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Chapter 4

Discrete logarithms in small characteristic

Solving the discrete logarithm problem means the following: given a group G, a generator
g ∈ G and another element h ∈ G, find an integer z such that gz = h. The hardness of
this problem, which depends on the choice of G, has had implications in cryptography
since the very beginning [33] of public-key cryptography. We are concerned with the
cases where G is the multiplicative group of a finite field of small characteristic, which,
for us, means a field of characteristic p and cardinality pn for some integer n > p. Our
main result is the following.

Theorem 4.0.1. There exists a probabilistic algorithm, described in Section 4.4, that
solves the discrete logarithm problem in K× for all finite fields K of small characteristic
in expected time

(log #K)O(log log#K) .

An algorithm whose complexity is as above is called quasi-polynomial. In 2013 Bar-
bulescu, Gaudry, Joux and Thomé presented in [19] the first heuristic quasi-polynomial
algorithm solving the discrete logarithm in finite fields of small characteristic. One of
their main ideas, originally in [56], was looking for a “simple” description of the Frobe-
nius automorphism φ : K → K and, if one can find such a simple description, using it in
an index calculus algorithm to find relations among the elements of the factor base more
easily.

In [49] a new algorithm was then presented, based on similar ideas, that was proven
to terminate in quasi-polynomial expected time when it is possible to find a “simple”
description of the Frobenius automorphism φ : K → K. In particular, we could deduce
Theorem 4.0.1 if we knew that all finite fields of small characteristic K can be embedded
in a slightly larger field K ′ admitting a presentation as in [49]. Unfortunately, the author
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4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

is not aware of any proof of this fact, even though computations like [56, Table 1] support
it.

Our algorithm is based on the same approach as [49], adapted to fields admitting
a different kind of presentation in terms of elliptic curves. Since over a finite field Fq
there are many non-isomorphic elliptic curves, it is easy to prove that all finite fields of
small characteristic can be embedded in a slightly larger field admitting such an elliptic
presentation.

Elliptic presentations were firstly introduced in [30], as we have learnt after our first
(incomplete) attempt to prove Theorem 4.0.1 using elliptic presentations (see the au-
thor’s master’s thesis [67]). In [65] Kleinjung and Wesolowski have independently proved
Theorem 4.0.1, also using elliptic presentations of finite fields. One of the main differ-
ences between the present approach and the one in [65] is the proof of the correctness
of the algorithms. In both cases it is a matter of showing the irreducibility of certain
curves: the approach in [65] is based on the ideas in [64], while we mostly rely on a
little bit of Galois theory over function fields; both approaches use some cumbersome
computations and in our case these computations are mostly contained in Proposition
4.6.3 and in the Claims 4.8.2.3, 4.8.2.6, 4.8.3.2. The practical feasibility of algorithms
using elliptic presentations has been studied by Joux and Pierrot in [57].

In Section 4.1 we define elliptic presentations and we prove that all finite fields of small
characteristic can be embedded in a slightly larger field admitting an elliptic presentation.
Section 4.2 has technical importance: given an elliptic presentation, we define a finite and
small set of points on the associated elliptic curve that we call “traps” since they interfere
with our algorithm. In Section 4.3 we describe the general setup of our algorithm and
we explain how to pass from a factor base made of irreducible polynomials in Fq[x] to
a factor base made of irreducible divisors on an elliptic curve E/Fq. In Section 4.4 we
give our algorithm, stated in terms of a descent procedure that is described in Section
4.5. A more precise statement about the complexity of the main algorithm is given in
Theorem 4.4.4. Our descent procedure consists of two steps, presented and analysed in
Section 4.5 under an assumption on the number of points of certain varieties that are
used in these steps. These assumptions are proven in Section 4.8 for the first step and
in Section 4.7 for the second and easier step. In Section 4.6 we prove a lemma, mainly
using some Galois theory over function fields, that is useful in Sections 4.7 and 4.8.

Acknowledgements I thank René Schoof for introducing me to this research problem
in 2016 and for the useful ideas that lead to substantial simplifications.
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4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

4.1 Elliptic presentations
One of the main ideas in [56] and in the original quasi-polynomial algorithm [19], is to
present a field K using two subfields Fq ( FQ ⊆ K of order q,Q (both “small” compared
to #K) and an element x1 ∈ K generating the extension FQ ⊂ K such that the q-th
Frobenius acts on x1 in a simple way, namely xq1 = f(x1) for some f ∈ Fq(x) of degree at
most 2. We now define a presentation based on a similar idea: describing K as Fq(x1, y1)
where Fq is a finite field of order q “small” compared to #K and x1, y1 are two elements
of K on which the q-th Frobenius acts in a “simple” way.

Let q be a prime power, let n be a positive integer and letK be a field of cardinality qn.
Let Fq be a finite field of cardinality q and let Fq be its algebraic closure. Suppose there
exists an elliptic curve E/Fq defined by a Weierstrass equation and a point P0 ∈ E(Fq)
of order n. Denoting by φ be the q-th Frobenius on the elliptic curve E, the map E → E

given by P 7→ φ(P )−P is surjective. Therefore there is a point P1 = (x1, y1) ∈ E(Fq)
such that φ(P1) = P1 + P0. Hence

(4.1.1) (xq
i

1 , y
qi

1 ) = φi(P1) = P1 + i · P0 for every i ∈ Z ,

implying that the field extension Fq ⊂ Fq(x1, y1) has degree n. Hence Fq(x1, y1) is isomor-
phic to K. Moreover, using the addition formulas on E, we see that the q-th Frobenius
acts on the pair (x1, y1) in a “simple” way: there are polynomials f1, f2, f3 ∈ Fq(x, y) of
small degree such that

xq1 = f1(x1, y1)/f3(x1, y1) , yq1 = f2(x1, y1)/f3(x1, y1) .

With this heuristic in mind, we give the following definition.

Definition 4.1.2. Let E/Fq be an elliptic curve defined by a Weierstrass polynomial in
Fq[x, y] and let P0 be a Fq-point on E. An (E/Fq, P0)-presentation of a finite field K is
an ideal m ⊂ Fq[x, y] such that

(i) K is isomorphic to Fq[x, y]/m with a chosen isomorphism;

(ii) denoting φ : E → E the q-th Frobenius, there exists a point P1 = (x1, y1) in E(Fq)
such that φ(P1) = P1 + P0 and m = {f ∈ Fq[x, y] : f(x1, y1) = 0};

(iii) q > 2 and, under the isomorphism (i), we have [K : Fq] > 2.

Sometimes we omit the dependence on (E/Fq, P0) and we simply write “elliptic pre-
sentation”. The technical hypothesis q > 2 is used in the proof of Claim 4.8.2.3.

Remark 4.1.3. Any elliptic presentation m is a maximal ideal, since Fq[x, y]/m is a field.
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4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

Remark 4.1.4. If m is an elliptic presentation, then the inclusion Fq[x]→ Fq[x, y] induces
an isomorphism Fq[x]/µ ∼= Fq[x, y]/m for a certain µ ∈ Fq[x].

Proving this is equivalent to proving that x generates the extension Fq ⊂ Fq[x, y]/m.
Using the notation in Definition 4.1.2, this is equivalent to proving that Fq(x1) is equal
to Fq(x1, y1). If, for the sake of contradiction, this is not the case, then the Weierstrass
equation satisfied by x1 and y1 implies that the extension Fq(x1) ⊂ Fq(x1, y1) has degree
2, hence [Fq(x1) : Fq] = n

2 , where n := [Fq(x1, y1) : Fq] = [K : Fq]. Using Equation 4.1.1,
we deduce that

x(P1) = x1 = xq
n/2

1 = x(φn/2P1) = x(P1 + n
2P0) =⇒ P1 + n

2P0 = ±P1 .

Since, by Equation 4.1.1, the order of P0 is equal to n, we have P1+ n
2P0 = −P1, implying

that 2P1 lies E(Fq). Therefore P0 has order 2, contradicting n = [K : Fq] > 2 in (iii).

We now show that any finite field K of small characteristic can be embedded in a
“slightly larger” field admitting an elliptic presentation with q “small” compared to #K.

Proposition 4.1.5. For any finite field K of small characteristic there exists an exten-
sion K ⊂ K ′ having a elliptic presentation m ⊂ Fq[x, y] of K ′ such that

log(#K ′) ≤ 13 log(#K) log log(#K) and q ≤ log(#K ′)4 .

Moreover such K ′ and its presentation can be computed in polynomial time in log(#K).

Proof. Let #K = pn for a prime p and an integer n > p. Put k0 := dlogp ne and q := p2k0 ,
so that n has a multiple n1 in the interval [q −√q + 1, q + 1]. If n1 ≡ 1 mod p we define
n2 := n1 +n, otherwise we define n2 := n1. Since n2 in an integer contained in the Hasse
interval [q− 2√q+ 1; q+ 2√q+ 1] that is not congruent to 1 modulo p, by [90, Theorems
1a, 3] we can choose an elliptic curve E/Fq whose group of rational points E(Fq) is cyclic
of order n2. Since n divides n2, we can choose a point P0 ∈ E(Fq) of order n.

We can assume E is defined by aWeierstrass polynomial. Since the map P 7→ φ(P )−P
is surjective, we can choose a point (x1, y1) = P1 ∈ E(Fq) such that φ(P1) = P1 + P0.
We define

m := {f ∈ Fq[x, y] : f(x1, y1) = 0} , K ′ := Fq(x1, y1) ⊂ Fq .

The map Fq[x, y]→ K sending x 7→ x1, y 7→ y1 induces an isomorphism Fq[x, y]/m ∼= K ′.
To prove that m is an elliptic presentation of K ′ it remains to show that both q and
[K ′ : Fq] are larger than 2: in the first case it is true because k0 > 1, in the second case
it is true because, by (4.1.1), the degree of Fq ⊂ K ′ is equal to the order n of P0, and
n > p ≥ 2.
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Since [K ′ : Fq] = n divides [K ′ : Fp], the field K ′ has a subfield with pn elements. In
other words K can be embedded in K ′. Moreover we have

log(#K ′) = n log q < 2n log(p)(logp(n)+1) ≤ 4 log(p) log(n) ≤ 13 log(#K) log log(#K),
2 < p2 ≤ q = p2dlogp ne < p2+2 logp n = (pn)2 ≤ n4 < log(qn)4 = log(#K ′)4 .

We now prove that it is possible to compute such K ′ and m in polynomial time in
log(#K). We describe a procedure following the abstract part of the proof. Computing
k0, q, n1 is easy. We can construct a field Fq by testing the primality of all polynomials
of degree 2k0 over Fp until an irreducible ν is found and define Fq = Fp[T ]/ν; since
there are less than n2 polynomials of this type, this takes polynomial time. Similarly
we can find an elliptic curve E with an Fq-point P0 of order n in polynomial time, by
listing all possible Weierstrass equations (there are less than q6), testing if they define an
elliptic curve and, when they do, enumerate all their Fq-points. Then, using the addition
formula on E, we write down the ideal I ⊂ Fq[x, y] whose vanishing locus inside A2 is
the set of points P = (x, y) ∈ E(Fq) such that φ(P ) = P + P0. As we showed before,
the set of such points is non-empty, hence I is a proper ideal and we can find a maximal
ideal m containing I. We don’t need general algorithms for primary decomposition since
we can take m = (µ(x), λ(x, y)), with (µ) being an irreducible factor of the generator of
the ideal J∩Fq[x] and λ(x, y) being an irreducible factor of the image of the Weierstrass
equation of E inside (Fq[x]/µ)[y]. Since the Weiestrass polynomial is monic in y, we can
assume that λ is monic in y too. Hence there is a point P1 = (x1, y1) in the vanishing
locus of (µ(x), λ(x, y)) = m. Since m contains I, the point P1 lies on E and satisfies
φ(P1) = P1 + P0. The maximality of m implies that Fq[x, y](m) = Fq(x1, y1) = K ′.
Hence m is the elliptic presentation we want.

Notation 4.1.6. For the rest of the article Fq is a finite field with q elements, Fq is its
algebraic closure, K is a finite extension of Fq, the ideal m ⊂ Fq[x, y] is a (E/Fq, P0)-
presentation of K, the map φ : E → E is the q-th Frobenius and P1 = (x1, y1) ∈ E(Fq)
is a point such that m = {f ∈ Fq[x, y] : f(x1, y1) = 0}. By OE we denote the neutral
element of E(Fq).

4.2 Traps

As first pointed out in [27], there are certain polynomials, called “traps” for which the
descent procedure in [19] does not work. In [19] such traps are dealt with differently
than the other polynomials. In [49] the notion of “trap” is extended: it includes not only
polynomials for which the descent procedure is proven not to work, but also polynomials
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for which the authors do not give proof of the descent’s correctness. In [49] traps are
avoided by the algorithm.

