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Chapter 2

Formal biextensions and quadratic Chabauty

The proof of Theorem 1.4.10 in the previous chapter uses the formal logarithm of the
two formal group laws associated to the biextension P×,ρ−1 → J × J∨,ρ−1. Hence it
uses that both laws are trivializable, that is they are both isomorphic to the additive law
(over different bases).

In this chapter we study formal biextension laws and the main result implies that it
is possible to trivialize both group laws of P×,ρ−1 simultaneously. We also prove that
the power series defining the trivialization converge on the residue disk of the neutral
element of P×,ρ−1(Zp) if p > 2. This leads to another proof of Theorem 1.4.10. Notice
that the triviality of commutative formal biextensions in characteristic zero was already
treated in Section 1.9.2, but here we give a different proof, working directly with rings
of power series.

2.1 Recap on formal group laws

Given a ring R, a formal group law of dimension d over R is a system F = (F1, . . . Fd)
of power series in 2d indeterminates x′ = {x′1, . . . , x′d}, x′′ = {x′′1 , . . . , x′′d} such that

(I) F (x′, 0) = x′ and F (0, x′′) = x′′;

(II) F (x′, F (x′′, x′′′)) = F (F (x′, x′′), x′′′).

The first property implies that

(2.1.1) Fi ≡ x′i + x′′i mod terms of degree ≥ 2 ,

hence the substitution in the second property makes sense.
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2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

Let us rephrase this definition. Given a system of indeterminates t = {t1, . . . , tn}, the
ring of formal power series R[[t]] = R[[t1, . . . , tn]] is complete and separated with respect
to the (t1, . . . , tn)-adic topology. Denoting ⊗̂R the completed tensor product of linearly
topologized R-modules (we give R the discrete topology), we have a unique continuous
isomorphism of R-algebras

(2.1.2) R[[x′1, . . . , x′d, x′′1 , . . . x′′d ]] = R[[x1, . . . , xd]] ⊗̂RR[[x1, . . . , xd]]

sending x′i to xi⊗1 and x′′i to 1⊗xi. Hence, the choice of elements F1, . . . , Fd in the
ring R[[x1, . . . , x

′
d, x
′′
1 , . . . , x

′′
d ]] is equivalent to the choice of a morphism of R-algebras

R[x1, . . . , xd] → R[[x1, . . . , xd]]⊗̂RR[[x1, . . . , xd]]. Such a map extends to a continuous
morphism of R-algebras

A : R[[x1, . . . , xd]] −→ R[[x1, . . . , xd]]⊗̂RR[[x1, . . . , xd]]

if and only if for each i we have Fi(0, 0) = 0, which is the case for formal group laws.
We can also reformulate properties (I) and (II) in terms of A: denoting x the system of
indeterminates {x1, . . . , xd} and e : R[[x]]→ R the homomorphism evaluating power series
at x1= . . .=xd=0, they are equivalent to the commutation of the following diagrams
(2.1.3)

R[[x]] R[[x]] ⊗̂RR[[x]] R[[x]] R[[x]] ⊗̂RR[[x]]

R[[x]]⊗̂RR[[x]] R[[x]] R[[x]] ⊗̂RR[[x]] R[[x]] ⊗̂RR[[x]] ⊗̂RR[[x]]

A

A
id id ⊗̂Re

A

A id ⊗̂RA

e ⊗̂Rid A ⊗̂Rid

.

Hence, by formal group law of dimension d, we also mean a continuous homomorphism of
R-algebras A : R[[x1, . . . , xd]] → R[[x1, . . . , xd]] ⊗̂RR[[x1, . . . , xd]] such that the above dia-
grams commute. Given two formal group laws A,B of dimensions a, b, a homomorphism
between A and B is a continuous homomorphism φ : R[[x1, . . . , xa]]→ R[[x1, . . . , xb]] such
that (φ ⊗̂Rφ) ◦A = B ◦ φ.

We notice that the above diagrams say that Spf(R[[x]]), with multiplication given by
Spf(A) and neutral element Spf(e), is a formal group scheme over R (the existence of
the “inverse” morphism Spf(R[[x]])→ Spf(R[[x]]) is proven in [45, P3, Proposition 1]).

Let S : R[[x]] ⊗̂RR[[x]] → R[[x]] ⊗̂RR[[x]] be the “symmetry” homomorphism. We say
that a formal group law A is commutative if S ◦A = A. Equivalently a formal group law
F = (F1, . . . , Fd) is commutative if F (x′, x′′) = F (x′′, x′). An example of commutative
formal group law is the additive formal group law AD of dimension d, defined by

AD(xi) = xi⊗̂1 + 1⊗̂xi = x′i + x′′i .

As proved in [54, Theorem 1], when Q ⊂ R the additive formal group law is the funda-
mental example of commutative formal group law: given a commutative formal group law
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2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

A of dimension d over a Q-algebra R, there exists an isomorphism logA : R[[x]] → R[[x]]
between the additive formal group law of dimension d and A. Moreover by [54, Proposi-
tion 1.6], such an isomorphism is unique when we require that it reduces to the identity
modulo the ideal (x1, . . . , xd)2 ⊂ R[[x]] and we refer to it as formal logarithm of A.

Given an R-algebra R′, considered with the discrete topology, and a formal group law
A : R[[x]] → R[[x]] ⊗̂RR[[x]] over R, we denote AR′ the formal group law over R′ defined
as R′⊗̂RA : R′[[x]]→ R′[[x]] ⊗̂R′R′[[x]].

Finally, we recall that, given a formal group A : R[[x]] → R[[x]]⊗̂RR[[x]] of dimension
a, we can talk about “points on A”. Given an adic R-algebra S, namely an R-algebra
which is also a separated and complete topological ring whose topology is induced by
some ideal I ⊂ S, we define the set of S-valued points of A to be

A(S) := Homcont(R[[x]], S) = (NS)a ,

where NS denotes the ideal of topologically nilpotent elements in S. Since

Homcont(R[[x]], S)×Homcont(R[[x]], S) = Homcont(R[[x]]⊗̂RR[[x]], S) ,

the formal group law A defines a group structure on A(S) with neutral element (0, . . . , 0).
Hence A defines a covariant functor from the category of topological R-algebras to the
category of groups. Vice versa suppose that A is a covariant functor from the category of
adic R-algebras to the category of groups and suppose that there exists a positive integer
a such that, functorially in S, we have a bijection A(S) = (NS)a sending the neutral
element to (0, . . . , 0); then, by Yoneda’s lemma, A is the functor of points of a formal
group law. We call formal groups such functors.

