performing sentence generation in VQA [279, 304].

In early studies, some basic methods are employed for joint feature embedding such
as feature summation, feature concatenation [23, 291, 292], and element-wise inner
product [324, 329], the resultant features are then fed into a multi-layer perceptron
to predict similarity scores. These approaches construct a common latent space for
features from different modalities but cannot preserve their similarities while fully
understanding the multimodal content. Alternatively, more complicated bilinear
pooling methods such as Multimodal Compact Bilinear (MCB) pooling [335]. How-
ever, the performance of MCB is based on a higher-dimensional space. Regarding
this demerit, Multimodal Low-rank Bilinear pooling [336] and Multimodal Factor-
ized Bilinear pooling [331] are proposed to overcome the high computational com-
plexity when learning joint feature. Moreover, Hedi et al. [337] introduce a tensor-
based Tucker decomposition strategy, MUTAN, to efficiently parameterized bilinear
interactions between visual and textual representations so that the model complexity
is controlled and the model size is tractable. In general, to train an optimal model to
understand semantic correlations, classification-based objective functions [313] and
regression-based objective functions [23, 292] are commonly adopted.

Bilinear pooling methods are based on outer products to explore correlations of
multimodal features. Alternatively, neural networks are used for jointly embedding
features since its learnable ability for modelling the complicated interactions between
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image and text. For instance, auto-encoder methods, as shown in Figure 8.2(b), are
used to project image and text features with a shared multi-layer perceptron (MLP).
The similar multimodal transformer introduced in [332] constructs a unified joint
space for image and text. In addition, sequential networks are also adopted for the
latent space construction. Take visual question answering as an example, based
on the widely-used “encoder-decoder” framework, image features extracted from the
encoder are fed into the decoder (i.e. RNNs [310]), and finally combined with text
features to predict correct answers [302, 312, 326]. There are several ways to combine
features. Image features can be viewed as the first “word” and concatenate all real
word embeddings from the sentences. Alternatively, image features can be concate-
nated with each word embedding then fed them into RNNs for likelihood estimation.
Considering the gradient vanishing in RNNs, CNNs are used to explore complicated
relations between features [203, 338]. For example, convolutional kernels are initial-
ized under the guidance of text features. Then, these text-guided kernels operate
on extracted image features to maintain semantic correlations [338].

The attention mechanisms in Section 8.3.2 can also be regarded as a kind of joint
feature alignment method and are widely used for common latent space learning.
Theoretically, these feature alignment schemes aim at finding relationships and cor-
respondences between instances from visual and textual modalities [320, 334]. In
particular, the mentioned co-attention mechanism is a case of joint feature em-
bedding in which image and text features are usually treated symmetrically. The
attended multimodal features are beneficial for understanding the inter-modality
correlations. Attention mechanisms for common latent space learning can be ap-
plied in different formations, including bi-directional [329], hierarchical [331], and
stacked [202, 325]. More importantly, the metrics for measuring similarity are cru-
cial in attentive importance estimation. For example, the importance estimation
by simple linear operation may fail to capture the complex correlations between
visual and textual modality while the Multi-modal Factorized High-order pooling
(MFH) method can learn higher-order semantic correlations and achieve marginal
performance.

To sum up, joint feature embedding methods are basic and straightforward ways to
allow learning interactions and perform inference over multimodal features. Thus,
joint feature embedding methods are more suitable for situations where image and
text raw data are available during inference, and joint feature embedding meth-
ods can be expanded into situations when more than two modalities are present.
However, for content understanding among inconsistently distributed features, as
reported in previous work [302], there is potential for improvement in the embed-
ding space.

b. Coordinated feature embedding

Instead of embedding features jointly into a common space, an alternative method is
to embed them separately but with some constraints on features according to their
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similarity (i.e. coordinated embedding). For example, the above-noted reconstruc-
tion loss in auto-encoders can be used to constraining multimodal feature learning
in the common space. Using traditional canonical correlation analysis, as an alter-
native, the correlations between two kinds of features can be measured and then
maintained. To explore semantic correlation in a coordinated way, generally, there
are two commonly used categories: classification-based methods and verification-
based methods.

For classification-based methods when class label information is available, these
projected image and text features in the common latent space are used for la-
bel prediction [177, 178]. Cross-entropy loss between the inference labels and the
ground-truth labels is computed to optimize the deep networks, see Figure 8.1, via
the back-propagation algorithm. For classification-based methods, class labels or
instance labels are needed. They map each image feature and text feature into a
common space and guarantee the semantic correlations between two types of fea-
tures. Classification-based methods mainly concern the image-text pair with the
same class label. For the image and unmatched text (vice versa), classification-
based methods have less constraints.

Different from classification-based methods, the verification-based methods can con-
strain both the matched image-text pairs (similar or have the same class labels) and
unmatched pairs (dissimilar or have the different class labels). Verification-based
methods are based on metric learning among multimodal features. Given simi-
lar/dissimilar supervisory information between image and text, these projected mul-
timodal features should be mapped based on their corresponding similar/dissimilar
information. In principle, the goal of the deep networks is to make similar image-
text features close to each other while mapped dissimilar image-text features further
away from each other. Verification-based methods include pair-wise constraint and
triplet constraint, both of which form different objective functions.