We describe a descent procedure stated in terms of points and divisors on E and there
are certain points in E(Fq) that play the role of “traps”, as in [49]. The definition of this
subset of E(Fq) is rather cumbersome, but it is easy to deduce that we have less than
15q4 traps. In particular, in contrast to [49], we can include them in the factor base.

Definition 4.2.1. A point P ∈ E(Fq) is a trap if it satisfies one of the following conditions:

2P = 0 , or (2φ− Id)(φ2 − φ+ Id)(P ) = P0 , or (2φ− Id)(φ+ Id)(P ) = 2P0

or (φ4 − Id)(P ) = 4P0 , or 2(φ3 − Id)(P ) = 6P0 , or (2φ+ Id)(φ− Id)(P ) = 2P0 .

We explain why these points interfere with our strategy of proof in (4.7.2.2) and at
the beginning of the proof of Claim 4.8.2.3.

4.3 Divisors and discrete logarithm

For us a divisor on E is a formal sum

D =
∑

P∈E(Fq)

nPP ,

where the nP ’s are integers and nP = 0 for all but a finite number of P ’s. The Galois
group of Fq acts on the group of divisors by the formula

σ

 ∑
P∈E(Fq)

nPP

 =
∑

P∈E(Fq)

nP σ(P ) .

For any algebraic extension Fq ⊂ k we define the set of divisors defined over k, denoted
Divk(E), to be the set of divisors D such that σD = D for all σ ∈ Gal(Fq/k). We
say that a divisor is irreducible over k if it is the sum, with multiplicity 1, of all the
Gal(Fq/k)-conjugates of some point P ∈ E(Fq). Every divisor defined over k is a Z-
combination of irreducible divisors over k. We refer to [97, Chapter 2] for the definitions
of principal divisor and support of a divisor.

We need two quantities to describe the “complexity” of a divisor. The first one is the
absolute degree of a divisor, defined as as

absdeg

 ∑
P∈E(Fq)

nP (P )

 :=
∑

P∈E(Fq)

|nP | .
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4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

The second quantity is analogous to the degree of the splitting field of a polynomial, but
we decide to “ignore” trap points. We say that a point is good if it is not a trap point,
we say that a divisor on E is good if it is supported outside the set of traps. Given an
algebraic extension Fq ⊂ k and a divisor D ∈ Divk(E), there is a unique good divisor
Dgood, defined over k, such that D −Dgood is supported on the set of trap points. We
define the essential degree of D over k to be the least common multiple of the degrees of
the irreducible divisors appearing in the support of Dgood. In other words, if we denote as
k(Dgood) the minimal algebraic extension k̃ ⊃ k such that the support of D is contained
in E(k̃), then

essdegk(D) := [k(Dgood) : k] .

If Dgood = 0 we take essdegk(D) = 1.
Now consider the discrete logarithm problem in a field having an elliptic presentation

m. First of all, if q is small compared to #K, for example q ≤ (logK)4 as in Proposition
4.1.5, and if we are able to compute discrete logarithms in K×/F×q in quasi-polynomial
time, then we can also compute discrete logarithms in K× in quasi-polynomial time.
Hence in the rest of the article we are concerned with computing discrete logarithms in
K×/F×q .

Denoting Fq[x, y]m the localization of Fq[x, y] at the maximal ideal m, we have

K ∼= Fq[x, y]/m ∼= Fq[x, y]m/mm .

An element f of (Fq[x, y]m)× defines a rational function on E which is defined over Fq
and regular and non-vanishing in P1. We represent elements in K×/F×q with elements of
Fq(E) that are regular and non-vanishing on P1.

Let g, h be elements of Fq(E) both regular and non-vanishing on P1 and let us suppose
that g generates the group K×/F×q . Then the logarithm of h in base g is a well defined
integer modulo #K−1

q−1 that we denote logm,g(h) or simply log h. Since we are working
modulo F×q , the logarithm of h only depends on the divisor of zeroes and poles of h: if
h′ ∈ Fq(E) satisfies div(h) = div(h′), then h/h′ ∈ F×q and consequently log(h) = log(h′).
Hence, putting

log(div(h)) := log(h) ,

we define the discrete logarithm as homomorphism whose domain is the subgroup of
DivFq (E) made of principal divisors, supported outside P1 and whose image is Z/(#K−1

q−1 )Z.
The kernel of this morphism is a subgroup of DivFq (E), hence it defines the following
equivalence relation on DivFq (E)

(4.3.1)
D1 ∼ D2 ⇐⇒ D1 −D2 ∈ Ker(log)

⇐⇒ ∃f ∈ Fq(E) such that f(P1) = 1 and div(f) = D1 −D2 .
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We notice that this equivalence relation does not depend on g and that, given rational
functions h1, h2 ∈ Fq(E) regular and non-vanishing on P1, we have log h1 = log h2 if and
only if div(h1) ∼ div(h2). Motivated by this, for all divisors D1, D2 ∈ DivFq (E) we use
the notation

logmD1 = logmD2 ⇐⇒ D1 ∼ D2 .

Notice that we do not define the expression logm(D) or logm,g(D) for any D in DivFq (E),
since the function log might not extend to a morphism DivFq (E) → Z/(#K−1

q−1 )Z. In
our algorithm we use the equivalence relation (4.3.1) to recover equalities of the form
log h1 = log h2.

4.4 The main algorithm
As in [49] our algorithm is based on a descent procedure, stated in terms of divisors on
E.

Theorem 4.4.1. There exists an algorithm, described in the proof, that takes as input
an (E/Fq, P0)-presentation m and a divisor D ∈ DivFq (E) such that essdegFq (D) = 2m

for some integer m ≥ 7 and computes a divisor D′ ∈ DivFq (E) such that

logmD = logmD
′ , (essdegFqD

′) | 2m−1 , absdeg(D′) ≤ 4q2absdegD .

This algorithm is probabilistic and runs in expected polynomial time in qabsdeg(D).

Applying repeatedly the algorithm of the above theorem we deduce the following
result.

Corollary 4.4.2. There exists an algorithm, described in the proof, that takes as input
an (E/Fq, P0)-presentation and a divisor D ∈ DivFq (E) such that essdegFqD = 2m for
some integer m and computes a divisor D′ ∈ DivFq (E) such that

logmD = logmD
′ , essdegFqD

′ | 64 , absdeg(D′) ≤ (2q)2mabsdeg(D) .

This algorithm is probabilistic and runs in expected polynomial time in qmabsdeg(D).

The algorithm in [49] is based on the descent procedure [49, Theorem 3]. Using the
same ideas we use the descent procedure of the last corollary to describe our main algo-
rithm, which computes discrete logarithms in finite fields with an elliptic presentation.

The idea is setting up an index calculus with factor base the irreducible divisors
whose essential degree divides 64. To collect relations we use a “zig-zag descent”: for
every f = gahb, we first use the polynomial µ determined in Remark 4.1.4 to find
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f ′ ≡ f mod m such that the essential degree of div(f ′) is a power of 2, and we then apply
the descent procedure to express log(f) = log(f ′) as the logarithm of sums of elements
in the factor base.

Main Algorithm Input: an (E/Fq, P0)-epresentation m ⊂ Fq[x, y] of a field K and
two polynomials g, h ∈ Fq[x, y] \m such that g generates the group (Fq[x, y]/m)× /F×q .

Output: an integer z such that

gz ≡ γ · h (mod m) for some γ ∈ F×q ,

which is equivalent to gz = h in the group K×/F×q .

1. Preparation: Compute the monic polynomial µ ∈ Fq[x] generating the idealm∩Fq[x].
Compute polynomials g̃, h̃ ∈ Fq[x] such that g̃ ≡ g and h̃ ≡ h modulo m. Put
c := #E(Fq), n := degµ and m := dlogne+ 3.

2. Factor base: List the irreducible divisorsD1, . . . , Dt ∈ DivFq (E) that do not contain
P1 and either have degree dividing 64 or are supported on the trap points.

3. Collecting relations: For j = 1, . . . , t+1 do the following:

Pick random integers αj , βj ∈ {1, . . . , q
n−1
q−1 } and compute g̃αj h̃βj . Pick random

polynomials f(x) of degree 2m such that f ≡ g̃αj h̃βj (mod µ) until f is irreducible.
Apply the descent procedure in Corollary 4.4.2 to find vj = (vj,1, . . . , vj,t) ∈ Zt such
that

logm (div(f)) = logm (vj,1D1 + . . .+ vj,tDt) .

4. Linear algebra: Compute d1, . . . , dt+1 ∈ Z such that gcd(d1, . . . , dt+1) = 1 and

d1v1 + . . .+ dt+1vt+1 ≡ (0, . . . , 0) (mod qn−1
q−1 c) .

Put a := d1α1 + . . .+ dt+1αt+1 and b := d1β1 + . . .+ dt+1βt+1.

5. Finished?: If b is not invertible modulo qn−1
q−1 go back to step 3, otherwise output

z := −ab−1
(

mod qn−1
q−1

)
Analysis of the main algorithm We first prove, assuming Theorem 4.4.1, that

the algorithm, when it terminates, gives correct output. First of all we notice that, as
explained in Remark 4.1.4, the polynomials µ, g̃ and h̃ exist and that g̃ and h̃ define
the same element as g, respectively h, in K ∼= Fq[x, y]/m. Let dj , αj , βj and vj be the
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integers and vectors of integers stored at the beginning of the fourth step the last time
it is executed. By definition of dj , we have

t+1∑
j=1

t∑
i=1

djvj,iDi = qn−1
q−1 c ·D ,

for a certain D ∈ DivFq (E). The divisor cD is principal because c = #Pic0(E/Fq) and,
since for all j the divisor

∑
i vj,iDi is principal, D has degree 0. Choosing λ in Fq(E)

such that div(λ) = cD, we have

(4.4.3)
t+1∑
j=1

t∑
i=1

djvj,iDi = div(λ
qn−1
q−1 ) .

Writing log for logm,g, by definition of vj we have

log(gαjhβj ) = log
(

t∑
i=1

vj,iDi

)
.

This, together with Equation (4.4.3), imply the following equalities in Z/ q
n−1
q−1 Z

a+ b log(h) =
t+1∑
j=1

dj(αj + βj log(h)) =
t+1∑
j=1

dj log(gαjhβj ) =
t+1∑
j=1

dj log
(

t∑
i=1

vj,iDi

)

= log

t+1∑
j=1

t∑
i=1

djvj,iDi

 = log
(

div(λ
qn−1
q−1 )

)
= qn−1

q−1 log(λ) = 0 ,

implying that the output z of the algorithm is correct.
We now estimate the running time step by step. The first step can be performed

with easy Groebner basis computations. Now the second step. We represent irreducible
divisors D not supported on OE in the following way: either D is the vanishing locus
of a prime ideal (a(x),W (x, y)) with a monic and irreducible and W the Weierstrass
polynomial defining E, or D is the vanishing locus of a prime ideal (a(x), y − b(x)) for
some polynomials a, b ∈ Fq[x] and a monic irreducible; in the first case degD = 2 deg a,
in the second case degD = deg a. We can list all the irreducible divisors with degree
dividing 64 by listing all monic irreducible polynomials µ1, . . . , µr ∈ Fq[x] of degree
dividing 64 and, for each i compute the prime ideals containing (µi,W ), which amounts
to factoring W as a polynomial in y, considered over the field Fq[x]/µi. Listing all the
divisors supported on the trap points can be done case by case. For example we can list
the irreducible divisors supported on the set S := {P ∈ E(Fq) : φ4(P ) − P = 4P0} by
writing down, with the addition formula on E, an ideal J ⊂ Fq[x, y] whose vanishing
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locus is S ⊂ A2(Fq) and computing all the prime ideals containing J . The divisor
OE appears among D1, . . . , Ds because OE is a trap point. Since there are q64 monic
polynomials of degree 64 and at most 15q4 trap points and since, using [15], factoring a
polynomial of degree d in Fq[x] takes on average O(log(q)d3) operations, the second step
takes polynomial time in q. Moreover, we have t ≤ 2q64.

Now the third step. By [100, Theorem 5.1], if f(x) is a random polynomial of de-
gree 2m congruent to g̃αj h̃βj modulo µ, then the probability of f being irreducible is at
least 2−m−1. Therefore finding a good f requires on average O(2m) = O(n) primality
tests, hence O(n4 log q) operations. By assumption finding the vector vj requires poly-
nomial time in qm2m+1. We deduce that the third step has probabilistic complexity
tqO(logn) = qO(logn).