We notice that a formal group law A is commutative if and only if for every S the
group A(S) is commutative. Moreover, given two formal group laws A and B, Yoneda’s
lemma tells us that giving a morphism between A and B is the same as giving a natural
transformation between their functors of points, but going in the opposite direction.
Remark 2.1.4. One could give a more general notion of formal group by substituting
R[[x]] with any admissible ring, (see Definition 7.1.2 in [41]), so that the relative tangent
space of the formal group is not forced to be free. Anyway, we do not need this generality
for our purposes.

2.2 Commutative formal biextension laws
One way to define a formal biextensions is by using the functorial point of view, as done
in [80]. Given three formal groups

A,B,C : Adic R-Algebras −→ Groups
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2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

a biextension of A and B by C is a functor

D : Adic R-Algebras −→ Sets

such that functorially in S, the set D(S) is a biextension of A(S) × B(S) by C(S), in
the sense of Section 1.2. Given three other formal groups F,G,H and a bi-extension
K of F,G by H, a morphism between D and K is a triple of natural transformations
(A→F,B→G,D→K) that commute with the (partial) group laws and with the natural
transformations D → A×B and K → F ×G.

We can also give a “dual” definition, using rings of power series, which is more cum-
bersome, but useful in our proof of Theorem 2.2.3. Suppose we are given a ring R and
three formal group laws

A : R[[x]]→ R[[x]] ⊗̂RR[[x]] , B : R[[y]]→ R[[y]] ⊗̂RR[[y]] , C : R[[z]]→ R[[z]] ⊗̂RR[[z]] ,

with x = {x1, . . . , xa}, y = {y1, . . . , yb}, z = {z1, . . . , zc} being system of indeterminates.
A biextension of A and B by C is a pair of formal group laws

A : R[[x, y, z]] −→ R[[x, y, z]] ⊗̂R[[y]]R[[x, y, z]] = R[[x′, x′′, y, z′, z′′]] over R[[y]] ,
B : R[[x, y, z]] −→ R[[x, y, z]] ⊗̂R[[x]]R[[x, y, z]] = R[[x, y′, y′′, z′, z′′]] over R[[x]] ,

such that A is an extension of A⊗̂RR[[y]] by C⊗̂RR[[y]], B is an extension of B⊗̂RR[[x]] by
C⊗̂RR[[x]], and moreover A and B are compatible in the “dual sense” of (1.2.5). More
explicitly we require that:

(i) the inclusion R[[x, y]] → R[[x, y, z]] is both a homomorphism between AR[[y]] and A
and also an homomorphism between BR[[x]] and B;

(ii) the continuous homomorphism of R-algebras R[[x, y, z]]→ R[[y, z]] evaluating power
series at x1= . . .=xa=0 is a homomorphism between A and CR[[y]] and the contin-
uous homomorphism of R-algebras R[[x, y, z]]→ R[[x, z]] evaluating power series at
y1= . . .=yb=0 is a homomorphism between B and CR[[x]];

(iii) using the isomorphism (2.1.2), the following diagram commutes

(2.2.1)
R[[x, y, z]] R[[x′, x′, y, z′, z′′]]

R[[x, y′, y′′, z′, z′′]] R[[x′, x′, y′, y′′, z′, z′′z′′′, z(iv)]] ,

A

B B ⊗̂B

A ⊗̂A

where both the (R[[x, y, z]] ⊗̂R[[x]]R[[x, y, z]]) ⊗̂R[[y]] ⊗̂RR[[y]](R[[x, y, z]] ⊗̂R[[x]]R[[x, y, z]])
and (R[[x, y, z]] ⊗̂R[[y]]R[[x, y, z]]) ⊗̂R[[x]] ⊗̂RR[[x]](R[[x, y, z]] ⊗̂R[[y]]R[[x, y, z]]) are identi-
fied with R[[x′, x′, y′, y′′, z′, z′′z′′′, z(iv)]], in the first case with (z⊗1)⊗(1⊗1) ↔ z′,
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2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

(1⊗z)⊗(1⊗1) ↔ z′′, (1⊗1)⊗(z⊗1) ↔ z′′′, (1⊗1)⊗(1⊗z) ↔ z(iv) and in the sec-
ond case with (z⊗1)⊗(1⊗1) ↔ z′, (1⊗z)⊗(1⊗1) ↔ z′′′, (1⊗1)⊗(z⊗1) ↔ z′′,
(1⊗1)⊗(1⊗z)↔ z(iv).

We call such an object (A,B) a formal biextension law. Now suppose we are given
three other formal group laws

H : R[[u]]→ R[[u]] ⊗̂RR[[u]] , J : R[[v]]→ R[[v]] ⊗̂RR[[v]] , K : R[[w]]→ R[[w]] ⊗̂RR[[w]] ,

and a biextension (H,J ) of H and J by K. Then a morphism between (A,B) and (H,J )
is a morphism φ : R[[x, y, z]]→ R[[u, v, w]] such that

• φ restricts to maps φx : R[[x]] → R[[u]] and φy : R[[y]] → R[[v]] such that φx is a
morphism between A and H and φy is a morphism between B and J ;

• the following diagrams are commutative

R[[x,y,z]] R[[x,y,z]]⊗̂R[[y]]R[[x,y,z]] R[[x,y,z]] R[[x,y,z]]⊗̂R[[x]]R[[x,y,z]]

R[[u,v,w]] R[[u,v,w]]⊗̂R[[v]]R[[u,v,w]] R[[u,v,w]] R[[u,v,w]]⊗̂R[[u]]R[[u,v,w]]

φ

A

φ ⊗̂φyφ φ

B

φ ⊗̂φxφ

H J

In this setting the functor D=(A,B) going from topological R-algebras to sets defined
as

(A,B)(S) = Homcont(R[[x, y, z]], S) = Na+b+c
S

has two partial group laws induced by A and B that make D a biextension of the functors
of groups A and B by C. Vice versa if D is a biextension of the functors of groups A and
B by C, then one can show that D is representable by R[[x, y, z]] in such a way that the
natural transformation D → A×B is induced by the inclusion R[[x, y]]→ R[[x, y, z]] and
the natural transformations A×C,B×C → D describing the kernels of D → A×B are
induced by the maps R[[x, y, z]]→ R[[x, z]], R[[y, z]] sending y or x to zero. This is enough
to prove that every formal biextension is induced by a formal biextension law.

We say that a formal biextension law (A,B) is commutative if both A and B are com-
mutative group laws. Given additive formal group laws AD1, AD2, AD3 of dimensions
d1, d2, d3, the additive formal biextension law of dimensions (d1, d2, d3) is the commuta-
tive formal biextension law (AD1,AD2) of AD1 and AD2 by AD3 given by

(2.2.2)
AD1(xi) = xi ⊗ 1 + 1⊗ xi = x′i + x′′i , AD2(yi) = yi ⊗ 1 + 1⊗ yi = y′i + y′′i ,

AD1(zi) = zi ⊗ 1 + 1⊗ zi = z′i + z′′i , AD2(zi) = zi ⊗ 1 + 1⊗ zi = z′i + z′′i .