For pair-wise constraint, the key point lies in constructing an inference function to
infer similarity of features. For example, Li et al. [178] construct a Bayesian network,
rather than a simple linear operation, to preserve the similarity relationship of image-
text pairs. In addition, triplet constraint is also widely used for building the common
latent space. Typically, bi-directional triplet loss function is applied to learn feature
relevances between two modalities [177, 339]. Inter-modality correlations are learned
well when triplet samples interchange within image and text. However, a complete
deep multimodal model should also be able to capture intra-modality similarity,
which is a complementary part for inter-modality correlation. Therefore, several
works consider combining intra-modal triplet loss in feature learning in which all
triplet samples are from the same modality (i.e. image or text data).

These classification-based and verification-based approaches are widely used for deep
multimodal learning. Although the verification-based methods overcome some lim-
its of classification-based methods, they still face some disadvantages such as the

159



8. NEW IDEAS AND TRENDS IN DEEP MULTIMODAL CONTENT
UNDERSTANDING

negative samples and margin selection, which inherit from metric learning [186].
Recently, new ideas on coordinated feature embedding methods have combined ad-
versarial learning, reinforcement learning, cycle-consistent constraints to pursue high
performance.

Combined with adversarial learning. Classification- and verification-based
methods focus on the semantic relevance between similar/dissimilar pairs. Adver-
sarial learning focuses on the overall distributions of two different modalities instead
of just focusing on each pair. The primary idea in GANs is to determine whether
the input image-text pairs are matched [287, 288, 300].

In new ideas of adversarial learning for multimodal learning, an implicit generator
and a discriminator are designed with competitively goals (i.e. the generator en-
forces similar image-text features be close while the discriminator separates them
into two clusters). Therefore, the aim of adversarial learning is not to make a bi-
nary classification (“True/False”), but to train two groups of objective functions
adversarially, it will enable the deep networks with powerful ability and focus on
holistic features. For example, in recent works [177, 178, 309], a modality classifier
is constructed to distinguish the visual modality and textual modality according to
the input multimodal features. This classifier is trained adversarially with other
sub-networks which constrain similar image-text feature to be close. Furthermore,
adversarial learning is also combined with a self-attention mechanism to obtain at-
tended regions and unattended regions. This idea is imposed on the formation of a
bi-directional triplet loss to perform cross-modal retrieval.

Combined with reinforcement learning. Reinforcement learning has been in-
corporated into deep network structures (e.g. encoder-decoder framework) for image
captioning [272, 273], VQA [340] and cross-modal retrieval. Because reinforcement
learning avoids exposure bias [273, 339] and non-differentiable metric issue [272, 339].
It is adopted to promote multimodal correlation modeling. To incorporate rein-
forcement learning, its basic components are defined (i.e. “agent”, “environment”,
“action”, “state”, and “reward”). Usually, the deep models such as CNNs or RNNs
are viewed as the “agent”, which interacts with an external “environment” (i.e. text
features and image features), while the “action” is the prediction probabilities or
words of the deep models, which influence the internal “state” of the deep models
(i.e. the weights and bias). The “agent” observes a “reward” to motivate the train-
ing process. The “reward” is an evaluation value through measuring the difference
between the predictive distribution and ground-truth distribution. For example,
the “reward” in image captioning is computed from the CIDEr (Consensus-based
Image Description Evaluation) score of a generated sentence and a true descriptive
sentence. The “reward” plays an important role for adjusting the goal of predictive
distribution towards the ground-truth distribution.
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Reinforcement learning is commonly used in generative models in which image patch
features or word-level features are regarded as sequential inputs. When incorporat-
ing reinforcement learning into deep multimodal learning, it is important to define
an algorithm to compute the expected gradients and the “reward” as a reasonable
optimization goal.

For the first term, the expected gradients, REINFORCE algorithm [341] is widely
used as a policy gradient method to compute gradients, then to update these “states”
via back-propagation algorithms [340, 342]. For the second term, there are several
different alternatives. For example, the difference, evaluated by the popular metric
CIDEr, between the generated captions and true description sentences in image
captioning is used as a “reward” [272, 342]. Instead of measuring the difference,
sample similarity is more straightforward to track. As an example, visual-textual
similarity is used as “reward” after deep networks are trained under the ranking loss
(e.g. a triplet loss) [339]. The design of triplet ranking loss function is diverse, such
as in a bi-directional manner or based on inter-modal triplet sampling [339].

Combined with cycle-consistent constraint. Class label information or rele-
vance information between image and text is crucial for understanding semantic con-
tent. However, this supervisory information sometimes is not available for training
deep networks. In this case, a cycle-consistent constraint is employed for unpaired
image-text inputs. The basic idea of a cycle-consistent constraint is dual learning
in which a closed translation loop is used to regularize the training process. This
self-consistency constraint allows a predictive distribution to retain most of the cor-
relations of the original distribution to improve the stability of network training.
In principle, a cycle-consistent constraint includes a forward cycle and backward
cycle. The former relies on the loss function F (G(X)) ≈ X, while the latter relies
on another loss function G(F (Y )) ≈ Y . In these two functions, F (·) is a mapping
process from Y to X and G(·) is a reversed process from X to Y . Cycle-consistency
has been used on several tasks such as cross-modal retrieval [269], image generation
[268], and VQA [343].