The fourth step can be can be performed by computing a Hermite normal form of the
matrix having the vj ’s as columns. Since c ≤ q+2√q+1, the entries of the vj are at most
as big as 4qn+1. Therefore the fourth step is polynomial in t log(qn), hence polynomial
in n.

The last step only requires arithmetic modulo (qn−1)/(q−1).
To understand how many times each step is repeated on average, we need to estimate

the probability that, in the last step, b is invertible modulo (qn−1)/(q−1) and to do so
we look at the quantities in the algorithms as if they were random variables. The vector
(d1, . . . , dt+1) only depends on the elements hαjgβj ’s and on the randomness contained
in the descent procedure and in step 2. Since the αj ’s and βj ’s are independent vari-
ables and since g is a generator, we deduce that the vector (β1, . . . , βt+1) is independent
of (gα1hβ1 , . . . , gαt+1hβt∗1), hence also independent of the vector (d1, . . . , dt+1). Since
(β1, . . . , βt+1) takes on all values in {0, . . . , qn − 1}t+1 with the same probability and
gcd(d1, . . . , dt+1) = 1, then

b = d1β1 + . . . dt+1βt+1

takes all values in Z/(qn − 1)Z with the same probability. Hence(
probability that b is coprime to qn−1

q−1

)
= φ

(
qn−1
q−1

)
/ q

n−1
q−1 �

1
log log qn

When running the algorithm, the first and the second step get executed once and the
other steps get executed the same number of times, say r, whose expected value is the
inverse of the above probability. Since r is O(log log(qn)) on average and each step
has average complexity at most qO(logn), the average complexity of the algorithm is
O(qO(logn)). Hence, assuming Theorem 4.4.1 we have proved the following theorem.

Theorem 4.4.4. The above Main Algorithm solves the discrete logarithm problem in the
group K×/F×q for all finite fields K having an elliptic presentation m ⊂ Fq[x, y]. It runs
in expected time qO(log[K:Fq ]).
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Theorem 4.0.1 follows from Theorem 4.4.4 and Proposition 4.1.5: the latter states
that any finite field of small characteristic K can be embedded in a slightly larger field
K ′ having an elliptic presentation m ⊂ Fq[x, y] such that q ≤ log(#K ′)4 and Theorem
4.0.1 implies that the discrete logarithm problem is at most quasi-polynomial for such a
K ′. Moreover, by Proposition 4.1.5, such a K ′, together with its elliptic presentation,
can be found in polynomial time in log(#K), by [66] we can compute an embedding
K ↪→ K ′ in polynomial time in log(#K) and by [89, Theorem 15] a random element
g′ ∈ K ′ has probability φ(#K ′)/#K ′ � 1/ log log #K ′ of being a generator of K ′: hence,
given elements g, h ∈ K, we can compute logg(h) by embedding K inside K ′ and trying
to compute the pair (logg′ g, logg′ h) for different random values of g′ ∈ K ′.

Proposition 4.1.5 is proven, while Theorem 4.4.4 relies on the the existence of a
descent procedure as described in Theorem 4.4.1. In the rest of the article, we describe
this descent procedure.

4.5 Strategy of proof of Theorem 4.4.1: the descent
procedure

Since the descent is trivial for divisors supported on the trap points, it is enough to
prove Theorem 4.4.1 and describe the descent procedure for divisors D that are good
and irreducible over Fq. In other words, if we write 2m = 4l, we can suppose that

D = Q+ σQ+ . . .+ σ4l−1Q ,

where Q is a good point on E such that [Fq(Q) : Fq] = 4l = 2m and σ is a generator of
Gal(Fq(Q)/Fq). Let k be the unique subfield of Fq(Q) such that [k : Fq] = l and let us
define

D̃ := Q+ σlQ+ σ2lQ+ σ3lQ ∈ Divk(E) .

We can do a sort of “base change to k” and work with D̃. Suppose we have an algorithm
to find a divisor D̃′ ∈ Divk(E) such that

absdegD̃′ ≤ 16q2 , essdegkD̃′ | 2 ,

and a function g ∈ k(E) such that

(4.5.1) div(g) = D̃ − D̃′ , g(τ(P1)) = 1 for all τ ∈ Gal(Fq/Fq) .

Then the divisor
D′ := D̃′ + σ(D̃′) + . . . σl−1(D̃′) ,
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satisfies the conditions in Theorem 4.4.1: the absolute and essential degree of D′ are easy
to estimate and we have logmD = logmD

′ because the rational function f := ggσ · · · gσl−1

satisfies f(P1) = 1 and div(f) = D −D′.
Hence, in order to prove Theorem 4.4.1, it is enough to describe a probabilistic al-

gorithm that takes k and D̃ as input and, in expected polynomial time in ql, computes
a good divisor D̃′ with the properties above. We do it in two steps and we replace the
second part of Equation (4.5.1) with a stronger requirement: we ask that g(P ) = 1 for
all the points P ∈ E(Fq) such that φ(P ) = P+P0. Moreover, the hypothesis that l is a
power of 2 is not necessary.

Proposition 4.5.2. There is an algorithm, described in the proof, with the following
property

• it takes as input an (E/Fq, P0)-presentation, a finite field extension Fq ⊂ k of
degree l ≥ 80 and a divisor D ∈ Divk(E) such that essdegkD = 4

• it computes a rational function g ∈ k(E) and a divisor D′ = D1 + D2 ∈ Divk(E)
such that

D −D′ = div(g) , g(P ) = 1 for all P ∈ E(Fq) such that φ(P ) = P + P0 ,

essdegk(D1) | 3 , essdegk(D2) | 2 , absdegD1 + absdegD2 ≤ 2qabsdegD ;

• it is probabilistic and runs in expected polynomial time in q· log(#k)·absdeg(D).

Proposition 4.5.3. There is an algorithm, described in the proof, with the following
property

• it takes as input an (E/Fq, P0)-presentation, an extension of finite fields Fq ⊂ k of
degree at least 80 and a divisor D ∈ Divk(E) such that essdegkD = 3;

• it computes a rational function g ∈ k(E) and a divisor D′ ∈ Divk(E) such that

D −D′ = div(g) , g(P ) = 1 for all P ∈ E(Fq) such that φ(P ) = P + P0 ,

essdegk(D′) | 2 , absdeg(D′) ≤ 2qabsdeg(D) ;

• it is probabilistic and runs in expected polynomial time in q· log(#k)·absdeg(D).

We now describe our strategy to prove the above two propositions. Let D ∈ Divk(E)
be a divisor such that ε := essdegk(D) is either equal to 3 (the case of Proposition 4.5.3)
or 4 (the case of Proposition 4.5.2). Let x, y be the usual coordinates on E and let
h → hφ be the automorphism of k(E) such that xφ = x, yφ = y and αφ = αq for all
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α ∈ k. As before we can suppose that D is good and irreducible over k. In other words,
we suppose

D = Q+ . . .+ σε−1Q ,

where Q is a good point on E defined over an extension of k of degree ε and σ is a
generator of Gal(k(Q)/k). For every point P ∈ E(Fq) such that φ(P ) = P + P0 and for
every function f ∈ k(E) regular on P we have

(4.5.4) f(P )q = fφ(φ(P )) = fφ(P + P0) = (fφ ◦ τP0)(P ) ,

where τP0 is the translation by P0 on E. Hence, for any choice of a, b, c, d ∈ k such that
cfq+1+dfq+af+b does not vanish on P , we have

(cf + d)(fφ ◦ τP0) + af + b

cfq+1 + dfq + af + b
(P ) = 1 .

Hence we look for a function g as in Propositions 4.5.2 or 4.5.3 having the shape

(4.5.5) g = (cf + d)(fφ ◦ τP0) + af + b

cfq+1 + dfq + af + b
,

for some a, b, c, d ∈ k and f ∈ k(E). Heuristically, the advantage of such a g, is that, if
f has few poles, then the numerator in the above expression also has few poles and the
denominator has a probability about 1/q3 of splitting into linear polynomials in f .

We now look for conditions on f and a, b, c, d implying that the function g and the
divisor

(4.5.6) D′ := D − div(g) ,

have the desired properties. If P is a pole of g, then P is either a pole of f , a pole of
fφ ◦ τP0 or a zero of cfq+1+dfq+af+b. Since all poles P of g appear in the support of
D′, we want all these poles to satisfy the inequality [k(P ) : k] ≤ ε − 1. This happens if
the following conditions are satisfied:

(I) the function f has at most ε−1 poles counted with multiplicity;

(II) the polynomial cT q+1 + dT q + aT + b splits into linear factors in k[T ].

We want Q and all its conjugates to be zeroes of g. If the matrix
(
a b
c d

)
has rank 0 or

1, then g = (a′fφ+b′)/(a′fq+b′) for some a′, b′ ∈ k and this, together with condition (I),
prevents Q from being a zero of g. We deduce that the matrix

(
a b
c d

)
must be invertible.

Moreover we notice that the definition of g only depends on the class of
(
a b
c d

)
in PGL2(k).

Assuming (I) and (II), the point Q is neither a pole of f nor a zero of the denominator
in (4.5.5). Hence Q and all its conjugates are zeroes of g if and only if they are zeroes of
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the numerator of (4.5.5). Assuming (I) and (II), the function cf+d never vanishes on Q
or its conjugates. Hence, using the natural action of PGL2 on P1, we see that Q and its
conjugates are zeroes of g if and only if

(III)
(
a b
c d

)
· f(σiQ) = −fφ(σiQ+ P0) for i = 0, 1, . . . , ε−1.

Assuming (I), the numerator of 4.5.5 has at most 2(ε−1) poles and 2(ε−1) zeroes counted
with multiplicity. Assuming also (III), the numerator of 4.5.5 has at most ε−2 zeroes
that are different from σiQ and this set of points is stable under the action of Gal(k/k).
We deduce that all the zeros P 6= σiQ of g satisfy the inequality [k(P ) : k] ≤ ε−1. Hence
the same inequality is satisfied by all the points in the support of D′ . As noticed when
defining g, we want that

(IV) for every point P on E such that φ(P ) = P + P0, the function f is regular on P
and cfq+1+dfq+af+b does not vanish on P .

Condition (I) implies that absdeg(D′) is at most 2qε.
We showed that the conditions (I), (II), (III), (IV) imply that the function g in

(4.5.5) and the divisor D′ = D−div(g) satisfy the requirements of Proposition 4.5.2 or
Proposition 4.5.3.

Remark 4.5.7. If Q /∈ Gal(Fq/Fq) ·P1 is a point such that φ(Q) = Q+P0, then Equation
4.5.4 implies that conditions (III) and (IV) exclude each other. This explains why such
points Q create problems to our strategy and need to be marked as traps.

In Section 4.7 and Section 4.8 we prove that there are many such pairs (f,
(
a b
c d

)
) and

we give a procedure to find them when ε = 3, ε = 4 respectively:

• We choose a family of functions f satisfying (I) and we parametrize them with
k-points on a variety F .

• We impose some conditions slightly stronger than (II), (III), (IV), describing a vari-
ety C ⊂ F×PGL2×A1 with the following property: for any point (f,

(
a b
c d

)
, z) ∈ C(k),

the pair (f,
(
a b
c d

)
) satisfies (I), (II), (III), (IV).

In particular, C is a curve in the case ε = 3, a surface in the case ε = 4

• We prove that the geometrically irreducible components of C are defined over k
and we deduce that C(k) has cardinality at least 1

2 (#k)dim C ; this is the point in the
proof where we use the technical hypothesis [k : Fq] ≥ 80 (details after Equations
(4.7.3.3) and 4.8.4.3).

Using C we can easily describe the algorithms of Proposition 4.5.2 and Proposi-
tion 4.5.3, when D is an irreducible divisor defined over k: one first looks for a point
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(f,
(
a b
c d

)
, z) in C(k) and then computes g and D using the formulas (4.5.5) and (4.5.6).

This procedure takes average polynomial time in q log(#k) because, as explained in Sec-
tions 4.7.3 and 4.8.4, the variety C is a closed subvariety of A9 with degree O(q9).

4.6 A technical lemma
In this section we take a break from our main topic and we prove Lemma 4.6.6. This
lemma is useful to study the variety C used in the algorithms of Propositions 4.5.2 and
4.5.3. We split the proof into two propositions.

