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Chapter 1

Geometric quadratic Chabauty

This chapter is the result of a joint work with Bas Edixhoven. It will appear in Journal
de I'Institut de Mathematiques de Jussieu

Since Faltings proved Mordell’s conjecture (1983) we know that the sets of rational
points on curves of genus at least 2 are finite. Determining these sets, in individual
cases, is still an unsolved problem. Chabauty’s method (1941) is to intersect, for a prime
number p, in the p-adic Lie group of p-adic points of the jacobian, the closure of the
Mordell-Weil group with the p-adic points of the curve. If the Mordell-Weil rank is less
than the genus, and if one has generators for the Mordell-Weil group, and if one can
implement Chabauty’s method and the Mordell-Weil sieve, then, as far as we know, this
method has been applied successfully to determine all rational points in many cases.

Minhyong Kim’s non-abelian Chabauty programme aims to remove the condition on
the rank. The simplest case, called quadratic Chabauty, was developed by Balakrishnan,
Besser, Dogra, Miiller, Tuitman and Vonk, and applied in a tour de force to the so-called
cursed curve (rank and genus both 3).

This article aims to make the quadratic Chabauty method small and geometric again,
by describing it in terms of only ‘simple algebraic geometry’ (line bundles over the jaco-

bian and models over the integers).

1.1 Introduction

Faltings proved in 1983, see [43], that for every number field K and every curve C' over
K of genus at least 2, the set of K-rational points C'(K) is finite. However, determin-
ing C(K), in individual cases, is still an unsolved problem. For simplicity, we restrict

ourselves in this article to the case K = Q.



1. GEOMETRIC QUADRATIC CHABAUTY

Chabauty’s method (1941) for determining C(Q) is to intersect, for a prime number p,
in the p-adic Lie group of p-adic points of the jacobian, the closure of the Mordell-Weil
group with the p-adic points of the curve. If the Mordell-Weil rank r satisfies r < g, and
if one has generators for the Mordell-Weil group, and if one can implement Chabauty’s
method and (if » = g — 1) the Mordell-Weil sieve, then, as far as we know, this method
has never failed.

For a general introduction to Chabauty’s method and Coleman’s effective version of
it, we highly recommend [78], and, for an implementation of it that is ‘geometric’ in the
sense of this article, to [44], in which equations for the curve embedded in the Jacobian

are pulled back via local parametrisations of the closure of the Mordell-Weil group.

Minhyong Kim’s non-abelian Chabauty programme aims to remove the condition that
r < g. The ‘non-abelian’ refers to fundamental groups; the fundamental group of the
jacobian of a curve is the abelianised fundamental group of the curve. The most striking
result in this direction is the so-called quadratic Chabauty method, applied in [10], a
technical tour de force, to the so-called cursed curve (r = g = 3). For more details we

recommend the introduction of [I0].

This article aims to make the quadratic Chabauty method small and geometric again,
by describing it in terms of only ‘simple algebraic geometry’ (line bundles over the ja-
cobian, models over the integers, and biextension structures). The main result is Theo-
rem [1.4.12] It gives a criterion for a given list of rational points to be complete, in terms
of points with values in Z/p?Z only. Section 1.2 describes the geometric method in less
than 3 pages, Sections 1.3-1.5 give the necessary theory, Sections 1.6-1.7 give descrip-
tions that are suitable for computer calculations, and Section [I.§] treats an example with
r = g = 2 and 14 rational points. As explained in the remarks following Theorem [1.4.12)
we expect that this approach will make it possible to treat many more curves. Sec-
tion gives some remarks on the fundamental groups of the objects we use. They are
subgroups of higher dimensional Heisenberg groups, where the commutator pairing is the
intersection pairing of the first cohomology group of the curve. Section[I.9.2)reproves the
finiteness of C(Q), for C with r < g+ p—1, with p the rank of the Z-module of symmet-
ric endomorphisms of the jacobian of C. It also shows that a version of Theorem [1.4.12
that uses higher p-adic precision will always give a finite upper bound for C(Q). Sec-
tion [[.9.3] gives, through an appropriate choice of coordinates that split the Poincaré
biextension, the relation between our geometric approach and the p-adic heights used in

the cohomological approach.

Already for the case of classical Chabauty (working with J instead of T, and under the
assumption that r < g), where everything is linear, the criterion of Theorem [1.4.12| can
be useful; this has been worked out and implemented in [98]. We recommend this work as
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1. GEOMETRIC QUADRATIC CHABAUTY

a gentle introduction into the geometric approach taken in this article. A generalisation
from Q to number fields is given in [29]. For a generalisation of the cohomological
approach, see [6] (quadratic Chabauty) and [34] (non-abelian Chabauty).

Although this article is about geometry, it contains no pictures. Fortunately, many

pictures can be found in [51], and some in [40].

1.2 Algebraic geometry

Let C be a scheme over Z, proper, flat, regular, with Ciy of dimension one and geometri-
cally connected. Let n be in Z>1 such that the restriction of C' to Z[1/n] is smooth. Let
g be the genus of Cy. We assume that g > 2 and that we have a rational point b € C(Q);
it extends uniquely to a b € C(Z). We let J be the Néron model over Z of the jacobian
Pic%Q/Q. We denote by JV the Néron model over Z of the dual Jy of Jg, and A: J — JY
the isomorphism extending the canonical principal polarisation of Jg. We let Py be the
Poincaré line bundle on Jg x Jg, trivialised on the union of {0} x Jy and Jg x {0}. Then

the Poincaré torsor is the Gy-torsor on Jg x Jg defined as
(121) P6 :IsomJ@XJ@v(OJQXJg,P@).

For every scheme S over Jy x Jg, Py (S) is the set of isomorphisms from Ogs to (Pg)s,
with a free and transitive action of Og(S)*. Locally on S for the Zariski topology, (P )s
is trivial, and P@ is represented by a scheme over Jg X J@{.

The theorem of the cube gives P@? the structure of a biextension of Jg and Jd by G,
a notion for the details of which we recommend Section 1.2.5 of [77], Grothendieck’s
Exposés VII and VIII [91], and references therein. This means the following. For S a
Q-scheme, 2 and 25 in Jo(S), and y in Jgy (5), the theorem of the cube gives a canonical

isomorphism of Og-modules

(1.2.2) (z1,y)" Po ®os (22,y)" Po = (21 + 22,y)" Py
This induces a morphism of schemes

(1.2.3) (21,9)" Py x5 (v2,9)" Py — (@1 +22,y)" Py -

as follows. For any S-scheme T', and z; in ((z1,y)*Pg )(T) and 22 in ((2,y)* Py )(T), we
view z; and 23 as nowhere vanishing sections of the invertible Op-modules (1, y)* Py and
(z2,y)* Py. The tensor product of these two then gives an element of ((x1+z2,y)* Py )(T).
This gives P@ — J@{ the structure of a commutative group scheme, which is an extension

3



1. GEOMETRIC QUADRATIC CHABAUTY

of Jg by Gy, over the base J(\){. We denote this group law, and the one on Jg X J(\I{, as

(21,22) ——————— 21 +1 22

(1.2.4) I I

(z1,9), (22,9)) —— (z1,y) +1 (22,y) == (21 + 22,9) .

In the same way, P(S — Jg has a group law 4+, that makes it an extension of Jd by
G over the base Jg. In this way, P6 is both the universal extension of Jg by G, and
the universal extension of J@f by Gu. The final ingredient of the notion of biextension
is that the two partial group laws are compatible in the following sense. For any Q-
scheme S, for 1 and x5 in Jg(S), y1 and yo in J(S), and, for all i and j in {1,2}, z; ;
in ((2i,y;)" Py )(S), we have

(211 +1 221) +2 (212 +1 222) == (21,1 +2 21,2) +1 (22,1 +2 22,2)
(1.2.5) I I
(x1 +22,91) +2 (21 + 22,92) == (z1, 51 +¥2) +1 (T2, 91 + ¥2)

with the equality in the upper line taking place in ((z1 + x2,y1 + y2)* Py )(S).

Now we extend the geometry above over Z. We denote by J the fibrewise connected
component of 0 in J, which is an open subgroup scheme of .J, and by ® the quotient .J/.J°,
which is an étale (not necessarily separated) group scheme over Z, with finite fibres,
supported on Z/nZ. Similarly, we let JV° be the fibrewise connected component of JV.

Theorem 7.1, in Exposé VIII of [91] gives that P@( extends uniquely to a G,-biextension

(1.2.6) P* — Jx JY°

(Grothendieck’s pairing on component groups is the obstruction to the existence of such
an extension). Note that in this case the existence and the uniqueness follow directly from
the requirement of extending the rigidification on Jg x {0}. For details see Section [1.6.7}

Our base point b € C(Z) gives an embedding j,: Cg — Jg, which sends, functori-
ally in Q-schemes S, an element ¢ € Cp(S) to the class of the invertible O¢g-module
Ocs(c—b). Then jj extends uniquely to a morphism

(1.2.7) o O — ]

where C®™ is the open subscheme of C' consisting of points at which C' is smooth over Z.
Note that Cp(Q) = C(Z) = C™(Z).
Our next step is to lift j,, at least on certain opens of C*™, to a morphism to a G#; 1-

torsor over J, where p is the rank of the free Z-module Hom(Jg, Jé)"’, the Z-module of

4



1. GEOMETRIC QUADRATIC CHABAUTY

self-dual morphisms from Jg to J@f . This torsor will be the product of pullbacks of P*

via morphisms
(1.2.8) (id,m-otroo f): J — J x JVO,

with f: J — JY a morphism of group schemes, ¢ € JY(Z), tr, the translation by ¢, m
the least common multiple of the exponents of all ®(F,) with p ranging over all primes,
and m- the multiplication by m map on JV. For such a map m-otr.o f, j,: Co — Jg can
be lifted to (id, m-otr. o f)* Py if and only if j; (id, m-otr. o f)* Py is trivial. The degree
of this Gy,-torsor on Cg is minus the trace of A™1 om-o (f + fV) acting on Hy (J(C), Z).
For example, for f = A the degree is —4mg. Note that j,: Cg — Jg induces

(1.2.9) ji =211 Jy = Jg,

(see [76], Propositions 2.7.9 and 2.7.10). This implies that for f such that this degree is
zero, there is a unique ¢ such that j; (id, tr. o f)*P(S is trivial on Cg, and hence also its
mth power j;(id,m- o tr. o f)* Py .

The map

(1.2.10) Hom(Jg, Jg) — Pic(Jg) — NS, /0(Q) = Hom(Jg, Jg)*

sending f to the class of (id, f)*Pg sends f to f+ fV, hence its kernel is Hom(Jg, Jg ),
the group of antisymmetric morphisms. But actually, for f antisymmetric, its image in
Pic(Jg) is already zero (see for example [16] and the references therein). Hence the image
of Hom(Jg, Jg) in Pic(Jg) is free of rank p, and its subgroup of classes with degree zero
on Cy is free of rank p—1. Let fi,..., f,—1 be elements of Hom(Jg, J@{) whose images in
Pic(Jg) form a basis of this subgroup, and let ¢y, .., c,—1 be the corresponding elements
of JY(Z).

By construction, for each ¢, the morphism ji: Cy — Jgp lifts to (id, m-otr, o fi)*Péf,
unique up to Q*. Now we spread this out over Z, to open subschemes U of C*™ obtained
by removing, for each ¢ dividing n, all but one irreducible components of C’]ﬁzﬂ, with the
remaining irreducible component geometrically irreducible. For such a U, the morphism
Pic(U) — Pic(Cyp) is an isomorphism, and O¢(U) = Z, thus, for each i, there is a lift

(id, m- o tr., o f;)*P*
(1.2.11) i l

v——2

unique up to 2> = {1,—1}.
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At this point we can explain the strategy of our approach to the quadratic Chabauty
method. Let T be the G2 !-torsor on J obtained by taking the product of all the
Gm-torsors T; := (id, m- o tre, o f;)*P*:

T proe-l
(1.2.12) y l l
g oy g Bt s (0yet

Then each ¢ € Cgp(Q) = C*™(Z) lies in one of the finitely many U(Z)’s. For each U,
we have a lift ij: U — T, and, for each prime number p, ij(U (Z)) is contained in the
intersection, in T'(Z,), ofﬁ,(U(Zp)) and the closure T'(Z) of T'(Z) in T(Z,) with the p-adic

topology. Of course, one expects this closure to be of dimension at most r := rank(J(Q)),

and therefore one expects this method to be successful if r < g + p — 1, the dimension
of T(Z,). The next two sections make this strategy precise, giving first the necessary

p-adic formal and analytic geometry, and then the description of T'(Z) as a finite disjoint

union of images of Z; under maps constructed from the biextension structure.

1.3 From algebraic geometry to formal geometry

Let p be a prime number. Given X a smooth scheme of relative dimension d over Z,
and x € X (F,) let us describe the set X (Z,), of elements of X(Z,) whose image in
X(F,) is #. The smoothness implies that the maximal ideal of Ox , is generated by
p together with d other elements ¢1,...,t4. In this case we call p,t1,...,t; parameters
at x; if moreover y € X(Z,), is a lift of = such that ¢, (y) = ... = t4(y) = 0 then we say
that the ¢;’s are parameters at y. The t; can be evaluated on all the points in X(Zj),,
inducing a bijection ¢ := (t1,...,ta): X(Zp)z — (pZ,)%. We get a bijection

(1.3.1) = (51,...,50,):(751,...,”) X (Zy)e — T
p p

This bijection can be geometrically interpreted as follows. Let 7: X, — X denote
the blow up of X in z. By shrinking X, X is affine and the t; are regular on X,
t: X — A%p is etale, and ¢t7*{0r,} = {z}. Then 7: X, — X is the pull back of the
blow up of A%p at the origin over IF,,. The affine open part )?f of )Zw where p generates
the image of the ideal m, of z is the pullback of the corresponding open part of the
blow up of A%p, which is the multiplication by p morphism A%p — A%p that corresponds
to Zylt1, ..., ta) — Zplt1, ..., ta] with ¢; — pt;. It follows that the p-adic completion
O(XE) of O(XP) is the p-adic completion Zy (1, ... Tq) of Zy[i1,...,14). Explicitly,

6
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we have

(1.3.2) Zy(hr,... Ta) =4 Y art’ € Zy[[fr,... L]} : Vn > 0, V"™ wp(ar) > n
IeNd

With these definitions, we have

X(Zp)e = XP(Zy) = Hom(Zy (1, ..., 14), Zp) = AYZ,),

(1.3.3) N L
(XP)r, = Spec(Fp[t1, ..., ta]).

The affine space (X’g)m

This construction is functorial. Let Y be a smooth Z,-scheme, f: X — Y a morphism

, is canonically a torsor under the tangent space of X, at z.
over Z,, and y := f(z) € Y(F,). Then the ideal in O)?i? generated by the image of m g,
is generated by p. That gives us a morphism X? — Y;’(w), and then a morphism from
VP
Oy,
the tangent map of f at x, up to a translation.

))’\P to O(XP)"». Reduction mod p then gives a morphism ()?:f)]lvp — (Y;’(w))]pp,

If this tangent map is injective, and d, and d, denote the dimensions of Xp, at x
and of Y, at y, then there are t,...,t4, in Oy,, such that p,{1,...,14, are parame-
ters at y, and such that ¢4, 41,... ,tq, generate the kernel of Oy, — Ox . Then the
images in Ox , of p,t1,...,t4, are parameters at z, and O(?f(z))% — O(XE)Y s
Zp(ty, ... ta,) = Zyp(ty, ... tq,), with kernel generated by tq, 41, .., %4,

1.4 Integral points, closure and finiteness

Let us now return to our original problem. The notation U, J, T, jp, ﬁh r, p is as at the end
of Section Let ¢ = (c1,...,¢pm1) € JVPHZ), let f = (f1,.. fom1): J = JVP7L
We assume moreover that p does not divide n (n as in the start of Section and that
p > 2 (for p = 2 everything that follows can probably be adapted by working with residue
polydiscs modulo 4).

Let u be in U(F,), and t := jp(u). We want a description of the closure T(Z);
of T(Z); in T(Z,);. Using the biextension structure of P>, we will produce, for each
element of J(Z);, (),
but we will then produce a subset of T'(Z); whose closure is T(Z);.

an element of T(Z) over it. Not all of these points are in T'(Z),

If T(Z); is empty then T(Z); is empty, too. So we assume that we have an element t
in T(Z); and we denote v € J(Z) the projection of t. We denote by P**~! the product
over J x (JV0)P~1 of the p—1 Gy,-torsors obtained by pullback of P* via the projections
to Jx JV; it is a biextension of J and (JV°)?~1 by G&1, and T = (id, m-otr.o f)* P>r~1,
We choose a basis z1,...,z, of the free Z-module J(Z)y, the kernel of J(Z) — J(F,).

7
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For each i,j € {1,...,7} we choose P, j, R, and Sy, in P*r=Y(Z) whose images in
(J x (JVO)P=1)(Z) are (z;, f(mz;)), (z;, (m-otre o (7)) and (x4 f(ma;)):
(1.4.1)

Py ; R~ S pxp-l

I 1 i |

(i, f(ma;)) (i, (m- o tre o f)(x7)) (25 f(ma;)) T x (JYO)Pt

For each such choice there are 2°~! possibilities.
For each v € Z" we use the biextension structure on P**~1 — J x (JV0)?~1 to define
the following points in P**~1(Z), with specified images in (J x (JV°)?=1)(Z):

AE(V) = ZQ Vj -2 S’Zj B’t“(l/) == Zl Vi1 Ri,?
j=1 i=1

(1.4.2) I I
<:z:ftv, 2’”: Vif(mxi)> (i vixi, (m-otr. o f)(%“))

=1

C(V) = Zl Vi1 ig Vj ] Pi,j
(1.4.3) I .
(Z ViZi , Z Vz‘f(mﬂﬂz‘))

where ), and -; denote iterations of the first partial group law +; as in (1.2.4), and
analogously for the second group law. We define, for all v € Z",

A4 D)= (CW) 42 B0) 41 (A0) +7) € PF(@),
which is mapped to
(1.4.5) (Iﬁ > vizi, (m-otreo f) <I;+ > uac)) € (Jx (7)) (2).