In the next theorem we prove that every commutative biextension overR is isomorphic
to an additive biextension, if Q ⊂ R.
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2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

Theorem 2.2.3. Let R be a Q-algebra, let x = {x1, . . . , xa}, y = {y1, . . . , yb} and
z = {z1, . . . , zc} be systems of indeterminates, let

A : R[[x]]→ R[[x]] ⊗̂RR[[x]] , B : R[[y]]→ R[[y]] ⊗̂RR[[y]] , C : R[[z]]→ R[[z]] ⊗̂RR[[z]] ,

be three formal group laws over R and let (A,B) be a commutative formal biextension of
A,B by C. Let I ⊂ R[[x, y, z]] be the ideal (x1, . . . , xa, z1, . . . , zc)2+(y1, . . . , yb, z1, . . . , zc)2.

Then there is a unique isomorphism ψ : R[[x, y, z]] → R[[x, y, z]] between the addi-
tive formal biextension law of dimensions (a, b, c) and (A,B) such that ψ reduces to the
identity modulo I. Moreover such a ψ restricts to ψ|R[[x]] = logA : R[[x]] → R[[x]] and
ψ|R[[y]] = logB : R[[y]]→ R[[y]].

Proof. We first prove the uniqueness. Since two isomorphisms between the additive for-
mal biextension (AD1,AD2) of dimensions (a, b, c) and (A,B) differ by automorphisms
of (AD1,AD2), it is enough to prove uniqueness in the case (A,B) = (AD1,AD2). Let
ψ be an automorphism of (AD1,AD2) reducing to the identity modulo I. By defi-
nition of homomorphism of formal biextension laws, ψ restricts to an automorphism
ψx : R[[x]]→ R[[x]] of the additive formal group law A and, by the hypothesis on ψ mod I,
ψx reduces to the identity modulo (x1, . . . , xa)2. Then, by uniqueness of the formal log-
arithm,

ψx = idR[[x]],

hence ψ : R[[x]][[y, z]] → R[[x]][[y, z]] is a morphism of R[[x]]-algebras. This, together with
the definition of homomorphism of formal biextension, implies that ψ is an automorphism
of the additive biextension law AD2. Symmetrically ψy := ψ|R[[y]] = idR[[y]] and ψ is an
automorphism of the additive biextension law AD1. Since all the homomorphisms of
additive groups are linear, there exist power series λi,j , µi,k ∈ R[[x]] and σi,j , τi,l ∈ R[[y]]
such that

ψ(zi) = zi +
c∑
j=1

λi,j(x)zj +
b∑

k=1
µi,k(x)yk = zi +

c∑
j=1

σi,j(y)zj +
a∑
l=1

τi,l(y)xl.

We deduce that λi,j(x) = σi,j(y) is constant, and since ψ(zi) ≡ zi modulo I, we deduce
that λi,j(x) = σi,j(y) = 0. The above equation also implies that power series µi,j(x) are
linear polynomials in the xl’s. Hence ψ(zi)−zi is a linear combination of the monomials
ykxl and, since it belongs to I, we deduce that ψ(zi)−zi = 0.

We have proved that ψ and the identity agree when evaluated on all the xl’s, yk’s
and zj ’s, hence, by continuity, ψ is the identity, which proves the uniqueness.

For the existence of ψ we proceed in four steps, that is we define automorphisms
ψ1, ψ2, ψ3, ψ4 of R[[x, y, z]] whose composition ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 is the ψ we are looking
for.
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2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

Let ψ1 be the formal logarithm of B. By definition we have ψx1 := ψ1|R[[x]] = idR[[x]]

and, by the explicit formulas for the formal logarithm in [54, Proposition 1.1 and Theorem
1] and the fact that B|R[[y]] = B, the map ψy1 := ψ1|R[[y]] is equal to the formal logarithm
of B. In particular ψ1 restricts to an automorphism of both R[[x]] and R[[y]], hence it
makes sense to define the “pullback” (A1,B1) of (A,B) by ψ1: we define A1 and B1 to
be the unique maps making the following diagrams commute
(2.2.3.1)

R[[x, y, z]] R[[x′, x′′, y, z′, z′′]] R[[x, y, z]] R[[x, y′, y′′, z′, z′′]]

R[[x, y, z]] R[[x′, x′′, y, z′, z′′]] R[[x, y, z]] R[[x, y′, y′′, z′, z′′]]

A1

ψ1 ψ1⊗̂ψy1
ψ1

B1

ψ1 ψ1⊗̂ψx1 ψ1

A B

.

Then (A1,B1) is a biextension of certain formal group laws A1, B1 by C1: indeed we define
A1 := A1|R[[x]], B1 := A1|R[[y]] and we define C1 functorially by imposing that, for every
adic R-algebra S, C1(S) is the set of points inNa+b+c

S that project to (0, 0) ∈ (A1×B1)(S)
with the group law given by A1; it is easy to check, sometimes using the functorial point
of view and sometimes using the ring theoretic point of view, that A1 and B1 are formal
groups, that they are compatible in the sense of (2.2.1), that A1 is an extension of
(A1)R[[y]] by (C1)R[[y]] and that B1 is an extension of (B1)R[[x]] by (C1)R[[x]].

The definition of ψ1 as formal logarithm implies that B1 = AD2 as in (2.2.2) and
consequently both B1 and C1 are additive. Since ψx1 = idR[[x]], then A1 = A.

Now we define ψ2 : R[[x, y, z]] → R[[x, y, z]] to be the unique continuous morphism
being equal to the identity when restricted to R[[y, z]] and equal to the formal logarithm
of A1 = A when restricted to R[[x]]. Since ψ2 restricts to automorphisms ψx2 , ψ

y
2 of

R[[x]], R[[y]], we can define the pullback (A2,B2) of (A1,B1) by the map ψ2, in the same
way we defined the pullback (A1,B1) of (A,B). Again (A2,B2) is a biextension of certain
formal group laws A2, B2 by C2.

Since ψ2 acts as the identity on R[[y, z]] we check that B1 = AD2 = B2, hence both
B2 and C2 are additive. The map ψx2 = logA is an isomorphism between A2 and A1,
hence A2 is an additive formal group law. For each i = 1, . . . , c let us now look at the
power series

A2(zi) =
∑

I′,I′′,J,K′,K′′

λI′,I′′,J,K′,K′′(x′)I
′
(x′′)I

′′
yJ(z′)K

′
(z′′)K

′′
.

The compatibility (2.2.1) between B2 = AD2 and A2 implies that

A2(zi)(x′, x′′, y′+y′′, z′+z′′, z′′′+z(iv)) = A2(zi)(x′, x′′, y′, z′, z′′′)+A2(zi)(x′, x′′, y′′, z′′, z(iv)).

