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Chapter 3

Automorphisms of Cartan curves

This chapter is the result of a joint work with Valerio Dose and Pietro Mercuri
We study the automorphisms of modular curves associated to Cartan subgroups of

GL2(Z/nZ) and certain subgroups of their normalizers. We prove that if n is large
enough, all the automorphisms are induced by the ramified covering of the complex
upper half-plane. We get new results for non-split curves of prime level p ≥ 13: the
curve X+

ns(p) has no non-trivial automorphisms, whereas the curve Xns(p) has exactly
one non-trivial automorphism. Moreover, as an immediate consequence of our results
we compute the automorphism group of X∗0 (n) := X0(n)/W , where W is the group
generated by the Atkin-Lehner involutions of X0(n) and n is a large enough square.

3.1 Introduction

Since the 1970s many efforts have been made to determine automorphisms of modular
curves and in particular to establish whether a modular curve has other automorphisms
besides the expected ones. Indeed, infinitely many automorphisms naturally arise when
the curve has genus zero or one. Moreover, since the components of modular curves
over C can be seen as compactification of quotients of the complex upper half-plane H,
some automorphisms of H induce automorphisms of the quotient modular curve. Such
automorphisms are called modular and their determination is a purely group theoretic
problem.

The focus has been classically placed on the modular curves X0(n) associated to a
Borel subgroup of GL2(Z/nZ) (e.g., upper triangular matrices), with n a positive integer.
For these curves, modular automorphisms played an important role in the development
of the theory of modular curves. They were determined in the seminal paper [4], with a
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3. AUTOMORPHISMS OF CARTAN CURVES

small gap which was later filled in a couple of different ways (see [2], [14]). Meanwhile, a
complete picture about the remaining automorphisms of X0(n) has been painted through
the decades by the works [83], [85], [60], [42], [52]. Also some works in this century (e.g.,
[5], [74], [47]) took on the case of the modular curves X0(p)/〈wp〉 and X0(p2)/〈wp2〉,
where wp and wp2 are the Atkin-Lehner involutions of the respective modular curve.

More recently, great interest has been generated in modular curves associated to
different subgroups of GL2(Z/nZ), in particular to normalizers of Cartan subgroups for
n = p prime. This is mainly due to the fact that rational points on these curves help
classifying rational elliptic curves whose associated Galois representation modulo p is
not surjective. This is directly linked to a question formulated by Serre (also known
as uniformity conjecture) in the 1970s ([92]). After the works [72], on the Borel case,
and [17], [18], on the split Cartan case, the only part of this problem left to understand
nowadays is equivalent to asking whether, for almost every prime p, the modular curve
X+

ns(p) associated to the normalizer of a non-split Cartan subgroup of GL2(Z/pZ) has
other rational points besides the expected ones, namely the CM points of class number
one. Such equivalence led to a certain amount of research driven towards computing
equations and finding rational points of modular curves associated to non-split Cartan
subgroups and their normalizers (see for example [12], [13], [10], [35], [36], [75]).

A curious connection between the problem of determining rational points and the one
of determining automorphisms in a modular curve is given by the fact that in the case
of the Borel modular curves X0(p) of genus at least 2, the sole occurrence of unexpected
rational points (p = 37) in the setting of Serre’s uniformity conjecture, happens in the
presence of an unexpected automorphism of the corresponding modular curve. A further
connection is made in [37], where is proven that, for almost every prime p, the absence of
unexpected rational points of the curve X+

ns(p) implies the absence of unexpected rational
automorphisms of the modular curve Xns(p) associated to a non-split Cartan subgroup
of GL2(Z/pZ).

The first work centered on automorphisms of non-split Cartan modular curves has
been [35], in which the existence of an unexpected automorphism of Xns(11) is proven.
Some partial results on the automorphisms of Xns(p) and X+

ns(p), for almost every prime
p, were proven in [37], while in [48] the full determination of the automorphism group is
obtained for low primes (p ≤ 31).

In the present work we complete the results in [37] about the prime level case. More-
over, we extend the analysis to every composite level n, where we can define Cartan
subgroups of mixed split/non-split type. The scope of our study concerns Cartan sub-
groups and also a specific subgroup of their normalizer in GL2(Z/nZ) which we call
Cartan-plus subgroup. However, in most cases, for example when n is odd, a Cartan-
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3. AUTOMORPHISMS OF CARTAN CURVES

plus subgroup actually coincides with the normalizer of the relative Cartan subgroup.
We prove the following result:

Theorem 3.6.15. Let n ≥ 10400 be an integer and let H < GL2(Z/nZ) be either a
Cartan or a Cartan-plus subgroup. Then every automorphism of XH is modular, hence
we have

Aut(XH) ∼=

N ′/H ′ × Z/2Z, if n ≡ 2 mod 4 and H is a Cartan-plus split at 2,
N ′/H ′, otherwise,

where N ′ < SL2(Z/nZ) is the normalizer of H ′ := H ∩ SL2(Z/nZ).

It may be interesting to note that the modular curve associated to a Cartan-plus
subgroup of GL2(Z/nZ) which is split at every prime dividing n is isomorphic to the
modular curve X∗0 (n2) := X0(n2)/W , where W is the group generated by Atkin-Lehner
involutions of the Borel curve X0(n2).

In the case n = pe, where p is a prime number, we can refine the techniques developed
and obtain a more complete result:

Theorem 3.6.17. Let p be a prime number and let e be a positive integer. If pe > 11 and
pe /∈ {33, 24, 25, 26}, then all the automorphisms of Xns(pe), X+

ns(pe), Xs(pe) and X+
s (pe)

are modular and

Aut(Xns(pe)) ∼= Z/2Z, Aut(X+
ns(pe)) ∼= {1},

Aut(Xs(pe)) ∼=


(Z/8Z)2 o (Z/2Z), if p = 2,
Z/3Z× S3, if p = 3,
Z/2Z, if p > 3,

Aut(X+
s (pe)) ∼=


Z/8Z, if p = 2,
Z/3Z, if p = 3,
{1}, if p > 3,

where the above semidirect product (Z/8Z)2 o Z/2Z is described in Remark 3.6.16.

Corollary 3.6.18. Let p ≥ 13 be a prime number. Then the group of automorphisms of
X+

ns(p) is trivial and the group of automorphisms of Xns(p) has order 2.

The main technical novelty of our proofs is a thorough analysis of the action of
Hecke operators on very general modular curves. This allows us to prove results about
automorphisms without exploiting and worrying about the field of definition of the cusps
and CM points which has been instead instrumental for determining automorphisms of
modular curves throughout the literature in the past. We also give à la Chen results
to describe jacobians of Cartan modular curves in terms of jacobians of Borel modular
curves and we give an explicit upper bound on the dimension of the CM part of the
jacobian of Borel modular curves. The structure of the paper is the following.
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3. AUTOMORPHISMS OF CARTAN CURVES

In Section 3.2 we define modular curves associated to general subgroups of GL2(Z/nZ)
and we give an equivalent condition to the fact that a point of a modular curves branches
in the covering of the curve by H.

In Section 3.3 we study the action of Hecke operators on modular curves. In particular
we focus on the action on the cusps and the other points which could branch in the
covering by H. Such points are associated to elliptic curves with j-invariant equal to 0
or 1728.

In Section 3.4 we define Cartan and Cartan-plus subgroups of GL2(Z/nZ) for every
positive integer n. We also define the relative modular curves of composite level. Then
we prove that the jacobian of a Cartan modular curve is a quotient of the jacobian of
some Borel modular curve. When n = pe, this is done applying the techniques of [26]
and [39] to a previously unexplored case, and for n general we combine these results. We
also extend the results of [26] to the case of even level.

In Section 3.5 we prove that all the automorphisms of Cartan modular curves must
be defined on a compositum of quadratic fields when the level n is large enough. To do
this, we use a geometrical criterion that we can apply by bounding the dimension of the
CM part of the jacobian of Cartan modular curves. This last step is obtained using the
isogenies of Section 3.4 and computing explicit bounds for the CM part of the jacobians
of Borel modular curves. Furthermore, we refine the results in the case n = pe, with p
prime.

Finally, in Section 3.6 we prove the results stated above about automorphisms. The
main idea is to show that each automorphism must preserve the cusps and the set of
branching points of the covering by H. This implies that there are no non-modular
automorphisms. Thus, we compute the modular automorphisms to complete the analysis.
We first concentrate on Cartan modular curves of general level n. Then we adapt the
strategy to the case n = pe, with p prime, giving the complete result for Xns(p) and
X+

ns(p), and improving the result we obtained for the general level in the cases of X+
s (pe),

Xns(pe) and X+
ns(pe). To treat some of the small level cases, we use the criterion of [48]

which we verify through an algorithm implemented in MAGMA ([69]) which is available
at [70].

As we did for the case of level n = pe, with p prime, the result on Cartan modular
curves of composite level can be sharpened, with our techniques, for levels with a specific
type of factorization. However, certain cases remain out of the reach of the strategy
described in this work, for example when we are not able to apply the criterion of [48]
and either the curve has low gonality (e.g., Xns(16), X+

ns(16), X+
ns(27)) or its jacobian

has a large CM part relative to its dimension (see Remark 3.5.11 for the example with
the lowest level).
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3. AUTOMORPHISMS OF CARTAN CURVES

3.2 Modular curves
Let n be a positive integer. We denote by Y (n) the (coarse if n < 3) moduli space
that parametrizes pairs (E, φ) where E is an elliptic curve over a Q-scheme S and
φ : (Z/nZ)2

S → E[n] is an isomorphism of S-group schemes. We denote by X(n) the
compactification of Y (n) and we call X(n) the modular curve of full level n.

Every matrix γ ∈ GL2(Z/nZ) gives an automorphism of the constant group scheme
(Z/nZ)2

S , hence γ acts on Y (n) sending (E, φ) to (E, φ ◦ γ). This defines an action of
GL2(Z/nZ) on Y (n) that extends uniquely toX(n). For each subgroupH of GL2(Z/nZ),
let XH be the quotient X(n)/H. By [32, IV.6.7], XH has good reduction over each prime
that does not divide n and the smooth model of YH = Y (n)/H over Z[1/n] is a coarse
moduli space for elliptic curves with H-structure, i.e., the equivalence classes of pairs
(E, φ) where E is an elliptic curve over a Z[1/n]-scheme S and φ : (Z/nZ)2

S → E[n] is an
isomorphism of S-group schemes, and the equivalence relation is given by:

(3.2.1) (E, φ) ∼H (E′, φ′) ⇐⇒ (φ′)−1 ◦ ι|E[n] ◦φ = h, for some h ∈ H and ι : E ∼→ E′.

In particular, for every algebraically closed field K of characteristic p - n, we have a
bijection between YH(K) and the set of elliptic curves over K with H-structure.
Remark 3.2.2. Since −1 is an automorphism of every elliptic curve, then for every H,
the curve XH is isomorphic to X±H , where ±H := {±Id}·H < GL2(Z/nZ). Hence, the
equivalence relation (3.2.1) can be written as follows

(E, φ) ∼H (E′, φ′) ⇐⇒ (φ′)−1 ◦ ι|E[n] ◦ φ = h, for some h ∈ ±H and ι : E ∼→ E′.

Let H be the complex upper half-plane {τ ∈ C : Im(τ) > 0}, let H± = C − R and
moreover let H = H ∪ P1(Q) and H± = H± ∪ P1(Q) be their “compactifications”. The
group GL2(Z) acts on H, H±, H and H± by Möbius transformations. Moreover, every
g in GL2(Z) acts on pairs (z, γH) ∈ H± × (GL2(Z/nZ)/H) as (g(z), ḡγH), where g(z)
is the image of z under the Möbius transformation given by g and ḡ is the reduction of
g mod n. This action gives canonical isomorphisms of Riemann surfaces

GL2(Z)\
(
H± × (GL2(Z/nZ)/H)

)
−→ YH(C), (3.2.2.1)

GL2(Z)\
(
H± × (GL2(Z/nZ)/H)

)
−→ XH(C). (3.2.2.2)

The isomorphism (3.2.2.1) is equivalent to that one described in [32, IV.5.3] and is
given by GL2(Z)(τ, γH) 7→ (Eτ , φτ ◦ γ), where Eτ is the elliptic curve C/(Z+Zτ) and
φτ : (Z/nZ)2

C → Eτ [n] is the unique isomorphism such that

φτ

(
1
0

)
= 1
n
, φτ

(
0
1

)
= τ

n
.
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The isomorphism (3.2.2.2) is just the extension of the previous one to the compactifica-
tions. For each subgroup H of GL2(Z/nZ), we define

ΓH := {γ ∈ SL2(Z) : γ (mod n) lies in H}.

If detH 6= (Z/nZ)×, then XH(C) is not connected: the number of connected components
is [(Z/nZ)× : det(H)] and, for each connected componentXcc

H (C), there are isomorphisms
of Riemann surfaces

(3.2.3) ΓgHg−1\H −→ Xcc
H (C), ΓgHg−1\H −→ Y ccH (C),

for some g in GL2(Z/nZ). In particular, if detH = (Z/nZ)×, then YH and XH are
geometrically connected curves defined over Q.

The following proposition about the morphisms (3.2.3) is used in Section 3.6. We say
that an automorphism of an elliptic curve is non-trivial if it is different from ±Id.

