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Abstract
Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we 
present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme 
oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/
Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous 
HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem 
cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both 
the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal 
tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62–1000 nM) 
or diethyl maleate (5.62–1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through tran-
scriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We 
found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. 
Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that 
the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target 
organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.

Keywords  Oxidative stress · Reporter cells · Induced pluripotent stem cells · In vitro toxicology · Endogenous gene 
tagging · High content imaging

Introduction

Newly generated pharmaceuticals and chemicals need to be 
assessed for their potential toxic effects in humans. Over 
the last decades, a variety of reporter systems have been Kirsten E. Snijders and Anita Fehér contributed equally to this 
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developed as alternatives of animal models for the predic-
tion of chemical-induced toxicities (Scrivens and Bhogal 
2007), including systems based on transformed cell lines 
and primary cell cultures (Collet et al. 2019; Michael 2017; 
Sonneveld et al. 2005). In vitro reporter assays not only pro-
vide relevant toxicological information, but also allow high-
throughput screening of potential toxicants (Hiemstra et al. 
2019; Wink et al. 2017). However, transformed cell lines 
may be defective in their response to certain toxicants, since 
they often have mutations in toxicologically relevant path-
ways such as P53 (Jennings 2015). While primary cells do 
not suffer this issue, they have a limited proliferation capac-
ity, supply is often limited and they can have variability and 
quality issues (Jennings 2015; Levy et al. 2015).

More recently, it has been suggested that induced pluri-
potent stem cells (iPSCs) may offer a good alternative to 
traditional toxicology assessments (Goldring et al. 2017; Liu 
et al. 2017; Suter-Dick et al. 2015). iPSCs are characterized 
by their capacity of long-term self-renewal and differen-
tiation potential to all lineages, representing an unlimited 
source of organ-specific cells (Takahashi et al. 2007; Yu 
et al. 2007). They provide a unique advantage for testing 
organ-specific sensitivities from cells carrying the same 
genetic background, offering great potential to refine organ-
specific toxicology models.

Well defined genes involved in stress response pathways 
(e.g. oxidative stress, DNA damage and endoplasmic retic-
ulum stress) are good candidates as toxicology biomarkers. 
The development of reporter cell lines as in vitro models 
by endogenous tagging of such marker genes can represent 
valuable screening platforms for toxicology studies (Hiem-
stra et al. 2019; Wink et al. 2014, 2018). Oxidative stress 
is defined as an imbalance between the production and 
elimination of reactive oxygen species (ROS). Increased 
level of free radicals is toxic, damaging all components 
and macromolecules of the cells. The Kelch-like ECH-
associated protein 1/nuclear factor erythroid 2-related fac-
tor 2 (KEAP1/NRF2) signalling pathway is known to be 
the key controller of the redox homeostasis by activating 
the transcription of cytoprotective genes involved in anti-
oxidant stress response (Kensler et al. 2007; McMahon 
et al. 2003; Zhang 2006). These downstream effectors such 
as intracellular redox-balancing proteins like HMOX1 
and NAD(P)H Quinone Dehydrogenase 1 (NQO1) have 
a crucial role in the redox-state maintenance and cellular 
defence mechanisms (Baird and Dinkova-Kostova 2011). 
In this study, we focused on HMOX1, which is a tail-
anchored (TA) protein localized mainly in the endoplasmic 
reticulum (ER) membrane (Dunn et al. 2014; Lee et al. 
2016; Maines 1997). The major function of this protein is 
the degradation of the pro-oxidative heme, that is released 
from heme proteins upon oxidative stress, which is then 
transformed to biliverdin and immediately converted to 

bilirubin, a strong antioxidant and free-radical scaven-
ger molecule (Dulak and Jozkowicz 2014; Kikuchi et al. 
2005). HMOX1 is a stress-inducible protein activated 
by the NRF2 and AP-1 transcription factors (Paine et al. 
2010), upregulated under pro-oxidant conditions at both 
the mRNA and protein level (Baird and Dinkova-Kostova 
2011; Wilmes et al. 2011). HMOX1 is, therefore, widely 
accepted as a sensitive and fairly ubiquitous marker of 
oxidative stress which, therefore, could be an excellent 
candidate for reporter development in hiPSCs enabling 
high-throughput quantification of HMOX1 upregulation 
during chemical-induced stress (Attucks et al. 2014; Choi 
and Alam 1996; Deng et al. 2015; Ryter et al. 2006).

