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Introduction

This thesis consists of three parts. The first part is devoted to the quadratic Chabauty
method, the second part to automorphisms of modular curves of Cartan type and the
third to the discrete logarithm problem over finite fields whose characteristic is small
compared to the cardinality.

The first two chapters are the result of a joint work with Bas Edixhoven and describe
a method that, in certain cases, determines the set of rational points on a curve C/Q
of genus at least 2. The finiteness of the set C'(Q) is a special case of a theorem proved
by Faltings in [43], but computing this set for each curve C' is still an unsolved problem.
In [24], Chabauty proposed a method to solve this problem when C(Q) contains at least
one point b and the rank r of the Mordell-Weil group of the jacobian of C' is smaller
than the genus g of the curve. Denoting J the jacobian of C' and j,: C — J the map
sending a point z to [z—b], Chabauty’s method is based on the following diagram, which

is commutative for every choice of a prime p

C(Q) ——— J(Q)

L

C<Qp> # J(Qp)

The commutativity of the diagram implies that C'(Q), considered as a subset of J(Q,),
is contained in the intersection of C'(Q,) and the closure J(Q) of J(Q). Up to computing
generators for J(Q), both the sets C(Q,) and J(Q) can be computed with arbitrarily

large precision inside J(Qp) and their intersection is finite when r is smaller than g.

Chabauty’s method is to compute such an intersection, so to determine a finite subset of
C(Qp) containing C(Q). Such an intersection can be larger than C(Q) but in practice
the Mordell-Weil sieve is usually enough to get rid of the undesired points.

In [62] and [63], Minhyong Kim proposes a non-abelian generalization of the Chabauty
method, using the Galois cohomology of the Q,-pro-unipotent fundamental group of C'.
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INTRODUCTION

The most interesting application of Kim’s method is the so-called “quadratic Chabauty
method”, which is explicit and works when the rank p of the group Pic(J)/Pic’(J)
is larger than r—g+1. In [I0] this method is applied to the so-called cursed curve
(r=g=23).

In chapter [1] we aim to make the quadratic Chabauty method small and geometric
again: our generalization of Chabauty’s method works by substituting J with a product
of Gy,-torsors over J and by extending the geometry over Z.

Let JV be the dual abelian variety of J and let P be the Poincaré bundle on J x JV,
the universal translational-invariant line bundle on J. After removing the zero-section
of P we get a Gy-torsor P* — J x JV, named Poincaré torsor of J, which is the main
actor in our method. For any Q-scheme S and any choice of points z, 21,22 € J(5) and
Y, Y1, Y2 € JV(S), the theorem of the cube implies the existence of canonical isomorphisms
(1,y)*P ® (z2,y)*P = (x1 + x2,y)* P and (z,y1)*P ® (x,y2)*P = (x,y1 + y2)*P. This
implies the existence of maps

+1: (21,Y) P* X (22,y)"P* — (x1+ x2,y) P,
to: (2,91)"P" Xg (2,y2)"P* — (z,y1 +y2)" P

These partial operations 41, +2 give the Poincaré torsor a structure of biextension.

Moreover, the group of line bundles on J that arise as (id, g)* P for some morphism
g: J — JVY is a subgroup of Pic(J) of finite index: all the elements of Pic’(J) can be
obtained with g constant and, for any class [£] € Pic(.J)/Pic’(J), the class 2[£] can be
obtained choosing g: = + tr: L& L1, where tr, is the translation by x on J. This implies
the existence of maps g1,...,9,-1: J — JV such that the line bundles £; := (id, g;)* P
are linearly independent in Pic(J) and, for every i € {1,..., p—1}, the line bundle j; (£;)
on C is the trivial. Let El?( be the Gy -torsor on J obtained removing the zero-section
from £; and let T be the G, !-torsor on J obtained as the product of all the £. Then
JiT is a trivial Gf !-torsor on C, implying that the map j,: C — J can be lifted to a
map

Jp: C — T.

This construction can be extended over Z. The abelian varieties J and JV admit Néron
models over Z and the Poincaré torsor uniquely extends, as a biextension, to a G,-torsor
over the product of the Néron model of J and the scheme JV°, defined as the fibrewise
connected component of 0 in the Néron model of JV. Up to composing g; with a certain
multiplication map on JV, we can suppose that the image of the Néron model of J under
g; is contained in JV°. This gives the extension of £; and T as torsors over the Néron
model of J. The curve C//Q can be extended to a regular proper curve C'/Z, but to apply
our method we need to restrict to certain open sub-schemes. Inside the smooth part of
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C let U be an open sub-scheme obtained by removing, for each prime ¢ of bad reduction,
all but one irreducible component of the fibre at F,. The map j;, extends to the smooth
part of C and the line bundles j; L; are trivial on U. Hence there exists a lift Jo:U =T
of j, making the following diagram commutative for every prime p

U(z) —2—— 1(z)

.