Since in the R.H.S of this equation there is no monomial multiple of y′iy′′j , by expanding
the series on the L.H.S we see that λI′,I′′,J,K′,K′′ = 0 if |J | ≥ 2. Analogously by looking
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2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

at monomials multiple of z′iz′′j or multiple of z′iz
(iv)
j or multiple of z′′′i z

(iv)
j , we infer that

λI′,I′′,J,K′,K′′ = 0 if |K ′+K ′′| ≥ 2. By looking at monomials multiple of z′iy′′j or multiple
of z′′i y′j we infer that λI′,I′′,J,K′,K′′ = 0 if |J+K ′′+K ′| ≥ 2. The term (x′)I′(x′′)I′′ appears
with coefficient λI′,I′′,0,0,0 on the left and with coefficient 2λI′,I′′,0,0,0 the right, thus we
must have λI′,I′′,0,0,0 = 0. We have proved that the only coefficients λI′,I′′,J,K′,K′′ 6= 0
are the ones with |J +K ′ +K ′′| = 1, hence

(2.2.3.2) A2(zi) =
b∑
j=1

di,j(x′, x′′)yj +
c∑
j=1

fi,j(x′, x′′)z′j +
c∑
j=1

ei,j(x′, x′′)z′′j .

with appropriate di,jfi,j , ei,j ∈ R[[x]]. By the commutativity of A2, for each j ∈ {1, . . . , c}
we have fi,j(x′, x′′) = ei,j(x′′, x′). Let f(x′, x′′) be the matrix with (i, j)-entry equal to
fi,j , let d(x′, x′′) be the matrix with (i, j)-entry equal to di,j and let A2(z) be the column
vector (A2(z1), . . . ,A2(zd))t. Looking at x, y, z, z′, z′′ as column vectors, we can rewrite
equation (2.2.3.2) as

(2.2.3.3) A2(z) = d(x′, x′′) · y + f(x′, x′′) · z′ + f(x′′, x′) · z′′ .

The property (2.1.1) of formal group laws implies that f is congruent to the identity
matrix modulo the ideal (x′1, x′′1 , . . . , x′a, x′′a).In particular the determinant of f is invert-
ible in R[[x′, x′′]], hence f has an inverse with coefficients in R[[x′, x′′]]. Writing down the
associativity of A2 (the right diagram in Equation (2.1.3)), we find the identity

f(x′, x′′ + x′′′) = f(x′ + x′′, x′′′) · f(x′, x′′).

If we plug in the values x′ ← 0, x′′ ← x′ and x′′′ ← x′′ we immediately see that

(2.2.3.4) f(x′, x′′) = g(x′ + x′′) · g(x′)−1

where g(x) := f(0, x) ∈ R[[x]]c×c, which is invertible because f is invertible. We now
define the continuous automorphism

ψ3 : R[[x, y, z]] −→ R[[x, y, z]] , x 7−→ x , y 7−→ y , z 7−→ g(x) · z .

Again let (A3,B3) be the formal biextension law obtained pulling back (A2,B2) by ψ3.
We now prove that B3 = AD2 and that A3 is “almost equal” to AD1. Using that ψ3 acts
as the identity on R[[x, y]], we check that B3(yi) = AD2(yi) and that A3(xi) = AD1(xi).
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Using the isomorphism (2.1.2) and Equation (2.2.3.4) we get

B3(z) = (ψ3⊗̂R[[x]]ψ3) ◦ B2 ◦ ψ−1
3 (z) = (ψ3⊗̂R[[x]]ψ3) ◦ B2(g(x)−1·z)

= (ψ3⊗̂R[[x]]ψ3)
(
g(x)−1·(z′ + z′′)

)
= g(x)−1·

(
g(x)·z′ + g(x)·z′′

)
= z′ + z′′ = AD2(z).

A3(z) = (ψ3⊗̂R[[x]]ψ3) ◦ A2 ◦ ψ−1
3 (z) = (ψ3⊗̂R[[x]]ψ3) ◦ A2(g(x)−1·z)

= (ψ3⊗̂R[[x]]ψ3)
(
g(x′ + x′′)−1·

(
d(x′, x′′)·y + f(x′, x′′)·z′ + f(x′′, x′)·z′′

))
= g(x′ + x′′)−1·

(
d(x′, x′′)·y + f(x′, x′′)·g(x′)·z′ + f(x′′, x′)·g(x′′)·z′′

)
= z′ + z′′ + g(x′ + x′′)−1·d(x′, x′′)·y = AD1(z) + g(x′ + x′′)−1·d(x′, x′′)y.

By the associativity and commutativity of A3 we can prove the following claim.

Claim 2.2.4. There exists a unique matrix of power series h(x) ∈ R[[x]]c×b such that

g(x′ + x′′)−1 · d(x′, x′′) = h(x′ + x′′)− h(x′)− h(x′′) and (2.2.4.1)
h(0) ≡ 0 (mod (x1, . . . , xa)2). (2.2.4.2)

Proof. We define m(x′, x′′) := g(x′ + x′′)−1d(x′, x′′). When proving the claim, we can
work separately on each entry mi,j and hi,j , hence we can consider m as an element in
R[[x′, x′′]] and h as an element in R[[x]], instead of considering them as matrices on the
same rings.

Notice that two solutions of (2.2.4.1) differ by a (matrix of) linear polynomial(s) in
the xi’s, hence the congruence (2.2.4.2) ensures uniqueness. We now prove existence.

We know that a power series S ∈ R[[x′, x′′]] = R[[x′′]][[x′]] is zero if and only if
S(0, x′′) = 0 and ∂S/∂x′i = 0 for each i ∈ {0, . . . , a}: applying this principle to our
claim we get that, for any h, Equation (2.2.4.1) holds if and only if

m(0, x′′) = −h(0) and (2.2.4.3)
∂m

∂x′i
(x′, x′′) = ∂h

∂xi
(x′ + x′′)− ∂h

∂xi
(x′) ∀i = 1, . . . , a. (2.2.4.4)

Equation (2.2.4.3) is equivalent to h(0) = 0: indeed m(0, x′′) = 0 because the evaluation
of A3(z) at x′ = z′ = 0 is equal to z′′, as implied by the first property in the definition of
formal group laws (the one saying that “the point 0” is the neutral element). Moreover
if h(0) = 0, then, up to adding a (matrix of) linear polynomial(s) in the xi’s, we can
suppose that h is congruent to 0 modulo (x1, . . . , xa)2. Hence proving our claim is
equivalent solving Equation (2.2.4.4) and h(0) = 0, which is in turn equivalent to finding
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n1, . . . , na being (matrices with coefficients) in R[[x]] such that

n :=
a∑
i=1

ni(x)dxi is a closed form and (2.2.4.5)

∂m

∂x′i
(x′, x′′) = ni(x′ + x′′)− ni(x′) ∀i = 1, . . . , a. (2.2.4.6)

Indeed, given h as in Equations (2.2.4.3), (2.2.4.4) we can take ni = ∂h/∂xi and given
n1, . . . , na as above, since all closed forms in R[[x]] are exact, there exists a unique
h ∈ R[[x]] such that h(0) = 0 and ∂h/∂xi = ni. We now look for such ni’s.