Previously established reporter systems generated by con-
ventional random integration of promoter-driven reporter 
genes were not favourable due to a number of limitations 
(Liu 2013). Location of the insertion site can influence the 
reporter expression leading to inadequate epigenetic modifi-
cations and altered regulation (Kwaks and Otte 2006; Yáñez 
and Porter 2002), and multiple integrations of the transgene 
may result in overexpression artefacts or inadequate expres-
sion patterns (Doyon et al. 2011). Furthermore, the length of 
the promoter that drives the expression of a particular gene 
is often unknown or not well defined, and the important reg-
ulatory regions can extend to hundreds of kilobases. Whilst 
some of these limitations can be overcome using Bacterial 
Artificial Chromosomes (BACs), (Poser et al. 2008), this 
system has very poor efficiency in hiPSCs due to the large 
construct size. We, therefore, incorporated the reporter gene, 
enhanced green fluorescent protein (eGFP), into the native 
HMOX1 genomic locus to retain the characteristic expres-
sion profile of the endogenous protein in the cell. CRISPR/
Cas9 (Clustered Regularly Interspersed Short Palindromic 
Repeat Associated protein 9) technology represents a widely 
used and powerful way for precise genome editing (Cong 
et al. 2013; Doudna and Charpentier 2014; Jinek et al. 2012; 
Mali et al. 2013). The system is based on the generation 
of a site-specific DNA double-strand break by Cas9 nucle-
ase mediated DNA-cleavage under the guidance of a single 
guide RNA (sgRNA/gRNA). The incorporation of exog-
enous DNA sequences into the target locus and the genera-
tion of knock-ins can be achieved when the DNA damage is 
repaired through the high-fidelity homology-directed repair 
pathway (HDR) (Jasin and Rothstein 2013). The frequency 
of HDR is cell type-dependent, and in hiPSCs extremely 
low (He et al. 2016; Yang et al. 2013). Due to the low HDR-
efficiency in hiPSCs, the insertion of relatively long DNA 
like the coding sequence of fluorescent reporter genes is still 
challenging (Roberts et al. 2017). Nevertheless, endogenous 
protein tagging, where the reporter is under the physiologi-
cal regulatory control of the native protein, will undoubtedly 
provide the most specific stress response readout (Dambour-
net et al. 2014; Ratz et al. 2015).
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Here, we report the endogenous tagging of HMOX1 in 
hiPSCs by CRISPR/Cas9 genome editing and present the 
complete characterization and functional validation of the 
generated cell line, which can be coupled with cell lineage-
specific differentiations in combination with high content 
imaging (HCI) platforms to serve as a precious multi-organ 
oxidative stress reporter test system in toxicology studies.

Materials and methods

Chemicals

Chemicals were purchased from Merck KGaA (Darmstadt, 
Germany), and cell culture reagents and culture plates were 
purchased from Thermo Fisher Scientific (Waltham, MA, 
USA), unless specified otherwise.

hiPSC culture

The hiPSC line SBAD2 clone 1, derived from Normal 
Adult Human Dermal Fibroblasts (NHDF-Ad) cells (Lonza, 
51 years old Caucasian male dermal fibroblast cells, Cat. No: 
CC-2511) were reprogrammed with non-integrative Sendai 
virus transduction, obtained during the course of the IMI-
funded StemBANCC project (stembancc.org) (Morrison 
et al. 2015). Cells were cultured at 37 °C in a humidified 
atmosphere containing 5% CO2 in a feeder-free system on 
tissue culture dishes and plates coated with Matrigel (BD 
Biosciences). Cells were grown in mTeSR-1 medium (Stem-
Cell Technologies Inc.) and passaged every 5–7 days using 
EDTA (0.02%, Versene, Lonza). For imaging and compound 
exposures, hiPSCs were dissociated into single cells using 
1X TrypLE Select, then 62,500 cells/cm2 were seeded into 
Matrigel-coated 96-well microplates (Greiner Bio-One) and 
the culture medium was supplemented with 1X RevitaCell 
for 24 h. 48 h post-seeding hiPSCs were ready for expo-
sure. hiPSCs underwent routine mycoplasma screening and 
karyotyping.

Gene targeting

Once SBAD2 hiPSC cultures reached 70–80% confluency, 
they were incubated with Accutase (Sigma–Aldrich) at 
37 °C for 9 min to prepare single-cell suspension for genome 
editing; then 8 × 105 cells were nucleofected with CRISPR/
Cas9 RNP complex (4.5 µg) and donor vector (2 µg) using 
Human Stem Cell Nucleofector Kit 1 (Lonza) and program 
B-016 in AMAXA Nucleofector™ 2b Device (Lonza). After 
nucleofection, the cells were seeded in a 6-well plate and 
1X RevitaCell Supplement was added into the mTeSR-1 
culture medium to increase cell recovery. Puromycin selec-
tion started 2 days later by supplementing the media with 

0.8 µg/ml puromycin (Thermo Fisher Scientific) on the first 
day, then increased to 1 µg/ml for another 4 days. Follow-
ing selection, puromycin-resistant colonies were isolated 
and transferred into organ dishes. After separate propaga-
tion, cells were harvested for cryopreservation and for DNA 
analysis.

Cassette removal

1 × 106 HMOX1-targeted hiPSCs (clone H7-03) were nucleo-
fected with 2 µg Excision Only PiggyBac™ Transposase 
Expression Vector (SBI) then plated onto 10 cm dishes for 
colony picking. 10 days after nucleofection, individual colo-
nies were isolated and transferred into organ dishes for sepa-
rate propagation. DNA analysis and puromycin-sensitivity 
testing of the cells were performed after three passages.