Hence D{(v) is in T(Z), and its image in J(F,) is jp(u). We do not know its image
in T(F,).

8
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We claim that for v in (p—1)Z7, Di{(v) is in T(Z);. Let v' be in Z" and let v = (p—1)v".

Then, in the trivial F)**~!-torsor P***~!(j,(u),0), on which 43 is the group law, we have:

(1.4.6) A{v) = (p—1)24:(0") =1 inF 1

Similarly, in P**=1(0, (m-otr.o f)(jp(u))) = IF;<7”_1, we have Bx(v) = 1, and, similarly,
in P**=1(0,0) = F*~!, we have C(v) = 1. So, with apologies for the mix of additive
and multiplicative notations, in P>**~!(F,) we have

(1.4.7) DAv) = (1421) 41 (14+28) =1,

mapping to the following element in (J x JY%*~1)(F,):
(1.4.8)
((0,0) 42 ((0, (m- o tre o f)(js(u))))) +1 ((Gb(w), 0) +2 (Go (), (m- o tre o f)(Gu(w))))

= (Jo(u), (m- o tre o f)(jn(w)))-
We have proved our claim that D{(v) € T(Z);.

So we now have the map
(1.4.9) kz: 2" —T(Z), v D{(p—1v).
The following theorem will be proved in Section [1.5

Theorem 1.4.10. Let wy,...,wy be in Oy, ) such that together with p they form a
system of parameters of Oy j, (), and let vi,...,v,-1 be in Oty such that p,wi, ..., wy,
Vi,...,V,—1 are parameters of Or . As in Section these parameters, divided by p,
give a bijection

(1.4.10.1) T(Zp)y — Z9TP71.

The composition of the map Kz with the map (1.4.10.1) is given by uniquely determined
Kl ooy Rgtp—1 N O(A%p)/\l’ =Zp(z1,...,2). The images in Fplz1,...,2;] of k1,...,Kq
are of degree at most 1, and the images of Kgq1,...,Kgp—1 are of degree at most 2. The

map Kz extends uniquely to the continuous map

(1.4.10.2) K= (K1, s Kgipo1): AT(Zy) = 2 — T(Zy): -

and the image of k is T(Z);.

Now the moment has come to confront U(Zy), with T(Z),. We have Jp: U = T,
whose tangent map (mod p) at u is injective (here we use that C, is smooth over [F,,).

9
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Then, as at the end of Section ﬂ: ﬁfj — ftp is, after reduction mod p, an affine
linear embedding of codimension g+p—2, j, : O(TF) — O(UP)"r is surjective and
its kernel is generated by elements F,..., Fy4, 2, whose images in F, ® (’)(ip) are of
degree at most 1, and such that Fy,..., Fy,_; are in O(.T;’b(u))AP. The pullbacks &* f; are
in Z,(z1,...,2-); let I be the ideal in Z,(z1, ..., z,) generated by them, and let

(1.4.11) A=Zy(z1,...,2r) /1.

Then the elements of Z; whose image is in U (Zp)y are zeros of I, hence morphisms of

rings from A to Z,, and hence from the reduced quotient A;eq to Zj,.

Theorem 1.4.12. Fori € {1,...,g+p—2}, let 6*F; be the image of k* f; inFplz1,. .., 2],
and let I be the ideal of Fplz1,...,2.] generated by them. Then k*Fi,...,k*F,_1 are
of degree at most 1, and H*E, .. .,/@*m are of degree at most 2. Assume that
A = A/pA = Fplz1,...,2]/I is finite. Then A is the product of its localisations A,
at its finitely many mazimal ideals m. The sum of the dimp, A, over the m such that
A/m =T, is an upper bound for the number of elements of Z,, whose image under k is
in U(Zyp)u, and also an upper bound for the number of elements of U(Z) with image u

in U(F,).

Proof. As every Fj is of degree at most 1 in wy,...,w,,v1,...,0,_1, every £*F; is an
F,-linear combination of k1,...,kg4,—1, hence of degree at most 2. For i < g, F;is a
linear combination of ws, ..., w,, and therefore x*F; is of degree at most 1.

We claim that A is p-adically complete. More generally, let R be a noetherian ring
that is J-adically complete for an ideal J, and let I be an ideal in R. The map from R/I
to its J-adic completion (R/I)" is injective ([3, Thm.10.17]). As J-adic completion is
exact on finitely generated R-modules (3, Prop.10.12]), it sends the surjection R — R/I
to a surjection R = R — (R/I)" (see |3 Prop.10.5] for the equality R = R"). It follows
that R/I — (R/I)" is surjective.

Now we assume that A is finite. As A is p-adically complete, A is the limit of the
system of its quotients by powers of p. These quotients are finite: for every m € Z>q,
A/p™+1A is, as abelian group, an extension of A/pA by a quotient of A/p™A. As Z,-
module, A is generated by any lift of an F,-basis of A. Hence A is finitely generated as
Z,-module.

The set of elements of Z; whose image under « is in U(Z,) is in bijection with the
set of Zy-algebra morphisms Hom(A, Z,). As A is the product of its localisations A,, at
its maximal ideals, Hom(A,Z,) is the disjoint union of the Hom(A4,,,Z,). For each m,
Hom(A,,,Z,) has at most rankz, (A,,) elements, and is empty if F, — A/m is not an
isomorphism. This establishes the upper bound for the number of elements of Z; whose

10



1. GEOMETRIC QUADRATIC CHABAUTY

image under « is in U(Z,). By Theorem [1.4.10] the elements of U(Z) with image u
in U(F,) are in T(Z), and therefore of the form x(z) with z € Zj such that r(x) is
in U(Z,),. This establishes the upper bound for the number of elements of U(Z) with

image u in U(F,). O

We include some remarks to explain how Theorem [1.4.12] can be used, and what we
hope that it can do.

Remark 1.4.13. The polynomials x*F; in Theorem can be computed from the
reduction F}, — T(Z/p*Z) of kz and (to get the F;) from gv: U(Z)p*Z)y — T(Z)p*Z),.
For this, one does not need to treat T' and J as schemes, one just computes with Z/p®Z-
valued points. Now assume that r < g + p — 2. If, for some prime p, the criterion in
Theorem fails (that is, A is not finite), then one can try the next prime. We hope
(but also expect) that one quickly finds a prime p such that A is finite for every U and
for every u in U(F,) such that j,(u) is in the image of T(Z) — T(F,). By the way, note
that our notation in Theorem does not show the dependence on U and u of j;,,
k7, k and the ;. Instead of varying p, one could also increase the p-adic precision, and
then the result of Section [I.9.2] proves that one gets an upper bound for the number of
elements of U(Z).

Remark 1.4.14. If r < g + p — 2 then we think that it is likely (when varying p), for
dimension reasons, unless something special happens as in [7] or Remark 8.9 of [g], that,
for all w € U(F)), the upper bound in Theoremfor the number of elements of U(Z)
with image u in U(F,) is sharp. For a precise conjecture in the context of Chabauty’s

method, see the “Strong Chabauty” Conjecture in [99].

Remark 1.4.15. Suppose that r = g+ p—2. Then we expect, for dimension reasons, that
it is likely (when varying p) that, for some v € U(IF, ), the upper bound in Theorem
for the number of elements of U(Z) with image v in U(F),) is not sharp. Then, as in
the classical Chabauty method, one must combine the information gotten from several
primes, analogous to ‘Mordell-Weil sieving’; see [79]. In our situation, this amounts to the
following. Suppose that we are given a subset B of U(Z) that we want to prove to be equal
to U(Z). Let B’ be the complement in U(Z) of B. For every prime p > 2 not dividing n,
Theorem gives, interpreting A as in the end of the proof of Theorem a
subset O, of J(Z), that is a union of cosets for the subgroup p-ker(J(Z) — J(F,)), that
contains j,(B’). Then one hopes that, taking a large enough finite set S of primes, the
intersection of the O, for p in S is empty.

11



1. GEOMETRIC QUADRATIC CHABAUTY

1.5 Parametrisation of integral points, and power se-
ries

In this section we give a proof of Theorem [[.4.10} The main tools here are the formal
logarithm and formal exponential of a commutative smooth group scheme over a Q-
algebra ([54], Theorem 1): they give us identities like n-g = exp(n-logg) that allow us
to extend the multiplication to elements n of Z,.

The evaluation map from Z,(z,...,z,) to the set of maps L, — Zyp is injective
(induction on n, non-zero elements of Z,(z) have only finitely many zeros in Z,).

We say that a map f: Zj — Z;' is given by integral convergent power series if its
coordinate functions are in Zy(z1,...,2,) = O(AQP)AP. This property is stable under

composition: composition of polynomials over Z/p*Z gives polynomials.

1.5.1 Logarithm and exponential

Let p be a prime number, and let G be a commutative group scheme, smooth of relative
dimension d over a scheme S smooth over Z,, with unit section e in G(S). For any
s in S(F,), G(Zp)e(s) is a group fibred over S(Zy,)s. The fibres have a natural Z,-
module structure: G(Zy)e(s) is the limit of the G(Z/p"Z)c(sy (n > 1), S(Zy)s is the limit
of the S(Z/p"Z)s, and for each n > 1, the fibres of G(Z/p"Z)esy — S(Z/p"7Z)s are
commutative groups annihilated by p"~!. Let T /s be the relative (geometric) tangent
bundle of G over S. Then its pullback T /s(e) by e is a vector bundle on S of rank d.

Lemma 1.5.1.1. In this situation, and with n the relative dimension of S over Zj, the

formal logarithm and exponential of G base changed to Q ® Og s converge to maps

lOgZ éz(s)(ZP> = G(Zp)e(s) — (TG/S(e))<ZP)O(5)
exp: TG/S(e)g(é)(Zp) = (TG/S(e))(ZP)O(S) - G(Zp)e(s)’

that are each other’s inverse and, after a choice of parameters for G — S at e(s) as
in m}, are given by n+d elements ofO(C:”Z(S))AP and n+d elements ofO(Tg/S(e)g(s))/\p.

For a in Z, and g in G(Zy)e(s) we have a-g = exp(a-logg), and, after a choice of
parameters for G — S at e(s), this map Zy X G(Zp)esy — G(Zp)e(s) is given by n+d ele-
ments of (’)(A%p Xz, éz(s))%. The induced morphism A]}p X (é’;(s))m — (éZ(s))Fw where
(éi(s))]pp is viewed as the product of Ts, (s) and Tgys(e(s)), is a morphism over T, (s),
bilinear in A%p and Te/s(e(s)).

Proof. Let t1,...,t, bein Og s such that p,%;,...,t, are parameters at s. Then we have

12
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a bijection
(1.5.1.2) t:S(Zy)s = 27, arp(ti(a), ... ta(a)).

Similarly, let z1,...,x4 be generators for the ideal I.(s) of e in Og ¢(5). Then p, the ¢;

and the x; together are parameters for Og (s, and give the bijection
(1.5.1.3) (t,2)": G(Zp)esy) — ZZJF”I, b p - (t1(b), ..., 24(D)).

The dz; form an Og ,-basis of Qé / s(e)s, and so give translation invariant differentials w;
on Gog . As G is commutative, for all i, dw; = 0 ([54], Proposition 1.3). We also have
the dual Og ,-basis 0; of T(;/s(e) and the bijection

(1.5.1.4)
(t,2)™: (Tays(e))(Zp)os) — Zy+e, sz i H(ti(a),- . tala),ves - va).
Then log is given by elements log; in (Q ® Ogs)[[x1,-..,zq4]] whose constant term is 0,

uniquely determined (Proposition 1.1 in [54]) by the equality
(1.5.1.5) dlog; =w;, in @; Og[[z1,...,x4]]-dz;.
Hence the formula from calculus, log;(z) — log,(0) = fol (t — tx)*w;, gives us that, with

(1.5.1.6) log, = Z log; ; z’  and log; ; € (Q® Os.),
J#0

we have, for all 4 and .J, with |.J| denoting the total degree of 7,
(1.5.1.7) ‘J|.10gi,J S OS,S'

The claim about convergence and definition of log: G(Zy)es) — (Tays(e))(Zp)ocs), is
now equivalent to having an analytic bijection Z7¢ — Z2+¢ given by

2

G(Zp)e(s) : (Teys(€))(Zp)ogs)
|t |
(1.5.1.8) Zn+d ’ Zn+d
(a,b) ———— (@ (X p0 log s (@) 00)) )

We have, for each 1,

[7]
(15.1.9) D log (@)D = 30 (1o, ) (@)

J#0 J#0

13
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For each i, this expression is an element of Z,(t1,. .., &y, &1,...,%4) = O(ég(s))/\P, even
when p = 2, because for each J, |J|log, ; is in Og,s, which is contained in Zy(t1, ..., ty),
and the function Z>; — Qp, r — p"~1/r has values in Z, and converges to 0. The
existence and analyticity of log is now proved (even for p = 2). As p > 2, the image of
inF,® O(éi(s))AP is #;, and on the first n coordinates, log is the identity, so,
by applying Hensel modulo powers of p, log is invertible, and the inverse is also given by
n + d elements of O(TG/S (e)g(s))AP.

The function Z, x G(Zp)es) = G(Zp)e(s), (a,g) — exp(a-logg) is a composition of
maps given by integral convergent power series, hence it is also of that form. O

1.5.2 Parametrisation by power series

The notation and assumptions are as in the beginning of Section [I.4] in particular, p > 2
and T is as defined in (L.2.12). We have a t in T(F,), with image jy(u) in J(F,), and
a t in T(Z) lifting t. For every @ in T(Z) mapping to jp(u) in J(F,) there are unique
e €2~  and v € Z" such that Q = &-Dy(v): the image of Q in J(Z) is in J(Z);,(w),
hence differs from the image z7 in J(Z) of £ by an element of J(Z)q (with here 0 € J(F,)),
>, viz; for a unique v € Z", hence D;(v) and @ are in T'(Z) and have the same image
in J(Z), and that gives the unique €. So we have a bijection

(1.5.2.1)

2PN X L — T (L)) ={Q € T(Z): Q = ju(u) € J(Fp)}, (g,v) — e-Di(v).

But a problem that we are facing is that the map Z" — T'(FF,);, () sending v to the
image of D;(v) depends on the (unknown) images of the P; ;, R, ; and S; ; from
in P**=1(F,), and so we do not know for which v and e the point e-D;(v) is in T(Z);.
Luckily we have the ZX*~'-action on T(Z,,). Using that Z = F) x (1 + pZ,) we have
IF‘;;”’*1 acting on T'(Zy);, (u), compatibly with the torsor structure on T'(FF});, ). So, for
every v in Z" there is a unique £(v) in F*~! such that £(v)-Dy(v) is in T(Zy);. We
define

(1.5.2.2) D'(v) :=&(v)-Di(v).
Then for all v in Z",
(1.5.2.3) r2(v) = Dyl(p — 1)) = D/((p — 1)),

because Di((p — 1)-v) maps to ¢ in T(F,). Moreover for every @ in T(Z), there is a
unique v € Z" and a unique € € Z**~1 such that Q = e-D;(v) = £(v)-Di(v) = D'(v).
Hence

(1.5.2.4) T(Z), C D'(Z").

14
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The following lemma proves the existence and uniqueness of the x; of Theorem [I.4.10]

and the claims on the degrees of the &;.

Lemma 1.5.2.5. After any choice of parameters of Ort as in Theorem|1.4.10, D' is
given by elements kY, ..., n’g+p71 of O(A%p)/\p; and then kz is given by K1,...,Kgyp—1
with, for all i € {1,...,9+p—1} and all a € Z;,,

ki(a) = ri((p—1)a).

/

For all i in {1,...,9+ p— 1} we let &} be the reduction mod p of k. Then &y, ..., &,

/

are of degree at most 1, and the remaining %, are of degree at most 2.

Proof. In order to get a formula for D’(v), we introduce variants of the P; ;, R, 3 and
Sy ; as follows. The images in (J x (JVO)P=1)(F,) of these points are of the form (O, %),
(0, %), and (x,0), respectively. Hence the fibers over them of P***~1 are rigidified, that
is, equal to F;»~'. We define their variants P/ ;, R;7~, and S~4 in P**=Y(Z,) to be
the unique elements in their orbits under F -~ I whose images 1n pxr- 1(IFp) are equal
to the element 1 in F*~'. Replacing, in (Il 4. 2[) and (]1 4. 3[) these P j, R, 7 and S;,
by P}, R' 7 and S' glves variants A’, B’ and C’, and using these in 1-| gives a
variant D’ ) of |1

Then, for all v in ZT, Di(v) and D'(v) (as in (1.5.2.2])) are equal, because both are
in PXW_I(Zp)t, and in the same F;’p_l-orbit. Hence we have, for all v in Z":

AWw)=3 v28,, BWw) =3 vi1Rz
Jj=1 ’ =1
(1.5.2.6) T r
C'(v)= Vi ZQ vio Pl |,
i=1 j=1

D'(v) = (C'(0) +2 B'(0)) +1 (A'(v) +27) .