Associativity of the formal group law A3 tells us that

m(x′ + x′′, x′′′) +m(x′, x′′) = m(x′, x′′ + x′′′) +m(x′′, x′′′).

Taking the partial derivative with respect to x′i, we get

(2.2.4.7) ∂m

∂x′i
(x′ + x′′, x′′′) + ∂m

∂x′i
(x′, x′′) = ∂m

∂x′i
(x′, x′′ + x′′′).

Plugging the values x′ ← 0, x′′ ← x′ and x′′′ ← x′′ in the above equation we see that

ni(x) := ∂m

∂x′i
(0, x) ,

automatically satisfy Equation (2.2.4.6). It remains to show that, with the above defi-
nition of the ni’s, Equation (2.2.4.5) is also satisfied. Taking the derivative of Equation
(2.2.4.7) with respect to x′′′j we find

(2.2.4.8) ∂2m

∂x′′j ∂x
′
i

(x′ + x′′, x′′′) = ∂2m

∂x′′j ∂x
′
i

(x′, x′′ + x′′′).

The commutativity of A3 implies m(x′, x′′) = m(x′′, x′), and taking two derivatives we
get

(2.2.4.9) ∂2m

∂x′′i ∂x
′
j

(x′, x′′) = ∂2m

∂x′′j ∂x
′
i

(x′′, x′).

Deriving the definition of ni and specializing Equations (2.2.4.8) and (2.2.4.9) in x′ ← 0,
x′′ ← x, x′′′ ← 0, we find that for every i, j = 1, . . . , a

∂ni
∂xj

= ∂2m

∂x′′j ∂x
′
i

(0, x) = ∂2m

∂x′′j ∂x
′
i

(x, 0) = ∂2m

∂x′′i ∂x
′
j

(0, x) = ∂nj
∂xi

,

proving that the form n in Equation (2.2.4.5) is closed.
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Taking h as in the claim we define the continuous automorphism

ψ4 : R[[x, y, z]] −→ R[[x, y, z]] , x 7−→ x , y 7−→ y , z 7−→ z + h(x) · y ,

and we define (A4,B4) to be the pullback of the formal biextension law (A4,B4) by ψ4.
We easily check that B4 = AD2 and A4(yi) = AD1(yi). Moreover, using the definition
of A4, the formula for A3(z) we previously found and the definition of h, we get

A4(z) = (ψ4⊗̂R[[x]]ψ4) ◦ A3 ◦ ψ−1
4 (z) = (ψ4⊗̂R[[x]]ψ4) ◦ A3

(
z − h(x) · y

)
= (ψ4⊗̂R[[x]]ψ4)

(
z′ + z′′ + g(x′ + x′′)−1 · d(x′, x′′) · y − h(x′ + x′′) · y

)
= (ψ4⊗̂R[[x]]ψ4)

(
z′ + z′′ − h(x′) · y − h(x′′) · y

)
= z′ + h(x′) · y + z′′ + h(x′′) · y − h(x′) · y − h(x′′)
= z′ + z′′ = AD1(z) .

Hence A4 = AD1 and (A4,B4) is the additive formal biextension law of dimensions
(a, b, c).

For each i = 1, 2, 3, 4 we have defined (Ai,Bi) as the pullback of (Ai−1,Bi−1) by ψi
(here (A0,B0) = (A,B)) hence, by the definition of pullback in (2.2.3.1), the map ψi is
an isomorphism between (Ai,Bi) and (Ai−1,Bi−1). Consequently ψ := ψ4 ◦ψ3 ◦ψ2 ◦ψ1 is
an isomorphism between (A4,B4) = (AD1,AD2) and (A0,B0) = (A,B). Moreover ψ is
the identity when reduced modulo I since the same is true for ψ1, ψ2, ψ3, ψ4: for ψ1 and
ψ2 it is true by the definition of formal logarithms, for ψ3 it is true because g(x) = f(0, x)
is congruent to the identity matrix modulo the ideal (x1, . . . , xa) and for ψ4 it is true
because h is congruent to the zero matrix modulo the ideal (x1, . . . , xa)2. Finally we
notice that the subrings R[[x]], R[[y]] ⊂ R[[x, y, z]] are stable under ψ1, ψ2, ψ3, ψ4 so they
are also stable under φ, that restricts to isomorphisms

ψx := ψ|R[[x]] = ψx4 ◦ ψx3 ◦ ψx2 ◦ ψx1 = idR[[x]] ◦ idR[[x]] ◦ logA ◦idR[[x]] = logA ,
ψy := ψ|R[[y]] = ψy4 ◦ ψ

y
3 ◦ ψ

y
2 ◦ ψ

y
1 = idR[[y]] ◦ idR[[y]] ◦ idR[[y]] ◦ logB = logB .

2.3 Biextensions over the p-adics and convergence

Given a commutative algebraic group G/Zp, the formal logarithm is useful to describe
the group G(Zp) in a neighbourhood of its neutral element. Analogously we want to use
the map ψ of Theorem 2.2.3 to describe biextensions over Zp, hence we are interested in
the convergence and integrality of the power series determining ψ.
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Let R be a Z(p)-algebra of characteristic zero equipped with a positive discrete valu-
ation v extending the p-adic valuation on Z(p) and such that the ideal {r ∈ R : v(r) > 0}
is generated by an element π. Examples of such rings are R = Z(p)[[x1, . . . , xd]] equipped
with the p-adic valuations or the discrete valuation rings contained in finite extensions
of Qp.

For any formal group A : R[[x]]→ R[[x]]⊗̂R[[x]] of dimension a we have

A(R) = Homcont(R[[x]], R) = (πR)a ,

where R[[x]] is endowed with the (x1, . . . , xa)-adic topology and R with the v-adic topol-
ogy. Then the elements x̃i := xi

π ∈ (R⊗Q)[[x]] define a bijection

(2.3.1) x̃ = (x̃1, . . . , x̃a) : A(R) −→ Ra ,

that suggests the definition of the following ring of “integral converging power series”

R〈x̃〉 = R〈x̃1, . . . , x̃a〉 :=
{∑
I∈Na

λI x̃
I ∈ R[[x̃]] : ∀n ≥ 0, ∀almostI, v(λI) ≥ n

}
⊂ (R⊗Q)[[x]]

This ring resembles the one in Equation (1.3.2) and, when R is complete with respect to
v, each element of R〈x̃〉 defines a continuous function A(R)→ R.