Western blot

Cells were lysed with RIPA Lysis and Extraction Buffer sup-
plemented with Halt™ Protease and Phosphatase Inhibitor 
Cocktail and Pierce™ Universal Nuclease for Cell Lysis 
(Thermo Fisher Scientific), then the samples were sonicated. 
The concentration of the isolated proteins was determined 
using BCA Protein Assay Kit (Pierce). 2 µg protein was 
separated on 12% SDS–polyacrylamide gels and transferred 
to PVDF membranes (Bio-Rad). Membranes were blocked 
with 5% low-fat milk in TBS-Tween, then incubated over-
night with primary antibodies against HMOX1 (Cell Signal-
ing Technology, CST#70081), eGFP (Cell Signaling Tech-
nology, CST#2956) and GAPDH (Sigma, G9545) at 4 °C; 
followed by the appropriate HRP-conjugated secondary anti-
body (Cell Signaling Technology, CST#7074) for 1 hour at 
room temperature. Signals were detected with SuperSignal™ 
West Dura Extended Duration Substrate using KODAK Gel 
Logic 1500 Imaging System (Bruker).

Directed differentiation of hiPSCs

SBAD2 HMOX1-eGFP hiPSCs were differentiated using 
previously established growth factor based differentiation 
protocols to generate day 28 hepatocyte-like cells (Boon 
et al. 2020), day 21 cardiomyocyte-like cells (van den Berg 
et al. 2016), day 21 neuron-like cells (Chambers et al. 2009; 
Shi et al. 2012) and day 14 proximal tubule-like cells (Chan-
drasekaran et al. 2021). Detailed procedures are described 
in the supplementary materials.

Compound exposure

SBAD2 HMOX1-eGFP reporter cells were exposed for 
24 h or 72 h to ten concentrations of bardoxolone methyl 
(CDDO-Me, CAS# 218600-53-4), diethyl maleate (DEM, 
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CAS# 141-05-9) and 0.2% DMSO vehicle control. CDDO-
Me stock concentrations of 500 µM were prepared in DMSO 
(CAS# 67-68-5). DEM stocks of 2  mM were prepared 
freshly on the day in medium containing 0.4% DMSO. Con-
centrations ranging from 5.62 to 1000 nM (CDDO-Me) or 
5.62 to 1000 µM (DEM) were prepared in 96-well deep-well 
plates through serial dilutions of quarter-log increments. 
50 µL of exposure medium containing 2X the desired end 
concentration was added on top of the 50 µL culture medium 
in each well. One technical replicate was included per expo-
sure condition and two for the controls. All exposures were 
completed in triplicate on cells originating from three inde-
pendent differentiations.

TempO‑Seq transcriptomic analysis

To determine cell lineage specification, three technical rep-
licates were collected from untreated controls for each of 
the three independent differentiations. Samples were also 
collected following 24 h CDDO-Me or DEM exposure, with 
two biological replicates per exposure condition. For collec-
tion, cells were washed with 200 µL 1X PBS (Sigma) and 
lysed with 50 µL 1X BNN lysis buffer (BioSpyder, Carlsbad, 
USA) for 15 min at room temperature. Lysates were frozen 
at − 80 °C and sent for TempO-Seq analysis (Yeakley et al. 
2017) to Bioclavis (Glasgow, UK) of a targeted gene set 
consisting of the S1500 + gene list (Mav et al. 2018) supple-
mented with genes involved in cellular stress responses and 
differentiation markers (so-called EU-ToxRisk gene panel; 
Supplementary Table 5). A sequencing depth of 1.5 million 
reads per sample was used resulting in a minimal average 
read depth of ~ 500 reads per gene. Raw reads were aligned 
using the TempO-Seq R package by Bioclavis. Read counts 
were normalized using counts per million (CPM) and log2 
transformed, followed by differential expression analysis 
using the DESeq2 R package (Love et al. 2014). Samples 
were excluded for further analysis when having a library 
size of lower than 100,000 counts, reducing the technical 
replicates to two for one biological replicate of one of the 
untreated control samples. Differentially expressed genes 
(DEG) were defined as having an adjusted p value lower 
than 0.05 based on a Wald test using the DESeq2 R package. 
Compound exposure samples were compared to lineage-
specific DMSO 0.2% samples for DEG determination. For 
lineage marker assessment, log2 fold change (log2FC) was 
calculated for untreated controls of differentiated compared 
to undifferentiated hiPSC, for which the top 25 most upreg-
ulated and top 5 most downregulated DEGs were chosen. 
Gene functionality was categorized according to GeneCards.
org. Within the EU-ToxRisk gene panel, target genes of oxi-
dative stress response transcription factor NRF2 were identi-
fied as defined by DoRothEA v2 (Garcia-Alonso et al. 2019, 
2018) using confidence A to C. Heatmaps were generated for 

data visualisation and rows were clustered using Euclidean 
distance similarity metric. R packages used for analysis are 
as previously described (ter Braak et al. 2021).