Proposition 3.2.4. Let n be a positive integer, let H be a subgroup of GL2(Z/nZ), let
g be in GL2(Z/nZ) and consider the composition

H ΓgHg−1\H YH(C),

where the left map is the natural projection and the right map is in (3.2.3). Then a point
(E, φ) ∈ YH(C) is a branch point for such composition if and only if there is a non-trivial
automorphism u of E such that φ−1◦u|E[n]◦φ ∈ ±H. If this happens, then each point
τ ∈ H projecting to (E, φ) has ramification index #Aut(E)/2.

Proof. By Remark 3.2.2 we can suppose that H contains −Id. Instead of looking at
a map H → YH(C) parametrizing a single component of YH , we can work with the
canonical map

H± ×GL2(Z/nZ) Y (n)(C) YH(C).π πH

Up to substituting n with 3n andH with its preimage under GL2(Z/3nZ)→ GL2(Z/nZ),
we can suppose that n ≥ 3. This implies that π is an (unramified) covering map, hence
the ramification index of the πH ◦π in a point (τ, γ) is equal to the ramification index of
πH in the point π(τ, γ). Hence, we only need to look at the ramification points of πH .
A point (E, φ) ∈ YH(C) is a branch point for πH if and only if the fiber π−1

H (E, φ) has
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cardinality smaller than deg πH = #H/2. The modular interpretation of YH and Y (n)
implies that

(3.2.5) π−1
H (E, φ) =

{
(E, u|E[n]◦φ◦h) : h ∈ H,u ∈ Aut(E)

}
/Aut(E),

where v ∈ Aut(E) acts sending (E,ψ) to (E, v|E[n]◦ψ). Since n ≥ 3, the map that sends
u to φ−1◦u|E[n]◦φ gives an inclusion Aut(E) ↪→ GL2(Z/nZ), hence, by (3.2.5), we have

#π−1
H (E, φ) = #

(
(H·Aut(E))/Aut(E)

)
= #

(
H/(H∩Aut(E))

)
.

The group Aut(E) always contains the multiplication by −1 and is cyclic of order 2, 4
or 6. Finally, there are two options for Aut(E)∩H:

• Aut(E)∩H only contains ±Id and (E, φ) is not a branch point;

• Aut(E)∩H has order equal to #Aut(E) > 2, in this case (E, φ) is a branch point
and, since the map πH is Galois, every point in π−1

H (E, φ) has ramification index
equal to deg(πH)/#π−1

H (E, φ) = #Aut(E)/2.

3.3 Hecke operators
Let n be a positive integer and let H be a subgroup of GL2(Z/nZ). For every prime
` - n, there is a divisor D` ⊂ XH ×XH inducing the `-th Hecke operator

T` : Div(XH)→ Div(XH), T` : Jac(XH)→ Jac(XH).

On YH(C), it is described by

(3.3.1) T`(E, φ) =
∑

0�C�E[`]

(E/C, πC ◦ φ),

where πC : E → E/C is the natural projection. Now we recall the definition of T`. Let H`

be the subgroup of GL2(Z/n`Z) containing the matrices whose reduction modulo n lies
in H and whose reduction modulo ` is an upper triangular matrix. Given a Z[ 1

n` ]-scheme
S and an elliptic curve E/S with H`-structure φ : (Z/n`Z)2 → E[n`], we have two ways
of constructing an elliptic curve over S with H-structure:

• The n-torsion subgroup of (Z/n`Z)2 is canonically isomorphic, via the Chinese
Remainder Theorem, to (Z/nZ)2 and the restriction of φ to this subgroup gives
an isomorphism φ|(Z/nZ)2 : (Z/nZ)2 → E[n]. One can check that the class of
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(E, φ|(Z/nZ)2) modulo ∼H does not depend on the choice of the representative
(E, φ) in the equivalence class defined by ∼H` , hence

pr(E, φ) := (E, φ|(Z/nZ)2)

is a well defined elliptic curve over S with H-structure.

• The subgroup C ⊂ E[`] generated by φ( n0 ) is a subgroup of E of order ` and E/C
is an elliptic curve over S. Denoting by πC : E → E/C the natural projection, we
have that

qt(E, φ) := (E/C, πC ◦ φ|(Z/nZ)2)

is a well defined elliptic curve over S with H-structure.

These two constructions define natural transformations between the functor of elliptic
curves with H`-structure and the functor of elliptic curves with H-structure restricted to
schemes over Z[ 1

n` ]. We get induced morphisms between the coarse moduli spaces YH`
and (YH)Z[ 1

n` ] that can be extended by smoothness to the compactifications:

pr, qt : XH` −→ (XH)Z[ 1
n` ].

The image of XH` under the map (pr, qt) defines a divisor inside (XH)Z[ 1
n` ]×(XH)Z[ 1

n` ].
Since XH is smooth over Z[ 1

n ], this divisor extends uniquely to D` ⊂ XH×XH whose
irreducible components project surjectively on each factor XH . This correspondence
induces the operator T` = qt∗ ◦ pr∗ and the definitions of qt and pr imply the equality
(3.3.1).

The reduction of T` modulo ` is described by a celebrated theorem of Eichler and
Shimura. To state this theorem in the full generality, we recall the definition of diamond
operators. Let a ∈ (Z/nZ)×, then the matrix ( a 0

0 a ) normalizes H, hence

〈a〉(E, φ) := (E, φ ◦ ( a 0
0 a ))

defines an automorphism of the functor of elliptic curves withH-structure. So 〈a〉 induces
an automorphism of the coarse moduli space YH and it extends to an automorphism of
the compactification XH . Eichler-Shimura Relation is nowadays a common knowledge,
but in the literature is often stated in a different form than we need. The proof of [38,
Theorem 8.7.2] can be directly adapted to our case, and another proof is in [94, Theorem
7.9 and Corollary 7.10]. We use the result in the following form.

Theorem (Eichler-Shimura Relation). Let n be a positive integer, let H be a sub-
group of GL2(Z/nZ), let ` be a prime number not dividing n, let XH be the reduction of
XH modulo `, let T `, 〈`〉 : Div(XH)→ Div(XH) be the reduction of the Hecke operator T`
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and of the diamond operator 〈`〉 and let Frob` : XH → XH be the Frobenius morphism.
Then

T ` = (Frob`)∗ + 〈`〉∗ ◦ (Frob`)∗.

Notice that in general XH is not geometrically connected and if X ′ is a component
of XH , the Frobenius morphism XH → XH may not restrict to a morphishm X ′ → X ′.
Analogously, if x is a point on X ′, the divisor T`(x) may be not supported on X ′. We are
interested in Eichler-Shimura Relation because, as already pointed out in [60, Lemma
2.6], it implies that, in certain cases, Hecke operators commute with automorphisms of
modular curves.

Proposition 3.3.2. Let n be a positive integer, let H < GL2(Z/nZ) be a subgroup con-
taining the scalar matrices and such that detH = (Z/nZ)×. Let ` be a prime not dividing
n and let σ ∈ Gal(Q/Q) be a Frobenius element at `. Then, for any automorphism u of
XH defined over a compositum of quadratic fields, in End(Jac(XH)) we have

(3.3.3) T` ◦ u = uσ ◦ T`,

where we identify u and uσ with their pushforward on Jac(XH). Moreover, if the gonality
of XH(C) is greater than 2(`+ 1), then (3.3.3) holds at level of divisors.

Proof. Let J := Jac(XH), let Frob` : XH → XH be the Frobenius morphism and let φ`
be the Frobenius generator of Gal(F`/F`). Let D ∈ Div(XH) and let ū be the reduction
of u modulo `. Using Eichler-Shimura Relation, we have

T ` ◦ ū(D) = ((Frob`)∗ + (Frob`)∗) ◦ ū(D) = (Frob`)∗ū(D) + (Frob`)∗ū(D) =

=ūφ`(Frob`)∗(D) + ūφ
−1
` (Frob`)∗(D) = uσ(Frob`)∗(D) + uσ−1(Frob`)∗(D).

Now, since u is defined over a compositum of quadratic fields, the Galois automorphisms
σ and σ−1 act in the same way on u. This implies that the last term in the previous
chain of equalities is equal to uσ ◦ T `(D) obtaining T ` ◦ ū = uσ ◦ T ` in End(JF`).

Since J has good reduction at `, the natural map End(J) → End(JF`) is injective,
hence (3.3.3) holds in End(J). This means that, for any two points P and Q in XH(C),
the divisor D := (T`u− uσT`)(P −Q) is principal. Hence, either D is the zero divisor or
is the divisor of a non-constant rational function on XH of degree at most 2(`+ 1).

Now we suppose that the gonality of XH exceeds 2(`+ 1). In this case, there are no
non-constant rational functions on XH of degree at most 2(` + 1), hence D is the zero
divisor. This gives the following equality of divisors:

T`u(P ) + uσT`(Q) = uσT`(P ) + T`u(Q).
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For every point P , we can choose Q such that the supports of T`u(P ) and T`u(Q) are
disjoint, and, therefore, last equality implies T`u(P ) = uσT`(P ) as divisors. Up to a base
change to C, each divisor on XH is a sum of points with integer coefficients, hence we
conclude that (3.3.3) holds at level of divisors.

Multiple points in the image of Hecke operators

In the proofs of Section 3.6 we look at points P ∈ XH(C) and primes ` such that T`(P )
is not a sum of distinct points. In this subsection we study this phenomenon. When P
is a cusp, we have the following result.

Proposition 3.3.4. Let n be a positive integer and let H be a subgroup of GL2(Z/nZ).
Let ` be a prime number not dividing n, let σ ∈ Gal(Q/Q) be a Frobenius element at `
and let C ∈ XH(Q) be a cusp. Then

T`(C) = Cσ + ` 〈`〉(Cσ
−1

).

Proof. The divisor T`(C) = qt∗pr∗(C) is supported on the cusps because both the maps
pr, qt : XH` → XH send non-cuspidal points to non-cuspidal points and cusps to cusps.
If we fix a prime ideal l in the algebraic integers such that l | `, then, by [32, IV.3.4], each
cusp in XH(Q) reduces to a different point modulo l. Thus, it is enough to prove that
T`(C) is congruent to Cσ + ` 〈`〉(Cσ−1) modulo l, and this is true by Eichler-Shimura
Relation.

We need a criterion to characterize the points (E, φ) ∈ YH(C) such that their image
via T` contains a point with multiplicity at least 2. It is given by the following lemma.

Lemma 3.3.5. Let n be a positive integer, let H be a subgroup of GL2(Z/nZ) and let `
be a prime not dividing n. For all points (E, φ), (E, φ′) ∈ YH(C) and all positive integers
m ≥ 2, the following are equivalent:

1. T`(E, φ) contains (E′, φ′) with multiplicity m;

2. there are m isogenies α1, . . . , αm : E → E′ of degree ` with distinct kernels such
that (φ′)−1◦αj |E[n]◦φ lies in ±H, for every j = 1, . . . ,m;

3. there are m endomorphisms β1 = `, β2, . . . , βm of E′ of degree `2 and an isogeny
α : E′ → E of degree ` such that:

P1 βi 6= u ◦ βj, for i, j = 1, . . . ,m, such that i 6= j and for each u ∈ Aut(E′);

P2 kerα ⊂ kerβj, for every j in {1, . . . ,m};
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P3 the matrices `−1φ−1◦α|E′[n]◦φ′ and `−1(φ′)−1◦βj |E′[n]◦φ′ lie in ±H, for every j in
{1, . . . ,m}, where `−1 is the inverse of the scalar matrix ` mod n.

Proof. The equivalence between (1) and (2) follows by definition of Hecke operator. Now
we prove the equivalence between (2) and (3). Let α1, . . . , αm be isogenies of degree `
with distinct kernels, then it is enough to take α equal to the dual of α1 and βj = αj◦α,
for j = 1, . . . ,m. Conversely, if β1, . . . , βm respect the three properties above, then, for
every j = 1, . . . ,m, we can take αj to be the unique isogeny such that βj = αj◦α.

From now on we denote by ρ = e
2πi

3 the primitive third root of unity contained in
H. Moreover, for every τ ∈ H, we denote by Eτ the elliptic curve C/(Z+Zτ). The
following result proves that if T`(E, φ) shows certain multiplicities, then E has complex
multiplication by Q(i) or Q(ρ).

Proposition 3.3.6. Let n be a positive integer, let H be a subgroup of GL2(Z/nZ), let
` be a prime not dividing n and let (E, φ) be a C-point of YH . Then:

1. the points in the image T`(E, φ) have multiplicity at most 3;

2. if T`(E, φ) contains a point with multiplicity 3, then End(E) contains Z[`2ρ];

3. if ` ≥ 5 and

T`(E, φ) = 2(P1 + . . .+ P `+1
2

) or T`(E, φ) = 2(P1 + . . .+ P `−1
2

) + P `+1
2

+ P `+3
2
,

for P1, . . . , P `+3
2
∈ YH(C) distinct points, then End(E) contains Z[`2i].