If A is commutative, the formal logarithm logA := logAR⊗Q
: (R⊗Q)[[x]]→ (R⊗Q)[[x]]

helps us understanding the group A(R): if πp−2 is a multiple of p (when R is the discrete
valuation ring contained in finite extensions of Qp this is equivalent to the ramification
being strictly smaller than p−1), then for each i ∈ {1, . . . , a} we have

(2.3.2) logA(x̃i) ∈ R〈x̃〉 , logA(x̃i) ≡ xi mod π .

Hence, if R is v-adically complete, we get an isomorphism of groups

(2.3.3) (logA(x̃1), . . . , logA(x̃a)) : A(R) −→ (Ra,+) ,

that is given by integral converging power series and that, using the isomorphism (2.3.1),
reduces to the identity modulo v. This fact can be proven with the same arguments in
the proof of Lemma 1.5.1.1, replacing OS,s with R.

We give an analogous statement for biextensions. In such context the biextension
analogous to the additive group is the biextension (Ra×Rb×Rc,+1,+2) of the additive
groups (Ra,+), (Rb,+) by (Rc,+), with partial group operations

(2.3.4)
(r′A, rB , r′C) +1 (r′′A, rB , r′′C)=(r′A + r′′A, rB , r

′
C + r′′C),

(rA, r′B , r′C) +2 (rA, r′′B , r′′C)=(rA, r′B + r′′B , r
′
C + r′′C).
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Proposition 2.3.5. Let R be a Z(p)-algebra of characteristic zero equipped with a pos-
itive discrete valuation v extending the p-adic valuation on Z(p). Suppose that the ideal
{r ∈ R : v(r) > 0} is generated by an element π such that πp−2 is a multiple of p. Let

A : R[[x]]→ R[[x]] ⊗̂RR[[x]] , B : R[[y]]→ R[[y]] ⊗̂RR[[y]] , C : R[[z]]→ R[[z]] ⊗̂RR[[z]] ,

be formal group laws of dimensions a, b, c, let (A,B) be a commutative formal biextension
of A,B by C and let ψ : (R⊗Q)[[x, y, z]]→ (R⊗Q)[[x, y, z]] be the map in Theorem 2.2.3.

Using the definitions x̃i := xi/π, ỹj := yj/π, z̃k := zk/π, we have

ψ(x̃i) , ψ(ỹj) , ψ(z̃k) , ψ−1(x̃i) , ψ−1(ỹj) , ψ−1(z̃k) ∈ R〈x̃, ỹ, z̃〉 and

ψ(x̃i) ≡ ψ−1(x̃i) ≡ x̃i , ψ(ỹi) ≡ ψ−1(ỹj) ≡ ỹj , ψ(z̃k) ≡ ψ−1(z̃k) ≡ z̃k modulo π .

Moreover, if R is v-adically complete, the power series ψ(x̃i), ψ(ỹj), ψ(z̃k) give an iso-
morphism of biextensions

(A,B)(R) −→ (Ra ×Rb ×Rc,+1,+2) ,

where (Ra ×Rb ×Rc,+1,+2) is the additive biextension given by (2.3.4).

Proof. For an additive formal biextension law (AD1,AD2) of dimensions (a, b, c), the
set of R-points (AD1,AD2)(R) is exactly (Ra ×Rb ×Rc,+1,+2), hence it is enough to
prove that the power series ψ(x̃i), ψ(ỹj), ψ(z̃k), ψ−1(x̃i), ψ−1(ỹj), ψ−1(z̃k) are contained
in R〈x̃, ỹ, z̃〉 and proving the congruences. This is equivalent to proving that ψ and
ψ−1 restrict to maps R〈x̃, ỹ, z̃〉 → R〈x̃, ỹ, z̃〉 that modulo π reduce to the identity of
(R/π)[x̃, ỹ, z̃]. Moreover once it is proven for ψ it is automatically true for ψ−1.

We can write ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1, where the ψi’s are the ones defined in the proof
of Theorem 2.2.3, hence it is enough to prove that both ψ1 and ψ4◦ψ3◦ψ2 restrict to
maps R〈x̃, ỹ, z̃〉 → R〈x̃, ỹ, z̃〉 that modulo π reduce to the identity of (R/π)[x̃, ỹ, z̃]. In
other words it is enough to prove that the power series ψ1(x̃i), ψ4◦ψ3◦ψ2(x̃i), ψ1(ỹj),
ψ4◦ψ3◦ψ2(ỹj), ψ1(z̃k) and ψ4◦ψ3◦ψ2(z̃k) lie in R〈x̃, ỹ, z̃〉 and that they are congruent
respectively to x̃i, x̃i, ỹj , ỹj , z̃k and z̃k modulo π. We know that ψ1 = logB, hence, using
Equation (2.3.2),

ψ1(x̃i) = x̃i , ψ1(ỹj) , ψ1(z̃k) ∈ R[[x]]〈ỹ, z̃〉 ⊂ R〈x̃, ỹ, z̃〉 and
ψ1(x̃i) ≡ x̃i(modπ) , ψ1(ỹi) ≡ ỹi(modπ) , ψ1(ỹi) ≡ ỹi(modπ) ,

where R[[x]]〈ỹ, z̃〉 is defined with respect to the π-adic valuation on R[[x]]. We notice that
ψ2◦ψ3◦ψ4 is the identity when restricted toR[[y]], hence ψ2◦ψ3◦ψ4 : R[[y]][[x, z]]→R[[y]][[x, z]]
is an isomorphism between the additive formal group law of dimension a+c over R[[y]]
and the formal group law A1 which is defined in the proof of Theorem 2.2.3; moreover
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ψ2◦ψ3◦ψ4 reduces to the identity modulo (x1, . . . , xa, z1, . . . , xc)2. By the uniqueness of
the formal logarithm, ψ2◦ψ3◦ψ4 = logA1 , hence, using Equation (2.3.2),

ψ2◦ψ3◦ψ4(x̃i) = x̃i , ψ2◦ψ3◦ψ4(ỹj) , ψ2◦ψ3◦ψ4(z̃k) ∈ R[[y]]〈x̃, z̃〉 ⊂ R〈x̃, ỹ, z̃〉 and
ψ2◦ψ3◦ψ4(x̃i) ≡ x̃i(modπ) , ψ2◦ψ3◦ψ4(ỹi) ≡ ỹi(modπ) , ψ2◦ψ3◦ψ4(ỹi) ≡ ỹi(modπ) ,

where R[[y]]〈x̃, z̃〉 is defined with respect to the π-adic valuation on R[[y]].