High content confocal imaging

For the identification of nuclei during high content imaging, 
cells were incubated for 2 h prior to compound exposures 
with nucleic acid stain Hoechst 33342 (H1399, Thermo 
Fisher Scientific) using an end concentration of 0.1 µg/ml. 
To enable the detection of necrosis, 0.1 nM of propidium 
iodide (PI) was added to the compound exposure media. 
Live confocal microscopy was performed with a Nikon 
Eclipse Ti microscope at 5% CO2 and 37 °C using a 20X 
objective. Automated imaging acquired images at nine 
positions per well every 1 h over 24 h using NIS software 
(Nikon, Amsterdam, The Netherlands). Excitation by 408, 
488 and 561 nm lasers resulted in emission detection of the 
Hoechst nuclear signal, cytoplasmic HMOX1-eGFP and PI, 
respectively. To avoid oversaturation of the induced eGFP 
signal caused by varying basal levels of HMOX1, laser set-
tings were adjusted between lineages to ensure no eGFP 
signal was present at time point 0 h.

Image quantification and normalization

Image quantification was done using CellProfiler 2.1 (Broad 
Institute RRID:SCR_007358) where segmentation pipelines 
(Wink et al. 2017) were adjusted to account for lineage-
specific morphologies. Using an in-house R package (Wink 
et al. 2014), the quantified single-cell data were normalized 
as follows. Well positions containing less than 100 cells at 
time point 0 h were excluded, leaving three images or more 
for further analysis. For sparse cardiomyocyte-like cells 
this cell number threshold was not applied. For all lineages, 
nuclear counts at time point 0 h were subtracted from nuclear 
counts at all time points to represent the nuclear increase. To 
account for laser degradation between replicates, the mean 
eGFP intensity per imaged well was min–max normalized 
(zi = (xi −min (x)∕(max (x) −min (x)))) , where per plate 
the maximum eGFP intensity at 24 h for CDDO-Me was 
used as maximum and eGFP intensity at time point 0 h as 
minimum, hereby removing any basal HMOX1 expression 
present before exposure. Due to a technical laser malfunc-
tion, no data was obtained for neuron-like cells replicate 3 
for time points 12 until 19 h. The obtained data were fitted 
and missing data points were extrapolated using the B-spline 
function (Perperoglou et al. 2019). To obtain the PI positive 
fraction, cells that exhibited a PI positive signal in > 10% 
of the area of the nucleus were counted and divided by the 
total number of cells. Fraction of PI positive cells at 0 h were 
subtracted from all data points to normalize the data.
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Statistical analysis

Unless otherwise stated experiments were performed in trip-
licate and statistical differences were calculated based on the 
standard error of the mean. Rstudio version 1.1.456 (Boston, 
USA) and R 3.4.1 were used for data analysis and figure gen-
eration. R packages included dplyr (Wickham et al. 2018), 
ggplot2 (Wickham 2016) and pheatmap (Kolde 2019).

Results

Strategy for HMOX1‑tagging and gene targeting

To establish hiPSCs carrying a HMOX1-eGFP reporter, we 
performed CRISPR/Cas9-assisted eGFP-tagging with a ribo-
some-skipping 2A peptide between the biomarker’s C-ter-
minus and the fluorophore, enabling reporter expression to 
be regulated by the endogenous HMOX1 gene promoter. The 
applied donor vector contained a minimal selection cassette 
providing puromycin resistance to the edited cells and the 
cassette was flanked by PiggyBac-repeats allowing removal 
of the resistance gene later (Fig. 1). Three HMOX1 target-
ing gRNAs were tested in vitro (Supplementary Table 1), 
and the gRNA closest to the end of the HMOX1 gene was 
selected for CRISPR/Cas9 assisted knock-in of the donor 
vector. The TGCA sequence, indicated in Fig. 1a, was deter-
mined to be the most suitable place for cassette insertion 
and removal, due to its close proximity to the HMOX1 stop 
codon and similarity to the PiggyBac footprint sequence 
(TTAA) causing minimal change in the original sequence.

Cas9 protein was precomplexed with the gRNA, after 
which the RNP-complexes and the donor vector were trans-
fected into SBAD2 hiPSCs by AMAXA-nucleofection. Cells 
were left to recover for two days and subsequently underwent 
puromycin selection to eliminate the cells without successful 
vector-integration (Fig. 1c). After selection, drug-resistant 
colonies were isolated, propagated and analysed further.

Screening and clone testing after gene targeting

At first, junction PCRs were performed to screen for clones 
with correct genomic integration in the targeted HMOX1 
locus. Genotyping PCRs were designed to generate two 
overlapping amplicons spanning the entire inserted sequence 
at the target site. As a result, five precisely edited clones 
were found among the 29 tested clones (Supplementary 
Fig. 1a). The junction PCR-positive clones were then fur-
ther screened for the genome-integrated vector copy num-
ber using eGFP-specific TaqMan assay and three potential 
single-copy clones were identified (Supplementary Fig. 1b). 
Southern blot analysis demonstrated the correct targeting 
event and homogeneity of the H7-03 clone, whilst the other 

two single-copy candidates proved to be heterogeneous, 
originated from mixed colonies (Supplementary Fig. 2). 
Junction regions were checked by Sanger-sequencing 
to confirm accurate on-target editing of HMOX1 and the 
untagged allele was also verified to identify potential indels 
introduced via NHEJ. The H7-03 clone was confirmed to be 
mutation free in the target region on both the eGFP-tagged 
and untagged HMOX1 allele. Non-specific CRISPR/Cas9 
activity was analysed for the most likely predicted off-target 
cleavage sites and the results showed perfect matches, intact 
sequences without any insertions/deletions at those sites 
(Supplementary Table 2).