Proof. Parts (1) and (2).
First we prove that if T`(E, φ) contains a point with multiplicity at least 3, then

End(E) contains Z[`2ρ]. Let (E′, φ′) ∈ YH(C) such that T`(E, φ) ≥ 3(E′, φ′), then
there are isogenies α : E′ → E and β1 = `, β2, β3 : E′ → E′ as in Lemma 3.3.5 and,
consequently, End(E′) and End(E) are orders in a quadratic field K, with ring of integers
OK . Since ker(α) is non-trivial and it is contained in ker(βj), for every j = 1, 2, 3, the
ideal of End(E′) generated by β1, β2, β3 is non-trivial. Using that End(E′) ⊂ OK is
a finite extension of rings, we deduce that the ideal of OK generated by β1, β2, β3 is
non-trivial as well. The ideals β1OK , β2OK and β3OK of OK have norm `2 and if they
are three distinct ideals, then there are two distinct primes l1, l2 ⊂ `OK such that, up
to reordering, β1OK = l1l2, β2OK = l22, β3OK = l21, implying that the ideal of OK
generated by β1, β2, β3 is the whole OK , contradiction. Hence the ideals β1OK , β2OK
and β3OK cannot be distinct.

If K /∈ {Q(i),Q(ρ)}, then O×K = {±1}, hence βkOK = βjOK implies βk = ±βj ,
which is absurd by condition P1 in Lemma 3.3.5. Hence either K = Q(i) or K = Q(ρ).
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Then OK = Z[u] with u ∈ {i, ρ} and End(E′) = Z[mu] for some positive integer m > 0.
Condition P1 in Lemma 3.3.5 implies that the ideals of End(E′) generated by β1, β2 and
β3 are distinct and we have just proven that their extensions to Z[u] are not distinct. We
know that ideal extension gives a bijection between ideals in Z[mu] with index coprime to
m and ideals in Z[u] with index coprime to m, hence `2 = [OK : βjOK ] is not coprime to
m. Therefore ` | m and End(E′) ⊂ Z[`u]. Hence β2 and β3 are elements of Z[`u] having
norm equal to `2 and the only elements of this kind are {±`,±`u,±`u2}. If K = Q(i),
then β1, β2, β3 ∈ {±`,±`i}, contradicting βk 6= ±βj , for k 6= j. If K = Q(ρ), the only
possibility, up to reordering, is β2 = ±ρ` and β3 = ±ρ2` and consequently m = `.
Finally, since there is an isogeny E′ → E of degree `, we have Z[`2ρ] ⊂ End(E).

Finally, we suppose that (E, φ) ∈ YH(C) and (E′, φ′) appears in T`(E, φ) with mul-
tiplicity at least 4. Then, by what we have just proven, End(E′) = Z[`ρ]. Hence, there
are exactly 3 elements in End(E′), up to sign, with norm equal to `2 and we cannot
find elements β1, . . . , β4 satisfying the properties of Lemma 3.3.5. This contradiction
concludes the proof of Parts (1) and (2).

Part (3).
Let τ be an element of H such that E = Eτ . Then

T`(E, φ) = (E τ
`
, φ0) + (E τ+1

`
, φ1) + . . .+ (E τ+`−1

`
, φ`−1) + (E`τ , φ`),

for suitable φ0, . . . , φ`. The hypothesis on T`(E, φ) implies that we can find three distinct
integers r1, r2, r3 ∈ {0, . . . , `−1}, with corresponding

(3.3.7) τ1 := (τ + r1)/`, τ2 := (τ + r2)/`, τ3 := (τ + r3)/`,

such that (Eτ1 , φr1), (Eτ2 , φr2) and (Eτ3 , φr3) appear in T`(E, φ) with multiplicity at
least 2. In particular by Lemma 3.3.5 we see that End(Eτk) contains a non-trivial element
of degree `2, for k = 1, 2, 3, hence Eτk and E have CM over some quadratic imaginary
field K ⊂ C. Therefore τ ∈ K and there are a, b ∈ Q such that

(3.3.8) τ2 = aτ + b.

Hence End(Eτ1), End(Eτ2) and End(Eτ3) are naturally subrings ofOK the ring of integers
of K. We denote by I their intersection.

Now, we prove that I ⊂ Z + `OK . Let λ ∈ I. We know that λ defines an element in
the endomorphism ring of Eτ1 , Eτ2 and Eτ3 if and only if the lattices

(3.3.9) Z + Zτ1, Z + Zτ2 and Z + Zτ3

are stable under the multiplication by λ. In particular λ = λ · 1 lies in all these lattices
and in their intersection Z+Zτ , hence λ = x+ yτ , for x, y ∈ Z. Then, all the lattices in
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(3.3.9) are stable also under the multiplication by µ := yτ and consequently

µτ1 ∈ Z + Zτ1, µτ2 ∈ Z + Zτ2, µτ3 ∈ Z + Zτ3.

Then, using (3.3.7) and (3.3.8), we deduce that ay and by lie in Z and that the polynomial

p(t) := −yt2 − yat+ yb ∈ Z[t]

has the property p(r1) ≡ p(r2) ≡ p(r3) ≡ 0 mod `. Since r1, r2 and r3 are pairwise
distinct modulo `, we deduce that y, ay and by are divisible by ` and consequently

µ2 = (yτ)2 = ay2τ + by2 = ayµ+ by2 ∈ ayOK + byOK ⊂ `OK .

If y = 0 or if the ideal `OK is radical, we deduce that µ lies in `OK and consequently
λ = x + µ lies in Z + `OK . If y 6= 0 and `OK factors as l2, for a prime ideal l | `, then
the norm of µ is equal to by2 which is a multiple of `2, hence µ lies in l2 = `OK and, as
before, λ lies in Z + `OK .

Let a1, a2, a3 be positive integers such that End(Eτk) = Z + akOK , for k = 1, 2, 3.
Then Z + lcm(a1, a2, a3)OK = I ⊂ Z + `OK . Hence ` | lcm(a1, a2, a3), i.e., we can
suppose, up to renaming τ1, τ2, τ3, that End(Eτ1) is contained in Z+`OK . Let β1 = `, β2

be endomorphisms of Eτ1 satisfying the properties of Lemma 3.3.5. We write OK = Z[γ],
for a suitable γ, and β2 = z + wγ. Since End(Eτ1) ⊂ Z + `OK , then w is multiple of `
and, since the norm of β2 is `2, we deduce that z is multiple of ` as well. Hence β2 ∈ `OK
and β2 = u` for some u ∈ O×K . Since β2 6= ±β1 = ±`, we deduce that OK has non-trivial
units, hence either K = Q(i) or K = Q(ρ).

We suppose by contradiction that K = Q(ρ). Then we have that u ∈ {±ρ,±ρ2} and
Z[β2] = Z[`ρ] ⊂ End(Eτ1). Since β2 /∈ `End(Eτ1)× by property P1 of Lemma 3.3.5, we
deduce that End(Eτ1) 6= Z[ρ], hence End(Eτ1) = Z[`ρ]. In particular u2` ∈ End(Eτ1)
and the third condition in Lemma 3.3.5 is satisfied by (E, φ), (Eτ1 , φr1), α, β1, β2 together
with β3 := u2`. Hence the point (Eτ1 , φr1) appears with multiplicity 3 in T`(E, φ) which
is impossible. Thus, K = Q(i) and β2 = ±`i. Hence End(Eτ1) contains Z[`i] and, since
there is an isogeny of degree ` between E and Eτ1 , then End(E) contains Z[`2i].

The following proposition characterizes when φ−1◦τ |Eτ [n]◦φ belongs to±H, for τ = ρ, i,
in terms of the multiplicities shown in the divisor T`(Eτ , φ).

Proposition 3.3.10. Let n be a positive integer, let H be a subgroup of GL2(Z/nZ) and
let ` be a prime not dividing n.

1. Let (Eρ, φ) ∈ YH(C). The matrix φ−1◦ρ|Eρ[n]◦φ lies in ±H if and only if the divisor
T`(Eρ, φ) contains a point with multiplicity 3.
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2. Let (Ei, φ) ∈ YH(C). If ` > 2: The matrix φ−1◦i|Ei[n]◦φ lies in ±H if and only if
there are distinct points P1, . . . , P `+3

2
∈ YH(C) such that

(3.3.11)

T`(Ei, φ) = 2(P1 + . . .+ P `+1
2

)

or

T`(Ei, φ) = 2(P1 + . . .+ P `−1
2

) + P `+1
2

+ P `+3
2
.

If ` = 2: The matrix φ−1◦i|Ei[n]◦φ lies in ±H if and only if there are two distinct
points P1, P2 ∈ YH(C) such that

T2(Ei, φ) = 2P1 + P2.

Proof. Part (1).
If C ⊂ Eρ[`] is a subgroup of order `, then ρC and ρ2C are subgroups of order `

as well and there are two unique isomorphisms u, v that make the following diagrams
commutative:

Eρ Eρ , Eρ Eρ

Eρ/C Eρ/ρC, Eρ/C Eρ/ρ
2C.

πC

ρ

πρC πC

ρ2

πρ2C

u v

We have that ρC = C if and only if ρ is an endomorphism of Eρ/C, which is in turn equiv-
alent to Aut(Eρ/C) 6= {±1} or End(Eρ/C) = Z[ρ] and, since the class number of Z[ρ] is
equal to 1, this is equivalent to Eρ/C ∼= Eρ. Hence, if ρC 6= C, then Aut(Eρ/C) = {±1}
and, using that πC and πρC are bijections on the n-torsion subgroups, we have

(Eρ/C, πC◦φ) = (Eρ/ρC, πρC◦φ) ⇐⇒ (πρC |Eρ[n]◦φ)−1◦u|(Eρ/C)[n]◦(πC |Eρ[n]◦φ) ∈ ±H
⇐⇒ φ−1◦ρ|Eρ[n]◦φ ∈ ±H. (3.3.11.1)

Analogously, ρ2C 6= C if and only if Aut(Eρ/C) = {±1} and when this happens

(3.3.12) (Eρ/C, πC◦φ) = (Eρ/ρ2C, πρ2C◦φ) ⇐⇒ φ−1◦ρ|Eρ[n]◦φ ∈ ±H.

Since the endomorphism ρ does not act as a scalar on Eρ[`], there are at most two
non-trivial subgroups of Eρ[`] that are ρ-stable. In particular we can take a non-trivial
subgroup C0 such that C0, ρC0 and ρ2C0 are pairwise distinct.

If φ−1◦ρ|Eρ[n]◦φ lies in ±H, then, by (3.3.11.1) and (3.3.12),

T`(Eρ, φ) ≥ (Eρ/C0, πC0◦φ)+(Eρ/ρC0, πρC0◦φ)+(Eρ/ρ2C0, πρ2C0◦φ) = 3(Eρ/C0, πC0◦φ).
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Conversely, if T`(Eρ, φ) contains a point with multiplicity 3, there are three pairwise
distinct subgroups C1, C2, C3 ⊂ Eρ[`] of order ` such that

(Eρ/C1, πC1◦φ) = (Eρ/C2, πC2◦φ) = (Eρ/C3, πC3◦φ).

If one of the Cj is ρ-stable, then Eρ/C1 ∼= Eρ/C2 ∼= Eρ/C3 ∼= Eρ, and C1, C2, C3 are
all ρ-stable, contradicting that there are at most two non-trivial ρ-stable subgroups of
Eρ[`]. In particular Z[ρ] ) End(Eρ/C1) and since E/C1 is `-isogenous to Eρ we deduce
that End(Eρ/C1) = Z[`ρ]. Hence, the only endomorphisms of Eρ/C1 having degree `2

are ±`,±ρ`,±ρ2` and so there are at most three subgroups C ⊂ Eρ[`] of order ` such
that Eρ/C is isomorphic to Eρ/C1, namely: C1, ρC1 and ρ2C1. We deduce that, up to
reordering, C2 = ρC1 hence, by (3.3.11.1), φ−1◦ρ|Eρ[n]◦φ lies in ±H.

Part (2).
If C ⊂ Ei[`] is a subgroup of order `, then iC is another subgroup of order ` and

there is a unique isomorphism u that makes the following diagram commutative:

Ei Ei

Ei/C Ei/iC.

πC

i

πiC

u

We have that iC = C if and only if End(Ei/C) = Z[i] if and only if Aut(Ei/C) 6= {±1}.
Hence, if iC 6= C, then Aut(Ei/C) = {±1} and, using that πC and πiC are bijections on
the n-torsion subgroups, we have
(3.3.13)

(Ei/C, πC◦φ) = (Ei/iC, πiC◦φ) ⇐⇒ (πiC◦φ)−1◦u|(Ei/C)[n]◦(πC◦φ) ∈ ±H
⇐⇒ φ−1◦i|Ei[n]◦φ ∈ ±H.

The endomorphism i does not act as multiplication by a scalar on Ei[`]. For each
subgroup C ⊂ Ei[`] of order `, except at most two, we have C 6= iC. Hence, there are
subgroups C1, . . . , C `+3

2
⊂ Ei of order ` such that {C1, iC1, . . . , C `−1

2
, iC `−1

2
, C `+1

2
, C `+3

2
}

is the set of all the `+ 1 subgroups of order ` of Ei.
If φ−1◦i|Ei[n]◦φ lies in ±H, then, by (3.3.13), we have

T`(Ei, φ) =
`−1

2∑
k=1

2(Ei/Ck, πCk◦φ) + (Ei/C `+1
2
, πC `+1

2
◦φ) + (Ei/C `+3

2
, πC `+3

2
◦φ),

and no point appears with multiplicity greater than 2 because of Proposition 3.3.6.
Now we assume that (3.3.11) holds. If ` = 3, there are C1, C2 ⊂ Ei subgroups of order

3 such that Ei/C1 is not isomorphic to Ei/C2 and C1, iC1, C2, iC2 are all the subgroups
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of Ei of order 3. Hence Equation (3.3.11) implies that, up to renaming,

(Ei/C1, πC1◦φ) = (Ei/iC1, πiC1◦φ),

and by (3.3.13), we have that φ−1◦i|Ei[n]◦φ lies in ±H. The case ` = 2 is similar to ` = 3.
We now suppose ` ≥ 5, so there are more repetitions in Equation (3.3.11). There are at
most two possible subgroups C such that iC = C. Hence Equation (3.3.11) implies the ex-
istence of a subgroup C0 ⊂ Ei[`] such that (Ei/C0, πC0◦φ) has multiplicity 2 in T`(Ei, φ)
and C0 6= iC0. It follows that Ei/C0 is not isomorphic to Ei, thus End(Ei/C0) = Z[`i],
and this implies that ±` and ±`i are the only elements of End(Ei/C0) having degree `2.
Hence, if C is a subgroup of Ei[`] of order ` such that Ei/C is isomorphic to Ei/C0, then
C ∈ {C0, iC0}. Since (Ei/C0, πC0◦φ) has multiplicity 2, we have

(Ei/C0, πC0◦φ) = (Ei/iC0, πiC0◦φ),

and by (3.3.13), we have that φ−1◦i|Ei[n]◦φ lies in ±H.