Because of condition (II), we are interested in the splitting field over a finite extension
Fq ⊂ k of polynomials of the form c′T q+1+d′T q+a′T+b′ ∈ k[T ]. In particular, in Sections
4.7 and 4.8 the matrix

(
a′ b′

c′ d′

)
varies in an algebraic family: we have a variety B and(

a′ b′

c′ d′

)
=
(
a b
c d

)
(P ) where a, b, c, d ∈ k(B) and P is a point varying in B(k). We are

interested in studying the splitting field of polynomials cT q+1+dT q+aT+b over function
fields, as in the next proposition.

For any extension of fields k ⊂ K, its field of constants is the subfield of K containing
all the elements that are algebraic over k. For any irreducible variety C/k we have that
C is geometrically irreducible if and only if k is the field of constants of the extension
k ⊂ k(C).

Proposition 4.6.1. Let Fq ⊂ k be an extension of finite fields and let k ⊂ K be a field
extension with field of constants k. Let v : K× → Z be a valuation with ring of integral
elements Ov ⊂ K and generator πv of the maximal ideal of Ov. Let a, b, c, d be elements
of Ov such that

(4.6.1.1)
v(ad− bc) = 1, v(dqc− acq) = 0 and

cλq − cq(ad− bc)λ−1 6≡ dqc− acq (mod π2
v) ∀λ ∈ O×v .

Then the splitting field of the polynomial

F (T ) := cT q+1 + dT q + aT + b ∈ K[T ] ,

is an extension of k having field of constants equal to k.

Proof. For any field extension K ⊂ K̃, we denote K̃(F ) the splitting field of F over K̃,
which is a separable extension of K̃ because the discriminant of F is a power of ad−bc
and ad−bc 6= 0. Since the field of constants of k ⊂ K is equal to k, then K′ := K⊗k k is
a field and the statement of the proposition is equivalent to the equality

Gal(K(F )/K) = Gal(K′(F )/K′) .
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By [23, Theorems 2.5 and 3.2] there exists a bijection between the roots of F and P1(Fq)
that identifies the action of Gal(K(F )/K) on the roots with the action of a subgroup of
G := PGL2(Fq) on P1(Fq). We choose such a bijection and we identify Gal(K(F )/K)
and Gal(K′(F )/K′) with two subgroups of G. If we prove that Gal(K′(F )/K′) contains a
Borel subgroup B of G the proposition follows: the only subgroups of PGL2 containing
B are the whole G and B itself and, since B is not normal inside G, we deduce that
either Gal(K(F )/K) = Gal(K(F )/K′) = B or Gal(K(F )/K) = Gal(K′(F )/K′) = G.

In the rest of the proof we show that Gal(K′(F )/K′) contains a Borel subgroup
working locally at v. We choose an extension of v to K′ and consider the completion
K′v of K′. Since Gal(K′v(F )/K′v) is a subgroup of Gal(K′(F )/K′), it is enough to show
that Gal(K′v(F )/K′v) is a Borel subgroup to prove the proposition. Since ad−bc ≡ 0 and
c 6≡ 0 modulo πv, we have

F (T ) ≡ c
(
T q + a

c

)(
T + d

c

)
(mod πv) ,

and, since dqc 6= acq mod πv, we deduce that −dc is a simple root of F mod πv. By
Hensel’s Lemma, there exists a root r0 ∈ K′v of F that is v-integral and congruent
to −dc modulo πv. The group Gal(K′v(F )/K′v) ⊂ G stabilizes the element of P1(Fq)
corresponding to r0, hence it is contained in a Borel subgroup of G. Since Borel subgroups
have cardinality q(q−1), in order to prove the proposition it is enough showing that
[K′(F ) : K′] is at least q(q−1). We show that the inertia degree of K′ ⊂ K′(F ) is at least
q(q−1).

Since a
c is a q-th power modulo πv, then there exists a v-integral element γ ∈ K′v

such that F (T ) ≡ c(T + γ)q(T + d/c) mod πv. Up to the substitution F (T ) 7→ F (T − γ),
which does not change K′v(F ) nor the quantities c, ad−bc and dqc−acq, we can suppose
that

F (T ) ≡ c T q
(
T + d

c

)
(mod πv) .

This implies that v(d/c) = 0, v(a) ≥ 1 and v(b) ≥ 1. If we had v(b) ≥ 2, then the choice
λ := d would contradict the last congruence in (4.6.1.1). Hence we have v(b) = 1. The
Newton polygon of F tells us that the roots r0, . . . , rq of F in the algebraic closure K′v
of K′v satisfy

(4.6.2) v(r0) = 0 , v(r1) = . . . = v(rq) = 1
q
.

We now consider the polynomial

F1(T ) := F (T + r1) = c1T
q+1 + d1T

q + a1T + b1 = cT q+1 + d1T
q + a1T ∈ K′v[T ] .

The roots of F1 are ri−r1. Using Equation (4.6.2), we deduce v(c1) = v(d1) = 0 and
v(a1) > 0. Using a1d1−b1c1 = ad−bc, we see that v(a1) = v(a1d1−c1b1) = v(ad−bc) = 1.
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The Newton polygon of F1 tells us that

v(r2 − r1) = . . . = v(rq − r1) = 1
q − 1 .

This, together with Equation (4.6.2) and the fact that K ⊂ K′ is unramified, imply
that the inertia degree of K′v ⊂ K′v(F ) is a multiple of q(q−1) and consequently that
Gal(K′v(F )/K′) is a Borel subgroup of G.

We now prove that, for certain choices of a, b, c, d ∈ K, Equation (4.6.1.1) is satisfied.

Proposition 4.6.3. Let K be a field extension of Fq, let u1, u2, u3, w1, w2, w3 be distinct
elements of K and let a, b, c, d ∈ K be the elements defined by the following equality in
GL2(K)a b

c d

 =

wq3 wq1

1 1

wq1 − wq2 0

0 wq2 − w
q
3

u2 − u3 0

0 u1 − u2

 1 −u1

−1 u3

 .

Then
(
a b
c d

)
sends the three elements u1, u2, u3 ∈ P1(K) to wq1, w

q
2, w

q
3 ∈ P1(K) respec-

tively.
Suppose, moreover, that K is equipped with a discrete valuation v : K× → Z, that

ui, wi are v-integral, that v(wi−wj) = v(w3+ui) = v(u2−u3) = 0 for i 6= j and that
v(u1−u2) = 1. Then a, b, c, d satisfy (4.6.1.1).

Proof. To prove first part we notice that, given distinct elements x, y, z ∈ K, the matrix

Nx,y,z :=

z x

1 1

x− y 0

0 y − z


is invertible and acts on P1(K) sending 0, 1,∞ = [ 1

0 ] to x, y, z respectively. Using this
definition we have

(
a b
c d

)
= det(Nu1,u2,u3)Nwq1 ,wq2 ,wq3N

−1
u1,u2,u3

, hence
(
a b
c d

)
acts on P1(K)

sending
u1 7→ 0 7→ wq1 , u2 7→ 1 7→ wq2 , u3 7→ ∞ 7→ wq3 .

Now the second part of the lemma. Computing det(Nu1,u2,u3) and det(Nwq1 ,wq2 ,wq3 ) we
see that

ad− bc = (u1 − u2)(u2 − u3)(u1 − u3)(w1 − w2)q(w2 − w3)q(w1 − w3)q

hence v(ad−bc) = v(u1−u2) + v(u3 − u1) = 1 (the element u3−u1 has valuation zero
because it is the sum of u3−u2 and u2−u1 that have valuation 0, respectively 1. Writing
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a, b, c, d as polynomials in the ui’s and the wi’s, we check that there is a multivariate
polynomial f such that

(4.6.4)

dqc− acq =f(u1, u2, u3, w1, w2, w3) ·
(
u1 − u2

)q
+ (u1 − u3)q(w1 − w2)q

2
(w1 − w3)q(u2 + w2)q ·

(
u1 − u2

)
− (w1 − w2)q

2+q(u1 − u3)q+1(u1 + w3)q .

Since v(w2−w1) = v(u3−u1) = v(w3+u1) = 0, we have v(dqc−acq) = 0. Let Ov be the
integral subring of K, let πv := u1−u2, which is a generator of the maximal ideal of Ov.
Now suppose by contradiction that there exists λ ∈ O×v such that

(4.6.5) cλq − aq(ad− bc)λ−1 ≡ dqc− acq (mod π2
v) .

Using ad−bc ≡ 0 mod πv and the equality c = (w1−w2)q(u1−u3) − πv(w1−w3)q, we
deduce

λq ≡ dqc− acq

c
≡
(
− (u1 − u3)(u1 + w3)(w1 − w2)q

)q
(mod πv) ,

If we replace λ by some λ′ ≡ λ modulo πv, then the congruences (4.6.1.1) are still
satisfied, hence we may suppose λ = −(u1−u3)(u1+w3)(w1−w2)q. Substituting λ and
(4.6.4) in (4.6.5) we get

0 ≡ cq(ad− bc) + (dqc− acq)λ− cλq+1

≡ −πv(w1−w2)q
2+q(w1−w3)q(u1−u3)q+1(w2−w3)q(w3+u3) (mod π2

v)

which is absurd because v(wi−wj) = v(u1−u3) = v(w3+u3) = 0.

We now prove the main result of this section. Varieties like C in the following lemma
arise in Sections 4.7 and 4.8 when imposing conditions (II) and (III). Proving that the
components of such curves are defined over k is useful to prove that such varieties have
“many” k-rational points and consequently that conditions (II) and (III) are “often” true.

Lemma 4.6.6. Let Fq ⊂ k be an extension of finite fields and let B/k be a geometrically
irreducible variety. Let u1, u2, u3, w1, w2, w3 be distinct elements of k(B) and suppose
there exists an irreducible divisor Z ⊂ Bk, generically contained in the smooth locus of
B, such that ui, wi are defined on the generic point of Z and such that

Z is a zero of order 1 of u1−u2 and it is not a zero of w3+ui, u2−u3, wi−wj for i6=j.

Let C ⊂ B × PGL2 ×A1 be the variety whose the points are the tuples (R,
(
a b
c d

)
, z) such

that
ui(R) are defined and distinct, wi(R) are defined and distinct, dqc− acq 6= 0,(

a b
c d

)
· ui(R) = wqi (R) for i = 1, 2, 3 and

(dqc− acq)q+1(zq − z)q
2−q = cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
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If C is defined over k, then its geometrically irreducible components are defined over k
and pairwise disjoint.

Proof. We first look at the variety B0 ⊂ B × PGL2 whose points are the pairs (R,A)
such that

ui(R) are defined and distinct, wi(R) are defined and distinct,
A · ui(R) = wqi (R) for i = 1, 2, 3 .

Since an element PGL2 is uniquely determined by its action on three distinct points of
P1, the projection B0 → B is a birational equivalence, whose inverse, by the first part of
Proposition 4.6.3, is given by R 7→

(
a1 b1
c1 d1

)
(R), where a1, b1, c1, d1 ∈ k(B) are defined by

the following equality in GL2(k(B))a1 b1

c1 d1

 =

wq3 wq1

1 1

wq1 − wq2 0

0 wq2 − w
q
3

u2 − u3 0

0 u1 − u2

 1 −u1

−1 u3

 .

Let v : k(B)× → Z be the valuation that determines the order of vanishing in Z of a
rational function. The second part of Proposition 4.6.3 implies that a1, b1, c1, d1 satisfy
(4.6.1.1), over the field k(B). In particular we have c1 6= 0 and v(c1) = 0. Hence we can
define the following rational functions on C

a2 := a1/c1 , b2 := b1/c1 , c2 := 1 , d2 := d1/c1

which again satisfy (4.6.1.1) over the field k(B). The advantage of a2, b2, c2, d2 is that,
as we now show, they are defined over k. Let B1 be the projection of C inside B×PGL2:
since C is defined over k, the variety B1 is defined over k and, since B1 is a dense
open subvariety of B0, the variety B1 is birational equivalent to B through the natural
projection. Since a/c is a rational function on B1 defined over k, we deduce that a2 = a/c

lies in k(B1) = k(B) and analogously b2, c2, d2 ∈ k(B). A fortiori a2, b2, c2, d2 satisfy
(4.6.1.1) inside the field K = k(B). By Proposition 4.6.1, k is the field of constants of
the extension k ⊂ Σ, where Σ is the splitting field of

F (T ) := c2T
q+1 + d2T

q + a2T + b2 ,

over k(B). We deduce that there exists a geometrically irreducible variety E/k having
field of rational functions Σ. Let π : E 99K B be the rational map induced by k(B) ⊂ Σ
and let r0, . . . , rq ∈ Σ be the roots of F , interpreted as rational functions on E . Using
[23, Lemma 2.3] we see that, for any choice of integers 0 ≤ i < j < m ≤ q,

z = zi,j,k := ri − rj
ri − rk

∈ Σ = k(E) satisfies

(dq2c2 − a2c
q
2)q+1(zq − z)q

2−q = Cq
2+1

2 (a2d2 − b2c2)q
(

(zq
2
− z)/(zq − z)

)q+1
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Hence, for each 0 ≤ i < j < m ≤ q we get a map

φi,j,m : E 99K C, S 7−→
(
π(S),

(
a2 b2
c2 d2

)
(S), zi,j,m(S)

)
.