Excision of the selection cassette

To generate “scarless” reporter cells, we removed the EF1α-
promoter-driven puromycin selection cassette from the 
H7-03 SBAD2 hiPSC clone. The cells were nucleofected 
with an excision-competent but integration-defective Pig-
gyBac vector (Li et al. 2013) and after transient transposase 
expression individual colonies were isolated, propagated 
and analysed. Subclones that underwent successful cassette 
removal were identified by PCR-genotyping (Supplemen-
tary Fig. 3a), further verified through Southern blot analy-
sis (Supplementary Fig. 2) and tested for loss of puromycin 
resistance. Based on the findings, the H703-17 subclone was 
selected for further characterization, hereafter referred to as 
SBAD2-HMOX1-eGFP reporter hiPSC line.

Characterization of the SBAD2‑HMOX1‑eGFP 
reporter hiPSC line

The HMOX1-eGFP reporter line was subjected to detailed 
genetic characterization. Sanger-sequencing confirmed the 
correct DNA sequence of the eGFP-tagged HMOX1 allele 
and the successful cassette removal by the transposase (Sup-
plementary Fig. 3b). Southern blot analysis showed a con-
sistent result with this (Supplementary Fig. 2). The SBAD2-
HMOX1-eGFP reporter cells displayed a normal diploid 46, 
XY karyotype as shown by Giemsa-banding (Supplementary 
Fig. 3c).

In addition to the genetic characterization, an important 
consideration when manipulating hiPSCs is the maintenance 
of pluripotency. To confirm the multi-lineage differentiation 
ability of the reporter cells, embryoid bodies were formed 
and cultured for 14 days in differentiation medium. The dif-
ferentiated progeny was characterized for the expression 
of the three germ layer markers, both at protein and RNA 
(scorecard™) level. After eGFP-tagging, SBAD2 hiPSCs 
expressed pluripotency markers and were able to differ-
entiate into ecto-, endo- and mesodermal lineages (Sup-
plementary Fig. 4a), hereby confirming retained stem cell 
properties. We found no significant difference in the marker 
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expression profile between the unedited and reporter SBAD2 
cells (Supplementary Fig. 4b, c).

To further characterize the HMOX1-eGFP hiPSC line 
and prove its functionality we tested the HMOX1 induction 
and eGFP reporter expression using bardoxolone methyl 
(CDDO-Me, CAS# 218600-53-4) as a strong NRF2/oxi-
dative stress inducer. Unedited (’parental’ SBAD2) and 
HMOX1-eGFP reporter hiPSCs were exposed to increas-
ing concentrations of CDDO-Me and analysed by RT-qPCR 

after 12 h exposure (Fig. 2a). Upon CDDO-Me treatment, 
total HMOX1 mRNA levels increased significantly in both 
cell lines. Using specific primers for the eGFP-tagged 
HMOX1 transcript, we found that gene expression from the 
tagged allele in the reporter hiPSCs was regulated simi-
larly to that of the untagged endogenous HMOX1 (Fig. 2a). 
Western blot analysis was performed after 24 h of CDDO-
Me exposure and indicated a clear dose–response on pro-
tein level between the CDDO-Me concentrations and the 
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Fig. 1   Generation of the SBAD2-HMOX1-eGFP fluorescent reporter 
hiPSC line. a gRNA sequence, selected for HMOX1-tagging, target-
ing the 3′-UTR of the gene. Stop codon of HMOX1, insertion site of 
the selection cassette and the CRISPR/Cas9 cleavage site are indi-
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Expression Vector followed by clonal isolation and validation of the 
reporter line
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HMOX1 and eGFP reporter expression (Fig. 2b, Supple-
mentary Fig. 5). HMOX1 protein expressed from the eGFP-
tagged allele can be distinguished from the endogenous 
wild-type protein due to its increased size caused by the 
2A peptide on the tagged HMOX1. The Western blot analy-
sis showed that HMOX1 protein expression from the wild-
type allele was very similar and comparable in the unedited 
and reporter cell lines. We found, however, that expression 
of HMOX1 from the eGFP-tagged allele was induced to a 
higher level when compared to the wild-type allele expres-
sion, suggesting a higher stability for the 2A-tagged form of 
the protein. The reporter eGFP expression followed a simi-
lar trend as HMOX1, particularly resembling the induction 
of the tagged HMOX1 allele. Overall, the dose response to 
CDDO-Me treatment was clearly detectable in the expres-
sion of HMOX1 from both the wild-type and eGFP-tagged 
allele as well as in the expression of eGFP.

To investigate the time dynamics of the HMOX1 induc-
tion and eGFP expression upon oxidative stress, we treated 
the unedited and reporter hiPSCs with 180 nM CDDO-Me 
and analysed the samples by Western blot at different time 
points over a 24 h period (Fig. 2b, Supplementary Fig. 5). 
We found that the level of HMOX1 peaked after 12–16 h 
exposure, followed by a gradual decrease. In parallel, the 
eGFP expression reached saturation at the same time point 
and showed no further significant changes, remaining at that 
level until the end of the 24 h treatment, most likely due 
to a relatively higher eGFP protein-stability compared to 

HMOX1. Our results show that the SBAD2-HMOX1-eGFP 
reporter hiPSCs respond to oxidative stress in a robust and 
timely manner.