U(Zy) —r T(Zy)

For simplicity we suppose p > 2. Since T(Z) is a Gy, (Z)P~ -torsor over J(Z) and since
Gm(Z)P~" is a finite group, we expect the closure T(Z) of T(Z) inside T(Z,) to be a
p-adic variety of dimension at most r. This is a consequence of Theorem the set
of points in ﬁ with a given reduction modulo p, when not empty, is the image of an
analytic map k: Z; — T(Zy), constructed using the biextension structure on P*. Since
U(Z,) is 1-dimensional and T'(Z,) has dimension g+p—1, we expect the set T(Z)NU(Z,)
to be finite when p is larger than r—g+1. This is proven in Section |1.9.2

The geometric quadratic Chabauty method is to compute T(Z) N U(Z,), so to de-
termine a finite subset of U(Z,) containing U(Z). Since C(Q) is the union of the sets
U(Z) for all possible U’s and since there are finitely many U’s, the method can be used
to prove that a certain list of points in C(Q) is complete. In Theorem we ex-
plain how, sometimes, computations in T'(Z/p*Z) imply a bound on the cardinality of
T(Z)NU(Z,). In Sections and we explain how to make the method explicit. In
Section [I.8 we apply our method to a specific example, with g = = p = 2. Chapter 2]
is devoted to an alternative proof of Theorem [1.4.10] using formal biextensions.

A motivation to study modular curves associated to Cartan and Cartan-plus sub-
groups of GLy(Z/nZ), as we do in chapter [3] comes from Serre’s uniformity conjecture.
This conjecture states that, for p prime big enough, the natural Galois representation
Go — GL(E[p]) is surjective for any elliptic curve E/Q. The conjecture would be
solved if we knew, for each prime p and each maximal subgroup H < GLy(F,) such that
det(H) = I\, the rational points on the modular curve associated with H. All the H’s
for which we do not know the answer are Cartan-plus subgroups, which are maximal for
p > 3. This also gives motivation to study the so-called cursed curve, which is a modular
curve associated to a Cartan-plus subgroup of GLy(F3).

Given a positive integer n, a Cartan subgroup of GLy(Z/nZ) is a subgroup arising
as A% C GL(A) & GL2(Z/nZ) for some étale Z/nZ-algebra A of rank 2. We call
Cartan-plus subgroup of GLo(Z/nZ) a subgroup generated by A* and the group of ring
automorphisms of A, for some étale Z/nZ-algebra A of rank 2. For example, if n is prime

there are two Cartan subgroups and two Cartan-plus subgroups up to conjugacy: the split
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Cartan, respectively Cartan-plus, if A 2 F,, x F,, and the non-split Cartan, respectively
Cartan-plus, if A = F,2. We notice that the term Cartan-plus is not common in the
literature: the most studied cases are the ones where n > 3 is prime and in these cases
Cartan-plus subgroups are just normalizers of Cartan subgroups. We also deal with
composite level and studying Cartan-plus subgroups allows us to state certain results
with more uniformity than we could have done if we had studied normalizers of Cartan
subgroups.

When a modular curve X is geometrically connected, the set Y(C), made of its
complex non-cuspidal points, is the quotient of H = {z € C : Im(z) > 0} by the action of
a subgroup I' < PSLy(Z). Every matrix m € PSLa(R) defines a complex automorphism
of H, that descends to an automorphism of Y(C) if and only if the matrix m lies in the
normalizer of I'.  When this happens, the automorphism extends to the whole X (C).
We call modular automorphism of X¢ any such automorphism. We call Cartan curve
a modular curve associated to a Cartan or to a Cartan-plus subgroup of GL2(Z/nZ).

Using this terminology we state the main result of chapter

Theorem. Letn be either an integer larger than 10*°° or a prime power such thatn > 11
and n ¢ {33,2%,25,26}. Then, over C, all the automorphisms of a Cartan curve of level

n are modular.

For each Cartan or Cartan-plus subgroup H < GLo(Z/nZ), the group of modular
automorphisms of the modular curve associated to H is easy to compute: it is either
isomorphic to N'/H' x Z/27 or to N'/H', where N' < SLs(Z/nZ) is the normalizer
of H := H N SLy(Z/nZ). This is stated more precisely in Proposition Remark
gives N'/H' for each possible H.

In the proof of the main result of chapter [3] one of the steps is the following general-

ization of a result of Chen.

Theorem. Let n be a positive integer. Then the jacobian of a Cartan curve of level n

is a quotient of the jacobian of the modular curve Xo(n?).

Using the last theorem and a result of Shimura characterizing the CM sub-abelian
varieties of Jy(n?), we prove that, for all but finitely many n, a large part of the jacobian
of a Cartan curve does not contain any CM sub-abelian variety. This, using a result of
Ribet, implies that all the automorphisms of a Cartan curve of level n are defined over
a compositum of quadratic fields for all but finitely many n.

The main result of chapter [3] then follows from Abramovich’s lower bound of the

gonality of modular curves and the following criterion.