This shows how the map v — D’(v) is built up from the two partial group laws +; and
+5 on P**~1 and the iterations -; and -3. Lemma gives that the iterations are
given by integral convergent power series. The functoriality in Section [I.3] gives that
the maps induced by +; and +5 on residue polydisks are given by integral convergent

power series. Stability under composition then gives that v — D’(v) is given by elements

Kl Kgppo1 Of Zp(z1, .oy 2r).
We call the x the coordinate functions of the extension D": Zj — T(Zy); = Zg*p’l,
and their images &/, . .. ,Efqﬂkl in Fp[21,..., 2] the mod p coordinate functions, viewed

I ~1
as a morphism Dy : Af — AgrPh
p

15
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The mod p coordinate functions of A’: ZI — P**~1(Z,) = Z£9+P~1 (after choosing

the necessary parameters) are all of degree at most 1. The same holds for B’. We define

s T
(1.5.27)  Ch: Z" x ' — P*P~Y(Z,), Chv,p) = Zl Vi1 Zzuj = P
j=1

i=1

Then the mod p coordinate functions of C%, elements of Fy[x1,..., 2, y1,...,Yr], are
linear in the x;, and in the y;. Hence of degree at most 2, and the same follows for the
mod p coordinate functions of C’. However, as the first pg parameters for P**~! come
from J x JYP~1, and the 1st and 2nd partial group laws there act on different factors,
the first pg mod p coordinate functions of C’ are in fact linear. As D’ is obtained by
summing, using the partial group laws, the results of A’, B’ and C’, we conclude that
Ry,..., R, are of degree at most 1, and the remaining %; are of degree at most 2. The

same holds then for all ;. O

1.5.3 The p-adic closure

We know from (1.5.2.3) that xz(Z") = D'((p — 1)Z"). From (1.4.9) we know that
kz(Z") C T(Z). From (1.5.2.4) we know that T'(Z), C D'(Z"). So together we have:

(1.5.3.1) D'((p—1)Z") = kz(Z") € T(Z), C D'(Z").

We have extended D’ to a continuous map Z; — T(Zp):. As Zj, is compact, D'(Z;)
is closed in T(Zp);. As Z" and (p — 1)Z" are dense in Zj, the closures of their images
under D’ are both equal to D'(Z;), and equal to x(Zy). This finishes the proof of
Theorem [L4I0

1.6 Explicit description of the Poincaré torsor

The aim of this section is to give explicit descriptions of the Poincaré torsor P* on
J x JV°0 and its partial group laws, to be used for doing computations when applying
Theorem [[.4.12] The main results are as follows. Proposition [I.6.3.2] describes the
fibre of P over a point of J x JV'¥, say with values in Z/p?Z with p not dividing n
or in Z[1/n], when the corresponding points of J and JV:¥ are given by a line bundle
on C (over Z/p?Z or Z[1/n], and rigidified at b) and an effective relative Cartier divisor
on C (over Z/p?Z or Z[1/n]). Tt also translates the partial group laws of P* in terms
of such data. Lemma shows how to deal with linear equivalence of divisors.

Lemma|l.6.5.4fmakes the symmetry of P* explicit. Lemma|l.6.6.8|gives parametrisations
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of residue polydisks of P*(Z/p?Z), and Lemma gives partial group laws on these
residue polydisks. Propositiondescribes the unique extension over .J x JY°0 of the
Poincaré torsor on (J x J V’O)Z[l /n]» in terms of line bundles and divisors on C. Finally,
Proposition describes the fibres of P over Z-points of J x JV:°.

In this article, we have chosen to use line bundles and divisors on curves for describing
the jacobian and the Poincaré torsor. Another option is to use line bundles on curves
and the determinant of coherent cohomology, as in Section 2 of [76]. We note that in
Section 2, only the restriction of P to J° x JY'V is treated, and moreover, under the
assumption that C'is nodal (that is, all fibres C, are reduced and have only the mildest
possible singularities). Another choice we have made is to develop the basic theory of
norms of Gy,-torsors under finite locally free morphisms in this article (Sections
and not to refer, for example, to EGA or SGA, because we think this is easier for
the reader, and because this way we could adapt the definition directly to our use of it.

1.6.1 Norms

Let S be a scheme, f: S’ — S be finite and locally free, say of rank n. Then Og: = f.Og/
(we view Og as a sheaf on S) is an Og-algebra, locally free as Og-module of rank n,
and OF, is a subsheaf of groups of the sheaf GLog(Og/) of Og-linear automorphisms of
Og/. Then the norm morphism is the composition

NormS//S

(1.6.1.1) 0% —— GLo,(0g) —2% O

For T an OF,-torsor (triviality locally on S and S’ are equivalent, from the equivalence

with invertible Og,-modules), we let Normg:,g(7") be the Og-torsor
(1.6.1.2) Normg:/s(T) := OF @, T = (05 xT) /OZ, ,
s’

with, for every open U of S, and every element u € OF,(U), the action of u given
by (v,t) ~ (v-Normg/ g(u),u'-t). This definition is functorial in T: a morphism
¢: Ty — T, induces a morphism Normg  g(¢). It is also functorial for cartesian dia-
grams (S5 — S2) — (S — S1).

For U C S open, T an Og,-torsor, and t € T'(U), we have the isomorphism of O, |y-
torsors O, |y — T|u sending 1 to t. Functoriality gives Normg /5(t) in (Normg: (1)) (U),
also denoted 1 ® t.

The norm functor is multiplicative:

(1.6.1.3) NormS//S(Tl ®Os’ Tg) = NormS//S(Tl) Rog NOI‘mS//S(TQ) R
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such that, if U C S is open and t; and t5 are in T1(U) and T(U), then
(1.6.1.4) Normgr/g(t1 ® t2) = Normg/g(t1) ® Normg: 5 (t2) .

Let £ be an invertible Og/-module; locally on S, it is free of rank 1 as Og/-module.
This gives us the OF,-torsor (on S) Isome,, (Og,L). We can get the invertible Og/-
module £ back as £ = Og/ ®O;, Isomeg, (Os, £). The norm of £ via f: S” — S is then
defined as

(1615) NOI‘mS//S(E) = 0Og ®Osx NOI‘mS//S(ISOHloS, (OS’, E)) .

This construction is functorial for isomorphisms of invertible Og/-modules.

1.6.2 Norms along finite relative Cartier divisors

This part is inspired by [59], section 1.1. Let S be a scheme, let f: X — S be an S-
scheme of finite presentation. A finite effective relative Cartier divisor on f: X — S is a
closed subscheme D of X that is finite and locally free over S, and whose ideal sheaf Ip
is locally generated by a non-zero divisor (equivalently, Ip is locally free of rank 1 as
Ox-module). For such a D and an invertible Ox-module £, the norm of £ along D is

defined, using (|1.6.1.5)), as
(1.6.2.1) Normp /(L) := Normp,s(L|p) -
Then Normp,5(L£) is functorial for cartesian diagrams (X' — 5', L) — (X — S, L).

Lemma 1.6.2.2. Let f: X — S be a morphism of schemes that is of finite presenta-
tion. For D a finite effective relative Cartier divisor on f, the norm functor Normp g

mn 1s multiplicative in L:
(1.6.2.3) Normp/s(L£1 ® L2) = Normp,g(L1) ®os Normps(L2),

with, for U C S open, V. C X open, containing f~*U N D and l; € L;(V) generating
‘ci‘v;

(1624) NOI‘HID/S(ll X lg) = NormD/S(ll) X NOI‘l’IlD/S(lg) .

Let D1 and Dy be finite effective relative Cartier divisors on f. Then the ideal sheaf
Ip,Ip, C Ox is locally free of rank 1, the closed subscheme Dy + Dy defined by it is a
finite effective relative Cartier divisor on f. The norm functor in (1.6.2.1) is additive
in D:

(1.6.2.5) Norm(D1+D2)/S(£) = Norle/S(/j) ®os Norsz/S(ﬁ) ,
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with, for U C S open, V C X open, containing f~*UN(D1+D3) andl € L(V) generating

‘C‘D1+D2’
(1.6.2.6) Norm(p, 4+ p,)/s(l) = Normp, ,5(I) ® Normp, /s(l) .

Proof. Let Dy and Dy be as stated. If V' C X is open, and f; generates Ip,|v, then fif2
generates (Ip, Ip,)|v, and this element of Ox (V) is not a zero-divisor because f; and fo
are not. To show that D + D5 is finite over S, we replace S by an affine open of it, and
then reduce to the noetherian case, using the assumption that f is of finite presentation.
Then, (D1 + Ds3)req is the image of D1 yeqa [ [ D2,rea — X, and therefore is proper. Hence
D, + D5 is proper over S, and quasi-finite over S, hence finite over S. The short exact

sequence

IDQ/ID1+D2 — OD1+D2 — OD2
(1.6.2.7) H

(ID2)|D1

shows that Op, 1+ p, is locally free as Og-module, of rank the sum of the ranks of the Op,.
So Dy + D5 is a finite effective relative Cartier divisor on X — S.

We prove , by proving the required statement about sheaves of groups. The
diagram
(1.6.2.8)

Norm(p, 4+ py)/s

Norle/sXNorsz/S
[ —_LY

X X X X X : X
—>
Op,+p, — Op, xOp, 0 xOg O3

. Normp, s @ Normp,s )

commutes because multiplication by v on Op,+p, preserves the short exact sequence
(1.6.2.7), multiplying on the sub and quotient by its images in O} and in OF ; note
that the sub is an invertible Op,-module. O

1.6.3 Explicit description of the Poincaré torsor of a smooth

curve

Let g be in Z>1, let S be a scheme, and 7: C' — S be a proper smooth curve, with
geometrically connected fibres of genus g, with a section b € C(S). Let J — S be its
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jacobian. On C xg J we have £"V, the universal invertible O-module of degree zero
on C, rigidified at b.

Let d > 0, and C¥ the dth symmetric power of C' — S (we note that the quotient
C? — C@ is finite, locally free of rank d!, and commutes with base change on S). Then
on C x g C@ we have D, the universal effective relative Cartier divisor on C' of degree d.

Hence, on C xg J xg C® we have their pullbacks D and Euc‘}il‘;, giving us

(1.6.3.1) Na = Normp, /(75 sc)(LE)

This invertible @O-module Ny on J xg C¥ | rigidified at the zero-section of .J, gives us
a morphism of S-schemes C4 to Pic 7/s- The point db (the divisor d times the base
point b) in C4(S) is mapped to 0, precisely because £ is rigidified at b, and
Hence there is a unique morphism O: C(@ — JV = Picg/s such that the pullback of the
Poincaré bundle P on J x JY by (id,[0): J x C(4 — J x JV, with its rigidifications,
is the same as Ny. The following proposition tells us what the morphism O is, and the
next section tells us what the induced isomorphism is between the fibres of N; at points
of J x C® with the same image in J x g J.

Proposition 1.6.3.2. The pullback of P by (jb,j;;’_l): Cxgd— JxgJV together with
its rigidifications at b and 0, is equal to L'V,

Let d be in Z>¢. The morphism O: cd - Jv = Picg/s is the composition of first
¥: C@ — J, sending, for every S-scheme T, each point D in CD(T) to the class
of Oc, (D — db) twisted by the pullback from T that makes it rigidified at b, followed

Sk, —1

by jg’_l: J — JY. Summarised in a diagram, with M := (id x j,>~ " )*P:

Euniv P M idx% Nd
(1.6.3.3)
L w1 idx it ;
CxgJ 2 IxgJV v gue g2 0@

Then M, with its rigidifications at {0} xg J and J xg {0}, is symmetric. For T — S, x
in J(T) given by an invertible O-module L on Cr rigidified at b, and y = X(D) in J(T)

given by an effective relative divisor D of degree d on Cp we have

(1.6.34) P (a:,jlf’_l(y)) = M(z,y) = Normp,p(L).
For ¢; and ¢y in C(S), we have
(1.6.3.5) M (s(e1), Jv(e2)) = 5 (Oc(er = b)) @ " (Oc (b —c1))

and, as invertible O-modules on C x5 C, with A the diagonal and pry: C' xg C' — S the
structure morphism, we have

(1.6.3.6) (s X )" M = O(A) ® pri O(~b) @ pr3O(~b) @ prgb*Teys -
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Ford > 2g — 2, id/;gl gives Ny a descent datum along id x X that gives M on J Xg J.
For T an S-scheme, x € J(S) given by L on Cr, rigidified at b, D1 and Do in C(1)(S)
and C42)(8S), the isomorphism

(1.6.3.7) M(z,%(Dy + D3)) = M(z,5(D1)) ® M(z, £(D3))

corresponds, via id X X, to

N, +d,(x, D1 + Ds) = Norm(p, 4 p,);r(£) = Normp, ,7(L) ® Normp, ;7 (L)

(1.6.3.8)
= Ndl (I‘,Dl) ®Nd2(x7 D2) )

using Lemma |1.6.2.2,
For T an S-scheme and x1 and zo in J(T) given by O-modules L1 and Lo on Cr,

rigidified at b, and D in C9(T), the isomorphism

(1.6.3.9) M(z1 + 22, 2(D)) = M(z1,5(D)) @ M(z2,5(D))

corresponds, via id X X, to

Na(z1 + 22, D) = Normp (L1 ® L2) = Normp 1 (£1) ® Normp 7 (Lz)

(1.6.3.10)
= Na(z1, D) @ Ny(z2, D),

using Lemma|1.6.2.2

Proof. Let T be an S-scheme, and x be in J(T'). Then x corresponds to the invertible O-
module (id x z)* £ on Cr, rigidified at b. Let z := j;’fl(x) in JY(T). Then j;(z) = ,
meaning that the pullback of (id x 2)*P on Jr rigidified at 0 by j; equals (id x x)* LY
on Cr rigidified at b. Taking T := J and x the tautological point gives the first claim of
the proposition.

The symmetry of M with its rigidifications follows from [76], (2.7.1) and Lemma 2.7.5,
and (2.7.7), using[1.2.9

Now we prove (1.6.3.4). So let T and x be as above, and y = X(D) in J(T) given by
a relative divisor D of degree d on Cr. As C% — C9) is finite and locally free of rank d!,
we may and do suppose that D is a sum of sections, say D = Zle(ci), with ¢; € C(T).

Then we have, functorially:
P(z,jy "' (y) = Ply, jy " (x)) = P(S(D), jy ™' ()
(1.6.3.11) =P (Zjb@i),jz’l(x)) =@ (e, gy (@)
= ®z:im”(ci, z) = ®c(q) : Normp (L) .
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Identities ((1.6.3.5) and (|1.6.3.6]) follow directly from ((1.6.3.4]).
Now we prove the claimed compatibility between (1.6.3.9) and (1.6.3.10). We do

this by considering the case where L is universal, that is, base changing to Jr and z
the universal point. Then, on Jr, we have 2 isomorphisms from Norm(p, 4 p,)/s,(£) to
Normp, /7, (£)®Normp, 7. (£). These differ by an element of O(Jr)* = O(T)*. Hence
it suffices to check that this element equals 1 at 0 € J(T'). This amounts to checking that
the 2 isomorphisms are equal for £ = O¢,. with the standard rigidification at b. Then,
both isomorphisms are the multiplication map Or ®o,. Or — Or.

The compatibility between (1.6.3.7) and (|1.6.3.8) is proved analogously. O

Remark 1.6.3.12. From Proposition [I.6.3.2 one easily deduces, in that situation, for 7" an
S-scheme, z in J(T') given by an invertible O-module £ on Cr, and D; and D effective

relative Cartier divisors on Crp, of the same degree, a canonical isomorphism
(1.6.3.13) M(z,%(D1) — £(Ds)) = Normp, 7(£) @ Normp, ;7(£) ",

satisfying the analogous compatibilities as in Proposition [1.6.3.2] No rigidification of £
at b is needed. In fact, for £y an invertible Or-module, we have Normp, (7" Lo) = E(?d,
where 7: Cp — T is the structure morphism and d is the degree of D;. Hence the right
hand side of is independent of the choice of £, given x.

1.6.4 Explicit isomorphism for norms along equivalent divisors

Let g be in Z>4, let S be a scheme, and p: C — S be a proper smooth curve, with
geometrically connected fibres of genus g, with a section b € C(S). Let Dy, D5 be effective
relative Cartier divisors of degree d on C, that we also view as elements of C(?)(S). Recall
from Proposition the morphism X: C(9 — J. Then %(D;) = %(D,) if and only
if Dy, D5 are linearly equivalent in the following sense: locally on S, there exists an f in
Oc(U)*, with U := C\ (D1 U D3), such that f-: Oy — Op extends to an isomorphism
f: Oc(D1) = Oc(Ds). In this case, we define div(f) = Dy — D;. Proposition
gives us, for each invertible O-module £ of degree 0 on C rigidified at b (viewed as an

element of J(.5)) specific isomorphisms

NOTle/S(C) == Nd(£7D1) == M(,C, E(Dl)) == M(ﬁ, E(Dz)) S Nd(ﬁ,DQ)

(1.6.4.1)
= NOI‘mDZ/S(ﬁ) .

Now we describe explicitly this isomorphism Normp, ,§(£) — Normp,,s(£). To do so

we first describe an isomorphism
(1.6.4.2) ér,p,,p,: Normp, /s(L) — Normp, ,5(L)
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that is functorial for Cartesian diagrams (C' — S’, L', D}, D}) — (C — S,L, D1, Ds)
and then we prove that this isomorphism is the one in .