3.4 Cartan modular curves and their jacobians
We give the definition of Cartan modular curves following [93, Appendix A.5]. Let n>1
be an integer and let A be a free commutative étale Z/nZ-algebra of rank 2. For each
prime p | n, we have that A/pA is isomorphic either to Fp × Fp or to Fp2 : in the former
case we say that A is split at p, in the latter we say that A is non-split at p. Moreover,
for every assignment of each prime p|n to split or non-split, there is a unique, up to
isomorphism, algebra A which is split or non-split at every p | n accordingly to the
assignment.

We fix a Z/nZ-basis of A and, consequently, we identify the automorphism group of
A, as Z/nZ-module, with GL2(Z/nZ). The group A× of the units of A acts on A by
multiplication, giving an embedding of A× inside GL2(Z/nZ). A subgroup of GL2(Z/nZ)
which is the image of such an embedding is called a Cartan subgroup. The normalizer
of A× inside GL2(Z/nZ) contains all the matrices representing automorphisms of the
ring A, hence H := 〈A×,AutRing(A)〉 is a subgroup of GL2(Z/nZ) that contains A× as
normal subgroup. We call every such an H a Cartan-plus subgroup of GL2(Z/nZ). The
natural map AutRing(A)→

∏
p|n AutRing(A⊗Fp) is an isomorphism, hence AutRing(A) is

isomorphic to (Z/2Z)ω(n), where ω(n) is the number of prime divisors of n. In particular,
given A, the Cartan subgroup has index 2ω(n) inside the Cartan-plus subgroup. Moreover,
if n is odd, the Cartan-plus is equal to the normalizer of the Cartan subgroup inside
GL2(Z/nZ). We call Cartan modular curves the modular curves associated to Cartan
subgroups or to Cartan-plus subgroups of GL2(Z/nZ).

When n = pe is a prime power, we use the following notation:

92



3. AUTOMORPHISMS OF CARTAN CURVES

• X+
ns(pe) := XH , if H is a Cartan-plus subgroup non-split at p;

• Xns(pe) := XH , if H is a Cartan subgroup non-split at p;

• X+
s (pe) := XH , if H is a Cartan-plus subgroup split at p;

• Xs(pe) := XH , if H is a Cartan subgroup split at p.

Remark 3.4.1. If H1 and H2 are two conjugate subgroups of GL2(Z/nZ), then the corre-
sponding modular curves XH1 and XH2 are isomorphic. Moreover, given two Cartan or
two Cartan-plus subgroups C1 and C2 of GL2(Z/nZ) with the same assignment of each
prime p | n to split or non-split, then C1 and C2 are conjugate, so XC1

∼= XC2 . This
implies that the above definitions are unambiguous.

We want to understand the structure, up to isogeny, of the jacobian of the Cartan
modular curves. This is achieved using Chen’s isogenies (see [25], [39],[26]). Let p be a
prime and let e be a positive integer. We give an analogue of [26, Theorem 1.1] involving
the jacobian of Xns(pe) for every p, and, to do this, we extend the analysis in [26] to the
case p = 2. In order to state our result, we choose a non-square element ξ ∈ (Z/peZ)×

when p is odd and define the following subgroups of GL2(Z/peZ) for every prime p:

Cs(pe) :=
{(

a 0
0 d

)
, a, d ∈ (Z/peZ)×

}
;

C+
s (pe) := Cs ∪

{(
0 b

c 0

)
, b, c ∈ (Z/peZ)×

}
;

Cns(2e) :=
{(

a b

b a+ b

)
, a, b ∈ Z/2eZ, (a, b) 6≡ (0, 0) mod 2

}
;

C+
ns(2e) := Cns(2e) ∪

{(
a a− b
b −a

)
, a, b ∈ Z/2eZ, (a, b) 6≡ (0, 0) mod 2

}
;

Cns(pe) :=
{(

a bξ

b a

)
, a, b ∈ Z/peZ, (a, b) 6≡ (0, 0) mod p

}
, if p is odd;

C+
ns(pe) := Cns(pe) ∪

{(
a bξ

−b −a

)
, a, b ∈ Z/peZ, (a, b) 6≡ (0, 0) mod p

}
, if p is odd;

Br(pe) :=
{(

a bpr

cpr+1 d

)
, a, b, c, d ∈ Z/peZ, ad 6≡ 0 mod p

}
, for r = 0, 1, . . . , e−1;

Tr(pe) :=
{(

a bpr

cpr d

)
, a, b, c, d ∈ Z/peZ, ad− bcp2r ∈ (Z/peZ)×

}
, for r = 0, 1, . . . , e.
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We remark that Te(pe) = Cs(pe) and that Cs(pe), Cns(pe) are respectively a split and
a non-split Cartan subgroup of GL2(Z/peZ) and C+

s (pe), C+
ns(pe) are the corresponding

Cartan-plus subgroups.

Proposition 3.4.2. Let p be a prime, let e be a positive integer and let G = GL2(Z/peZ).
We have the following isomorphism of Q-representations of G:

(3.4.3) Q[G/Cns(pe)]⊕
e−1⊕
r=0

2Q[G/Br(pe)] ∼= Q[G/Cs(pe)]⊕
e−1⊕
r=0

2Q[G/Tr(pe)].

Proof. We follow the same strategy as in [26]. It is enough to prove that the representa-
tion on the right hand side has the same character as the representation on the left hand
side. For every subgroup H ⊂ G, let χH be the character of the representation Q[G/H].
If p = 2, the character χH for the groups appearing in the statement is computed in the
Appendix of this article. If p is odd and H has the form Br, Tr or Cs, the character χH
is given in [26, Tables 3 and 4]; if p is odd and H = Cns(pe), then

χH(g) =



(p−1)p2e−1, if g is a scalar matrix (type I in [26, Tables 3, 4]),
2p2µ, if g is a conjugate of

(
α ξβpµ

βpµ α

)
, with β ∈ (Z/peZ)×

and 0 ≤ µ < e− 1 (types RI ′µ and T ′ in [26, Tables 3, 4]),
0, otherwise.

The characters of the representations in Equation (3.4.3) are sums of the previous char-
acters. A straightforward computation proves the proposition.

As explained in [39, Théorème 2 and the discussion below it], the representation
theoretic result in Proposition 3.4.2, together with the isomorphisms of modular curves
XBr(pe) ∼= X0(p2r+1) andXTr(pe) ∼= XCs(pr) ∼= X0(p2r), implies the following proposition
on jacobians of modular curves.

Proposition 3.4.4. Let p be a prime, let e be a positive integer and let Jns(pe) be the
jacobian of Xns(pe). We have the following isogenies over Q:

Jns(pe)×
e−1∏
r=0

J0(p2r+1)2 ∼ J0(p2e)×
e−1∏
r=0

J0(p2r)2, Jns(pe) ∼
e∏
r=1

Jnew
0 (p2r).

For jacobians of Cartan curves of composite level we have the following theorem.

Theorem 3.4.5. Let n > 1 be an integer and let H < GL2(Z/nZ) be a Cartan or a
Cartan-plus subgroup. Then the jacobian of XH is a quotient of J0(n2).
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Proof. Since all the Cartan-plus subgroups contain a Cartan subgroup, we can suppose
that H is a Cartan subgroup. Let a, b be positive integers such that n = ab and such
that H is split at all primes dividing a and non-split at all the primes dividing b. If
b = 1, then XH(n) ∼= X0(n2). Thus, we suppose that b > 1. Let b = pe1

1 · · · p
ek
k be

the prime factorization of b and for each j = 1, . . . , k, we set Gj := GL2(Z/pejj Z) and
Hj := Cns(pejj ) < Gj . Moreover we set G := GL2(Z/nZ) and Gs := GL2(Z/aZ), and we
choose a totally split Cartan subgroup Hs < Gs. Chinese Remainder Theorem gives an
identification between G and Gs ×

∏k
j=1Gj sending H to a conjugate of Hs ×

∏k
j=1Hj .

Instead of working with G-representations up to isomorphism, it is easier to work
inside the representation ring of G, namely the Grothendieck ring of the category of
finite-dimensional G-representations, where we can take differences of representations.
By Proposition 3.4.2 we have the following equality in the representation ring of Gj over
Q:

Q
[
Gj/Hj

]
= Q

[
Gj/Kj(p2ej

j )
]

+ 2
2ej−1∑
i=0

(−1)iQ
[
Gj/Kj(pij)

]
,

whereKj(p2r
j ) := Tr(pejj ) for r = 0, . . . , ej , andKj(p2r+1

j ) := Br(pejj ) for r = 0, . . . , ej−1.
Interpreting Gj-representations as G-representations via the reduction modulo pejj map,
the above equality also holds in the representation ring of G over Q. We now get in-
formation about the representation Q[G/H] by taking the tensor product of the above
identities, for j = 1, . . . , k, and using that, for all the groups G1,G2 and all the subgroups
Hi < Gi, we have the isomorphisms of (G1×G2)-representations

Q[G1/H1]⊗Q[G2/H2] ∼= Q[(G1×G2)/(H1×H2)].

Denoting by ⊗ the product in the representation ring of G over Q, we have

(3.4.6)

Q
[
G/H

]
= Q

[
Gs/Hs

]
⊗

k⊗
j=1

Q
[
Gj/Hj

]
= Q

[
Gs/Hs

]
⊗

k⊗
j=1

(
Q
[
Gj/Kj(p2ej

j )
]

+ 2
2ej−1∑
i=0

(−1)iQ
[
Gj/Kj(pij)

])
=
∑
d|b2

ε(d)m(d)Q
[
G/K(d)

]
,

where, for every d = pf1
1 · · · p

fk
k dividing b2, we have

ε(d) := (−1)f1+...+fk , m(d) := 2#{j:fj 6=2ej}, K(d) := Hs ×
k∏
j=1

Kj(pfjj ) < G.
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As explained in [39], Equation (3.4.6) implies the following equality in the Grothendieck
group of the category of abelian varieties over Q up to isogeny:

Jac(XH) ∼
∏
d|b2

Jac(XK(d))ε(d)m(d).

Denoting by U(m) the Borel subgroup {( ∗ ∗0 ∗ )} < GL2(Z/mZ), we notice that a Kj(pij)-
structure on an elliptic curve E is equivalent to a U(pij)-structure on E and aHs-structure
is equivalent to a U(a2)-structure. Therefore, a K(d)-structure on an elliptic curve E is
equivalent to a U(a2d)-structure on E. Hence the modular curve XK(d) is isomorphic to
X0(a2d) and consequently

Jac(XH) ∼
∏
d|b2

J0(a2d)ε(d)m(d).

Using J0(a2d) ∼
∏
m|a2d J

new
0 (m)σ0

(
a2d
m

)
, where σ0(n) is the number of divisors of n, one

can compute that

(3.4.7) Jac(XH) ∼
∏
d|b2

J0(a2d)ε(d)m(d) ∼
∏
c|a2

d|b

Jnew
0 (cd2)σ0

(
a2
c

)
.

Hence, in the Grothendieck group of the category of abelian varieties over Q up to isogeny,
Jac(XH) is equal to an abelian subvariety of J0(n2). This proves the theorem.

Remark 3.4.8. In [26], Chen deals with Cartan curves and Cartan subroups whose level
is an odd prime power. Using the computations in our Appendix, Theorem 1.1 in [26]
(and therefore all the results contained in the paper), can be extended to the cases of
level 2e, for e a positive integer. Notice that C+

s (2e) is different from the normalizer of
Cs(2e) and that, substituting C+

s (pe) with the normalizer of Cs(pe), Theorem 1.1 in [26]
wouldn’t extend to the case of level 2e.

Now we give a lower bound for the genus of Cartan modular curves: we show that
for every ε > 0 the genus of a Cartan modular curve of level n big enough is larger than
n2−ε.

Proposition 3.4.9. Let n ≥ 105 be an integer and let H < GL2(Z/nZ) be either a
Cartan or a Cartan-plus subgroup. Denoting by g(ΓH) the genus of XH we have

g(ΓH) > 0.01n
2− 0.96

log logn

log logn .