Multi‑lineage differentiation 
of SBAD2‑HMOX1‑eGFP

Having confirmed the reporter functionality, we next set out 
to assess the full potential of hiPSCs for toxicology assess-
ments by representing known target organs of toxicity. For 
this purpose, SBAD2-HMOX1-eGFP cells were differenti-
ated into hepatocyte-like cells (HLCs), cardiomyocyte-like 
cells (CMs), neuron-like cells and proximal tubule-like cells 
(PTLCs) (Fig. 3a, b). Using TempO-Seq transcriptomic 
analysis, we captured distinct branches containing differ-
entially expressed genes (DEGs) specific to one lineage 
which indicated the successful differentiation of the SBAD2-
HMOX1-eGFP cells towards the desired lineages (Fig. 3c).

TF, TTR, ALB and CYP3A5 expression were found in 
HLCs, whose differential expression profiles included DEGs 
involved in lipid metabolism, detoxification or encoding for 
proteins produced in the liver. ACTN2, MYL4, MLIP and 
PLN displayed the most lineage-specific expression for the 
CMs (Giacomelli et al. 2017), together with DEGs involved 
in cardiac development, cardiac muscle and cardiac homeo-
stasis. HES5, FOXG1, ELAVL3 and SOX1 expression were 
limited to neuron-like cells (Bansod et al. 2017; Ogawa et al. 
2018; Vasconcelos and Castro 2014), alongside DEGs linked 
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reporter hiPSCs. a HMOX1 mRNA expression in unedited SBAD2 
and SBAD2-HMOX1-eGFP reporter iPSCs after 12  h CDDO-Me 
exposure, evaluated by RT-qPCR. The expression values are pre-
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ANOVA was used to assess the statistical significance of the dif-
ferences (*p < 0.05, **p < 0.01). b Western blot analysis of SBAD2 
and SBAD2-HMOX1-eGFP hiPSCs after exposure to four CDDO-
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Fig. 3   Multi-lineage differentiation of SBAD2-HMOX1-eGFP hiPSC 
reporter line. a Brightfield images depicting the morphology of 
SBAD2-HMOX1-eGFP hiPSCs after differentiation into hepatocyte-
like cells (HLCs), cardiomyocyte-like cells (CMs), neuron-like cells 
(neurons) and proximal tubule-like cells (PTLCs). Scale bar is  100 
µm. b Differentiation culture conditions and duration. HLCs were 
differentiated directly in 96-well plate for 28  days. CMs were dif-
ferentiated for 15 days then reseeded into 96-well plates till day 21. 
Neural progenitor cells (NPCs) were plated onto 96-well plates and 

matured for a further 21 days. PTLCs underwent lineage specification 
for 14 days. c TempO-Seq analysis of lineage-specific markers after 
SBAD2-HMOX1-eGFP differentiation. Samples include untreated 
control conditions for HLCs, CMs, neurons and PTLCs. Per lineage, 
differentially expressed genes (DEGs) were selected that showed the 
25 highest and 5 lowest log2 fold change (log2FC) compared to hiP-
SCs. DEGs were clustered according to the Euclidean distance met-
ric. For all samples n = 3. Genes are color coded according to func-
tionality
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to brain development, neuronal migration, action potential 
and synapses. PTLCs expressed renal developmental mark-
ers TBX2, EMX2, TFAP2A and TFAP2B as well as Home-
obox (HOX) genes, regulating developmental segment ori-
entation (Bhatlekar et al. 2018). Renal exclusive expression 
was seen for SEMA3C, ANXA1 and CYP24A1 (Vitamin D 
receptor), which is expressed preferentially in human renal 
proximal tubule epithelial cells in vivo (Banu et al. 2006; 
Reidy and Tufro 2011; Sadashiv et al. 2019; Sheikh and 
Solito 2018). hiPSC differentiation was coupled with a down 
regulation of pluripotency markers ESRG, POU5F1, LCK, 
FOXD3, SOX2 and OTX2 (Kim et al. 2014a; Yang et al. 
2014) with the exception of neuron-like cells which par-
tially retained neuroectodermal FOXD3, SOX2 and OTX2 
expression (Zhou et al. 2014). Overall, fluorophore tagging 
did not affect the hiPSC’s differentiation potential and the 
expected expression profiles were obtained for all lineages 
tested (Fig. 3a–c).

TempO‑Seq analysis of multi‑lineage oxidative 
stress induction

To uncover how different cell types are primed towards the 
oxidative stress response we expanded our transcriptomic 
analysis to include several NRF2 target genes as defined 
by DoRothEA v2 (Garcia-Alonso et al. 2018, 2019) and 
calculated log2FCs in relation to undifferentiated hiPSCs 
(Fig. 4a). Overall, PTLCs displayed low basal NRF2 tar-
get gene expression, whereas this was most abundant for 
CMs, displaying the increased presence of MAFG, GCLC, 
ALDOA, KEAP1 and TXNRD1 in particular. Neuron-like 
cells were the only lineage to highly express SRXN1 and 
EGLN3, the latter a known regulator of neuronal apoptosis 
(Lee et al. 2005). In line with important role of the liver in 
xenobiotic detoxification, HLCs expressed high basal levels 
of GSTA1. Hereby potentially indicating a cell-specific pre-
conditioning for effective detoxification by GSH conjugation 
and regulation of the oxidative stress response.