We construct ¢, p, p, locally on S and the functoriality of the construction takes
care of making it global. So, suppose that f is as above: f € O¢(U)*, and f-: Oy — Oy
extends to an isomorphism f-: Oc(D1) = Oc(D2). Let n € Z withn > 2g—2+2d. Then
p«(L(nd)) — p.L(nb)|p,+p, and p.(Oc(nb)) — p«Oc(nb)|p,+p, are surjective, and
(still localising on S) p.(L(nd)) and p.(Oc(nb)) are free Og-modules and L(nb)|p, +p,
and O¢(nb)|p,+p, are free Op, 4 p,-modules of rank 1. Then we have Iy in (L(nb))(C)
and 1 in (Oc(nb))(C) restricting to generators on Dy + Do. Let D~ := div(l;) and
Dt := div(lp), and let V := C \ (Dt + D~). Note that V contains D; + D, and
that U contains DT + D~. Then, on V, [ :=ly/l; is in L(V), generates L|p,+p,, and
multiplication by [ is an isomorphism -: Oc (DT — D~) — L, that is, div(l) = DT —D~.
Let
(1.6.4.3)

f(div(l)) = f(DtT — D7) = Normp+/s(f|p+) - NormD—/S(f|D—)_1 € 0s(9)*,
and let ¢ ¢ be the isomorphism, given in terms of generators

(1 6.4 4) QSEJyf: NOTle/S(C) — Norsz/S(‘C)
e Normp, /g(l) — f(div(D)~? -Normp, /5(1) .

Now suppose that we made other choices n', I, Ij. Then we get D', Dt v,
and ¢gp r. Then there is a unique function g € Oc(V N V’)* such that I’ = gl in
LV NV'). Then

¢ s(Normp, ;5(1)) = ¢z r(Normp, /s(g~ ')
= ¢ p(g~ " (D1)Normp, /5(1'))

=g H(D1)-de,s(Normp, /s(I'))
=g~ (D1)-f(div(l"))~"-Normp, /5(I')

(1.6.4.5) =g~ (D1)-f(div(gl))"-Normp, s(gl)
=g (D1)-f(div(g) + div(1))~"-g(D2) Normp, s (1)
=g~ (D1)-f(div(g))~"-g(D2)-f(div(1))~*-Normp, s(1)
= g(div(f))-f(div(g)) " dr.1,s(Normp, /5 (1))

= ¢r1,p(Normp, ,5(1)),

where, in the last step, we used Weil reciprocity, in a generality for which we do not know
a reference. The truth in this generality is clear from the classical case by reduction to

the universal case, in which the base scheme is integral: take a suitable level structure
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on J, then consider the universal curve with this level structure, and the universal 4-tuple
of effective divisors with the necessary conditions. We conclude that ¢, 5 = ¢z f-

Now suppose that f’ is in Oc(U)* with div(f’) = div(f). Then there is a unique
u € Og(S)* such that f" = u-f, and since £ has degree 0 on C

¢r,5r (Normp, /5(1)) = (u-f)(div(l)) ™ -Normp, s(1)
(1.6.4.6) =y~ 4°8V0) ¢ (div (1))~ -Normp, 5(1)

= f(div(1))""Normp, /s(1) = ¢z.1,5 (Normp, ;5(1))

Hence ¢, 1,5 = ¢r,1,r- We define
(1647) ¢D1,D2,L: Norle/S(ﬁ) — NOI‘HIDQ/S(E)

as the isomorphism ¢, ; in (1.6.4.4) for any local choice of f and I.

Lemma 1.6.4.8. With the assumptions as in the beginning of Section[1.6.4), the isomor-
phism ¢, p,.p, N is equal to the isomorphism in (1.6.4.1).

Proof. We do this, as in the proof of Proposition by considering the case of the
universal £, that is, we base change via J — S, and then restricting to 0 € J(S). This
amounts to checking that the 2 isomorphisms are equal for £ = O¢ with the standard
rigidification at b. In this case, Normp, ,s(Oc) = Og, with Normp, ;s(1) = 1. Hence
®D1,Ds,0c = G0c 1,5 is the identity on Og (use ) The other isomorphism is the
identity on Og because of the rigidifications of M and Ny on 0 x J and 0 x C(@. O

1.6.5 Symmetry of the Norm for divisors on smooth curves

Let C' — S be a proper and smooth curve with geometrically connected fibres. For Dy,

Dy, effective relative Cartier divisors on C we define an isomorphism
(1651) (]51)17D2 : NOYle/S(OC(DQ)) — NOTHID2/S(OC(D1))

that is functorial for cartesian diagrams (C’/S’, D}, Dy) — (C/S, D1, D3).

If suffices to define this isomorphism in the universal case, that is, over the scheme that
parametrises all Dy and Ds. Let dy and ds be in Z>q, and let U := Cd1) x g C42) and
let D1 and D4 be the universal divisors on Cyy. Then we have the invertible Oy -modules
Normp, ;7(Oc(D2)) and Normp, ;i;(Oc(D1)). The image of D1 N Dy in U is closed, let
U° be its complement. Then, over U°, D; and D; are disjoint, and the restrictions
of Normp, /;(Oc(D2)) and Normp, ;i (Oc(D1)) are generated by Normp, (1) and
Normp,,7(1), and there is a unique isomorphism (¢p,, p,)yo that sends Normp, /i7(1)
to Normp, /¢ (1).
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We claim that this isomorphism extends to an isomorphism over U. To see it, we
base change by U’ — U, where U’ = C% xg C%, then U’ — U is finite, locally free
of rank dj!-ds!. Then Dy = P+ ---+ Py, and Dy = Q1 + - -- + Qg, with the P; and
Q; in C(U’). The complement of the inverse image U'’ in U’ of U° is the union of
the pullbacks D; ; under pr; ;: U " — C xg C of the diagonal, that is, the locus where
P; = @Q;. Each D, ; is an effective relative Cartier divisor on U’, isomorphic as S-scheme
to C%td2=1 hence smooth over S. Now

(1.6.5.2) Norle/U/(O(Dg)):®Pi*(9(Qj), Norsz/U,(O(Dl)):®Q;O(P,;),

and, on U'°,

(1.6.5.3) Normp, /(1) = @)1, Normp,,p/(1) =@ 1, in OU").
.7j '7j

On the open U’, the divisor of the tensor-factor 1 at (i, j), both in Normp, /(1) and in
Normp, /i/(1), is D; j. Therefore, the isomorphism (¢p, p,)vo extends, uniquely, to an
isomorphism ¢p, p, over U’, which descends uniquely to U.

Our description of ¢p, p, allows us to compute it in the trivial case where D; and D-
are disjoint. One should be a bit careful in other cases. For example, when d; = dy = 1
and P = @, we have P*O¢(Q) = P*O¢(P) is the tangent space of C' — S at P, and
hence also at @), but ¢p ¢ is multiplication by —1 on that tangent space. The reason for
that is that the switch automorphism on C' xg C induces —1 on the normal bundle of
the diagonal.

Lemma 1.6.5.4. Let b be an S-point on C. Because of the symmetry in Proposi-

tion using (1.6.3.15), for Dy, Do relative effective divisors on C of degree dy, ds

over S we have the following diagram of isomorphisms defining ¥ p, b,

M(E(D3),%(D1)) === Normp, /5(Oc(D3 — dzb)) @ b*Oc(D2 — dgb) =™
\ [snom
M(S(D1), 5(Ds)) = Normp, 5(Oc(Dy — dib)) @ b* O (Dy — dyb) =
Then
(1.6.5.5) YD, D, = ¢Dy,D, @ ¢1_71,de ® ¢;111,7D2 ® Pdyb,dab -

Moreover the isomorphisms ¢p, p,, and consequently ¥p, p,, are compatible with addi-

tion of divisors, that is, under (1.6.3.10) and , for every triple Dy, Do, D3 of

relative Cartier divisors on C we have
(1656) ¢D1+D2,D3 = ¢D1,D3 ® ¢D2,D3 ) ¢D17D2+D3 = ¢D1,D2 ® ¢D1,D3 .
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Proof. It is enough to prove it in the universal case, that is, when D; and Dy are the
universal divisors on Cpr, and there we know that there exists a u in Oy (U)* = Og(S)*
such that

(1.6.5.7) U YD, Dy = 9Dy, Dy ®¢E)17d2b®¢;11b7pz®¢d1b,d2b :

Since the symmetry in Proposition [1.6.3.2] is compatible with the rigidification at the
point (0,0) € (J x J)(S), then g, 44,5 is the identity on Oy, as well as the right hand
side of when D; = d;b. Hence u = u(d;b, d2b) = 1, proving (1.6.5.5).

Now we prove . As for , it is enough to prove it in the universal case

and then we can reduce to the case where D; = dib, Dy = dob and D3 = dsb for d;

positive integers where we have

Bdybdabidab = Pdyb,dab ® Pdgb,agp = (—1)( B FTH)%

(1.6.5.8) idrtas)

Pdyb,dobtdsd = Pdyb,dab @ Pdybdsh = (—1)

1.6.6 Explicit residue disks and partial group laws

Let C be a smooth, proper, geometrically connected curve over Z/p?, with a b € C(Z/p?),
let g be the genus, and let M be as in Proposition Let D = Dt — D~ and
E = E* — E~ be relative Cartier divisors of degree 0 on C. For each a in M*(F,)
whose image in (J x J)(F,) is given by (D, E) we parametrise M*(Z/p*),, under the
assumption that there exists a non-special split reduced divisor of degree g on Cf,.

Let by,...,b, be points in C(Z/p?) with distinct images b; in C(F,) and such that
hO(C']Fp,Bl + - +by) =1, and let byiq,...,ba, in C(Z/p?) be such that the b,.; are
distinct and hO(C’]pp,BgH + -+ ng) = 1. Then the maps
(1.6.6.1)

fi: C9—J, (c1,....¢q) — [Oc(c1+---+¢cg— (b1 +---+by) + D)

fo: Cc9 — J, (cl,...,cg) — [Oc(61+~-~+cg—(bg+1—‘r“'—f—bgg)-i-E)} R
are étale respectively in (by,...,b,) € C9(F,) and (bgi1,...,bay) € CI(F,), hence give

bijections CQ(Z/pQ)(EME) — J(Z/p*)5 and C’g(Z/pQ)( — J(Z/p*)5. For
each point ¢ € C(F,) we choose

bgt1yesb2g)

zp,c € Oc(—D), a generator,
(1.6.6.2) ‘ (~D)cag
2. € O¢,. generating, together with p, the maximal ideal of Oc¢.

For each i = 1,...,2g we choose zp, so that zp,(b;) = 0. For each (Z/p?)-point
c € C(Z/p*) with image ¢ in C(F,) and for each A\ € F, let c) be the unique point
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in C(Z/p?)z with zz(cy) = Ap. Then the map A — c, is a bijection F, — C(Z/p*)z
hence the maps fi, fo induce bijections
(16.63) Fy — J(Z/p*) 5, A+ Dx:=D+ (b1, —b1)+ -+ (bgx, — bg)

Fy — JZ/) g, nr— Bui=E+ (bgt1u —bgy1) + - + (b2g.u, — bzg) -

Hence /\/l>< (Z/p*)5 5.7 is the union of M*(Dy, E},) as A and p vary in F§ and by Propo-
sition 3.2l and Remark [I.6 we have

M(Dy, E,) :NormE+/(Z/p2 (Oc(Dy)) ® Normp- /(7/p2)(Oc(Dy)) '@

(1.6.6.4) " _
® ® 9+z e Dy)® bg+iOC(D>\) 1) :

For each i € {1,...,g}, ¢ € C(Z/p?) and X € F, we define z;(c,\) := 1 if ¢ # b; and
zi(e,\) == mp, — Ap if € = b;, so that c*z;(c, \)~! generates c*O(b; »). Then, for each
¢ € C(Z/p®) and each X € Y,

9
_ x;(e, 0)
(1.6.6.5) | zpl | | : generates ¢*O¢(Dy) .
b i z;i(c, Ai)

We write B+ = EOF 4 ... + F9F so that E%* is disjoint from {by,...,b,}, and E®¥,
restricted to C']pp, is supported on b;. Let zp,g be a generator of Oc(—D) in a neighbor-
hood of E* U E~. Then, for each A in Y,

g9
_ _ Tp,
(1.6.6.6) NormEo,i/(Z/pz)(.’L‘D}E) X ® NOI‘mEi,i/(Z/pz) (xD?E . 7:% — )\.p)
i=1 g B

generates Norm gz /(7/,2)(Oc(Dy)). By (1.6.6.4), (1.6.6.5)) and (1.6.6.6) we see that, for
A and p in FY,
(1.6.6.7)

9
— — Tp;
SD,E’(A; u) = NOI‘mEo,+/(Z/p2)(3}D71E) ® ®NormEi,+/(Z/p2) (xD}E . ;Ub—)\p) &
i=1 g B

-1
T,
® Norm go, —/(z/pz)(xD I '® ®NormEl /(Z/p?) (xDlE 7% — )\_p) ®
i=1 i g
-1

0= L Cr i ) EELENEUR DSV PR LG
i=1 s T j=1 25(bgtipuir Aj) e\ J=1 2j(bg+is Aj)

generates the free rank one Z/p?>-module M(D,, E,,). The fibre M*(D, E) over (D, E)
n (J x J)(Fp) is an F i-torsor, containing sp g(0,0), hence in bijection with F by
sending & in F to &-sp p(0,0). Using that (Z/p*)* =F) x (14 pF,), we conclude the

following lemma.
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Lemma 1.6.6.8. With the assumptions and definitions from the start of Section [1.6.6}
we have, for each & € ¥, a parametrisation of the mod p? residue polydisk of M* at
&-sp,r(0,0) by the bijection

Fg X Fg X Fp — ./\/1><(Z/pz)£m7 ()\,M,T) — (1 +pT)£SD,E<A,,U/) .

Using this parametrization it easy to describe the two partial group laws on M > (Z/p?)
when one of the two points we are summing lies over (D, E) and the other lies over (D, 0)
or (0,E). To compute the group law in J(Z/p*) we notice that for each ¢ € C(Z/p?)
such that x.(c) = 0 and for each A, i € F,, we have

e e

1.6.6.9 - —
( ) (xe=Ap)(xe—pp) @2 — Apxe — pPpxe T — (AHR)P

T

and since these rational functions generate Oc(cx — ¢+ ¢, — ¢) and Oc(caty, —¢) in a

neighborhood of ¢, we have the equality of relative Cartier divisors on C
(1.6.6.10) (ex—¢)+(cy—c)=cryp —c.

Hence, under the definition for A € FJ of
(1.6.6.11)
DY = (b1x, = b1) + -+ (bgn, —bg) EY = (bg+1.a1 = bgt1) + -+ + (b2g,n, — bag)

we have, for all A, u € F7, that Dy —l—DB = D)4, and E,\—i—Eg = E4,. Definition(1.6.6.7]
applied with (D,0) and (0, E), with 9 g = 1 and, for every ¢ € C(F,), with zg. = 1,
gives, for all A, u in FJ, the elements

(1.6.6.12) sp,o(A i) € MX(Dy, Ep),  so.p(Ap) € M*(DY,E,).
With these definitions, we have the following lemma for the partial group laws of M.

Lemma 1.6.6.13. With the assumptions and definitions from the start of Section[1.6.6,
we have, for all A\, A1, A2, p, pia, po in ¥, that

5D,0(A, 1) +2 8D, (A, 2) = sp,o(A p1) ® sp E(A, 2) = sp . E(A, 1 + 12)
50,E(A1, 1) +1 5D, E(A2, 1) = spo( A1, 1) ® sp E(A2, 1) = sp E(A1 + A2, 1)
and, consequently, for all 71,72 € Fp and §1,& € F);, that
(1.6.6.14)
§&1(1471p)-spo(A, 1) 42 &2(1+72p) 5D, B(A, p2) = & (14+71p)&2(14+72p) s, B (A, p1+1i2)
=& &1+ (m+72)p)-sp,5(A, p1tp2)
§1(1471p)-50,5 (A1, 1) 41 E2(1+72p)-sp, (A2, 1) = §162(14-(T14+T2)p) 5D, E(A1+A2, 1) -
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Proof. This follows from (1.6.6.9)) and (1.6.6.10)), together with the equivalence of ((1.6.3.7)
and (1.6.3.8)) and the equivalence of ([1.6.3.9)) and (1.6.3.10) in Proposition [1.6.3.2 O

We end this section with one more lemma.