2.4 Another proof of Theorem 1.4.10

We now use Theorem 2.2.3 and Proposition 2.3.5 to give another proof of Theorem
1.4.10. Our strategy is constructing a chart Φ: Zρg+ρ−1

p → P×,ρ−1(Zp)t, such that the
map Φ−1 ◦ κ is given by linear and quadratic polynomials. In order to construct Φ we
first establish coordinates to define a formal biextension law associated to P×,ρ−1, then
we use the map of Theorem 2.2.3 to describe more easily the partial group operations
of P×,ρ−1(Zp) in a neighbourhood of the neutral element, then we make translations to
work in the residue disk of t.

Let J, (J∨0)ρ−1, P×,ρ−1 and T be as in Section 1.2 and let πJ and π(J∨0)ρ−1 be the two
projections P×,ρ−1 → J and P×,ρ−1 → (J∨0)ρ−1. Letting 0, 0 be the neutral elements
of J(Zp), J(Fp), we choose y1, . . . , yg ∈ OJ,0 that vanish on 0 and that, together with p,
generate the maximal ideal m ⊂ OJ,0. The embedding Z[y1, . . . , yg] → OJ,0 induces an
isomorphism

Zp[[y]] = Zp[[y1, . . . , yg]]
∼−→ O∧m

J,0 .

The group operation MJ : J × J → J induces a morphism of rings OJ,0 → OJ,0 ⊗ OJ,0
and taking completions we get a formal group law over Zp

M∗J : Zp[[y]] = O∧m

J,0 −→ (OJ,0 ⊗OJ,0)∧m⊗O
J,0+O

J,0⊗m = Zp[[y]]⊗̂ZpZp[[y]] .

Then we have an isomorphism of groups given by the composition

J(Zp)0 = Homloc(OJ,0,Zp) = Homcont(O∧m

J,0 ,Zp) = Homcont(Zp[[y]],Zp) = M∗J (Zp) .

Analogously we choose z1, . . . , zρg−g ∈ O(J∨0)ρ−1,0 that vanish on 0 and that, together
with p, generate the maximal ideal of O(J∨0)ρ−1,0. The group operation on (J∨0)ρ−1

induces a formal group law

M∗(J∨0)ρ−1 : Zp[[z1, . . . , zρg−g]] = Zp[[z]] −→ Zp[[z]]⊗̂ZpZp[[z]] ,

that describes the group (J∨0)ρ−1(Zp)0.
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The rigidification of P×,ρ−1 along J × {0} gives an element 1 ∈ P×,ρ−1(0, 0)(Zp)
that is the neutral element of both the groups π−1

J (0)(Zp) and π−1
J∨0,ρ−1(0)(Zp). We call

such an element the neutral element of P×,ρ−1(Zp) and we denote by 1 its image in
P×,ρ−1(Fp). We choose w1, . . . , wρ−1 ∈ OP×,ρ−1,1 that vanish on 1 and that, together
with x1, . . . , xg,z1, . . . , zρg−g and p generate the maximal ideal m ⊂ OP×,ρ−1,1. As before
we have an isomorphism

Zp[[y, z, w]] = Zp[[y1, . . . , yg, z1, . . . , zρg−g, w1, . . . , wρ−1]] ∼−→ O∧m

P×,ρ−1,1

and the two partial group laws

+1 : P×,ρ−1 ×(J∨0)ρ−1 P×,ρ−1 −→ P×,ρ−1 , +2 : P×,ρ−1 ×J P×,ρ−1 −→ P×,ρ−1 ,

and induce a biextension

M∗J : Zp[[y, z, w]] −→ Zp[[y, z, w]]⊗̂Zp[[z]]Zp[[y, z, w]] ,
M∗J∨0,ρ−1 : Zp[[y, z, w]] −→ Zp[[y, z, w]]⊗̂Zp[[y]]Zp[[y, z, w]] ,

of the formal group laws M∗J and M∗J∨0,ρ−1 by the formal group law induced by the alge-
braic groupGρ−1

m . In particular P×,ρ−1(Zp)1 is a biextension of J(Zp)0 and (J∨0)ρ−1(Zp)0
by Gρ−1

m (Zp)1, and it is isomorphic to (MJ ,MJ0∨,ρ−1)(Zp). Applying Theorem 2.2.3 and
Proposition 2.3.5 we get an isomorphism of biextensions

Ψ: (P×,ρ−1(Zp)1,+1,+2) −→ (Zgp × Zρg−gp × Zρ−1
p ,+1,+2) ,

given by power series in O((P̃×,ρ−1)px)∧p , that modulo p give a linear map between the
tangent space of P×,ρ−1 at 1 and Fρg+ρ−1

p .
We now take care of translating Ψ. Let f and m be as in Section 1.2 and let

x
t̃
∈ J(Z), t̃ ∈ T (Z) ⊂ P×,ρ−1(Z) be as in Section 1.4. By Equations (2.3.2) and

(2.3.3), the formal logarithms of (the formal group laws associated to) the algebraic
groups π−1

(J∨0)ρ−1(m·◦trc◦f(x
t̃
)) and π−1

J (x
t̃
) give isomorphisms of groups

Ψ1 :
(
π−1
J∨0,ρ−1(m· ◦ trc ◦ f(x

t̃
))(Zp)1,+1

)
−→ (Zgp × Zρ−1

p ,+) ,
Ψ2 :

(
π−1
J (x

t̃
)(Zp)1,+2

)
−→ (Zρg−gp × Zρ−1

p ,+) ,

where we denote by 1 the reduction modulo p of the neutral elements of the respec-
tive groups. Since π−1

J (x
t̃
) is an extension of (J∨0)ρ−1, the first ρg−g coordinates

of Ψ2 are given by the composition of the projection π−1
J (x

t̃
)(Zp)1 → (J∨0)ρ−1(Zp)0

with the formal logarithm of (J∨0)ρ−1. Analogously the first g coordinates of Ψ1 are
given by the composition of π−1

(J∨0)ρ−1(m·◦trc◦f(x
t̃
))(Zp)1 → J(Zp)0 with the formal

73



2. FORMAL BIEXTENSIONS AND QUADRATIC CHABAUTY

logarithm of J . By Theorem 2.2.3, analogous statements are true for the first g coor-
dinates of Ψ and the subsequent ρg−g coordinates of Ψ. This implies that for every
(α, β, γ) ∈ Zgp × Zρg−gp × Zρ−1

p we have

(2.4.1)
πJ
(
Ψ−1(α, β, γ)

)
= πJ

(
Ψ−1

1 (α, γ)
)

= πJ
(
Ψ−1

1 (α, 0)
)
,

π(J∨0)ρ−1
(
Ψ−1(α, β, γ)

)
= π(J∨0)ρ−1

(
Ψ−1

2 (β, γ)
)

= π(J∨0)ρ−1
(
Ψ−1

2 (β, 0)
)
.