To evaluate lineage-specific NRF2 regulation dur-
ing compound exposure, we exposed the differentiated 
reporter cells to two different oxidative stress inducers, 
CDDO-Me or DEM, for 24 h. For each lineage, log2FC 
was calculated in relation to the DMSO solvent control 
(Fig. 4b). Both stressors activated the oxidative stress 
response in a dose-dependent manner with DEM overall 
inducing higher log2FCs and upregulating more NRF2 tar-
get genes than CDDO-Me in all lineages. HLCs uniquely 
displayed a drop in log2FC expression for GCLM, GCLC, 
NQO1 and TXNRD1 at the highest DEM concentration, 
outlining differences in activation mechanisms between 
lineages. Basal NRF2 target gene expression levels were 
indicative for lineage sensitivity to DEM exposure, with 
PTLCs displayed the most abundant gene activation 

coupled with low basal levels and CMs exhibiting the least 
activation and highest basal levels (Fig. 4a, b).

Overall, HMOX1 was found to be the most sensitive 
NRF2 target, displaying dose-dependent induction inde-
pendent of lineage or stressor, hereby confirming its effi-
cacy as a biomarker for oxidative stress (Fig. 4a–c). To 
asses if this response was limited to hiPSC-derived line-
ages the HLC response was compared to primary human 
hepatocytes and HepG2 cells (Supplementary Fig. 6). The 
HMOX1 response consistently appeared to be the most 
conserved out of all the NRF2 targets and clear dose-
dependent induction of HMOX1 was seen in all three liver 
test systems. Therefore, we have high confidence in the 
hiPSC HMOX1 reporter model for in vitro evaluation of 
liabilities for oxidative stress induction.

Application of SBAD2‑HMOX1‑eGFP hiPSCs for high 
content imaging

To validate the application of the reporter hiPSCs for 
high content imaging (HCI), undifferentiated SBAD2-
HMOX1-eGFP cells were exposed to DEM or CDDO-Me 
and imaged for 24 h (Fig. 5a). Confocal imaging revealed 
that eGFP expression was localised in the cytoplasm and 
increased over 24 h (Fig. 5b). Images were quantified and 
single-cell data were visualised as mean eGFP intensity 
over time of exposure (Fig. 5c, d), and a dose-dependent 
increase was observed in eGFP intensity after around 
4 h of CDDO-Me and DEM exposure. EGFP intensity 
displayed a peak at around 16 h of 177.83 nM CDDO-
Me exposure, after which the signal intensity stabilized 
(Fig. 5d), consistent with the Western blot data (Fig. 2b). 
CDDO-Me concentrations higher than 316.23 nM dis-
played a toxic phenotype indicated by lowered nuclear 
counts, increased fraction of propidium iodide (PI) posi-
tive cells and decreased 72 h ATP levels (Supplementary 
Fig. 8a, b, Supplementary Fig. 9). Despite inducing tox-
icity, 563.34 nM and 1000 nM CDDO-Me did not affect 
cytoplasm integrity and eGFP expression was still induced 
over the 24 h treatment period, at a lowered intensity 
(Fig. 5d). In contrast, cells exposed to toxic DEM con-
centrations (177.83–1000 µM) did not retain cytoplasm 
integrity and instead displayed a gradual decrease in 
eGFP intensity (Fig. 5d). This was coupled with a reduced 
nuclear count, increased PI expression and loss of 72 h 
ATP (Supplementary Fig. 8c/d, Supplementary Fig. 9). In 
conclusion, the HCI screen demonstrated the sensitivity of 
the SBAD2-HMOX1-eGFP reporter system in its ability 
to depict concentration specific responses as well as iden-
tifying time dependent dynamics of the oxidative stress 
response-related HMOX1 induction in hiPSCs.
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Multi‑lineage high content imaging 
of SBAD2‑HMOX1‑eGFP

To uncover cell-specific oxidative stress responses and to 
validate the reporter functionality in multiple lineages, we 
repeated the HCI experiment (Fig. 5a) in the previously 
described differentiated SBAD2-HMOX1-eGFP cell cul-
tures (Fig. 3a, b). 24 h live cell HCI of cells exposed to 
CDDO-Me and DEM revealed cytoplasmic eGFP induction 
in all four lineages (Fig. 6a, Supplementary Fig. 7). Due 
to differences in cytoplasmic morphology, lineage-specific 
image segmentation parameters were used for single-cell 
HMOX1 quantification (Fig. 6a). The quantified single-cell 
data were visualised as mean eGFP intensity over time of 
exposure (Fig. 6b, c). Since different cell lineages could 
not be imaged at the same time, raw intensity values were 
normalized per cell type and, therefore, only allowing com-
parison across lineages at a qualitative level and not at the 
absolute reporter intensity level.

hiPSCs reduced their sensitivity to CDDO-Me- and 
DEM-induced toxicity evenly across lineages after dif-
ferentiation. Across lineages only two treatment condi-
tions resulted in an absent (1000 µM DEM) or decreased 
(563.34 µM DEM) eGFP induction, coupled with a direct 
cytotoxic phenotype (Fig. 6c, Supplementary Fig. 8, Sup-
plementary Fig. 9).