Lemma 1.6.6.15. The parametrization in Lemma s the inverse of a bijection
given by parameters on M* analogously to (m

Proof. Let Q be the pullback of M by f1 x fo with f; and f5 as in (1.6.6.1]). Then the lift
fixfa: @ — MX is étale at any point 3 € Q(F,) lying over b = (by,...,ba,) € C?9(F,)
and induces a bijection between Q* (Z/p®); and M* (Z/p? )(D 7)- In particular we can in-

terpret sp g (A, i) as a section of Q(by,y,, . .. bag,,, ) and we can interpret the parametriza-
tion in Lemma as a parametrization of Q* (Z/pQ)gm. It is then enough to
prove that the parametrization in Lemma is the inverse of a bijection given by
parameters on Q*. It comes from the definition of ¢, for ¢ € C(Z/p?) and v € Fp, that
the maps \;, p;: C?9 (Z/pQ)g — F,, are given by parameters in Oozg 3 divided by p. In
order to see that also the coordinate 7: Q* (Z/P2)53D,E(o,0) — [}, is given by a parameter
divided by p it is enough to prove that there is an open subset U C C?9 containing b and
a section s trivializing Q|y such that sp g(A, i) = s(b1,z,5 - -, b2g,,). Remark

and (1.6.5.1) give that

(1.6.6. 16)
Q= ® (Wz»WngJ OCXC(A))
1,j=1
®®( SO (E — (bysr + - +bzg))®w;ﬂ.oc(p—(b1+---+bg)))
® Normp 7,/2 (Oc (D — (by + - @bgﬂ — (b4 +Dby))

where A C CxC is the diagonal and m; is the i-th projection CY x C9 — C. We
can prove that there is an open subset U C C9x(CY containing b and a section s triv-
ializing Qly such that sp p(A, ) = s(bix,,...,b2g,,), by trivializing each factor of
the above tensor product in a neighborhood of b. Let us see it, for example, for the
pieces of the form (m;, mg4;)*Ocxc(A). Let m,me be the two projections C' x C — C
and let us consider the divisor A: for each pair of points c1,co € C(F,) the invert-
ible O-module O¢xc(—A) is generated by the section za ¢, ., := 1 in a neighborhood
of (c1,c2) if ¢1 # co, while it is generated by the section za ¢ ,c, ‘= TjTe, — T3Te,
in a neighborhood of (¢1,¢2) if ¢1 = ¢co. If we now take ¢1 = b;,co = byy; € C(F,)
we deduce there exists a neighborhood U of (b;,bs4;) such that xg,lbi’bgﬂ, generates
Ocxc(A)|y. For each A,y € FY the point (b, bg4j,,) lies in U(Z/p?) and the
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canonical isomorphism (b;,x,,bg+ju;)*Ocxc(A) = by, , Oc(bix,) sends the generat-
ing section (bimba’,m)*w&,ﬂl,@ to b;fwxi(bgﬂ,)\i)_l, which is a factor in .
This gives a section s;; trivializing ((71’1‘,71'g+j)*00><c(A>) in a neighborhood of b.
With similar choices we can find sections trivializing the other factors in
in a neighborhood of b and tensoring all such sections we get a section s such that

sp,E(A 1) = s(bix, - b2gp,)- O

1.6.7 Extension of the Poincaré biextension over Néron models

Let C over Z be a curve as in Section Let g be a prime number that divides n. We
also write C' for Cz,. Let J be the Néron model over Z, of Pic% /Qy> and JO its fibre-wise
connected component of 0. On (J xz, J)g, we have M as in Proposition[1.6.3.2} rigidified
at 0 x Jg, and at Jg, x 0.

Proposition 1.6.7.1. The invertible O-module M on (J xz, J)q,, with its rigidifica-
tions, extends uniquely to an invertible O-module M with rigidifications on J Xz, JO.

The biextension structure on M™ extends uniquely to a biextension structure on MX.

Proof. First of all, J xz, JY is regular, hence Weil divisors and Cartier divisors are the
same, and every invertible O-module on (J xz, J%)g, has an extension to an invertible
O-module on J xz, J° So let M’ be an extension of M. Any extension M” of M is
then of the form M'(D), with D a divisor on J xz_ J° with support in (J xz, J°)g, .
Such D are Z-linear combinations of the irreducible components of the D; xp, J]Sq, where
the D; are the irreducible components of Jr,. Now M’| o extends M| Jg, x0, hence
the rigidification of M|JQq %0 is a rational section of M’|;xo whose divisor is a Z-linear
combination of the D;. It follows that there is exactly one D as above such that the
rigidification of M extends to a rigidification of M’(D) on J x 0. That rigidification is
compatible with a unique rigidification of M’(D) on 0 x J°. We denote this extension
M/ (D) of M to J xz, JO by M.

Let us now prove that the G,-torsor Mv * on J X7, J? has a unique biextension
structure, extending that of M*. Over J xz_ J xz, J 9 we have the invertible O-modules
whose fibres, at a point (x,y,z) (with values in some Z,-scheme) are M(z +y,2) and
M (r,2)® M (y, z). The biextension structure of M* gives an isomorphism between the
restrictions of these over g, that differs from an isomorphism over Z, by a divisor with
support over F,. The compatibility with the rigidification of M over J xz, 0 proves that
this divisor is zero. The other partial group law, and the required properties of them

follow in the same way. We have now shown that M extends the biextension M*. O
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1.6.8 Explicit description of the extended Poincaré bundle

Let C over Z be a curve as in Section [I.2} Let g be a prime number that divides n. We
also write C for Cz,. By [68], Corollary 9.1.24, C' is cohomologically flat over Z,, which
means that for all Zg-algebras A, O(Ca) = A. Another reference for this is [86], (6.1.4),
(6.1.6) and (7.2.1).

The relative Picard functor Picg/z, sends a Zg-scheme T' to the set of isomorphism
classes of (£,rig) with £ an invertible O-module on Cr and rig a rigidification at b. By
cohomological flatness, such objects are rigid. But if the action of Gal(F,/F,) on the
set of irreducible components of Cﬁq is non-trivial, then Picc/z, is not representable by
a Zg-scheme, only by an algebraic space over Z, (see [86], Proposition 5.5). Therefore,
to not be annoyed by such inconveniences, we pass to S := Spec(Z;""), the maximal
unramified extension of Z,. Then Picc/g is represented by a smooth S-scheme, and on
C x g Picog there is a universal pair (£, rig) ([86], Proposition 5.5, and Section 8.0).
We note that Picc/s — S is separated if and only if C'?q is irreducible.

Let PiC[CO]/S be the open part of Picc/s where LV g of total degree zero on the
fibres of C — S. It contains the open part Pic% /s where LY has degree zero on all

irreducible components of Cﬁq.

Let E be the closure of the 0-section of Picc /g, as in [86]. It is contained in Pic[co]/s.
By [86], Proposition 5.2, F is represented by an S-group scheme, étale.
By [86], Theorem 8.1.4, or [22], Theorem 9.5.4, the tautological morphism Pic[co]/s

is surjective (for the étale topology) and its kernel is F, and so J = Pic[g]/ s/ E. Also, the

—J

s . . [0 . . . .
composition PICOC /s = PIC[C]/ ¢ — J induces an isomorphism PIC% /s = JO.

Let Cj, i € I, be the irreducible components of Cg . Then, as divisors on C, we have
q

(1.6.8.1) Cz =y miCi.

iel
For £ an invertible O-module on Cf , its multidegree is defined as
q

(1.6.8.2) mdeg(L): I — 7Z, i degq, (L

Ci)v

and its total degree is then

(1.6.8.3) deg(L) = Zmi degc, (£
iel

Ci) :
The multidegree induces a surjective morphism of groups
(1.6.8.4) mdeg: Picc/g(S) — VAR
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Now let d € Z! be a sufficiently large multidegree so that every invertible @-module £ on
Cs with mdeg(£) = d satisfies H'(Cs , £) = 0 and has a global section whose divisor is
ﬁn;te. Let Lo be an invertible O-modl(llle on C, rigidified at b, with mdeg(Ly) = d. Then
over C x g J° we have the invertible O-module £V ® L, and its pushforward £ to J°.
Then £ is a locally free O-module on J°. Let E be the geometric vector bundle over J°
corresponding to €. Then over E, £ has its universal section. Let U C F be the open
subscheme where the divisor of this universal section is finite over J°. The J°-group
scheme G, acts freely on U. We define V := U/G,,. As the G -action preserves the
invertible O-module and its rigidification, the morphism U — J° factors through U — V/
and gives a morphism X, : V — J° Then on C x gV we have the universal effective rel-
ative Cartier divisor D" on C'x gV — V of multidegree d, and L™V ® L, together with
its rigidification at b is (uniquely) isomorphic to Ocx v (DY) @0, b*Ocx oy (— DY)
with its tautological rigidification at b, in a diagram:

(1.6.8.5) LMY @ Lo =—— Oc sy (D™Y) @0, b*Ocx sy (—DY) .

Then X, sends, for T an S-scheme, a T-point D on Cr to the invertible O-module
Ocy (D) ®0, b*Oc, (—D) @0, Lyt with its rigidification at b. Let so be in Lo(C) such

that its divisor Dy is finite over S, and let vy € V(S) be the corresponding point.

On Pic[g]/ g X5V Xg C we have the universal LY from Pic[co]/ ¢ with rigidification

at b, and the universal divisor D"™V. Then on Pic[CO]/ g X5V we have the invertible O-

module Ny 4 whose fibre at a T-point (£,rig, D) is Normp 7 (L) ®o, Normp, ,7(L£)~*,

canonically trivial on Pic[co]/ g X5 vo:

(1.6.8.6)
Nga: (Pic[co]/s Xg V) (T) > (£,rig, D) —— Normp (L) @0, NormDU/T(ﬁ)*l.

Any global regular function on the integral scheme Pic[g]/ g X5V is constant on the generic

fibre, hence in Q)™ and restricting it to (0,vo) shows that it is in Zy™", and if it is 1 on
Pic[g]/ g X570, it is equal to 1. Therefore trivialisations on Pic[g]/ ¢ X5 v rigidify invertible
O-modules on Pic[g]/ g XsV.

The next proposition generalises [76], Corollary 2.8.6 and Lemma 2.7.11.2: there,
C — S is nodal (but not necessarily regular), and the restriction of M to J% x5 JO is

described.

Proposition 1.6.8.7. In the situation of Section the pullback of the invertible
O-module M on J Xz JO to Pic[co]/zum X znr V' by the product of the quotient map
q

quot: Pic[co]/Zunr — J and the map Xz,: V — JO is 0.d, compatible with their rigidifica-
q

32



1. GEOMETRIC QUADRATIC CHABAUTY

tions at J x 0 and Pic[co]/z‘mr X vg. In a diagram:
q

P~ M qu,d
(1.6.8.8) J J l
V,0 70 . [0]
J XZ‘(;I“‘ J (W J XZEIH J W PlCC/Z}I‘m XZ;“““ V .

For T any Zy"" -scheme, for x in J(T') given by an invertible O-module L on Cr rigidified
at b, and y in JO(T) = Picoc/zgm (T) given by the difference D = Dt — D~ of effective

relative Cartier divisors on Cp of the same multidegree, we have
P(x,j; " (y)) = M(x,y) = Normp+ /7(£) ®o, Normp- 7 (L)~

Proof. The scheme Pic[co]/zumngm V is smooth over Z;“r ad connected, hence regular and
q

integral, and since VR is irreducible, the irreducible components of (Pic[g]/zm X zunr V)ﬁq
q

(0]

are the P? <7, Vi, with P* the irreducible components of (Pic Jzgns

)g,, with i in

wo((Pic[g]/Zm,r)ﬁ ), which, by the way, equals the kernel of Z! — Z, z > jer MiT;.
q q

We now prove the first claim. Both A4 and the pullback of M are rigidified on

Pic[g]/zgnr X vg. Below we will give, after inverting ¢, an isomorphism « from N 4 to
the pullback of M that is compatible with the rigidifications. Then there is a unique

divisor D, on Pic[co}/Zunr X zme V', supported on (Pic[co]/zum X znr V)E, such that « is
q q

an isomorphism from N, 4(D,) to the pullback of M. Let i be in wo((Pic[g]/Zum)Fq),
q
and let = be in Pic[g}/Zunr (Zgnr) specialising to an Fq—point of P? then restricting « to
q
(z4,v0) and using the compatibility of o (over Q") with the rigidifications, gives that
the multiplicity of P? x VE in D,, is zero. Hence D, is zero.
Let us now give, over <Pic[g]/z;;nr X gaan V)ng, an isomorphism « from N, 4 to the

pullback of M. Note that (Pic[co]/zgm)(@gm = Jggr, and that Vou = C&é‘l?, where
|d| = >_;md; is the total degree given by the multidgree d. For T' a Q""-scheme,
x € J(T) given by £ an invertible O¢,-module rigidified at b, and v € V(T') given
by a relative Cartier divisor D of degree |d| on Cr, we have, using Proposition
and , the following isomorphisms (functorial in T'), respecting the rigidifications

at v = vo:
6gg) METel)= M) - Ew) = Mz, () © Mz, (vg)) !
.6.8. = Normp (L) ®o, NormDO/T(ﬁ)fl = Nyalz,v).

This finishes the proof of the first claim of the Proposition. The second claim fol-
lows directly from the definition of A 4, plus the compatibility at the end of Propo-
sition [L.6.3.2) O
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1.6.9 Integral points of the extended Poincaré torsor

Let C over Z be a curve as in Section Given a point (z,y) € (J x J°)(Z) we want to
describe explicitly the free Z-module M(z,y) when z is given by an invertible O-module
L of total degree 0 on C rigidified at b and y is given as a relative Cartier divisor D
on C of total degree 0 with the property that there exists a unique divisor V whose
support is disjoint from b and contained in the bad fibres of C' — Spec(Z) such that
O(D+V) has degree zero when restricted to every irreducible component of any fibre
of C' — Spec(Z). Since M(z,y) is a free Z-module of rank 1 then it is a submodule
of M(z,y)[1/n] and writing D = DT — D~ as a difference of relative effective Cartier

divisors, Proposition [1.6.3.2] with S = Spec(Z[1/n]), gives
(1.6.9.1) M(z,y)[1/n] = (Normp+ z(L) ®z Normp- ,7(£) ") [1/n]

and consequently there exist unique integers eq, for ¢ varying among the primes divid-

ing n, such that, as submodules of (Normp+ 7(L) ®z Normp- /7 (L)1) [1/n],

(1.6.9.2) M(z,y) = quq - (Normp+ 7 (L) @z NOrme/Z(L)fl) .

qin

We write V=3,
n let C; 4,4 € I, the irreducible components of Cr, with multiplicity m; , and let V; , be
the integers so that V, = Vi,qClig-

V, where V, is a divisor supported on Cf,. For every prime ¢ dividing
i€l
Proposition 1.6.9.3. The integers in are given by

eq=— Y Vigdegg (L
icl,

Ci,q>'

Proof. For every ¢ dividing n let H, be an effective relative Cartier divisor on C7z, whose
complement U, is affine (recall that C is projective over Z, take a high degree embedding
and a hyperplane section that avoids chosen closed points ¢; 4 on the C; 4). The Chinese
remainder theorem, applied to the O¢(U,)-module (Oc(D + V))(U,) and the (distinct)
closed points ¢; 4, provides an element f, of (Oc(D+V))(U,) that generates Oc(D+V)
at all ¢; 4. Let Dy = D — D be the divisor of f; as rational section of Oc(D + V).

Then D;r and D are finite over Z,, and f, is a rational function on C%, with
(1.6.9.4) div(fy) = (Df = D;) = (D+V)=(Df + D7) —(D*+D;)-V.
This linear equivalence, restricted to Qq, gives the isomorphism

(1.6.9.5) @: Norm(D++Dq_)/Qq(E) — Norm p+, p-) /g, (L).
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Tensoring with Norm, -, -y g (£)~! we obtain the isomorphism
(1.6.9.6)
¢ ®id: Normp+ g, (£) ® Normp- g, (£)™" —— Norm+ g, (L)® NormD; /2, (L)1

using the identifications

(1.6.9.7)

Normp+ /g, (£) ® Normp- /g, (£)~" = Normpp., p-y g, (£) @ Norm | -y . (L)t
Normp+ o (£) ® Norm - ¢ L)yt = Norm p+, p-y/q,(£) © Norm | -y . (L)t
Using the same method as for getting the rational section f, of Oc(D + V), we get
a rational section ! of £ with the support of div(l) finite over Z, and disjoint from
the supports of D and D,, and from the intersections of different C;, and C;,. By
Proposition and the choice of [,

(1.6.9.8)

M(z,y)z, = Normp+ /7. (E)@Norme,/Zq (L)t = ZqgNormpys (l)®NormD;/Zq nH~*,

and
(1.6.9.9) Normp+z, (£) ® Normp- 7 (L)™' = Zg-Normp+ sz, (1) ® Normp- /7 (1)~".
By , we have that ¢ ® id maps

Normp+ /g, (1) @ Normp- /g, (1)~

to

(1.6.9.10) fo(div(1))™" - Normps o (1) ® Normy,— o (.
Comparing with ((1.6.9.2)), we conclude that

(1.6.9.11) eq = vq(fy(div(1))).

We write div(l) = Zj n;D; as a sum of prime divisors. These D; are finite over Zg,
disjoint from the support of the horizontal part of div(f,), that is of D, — D, and each
of them meets only one of the C; 4, say Cy(j),- Then, for each j, f;ns(”’q and ¢~ V=0
have the same multiplicity along Cj(;) 4, and consequently they differ multiplicatively by
a unit on a neighborhood of D;. Then we have

(1.6.9.12)
vo(f(D;)) = ve(fq 9 (Dy)) _ vg(q V=9 (D)) _ Y (Normp, /7, (g~ V=ta))
B M(j)a M(j)q Mis(i).q
_ Vetpadess, (D) —Vig)a (D - Cr,) _ =Vi.a'(Ds - ms5),.0Cs9).0)
Ms(5),q Ms(j),q Ms(5),q

= —Vi),a(Dj - Cs(y) = —Vq - Dj.
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We get
eq:%U“&WM):—%~&WD:—§:%ACV&WM
(1.6.9.13) el
==Y Vigdegs (Llc,,)-
i€l

O

1.7 Description of the map from the curve to the tor-

sor

The situation is as in Section [1.2l The aim of this section is to give descriptions of
all morphisms in the diagram (1.2.12), in terms of invertible O-modules on (C' x C)q
and extensions of them over C' x U, to be used for doing computations when applying
Theorem The main point is that each tr., o f; is described in as a mor-
phism (of schemes) a,: Jp — Jg with £; an invertible O-module on C' x U, and that
Proposition describes (j); : Cziiym — T

We describe the morphism ij U — T in terms of invertible O-modules on C' x C*™.
Since T is the product, over J, of the Gy,-torsors T; := (id, m-otr., o f;)* P> this amounts
to describing, for each i, the morphism (]7,)1 U — T;. Note that tr, o f;: Jp = Jg is
a morphism of groupschemes composed with a translation, and that all morphisms of
schemes a: Jg — Jg are of this form. From now on we fix one such 7 and omit it from
our notation.