Proof. Since det(H) = (Z/nZ)×, then XH = ΓH\H. Given a congruence subgroup Γ of
SL2(Z) containing −Id, we denote by d(Γ) the index [SL2(Z) : Γ]. Moreover, we denote
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by ε∞(Γ) the number of cusps of Γ\H and by ε2(Γ), respectively ε3(Γ), the number of
elliptic points of period 2, respectively 3, of Γ\H. Then, by [38, Theorem 3.1.1], the
genus of Γ\H is

(3.4.10) g(Γ) = 1 + d(Γ)
12 −

ε2(Γ)
4 − ε3(Γ)

3 − ε∞(Γ)
2 .

The numbers d(Γ), ε∞(Γ), ε2(Γ) and ε3(Γ) are multiplicative with the following meaning:
Given two coprime integers n1, n2 and two congruence subgroups Γ1,Γ2 < SL2(Z) of level
n1 and n2 respectively, both containing −Id, then

(3.4.11)
d(Γ1 ∩ Γ2) = d(Γ1)d(Γ2), ε∞(Γ1 ∩ Γ2) = ε∞(Γ1)ε∞(Γ2),
ε2(Γ1 ∩ Γ2) = ε2(Γ1)ε2(Γ2), ε3(Γ1 ∩ Γ2) = ε3(Γ1)ε3(Γ2).

Let n = pe1
1 · · · p

ek
k the prime factorization of n and we denote by Hj the reduction of H

modulo pejj . Then each Hj is either a Cartan or a Cartan-plus subgroup and, under the
isomorphism GL2(Z/nZ) ∼=

∏k
j=1 GL2(Z/pejj Z), we have H ∼=

∏k
j=1Hj and therefore

ΓH =
⋂k
j=1 ΓHj . Last equation, together with the multiplicativity and (3.4.10), implies

that we can estimate the genus of XH estimating the quantities d(ΓH), ε∞(ΓH), ε2(ΓH)
and ε3(ΓH) for n = pe. We write these values in Table 3.1 (see [38] and [36] for the split
case and [11] for the non-split case).

Table 3.1: Degree, elliptic points and cusps for prime power levels.

H d(ΓH) ε2(ΓH) ε3(ΓH) ε∞(ΓH)

Cs(pe) p2e−1(p+1)
2 if p ≡ 1 (4)
0 if p 6≡ 1 (4)

2 if p ≡ 1 (3)
0 if p 6≡ 1 (3)

pe−1(p+1)

C+
s (pe) p2e−1(p+1)

2

2e−1 if p = 2
1+pe−1(p−1)

2 if p ≡ 1 (4)
pe−1(p+1)

2 if p ≡ 3 (4)

1 if p ≡ 1 (3)
0 if p 6≡ 1 (3)

2 if pe = 2
pe−1(p+1)

2

Cns(pe) p2e−1(p−1)
0 if p 6≡ 3 (4)
2 if p ≡ 3 (4)

0 if p 6≡ 2 (3)
2 if p ≡ 2 (3)

pe−1(p−1)

C+
ns(pe)

p2e−1(p−1)
2

2e−1 if p = 2
pe−1(p−1)

2 if p ≡ 1 (4)
1+pe−1(p+1)

2 if p ≡ 3 (4)

0 if p 6≡ 2 (3)
1 if p ≡ 2 (3)

1 if pe = 2
pe−1(p−1)

2
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The table implies that for every prime pj dividing n with exponent ej we have

d(ΓHj ) ≥ 1
2p

2ej
j (1− 1

pj
), ε2(ΓHj ) ≤ p

ej
j , ε3(ΓHj ) ≤ 2, ε∞(ΓHj ) ≤ p

ej
j (1 + 1

pj
).

These inequalities and the multiplicativity (3.4.11) imply the following estimates for
n ≥ 15:

d(ΓH) ≥ nφ(n)
2ω(n) >

n2

4.4 log log(n)2ω(n) ≥
n2

4.4 log log(n)21.3841 logn
log logn

>
n2− 0.96

log logn

4.4 log logn,

ε2(ΓH) ≤ n, ε3(ΓH) ≤ 2ω(n) ≤ n, ε∞(ΓH) ≤ n
k∏
j=1

(1 + 1
pj

) ≤ σ1(n) ≤ 2.59n log logn,

where φ(n) is Euler’s totient function which is estimated using [89, Theorem 15], ω(n) = k

is the number of prime divisors of n which is estimated as in [87, Théorème 11], and σ1(n)
is the sum of positive divisors of n which is estimated as in [55, Theorem 1]. For n ≥ 105,
substituting in (3.4.10), we get

g(ΓH) > 1 + n2− 0.96
log logn

52.8 log logn −
n

3 −
n

4 − 1.3n log logn ≥ 0.01n
2− 0.96

log logn

log logn .

3.5 Field of definition of automorphisms
In this section we prove that, when the level is large enough, every automorphism of
the modular curve XH associated to a subgroup H of GL2(Z/nZ) is defined over the
compositum of some quadratic fields, and in some cases we find explicitly this field.

Whenever K is a field, X is a variety over K, and F is an extension of K, we
write AutF (X) for the set of automorphisms of X defined over F ; analogously we use
the notations EndF (X) and HomF (X,Y ) for X and Y being abelian varieties over K.
Whenever we omit the dependency on the field, we mean automorphisms (or endomor-
phisms) defined over the algebraic closure of K; in particular when X is a modular curve
the “group of the automorphisms of X” is AutQ(X) or equivalently AutC(X). We start
with a straightforward generalization of [60, Lemma 1.4].

Lemma 3.5.1. Let K be a perfect field with algebraic closure K, let X be a smooth
projective and geometrically connected curve defined over K of genus g(X) and let Jac(X)
be its jacobian variety. We suppose that there are two abelian varieties A1 and A2 over
K such that HomK(A1, A2) = 0 and such that Jac(X) is isogenous to A1×KA2. If

g(X) > 2 dim(A2) + 1,
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and if F ⊂ K is an extension of K such that EndK(A1) = EndF (A1), then every
automorphism of X over K can be defined over F .

Proof. We fix isogenies ϕ : Jac(X) → A1×KA2 and ϕ̃ : A1×KA2 → Jac(X) whose com-
positions are multiplications by an integer. Let u ∈ AutK(X) and σ ∈ Gal(K/F ) and
consider the automorphism v := uσ ◦ u−1. Let Y be the quotient of X by the sub-
group of automorphisms generated by v (which is finite since g(X) ≥ 2) and let Jac(Y )
be the jacobian of Y . Using ϕ and the equality HomK(A1, A2) = 0, we can identify
u∗, u

σ
∗ ∈ AutK(Jac(X)) respectively with

(u1, u2), (uσ1 , uσ2 ) ∈
(
EndK(A1×KA2)⊗Q

)× ∼= (EndK(A1)⊗Q
)×× (EndK(A2)⊗Q

)×
.

Since EndK(A1) = EndF (A1), then u1 = uσ1 , and v∗ = (id, v2). This implies that there is
a morphism of abelian varieties A1 → Jac(Y ) with finite kernel, namely the composition
of the natural inclusion A1 → A1×KA2, the isogeny ϕ̃ and the map Jac(X) → Jac(Y ).
In particular, denoting by g(Y ) the genus of Y , we have

g(X)− dim(A2) = dim(A1) ≤ g(Y ).

Hence, by the Riemann-Hurwitz formula applied to the projection X → Y , we have

dim(A1) + dim(A2)− 1 ≥ d(g(Y )− 1) ≥ ddim(A1)− d,

where d is the order of v. If d > 1, we get dim(A1) ≤ dim(A2) + 1, which is impossible
by hypothesis. Hence d = 1 and v is the identity. This implies that uσ = u, for every
σ ∈ Gal(K/F ), i.e., since K is perfect, u ∈ AutF (X).

Every abelian variety A over a number field K, is isogenous over C to a product of
geometrically simple abelian varieties. We denote by AC the CM part of A that is the
product, with multiplicities, of the simple abelian varieties in the decomposition of A with
complex multiplication and we denote by AN the non-CM part of A defined analogously.
The CM part and the non-CM part of A are unique only up to isogeny and are defined
over K. We want to apply Lemma 3.5.1 to the case A1 = Jac(X)N and A2 = Jac(X)C.
Hence, we are interested in an upper bound on the dimension of the CM part of the
jacobian of Cartan modular curves. By Theorem 3.4.5, it is enough to know an upper
bound in the case X = X0(n).

Proposition 3.5.2. For every integer n > 1, the dimension gC
0 (n) of the CM part of

J0(n) satisfies
gC

0 (n) ≤ 9 log(n)2n
1
2 + 2.816

log logn .
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Proof. For every positive integer k, let Jnew
0 (k) be the new part of J0(k) and let σ0(k)

be the number of positive divisors of k. Then we have a canonical isogeny

J0(n) ∼
∏
d|n

Jnew
0 (d)σ0(n/d).

Denoting by gnew,C
0 (d) the dimension of the CM part of Jnew

0 (d), we also have

(3.5.3) gC
0 (n) =

∑
d|n

σ0(n/d)gnew,C
0 (d).

We know that Jnew
0 (d) is isogenous over Q to

∏
[f ]Af , where [f ] is the Galois orbit of the

newform f (see [38, Chapter 6]). By [95, Proposition 1.6], Af has non-trivial CM part
if and only if Af is isogenous over C to the product of finitely many copies of an elliptic
curve with CM by an imaginary quadratic field K, which is in turn equivalent to the
existence of an ideal m of OK and a primitive Grössencharacter λ of K defined modulo
m such that f = fλ (see [96, Section 4] for the definition of Grössencharacter and the
definition of the modular form associated to a Grössencharacter), the nebentypus ελ is
trivial (see [96, Lemma 3]) and d = |∆K ||m|, where ∆K is the discriminant of K and |m|
is the norm of the ideal m. This implies that gnew,C

0 (d) is equal to the number of such
triples (K,m, λ). For every choice of K and m, the set of primitive Grössencharacters
of K defined modulo m is a subset of the set of Grössencharacters of K defined modulo
m. If this set is not empty, then there is at least one Grössencharacter λ0 and all other
Grössencharacters are given by λ0χ, for χ a character of the group

C̃lm(K) := {fractional ideals of OK coprime to m}
{(α) : ∃a ∈ Z coprime to m such that α ≡ a mod m}

.

Thus, for given K and m, the cardinality of C̃lm(K) is larger than the number of triples
(K,m, λ) we are interested in, hence

(3.5.4) gnew,C
0 (d) ≤

∑
|∆K ||m|=d

#C̃lm(K) .

To give a bound on C̃lm(K) we look at the following short exact sequence

1 −→ (OK/m)×

O×K · (Z/(Z∩m))×
−→ C̃lm(K) −→ Cl(K) −→ 0,

where Cl(K) is the class group of K and we write O×K and (Z/(Z∩m))× in place of their
natural image inside (OK/m)×. We write m =

∏
pmp for p varying in the set of rational

primes and mp being a product of primes of OK dividing p. Thus the above short exact
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sequence gives

#C̃lm(K) ≤ #Cl(K)·#
(

(OK/m)×
(Z/(Z∩m))×

)
=#Cl(K)

∏
p | |m|

#
(

(OK/mp)×
(Z/(Z∩mp))×

)
≤

≤ 3 log(|∆K |)
√
|∆K |

∏
p | |m|

(
(1 + 1

p )|mp|1/2
)

=3 log(|∆K |)
√
|∆K ||m|

∏
p | |m|

(1+ 1
p ),

where the class number of K is estimated using [81, Theorem 8.10 and Lemma 8.16] and
the bound on the cardinality of (OK/mp)×/(Z/(Z∩mp))× is trivial after factoring mp.
Substituting in (3.5.4), we have

gnew,C
0 (d) ≤

∑
|∆K ||m|=d

(
3
√
d log(|∆K |)

∏
p| |m|

(1 + 1
p )
)
.

Let Md := #
{

(K,m) : |∆K ||m| = d
}

and for m ∈ Z≥1, we denote by σ1(m) the sum
of the positive divisors of m. We have σ1(m) < 3m logm, for each m ≥ 2 (see [55,
Theorem 1] if m ≥ 7, it is trivial in the remaining cases). Then

gnew,C
0 (d) ≤ 3Md

√
d log(d)

∏
p|d

(1 + 1
p ) ≤ 3Md

√
d log(d)σ1(d)

d ≤ 9Md

√
d log(d)2.

Substituting in (3.5.3), we get

(3.5.5)
gC

0 (n) ≤ 9
∑
d|n

σ0(n/d)Md

√
d log(d)2 ≤ 9

√
n log(n)2

∑
d|n

Mdσ0(n/d) ≤

≤ 9
√
n log(n)2#

{
(K,m, d) : |∆K ||m|d divides n

}
.

Writing the prime factorization n =
∏r
i=1 p

ei
i , we know that an imaginary quadratic field

K with discriminant dividing n must be K = Q(
√
−
∏r
i=1 p

εi
i ), with ε ∈ {0, 1}r. Hence

#
{

(K,m, d) : |∆K ||m|d divides n
}
≤

∑
ε∈{0,1}r

#
{

(m, d) : |∆K ||m|d divides n
}
≤

≤
∑

ε∈{0,1}r
m∈Z>0

#
{
m ⊂ OK : |m| = m

}
·#
{
d ∈ Z>0 : dm

r∏
i=1

pεii divides n
}
.