Since all the zi,j,m are different, the union of all the images φi,j,m(E) is dense inside
C. Hence, up to shrinking C, every geometrically irreducible component of C is also a
geometrically irreducible component of φi,j,m(E) for some (i, j,m). Since E is defined
over k and geometrically irreducible, the variety φi,j,m(E) is also defined over k and
geometrically irreducible. We deduce that the irreducible components of C are defined
over k.

Finally, we prove that the components of C are pairwise disjoint. The projection
π : C → B1 has finite fibers whose number of k-points counted with multiplicity is q3−q
, that is the degree, in z, of the polynomial

(dqc− acq)q+1(zq − z)q
2−q − cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
.

If, by contradiction, there is a point (R′,
(
a′ b′

c′ d′

)
, z′) lying in the intersection of two

components of C, then the fiber π−1(R′,
(
a′ b′

c′ d′

)
) has cardinality smaller than q3−q. In

other words the polynomial

G(z) := (d′qc′−a′c′q)q+1(zq−z)q
2−q−c′q

2+1(a′d′−b′c′)q
(

(zq
2
− z)/(zq − z)

)q+1
∈ Fq[z]

has less than q3−q roots. Since a′d′−b′c′ 6= 0 and dqc′−a′c′q 6= 0, there is no root of
G that is also a root of zq−z or zq

2
−z

zq−z . In other words, G has no root lying in the
finite field Fq2 ⊂ Fq with q2 elements. Since z′ is a root of G and since G is a Fq-linear
combination of powers of zq−z and zq

2
−z

zq−z , for any matrix A ∈ PGL2(Fq), the number
A · z′ is also a root of G. Since #PGL2(Fq) = q3−q is larger than the set of roots of G,
there exists a matrix A ∈ PGL2(Fq) such that A · z′ = z′, implying that z′ lies in F2

q,
which is absurd.

Remark 4.6.7. Let Fq ⊂ k be a field extension and let F (T ) = cT q+1 + dT q + aT + b

be a polynomial with coefficients in k such that, ad−bc 6= 0 and aqc−dcq 6= 0. By [23,
Theorem 4.3 and Lemma 2.3], the polynomial F splits in linear factors over k if and only
if there exists an element z ∈ k such that

(dqc− acq)q+1(zq − z)q
2−q = cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
.

In particular, in the notation of the proof of Lemma 4.6.6, we have Σ = k(B)(zi,j,m) for
any choice of integers 0 ≤ i < j < m ≤ q. In particular, the map φi,j,m is injective, hence
it is a birational equivalence between E and an irreducible component of C. In other
words the field of rational functions of an irreducible component of C is the splitting field
of F over k(B).
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4.7 Descent 3-to-2
In this section we prove Proposition 4.5.3 for a good irreducible divisor D. Following the
notation of Section 4.5 when ε = 3, let k be a finite extension of Fq of degree at least
80, let Q be a good point on E such that [k(Q) : k] = 3, and let σ be a generator of
Gal(k(Q)/k). Then, we look for a function f ∈ k(E) and a matrix

(
a b
c d

)
∈ PGL2(k)

satisfying properties (I), (II), (III), (IV): we describe a curve C whose k-points give such
pairs (f,

(
a b
c d

)
), and we prove that there are many k-points on C.

4.7.1 The definition of C

Property (I) requires that f ∈ k(E) has at most two poles: we look for f of the form

(4.7.1.1) fP := y − y(P )
x− x(P )

for some P in E(k) \ {OE}, since such fP has exactly two simple poles, namely OE

and −P . As explained in Remark 4.6.7, in order to ensure condition (II), it is sufficient
imposing that dqc 6= acq and that there exists z in k such that

(4.7.1.2) (dqc− acq)q+1(zq − z)q
2−q = cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
.

Notice that definition (4.7.1.1) makes sense for P ∈ E(Fq) \ {OE} and that we have the
following symmetry: for any P, P ′ ∈ E(Fq) \ OE , we have fP (P ′) = fP ′(P ). Using this
and the fact that hφ(φ(P )) = h(P )q for all h ∈ Fq(E) and P ∈ E(Fq), we have

fP (σiQ) = fσiQ(P ) , fφP (σiQ+P0) = fφP (φ(σiR)) = fP (σiR)q = fσiR(P )q ,

where R is the unique point on E such that φ(R) = Q+P0. Hence (III) is equivalent to

(4.7.1.3)
(
a b
c d

)
· fσiQ(P ) = −fσiR(P )q for each i = 0, 1, 2 .

We now impose (IV). Let B be a point on E such that φ(B) = B + P0. If the rational
function cfq+1

P +dfqP+afP+b vanishes on B, then
(
a b
c d

)
· fB(P ) = −fB(P )q. This and

Equation (4.7.1.3), when fσiQ are distinct, imply that the cross ratio of fQ(P ), fσQ(P ),
fσ2Q(P ), fB(P ) equals the cross ratio of fR(P )q, fσR(P )q, fσ2R(P )q, fB(P )q. The poles
of fP are OE and −P . Hence, assuming (4.7.1.3) and the distinctness of fσiQ(P ), con-
dition (IV) is implied by
(4.7.1.4)
for all B such that φ(B) = B + P0 : P 6= −B and
CrRat

(
fQ(P ), fσQ(P ), fσ2Q(P ), fB(P )) 6= CrRat(fR(P )q, fσR(P )q, fσ2R(P )q, fB(P )q) ,
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where, given four elements λ1, λ2, λ3, λ4 ∈ P1(Fq), we write

CrRat(λ1, λ2, λ3, λ4) = (λ3 − λ1)(λ4 − λ2)
(λ2 − λ1)(λ4 − λ3) ∈ P1(Fq) ,

for their cross-ratio, which is defined unless three of the λi’s are equal.
Finally we define E′ := E \ {OE ,−Q,−R, . . . ,−σ2Q,−σ2R}, so that fσiR and

fσiQ are regular on E′, and we define C ⊂ E′ × PGL2 × A1 as the curve made of
points (P,

(
a b
c d

)
, z) that satisfy Equations (4.7.1.3), (4.7.1.2) and (4.7.1.4), and such

that dqc−acq 6= 0 and the fσiQ(P ) are distinct.
Notice that C is defined over k: even though the equations

(
a b
c d

)
fσiQ(P ) = −fqσR(P )

on E′×PGL2 have coefficients in the field k(Q), the Galois group of k ⊂ k(Q) permutes
these equations. We constructed C so that, for any point (P,

(
a b
c d

)
, z) ∈ C(k), the pair

(fP ,
(
a b
c d

)
) satisfies properties (I), (II), (III) and (IV).

4.7.2 The irreducible components of C

In this subsection we prove that all the geometrically irreducible components of C are
defined over k. We can leave out (4.7.1.4) from the definition of C. Our strategy is
applying Lemma 4.6.6 to the variety B = E′, using the rational functions ui = fσi−1Q,
wi = −fσi−1R and the irreducible divisor Z equals to the point−Q−σQ ∈ B(Fq) ⊂ E(Fq).

Notice that, given distinct points P ′, P ′′ ∈ E(Fq) \ {OE}, the function fP ′−fP ′′ is
regular at OE and moreover (fP ′−fP ′′)(OE) = 0. Since the sum of zeroes and poles of
a rational function is equal to OE in the group E(Fq), we deduce that, given distinct
points P ′, P ′′ ∈ E(Fq) \ {OE},
(4.7.2.1)
fP ′−fP ′′ has two simple poles, namely −P ′ and −P ′′

and two zeroes counted with multiplicity, namely OE and −P ′−P ′′.

Let Z := −Q−σQ. By (4.7.2.1) and the fact that Q is not a trap, the point Q is not a
pole of any of the ui and the wi and it is not a zero of any of the functions u2−u3, w3+ui
and wi−wj for i 6= j: if, for example, −fσR is not regular on Z, then Z = −R. Hence,
using that σ acts as φl on E(Fq) for l := [k : Fq], we have

Q+ P0 = φ(R) = φ(−Z) = φl+1(Q) + φ(Q) =⇒ φl+1(Q) = (1− φ)(Q) + P0 ,

hence
(4.7.2.2)
φ3(Q) = φ3l+3(Q) = φ2l+2 ((1− φ)(Q) + P0) = ((1− φ)◦φ2l+2)(Q) + P0

= ((1− φ)◦φl+1) ((1− φ)(Q) + P0) + P0 = ((1− φ)◦(1− φ))(φl+1(Q)) + P0

= (1− φ)2 ((1− φ)(Q) + P0) + P0 = (1− φ)3(Q) + P0 ,
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implying that

((2φ− 1)◦(φ2 − φ+ 1))(Q) = (φ3 + (φ− 1)3)(Q) = P0 ,

which contradicts the hypothesis that Q was not a trap point. Moreover, by (4.7.2.1), the
function fQ−fσQ has a simple zero in Z. Hence, by Lemma 4.6.6, all the geometrically
irreducible components of C are defined over k and disjoint.

4.7.3 k-rational points on C

We now prove that #C(k) is larger than 1
2#k. The curve C is contained in the open subset

of (E \ {OE})×PGL2 ×A1 made of points ((x, y),
(
a b
c d

)
, z) such that c 6= 0. Hence C is

contained in A6, with variables x, y, a, b, d, z and it is defined by the following equations:

• 0 = p1 := W (x, y), the Weierstrass equation defining E;

• 0 = p2 := (dq−a)q+1(zq−z)q2−q − (ad−b)q( zq
2
−z

zq−z )q+1, the dehomogenization of
(4.7.1.2) in c;

• 0 = pi(x, y, a, b, d) for i = 3, 4, 5, obtained by (4.7.1.3) after dehomogenizing in c,
substituting fσiQ(P ) and fσiR(P ) by their expressions in x, y and clearing denom-
inators;

• a number of conditions 0 6= qj ensuring that P 6= −σiQ, P 6= −σiR, dq−a 6= 0,
ad− b 6= 0, that fσiQ(P ) are pairwise distinct and that (4.7.1.4) is satisfied.

In particular, C can be seen as a closed subvariety of A7, with variables x, y, a, b, d, z and
t defined by the equations p1 = 0, . . . , p5 = 0 and 0 = p6 := tq1 · · · qr − 1.

Let C1, . . . , Cs be the irreducible components of C. By [46, Remark 11.3], we have

(4.7.3.1) #C(k) ≥ #C1(k) ≥ #k − (δ − 1)(δ − 2)(#k) 1
2 −K(C1) ,

where δ is the degree of C1 and K(C1) is the sum of the Betti numbers of C relative to
the compact `-adic cohomology. Since C1 is a component of C then

(4.7.3.2) δ ≤ deg(p1) · · · deg(p6) .

Since C is the disjoint union of the Ci, the Betti numbers of C are the sums of the Betti
numbers of the Ci and using [58, Corollary of Theorem 1] we deduce that

(4.7.3.3) K(C1) ≤ K(C) ≤ 6 · 26 ·
(

3 + 7 max
i=1,...,6

{deg(pi)}
)8

.

Since deg p1 ≤ 3, deg p2 ≤ q3+q, deg p3, . . . ,deg p5 ≤ q+2, deg p7 ≤ 8q2 + 29q+ 29 , then
Equations (4.7.3.1), (4.7.3.2) and (4.7.3.3) imply that #C(k) > 1

2 (#k) when #k ≥ q80 and
q ≥ 3.
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4.8 Descent 4-to-3
In this section we prove Proposition 4.5.2 for a good irreducible divisor D. Following the
notation of section 4.5 when ε = 4, let k be a finite extension of Fq of degree at least
80, let Q be a good point on E such that [k(Q) : k] = 4, and let σ be a generator of
Gal(k(Q)/k). Then, we look for a function f ∈ k(E) and a matrix

(
a b
c d

)
∈ PGL2(k)

satisfying properties (I), (II), (III), (IV): we describe a surface C whose k-points give such
pairs (f,

(
a b
c d

)
), and we prove that there are many k-points on C.