Cycle-consistency is an unsupervised learning method for exploring semantic cor-
relation in the common latent space. To ensure predictive distribution and retain
as many correlations as possible, the aforementioned forward and backward cycle-
consistent objective functions are necessary. The feature reconstruction loss func-
tion acts as the cycle-consistency objective function. For example, Gorti et al. [268]
utilize the cross-entropy loss between generated words and the actual words as cycle-
consistency loss values to optimize the process text-to-image-to-text translation. For
cross-modal retrieval tasks, Li et al. [344] adopt Euclidean distance between predic-
tive features and reconstructed features as the cycle-consistency loss where the two
cycle loss functions interact in a coupled manner to produce reliable codes.

Currently, the application of cycle-consistent constraints for deep multimodal learn-
ing can be categorized as structure-oriented and task-oriented. The former group
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focuses on making several components in a whole network into a close loop in which
output of each component is used as the input for another component. Differently,
task-oriented group concerns to exploit the complementary relations between tasks.
Thus, there are two independent tasks (e.g. VQA and VQG) in the close loop.

For structure-oriented groups, the cycle-consistent idea is combined with some pop-
ular deep networks, such as GANs, to make some specific combinations. In these
methods, image features are projected as “text features” and then reconstructed back
to itself. Currently, the combination with GANs is a popular option since paired
correspondence of modalities can be learned in the absence of a certain modality (i.e.
via generation). For example, Wu et al. [269] plug a cycle-consistent constraint into
feature projection between image and text. The inversed feature-learning process is
constrained using the least absolute deviation. The whole process is just to learn a
couple of generative hash functions through the cycle-consistent adversarial learning.
For this limit, Li et al. [344] devise an outer-cycle (for feature representation) and
an inner-cycle (for hash code learning) constraint to combine GANs for cross-modal
retrieval. Thereby, the objects for which the cycle-consistency loss constrains have
increased. Moreover, in their method, the discriminator should distinguish if the
input feature is original (viewed as True) or generated (viewed as False).

For task-oriented groups, cycle-consistency is adopted into dual tasks. In cycle-
consistency, we use an inverse process (task A to task B to task A) to improve the
results. When a whole network performs both tasks well, it indicates that the learned
features between the tasks have captured the semantic correlations of two modalities.
For example, Li et al. [343] combine visual question answering (VQA) and visual
question generation (VQG), in which the predicted answer is more accurate through
combining image content to predict the question. In the end, the complementary
relations between questions and answers lead to performance gains. For text-image
translation, a captioning network is used to produce a caption which corresponds
to a generated image from a sentence using GANs [268]. The distances between
the ground truth sentences and the generated captions are exploited to improve
the network further. The inverse translation is beneficial for understanding text
context and the synthesized images. To sum up, there are still some questions to be
explored in task-oriented ideas, such as the model parameter sharing scheme, and
these implicit problems make the model more difficult to train and might encounter
gradient vanishing problems, the task-oriented cycle-consistent constraint is applied
to unify multi-task applications into a whole framework and attracts more research
attention.

8.4 Results and Discussions

The aforementioned ideas have made some progress on various multimodal tasks.
For example, for cross-modal retrieval, we presented the achieved progress and state-
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of-the-art of recent methods on the Flickr30K [345] and the MS-COCO [192] datasets
in Figure 8.4. For hashing retrieval methods, we presented the achievement on the
MIRFlickr25k [182] and the NUS-WIDE [183] datasets in Figure 8.5. As we can
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see from these statistics, the progress is notable in recall rate (i.e. the fraction of
queries for which the top K nearest neighbors are retrieved correctly) and mAP (i.e.
the mean of the average precision scores for each query) in cross-modal retrieval.
As can be seen from the results, there is still room for improvement in the current
limitations of multimodal content understanding. In terms of other three tasks, (i.e.
image generation, image captioning and VQA), the achieved performance in recent
years are reported in Tables 8.2, 8.3, and 8.4, respectively.

Multi-task integrated networks might be helpful and complementary for content
understanding as different applications capture semantic correlations from different
perspectives. Effort has been made on integrating image captioning and cross-modal
retrieval tasks, image captioning and visual question answering, image generation
and image retrieval. Nevertheless, these combined applications are only based on
two modalities. Considering the complementary characteristic among modalities
(conveying the same concept), it might be promising to fuse more than two modal-
ities to enable machines to understand their semantic correlations. Undoubtedly,
it will be more challenging for aligning these diverse data. There are some explo-
rations in this direction. Aytar et al. [367] present a deep cross-modal convolutional
network to learn a representation that is aligned across three modalities: sound,
image, and text. The network is only trained with “image + text” and “image +
sound” pairs. He et al. [368] construct a new benchmark for cross-media retrieval
in which image, text, video, and audio are included. It is the first benchmark with
4 media types for fine-grained cross-media retrieval. However, this direction is still
far from satisfactory.