Let a:: Jg — Jg be a morphism of schemes, let £,, be the pullback of M (see (1.6.3.3))
to Cp x Cg via jp x (a0 jp), and let T, := (id, a)* M on Jg:

T, MX
Co i Jo — s (7% D)
(1.7.1) idiag jbxidT

idxa

(C x O)g 2% (€' x J)g 2% (€' x J)g

I I

X univ, X
Cx Lunivx

Then (b,id)* Ly = Ocy, Lq is of degree zero on the fibres of pry: (C' x C')g — Cg, and:
JiTy is trivial if and only if diag*L, is trivial. Note that diagram (1.7.1)) without the

G-torsors is commutative.
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Conversely, let £ be an invertible O-module on (C x C)q, rigidified on {b} x Cgp, and
of degree 0 on the fibres of pry: (C' x C')g — Cg. The universal property of £ gives
a unique f: Cgp — Jg such that (id x B.)*L£"V = £ (compatible with rigidification
at b). The Albanese property of j,: Cop — Jg then gives that 8. extends to a unique
ag: Jg — Jg such that ag o j, = Bz. Then j;T,, is trivial if and only if diag”L is
trivial. We have proved the following proposition.

Proposition 1.7.2. In the situation of Section[I.3, the above maps o+ L, and L — ap
are inverse maps between the sets

{scheme morphisms a: Jg — Jg such that j; (id, a)* M is trivial}
and

{invertible O-modules £ on (C x C)q, rigidified on {b} x Cq, of degree 0 on
the fibres of pry: (C x C)g — Co, and such that diag*L is trivial}.

Now let £ be in the second set of Proposition Then diag*L = O¢,, compatible
with rigidifications at b. Let

(1.7.3) ¢ € (diag" L) (Cq)

correspond to 1. Then m- o ay extends over Z to m-o ay: J — J°, and the restriction

of jy(m-oag)*M on C™ to U is trivial, giving a lift b, unique up to sign:

Toa, —— M*

(1.7.4) / l o l

Jx JO.

The invertible O-module £ on (C x C)g with its rigidification of (b,id)*L, extends
uniquely to an invertible O-module on (C' x C)z1 /4, still denoted L.

Proposition 1.7.5. Let S be a Z[1/n]-scheme, let d and e be in Z>o, and let D € C(D(S)
and E € C©)(S). Then we have:

M(E(D),arp(3(E))) = (NormD/s(id,b)*E)@)(l_e) ® Norm(py gy s(L) -
For x € C(S) we have

Tn-oae (G6(2)) = M (G (@), meac (o () = L™ (2,2) = (Gm)s -
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Proof. We may and do assume (finite locally free base change on S) that we have z; and
y; in C(9), such that D = 37, z; and E' = >, y;. Recall that, for ¢ € C(5), Bc(c) in
J(S) is (id, ¢)*L on Cg, with its rigidification at b. Then we have:

M(E(D), ac(3(E))) = M(ac(E(E)), X(D))

(1.7.5.1) = M| Be(b) + zj:(ﬁﬁ(yj) - Bc(d), Xi:jb(%)

- (@ L(xi,b)@’(l_e)) ®®ﬁ(%yj)~

from which the desired equality follows.
Now we prove the second claim. Let x be in C(S). The first equality holds by
definition. Taking D = E = x in what we just proved, gives the second equality, and the

third comes from the rigidification at b. O

Now let £ be any extension of £ with its rigidification of (b,id)*L from (C x C)z}1 /n)
to C' x U. For ¢ dividing n, let W, be the valuation along U, of the rational section £ of
diag*L on U. Then ¢, multiplied by the product, over the primes ¢ dividing n, of g="a,

generates diag*L on U:

(1.7.6) [Ta " | € (diag L) (V).

aln
There is a unique divisor V' on C x U with support disjoint from (b,id)U and contained
in the (C' x U)g, with ¢ dividing n, such that
(1.7.7) L™= L%"(V) onC xU

has multidegree 0 on the fibres of pry: C x U — U. Then L™ is the pullback of £

via id x (m-oag o jp): O x U — C x JO. Its restriction £™|csmyxy is then the pullback

of M via j, X (m-oagojy): C™ x U — J x J°, because on C*™ x J the restriction of
LY and (j, x id)* M are equal (both are rigidified after (b,id)* and equal over Z[1/n];
here we use that, for all g|n, Jlgq is geometrically connected). Hence, on U we have
i Tmoa, = diag"(L®™(V)*), compatible with rigidifications at b € U(Z[1/n]). Our
trivialisation j~b on U of Ty,.0a, is therefore a generating section of £, multiplied by

Vq

the product over the ¢ dividing n, of the factors ¢~ "¢, where V; is the multiplicity in V' of

the prime divisor (U x U)r,. This means that we have proved the following proposition.

38



1. GEOMETRIC QUADRATIC CHABAUTY

Proposition 1.7.8. For z and S as in Proposition[1.7.8, we have the following descrip-
tion oijb:

o) = [ [La7™"a Ve ] 9™ in (Tyoae (Go(2)))(S) = L= (@, 2)*(S).

q|n

1.8 An example with genus 2, rank 2, and 14 points

The example that we are going to treat is the quotient of the modular curve X,(129) by
the action of the group of order 4 generated by the Atkin-Lehner involutions wz and wys.
An equation for this quotient is given in the table in [53], and Magma has shown that
that equation and the equations below give isomorphic curves over Q.

Let Cy be the curve over Z obtained from the following closed subschemes of A2

Vi: y?4+y=a% -3+ +323 -2 -z,

Vo: w?+22w=1-32+422+433-24-2°

by glueing the open subset of V; where x is invertible with the open subset of V5 where
z is invertible using the identifications 2 = 1/x, w = y/x3. The scheme Cy can be
also described as a subscheme of the line bundle L3 associated to the invertible O-
module Op: (3) on P}, with homogeneous coordinates X, Z: the map Op: (3) — Op1 (6)
sending a section Y to Y ® Y 4+ Z3 ® Y induces a map ¢ from L3 to the line bundle
L associated to O(6); then Cy is isomorphic to the inverse image by ¢ of the section
s 1= X0-3X°Z4+X47%24+3X373-X2Z*~X 75 of L¢ and since the map ¢ is finite of
degree 2 then Cj is finite of degree 2 over PL. Hence Cj is proper over Z and it is
moreover smooth over Z[1/n] with n = 3 -43. The generic fiber of Cj is a curve of genus
g = 2, labeled 5547.b.16641.1 on www.1mfdb.org. The only point where Cy is not regular
is the point Py = (3,2 —2,y—1) contained in V4 and the blow up C of Cj in P, is regular.

In the rest of the article we apply our geometric method to the curve C' and we prove
that C(Z) contains exactly 14 elements. We use the same notation as in Sections
and [[4

The fiber Cf,, is absolutely irreducible while Cg, is the union of two geometrically
irreducible curves, a curve of genus 0 that lies above the point Py and that we call Ky,
and a curve of genus 1 that we call K;. We define Uy := C'\ K; and U; := C\ Kj so
that C(Z) = C™(Z) = Up(Z) U U1(Z) and both Uy and U; satisfy the hypothesis on U
in Section [1.2l We have K, - K; = 2 and consequently the self-intersections of Ky and
K are both equal to —2. We deduce that all the fibers of J over Z are connected except
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for Jp, which has group of connected components equal to Z/2Z. Hence,
(1.8.0.1) m=2.

The automorphism group of C'is isomorphic to (Z/2Z)?, generated by the automorphisms
¢ and n lifting the extension to Cy of

L Vi — Vi, w(zy)— (2, -1-y), n:(z,y)r— 1-—z,-1-y).

The quotients E; := Cg/n and Ey := Cg/(t o n) are curves of genus 1 and the two
projections C' — E; induce an isogeny J — Pic’(E;) x Pic’(E;). The elliptic curves
Pic’(E;) are not isogenous and p = 2.

1.8.1 The torsor on the jacobian

Let co,00_ € C(Z) be the lifts of (0,1),(0,—1) € Vo(Z) C Co(Z) and let us fix the base
point b = oo in C(Z). Following Section we describe a Gp,-torsor T' — J and maps
jfbv,i: U; — T using invertible O-modules on C' x C*™. The torsor T' = (id, m- o a)* M*
only depends on the scheme morphism a: Jg — Jg, which, by Proposition is
uniquely determined by an invertible O-module £ on (C x C)g, rigidified on {b} x Cg,
of degree 0 on the fibres of pry: (C' x C)g — Cg, and such that diag*L is trivial.

We now look for a non-trivial O-module £ with these properties using the homo-
morphism n*: Jg — Jg, which does not belong to Z C End(Jgp). We can take «
of the form tr.[o](ni-n*+ne-id), where id: Jg — Jp is the identity map, n; are in-
tegers and ¢ lies in J(Q). Using the map o — L, = (Jp X (jpo))* M in Proposi-
tion the O-module Ly, is isomorphic to Oc,xc,(priD), the O-module L, is
isomorphic to Ocyx ¢y (I'y,0 — prin*(b) — pran(b)) and the O-module Liq is isomorphic to
Ocyx e, (diag(Cgp) —pri(b) —pr3(b)), where D is a divisor on Cq representing ¢, the maps
pr; are the projections Cg x Cp — Cg and Iy, is the graph of the map n: C' — C'. Hence,
we can take £ of the form Oc,xc,(n1l'y,q + nediag(Cq) + priD1 + pr;Ds) for some
integers n; and some divisors D; on Cg. Among the O-modules of this form satisfying

the needed properties, we choose
L := Ocyxcy(Tng = pri(oo-) — pry(00)) = Ocyxcy (I — 00— x Cg — Cg x 00)
trivialised on b x Cg through the section
=2 in ((b,id)"£)(Co) = Ocy(n(b) — b)(Cq) = Oc,(Ca)

For every Q-point @ on Cg the Oc_-module (id, Q)* L is isomorphic to 006(77(@) —00_),
hence

ap =treo f, with f =n. and ¢ = [Dy],Dg := 00 —oco_.
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When restricted to the diagonal £ is trivial since, compatibly with the trivialisation at
(b,0),

diag”L = Oy (00 + 00 —o00_ —o0) = Oc .
In particular, the global section [ := 1 of O¢, gives a rigidification of diag”L that we
write as

diag"L =1-Oc, .

Following Proposition [I.7.8] and the discussion preceding it, we choose the extension of

L over C' x C™
L= chcsm(rn‘cxcsm —oo_ X C"™ - (C x OO) 5

trivialised along b x C®™ through the section I, = 2 (the points co_ and b have a simple
intersection over the prime 2). By Proposition the torsor 1" := T}p.00, on J, with
m = 2 as explained before Equation , satisfies, for S a Z[1/n]-scheme and x in
C(S), using the trivialisation given by I and I,

T(jp(x)) = M* (jo(@), m-ar(Go(x))) = M (Gy(2), (id, 2)*LZ™)
(1.8.1.1) = 2*(id, 2)* L™ @ b*(id, z)* LO ™
= L (,2) @ LO (b,z) ! = L (v,7) = OF .

Using Proposition we now compute jj o and ‘;{ Since [ generates diag”(£) on the
whole C*™, we have W3 = W,3 = 0. The invertible O-module £ has multidegree 0
over all the fibers C' x U; — Uy, hence in order to compute ;1: we must take V' =0

in (1.7.7), giving V3 = V43 = 0. Hence for S and z as in (1.8.1.1)), assuming moreover
that 2 is invertible on S,

. 1
(1.8.1.2) dpa@) =P eh?=1@"1)e O i

T(jp(@)) = 2 (id, )" LE™ *b* (id, 2)* L9~™* = 2 Ocy (nr—00_) * @b Ocy (na—00_)%,

where the last equality in makes sense if the image of z is disjoint from oo, co_
in Cs.

The restriction £L®™ to C x Uy has multidegree 0 over all the fibers C x Uy — Uy of
characteristic not 3, while if we consider a fiber of characteristic 3 it has degree 2 over K
and degree —2 over K7. Hence for computing ]r';;; we take V = Ky x (KoNUp) in
giving V43 = 0, V3 = 1. Hence for S and z as in , assuming moreover that 2 is

invertible on S,

o) =+

1
(1.8.1.3) Jv.0(z) 312 @l = =)@ (®*1)"" in

12
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T(jy()) = 2 (id, ) L5 e0b* (id, )" L2~ = 27 O (n—00_ J@b* Ocy (na—00),

where the last equality in (1.8.1.3]) makes sense if the image of x is disjoint from oo, co_
in Cs.

1.8.2 Some integral points on the biextension

On Cy we have the following integral points that lift uniquely to elements of C(Z)

oo =(0,1), oo_:=(0,—1) in V5(Z),

o= (170)7 B = 77(@) = (07 *1) N e (27 ]-)a 6= 77(7) = (717 *2) in V1<Z) .
Computations in Magma confirm that J(Z) is a free Z-module of rank r = 2 generated
by

Gi=v—a, Gy:=a+oco_ —200.

The points in T'(Z) are a subset of points of M*(Z) that can be constructed, using
the two group laws, from the points in M*(G;, m-f(G;))(Z) and M*(G;,m-Dy)(Z)
for i,j € {1,2}. Let us compute in detail M*(Gy,m - f(G1))(Z). As explained in
Proposition [1.6.9.3] we have

M(G1,m-f(G1))* = M™ (v — @, 20 — 2p)
= 3¢343°%43 . Norm(gg)/z((/)c (’y—a)) (39 Norm(gg)/z((’)(;(v—a))_l
= 3%43% . (26 — 20)"Oc(y — @)

where, given a scheme S, an invertible O-module £ on Cg and a divisor Dy —D_ = >, n; P;

on Cg that is sum of S-points, we define the invertible Og-module

<Z nsz> L= ®P:,Cn‘ = NormD+/s(£) & NormD_/S(E)_1 .

Since Cf,, is irreducible then 2f(G;) has already multidegree 0 over 43, hence e43 = 0.
If we look at Cp, then 2f(G1) does not have multidegree 0, while 2f(G1) + Ky has
multidegree 0; hence, by Proposition [1.6.9.3

e3 = —degp, Oc(y — a)|k, = —1.

Notice that over Z[1] the divisor G is disjoint from 3 and § (to see that it is disjoint
from 6 = (—1,—2,1) over the prime 3 one needs to look at local equations of the blow
up) thus 3*Oc(y — a) and §*Oc(y — a) are generated by $*1 and 6*1 over Z[1]. Thus
there are integers eg, es such that 8*Oc(y — «) and §*Oc¢(y — a) are generated by §*2°5
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and 0*2% over Z. Looking at the intersections between 3,v,« and é we compute that

eg = —1 and es = 1 hence
M(G1,m - f(G1)) =3"1(6"2)% @ (27 1) 2. Z=2%3"1(6*1)2®@ (B*1)-Z and
Qui=£2371(0"1)? @ (B )72 € MG, 506, (D)

With analogous computations we see that

Q21 :=2"2(6"1)*®(B*1) 2 generates M, m.f(Gy)
Q12 :=2"2(81)2®(c0" 1)?®(c0*1) ™4 generates Mq, m.f(G2)
Q2. = 2"%.(8"1)2®(c0” 2)2®(0c0* %) ~* generates Ma, m.f(G.)
Q1.2 := (00"1)2® (00" 1) 72 generates M@, m-p,

Q2,0 :=2""2(00*2%)?®(c0* )2 generates Mg, m.D, -

1.8.3 Some residue disks of the biextension

Let p be a prime of good reduction for C. Given the divisors
D:=a—-o00, E:=28-200_=(motr.on)(D) in Div(Cyz/,2)

we use Lemma to give parameters on the residue disks in M*(Z/p? )55 and
T(Z/p*)5, with D, E the images of D, E in Div(C¥,) ).

We choose the “base points” by = a,by = o0, b3 = [§,by = 00, so that by # bo,
bs # by and h(Ch,, by + by) = h°(Ch,,, bs + bs) = 1. As in Equation (1.6.6.2), we define
To =2—1, Too = 2,23 = and Tpg = Tp,eo = 1, Tpoo = 2z . For Q in {o0, B, a}
and a € F,, let @, be the unique Z/p-point of C' that is congruent to @ modulo p and
such that z¢(Q,) = ap € Z/p*. We have the bijections

IF?,—)J(Z/p2)5, Ar— Dy =D+ ay —a+ 00y, —00=ay, + 00y, — 200

FI%—)J(Z/Z’Q)Ea pr— Ey = E+ By, — 400y, —00 =+ +00,, —00—200_.

Following (|1.6.6.7) for A\, u € ]FZQ) we define

2 2

sp.e(Ap) = (8"1) @ (8,,1) ® (oo, P )\2p) ® (00" > _Z)\2p

that, by Proposition and Remark generates E7Oc, (Dx) = Mp, E,-
The points in M*(FF,) projecting to (D, E) are in bijection with the elements ¢ in F)
and are exactly the points £-sp £(0,0). Using (Z/p*)* = F) x (14+pF,), for each £ € F)
we parametrise the residue disk of £ - sp g(0,0) using bijection in Lemma

)7l ® (0% 1)72

F> — M™(Z/P")esp 50,0y s (A1s Az, 1, 2, 7) — (1 + p7)€-sp m((A1, A2), (11, 1)) -
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Since (m-otr. o f)(Dy) = E_s) then we have

T(Z/p")5 = To.(2/p*) = | M}, 5, (Z/p%).