4.8.1 The definition of C

Property (I) requires that f ∈ k(E) has at most 3 poles: we look for f of the form

(4.8.1.1) f = fα,β,P := fP + α

f
P̃

+ β
.

where α, β are elements of k, the points P, P̃ lie in E(k) \ {OE} and fP is the rational
function defined in (4.7.1.1). For the rest of the article we let α, β and P vary and we
fix P̃ so that

fQ(P̃ ), fσQ(P̃ ), fσ2Q(P̃ ), fσ3Q(P̃ ), fR(P̃ ), fσR(P̃ ), fσ2R(P̃ ), fσ3R(P̃ ) are pairwise distinct.

There is at least one such point P̃ because #(E(k) \ {OE}) >
(8

2
)
and by (4.7.2.1) for

each P ′ 6= P ′′ ∈ E(Fq) \ {OE} there is at most one point P̃ ∈ (E(k) \ {OE}) such that
fP ′(P ) = fP ′′(P ). Notice that the above definition makes sense for any P ∈ E(Fq) and
α, β ∈ Fq and that, for any such choice, the function fα,β,P has at most three poles
counted with multiplicity, namely −P and the zeroes of f

P̃
+β. Hence condition (I) is

automatically satisfied. We write f for fα,β,P , unless we want to stress the dependence
on α, β, P , like in the equations defining C.

As explained in Remark 4.6.7, when dqc−acq 6= 0, condition (II), is satisfied if and
only if there exists z ∈ k such that

(4.8.1.2) (dqc− acq)q+1(zq − z)q
2−q = cq

2+1(ad− bc)q
(

(zq
2
− z)/(zq − z)

)q+1
.

Since hφ(φ(P )) = h(P )q for all h ∈ Fq(E) and P ∈ E(Fq), we have

−fφ(σiQ+P0) = −fφ(φ(σiR)) = −f(σiR)q ,

where R ∈ E(Fq) is the unique point such that φ(R) = Q+ P0. Hence property (III) is
equivalent to

(4.8.1.3)
(
a b
c d

)
· fα,β,P (σiQ) = −fα,β,P (σiR)q for i = 0, 1, 2, 3 .
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Since cross-ratio is invariant under the action of PGL2 on P1, the above equation implies
that either the cross-ratio of f(σ0Q), . . . , f(σ3Q) is equal to the cross ratio of f(σ0R), . . .,
f(σ3R), or one of the two cross-ratios is not defined. Hence, assuming that f(σiQ) are
distinct and that f(σiR) are distinct, Equation (4.8.1.3) implies
(4.8.1.4)

CrRat
(
fα,β,P (σ0Q), . . . , fα,β,P (σ3Q)

)
= CrRat

(
fα,β,P (σ0R)q, . . . , fα,β,P (σ3R)q

)
.

Moreover, supposing that f(σiQ) and f(σiR) are distinct, the properties of cross-ratio
imply that Equation (4.8.1.3) is equivalent to Equation (4.8.1.4) together with

(4.8.1.5)
(
a b
c d

)
· fα,β,P (σiQ) = −fα,β,P (σiR)q for i = 0, 1, 2 .

We now impose (IV). Let B be a point on E such that φ(B) = B+P0. If the rational
function cfq+1+dfq+af+b vanishes on B, then

(
a b
c d

)
f(B) = −f(B)q. This, together

with Equation (4.8.1.5) and the fact that f(σiQ) are all distinct, implies that the cross-
ratio of f(Q), f(σQ), f(σ2Q), f(B) is equal to the cross-ratio of fq(R), fq(σR), fq(σ2R),
fq(B). A pole of fα,β,P is either equal to −P or to a zero of f

P̃
+β ∈ Fq(E). Hence,

assuming Equation (4.8.1.5) and the distinctness of f(σiQ), condition (IV) is implied by

(4.8.1.6)
for all B such that φ(B) = B + P0 : P 6= −B , β + f

P̃
(B) 6= 0 and

CrRat
(
f(Q), f(σQ), f(σ2Q), f(B)

)
6= CrRat

(
f(R)q, f(σR)q, f(σ2R)q, f(B)q

)
.

Let E′ := E \{OE ,−σ0Q,−σ0R, . . . ,−σ3Q,−σ3R} and let C ⊂ A2×E′×PGL2×A1 be
the surface made of points (α, β, P,

(
a b
c d

)
, z) that satisfy Equations (4.8.1.4), (4.8.1.5),

(4.8.1.2) and (4.8.1.6), and such that β + f
P̃

(σiQ) 6= 0, β + f
P̃

(σiR) 6= 0, dqc− acq 6= 0,
the f(σiQ) are distinct and the f(σiR) are distinct.

The definition of E′ and the conditions β + f
P̃

(σiQ) 6= 0, β + f
P̃

(σiR) 6= 0, ensure
that f(σiQ) and f(σiR) are well defined. As in subsection 4.7.1, the surface C is defined
over k. If (α, β, P,

(
a b
c d

)
, z) is a k-point on C, then (fα,β,P

(
a b
c d

)
) satisfies (I), (II) and

(III) and (IV).

4.8.2 Irreducibility of a projection of C

Before studying the irreducible components of C, we study the closure in P2 × E of the
projection of C in A2 × E. Let B′ ⊂ A2×E′ be the surface whose points are the tuples
(α, β, P ) such that

fα,β,P (σiQ) are pairwise distinct , fα,β,P (σiR) are pairwise distinct,
f
P̃

(σiQ) + β 6= 0 , f
P̃

(σiR) + β 6= 0 ,
CrRat

(
fα,β,P (σ0Q), . . . , fα,β,P (σ3Q)

)
= CrRat

(
fα,β,P (σ0R)q, . . . , fα,β,P (σ3R)q

)
,
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and let B be the closure of B′ inside P2 × E. Since the action of PGL2 on P1 is triply
transitive, the projection A2 × E × PGL2 × A1 → A2 × E gives a dominant morphism
C → B (this is the same argument used in the proof of Lemma 4.6.6 to show that
B0 → B is dominant). Since C is defined over k, the variety B is defined over k. In
the rest of the subsection we prove that for all but a few choices of P ∈ E(k) the curve
BP := B ∩ ({P}×P2) is reduced and geometrically irreducible. In other words, we think
of P as fixed and we let α and β vary.

We first write an equation for BP in P2. Using the definition of fα,β,P we get

fα,β,P (σiQ)−fα,β,p(σjQ) = Li,j(α, β, 1)(
li+β

)(
lj+β

) , fα,β,P (σiR)−fα,β,P (σjR) = Ri,j(α, β, 1)(
ri+β

)(
rj+β

) ,
where li := f

P̃
(σiQ), ri := f

P̃
(σiR) and Li,j , Ri,j ∈ Fq[α, β, γ] are the linear polynomials

(4.8.2.1)
Li,j :=

(
lj−li

)
α+

(
fσiQ(P )−fσjQ(P )

)
β +

(
fσiQ(P )lj−fσjQ(P )li

)
γ,

Ri,j :=
(
rj−ri

)
α+

(
fσiR(P )−fσjR(P )

)
β +

(
fσiR(P )rj−fσjR(P )ri

)
γ .

Then, for a fixed P , Equation (4.8.1.4) is equivalent to

(L0,2L1,3R
q
0,1R

q
2,3)(α, β, 1) = (L0,1L2,3R

q
0,2R

q
1,3)(α, β, 1) ,

and BP is the vanishing locus of the homogenous polynomial

(4.8.2.2) M(α, β, γ) := L0,2L1,3R
q
0,1R

q
2,3 − L0,1L2,3R

q
0,2R

q
1,3 ∈ Fq[α, β, γ] .

Notice that for each pair (i, j) ∈ {(0, 1), (0, 2), (1, 3), (2, 3)} the varieties {Li,j = 0}
and {Ri,j = 0} are lines inside P2 and that it is easy to determine the intersections
BP ∩ {Li,j=0} and BP ∩ {Ri,j=0}: such divisors are linear combinations of the points
Xk’s defined in Figure 4.1 as intersections between lines in P2. The following proposition
says that the points Xk are well-defined and distinct.

Claim 4.8.2.3. We consider the lines {Li,j = 0} and {Ri,j = 0} for (i, j) in the set
{(0, 1), (2, 3), (0, 2), (1, 3)} and the points Xi defined in Figure 4.1 as intersections of
some of these lines. For all but at most 450 choices of P ∈ E(k), this lines are distinct
and the points Xi are distinct.

Proof. Since Q is not a trap, we have φ4(Q) 6= Q+ 4P0. Hence the points σ0Q, σ0R, . . .,
σ3Q, σ4R are pairwise distinct: clearly σ0Q, . . ., σ3Q are distinct and σ0R, . . . , σ3R are
distinct and if we had σiQ = σjR, then, for l := [k : Fq] and m := i−j, we would have

Q+ P0 = φ(R) =φ(σi−jQ) = φ(φl(i−j)Q) = φlm+1(Q)
=⇒ φ4(Q) = φ4(lm+1)(Q) = Q+ 4P0 .
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Figure 4.1: The intersections Xi of the curve BP with certain lines Li,j , Ri,j .

This implies that for any point P ∈ {σ0Q, σ0R, . . . , σ3Q, σ4R} there is exactly one of the
rational functions fσ0Q, fσ0R, . . . , fσ3Q, fσ4R that has a pole in −P , namely fP .

If the lines {L0,2 = 0} and {L1,3 = 0} are equal, then the matrix of their coefficients

n(P ) =

l2−l0 (fQ−fσ2Q)(P ) (l2fQ−l0fσ2Q)(P )

l3−l1 (fσQ−fσ3Q)(P ) (l3fσQ−l1fσ3Q)(P )



has rank 1 hence, computing the deteminant of a submatrix of n, P is a zero of the
rational function (l0 − l2)(fσ3Q−fσQ) − (l1−l3)(fσ2Q−fQ). We have chosen P̃ so that
l0 6= l2 and l1 6= l3 hence this rational function is non-zero and has five poles counted
with multiplicity. So it has at most five zeroes. Hence for all but at most five choices
of P ∈ E(k), the matrix n(P ) has rank 2 and consequently the lines {L0,2 = 0} and
{L1,3 = 0} are distinct.

For any other pair of lines Λ,Λ′ in Figure 4.1, one can prove with similar arguments
that Λ 6= Λ′ for all but at most five choices of P ∈ E(k). We prove that, for all i 6= j, we
have Xi 6= Xj , for all but six choices of P ∈ E(k). We treat only a couple of cases here.

If X9 = X12, then the lines {R1,3 = 0}, {R2,3 = 0} and {L0,2 = 0} are concurrent,
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hence the following matrix, that contains their coefficients, is not invertible

M = M(P ) =


r2−r0 (fR−fσ2R)(P ) (r2fR−r0fσ2R)(P )

r3−r2 (fσ2R−fσ3R)(P ) (r3fσ2R−r2fσ3R)(P )

l2−l0 (fQ−fσ2Q)(P ) (l2fQ−l0fσ2Q)(P )

 ,

implying that P is a zero of the rational function det(M). Writing out the det(M) we
see that there is a rational function g, regular in −σ2R, such that

det(M) = (l2−l0)(r0−r3)f2
σ2R + fσ2R g ,

and since l0 6= l2 and r0 6= r3 we deduce that det(M) has a pole of order 2 in −σ2R and
in particular det(M) is a non-zero rational function with at most 6 poles counted with
multiplicity. Hence det(M) has at most 6 zeroes, implying that X9 6= X12, for all but 6
choices of P ∈ E(k).

If X3 = X4, then the lines {L0,1 = 0}, {L2,3 = 0} and {R0,1 = 0} are concurrent,
hence the following matrix, that contains the coefficients of L0,1, L2,3 and R0,1, is not
invertible

N = N(P ) =


l1−l0 (fQ−fσQ)(P ) (l1fQ−l0fσQ)(P )

l3−l2 (fσ2Q−fσ3Q)(P ) (l3fσ2Q−l2fσ3Q)(P )

r1−r0 (fR−fσR)(P ) (r1fR−r0fσR)(P )

 .