Deep neural networks, including convolutional neural networks and recurrent neu-
ral networks, have made the unimodal feature extraction and multimodal feature
learning end-to-end trainable. The representations from multimodal data can be
automatically learned effectively, without the need of requiring expert knowledge
in a certain field, which makes the process of understanding of multimodal content
more intelligent. However, the disadvantages of deep networks for multimodal learn-
ing are obvious. It is well-known that the deep networks depend on a massive of
multiple-modality data to train, but the less biased datasets are not so common.
More importantly, deep networks for multimodal learning lacks of interpretability
to some extent. Although joint embedding or coordinated embeddings methods can
be utilized, it still needs to figure out which modality (or its features) plays more
important role for the final content understanding.

From a technical viewpoint, graph-based networks are an important direction for fu-
ture research. Currently, graph representation is constructed within intra-modality
to present the semantic relations, which can be further explored in the future. Mean-
while, the exploration of graph-based networks can be deepened by examining scal-
ability and heterogeneity. Finally, generation-based tasks such as image generation
and image captioning are effective for unsupervised learning, since numerous labeled
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training data can be generated from the deep networks. Combined with reinforce-
ment learning, the image generation process is more controllable. For example,
some fine-grained attributes including texture, shape and color can be specified dur-
ing deep network training. Once it understands the content between modalities, the
deep network, like an agent, will synthesize photo-realistic images, which can be
used in other applications.

8.5 Chapter Conclusions

In this chapter, we have conducted a review of recent ideas and trends in deep mul-
timodal learning (image and text) including popular structures and algorithms. We
analyzed two major challenges in deep multimodal learning for which these popular
structures and algorithms target. Specifically, popular structures including auto-
encoders, generative adversarial nets and their variants perform uni-directional and
bi-directional multimodal tasks. Based on these popular structures, we introduced
current ideas about multimodal feature extraction and common latent feature learn-
ing which plays crucial roles for better content understanding within a visual and
textual modality. For multimodal feature extraction, we introduced graph convo-
lutional networks and memory-augmented networks. For common latent feature
learning, we presented the joint and coordinated feature embedding methods in-
cluding the recently proposed objective functions.
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9. CONCLUSIONS

Finding information in digital datasets and libraries is one of the grand challenges
of our generation. Finding images or image retrieval is a major sub-problem and
has recently had significant advances due to the groundbreaking developments in
deep visual learning. In this thesis, we have explored and designed algorithms for
retrieval tasks via deep learning methods, including unimodal image retrieval and
cross-modal retrieval.

In Chapter 2, we presented a comprehensive review on deep learning for image re-
trieval. We introduced the popular backbone deep network architectures, that is
widely used for extracting retrieval feature representations, and summarized three
aspects of the challenge for deep image retrieval, including (1) reducing the se-
mantic gap, (2) improving retrieval scalability, and (3) balancing retrieval accuracy
and efficiency. Based on these main challenges, we presented methodologies for re-
trieval, including feature extraction, feature fusion, and feature enhancement meth-
ods. These methods can be employed in off-the-shelf convolutional neural networks.
Also, they can be applied when deep networks are fine-tuned on the new target re-
trieval datasets. We analyzed supervised and unsupervised fine-tuning methods for
the updating of network parameters. For these methodologies, we compared their
performance on four retrieval benchmarks. This chapter aims to give a global view
of intelligent image retrieval.

Finding an image of interest may require searching through thousands, millions, or
even billions of images. Therefore, searching efficiently is as critical as searching
accurately. To enable accurate and efficient retrieval of massive image collections,
learning compact and rich feature representations is critical. In Chapter 3, we fo-
cus on cross-modal hash retrieval because hash code learning has high efficiency
in computation and storage. We proposed an information entropy loss function
based on Shannon information theory to reduce the heterogeneity gap, and thereby
build a better common space to align the visual and textual modalities. We reg-
ularized real-valued features and the binary hash codes using the proposed infor-
mation entropy loss. As demonstrated in Chapter 3, the challenge of performing
cross-modal retrieval lies in how to measure the semantic similarity between data
from different modalities. For this purpose, in Chapter 4, we proposed to integrate
information theory and adversarial learning to learning the cross-modal features.
Combining information theory and adversarial learning is beneficial in discovering
the distribution differences between modalities to minimize the heterogeneity gap
and enable more accurate retrieval. To guarantee the semantic similarity between
data from visual and textual modalities, we adopted a bi-directional ranking loss
function and a cross-modal feature projection method. Moreover, we adopted the
Kullback–Leibler divergence to address the data imbalance issue which exists in the
cross-modal datasets where each image is described by five sentences. The proposed
method is evaluated by thorough experimental results on four well-known datasets
using four deep models.
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In Chapters 3 and 4, the proposed methods were trained and evaluated on fixed
datasets. In Chapter 5, we explored fine-grained image retrieval in the context
of incremental learning where deep networks are trained by using new data only.
The new data is added at once or sequentially into the existing old data, where
we employed the knowledge distillation method, which is computed based on the
output probabilities from the final classifier, and the maximum mean discrepancy
loss, which is based on the retrieval feature representations from the intermediate
layer. The proposed method was compared with the state-of-the-art methods and
to show its efficacy. We also applied the proposed method for incremental image
classification tasks.