Lemma. Let n be a positive integer and let X be the base change to C of a modular

curve associated with a subgroup H < GLy(Z/nZ). Suppose that H contains the scalar
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matrices, that det(H) is the whole (Z/nZ)* and that there are two primes {1 < €3 not
dividing n such that 5 < ly < %gon(X) — 1, with gon(X) the gonality of X. Then every
automorphism of X which is defined over a compositum of quadratic fields is modular.

For an automorphism u: X — X to be modular it is necessary and sufficient that u
preserves the set of cusps, so that u restricts to an automorphism of the non-cuspidal
locus Y, and preserves the set of elliptic points, namely the branch points of the map
H — Y(C).

In Section we see how to distinguish cusps, elliptic points and all the other points
on X by looking at the action of Hecke operators 1j,, 1;,. More precisely, we look for
multiple points in the divisors 7Tj, (z) for x € X(C): if = is a cusp, then Tj,(z) contains
a point of multiplicity at least I;; if = (E, ¢) is an elliptic point such that j(F) = 0,
then T}, (z) contains a point of multiplicity 3; if x = (F, ¢) is an elliptic point such that
J(E) = 1728, then T},(x) contains |(I; — 1)/2] points of multiplicity 2.

These characterizations help proving the Lemma because of the following commuta-

tion rule in the group of divisors of X

where 0; € Gg is a l;-th Frobenius and u: X — X is supposed to be defined over a
compositum of quadratic fields. The Eichler-Shimura relations imply the above equality
in PicO(X ) and the hypothesis on the gonality implies that the equality extends to the
group of divisors of X.

In the last chapter we describe an algorithm to solve the discrete logarithm problem.
Given a group G with a generator g € G, solving the discrete logarithm problem means,
for each element h € G, computing an integer z such that g*> = h. The security of certain
public-key cryptographic protocols depends on the hardness of this problem, depending
on the choice of G. We are concerned with the cases where G is the multiplicative group
of a finite field of small characteristic, which, for us, means a field of characteristic p and
cardinality p™ for some integer n > p. The main result of the last chapter states that
the discrete logarithm problem on finite fields of small characteristic is quasi-polynomial,

hence not too hard.

Theorem. There exists a probabilistic algorithm, described in Section[{.4), that solves the
discrete logarithm problem in K* for all finite fields K of small characteristic (namely
the fields Fyn with n > p) in expected time

(log #K)O(loglog #K) )

Our algorithm uses some ideas of the algorithm in [19], whose running time is only
heuristic, and adapts them to finite fields with a different type of presentation. Let I, be
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a finite field with ¢ > 2 elements, let E/F, be an elliptic curve and let P; be a point on
E such that ¢(P,) — P, € E(F,), where ¢: E — E is the ¢-th Frobenius. If K =TF,(P;),
then the coordinates of P, are generators of the extension F, C K on which the g-th
Frobenius acts “simply”. If this happens and if, moreover [K : F,] > 2, the elliptic
curve E and the point P; give an elliptic presentation of K. Given the abundance of
elliptic curves over F,, for ¢ big enough, it is easy to prove that every finite field of small
characteristic can be embedded in a slightly larger field admitting an elliptic presentation
such that ¢ is small compared to #K. A more precise statement is given in Proposition

Given a finite field K with an elliptic presentation, we represent elements in K* as
f(P1) with f varying among the rational functions in F,(E) that are regular and non-
vanishing on P;. Hence, we extend the discrete logarithm to these rational functions
and, in a weak sense, to divisors on E. Notice that each divisor defined over F, is a
linear combination of irreducible divisors, namely those divisors that are the sum, with
multiplicity 1, of all the G, -conjugates of a point in E(F,).

Our algorithm is an index calculus using divisors: the idea is looking for linear re-
lations among the discrete logarithm of h and the “discrete logarithms” of irreducible
divisors of small degree; when many relations are found, we compute the discrete loga-
rithm of h by solving a linear system.

We find relations using a descent procedure, which, given an irreducible divisor D of
degree 4d > 320, computes irreducible divisors D; of degree dividing 2d such that the
“discrete logarithm” of D is a linear combination of the “discrete logarithms” of the D;’s.
Most of the last chapter is devoted to the description and the proof of the correctness of

this descent procedure. It mainly uses the following equalities

f(P) = fP(o(P) = fO(PL+ Py) = f®orp,(P1),

where f € F,(F) is a function regular and non vanishing in Py, the point Py € E(F,) is
equal to ¢(Py) — Pp, the map f — f? is the automorphism on F,(E) that acts as the g-th
Frobenius on E and sends z and y to themselves. In Section we see that, in order to
compute the divisors D;, it is sufficient to find a rational function f and a matrix (‘cl g)
satisfying certain conditions. After parametrizing the possible f’s, this problem boils
down to finding points in C(k), where k C F, is the extension of F, of degree d and C is
a variety of dimension at most 2 whose definition depends on D. We prove that C(k) is
large using Weil’s estimates. To prove that the geometrically irreducible components of
C are defined over k, we use a little bit of Galois theory, condensed in Proposition
and some tedious computations, mostly contained in Proposition and in the Claims