We have the factorizations m =
∏r
i=1 p

fi
i and d =

∏r
i=1 p

ci
i , where fi, ci ∈ {0, 1, . . . , ei},

for i = 1, . . . , r, and we denote by f the r-tuple whose components are the fi’s and
similarly we define c. Then the number of ideals m in OK having norm m is less than∏r
i=1(fi+1) which is equal to the number of pairs (a, b) of elements of Zr≥0 such that
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a+ b = f . Hence we get

#
{
(K,m, d):|∆K||m|d divides n

}
≤#

{
(ε, a, b, c) ∈ {0, 1}r×(Zr≥0)3: εi+ai+bi+ci ≤ ei

}
≤

≤
r∏
i=1

(
#
{
(ai, bi, ci)∈Z3

≥0 : ai+bi+ci ≤ ei
}

+ #
{

(ai, bi, ci)∈Z3
≥0 : ai+bi+ci ≤ ei−1

})
≤

≤
r∏
i=1

((ei + 3
3

)
+
(
ei + 2

3

))
≤

r∏
i=1

(ei + 2)(ei + 1)2

2 .

Notice that σ0(n) =
∏r
i=1(ei+1) is the number of positive divisors of n and that the

product
∏r
i=1

(ei+2)(ei+1)
2 is the number of triples (d1, d2, d3) of positive integers such

that d1d2d3 = n. Using the upper bounds, contained in [82] and [88], for these two
quantities, we get

#
{

(K,m, d) : |∆K ||m|d divides n
}
≤ n

1.538 log 2
log logn n

1.592 log 3
log logn ≤ n

2.816
log logn .

Substituting in (3.5.5) we find

gC
0 (n) ≤ 9

√
n log(n)2n

2.816
log logn = 9 log(n)2n

1
2 + 2.816

log logn .

When the level is a prime power, the previous upper bound is easier and smaller.

Proposition 3.5.6. For every prime p and positive integer e, the dimension gC
0 (pe) of

the CM part of J0(pe) satisfies

gC
0 (pe) ≤


13
√

2e if p = 2,
0 if p ≡ 1 mod 4,
5.5√pe log p if p ≡ 3 mod 4.

The proof follows the same steps of the previous proposition and is simplified by the
fact that there are few quadratic imaginary fields K whose discriminant divides pe. More
precisely: there are two fields when p = 2, there are no fields if p ≡ 1 mod 4 and there is
only one field if p ≡ 3 mod 4. We now give an upper bound for the field of definition of
the automorphisms of a Cartan modular curve of large enough level.

Proposition 3.5.7. Let n ≥ 10400 be an integer and let H < GL2(Z/nZ) be either a
Cartan or a Cartan-plus subgroup. Then every automorphism of XH is defined over the
compositum of all the quadratic fields whose discriminant divides n.
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Proof. Let JH be the jacobian of XH and let JC
H and JN

H be the CM part and the non-
CM part of JH respectively. By Lemma 3.5.1, it is enough to prove that 2 dim(JC

H)+1
is smaller than the genus of XH and that every endomorphism of JN

H is defined over
the compositum of all the quadratic fields whose discriminant divides n. The latter is
true because, by Theorem 3.4.5, JN

H is a quotient of J0(n2)N and by [60, Proposition
1.3] every endomorphism of J0(n2)N is defined over the compositum of all the quadratic
fields whose discriminant divides n. By Theorem 3.4.5 JC

H is a quotient of J0(n2)C hence
we can use Proposition 3.5.2 to bound the dim(JC

H); this, together with the bound for
the genus g(XH) of XH given in Proposition 3.4.9, implies the inequality we need when
n ≥ 10400:

2 dim(JC
H) + 1 ≤ 2 dim(J0(n2)C) + 1 ≤ 73 log(n)2n1+ 5.632

log logn <
n2− 0.96

log logn

100 log logn < g(XH).

Proposition 3.5.7 can be made sharper when n is a prime power.

Proposition 3.5.8. Let p be a prime and e a positive integer and let X be a curve
associated to a Cartan or a Cartan-plus subgroup of level pe. If the genus of X is at least
2, then every automorphism of X is defined over the field

Kp =


Q(i,
√

2), if p = 2,
Q
(√
p
)
, if p ≡ 1 mod 4,

Q (√−p) , if p ≡ 3 mod 4.

A strategy of proof is the same of Proposition 3.5.7:

(I) give an upper bound for dim(Jac(X)C);

(II) give a lower bound for the genus;

(III) apply [60, Proposition 1.3] and Theorem 3.4.5 to deduce that the endomorphisms
of Jac(X)N are defined over Kp;

(IV) apply Lemma 3.5.1.

In particular in the case of Xns(pe) and X+
ns(pe), when pe > 600, the propositions 3.4.4

and 3.5.6 and Table 3.1 give bounds in ((I)) and ((II)) that are sharp enough for ((IV)).
If pe ≤ 600, the bounds in Proposition 3.5.6 are sometimes not sharp enough. In these
cases we can compute explicitly the CM part and notice that only a factor of it of low
dimension has endomorphisms defined over a field bigger than Kp: whenever a CM factor
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is a rational elliptic curve, we know by CM theory that its endomorphisms are defined
over Kp and it can be discarded from the count. This is done in the MAGMA script
available at [70]. The case Xs(pe) ∼= X0(p2e) follows from [60, Corollary 1.14] and the
case X+

s (pe) ∼= X0(p2e) follows from the following proposition.

Proposition 3.5.9. Let p be a prime and e a positive integer. If the genus of X∗0 (pe) is
at least 2, then every automorphism of X∗0 (pe) is defined over the field

Kp =


Q(i,
√

2), if p = 2,
Q
(√
p
)
, if p ≡ 1 mod 4,

Q (√−p) , if p ≡ 3 mod 4.

Again, one can apply the same strategy used for Propositions 3.5.7 and 3.5.8, together
with the MAGMA script available at [70]. In particular we need a lower bound for the
genus of X∗0 (pe). Since we do not know an explicit reference giving a formula for this
genus, we write it in the following remark.
Remark 3.5.10. Given a positive integer n, let X+

0 (n) be the quotient of X0(n) by the
n-th Atkin-Lehner operator. This curve is equal to X∗0 (n) when n is the power of a
prime.

In [84, Equation 9] there is a formula for the genus g+
0 (n) of X+

0 (n) when n is prime.
When n = p2e with p prime, we can compute g+

0 (n) using Table 3.1 since X+
0 (n) is iso-

morphic to a split Cartan curve. For general n, [84, Equation 9] can be easily generalized
applying Riemann-Hurwitz formula to the natural map X0(n) → X+

0 (n) and counting
the number of fixed points of the n-th Atkin-Lehner operator. This gives

g+
0 (n) =


0, if n ∈ {1, 2, 3, 4},
1+g0(n)

2 − h(−n)+h(−4n)
4 , if n ≥ 5 is odd,

1+g0(n)
2 − h(−4n)

4 , if n ≥ 5 is even,

where g0(n) is the genus of X0(n) and h(D) is the class number of the quadratic order
with discriminant D, with the convention h(D) = 0 if D is a square or if D ≡ 2, 3 mod 4.
Remark 3.5.11. We are not always able to prove that every automorphism of a Cartan
modular curve is defined over a compositum of quadratic fields. For example, an analogue
of Section 3.4.7 for Cartan-plus curves, proved using Chen’s isogeny in [26], implies that
the jacobian of the totally non-split Cartan-plus curve X of level 48 contains Jnew,∗

0 (482).
Since there are two CM (weight 2) newforms of level 482 of degree 2 and invariant under
the action of both the Atkin-Lehner operators w9 and w256, then the jacobian Jnew,∗

0 (482)
has a CM part of dimension at least 4 whose endomorphisms could be defined over a
field bigger than the compositum of quadratic fields. This prevents us from applying
Lemma 3.5.1 in ((IV)) of the strategy above, because the genus of X is 9 (see Table 3.1).
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3.6 Automorphisms
In this section we treat our main problem, namely to determine the automorphisms of
certain modular curves XH over C for a subgroup H of GL2(Z/nZ). We restrict our
attention to XH geometrically connected, i.e., det(H) = (Z/nZ)×. Every automorphism
we are interested in induces an automorphism of the Riemann surface XH(C) = ΓH\H
and, since it is compact, each of these automorphisms comes from an automorphism of the
algebraic curve (XH)C. Let P : GL+

2 (Q) → PGL+
2 (Q) be the natural map. Each matrix

m ∈ PGL+
2 (Q) defines a Möbius transformation m : H → H and such an automorphism

of the Riemann surface H pushes down to an automorphism of ΓH\H if and only if m
normalizes P(ΓH).

Definition 3.6.1. Let H be a subgroup of GL2(Z/nZ) such that det(H) = (Z/nZ)×.
An automorphism of XH defined over C is modular if its action on XH(C) = ΓH\H is
described by a Möbius transformation associated to a matrix m ∈ PGL+

2 (Q) normalizing
P(ΓH).

When H has surjective determinant, Aut(XH) contains the subgroup of modular
automorphisms which is isomorphic to N/P(ΓH), where N is the normalizer of P(ΓH)
inside PGL+

2 (Q).

Remark 3.6.2. Notice that we can define modular automorphisms of YH looking at
PGL+

2 (R), instead of PGL+
2 (Q), as follows: an automorphism ι of YH(C) = ΓH\H is

modular if there is a matrix m ∈ PGL+
2 (R) that normalizes the image of ΓH in PGL+

2 (R)
and hence defines a Möbius transformation m : H → H that pushes down to ι. This is
equivalent to the previous definition. Indeed if m̃ ∈ GL+

2 (R) is a lift of m, then m̃ nor-
malizes Γ±H = (R×ΓH) ∩ SL2(R), hence conjugation by m̃ preserves the set of Q-linear
combinations of matrices in Γ±H , which is equal to the set of matrices with entries in
Q. Looking at the conjugates by m̃ of the matrices ( 1 0

0 0 ), ( 0 1
0 0 ), ( 0 0

1 0 ) and ( 0 0
0 1 ), we

easily deduce that m̃ is a real multiple of a matrix in GL2(Q), and consequently m lies
in PGL+

2 (Q).
In other words: every modular automorphism of YH(C) extends to a modular auto-

morphism of XH and, conversely, every modular automorphism of XH preserves the set
of cusps, hence restricts to a modular automorphism of YH(C).

If an automorphism is modular, then it preserves the set of cusps and also the set of
branch points for the map H→ ΓH\H. The converse is also true.

Lemma 3.6.3. Let n be a positive integer and let H be a subgroup of GL2(Z/nZ) such
that det(H) = (Z/nZ)×. An automorphism of XH defined over C is modular if and only if
it preserves the set of cusps and the set of branch points for the map H→ ΓH\H = YH(C).
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Proof. We prove that an automorphism u of XH is modular if it preserves the set of
cusps and the set of branch points for the map H→ ΓH\H = YH(C). Since u preserves
the set of the cusps, then it restricts to an automorphism of YH(C). Moreover, since u
preserves B, then it induces an automorphism ũ of YH(C)−B. Since det(H) = (Z/nZ)×,
the map

π̃ : H−π−1(B) −→ YH(C)−B

is a covering map and the pushforward π̃∗ sends the fundamental group π1(H− π−1(B))
to the subgroup of π1(YH(C)− B) generated by the loops running around a point in B.
Since ũ extends to u : YH(C)→ YH(C), the image, under ũ, of a loop running around a
point in B is still a loop running around a point in B. Hence, ũ∗ sends π̃∗(π1(H−π−1(B)))
into itself and consequently ũ lifts to an automorphism ṽ of H− π−1(B). Again, since ũ
extends to u : YH(C)→ YH(C), then ṽ extends to an automorphism v : H→ H as well.

We know that Aut(H) = PGL+
2 (R), hence v is a Möbius transformation given by a

matrix m ∈ PGL+
2 (R) and, since it passes to the quotient, m belongs to the normalizer

of the image of ΓH in PGL+
2 (R). Hence the restriction of u to YH is modular and, by

Remark 3.6.2, u itself is modular.

In the following two propositions, we give sufficient conditions for an automorphism
to preserve the set of cusps and the set of branch points.

Proposition 3.6.4. Let n be a positive integer and let H be a subgroup of GL2(Z/nZ)
containing the scalar matrices and such that det(H) = (Z/nZ)×. Let gon(XH) be the
gonality of XH . If there is a prime ` not dividing n such that 5 ≤ ` < 1

2gon(XH) − 1,
then every automorphism of XH defined over a compositum of quadratic fields preserves
the set of cusps.

Proof. Let u be an automorphism ofXH defined over the compositum L of some quadratic
fields and let C ∈ XH(C) be a cusp. Then the propositions 3.3.2 and 3.3.4 imply

T`u(C) = uσT`(C) = `uσ〈`〉(Cσ
−1

) + uσ(Cσ),

where σ ∈ Gal(L/Q) is a Frobenius element at `. Since ` ≥ 5, then T`u(C) contains a
point of multiplicity at least 4 and, by Part (1) of Proposition 3.3.6, this implies that
u(C) must be a cusp.

Proposition 3.6.5. Let n be a positive integer and let H be a subgroup of GL2(Z/nZ)
containing the scalar matrices and such that det(H) = (Z/nZ)×. Let gon(XH) be the
gonality of XH . If there are two prime numbers `1 < `2 not dividing n and such that
5 ≤ `2 <

1
2gon(XH)− 1, then every automorphism of XH defined over a compositum of

quadratic fields preserves the set of branch points of the map H→ ΓH\H = YH(C).
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Proof. Let L be a compositum of quadratic fields and let σ1, σ2 ∈ Gal(L/Q) be Frobenius
elements at the primes `1 and `2 respectively. Let u be an automorphism of XH defined
over L and let P = (E, φ) ∈ YH(C) be a branch point for the map H→ ΓH\H = YH(C).
Applying Proposition 3.6.4 with ` = `2 ≥ 5, we deduce that u sends non-cuspidal points
to non-cuspidal points, hence we can write u(P ) = (E′, φ′) for some elliptic curve E′/C.
Proposition 3.3.2 implies that

(3.6.6) T`1u(P ) = uσ1T`1(P ) and T`2u(P ) = uσ2T`2(P ).