Moreover, using the Gρ−1
m -structure of P×,ρ−1 and the fact that both the groups π−1

J (0)
and π−1

J∨0,ρ−1(0) are base changes of Gρ−1
m , for every (α, β, γ) ∈ Zgp × Zρg−gp × Zρ−1

p we
have

Ψ−1(α, β, γ) = Ψ−1(0, β, γ) +1 Ψ−1(α, β, 0) = expρ−1(γ) ·Ψ−1(α, β, 0) ,
Ψ−1

1 (α, γ) = Ψ−1
1 (0, γ) +1 Ψ−1

1 (α, 0) = expρ−1(γ) ·Ψ−1
1 (α, 0) ,

Ψ−1
2 (β, γ) = Ψ−1

2 (β, γ) +2 Ψ−1
2 (β, 0) = expρ−1(γ) ·Ψ−1

2 (β, 0) ,

where expρ−1 : Zρ−1
p → Z×,ρ−1

p is obtained taking the (ρ−1)-th power of

exp: Zp −→ Gm(Zp)1 = 1 + pZp ,

which is the inverse of the map (2.3.3) induced by the formal logarithm of Gm. By
(2.4.1), we can “translate” the map Ψ by Ψ1 and Ψ2, obtaining the following map

Φ: Zgp × Zρg−gp × Zρ−1
p −→P×,ρ−1(Zp)t

(α, β, γ) 7−→
(
Ψ−1(α, β, γ) +2 Ψ−1

1 (α, 0)
)

+1
(
Ψ−1

2 (β, 0) +2 t̃
)

= expρ−1(γ)·
((

Ψ−1(α, β, 0) +2 Ψ−1
1 (α, 0)

)
+1
(
Ψ−1

2 (β, 0) +2 t̃
))
.

Let us fix coordinates to study Φ. Let u1, . . . , uρg−g be elements ofO(J∨0)ρ−1,m·◦trc◦f(jb(u))

such that together with p they form a system of parameters of O(J∨0)ρ−1,m·◦trc◦f(jb(u)),
and let us lift v1, . . . , vρ−1 to elements in OP×,ρ−1,t. Then u1, . . . , uρg−g, v1, . . . , vρ−1 and
p, together with x1, . . . , xg defined in the statement of Theorem 1.4.10, form a a system
of parameters of OP×,ρ−1,t. The functions x̃i := xi

p , ũi := ui
p and ṽi := vi

p give bijections
with powers of Zp that make the following diagram commute

P×,ρ−1(Zp)t Zgp × Zρg−gp × Zρ−1
p

T (Zp)t Zgp × Zρg−gp × Zρ−1
p

(x̃,ũ,̃v) = (x̃1,...,x̃g,ũ1,...,ũρg−g ,̃v1,...,̃vρ−1)

(x̃1,...,x̃g ,̃v1,...,̃vρ−1)

.

The biextension structure on P×,ρ−1 implies that Φ is a bijection and, since it is de-
fined composing maps given by integral power series that reduce to linear polynomials
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modulo p, then (x̃, ũ, ṽ) ◦ Φ is given by power series that reduce to linear polynomials
modulo p. Hence the same is true for the inverse of (x̃, ũ, ṽ) ◦Φ. This and the commuta-
tivity of the above diagram imply that, in order to prove Theorem 1.4.10, it is enough to
prove that the map Φ−1 ◦κZ is given by g+(ρg−g) linear polynomials and ρ−1 quadratic
polynomials in the ni and also proving that Φ−1(T (Z)t) is the image of such a polyno-
mial map. To do so we give names to the coordinates of the relevant points: for each
i, j ∈ {1, . . . , r} let Pi,j , Ri,̃t, St̃,j ∈ P

×,ρ−1(Z) be as in Equation (1.4.1) and let αi ∈ Zgp,
βj ∈ Zρg−gp , γi,j , γi,̃t, γt̃,j ∈ Zρ−1

p and ξi,j , ξi,̃t, ξt̃,j ∈ F×,ρ−1
p ⊂ Z×,ρ−1

p be such that

Pi,j = ξi,j ·Ψ−1(αi, βj , γi,j) , R
i,̃t

= ξ
i,̃t
·Ψ−1

1 (αi, γi,̃t) , S
t̃,j

= ξ
t̃,j
·Ψ−1

2 (βj , γt̃,j) .

The maps Ψ,Ψ1 and Ψ2 are formal logarithms, hence they allow us to write very easily
the two partial group laws, and in particular we can describe the maps A,B,C,D in
Equations (1.4.2), (1.4.3) and (1.4.4) as follows

A
t̃
(n) =

r∑
2

j=1

nj ·2 St̃,j =

 r∏
j=1

ξ
nj

t̃,j

 · Ψ−1
2

 r∑
j=1

njβj ,

r∑
j=1

njγt̃,j

 ,

B
t̃
(n) =

r∑
1

i=1

ni ·1 Ri,̃t =
(

r∏
i=1

ξni
i,̃t

)
· Ψ−1

1

(
r∑
i=1

niαi ,

r∑
i=1

niγi,̃t

)
,

C(n) =
r∑

1
i=1

ni ·1
( r∑

2
j=1

nj ·2 Pi,j
)

=

 r∏
i,j=1

ξ
ninj
i,j

 · Ψ−1

 r∑
i=1

niαi ,

r∑
j=1

njβj ,

r∑
i,j=1

ninjγi,j

 ,

D
t̃
(n) =

(
C(n) +2 Bt̃(n)

)
+1
(
A
t̃
(n) +2 t̃

)
= ξ (n) · Φ

 r∑
i=1

niαi ,

r∑
j=1

njβj ,

r∑
i,j=1

ninjγi,j +
r∑
j=1

njγt̃,j +
r∑
i=1

niγi,̃t

 ,

with ξ(n) :=
r∏

i,j=1
ξ
ninj
i,j ·

r∏
i=1

ξni
i,̃t
·
r∏
j=1

ξ
nj

t̃,j
∈ F×,ρ−1

p .

For any n ∈ Zr we have ξ((p−1)n) = 1, hence

Φ−1◦κZ(n) = Φ−1(D
t̃
((p− 1)n))

=

(p−1)
r∑
i=1

niαi , (p−1)
r∑
j=1

njβj , (p−1)2
r∑

i,j=1
ninjγi,j + (p−1)

r∑
i=1

ni(γi,̃t + γ
t̃,i

)


is described by linear and quadratic polynomial in ni and extends continuously to

Φ−1 ◦ κ : Zrp −→ Zgp × Zρg−gp × Zρ−1
p .
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Finally,

κ(Zr) ⊂ T (Z)t ⊂
(
F×,ρ−1
p ·D

t̃
(Zr)

)
∩ P×,ρ−1(Zp)t = κ

(
1
p−1Z

r
)
,

hence
κ(Zrp) ⊂ T (Z)t ⊂ κ(Zrp) .
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