XEF2 AEF2

lf\jévaries in F) the point &-sp g(0,0) varies in all the points in M* (FF,) projecting to
(D, E) and we have the following bijection induced by parameters in £-sp £(0,0)
(1.8.3.1)

Fy — T(Zp)esp 500y s (A1y A2, 7) 7= (L+7p)-E5p,5((M1, A2), (=2A1, —2A2)) -

If we apply (1.8.1.2]) and (1.8.1.3) to @ = ) and we use the symmetry of the Poincaré
torsor explained in Proposition [1.6.3.2|and made explicit in Lemma, we obtain the
following description of ji; on C(Z/p?)as, When p # 2

Joa(an) = (1/4) - sp.p((X,0),(=2X,0)),  jno(Q) = (1/12) - sp 6((A,0), (—21,0)).

If p =5 then 18 and —1 are (p — 1)-th roots of unity in (Z/p?)*, thus 1/4 = (=1)(1 +p)
and 1/12 = 3(1 + 2p) in (Z/p*)* = Fx x (1+plF,), hence

(1.8.3.2)

doi(an) = =(14p)-sp,5((A,0),(=2X,0),  Gpo(Q) = 18-(1+2p)-5p 5((A,0), (—21,0)) .

Since it is useful for computing the map xz in the residue disks of T'(Z/p?) projecting
to D, we also apply Lemma [1.6.6.8| to the residue disks of M*(Z/p?) lying over (D,0),
(0, E) and (0,0). Hence for A, u € F2 we define the divisors on O,

0._ 0._
Dy :=ay, —a+ooy, —o0, E, =5, —f+ 00, —

and the sections

22 2
3.0000) = (5, 1)@ (007, )8 ) eloo” )T € MADLED (/)
s0. (M) = (B)2(8; >®(oo*22 ) B et ) € MX(DRE)(2/57)
000 = (81,18 (007, - )@ ) 00" )7 € MADRED)(Z/p?)

1.8.4 Geometry mod p? of integral points

From now on p = 5. Let @ € C(Z/p?) be the image of a € C(Z). In this subsection

we compute the composition &: Z? — T(Z/p? ) =@ of the map kz: Z? — T(Zp)jfbvl(a)

in and the reduction map T'(Z, )]b @) —> T(Z/p )~ .. With a suitable choice

Jb,1(@)

of parameters in (’) the map k7 is described by integral convergent power series

jo1 (@)
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K1, K2, K3 € Zp(z1, 22) and K, composed with the inverse of the parametrization (1.8.3.1]),
is given by the images Ry, Rz, k3 of K1, ko, kg in Fp[z1, 22].

The divisor j,(@) is equal to the image of
CA;'; = 6071G1 + 6072G2 with €0,1 ‘= 6 ,€0,2 ' = 3

in J(F,) and
- 6 3 66 63 36 33 o~ —~
F=Q ©Q, 8Q 9Q . eQ) ©Qr, M (Dy.m(Dy+n.G0)(2)
is a lift of ji 1 (@). The kernel of J(Z) — J(F,) is a free Z-module generated by

G1::€1’1G1 + 61’2G2 R G2::€2’1G1 + 62’2G2 , with 61712:16 s 61722:2 R 62’1::0 R 62’2225 .

Let é;; be the divisor m(Do—i—n*(CTt)) representing (m~otr60f)(CTt) € J°(Z). Following
(1.4.1) for 4,5 € {1,2} we define

2 i,1"€j,m 2 €i,l 2 €i,1'€0,m 2 €0,1°€j,m
Pij= ® Qlem Rig= ®Ql,o ® ® Ql,’rﬁ ' Sij = ® Qljn
m,l=1 =1 m,l=1 m,l=1
(G, f(mGy)) (Gy,Gra)) (Ge, f(mG))).

Computations in (7,2 show the following linear equivalences of divisors
Gy ~Dos, Gi~Dj,, Gy~Djy

and applying Lemma and the functoriality of the norm we compute
(1.84.1)

Pr1 = (1+4p)s00((4,0),(2,0)) (GlaGl)(Z/pQ) MX(D4,07E8,0)(Z/192)7
Pr2 = (1+4p)-s0,0((4,0), (0,4)) MX(G1,Go)(Z/p*) = MX(Df 5, BQ4)(Z/p%),
Py = (14 4p)-s0,0((0,3),(2,0)) (G27G1)(Z/p2) MX(D873,E870)(Z/p2),
Py = (—1)-(1+4 2p)-50,0((0,3), (0,4)) MX(G2,Ga)(Z/p?) = MX(D§ 5, E) 1) (Z/p*),
Ry 7= 50,8((4,0),(0,4) € MX(G1,Ge2)(Z/p?) = MX(DY , Bo.4)(Z/p?),
Ry ;= (1+4p)-s0,£((0,3),(0,4)) € MX(G2,Gr2)(Z/p?) = MX(DY 5, Bo.4)(Z/p?),
Si1 = s0,0((0,3),(2,0)) MX(Gr,G1)(Z/p*) = M*(Do 3, B3 0)(Z/p?),
72 = (=1)(1 +4p)-sp,0((0,3),(0,4)) MX(G1,Go)(Z/p*) = M*(Do 3, EQ 4)(Z/p%),
£ = (=1)-(1+2p)-sp,p((0,3),(0,4) € MX(G1,Gr2)(Z/p*) =M (Do 3, Eo.1)(Z/p*).
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We now show these computations in the cases of a; and £. The Riemann-Roch space

relative to the divisor CTt—i—oo—i—a—D on Cz,,2 is generated by the inverse of the rational

function
h .7xg—5x8—2x7—|—7x6—9x5—5m4+14x3+7x2+13m+1+
L 1525 — x* + 423 + 1922 + 42+ 9
N 28 +92° — 52t 4 1523 — 522 + 4x + 14
152% — 2% + 423 + 1922 + 42 + 9
and indeed

div(hy) = Gy — Dy 3 = (67 + 300_ — 3 — 600) — (e + 003 —200) in Div(Cyzp2) .

Hence multiplication by hy gives an isomorphism (’)Cz/pz(a;) — Og, e (Dy3) and by
functoriality of the norm we get
8*0c(Gy) = 6*Oc,, ,(Dos), 51 6% (hy) = he(6)-0%1 = 12:6*1,
B0c(Gy) = 8°Oc,,  (Dojs), 571w B (he) = ha(B)-5°1 = 18-571,
— 2
00*Oc(Gt) — OO*OCZ/p2 (Do.3), 00*2% = 00*(25h1) = 13-00* P

ooiOC(Z?vt) — 00" Oc., ,(Do3), 00" 23 00™ (273hy) = %(oo,)ooil =6-00" 1.

z/p?

Since é:/g = 120+400_—65—1000, the above isomorphisms, tensored with the exponents,

give the canonical isomorphism

(1842)  M(Gr.Gra) = Gz Oc, . (Gr) = Gia O, (Do) = M(Dos,Gir)

Z/pz(
5214~((5*1)12®(ﬁ*1)_6®(OO*ZG)_1O®(OOiZ_3)4 —

22

) g (c0n 1)1,

(S%1)12 *1\—6 *
— 14-(6"1)*®(8"1) ~°®(c0 e

The Riemann-Roch space relative to the divisor é\;g—i—oo—i—a—E on (7,2 is generated by

the inverse of the rational function

217 — 8x16 4 215 — g™ 4 7218 4+ 4212 4+ 122 + 210 4 22% — 528 4+ &7 + 325 + 1225

ha 1= 2025 — 627
6% — 623 + 422 + 102 — 6 + +(21® + 6214 — 5213 — 212 — 221 4 14210 — 42%)y
2028 — 627
(1428 + 327 + 82% — 62° — 3% + 423 + 1322 — 2 — T)y
+ 2029 — 628
and indeed

div(he) = Gro—Eoa = (126 +400_ — 63 —1000) — (26 + 004 —00—00_) in Div(Cyp2) -
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Following the recipe in Section that describes the map (|1.6.4.4)), we consider the
following rational section of O¢, e (Do,3)

. 10zt + 23 + 172 + 14 + (152 + 9)y
T 102t + 1623 + T2+ Tx 4+ 10

since it generates Oc, e (Dy,3) in a neighborhood of the supports of é;/Q and Ep4. Then
div(l) = 3-(=1,1)+(17,23)+(15,10)—2-(12,23)—2-(5,20)— (0,1) € Div(V; z/2) CDiv(Clp2).
Hence by Lemma the canonical isomorphism

M(Do3,Grz) = C?t;*ocz/pz (Do,s) — E54Oc,, . (Do3) = M(Do s, Eo4)
described in Equation sends
(1.8.4.3) Gro 1 ho(div(l)) - Bl = 14- 5l
where

(’77;2*1 = (") (B°1)° @ (00*]) 10 ® (00 1)

_ (5*1)12 ® (6*1)_6 ® (00*7

By 4l = (81 ® (0031) @ (00"1) ™ @ (00" 1)

2 2
=16-(8%1)* ® (o0}

z . 2
4z—3p) ® (o0

-1 * 1 —2 .
) e ()

Equations ([1.8.4.2) and (1.8.4.3)) imply that £ = —(1 + 2p)-sp £ ((0, 3), (0,4)).

Let A, Bz, C and Dj be the compositions of the reduction map M*(Z,) — M(Z/p?)
and respectively Az, By, C and Dy, defined in , and . Using
and (1.8.4.1)) we get, for n in Z2,

(1.8.4.4)
Ag(n) = (=1)" (1 + (4n2)t) - sp,0((0,3), (2n1, 4n2)) ,

hence, using the bijection (1.8.3.1]),

(1.8.4.5) F1=21, Ra=34+2z:, FRK3z= 42% + 32129 —|—2z§ + 229 + 2.
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1.8.5 The rational points with a specific image mod 5.

By the image in T'(F,) of a point +D;(n) for n € Z? is always of the form
+sp,£(0,0), hence, looking at we see that there is no point T'(Z) with reduction
jvo(@) € T(F,). Hence C(Z)g = Uy (Z)5.

Let Fy, Fy € O(TP)" be generators of the kernel of jAbI*: O(TP) — O(UP)" as

in Section The bijection (1.8.3.1)) gives an isomorphism F, ® (’)(Ttp) = Fp[A1, A2, 7]
and since the images Fy, Fy of Fi, Fy in F, ® O(ff) are generators of the kernel of

—~—%

Joa B, ® O(TF)™ — F, @ O(UP)» we can suppose that
Fil=X, Fp=1-1.
By we have
K'F) =Ry =3+22, KF,=F—1=427 +32120 +225 + 22 + 1.
Let A be Z,(z1, z2)/(k*F1,k*Fy). Then the ring
(1.8.5.1) A= A/pA =TF,[z1, 2] /(K" F1, k" Fy) = Fpl21, 2] /(22 — 1,427 4+ 321)

has dimension 2 over F,, hence by Theorem [1.4.12| U(Z)z contains at most 2 points.
Since both
a and (12/7,20/7) € Vi(Z[1/7])

reduce to @ we deduce that C(Z)z = U1 (Z)5 is made of the these two points.

1.8.6 Determination of all rational points
Denoting (3,—1) € Vi(F,) C C(FF,) as € we have
CFy) ={<,50=,a,u@),n@), (con)@),7,u7),n7), (ton)(¥),e,ue)}-

Using that for any point @) in C(F,) the condition T'(Z)
we get

Pt (0 implies U;(Z)g = 0

Uo (Z)@ZUQ(Z)K_Ul (Z)EZUl (Z)L(E):Ul (Z)VZUl (Z)n(ﬁ):Ul (Z)n(ﬁ):Ul (Z)Ln(ﬁ) :(Z) .

Applying our method to ¢ we discover that U;(Z)ss contains at most 2 points and the
same holds for U;(Z)ss—. Moreover the action of (n,¢) on C(Z) tells that Ui(Z),),
Ui(Z)n@) and Ui (Z),, () are sets containing exactly 2 elements. Hence

Ui(Z) = U1(Z)g W UL(Z) @) Y UL(Z) @) Y UL(Z) @) U UL (Z)ss— U Ui (Z)ss
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contains at most 12 elements. Looking at the orbits of the action of (n,¢) on Uy (Z) we
see that #U1(Z) = 2 (mod 4), hence #U;(Z) < 10. Since U;(Z) contains oo, co_ and all
the images by (n,¢) of U1(Z)z we conclude that #U;(Z) = 10.

Applying our method to the point 7 we see that Uy(Z)5 contains at most two points,
one of them being «v. Moreover solving the equations x*F; = 0 we see that if there is

another point 4’ in Up(Z)5 then there exist ni,ny € Z such that
Js(7") =39G1 + 17G2 + 511Gy + 512G .

Using the Mordell-Weil sieve (see [79]) we derive a contradiction: for all integers ny, na,
the image in J(F7) of 39G1+17G2+5n16¥;+5n2@ is not contained in j,(C(F7)). We
deduce that

Uo(Z)y = {~}.

Applying our method to to € we see that Uy(Z). contains at most 2 points corre-
sponding to two different solutions to the equations x*F; = 0. We can see that one of
the two solutions does not lift to a point in Uy(Z). in the same way we excluded the
existence of 7/ € Uy(Z)5. Hence Uy(Z). has cardinality at most 1. Using that for every
Q € C(F,) and every automorphism w of C we have #Uy(Z)q = #Uo(Z).(q), we deduce
that

UO(Z) = Uo(Z>7 U UO(Z)L(W) U UO(Z)W(V) U UO(Z)W(W) U Uo(Z)E U UQ(Z)L(g)

contains at most 6 points. Looking at the orbits of the action of (n,¢) on Uy(Z) we see
that #Up(Z) = 0 (mod 4), hence #U4(Z) < 4, and since Up(Z) contains the orbit of
we conclude that #Uy(Z) = 4. Finally

#C(Z) = #Uo(Z) + #Uy(Z) = 4+ 10 = 14.

1.9 Some further remarks

1.9.1 Complex uniformisations of some of the objects involved

Let C be a projective curve over QQ, smooth, and geometrically irreducible, and let g be
its genus. The universal cover of P*(C) is described in [I6], Propositions 4.5 and 4.6.
The covering space, denoted D, is My 4(C) x M, 1(C) x C, hence a C-vector space of
dimension 2¢g + 1. The biextension structure on M; 4(C) x M, 1(C) x C is trivial, that
is, for all , z1, x2 in My 4(C), all y, y1, y2 in My 1(C), and all 21, 25 in C, we have:

(1911) (xhy’Zl) +1 (x25y722) = (,Il + Z2,Yy,21 + 22) ,

(T,y1,21) +2 (7, Y2, 22) = (2, Y1 + Y2, 21 + 22) -
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The fundamental group m (P*(C),1) is

1 =z =z
(1.9.1.2) QUZ) =3[0 1ay y|:2€Migy(Z), yeMyyi(Z), 2€Z},
0 0 1

also known as a Heisenberg group. Its action on D, is given in [16] (4.5.3)].

Now recall the definition of T in (1.2.12). As Myg1(Z) is the lattice of J(C), and
M 24(Z) the lattice of JY(C), each f; is given by an antisymmetric matrix f;z in
Mag 24(Z) such that for all y in My 1(Z) we have f;(y) = y'fiz, and by a complex
matrix f; ¢ in My 4(C) such that for all v in My 1(C), for each i we have f;(v) = v’ f; ¢
in M 4(C). For more details about this description of the f; see the beginning of [16,
P4.7]. Then we have

-1 mfly) =
(1913) 7T1(T((C)) = 0 129 y ) € Mgg,l(Z), z € Mp—l,l(Z) y
0 0 1

with m-f(y) € M,_1,24(Z) with rows the m-y*-f; z. So, 71 (T(C)) is a central extension
of Mag.1(Z) by M,_1,1(Z), with commutator pairing sending (y,y’) to (2my*-f; z-y'):.
The universal covering T(C) is given by

e

T(C) = {(m-(c+ f(v)),v,w) : v € Mg1(C), we M,_1:1(C)}

(1.9.1.4)
C Mp_l,g((C) X Ml,g((C) X Mp_l’l((C),

with m-(c+ f(v)) € M,_1 4(C) with rows the m-(¢;+v"- f; ¢) with ¢ alift of ¢; in My 4(C).
The action of 71 (T(C),1) on 1:(\6) is given again, with the necessary changes, by [16]
(4.5.3)].

Now that we know 71 (T'(C), 1) we investigate which quotient of 7 (C(C), b) it is, via
Jp: C (C) — T(C). We consider the long exact sequence of homotopy groups induced by
the C**~1-torsor T(C) — J(C), taking into account that C**~1 is connected and that
w2 (J(C)) = 0:

(1.9.1.5) 1 (C*P71 1) —— m (T(C),1) — 71 (J(C),0).

Again, 71 (T(C), 1) is a central extension of the free abelian group 7 (J(C),0) by ZF~1,
and from the matrix description we deduce that the ith coordinate of the commutator
pairing is given by mf;: Hy(J(C),Z) — Hy(JY(C),Z) = H;(J(C),Z)". The Z-module of
antisymmetric Z-valued pairings on Hy (JY(C),Z) is A> H'(J(C),Z) = H2(J(C),Z), and
mf; is the cohomology class (first Chern class) of the C*-torsor T;:

(1.9.1.6) mf; = ci(T;) in H*(J(C),Z).
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There is a central extension
(1.9.1.7) Hy(J(C),Z) —— E — m(J(C),0)

that is universal in the sense that every central extension of 71 (J(C),0) by a free abelian
group arises by pushout from Hs(J(C),Z). We denote

(1.9.1.8) G = m(C(C),b).

The map jp: C — J gives G — m1(J(C),0), and this is the maximal abelian quotient.
The second quotient in the descending central series of G gives the central extension:

(1.9.1.9)
G,G]/[G, |G, G)] —— G/[G,[G,G]] — G/|G,G] = G* = 71(J(C),0).