In Chapter 6, we further explored methods for incremental fine-grained image re-
trieval. Previously, in Chapter 5, we only used the penultimate model as the teacher
model to regularize the current student model which learns on the new task. As
incremental learning proceeds, especially when new data are added sequentially,
knowledge distillation based on the stream of models will be memory-consuming
and make the learning complex. We proposed a feature estimation method to es-
timate representative features from the models trained on earlier old tasks so that
saving this model stream is unnecessary. Quantitative and qualitative experiments
on two common benchmarks demonstrate that the proposed approach is effective for
achieving optimal performance on both the old and new tasks when new incoming
data are added at once or sequentially.

In Chapter 7, we explored fine-grained image retrieval in a lifelong manner. In
contrast to Chapter 6 and Chapter 5, the images in the newly added data are se-
mantically different from the ones in the already trained data. These semantic drifts
make minimizing the forgetting ratio on previous tasks more difficult. In addition,
we considered improving the generalization ability of the trained networks on the
new tasks. To this end, we proposed a dual knowledge distillation framework that
includes two professional teachers and a self-motivated student. To further alleviate
the forgetting issue, we used the stored running statistics of the BatchNorm layers
of the frozen teacher to generate several representative images. We evaluated the
proposed framework on three benchmarks, where the scenarios of two-task sequence
and three-task sequence are considered.

In Chapter 8, we presented four popular multimodal applications, including cross-
modal retrieval, image captioning, image generation, and visual question answering.
We introduced recent new ideas and trends of these applications from the viewpoint
of structure for multimodal feature extraction and the strategies for multimodal
feature learning. These novel ideas are important for better multimodal content
understanding and can be further used to improve performance in intelligent image
retrieval.
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9.1 Limitations and Possible Solutions

Although our research has reached its aims, there still exist some limitations for our
initial explorations for intelligent image retrieval.

First, in Chapter 4, we explored integrating information theory and adversarial
learning for cross-modal retrieval, in which the information entropy loss was com-
puted only based on image modality and text modality. Therefore, the feature vec-
tors extracted from these two modalities are projected into a common feature space
but the associations and alignments between cross-modal features are neglected.
However, retrieval performance depends on the matching of each image-text feature
pair. For some large-scale datasets, each category may include a large number of
image-text pairs. Thus, it is valuable to make the information entropy loss specific
for each category so that the discrepancy between two modalities can be reduced
more granularly.

Second, we explored image retrieval in the context of incremental learning in Chap-
ters 5, 6, and 7, by focusing on the representations extracted from the teacher-
student structure to distill correlations. Thus, both old tasks and new tasks are
trained on the same representations. However, regularizing directly on the repre-
sentations may be overly restrictive for the learning on the new tasks. We find
the accuracy of new tasks on the CUB-Birds dataset is still lower than the upper
bound of joint training (see Table 6.1). For this limitation, instead of regularizing
the representations, it may be promising to project them into a sub-space using
an auto-encoder or a variational auto-encoder. Afterward, informative parts of the
representations for the old tasks are captured and kept unchanged, while others that
are not meaningful for the old tasks allow the learning for new tasks.

Third, we proposed a feature estimation method in Chapter 6 to minimize the for-
getting ratio in previous tasks. In fact, effectively estimating representations for all
previous models depends on the parameter inheritance of model initialization at the
start of each incremental step. However, estimated features from the penultimate
model to the first one are not accurate enough due to the accumulative estimation
errors. We resolved this limitation by aligning estimated features with descending
importance and demonstrated its effectiveness experimentally. Nevertheless, distill-
ing knowledge on the stream of models is worth further investigation theoretically.
Sequence modeling via the recurrent network [369] may be a direction that deserves
to be explored.

9.2 Future Research Directions

In terms of future work, there are several directions into which we can extend our
research work:
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9.2 Future Research Directions

1. Unsupervised intelligent image retrieval. We have explored intelligent
image retrieval in a supervised manner. However, supervisory information such
as class labels are time-consuming and labor-intensive to collect. Therefore, it is
valuable to investigate unsupervised image retrieval. For example, the proposed
Shannon information loss functions in Chapter 3 and Chapter 4 are label-free and
can be used in some unsupervised learning scenarios. It may be more difficult for
lifelong image retrieval in an unsupervised manner that uses the teacher-student
framework. Without the supervisory information to regularize the training of the
student network, the student network may suffer from more severe forgetting on
the previous tasks. One possible solution is to employ the Variational AutoEncoder
(VAE), which can be used for unsupervised learning, in lifelong representations
learning.