Since, up to isomorphism, the only elliptic curves over C with non-trivial automorphisms
are Ei and Eρ, Proposition 3.2.4 implies that there are only two possibilities: E = Ei or
E = Eρ.

Firstly we treat the case P = (Eρ, φ). Since P is a branch point, by Proposition 3.2.4,
we know that φ−1◦ρ|Eρ[n]◦φ ∈ H. Hence, we can apply Part (1) of Proposition 3.3.10,
for each k ∈ {1, 2}, which gives

(3.6.7) T`k(E′, φ′) = T`ku(P ) = uσkT`k(P ) ≥ 3P1,

for some point P1 ∈ YH(C). Because of last inequality, we can apply Proposition 3.3.6
Part (2) to obtain that Z[`21ρ] and Z[`22ρ] are both contained in End(E′) which implies
End(E′) = Z[ρ]. Since the class group of Z[ρ] is trivial, we have E′ ∼= Eρ. Again
by Inequality (3.6.7), Proposition 3.3.10 Part (1) implies that φ′−1◦ρ|Eρ[n]◦φ′ ∈ H. By
Proposition 3.2.4, we conclude that u(P ) is a branch point associated to the elliptic curve
Eρ.

Now, we consider P = (Ei, φ). Since P is a branch point, by Proposition 3.2.4, we
know that φ−1◦i|Ei[n]◦φ ∈ H. Hence, by Proposition 3.3.10 Part (2), one of the following
two possibilities happens

(3.6.8)
T`2u(P ) = uσ2T`2(P ) = 2(P1 + . . .+ P `2+1

2
) or

T`2u(P ) = uσ2T`2(P ) = 2(P1 + . . .+ P `2−1
2

) + P `2+1
2

+ P `2+3
2
,

with P1, . . . , P `2+3
2

being distinct points in YH(C). This equation implies that the hy-
potheses of Proposition 3.3.6 Part (3) are satisfied, hence Z[`22i] is contained in End(E′).
We now prove, distinguishing three cases, that Z[`21i] is contained in End(E′). If `1 ≥ 5,
we can apply the same argument used for `2. If `1 = 2 or `1 = 3, by Proposition 3.3.10
Part (2) and Equation (3.6.6), there is a point (E′′, φ′′) ∈ YH(C) such that

(3.6.9) T`1(E′, φ′) = T`1u(P ) = uσ1T`1(P ) ≥ 2(E′′, φ′′).

If `1 = 3, Lemma 3.3.5 implies that E′′ has an endomorphism β 6= ±3 having degree 9.
Since E′′ is isogenous to E′, we know that End(E′′) ⊂ Z[i], hence β = ±3i. Using that
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E′ and E′′ are 3-isogenous, we see that

End(E′) ⊃ Z + 3End(E′′) ⊃ Z + 3Z[β] = Z[9i].

If `1 = 2, Inequality (3.6.9) and Lemma 3.3.5 imply that E′′ has an endomorphism
β 6= ±2 having degree 4. Since E′′ is isogenous to E′, we know that End(E′′) ⊂ Z[i],
hence β = ±2i or β = ±1± i. Using that E′ and E′′ are 2-isogenous, we see that

End(E′) ⊃ Z + 2End(E′′) ⊃ Z + 2Z[β] ⊃ Z[4i].

We proved that both Z[`21i] and Z[`22i] are contained in End(E′), hence End(E′) = Z[i]
and, since the class group of Z[i] is trivial, we deduce that E′ ∼= Ei. By Equation (3.6.8),
the hypotheses of Proposition 3.3.10 Part (2) are satisfied, hence φ′−1◦i|Ei[n]◦φ′ ∈ H

and, by Proposition 3.2.4, we conclude that u(P ) is a branch point.

Propositions 3.6.4 and 3.6.5, together with Lemma 3.6.3, imply the following Corol-
lary, which gives a concise sufficient condition to exclude the presence of non-modular
automorphisms.

Corollary 3.6.10. Let n be a positive integer let H be a subgroup of GL2(Z/nZ) contain-
ing the scalar matrices and such that det(H) = (Z/nZ)× and let gon(XH) be the gonality
of XH . If there are two primes `1 < `2 not dividing n such that 5 ≤ `2 < 1

2gon(XH)− 1,
then every automorphism of XH defined over a compositum of quadratic fields is modular.

We still need to determine which are the modular automorphisms of a modular curve
XH for Cartan and Cartan-plus subgroups H of GL2(Z/nZ). Since in these cases we have
det(H) = (Z/nZ)×, then YH also parametrizes pairs [E, φ] such that the Weil pairing of
(φ ( 1

0 ) , φ ( 0
1 )) is fixed, up to the action of H∩SL2(Z/nZ). With this interpretation, every

matrix γ ∈ SL2(Z/nZ) that normalizes H∩SL2(Z/nZ) defines an automorphism of YH
sending [E, φ] 7→ [E, φ ◦ γ]: such an automorphism is modular, induced by a lift of γ in
SL2(Z). Next proposition implies that these are all the modular automorphisms except
when n ≡ 2 mod 4 and H is a Cartan-plus which is split at 2. We now suppose we are
in this last case and we construct another modular automorphism. Letting n = 2n′, we
have

H = H2 ×Hn′ ⊂ GL2(Z/2Z)×GL2(Z/n′Z) = GL2(Z/nZ),

whereH2 andHn′ are the images ofH in GL2(Z/2Z) and GL2(Z/n′Z) respectively. Since
we are assuming that H2 is a split Cartan-plus subgroup, there are three possibilities for
H2 (all conjugated) and, depending on them, we define

(3.6.11) γ0 :=


( 3 1

1 1 ) , if H2 = {Id, ( 0 1
1 0 )},

( 2 1
2 2 ) , if H2 = {Id, ( 1 1

0 1 )},
( 2 2

1 2 ) , if H2 = {Id, ( 1 0
1 1 )}.
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Since the projection SL2(Z)→ SL2(Z/2nZ) = SL2(Z/4Z)×SL2(Z/n′Z) is surjective and
since det(Hn′) = (Z/n′Z)×, there exists

(3.6.12) γ1 ∈ SL2(Z) such that γ1 ≡ ( 1 0
0 1 ) (mod 4) and γ0γ1 (mod n

2 ) ∈ Hn
2
.

The matrix P(γ0γ1) lies in the normalizer N of P(ΓH) inside PGL+
2 (Q) and we have

that P(γ0γ1)2 ∈ P(ΓH), hence P(γ0γ1) induces an involution on XH . Since P(γ0γ1)
is not in P(SL2(Z)), the modular automorphism defined by γ0γ1 is not of the form
[E, φ] 7→ [E, φ ◦ γ] with γ ∈ SL2(Z/nZ).

Proposition 3.6.13. Let n be a positive integer and let H < GL2(Z/nZ) be either a
Cartan subgroup or a Cartan-plus subgroup. Let N ′ < SL2(Z/nZ) be the normalizer of
the group H ′ := H∩SL2(Z/nZ) and let N be the normalizer of P(ΓH) in PGL+

2 (Q). If
n ≡ 2 mod 4 and H is a Cartan-plus split at 2, then, for every choice of γ0 and γ1 as in
(3.6.11) and (3.6.12), N is generated by P(ΓN ′) and P(γ0γ1). Otherwise N is P(ΓN ′).

Proof. Let Ñ < GL+
2 (Q) be the normalizer of Q×ΓH , or, equivalently, the normalizer of

ΓH (each matrix normalizing Q×ΓH also normalizes (Q×ΓH) ∩ SL2(Q) = ΓH , and since
scalar matrices commute with everything, each matrix normalizing ΓH also normalizes
Q×ΓH). The statement of the proposition is equivalent to

Ñ = Q×ΓN ′ or Ñ = Q×〈γ0γ1,ΓN ′〉,

depending on the case. The inclusions ⊇ are trivial, hence we prove the other inclusions.
Since the normalizer of ΓH inside SL2(Z) is ΓN ′ , it is enough to show that

Ñ ⊆ Q×SL2(Z) or Ñ ⊆ Q×SL2(Z) ∪ γ0γ1Q×SL2(Z),

depending on the case. We suppose that Ñ contains a matrix m =
(
a b
c d

)
not lying in

Q×SL2(Z): it is enough to prove, with this assumption, that n ≡ 2 mod 4 and H is a
Cartan-plus subgroup split at 2 and m ∈ γ0γ1Q×SL2(Z).

Up to multiplication by a scalar matrix, we can suppose that a, b, c, d ∈ Z and that
gcd(a, b, c, d) = 1. Since m /∈ Q×SL2(Z), then det(m) 6= 1. Let p be a prime dividing
det(m), let λ1 = ( ac ) , λ2 =

(
b
d

)
∈ Z2 and let Λ ⊂ Z2 be the lattice generated by λ1, λ2.

By definition of Ñ , for every γ ∈ ΓH there is γ′ = ( x y
z w ) ∈ ΓH such that γm = mγ′.

Hence, looking at the columns of γm, we get γλ1 = xλ1+zλ2 and γλ2 = yλ1+wλ2. Since
γ is arbitrary and γ′ ∈ SL2(Z), we have

ΓHΛ = Λ.

Let Λ be the image of Λ under the quotient map Z2 → F2
p. Since at least one of a, b, c, d

is not multiple of p, we know that Λ 6= {0} and since det(m) is multiple of p, we know
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that Λ 6= F2
p. Hence Λ is a line inside F2

p which is left invariant by every matrix in the
image ΓH of ΓH in GL2(Fp). This implies that ΓH is contained in a Borel subgroup of
GL2(Fp), thus p divides the level n and ΓH = H∩SL2(Z/pZ), where H is the image of
H in GL2(Fp). We deduce that either H is a Cartan group split at p or p = 2 and H is
a Cartan-plus group split at p.

First we suppose that H is a Cartan group split at p. Let pe be the maximum power
of p dividing n. Up to conjugacy, the image of H in GL2(Z/peZ) is {( ∗ 0

0 ∗ )}, hence, for
every γ ∈ ΓH , we have

m−1γm = 1
det(m)

(
d −b
−c a

)
γ
(
a b
c d

)
≡ ( ∗ 0

0 ∗ ) (mod pe).

Applying this to γ = ( 1 n
0 1 ) and γ = ( 1 0

n 1 ), we see that since det(m) is multiple of p, then
a, b, c, d are all multiples of p, which is a contradiction.

This contradiction implies that the only prime dividing det(m) is 2 andH is a Cartan-
plus group split at 2. Let 2e be the maximum power of 2 dividing n. Up to conjugacy, the
image of H in GL2(Z/2eZ) is {( ∗ 0

0 ∗ ) , ( 0 ∗
∗ 0 )}. In particular the image of H in GL2(Z/2Z)

is {( 1 0
0 1 ) , ( 0 1

1 0 )}, hence Λ = 〈( 1
1 )〉 is the only ΓH -invariant line. In other words the

columns ( ac ) ,
(
b
d

)
of m span 〈( 1

1 )〉 in F2
2 and with a similar argument we see that the

rows (a b), (c d) of m span 〈(1 1)〉 in F2
2. Hence m ≡ ( 1 1

1 1 ) (mod 2). For every γ ∈ ΓH ,
we have

(3.6.14) m−1γm (mod 2e) ∈ {( ∗ 0
0 ∗ ) , ( 0 ∗

∗ 0 )} .

When γ = ( 1 n
0 1 ), we see that m−1γm ≡ ( ∗ 0

0 ∗ ) (mod 2e) is not possible because both c
and d are odd, hencem−1γm ≡ ( 0 ∗

∗ 0 ) (mod 2e) and, by explicit computations, we deduce
that det(m) = 2 and n ≡ 2 mod 4. Finally, since m ≡ ( 1 1

1 1 ) (mod 2) and det(m) = 2,
we see that (γ0γ1)−1m ∈ SL2(Z).

We now prove the main results of this paper.

Theorem 3.6.15. Let n ≥ 10400 be an integer and let H < GL2(Z/nZ) be either a
Cartan or a Cartan-plus subgroup. Then every automorphism of XH is modular, hence
we have

Aut(XH) ∼=

N ′/H ′ × Z/2Z, if n ≡ 2 mod 4 and H is a Cartan-plus split at 2,
N ′/H ′, otherwise,

where N ′ < SL2(Z/nZ) is the normalizer of H ′ := H ∩ SL2(Z/nZ).

Proof. Let N be the normalizer of P(ΓH) inside PGL+
2 (Q). By Proposition 3.6.13 we
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have

N/P(ΓH)∼=

P(ΓN ′)/P(ΓH)×Z/2Z, if n ≡ 2 mod 4 and H is a Cartan-plus split at 2,
P(ΓN ′)/P(ΓH), otherwise,

where the first case is true because P(γ0γ1ΓH) has order 2 in N/P(ΓH) and commutes
with every element in P(ΓN ′)/P(ΓH). Since P(ΓN ′)/P(ΓH) ∼= P(ΓN ′)/P(ΓH′) ∼= N ′/H ′,
it is enough to prove that every automorphism of XH is modular. For n ≥ 10400 every
automorphism is defined over the compositum of some quadratic fields by Proposition
3.5.7. We can bound the gonality gon(XH) of XH using [1] and, with the same estimates
used in the proof of Proposition 3.4.9, we have

gon(XH) ≥ 7
800 [SL2(Z) : ΓH ] ≥ 7n2

800(ω(n)+1)2ω(n) > 10n.