This extension (1.9.1.9) arises from (1.9.1.7)) by pushout via a morphism from Hy(J(C), Z)
to [G, G/[G, G, G]):

Hy(J(C),Z) E Gab

(1.9.1.10) l J

(G, G]/[G,[G, G| — G/[G,[G,G]] — G*.

The left vertical arrow is surjective because commutators of lifts in F of elements of
G?" are mapped to the commutators of lifts in G/[G, [G,G]], and so give generators of
G, Gl/[G,[G,G]].

From the usual presentation of G with generators ai,1,..., 04,8y, with the only
relation [aq, £1] - - - [ag, B4] = 1, we see that the obstruction in lifting G — G to G — E
in the top row of is the image of [y, B1] - - - [ayg, By in Ha(J(C), Z). This image
is a generator of the image of Hy(C(C),Z) under ji. So the pushout in factors
through the pushout by the quotient of Ho(J(C),Z) by Ha(C(C), Z):

H(J(C),Z)/H2(C(C), Z) B (b

(1.9.1.11) i l

G,G)/|G,|G,G]] — G/[G,[G,G]] — G=P.

Using again the presentation of G we can split this morphism of extensions, and, using
that Hy(J(C),Z)/Hy(C(C),Z) is generated by commutators of lifts of elements of GP,
conclude that all vertical arrows in are isomorphisms.

In particular, we have that [G, G]/[G, [G, G]] is the same as Ho(J(C), Z)/H2(C(C), Z).
From we see that the sub-Z-module of H?(J(C),Z(1)) (note the Tate twist, now

we take the Hodge structures into account) spanned by the mf; is obtained in 4 steps:
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take the kernel of H2(J(C), Z(1)) — H2(C(C),Z(1)), take the (0,0)-part, then Gal(Q/Q)
acts, through the Galois group of a finite extension of QQ, take the invariants, then take
the image of the multiplication by m on that.
Dually, this means that 71 (7T(C), 1) arises as the pushout
(1.9.1.12)
Hy(J(C), Z(~1))/H2(C(C), Z(~1)) ——— G/[G,[G,G]] —— G**

| J

((H2(J((C)’Z(_l))/H2(C(C)7Z(_l)»(O,O))Gal(@/Q) — 7"'I(T((C% 1) — Gab7

where the subscript (0,0) means the largest quotient of type (0,0), where the subscript
Gal(Q/Q) means co-invariants modulo torsion, and where the left vertical map is m times
the quotient map. We repeat that the morphism from 7 (C(C)) = G to w1 (T'(C), 1) given
by the middle vertical map is induced by j,: C(C) — J(C).

1.9.2 Finiteness of rational points

In this section we reprove Faltings’s finiteness result [43] in the special case where
r < g+ p— 1. This was already done in [§], Lemma 3.2 (where the base field is ei-
ther Q or imaginary quadratic). We begin by collecting some ingredients on good formal
coordinates of the G,-biextension P**~t — J x JV:*~! over Q, and on what C looks

like in such coordinates.

Formal trivialisations

Let A, B and G be connected smooth commutative group schemes over a field k£ D Q,
and let E — A x B be a commutative G-biextension. Let a be in A(k), b € B(k) and
e € E(k). For n € N, let A%™ be the nth infinitesimal neighborhood of a in A, hence
its coordinate ring is O ,/m7T!. We use similar notation for B with b, and E with e,
and also for the points 0 of A, B and E, and, similarly, the formal completion of A at
a is denoted by A*> etc. We also use such notation in a relative context, for example,
for the group schemes £ — B and E — A. We view completions as A% as set-valued
functors on the category of local k-algebras with residue field & such that every element
of the maximal ideal is nilpotent. For such a k-algebra R, A»*°(R) is the inverse image
of a under A(R) — A(k). Then A% is the formal group of A.

We now want to show that the formal G%>°-biextension E%> — A% x B% ig iso-
morphic to the trivial biextension (the object G¥%° x A% x B%% with +; given by addi-
tion on the 1st and 2nd coordinate, and +2 by addition on the 1st and 3rd coordinate). As
exp for A% gives a functorial isomorphism T4 /k(0) @4 Gag’oo — A% and similarly for
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B and G, it suffices to prove this triviality for G*°-biextensions of G%> x G2 over k.
One easily checks that the group of automorphisms of the trivial G:*°-biextension of
G2 x G2 over k that induce the identity on all three G%>’s is (k,+), with ¢ € k
acting as (g,a,b) — (g + cab,a,b). As this group is commutative, it then follows that
the group of automorphisms of the G%*°-biextension E®>* — A% x B%% that in-
duce identity on G¥>°, A%> and B% is equal to the k-vector space of k-bilinear maps
Task(0) x Tgp(0) = Tg/i(0). This indicates how to trivialise E%*. We choose a
section € of the G-torsor E — A x B over the closed subscheme A%! x B%! of A x B:

E
/ J with &(0,0) = e in E(k).

A%l x BYl 5 Ax B,
Note that
O(AO’I X Bo’l) = (k @on,l) X (k @mBo,l) =kPdmao1 & mpor P (on.l ®m30,1).

Hence two such é differ by a k-algebra morphism from k@&meo2 = k®meo.r &Sym>meo.
(use the exponential map) to k @ m 0.1 @ mpo1 & (M o1 @ mpoa), hence by a triple
of k-linear maps from mgo,1 to m 40,1, mpo,1, and mgo1 ® mpo,i. The linear maps
meao1 — Mo and mgo1 — mpoa correspond to the differences on A%! x B%Y and
on A%9 x BO! respectively. There are unique such linear maps such that the ad-
justed é is compatible with the given trivialisations of E — A x B over A%! x B%0
and over A%0 x B%!, In geometric terms, &, assumed to be adjusted, is then a splitting
of T¢(0)p < Tg/p(0) — Ta(0)p over B%! that is compatible with the already given
splitting over 0 € B(k), and it is also a splitting of T (0)4 < Tg/a(0) — TB(0)a over
A%1 that is compatible with the already given splitting over 0 € A(k). The splitting over
B%! gives an isomorphism from (T (0) @ T4(0)) o to (Tg/p)po.1. So the exponential
map, for +1, for the pullback to B%! of E — B, gives an isomorphism of formal groups
over BO!:
((T(0) ® Ta(0) @k G or — Epos -

0,00

Viewing /5, as the tangent space at the zero section of the pullback to AV>® of B — A,
this isomorphism gives a splitting of Tg(0)4 < Tg/a(0) — Tp(0)a over A%>. The
exponential map for 45 for the pulback to A%> of E — A then gives an isomorphism of

formal groups over A%°°:

G2 x BO% % A% —— (G"%° X B) qo.e > Byt yo —— B,

where Eg’(fo o0 /4000 denotes the completion along the zero section of the pullback via
A0>® 5 A of E — A. The compatibility between +; and 4+, on F ensures that this
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isomorphism is an isomorphism of biextensions, with the trivial biextension structure on
the left.

Now that we know what good formal coordinates at 0 in E(k) are, we look at the
point e in E(k), over (a,b) in (A x B)(k). We produce an isomorphism E%> — E¢°°,
using the partial group laws. Let E} be the fibre over b of E'— B. We choose a section

Ey
/ l with & (a,b) = e in E(k).

AL b} —— A x {b}

The exponentials for the group laws of Ej, and A then give a section

A% x {b} —— A x {b},

that we view as an A*°-valued point of Ej, and as a section of the group scheme
Egae — A% with group law +2. The translation by é° on this group scheme in-
duces translation by b on Bge., and maps (a,0), the 0 element of E,, to e. Hence it
induces an isomorphism of formal schemes E(®0):°° — €% 1In order to get an iso-
morphism E%® — F(2:0).:% e repeat the process above, but with the roles of A and
B exchanged. We choose a section 0y: {a} x B! — E, of E, — {a} x B. Then the
exponential for 45 gives us a section 05°: {a} x B%>* — E, of E, — {a} x B. This 05°
is a section of the group scheme Epo, — B%* and the translation on it by 05° sends
0 in E(k) to (a,0), hence gives an isomorphism of formal schemes E%>® — E(@0).%0,
Composition then gives us an isomorphism E%> — E*° and the good formal coordi-
nates on E at 0 € E(k) give what we call good formal coordinates at e. Similarly, we
get a section 6‘1” of Ejo.0c — A% and a section €5° of Egie — B> giving isomor-
phisms E%® — E(0:0).00 and FO:8).00 5 Ee:° hence by composition a 2nd isomorphism
E%% — E¢%_ These isomorphisms are equal for a unique choice of 0; and &, (given the
choices of 0y and é).

In Section we will use that these isomorphisms transport all additions that occur
in to additions in £%> and therefore to additions in the trivial formal biextension.

Zariski density of the curve in formally trivial coordinates

—_~—

Let C be as in the beginning of Section n Let C(C) be the inverse image of C(C)
under the universal cover T(C) — T(C). Then C(C) is connected since j,: C' — T gives
a surjection on complex fundamental groups. Now we consider the complex analytic
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— —_—

variety T(C) as a complex algebraic variety via the bijection T(C) = C97P~! as given
in . The analytic subset C/'z(f) contains the orbit of 0 under m; (T(C),1). This
orbit surjects to the lattice of J(C) in Mg 1(C), and over each lattice point, its fibre
in M,_1,1(C) contains a translate of 2wiM,_11(Z). Hence this orbit is Zariski dense
in C9tP~1, It follows that the formal completion of C/'(\(_C/) at any of its points is Zariski
dense in C977~1: if a polynomial function on C9+t7~! is zero on such a completion, then
it vanishes on the connected component of C/’z(f) of that point, hence on Z:R(T)

We express our conclusion in more algebraic terms: for ¢ € C(C), with images
t € T(C) and in P**~1(C), each polynomial in good formal coordinates at t of the
biextension P**~1 — J x JV over C that vanishes on j,(C%°), vanishes on Tj>*°. This
statement then also holds with C replaced by any subfield, or even any subring of the
form Z,) with p a prime number, or the localisation of 7 (the integral closure of Z in C)

at a maximal ideal.

The p-adic closure in good formal coordinates

We stay in the situation of Section but we denote G := G~ !, A := J and
B :=JV:%~1 and E := P**~!, Let dg, da, and dp be their dimensions: dg = p — 1,
da=gand dg = (p—1)g.

Let p > 2 be a prime number. From Section and Lemma we conclude
that we can choose formal parameters for £ at 0, over Z,), such that they converge on
the residue polydisk E(Z,)g5, and such that they induce the trivial biextension structure
on ZgG X ZgA X ZZB. We keep the notation of Section for e in E(Z,), lying over
(a,b) in (A x B)(Z,). This e plays the role that ¢ has at the beginning of Section
As explained at the end of Section we may and do assume that e is in E(Z, )5, and
hence a € A(Zy)g and b € B(Zy)5.

Assume now that, as in Section for 4,5 € {1,...,7}, we have z; in A(Z,)5 and
yj in B(Zy)g, and e;; in E(Zy)y over (x;,y;), and r; in E(Z,)g over (z;,b) and s; in
E(Zy)5 over (a,y;). We denote the images of all these elements under the bijection

E(Zp)5 — Zie x 734 x 797

as follows:

M (O,I‘i,o), Yj = (anay])7 €i,j = (gi,j:xiyyj)

ri — (r},x;,b), 55 (87,0, , e (€,a,b).

Then, by a straightforward computation, the image of D(n) as defined in (1.4.4) is
e + anr: + ans; + anjgm, a+ mei, b+ anyj ZgG X ZﬁA X ZZB.
i J 2% i J
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The conclusion is that in these coordinates, the map
.o d d d
Kt Ly — L)% X L™ X L)®

is a polynomial map, hence the Zariski closure of its image is an algebraic variety of

dimension at most r.

Proof of finiteness

The proof is by contradiction. So assume that r < g + p — 1, and that C(Q) is infinite.
Let p > 2 be a prime number. Then there is a u € C(F,) such that the residue disk
C(Z,), contains infinitely many elements of C(Q), hence infinitely many elements in
the image of x of Section By construction, x(Zj) is contained in T'(Zy);. The
image of T'(Zy); in ZI¢ x Z4A x 7.7 is 20~ x 29, with Zg embedded in Z%4 x Z25 as a
sub-Z,-module. By the previous section, the Zariski closure of H(Z;) in ZgG X ZgA X ZZB
is of dimension at most r. Hence there are non-zero polynomial functions on Zg_l X 73
that are zero on infinitely many points of C'(Z,),, and hence are zero on a non-empty
open smaller disk. This contradicts, via a ring morphism Z, — C, the conclusion of
Section

1.9.3 The relation with p-adic heights

We want to compare the approach to quadratic Chabauty in this article to the one in [g],
by answering the question: which local analytic coordinates on T'(Z,) and C'(Q,) lead to
the equations, in terms of p-adic heights, for the quadratic Chabauty set C'(Q,)2 in [8]?
Before we do this, we note that the Poincaré biextension has played a role in Arakelov
theory, and in the theory of p-adic heights, since a long time: see [I01], [73] and [76].
Moreover, [21] gives a detailed description how Kim’s cohomological approach relates to
p-adic heights in the context of Gp,-torsors on abelian varieties.

Let p > 2 be a prime number of good reduction for C. We consider the Poincaré torsor
as M on (J x J)q, via , and we use the description of M* given in .

Let D be the subset DiVO(CQp) x Div" (Cq,) made of pairs of divisors (D1, D2) having
disjoint support. Let W be an isotropic complement of Qé@p /2, (Cq,) in HéR(CQp /Qp)
and let log: Q) — @, be a group morphism extending the formal logarithm on 1+ pZ,.
With these choices made, Coleman and Gross ([28, (5.1)]) define the function (there
denoted (-, "))

hy: D= Qyp,

the p-part of the p-adic height pairing. We define the function
P MX(Qp) — Qp
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by demanding that for every effective D; and D, in Div(Cq,) of the same degree and

X

every E in DivO(C@p), and every A in Q, the element

)\~NOI‘H1D1/QP(1) X NOI"sz/Q,, (1)71

in

X

M*(Ocq, (E),S(Dy) — £(Dy)) = (Norle 10,06, (E) ® Normp, g, Ocy, (—E))
is sent to
Y(A-Normp, /g, (1) ® NormD2/Qp(1)_1) = hyp(D1 — D2, E) +log A

That this depends only on the linear equivalence classes of D1—Ds and E follows
from , plus (see [28, Proposition 5.2]) the fact that h, is biadditive, symmet-
ric and, for any non-zero rational function f on Cg, and any D in DivO(C’Qp) with
support disjoint from that of div(f), we have h,(D,div(f)) = log(f(D)). Moreover,
expressing h, in terms of a Green function G as in [20, Theorem 7.3], we deduce that,
in each residue disk of M*(Z,), v is given by a power series. Let wy,...,w, be a basis
of Qlch /QP(C’QP). This basis gives a unique morphism of groups log;: J(Q,) — Qf that
extends the logarithm of Lemma [I.5.1.1] We define

U= (logJoprJ71,logJoprJ727z/J): MX(Qp) — (@g X Qg x Q.

By the biadditivity of hy, ¥ is a morphism of biextensions, with the trivial biextension
structure on Qf x Q4 x Q,, as in . As p > 2, ¥ induces, from each residue polydisk
to its image, a homeomorphism given by power series. Pulling back the coordinate
functions on Q29! gives, for every x € M*(F,), coordinates on M*(Zy)s.

We describe ij and k in these coordinates. It is sufficient to describe, for each
i=1,...,p—1, the map jfl:i: C — T;, and from now on we omit the dependence on 1.
For each ¢ € C(F,), on T(Zp)j:(m)
z = f*tog+1 where f is the map T" — M™* and t1,...,t24+1 are the coordinates on
MX(Zp)3,
in {1,...,g}, z; o k is a polynomial of degree at most 1, and z o k is a polynomial of
degree at most 2. As explained in Section over Zp, j;, is given by a line bundle £
over (C' x C)z, rigidified along (C x {b})z, and along the diagonal with two sections I,

we use the coordinates 1 := f*t1,..., 24 := f*ty,

we just defined. Since the map W is a morphism of biextensions, for j

and [. Choosing a section that trivializes £ on an open subset of (C' x C')z, containing
(b,0), (¢c,b), and (c,c) in (C x C)(F,) we get a divisor D on (C' x C)z, whose support is
disjoint from (c,b) and (c,c), and an isomorphism between £ and O(D) on (C x C)z,.
After modifying D with a principal horizontal divisor and a principal vertical divisor
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Dlc g5y and diag® D are both equal to the the zero divisor on Cz_, hence I/, and I are the
extensions of elements of Q,, interpreted as rational sections of O(D) on (C x C)z,. By
Propositions and there exists a unique A € Q)¢ such that, for each d € C(Z,).,

Jo(d) = X- Normg,z, (1) ® Normy,z, (1)~" € M*(jiy(d), D|{ayxc) -

Since x; is the j-th coordinate of log; and since z is the pullback of 1, we deduce that

21 (o(d) = /b ey wy(ald) = /b wp 2(b(d)) = hy(d — b, Dlgayxc) + log A

By [8, Proof of Theorem 1.2] and [10, Lemma 5.5], the function d > h,(d—b, D|{qyxc)
is a sum of double Coleman integrals.

It should now be easy to exactly interpret geometrically the cohomological approach,
showing that in the coordinates used here, the equations for C(Q,)2 are precisely equa-
tions for the intersection of C'(Q,) and the p-adic closure of T'(Z). For doing computa-
tions, one can do them in the geometric context of this article, or, as in [10], in terms of
the étale fundamental group of C. The connection between these is then given by p-adic

local systems on 7.
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