As before, in order to prove thatX3 6= X4 for all but at most 6 choices of P ∈ E(k)\{OE}
it is enough proving that det(N(P )), considered as a rational function of P , is not
identically zero. We suppose by contradiction that det(N) is identically zero and for
each i, j ∈ {1, 2, 3} we denote Ni,j the (i, j)-minor of N(P ), considered as a rational
function. Since l1 6= l0, then N3,3 has a simple pole in σ3Q and consequently N3,3 6= 0.
Analogously N1,3 6= 0 and N2,3 6= 0, hence there are rational functions A,B ∈ Fq(E)
such that

(4.8.2.4)


(
l1−l0

)
·A+

(
fQ−fσQ

)
·B = l1fQ−l0fσQ(

l3−l2
)
·A+

(
fσ2Q−fσ3Q

)
·B = l3fσ2Q−l2fσ3Q(

r1−r0
)
·A+

(
fR−fσR

)
·B = r1fR−r0fσR

and, using Cramer’s rule, we have

B = N1,2

N1,3
= N2,2

N2,3
= N3,2

N3,3
.
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Using the same argument we used for N3,3, we see that N1,2, N2,2, N3,2 6= 0. Moreover it
is easy to compute the poles of N1,2, N2,2, N3,2, N1,3, N2,3, N3,3 and check that they all
vanish in P̃ and OE , using that for each P ∈ E(Fq) \ {OE} we have (fP− yx )(OE) = 0.
Hence there are positive divisors Dl,m of degree 2 on E such that, for each j = 2, 3

div(N1,j) = D1,j + P̃ +OE − (−R)− (−σR)− (−σ2Q)− (−σ3Q) ,
div(N2,k) = D2,j + P̃ +OE − (−Q)− (−σQ)− (−R)− (−σR) ,
div(N3,j) = D3,j + P̃ +OE − (−Q)− (−σQ)− (−σ2Q)− (−σ3Q) ,

and consequently

div(B) = D1,2 −D1,3 = D2,2 −D2,3 = D3,2 −D3,3 .

The functions fQ, fσQ, fσ2Q and fσ3Q are Fq-linearly independent, hence N1,2 and N1,3

are not Fq-multiples. Hence B is not constant. Since every non-constant rational function
on E has at least two poles, we deduce that D1,3 = D2,3 = D3,3 is the divisor of poles
of B. This implies that the sum, in the group E(Fq), of the poles of N1,3 is equal to the
sum of the poles of N2,3 and is also equal to the sum of the poles of N3,3. This implies
that, in the group E(Fq), we have

Q+ σQ = σ2Q+ σ3Q = R+ σR .

Hence, using (4.7.2.1), −Q−σQ is a zero of N3,3 and consequently the two poles of B
are −Q−σQ and −Q−σQ−P̃ . By looking at (4.8.2.4) we deduce that A has exactly one
simple pole, namely −Q−σQ−P̃ , which is absurd. Hence det(N(P )) is not identically
zero.

We now study the geometrically irreducible components of BP assuming the conclu-
sions of Claim 4.8.2.3. In other words, we avoid the small (compared to q) number of
points P ∈ E(k) such that the lines Li,j , Ri,j or the points Xi in Figure 4.1 are not
distinct.

Using the equation defining BP , we can compute the divisor-theoretic intersection

(4.8.2.5) BP ∩ {L0,2 = 0} = X1 +X5 + qX9 + qX13 .

This intersection contains the point X1 with multiplicity 1, hence X1 is a smooth point of
BP . With analogous arguments we can prove that all the points Xi in the figure except
the ones of the shape {Ri,j = 0}∩{Rl,m = 0} are smooth points. This helps us studying
the geometrically irreducible components of BP , as in the following Claim.

Claim 4.8.2.6. Assume the conclusions of Claim 4.8.2.3 hold. The curve BP does not
contain any conic defined over k.
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Proof. Suppose F ∈ k[α, β, γ] is a quadratic equation defining a conic contained in BP .
Since X9 is a smooth point of BP , if the conic {F = 0} contains X9, then {F = 0} is the
only component of BP passing through X9, hence X9 appears in BP ∩ {L0,2 = 0} with
multiplicity at most 2 < q, contradicting Equation (4.8.2.5). Hence {F = 0} does not
contain X9 nor, by a similar argument, X13.

This, together with Equation (4.8.2.5), implies that X1 and X5 belong to {F = 0}.
Analogously X2 and X6 belong to {F = 0}. Both the conics {L0,1L2,3 = 0} and
{L0,2L1,3 = 0} pass through the points X1, X2, X5, X6, hence, using that X1, X2, X5, X6

are in general position, there are λ0, λ1 ∈ Fq such that

F = λ0L0,1L2,3 + λ1L0,2L1,3 .

We extend σ to an element in Gal(Fq/k) and we look at the action of σ on Fq[α, β, γ].
For each i, j ∈ {0, 1, 2, 3} we have σLi,j = Li+1,j+1 = −Lj+1,i+1, considering the indices
modulo 4, hence

λ0L0,1L2,3 + λ1L0,2L1,3 = F = σF = σ(λ0)L2,3L3,0 + σ(λ1)L0,2L1,3 .

Some cumbersome computations imply that the line {L1,2 = 0} is the line through X2

and X5 and the line {L3,0 = 0} is the line through X1 and X6. In particular the lines
{Li,j = 0} appearing in the above equation are pairwise distinct. Hence λ0 = σ(λ0) = 0,
and consequently {F = 0} = {L0,2L1,3 = 0}, which is not contained in BP . Contradic-
tion.

Claim 4.8.2.6 implies that BP does not contain a line of P2. Suppose that Λ is a line
contained in BP . Neither X9 nor X13 are contained in Λ since they are smooth points of
BP and, by Equation (4.8.2.5, the unique components of BP passing through them must
have degree at least q inside P2. Hence Λ ∩ {L0,2 = 0} ∈ {X1, X5} and consequently

(4.8.2.7) (Λ ∪ σ2Λ) ∩ {L0,2 = 0} = X1 +X5 .

This implies that σ2Λ 6= Λ and that σ2Λ and Λ are all the Gal(Fq/k)-conjugates of
Λ: since BP is defined over k, then all the Gal(Fq/k)-conjugates of Λ are components
of BP and if Λ has a conjugate Λ′ 6= Λ, σ2Λ, then, by the same argument as before,
Λ′ ∩ {L0,2 = 0} ∈ {X1, X5} and this, together with Equation (4.8.2.7) contradicts the
smoothness of X1 and X5. We deduce that Λ∪σ2Λ is a conic defined over k and contained
in BP , contradicting Claim 4.8.2.6.

By a similar argument, no conic Q is a component of BP : if this happens, since conics
have degree 2 < q in P2, then X9, X13 do not belong to any of the Gal(Fq/k)-conjugates
of Q, thus, by Equation (4.8.2.5), for all τ ∈ Gal(Fq/k) we have

τ(Q) ∩ {L0,2 = 0} = X1 +X5 = Q∩ {L0,2 = 0}

147



4. DISCRETE LOGARITHMS IN SMALL CHARACTERISTIC

hence, by the smoothness of X1 and X5, Q is defined over k, contradicting Claim 4.8.2.6.
We now suppose that BP is not geometrically irreducible. Let B1, . . . ,Br be the

geometrically irreducible components of BP . As we already proved, each Bi has degree
at least 3, hence the intersection Bi ∩ {L0,2 = 0} is a sum of at least 3 points counted
with multiplicity. By Equation (4.8.2.5), this implies that Bi is passing through X9 or
X13 hence each Bi has degree at least q. Since the sum of the degrees of the Bi’s is equal
to 2q+2 < 3q, we deduce that r = 2 and that either deg(B1) = deg(B2) = q+ 1 or, up to
reordering, deg(B1) = q and deg(B2) = q + 2.

If deg(B1) = deg(B2) = q + 1, Equation (4.8.2.5) implies that, up to reordering,
X1 ∈ B1(Fq) and X5 ∈ B2(Fq). Since BP is defined over k, then Gal(Fq/k) acts on
{B1,B2} and because of the cardinality of such a set, then σ2 acts trivially. In particular
X5 = σ2X1 belongs to σ2B1(Fq) = B1(Fq), hence X5 ∈ B1(Fq) ∩ B2(Fq), contradicting
the smoothness of X5. This contradiction implies that

deg(B1) = q, deg(B2) = q + 2 .

For each linear polynomial L = lαα+ lββ+ lγγ such that lα 6= 0 and for each polynomial
F (α, β, γ) ∈ Fq[α, β, γ] we define

F |L = F

(
− lββ + lγγ

lα
, β, γ

)
,

so that F |L is the unique element of Fq[β, γ] such that F ≡ F |L mod L. If F is ho-
mogenous, then F |L is also homogenous. Notice that the hypothesis lα 6= 0 is true for
L = Li,j when i 6= j, because, by the definition (4.8.2.1), the coefficient of α in Li,j is
fσiQ(P̃ )−fσjQ(P̃ ) and we have chosen P̃ so that fσiQ(P̃ ) 6= fσjQ(P̃ ).

For each i ∈ {1, 2} let Mi ∈ Fq[α, β, γ] be a homogeneous polynomial defining Bi.

Claim 4.8.2.8. There exists homogenous polynomials F1, F2, G2, N1, N2 ∈ Fq[α, β, γ] of
respective degree 1, 1, 1, q − 4, q − 2 such that

M1 = F q1 + L0,1L2,3L0,2L1,3N1, (4.8.2.9)
M2 = F q2L0,1L2,3 +Gq2L0,2L1,3 + L0,1L2,3L0,2L1,3N2 (4.8.2.10)

Proof. We start from the first part. Since degB1 = q and since X1, X5, X9 and X13 are
smooth, Equation (4.8.2.5 implies that B1 ∩ {L0,2 = 0} is either qX13 or qX9, hence
M1|L0,2 is the q-th power of a linear polynomial. We deduce the existence of polynomials
A1, B1 ∈ Fq[α, β, γ] such that A1 is linear homogenous and

M1 = Aq1 +B1L0,2 .
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Similarly to B1 ∩ {L0,2 = 0}, we have that B1 ∩ {L1,3 = 0} is either qX14 or qX10, hence
there exists a linear polynomial A2 ∈ Fq[β, γ] such that

Aq2 = M1|L1,3 = A1|qL1,3
+B1|L1,3L0,2|L1,3 =⇒ B1|L1,3L0,2|L1,3 = (A2 −A1|L1,3)q.

In the last equation either both sides are zero or the right hand side gives the prime
factorization of the left hand side (we use that A2−A1 has degree at most 1 and that
Fq[β, γ] is a UFD). In both cases there exists λ1 ∈ Fq such that B1|L1,3 = λ1L0,2|q−1

L1,3
,

hence

B1 = λ1L
q−1
0,2 +B2L1,3 =⇒ M1 = (A1 + λ1L0,2)q +B2L0,2L0,3 = Aq3 +B2L0,2L0,3

for certain homogenous polynomials A3, B2 ∈ Fq[α, β, γ], with A3 linear. Similarly to
B1 ∩ {L0,2 = 0}, we have that B1 ∩ {L0,1 = 0} is either qX3 or qX4. Hence, using the
piece of notation l = L0,1, there exists a linear polynomial A4 ∈ Fq[β, γ] such that

Aq4 = M1|l = A3|ql +B2|l L0,2|l L1,3|l =⇒ B2|l L0,2|l L1,3|l = (A4 −A3|l)q.

Again, in the last equation either both sides are zero or the right hand side gives the
prime factorization of the left hand side. The latter is not possible, since the points
X1 = {L0,1 = 0} ∩ {L0,2 = 0} and X2 = {L0,1 = 0} ∩ {L1,3 = 0} are distinct and
consequently L0,2|l and L1,3|l are relatively prime. We deduce that B2|l = 0, or equiva-
lently B2 is divisible by L0,1. A similar argument proves that B2 is also divisible by L2,3,
implying Equation (4.8.2.9).

Since degB2 = q + 2 and since X1, X5, X9 and X13 are smooth, Equation (4.8.2.5)
implies that B2 ∩ {L0,2} is either X1+X5+qX13 or X1+X5+qX9, hence

M1|L0,2 = L0,1|L0,2L2,3|L0,2A
q
5 =⇒ M2 = Aq5L0,1L2,3 +B3L0,2,

for some homogenous polynomials A5, B3 ∈ Fq[α, β, γ], with A5 linear. In a similar
fashion we have B2 ∩ {L1,3} is either X2+X6+qX14 or X2+X6+qX10, hence, using the
piece of notation r = L1,3, we have

L0,1|rL2,3|rAq6 = M1|r = L0,1|rL2,3|rA5|qr +B3|rL0,2|r
=⇒ B3|rL0,2|r = L0,1|rL2,3|r(A6 −A5)|qr

Again, in the last equation either both sides are zero or the right hand side gives the
prime factorization of the left hand side. In both cases B3|L1,3 is a scalar multiple of
L0,1|rL2,3|rL0,2|q−1

r : in the last case this is obvious, in the first case we use that, since
X1, X2, X5 and X6 are distinct, the polynomials L0,1|r, L2,3|r and L0,2|r are relatively
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prime. Hence there exist homogenous polynomials A7, B4 ∈ Fq[α, β, γ] such that A7 is
linear and

M2 = Aq7L0,2L1,3 +B4L0,1L2,3.