2. Multimodal retrieval. In an information era, people can search for the item
of interest by using different kinds of queries which makes the field of multimodal
retrieval an area that richly deserves to be explored. One of the challenges for
multimodal retrieval is to align features from different modalities in a shared la-
tent space. We have examined the application of combining Shannon information
entropy with adversarial learning for cross-modal retrieval. We find that Shannon
information entropy can be used for multimodal feature learning by estimating the
modality uncertainty. It will be promising to explore Shannon entropy further when
applied to other kinds of cross-modal feature learning similar to image-text retrieval,
such as video-text, audio-video, and audio-text matching, which aims at learning
modality-invariant representations.

3. Zero-shot learning for image retrieval. The popularity of media platforms
and the rapid development of novel techniques makes it very convenient for people
to share their images, and as a result, the number of images on the Internet has
increased exponentially where there often exist “unseen” images or categories. How-
ever, most datasets are static and offer a limited amount of objects and categories
for feature learning. Thus, the retrieval algorithms or systems may suffer from the
scarcity of the appropriate training data for these unseen images. Therefore, there
is a need to extend conventional image retrieval methods to a zero-shot learning
scenario where we can retrieve both seen and unseen categories from the system.
Furthermore, combined with unsupervised methods, zero-shot learning algorithms
can significantly improve the flexibility and generalization of image retrieval sys-
tems.

4. Incremental learning for image retrieval. Content-based image retrieval
can be divided into category-level image retrieval and instance-level image retrieval.
In our work, we have paid attention to explore category-level image retrieval in the
context of lifelong learning. To avoid forgetting ratios on the already trained tasks,
more techniques may be necessary, such as hierarchical learning. Since images used
in the incremental fine-grained image retrieval share subtle inter-class variations and
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larger intra-class variations, it is valuable to learn hierarchical domain knowledge.
Furthermore, examining instance-level image retrieval in incremental learning is also
promising.

5. Deploy image retrieval for practical applications. Existing image retrieval
technologies are trained and evaluated on standard benchmarks, and various metric
learning methods are explored for retrieval on fine-grained datasets. However, these
technologies are still far from real-world applications such as face search, fashion
search, person re-identification, shopping recommendation systems, or medical im-
age retrieval. In these practical applications, the purpose of image retrieval may
not just be retrieving images for general content on standard benchmarks, but also
for more refined information. It is challenging to deploy image retrieval for specific
scenarios. For example, as a specific instance search topic, person re-identification
systems may encounter images with low-resolution or with inferior quality due to
inadequate illumination. Existing techniques such as attention mechanisms and re-
gion proposal networks can be adopted to guarantee performance. In addition, it is
valuable to explore multi-modal retrieval in practical applications. This means that
image retrieval can also be combined with other auxiliary modalities such as words,
phrases, and sentences to meet the different retrieval expectations of users.
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List of Abbreviations

Abbreviation Full Name / Short Definition

DCNNs Deep Convolutional Neural Networks / A regularized version
of multilayer perceptrons based on convolution kernels

CBIR Content-based Image Retrieval / An image search task
according to the content contained in images

MAC Maximum Activations of Convolutions /
Maximum value over a convolutional feature map

R-MAC Regional Maximum Activations of Convolutions /
Maximum value over a region on a convolutional feature map

CroW Cross-dimensional Weighting /
Weighting the activations over different feature maps

SPoC Sum-Pooled Convolutional /
Sum pooling over different feature maps

ReLU Rectified Linear Unit / An activation function
returns 0 if it receives any negative input

SPM Spatial Pyramid Modeling /
An method to model feature in a pyramid way

t-SNE t-Distributed Stochastic Neighbor Embedding /
A method to visualize high-dimensional data

RPNs Region Proposal Networks /
A network to obtain proposal for a region or an object

FC Fully-Connected (layer)
KNN K-Nearest Neighbors

BoW Bag-of-Words / Method to embed features
according to the number of feature occurrences

VLAD Vector of Locally Aggregated Descriptors / Method to embed
features based on their residuals w.r.t. each visual word

FV Fisher Vector / Method to embed features
by using Gaussian mixture model

GeM Generalized Mean / A pooling method to
apply over each feature map

CAM Class Activation Maps / A feature weighting method
based on an activated class output

PCA Principal Component Analysis
MMD Maximum Mean Discrepancy
FGIR Fine-Grained Image Retrieval
RKHS Reproducing Kernel Hilbert Space

DKD Dual Knowledge Distillation // Knowledge distillation
based on two teacher models

GCNs Graph Convolutional Networks
VQA Visual Question Answering / A computer vision task

KL-divergence Kullback–Leibler divergence / A metric to
measure the distance between two distributions
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English Summary

We are living in an information era where the amount of image and video data
increases exponentially. It is important to develop appropriate information systems
to store, manage, and distribute such large data collections. Among them, intelli-
gent image retrieval is one of the most indispensable techniques to be considered. It
satisfies our needs for searching information of interest. To enable intelligent image
retrieval (including high accuracy and high efficiency retrieval), feature representa-
tions are at the core of most retrieval algorithms.