So, there are at least two primes `1 < `2 not dividing n with 5 ≤ `2 < 1
2gon(XH)−1. By

Corollary 3.6.10, we can conclude that every automorphism is modular.

Remark 3.6.16. One can determine the groupsN ′/H ′ in all cases. Indeed, let n =
∏r
i=1 p

ei
i

be any positive integer with its prime factorization, let H < GL2(Z/nZ) be either a Car-
tan or a Cartan-plus subgroup and let N ′ < SL2(Z/nZ) be the normalizer of the group
H ′ := H ∩ SL2(Z/nZ). By Chinese Remainder Theorem we have

H ′ ∼=
r∏
i=1

H ′i and N ′ ∼=
r∏
i=1

N ′i inside SL2(Z/nZ) ∼=
r∏
i=1

SL2(Z/peiZ),

where H ′i is the image of H ′ in SL2(Z/peiZ) and N ′i < SL2(Z/peiZ) is the normalizer of
H ′i. Hence the knowledge of N ′/H ′ for H ∈ {Cns(pe), Cns(pe), Cs(pe), C+

s (pe)} allows to
compute the group N ′/H ′ for every Cartan or Cartan-plus subgroup H of level n not
necessarily a prime power. Explicit computations give the following:

• if H = Cns(pe), then N ′/H ′ ∼= Z/2Z, since N ′ = C+
ns(pe) ∩ SL2(Z/peZ);

• if pe 6= 3 and H = C+
ns(pe), then N ′/H ′ ∼= {1};

• if H = C+
ns(3), then N ′/H ′ ∼= 〈( 1 1

0 1 )〉 ∼= Z/3Z;

• if p 6= 2, 3 and H = Cs(pe), then N ′/H ′ ∼= 〈
( 0 −1

1 0
)
〉 ∼= Z/2Z;

• if e ≥ 2 and H = Cs(3e), then

N ′/H ′ ∼=
〈(

1 3e−1

−3e−1 1

)〉
×
〈( 0 −1

1 0
)
,
(

1 3e−1

3e−1 1

)〉
∼= Z/3Z× S3,

where S3 is the symmetric group acting on three elements;
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• if e ≥ 5 and H = Cs(2e), then

N ′/H ′ ∼=
〈(

1 2e−3

0 1
)
,
( 1 0
−2e−3 1

)〉
o
〈( 0 −1

1 0
)〉 ∼= (Z/8Z)2 oϕ (Z/2Z),

where (ϕ(1)) (x, y) = (y, x); this group is labeled as (128, 67) in MAGMA, [50];

• if pe ∈ {3, 2, 22, 23} and H = Cs(pe), then N ′/H ′ ∼= PSL2(Z/peZ), since we have
N ′ = SL2(Z/peZ);

• ifH = Cs(24), then N ′/H ′ ∼=
〈(−1 6

6 −5
)
,
( 4 9

7 −4
)〉
o
〈( 1 −2

0 1
)〉 ∼= D8oϕ(Z/8Z), where

D8 ∼= Z/8Z o Z/2Z is the dihedral group of order 16 and (ϕ(1)) (1, 0) = (5, 0) and
(ϕ(1)) (0, 1) = (3, 1); moreover N ′/H ′ is labeled as (128, 68) in MAGMA, [50];

• if p 6= 2, 3 and pe 6= 5 and H = C+
s (pe) then N ′/H ′ ∼= {1};

• if H = C+
s (5), then N ′/H ′ ∼= 〈( 1 2

1 3 )〉 ∼= Z/3Z;

• if e ≥ 2 and H = C+
s (3e), then N ′/H ′ ∼= 〈

(
1 −3e−1

3e−1 1

)
〉 ∼= Z/3Z;

• if H = C+
s (3), then N ′/H ′ ∼= 〈

( 1 1
1 −1

)
〉 ∼= Z/2Z;

• if e ≥ 6 and H = C+
s (2e), then N ′/H ′ ∼= 〈

(
1 −2e−3

2e−3 1

)
〉 ∼= Z/8Z;

• if H = C+
s (2), then N ′/H ′ ∼= {1};

• if H = C+
s (22), then N ′/H ′ ∼= 〈( 1 2

2 1 )〉 ∼= Z/2Z;

• if H = C+
s (23), then N ′/H ′ ∼= 〈

( 1 −2
2 −3

)
〉 ∼= Z/4Z;

• if H = C+
s (24), then N ′/H ′ ∼= 〈

( 1 6
2 −3

)
〉 ∼= Z/8Z;

• if H = C+
s (25), then N ′/H ′ ∼= 〈

( 1 −4
4 −15

)
〉 ∼= Z/8Z.

Recall that the groups N ′/H ′ computed for H = Cs(pe) are the same determined in [4],
[2], [14], in the setting of Borel modular curves.

For Cartan modular curves of prime power level we make Theorem 3.6.15 more precise.

Theorem 3.6.17. Let p be a prime number and let e be a positive integer. If pe > 11 and
pe /∈ {33, 24, 25, 26}, then all the automorphisms of Xns(pe), X+

ns(pe), Xs(pe) and X+
s (pe)

are modular and

Aut(Xns(pe)) ∼= Z/2Z, Aut(X+
ns(pe)) ∼= {1},

Aut(Xs(pe)) ∼=


(Z/8Z)2 o (Z/2Z), if p = 2,
Z/3Z× S3, if p = 3,
Z/2Z, if p > 3,

Aut(X+
s (pe)) ∼=


Z/8Z, if p = 2,
Z/3Z, if p = 3,
{1}, if p > 3,

where the above semidirect product (Z/8Z)2 o Z/2Z is described in Remark 3.6.16.
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Proof. We first treat the case pe > 49 with pe 6= 26 = 64. Up to conjugacy we can assume
that H ∈ {Cs(pe), C+

s (pe), Cns(pe), C+
ns(pe)} where these groups are the subgroups of

GL2(Z/peZ) defined in Chapter 3.4 and XH ∈ {Xns(pe), X+
ns(pe), Xs(pe), X+

s (pe)} is the
corresponding associated modular curve. By [1, Theorem 0.1] and Table 3.1, for pe > 87,
we have the following lower bounds for the gonality of XH :

gon(XH) ≥ 7
800 [SL2(Z) : ΓH ] ≥ 7

800
p2e(1− 1

p )
2 >

7 · 872

3200 > 16.

Hence there are two primes `1 < `2, different from p, such that 5 ≤ `2 < 1
2gon(XH)− 1:

we can take `1 = 3, `2 = 7 if p ∈ {2, 5} and `1 = 2, `2 = 5 otherwise. With a similar
computation one can show that gon(XH) > 12, for 49 < pe ≤ 87, if pe 6= 64 and we can
take `1 ∈ {2, 3}, `2 = 5. Applying Corollary 3.6.10 we deduce that all the automorphisms
of XH defined over a compositum of quadratic fields are modular, hence, by Proposition
3.5.8, all the automorphisms of XH are modular. Finally, we can use Proposition 3.6.13
and Remark 3.6.16 to obtain the group of modular automorphisms.

We now assume 11 < pe ≤ 49. All the cases Xs(pe) ∼= X0(p2e) are treated in [60],
all the cases X+

s (p) are treated in [47] and the cases Xns(p), X+
ns(p), for 13 ≤ p ≤ 31,

are treated in [48]. The remaining cases X+
s (25), X+

s (49) and Xns(pe), X+
ns(pe), for

pe = 25, 37, 41, 43, 47, 49, are treated in the MAGMA script available at [70].

Last theorem can be specialized to the prime level case, obtaining new results for
non-split Cartan curves. The split cases are treated in [47] and [60].

Corollary 3.6.18. Let p ≥ 13 be a prime number. Then the group of automorphisms of
X+

ns(p) is trivial and the group of automorphisms of Xns(p) has order 2.

Remark 3.6.19. Theorem 3.6.17 implies that, for p2e big enough, all the automorphisms
of X∗0 (p2e) ∼= X+

s (pe) are modular, extending [5] and [47] that treat the cases X∗0 (p) and
X∗0 (p2). Our techniques (in particular Lemma 3.6.5) cannot be generalized to the case
X∗0 (pe) with e odd, because some of the branch points of the natural map H→ Y +

0 (pe)
have the form {(E,C), (E/C,E[pe]/C)} with E 6= Ei, Eρ. Anyway, the techniques used in
[47, Lemmas 4, 5, 6], together with Proposition 3.5.9, can be used to prove the modularity
of all elements in Aut(X∗0 (pe)), without restrictions on e, for all but finitely many cases.

3.7 Appendix
Let G := GL2(Z/2eZ). For each H < G, let χH : G → Q be the character of the repre-
sentation Q[G/H]. The entry (γ,H) of the table below is χH(γ). Every element of G is
conjugated to a unique element appearing in the first column, hence the table determines

113



3. AUTOMORPHISMS OF CARTAN CURVES

the characters χH forH appearing in Proposition 3.4.2 or in [26, Theorem 1.1]. In the first
column we have λ, a ∈ (Z/2eZ)×, b ∈ (Z/2eZ), k ∈ {1, . . . , e−1}, and u ∈ (Z/2e−kZ)×.

Proving that the first column contains every conjugacy class of GL2(Z/2eZ) exactly
once is rather easy, yet cumbersome, using the following lemma.

Lemma 3.7.1. Let M ∈ M2×2(Z/2eZ). If M ≡ ( 0 ∗
1 ∗ ) mod 2 or M ≡ ( ∗ 1

∗ 0 ) mod 2,
then there are unique elements a, b ∈ Z/2eZ such that M is conjugated to ( 0 a

1 b ). If
M ≡ ( 1 0

0 0 ) mod 2 or M ≡ ( 0 0
0 1 ) mod 2, then there are unique elements λ1, λ2 ∈ Z/2eZ,

the first odd and the second even, such that M is conjugated to
(
λ1 0
0 λ2

)
Proof. The cases M ≡ ( 0 0

0 1 ) mod 2 and M ≡ ( ∗ 1
∗ 0 ) mod 2 can be reduced to the remain-

ing cases by considering ( 0 1
1 0 )−1

M ( 0 1
1 0 ). Let V be the module made of column vectors

in (Z/2eZ)2 with standard basis e1, e2 and let FM : V → V be the multiplication by M .
IfM ≡ ( 0 ∗

1 ∗ ) mod 2 we notice that e1, FM (e1) are a basis of V when we reduce modulo
2, hence they are a basis of V . In the basis B = (e1, FM (e1)) we have

M ∼ FBM = ( 0 a
1 b )

for some a, b, that are unique since a = −det(M) and b = tr(M).
Finally the case M ≡ ( 1 0

0 0 ) mod 2. The uniqueness result is motivated by the fact
that λ1, λ2 are the only roots of det(M −λId). The existence part is a Hensel argument.
Let M =

(
a b
c d

)
and let us lift for example e1 to an eigenvector:

FM (e1 + λ) = (a+ λb)e1 + (c+ λd)e2 ∈ 〈e1 + λe2〉 ⇐⇒

λ(a+ λb) = c+ λd ⇐⇒ bλ2 + (a− d)λ− c = 0

and last equation has a unique zero because the polynomial p(λ) = bλ2 + (a − d)λ − c
satisfies p(0) ≡ 0, p′(0) 6≡ 0 modulo 2. With the same argument we can lift e2 to an
eigenvector.

In order to fill Table 3.2 we use that

Q[G/H] =
⊕

gH ·Q and ∀γ ∈ G : ρH(γ)(gH) = γgH

hence, in basis {gH} the matrix ρH(γ) is a permutation matrix and consequently

χH(γ) = tr(ρH(γ)) = #{gH : γgH = gH} = #{g : γg ∈ gH}
#H = #{g : g−1γg ∈ H}

#H .

Table 3.2: Character table.
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Br, r ≥ 0 T0 Tr, r > 0 Cs C+
s Cns C+

ns

λId 3·22r 1 3·22r−1 3·22e−1 3·22e−2 22e−1 22e−2

( 0 a
1 b )

b odd
0 1 0 0 0 2 1

( 0 a
1 b )

b even

1 if r=0

0 if r>0
1 0 0

2e−1 if b=0

0 if b 6=0
0

2e−1 if b=0

0 if b 6=0(
λ 0
0 λ+2ku

) 3·22r if r<k

22k+1 if r≥k
1

3·22r−1 if r≤k

22k+1 if r>k
22k+1 22k 0 0

(
λ 2ku
2k λ

) 3·22r if r<k

22r if r=k

0 if r>k

1
3·22r−1 if r≤k

0 if r>k
0 0 0 0

(
λ 2ku
2k λ+2k

) 3·22r if r<k

0 if r≥k
1

3·22r−1 if r≤k

0 if r>k
0 0 22k+1 22k

(
λ 2ku
2k λ+2k+1

) 3·22r if r<k

22r if r=k

0 if r>k

1
3·22r−1 if r≤k

0 if r>k
0 0 0 0
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