Iterating similar arguments we prove Equation 4.8.2.10.

Let F1, F2, G1, N1 and N2 as in Claim 4.8.2.8. Up to multiplyingM1 with an element
of Fq

×, we can suppose that M = M1M2. Reducing this equality modulo L0,2L1,3 we
see that

L0,2L1,3 divides L0,1L2,3(F1F2 +R0,2R1,3)q.

The linear polynomials Li,j in the above equation are coprime since they define distinct
lines. Hence L0,2L1,3 divides F1F2+R0,2R1,3. Since F1F2+R0,2R1,3 is homogenous of
degree at most 2, then it is a scalar multiple of L0,2L1,3. Using a similar argument with
L0,1L2,3 we prove that there exist λ, µ ∈ Fq such that

F1F2 +R0,2R1,3 = λL0,2L1,3, F1G2 −R0,1R2,3 = µL0,1L2,3 . (4.8.2.11)

We have λ 6= 0, otherwise F1 would be a scalar multiple of either R0,2 or R1,3: in the first
case Equation 4.8.2.9 would imply that B1 contains X9 but not X14 = τ(X9), implying
that τ(B1) is a component of B different from B1, that is τ(B1) = B2 which contradicts
the inequality deg(B2) > deg(B1); in the second case Equation 4.8.2.9 would imply that
B1 contains X13 but not X10 = τ(X13), leading to the same contradiction.

Using Equations (4.8.2.9), (4.8.2.10) and (4.8.2.11) and the equality M1M2=M , we
see that

0 = M1M2 −M
L0,1L2,3L0,2L1,3

=

= µqLq−1
0,1 L

q−1
2,3 +λqLq−1

0,2 L
q−1
1,3 +F q1N2+F q2N1L0,1L2,3+Gq2N1L0,2L1,3+N1N2L0,1L2,3L0,2L1,3

≡ λq(L0,2L1,3)q−1 + F q1N2 +Gq2N1L0,2L1,3 (mod L0,1).

For any F ∈ Fq[α, β, γ] we define F̃ := FL0,1 and we rewrite the above congruence as

λqL̃q−1
0,2 L̃

q−1
1,3 + F̃ q1 Ñ2 + G̃q2Ñ1L̃0,2L̃1,3 = 0. (4.8.2.12)

Since then B1 ∩ L0,1 does not contain the point X1 = {L0,2=0} ∩ {L0,1=0} nor the
point X3 = {L1,3=0} ∩ {L0,1=0}, then F̃1 is relatively prime with both L̃0,2 and
L̃1,3. Hence both L̃0,2 and L̃1,3 divide Ñ2. Since X1 = {L0,2=0} ∩ {L0,1=0} and
X3 = {L1,3=0} ∩ {L0,1=0} are distinct, then L̃0,2 is relatively prime with L̃1,2 and we
can write Ñ2 = L̃0,2L̃1,3N3 for some homogenous polynomial N3 ∈ Fq[β, γ]. Substituting
in Equation 4.8.2.12 we have

λqL̃q−2
0,2 L̃

q−2
1,3 + F̃ q1N3 + G̃q2Ñ1 = 0.
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Since λ 6= 0, since all the polynomials of the form F̃ are contained in Fq[β, γ] and since
L̃0,2 is relatively prime with L̃1,2, the above equation contradicts Lemma 4.8.2.13 below.

In particular the assumption of the reducibility of B led to contradiction, together
with the conclusions of Claim 4.8.2.3. We deduce that for all but at most 450 choices of
P ∈ E(k) the curve BP is geometrically irreducible. Since #E(k) > 450 and since all the
components of B project surjectively to E, we deduce that B is reduced and geometrically
irreducible.

Lemma 4.8.2.13. Let L1, L2 ∈ Fq[β, γ] be relatively prime homogenous linear polyno-
mials. Then there exist no homogenous polynomial A,B,C,D ∈ Fq[β, γ] such that

Lq−2
1 Lq−2

2 = AqB + CqD.

Proof. The zeroes of L1 and L2 in P1 are distinct, hence, up to a linear transformation
we can suppose that their zeroes are 0 and ∞. In particular, up to scalar multiples we
can suppose L1 = β and L2 = γ, implying that AqB +CqD = βq−2γq−2. This is absurd
because any monomial appearing in Aq or in Bq is either a multiple of βq of a multiple
of γq, hence the same is true for all the monomials appearing in AqB + CqD.

4.8.3 The irreducible components of C

In this subsection we prove that all the geometrically irreducible components of C are
defined over k. To do so, we can ignore (4.8.1.6) in the definition of C. The strategy is
applying Lemma 4.6.6 to the variety B, using the rational functions

u1, u2, u3 : B 99K P1 , ui(α, β, 1, P ) = fα,β,P (σi−1Q) ,
w1, w2, w3 : B 99K P1 , wi(α, β, 1, P ) = −fα,β,P (σi−1R) ,

and the irreducible divisor Z ⊂ B being the Zariski closure of
(4.8.3.1)(α, β, P ) ∈ (A2×E′)(Fq) :

P = −Q− σQ− σ3Q− P̃ ,

α =
(
(fQ(P )−fσQ(P ))β + l1fQ(P )−l0fσQ(P )

)
/(l0−l1)

 .

Claim 4.8.3.2. The variety Z is generically contained in the smooth locus of B and the
rational function u1−u2 vanishes on Z with multiplicity 1.

Proof. We restrict to an open subset U ⊂ P2 ×E containing the generic point of Z. Up
to shrinking U , the rational functions ui, wi can be extended to regular functions on U
using the definition (4.8.1.1) of fα,β,P , and we have

u1 − u2 = L0,1(α, β, 1, P )(
l0 + β

)(
l1 + β

) ,
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where Li,j(α, β, γ, P ) ∈ Fq[U ] is defined as in (4.8.2.1), as well as Ri,j(α, β, γ, P ). Since
we can assume that l0+β, l1+β are invertible on U and since Z is generically smooth, it
is enough showing that Z ∩U is a component of (B∩U)∩{L0,1 = 0} having multiplicity
one. Up to shrinking U , the closed B ∩ U ⊂ U is the vanishing locus of

M(α, β, P ) := (L0,2L1,3R
q
0,1R

q
2,3 − L0,1L2,3R

q
0,2R

q
1,3)(α, β, 1, P ) ∈ Fq[U ] .

Since the restriction ofM to {L0,1 = 0} is equal to the restriction of L0,2L1,3R
q
0,1R

q
2,3, it is

enough showing that L0,2, R0,1, R2,3 do not vanish on Z and that {L1,3 = 0}∩{L0,1 = 0}
contains Z ∩U with multiplicity 1. We start from the latter. Eliminating the variable α
we see that, up to shrinking U , {L1,3 = 0} ∩ {L0,1 = 0} is defined by the equations

(4.8.3.3) λ(P ) = 0 and (l1 − l0)α+ (fQ(P )− fσQ(P ))β + l1fQ(P )− l0fσQ(P ) = 0 ,

where

λ(P ) := (l1−l0)fσ3Q(P ) + (l3−l1)fQ(P ) + (l0−l3)fσQ(P ) ∈ Fq(E) .

The function λ has three simple poles, namely −Q,−σQ,−σ3Q, and we easily verify
that λ(P̃ ) = λ(OE) = 0. We deduce that P = −Q−σQ−σ3Q−P0 is a simple zero of λ.
This, together with the fact that the second equation in (4.8.3.3) is equal to the second
equation in the definition (4.8.3.1) of Z, implies that {L1,3 = 0} ∩ {L0,1 = 0} contains
Z ∩ U with multiplicity 1.

We now suppose by contradiction that R0,1 vanishes on Z ∩ U . Substituting α and
P in R0,1 as in the definition (4.8.3.1) of Z, we see that

R0,1(α, β, 1, P )|Z∩U = λ0(−Q−σQ−σ3Q−P̃ )
l0 − l1

β + λ1(−Q−σQ−σ3Q−P̃ )
l0 − l1

,

where

λ0(P ) :=(r1 − r0)(fQ − fσQ)(P )− (l1 − l0)(fR − fσR)(P ) ,
λ1(P ) :=(r1 − r0)(l1fQ(P )− l0fσQ(P ))− (l1 − l0)(r1fR(P )− r0fσR(P )) ,

and we deduce that both λ0 and λ1 vanish on P = −Q−σQ−σ3Q−P̃ . Both λ0 and
λ1 have 4 poles and 4 zeroes counted with multiplicity: they have the same poles they
share three zeroes, namely OE , P̃ and −Q−σQ−σ3Q−P̃ . Since, in the group on E(Fq),
the sum of the zeroes of an element of Fq(E)× is equal to the sum of the poles, then λ0

and λ1 also share the fourth zero, hence λ0 and λ1 differ by a multiplicative constant
in Fq. This is absurd because l0 6= l1 and because the functions fQ, fσQ, fR, fσR are
Fq-independent.
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A similar argument implies that R2,3 does not vanish on Z ∩U , while the case of L0,2

is easier. Substituting α and P in L0,2(α, β, 1, P ) as in the definition (4.8.3.1) of Z we
get

L0,2(α, β, 1, P )|Z∩U = (β + l0)λ2(−Q−σQ−σ3Q−P̃ )
l0 − l1

,

where

λ2(P ) := (l2−l1)fQ(P ) + (l0−l2)fσQ(P ) + (l1−l0)fσ2Q(P ) ∈ Fq(E) .

Analogously to λ, we see that the zeroes of λ2 are P̃ , OE and −Q−σQ−σ2Q−P0, hence λ2

does not vanish on −Q−σQ−σ3Q−P0, implying that L0,2 does not vanish on Z ∩U .

We can show that u2−u3, w3+u3, w3+u1 and wi−wj do not vanish on Z ∩ U with
similar arguments to the ones used to prove that R0,1 and L0,2 do not vanish on Z.
Hence we can apply Lemma 4.6.6 and deduce that all the components of C are defined
over k.

4.8.4 k-rational points on C

Finally we prove that #C(k) is larger than 1
2 (#k)2. The surface C is contained in the open

subset of A2 × (E\{OE}) × PGL2 × A1 made of points (α, β, (x, y),
(
a b
c d

)
, z) such that

c 6= 0. Hence C is contained in A8, with variables α, β, x, y, a, b, d, z and it is defined by
the following equations:.

• 0 = p1 := W (x, y), the Weierstrass equation defining E;

• 0 = p2 := (dq−a)q+1(zq−z)q2−q − (ad−b)q( zq
2
−z

zq−z )q+1, the dehomogenization of
(4.8.1.2) in c;

• 0 = pi(α, β, x, y, a, b, d) for i = 3, 4, 5, 6, obtained by (4.8.1.3) after dehomogenizing
in c, substituting fσiQ, fσiR by their expressions in α, β, x, y and clearing denomi-
nators;

• a number of conditions 0 6= qj ensuring that P 6= −σiQ,P 6= −σiR, β+f
P̃

(σiQ) 6= 0,
β+f

P̃
(σiR) 6= 0, dq−a 6= 0, ad− b 6= 0, that (4.8.1.6) is satisfied, that fα,β,P (σiQ)

are distinct and that fα,β,P (σiR) are distinct.

In particular, C can be seen as a closed subvariety of A9, with variables α, β, x, y, b, c, d, z
and t defined by the seven equations p1 = 0, . . . , p6 = 0 and 0 = p7 := tq1 · · · qr − 1. Let
C1, . . . , Cs be the geometrically irreducible components of C. By [46, Remark 11.3], we
have

(4.8.4.1) #C(k) ≥ #C1(k) ≥ (#k)2 − (δ − 1)(δ − 2)(#k) 3
2 −K(C1)(#k) ,
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where δ is the degree of C1 and K(C1) is the sum of the Betti numbers of C relative to
the compact `-adic cohomology. Since C1 is a component of C then

(4.8.4.2) δ ≤ deg(p1) · · · deg(p7) .

Since C is the disjoint union of the Ci, the Betti numbers of C are the sums of the Betti
numbers of the Ci. Hence, using [58, Corollary of Theorem 1]

(4.8.4.3) K(C1) ≤ K(C) ≤ 6 · 27 ·
(

3 + 7 max
i=1,...,7

{deg(pi)}
)10

.

Combining Equations (4.8.4.1), (4.8.4.2) and (4.8.4.3) and the inequalities deg p1 ≤ 3,
deg p2 ≤ q3+q, deg p3, . . . ,deg p6 ≤ 2q+3, deg p7 ≤ 16q2+37q+75, we deduce that
#C(k) > 1

2 (#k)2 when #k ≥ q80 and q ≥ 3.
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