For humans, it is easy to find similar images from an image gallery according to a
given query image. However, it is difficult for a computer to search as accurately
as humans due to the existing semantic gap between the high-level concepts used
by humans and the typically low-level features derived from images (i.e. pixels or
symbols). In addition, it will be more difficult for the computer to search accurately
if the query contains multiple modalities (e.g. text, audio etc). This is caused by the
second challenge: the heterogeneity gap. Deep learning, especially for convolutional
neural networks has made progress in addressing these challenges and significantly
facilitated the process of intelligent image retrieval.

The first theme in this thesis is to explore cross-modal retrieval by considering visual
and textual modalities. This theme is hard to realize because it involves both the
above mentioned semantic gap and heterogeneity gap. We design an information
entropy loss function based on Shannon information theory to regularize the learning
of a shared latent space for paired image and text inputs. The common practice of
cross-modal retrieval is to construct a shared space where image features and text
features are highly intermixed, thereby the similarity between image and text can
be further associated. This property of the shared space is consistent with Shannon
information theory by measuring the information entropy. This idea is demonstrated
for cross-modal hashing retrieval where real-valued features and binary hash codes
are constrained by the information entropy loss.

Next, we explore the integration of Shannon information theory and adversarial
learning for cross-modal retrieval. This adversarial mechanism achieves a better
feature distribution agreement for the two modalities thereby bridging the hetero-
geneity gap and enabling a more accurate retrieval. To reduce the semantic gap,
Kullback-Leibler (KL) divergence and bi-directional triplet loss are used to associate
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the intra- and inter-modality similarity between features in the shared space. Also,
we design a regularization term based on KL-divergence with temperature scaling
to calibrate the bias of the label classifier that is caused by the data imbalance
issue.

The second theme of this thesis is to explore the continuous retrieval capacity of
deep neural networks where three important sub-questions are studied: incremen-
tal learning for retrieval on the same fine-grained dataset, feature estimation for
sequences of deep models in incremental learning, and lifelong learning for image
retrieval on different datasets, respectively. Unlike the learning process of humans,
training previously trained deep networks on new data leads the networks to forget
what was learned before. For the first sub-question, we employ incremental learning
for the find-grained image retrieval task. This is achieved through regularizing the
retrieval representations and classification probabilities by using a maximum mean
discrepancy loss function and knowledge distillation loss function. To evaluate the
proposed method, we split a dataset into two parts, one is used as the old data (or
old tasks) and the other is used as the new data for incremental training (or new
tasks).

For the second sub-question, we focus on the sequence of deep neural networks
which have been trained when new tasks are added sequentially. This multi-task
scenario will suffer from more severe catastrophic forgetting. Saving the sequence
of models for transferring previously learned knowledge is memory-consuming. In-
stead, we propose a simple but effective feature estimation method to alleviate this
limitation.

For the third sub-question, we consider a more practical lifelong image retrieval
scenario where the deep model is trained successively on different datasets. The se-
mantic drifts between different datasets make minimizing the forgetting ratio more
difficult. We address this limitation by using a dual knowledge distillation framework
that includes two professional teachers and a self-motivated student. One teacher
model has its parameters fixed and is used for transferring previously learned knowl-
edge on the proceeding tasks while another on-the-fly teacher is trained jointly with
the student and is responsible for transferring knowledge learned on the newly added
tasks. Furthermore, we also use the statistics on the BatchNorm layers of the frozen
teacher model to generate some representative images for the successive training
tasks.

We conduct thorough experiments to verify the efficacy of the proposed methods
for the two themes. The results demonstrate significant improvements over various
baselines and state-of-the-art methods. Therefore, this thesis provides novel contri-
butions, insights, and findings for the research community and future applications
in the field of intelligent image retrieval.
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We leven in een informatietijdperk. De hoeveelheid beeld- en video-gegevens neemt
exponentieel toe. Het is belangrijk om informatiesystemen te ontwikkelen die in
staat zijn om zulke grote gegevenscollecties op te slaan, te beheren en te verspreiden.
Een van de belangrijkste technieken hierbij is het intelligent ophalen van afbeelding-
en; dit is een van de meest onmisbare technieken om te voldoen aan onze behoefte
om visuele informatie die van belang is te vinden. Om het mogelijk te maken af-
beeldingen intelligent op te halen zijn verschillende algoritmen noodzakelijk, hierbij
moet gelet worden op hoge nauwkeurigheid en hoge efficiëntie. Representatiefuncties
vormen hierbij de kern van verschillende ophaalalgoritmen die we in dit proefschrift
zullen bespreken.

Voor mensen is het eenvoudig om vergelijkbare afbeeldingen uit een verzameling
beelden te vinden op basis van een gegeven voorbeeld. Het is echter moeilijk voor
een computer om even nauwkeurig te zoeken als mensen vanwege de bestaande se-
mantische kloof tussen de concepten gebruikt door mensen en de beeldkenmerken die
gewoonlijk worden afgeleid van afbeeldingen (dwz pixels of symbolen). Bovendien
zal het voor de computer moeilijker zijn om nauwkeurig te zoeken als het zoekitem
uit verschillende modaliteiten bestaat (e.g. tekst, audio etc). Dit wordt veroorzaakt
door de tweede uitdaging: de heterogeniteitskloof. Deep learning heeft, vooral voor
convolutionele neurale netwerken, vooruitgang geboekt bij het aanpakken van deze
uitdagingen en het proces van het intelligent ophalen van afbeeldingen aanzienlijk
vergemakkelijkt.

Het eerste onderwerp in dit proefschrift is het verkennen van multi-modale retrieval
door zowel de visuele als de tekstuele modaliteiten te gebruiken. De moeilijkheid bij
dit onderwerp zit hem in de semantische kloof en de heterogeniteitskloof. We ontwer-
pen een informatie-entropieverliesfunctie op basis van Shannon’s informatietheorie
om het leren van een gedeelde latente ruimte voor gepaarde beeld- en tekstinvoer
te regulariseren. De gebruikelijke praktijk van cross-modale opvraging is om een
gedeelde ruimte te construeren waar afbeeldingskenmerken en tekstkenmerken sterk
door elkaar worden gehaald, waardoor de overeenkomst tussen afbeelding en tekst
verder kan worden geassocieerd. Deze eigenschap van de gedeelde ruimte is con-
sistent met de meting van informatie-entropie volgens Shannon’s informatietheorie.
Dit idee wordt gedemonstreerd voor cross-modale hashing retrieval waarbij de reële
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featurewaarden en de binaire hashcodes worden beperkt/gestuurd door het verlies
van informatie-entropie.

Vervolgens integreren we Shannon’s informatietheorie en adversarial learning voor
cross-modale retrieval. Adversarial learning zorgt voor een betere verdeling van
bimodale-kernmerken opdat we de heterogeniteitskloof kunnen overbruggen en zo
betere prestaties mogelijk maken. Om de semantische kloof te verkleinen, wor-
den Kullback-Leibler (KL) divergentie en bidirectioneel tripletverlies gebruikt om
de intra- en inter-modaliteitsgelijkvormigheid tussen kenmerken in de gemeenschap-
pelijke ruimte te vinden. We ontwerpen ook een regularisatieterm op basis van
KL-divergentie met temperatuurschaling om de bevooroordeelde labelclassificatie te
kalibreren en zo de onbalans in de basisdata te verminderen.

Het tweede thema van dit proefschrift betreft de vraag hoe we leer-taken van een
voorgaande taak kunnen leren, zonder telkens overnieuw te moeten beginnen, of het
geleerde te vergeten als nieuwe zaken geleerd worden. We onderscheiden drie belang-
rijke deelvragen: incrementeel leren voor retrieval in dezelfde fijnmazige dataset,
feature-schattingen voor opeenvolgende diepe modellen in incrementeel leren en le-
venslang leren voor rerieval in verschillende datasets. Voor de eerste deelvraag
kijken we naar incrementeel leren voor het vinden van fine-grained afbeeldingen.
Dit wordt bereikt door de representatie- en classificatie-distributies te regulariseren.
Dit doen we door gebruik te maken van het maximale gemiddelde discrepantieverlies
en kennisdestillatieverlies. Om de voorgestelde methode te evalueren, splitsen we
een dataset in twee delen, de ene wordt gebruikt als oude data (of oude taken) en
de andere wordt gebruikt als de nieuwe data voor incrementele training (of nieuwe
taken).

Voor de tweede deelvraag richten we ons op de sequentie van diepe modellen die
worden getraind wanneer nieuwe taken opeenvolgend worden toegevoegd. Dit sce-
nario met meerdere taken zal lijden aan catastrofaal vergeten. Het opslaan van de
sequentie van modellen voor het overdragen van eerder geleerde kennis is geheugen-
verslindend. In plaats daarvan stellen we een eenvoudige maar effectieve methode
voor het schatten van features voor om deze beperking te verminderen.

Voor de derde deelvraag kijken we naar de praktische kant van levenslang leren
voor het zoeken naar beelden, waarbij het neurale network achtereenvolgens wordt
getraind op verschillende datasets. De semantische verschuivingen tussen verschil-
lende datasets maken het moeilijk om iets te doen aan het vergeten van geleerde
features. We pakken deze beperking aan door een duaal kennisdestillatiekader te ge-
bruiken dat twee professionele supervisors en een instrinsiek-gemotiveerde student
omvat. Het ene supervisormodel heeft vaste parameters en wordt gebruikt voor het
overdragen van eerder geleerde kennis aan de volgende taken, terwijl een andere on-
the-fly supervisor samen met de student wordt opgeleid en verantwoordelijk is voor
het overdragen van kennis die is geleerd over de nieuw toegevoegde taken. Verder
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gebruiken we ook de statistieken over de BatchNorm-lagen van het bevroren super-
visormodel om enkele representatieve afbeeldingen te genereren voor de volgende
taken.

Tenslotte voeren we diepgaande experimenten uit om de effectiviteit van de voorge-
stelde methoden voor de twee onderwerpen vast te stellen. De resultaten laten
significante verbeteringen zien ten opzichte van verschillende baselines en state-of-
the-art methoden. Dit proefschrift levert nieuwe bijdragen, inzichten en vondsten
voor de onderzoeksgemeenschap en toekomstige toepassingen op het gebied van
intelligente image-retrieval.
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