Of the four differentiated lineages, HLCs showed the most 
consistent HMOX1-reporter response. For both CDDO-Me 
and DEM we observed a similar, dose-dependent regula-
tion of reporter activity (Fig. 6b, c). 1000 and 563.34 nM 
CDDO-Me expressed equal eGFP intensities without affect-
ing cell viability, suggesting that maximal reporter activa-
tion had been reached (Fig. 6b, Supplementary Fig. 8a-b). 
Neuron-like cells also displayed clear dose-dependent 
increase of eGFP expression in response to both oxidative 
stress-inducing compounds (Fig. 6b, c). The eGFP expres-
sion extended through to the axoplasm and notably only a 

partial eGFP response was exhibited within the cell popula-
tion (Fig. 6a, Supplementary Fig. 7). CMs showed a reduced 
and delayed oxidative stress response, with eGFP induction 
starting around 7.5 and 10 h, for CDDO-Me and DEM, 
respectively (Fig. 6b, c). Over 24 h, only the three highest 
CDDO-Me concentrations (316.23, 563.34 and 1000 nM) 
induced a steep and dose-dependent increase in eGFP inten-
sity (Fig. 6b), while in the case of DEM exposure low and 
slowly increasing eGFP signals were observed (Fig. 6c, 
Supplementary Fig. 7). After 72 h a clear dose-dependent 
decrease in ATP was seen for DEM in CMs, suggesting the 
response peaked somewhere between 24 and 72 h (Supple-
mentary Fig. 9).

PTLCs also only responded to the three highest CDDO-
Me concentrations, with the 1000 nM response curve show-
ing a large separation from 316.23 and 563.34 nM, which 
instead stabilized around 12 h (Fig. 6b). DEM exposure 
induced a more uniform dose response separation and eGFP 
stabilisation was again observed (Fig. 6c). Normally, cyto-
toxic phenotypes were induced systematically throughout 
the well, PTLCs instead displayed an uneven distribution 
of living and dead cells after DEM exposure. Imaged areas 
contained both PI positive/eGFP negative cells alongside PI 
negative/eGFP positive cells (Supplementary Fig. 7, Supple-
mentary Fig. 8d). This phenomenon led to a high variability 
in mean eGFP intensities (Fig. 6c).

To provide a quantitative comparison of the HCI find-
ings, we extrapolated the data and determined the point of 
departures (PoDs) for eGFP induction for both CDDO-Me 
and DEM in the different lineages (Supplementary Fig. 10). 
This allowed us to pinpoint the exact concentrations at which 
CDDO-Me and DEM activated the oxidative stress response, 
giving insights into lineage-specific sensitivities for chemi-
cal-induced oxidative stress (Table 1).

For CDDO-Me, PoDs ranged from 91 to 345 nM where 
hiPSCs displayed the lowest PoD followed by HLCs, neu-
ron-like cells, CMs and finally PTLCs. This trend was not 
conserved across stressors as DEM determined PoDs sen-
sitivities ranging from 39 to 259 µM for neuron-like cells, 
hiPSCs, PTLCs, HLCs and CMs. In conclusion, HCI of 
SBAD2-HMOX1-eGFP line proved to be successful in dis-
playing lineage and compound-specific sensitivities. The 

Fig. 4   TempO-Seq analysis of oxidative stress response genes in hiP-
SCs-derived lineages. a TempO-Seq expression of NRF2 target genes 
selected based on the Dorothea downstream target selection tool, 
confidence A–C. Untreated control samples of four hiPSC-derived 
lineages displayed as log2 fold change (log2FC) compared to undiffer-
entiated hiPSCs where n = 3. Lineages include hepatocyte-like cells 
(HLCs), cardiomyocyte-like cells (CMs), neuron-like cells (neurons) 
and proximal tubule-like cells (PTLCs). b TempO-Seq results of dif-
ferentiated SBAD2-HMOX1-eGFP lineages after 24  h CDDO-Me 
and DEM exposure where n = 2. Displayed as log2FC  compared to 
lineage-specific DMSO 0.2% sample. Differentially expressed genes 
represent NRF2 targets, clustered according to the Euclidean distance 
metric. c TempO-Seq results of HMOX1 expression in differentiated 
SBAD2-HMOX1-eGFP lineages after 24  h CDDO-Me and DEM 
exposure. Log2FC of HMOX1 was normalized per lineage to DMSO 
0.2% vehicle control. Error bars indicate SEM and n = 2

◂

Table 1   Point of departure concentrations (PoD) determined for 
CDDO-Me and DEM in five SBAD2-HMOX1-eGFP lineages using 
confocal imaging data at time point 24 h

CDDO-Me (nM) DEM (µM)

hiPSC 91 44
HLC 137 104
CM 236 259
Neurons 160 39
PTLC 345 61
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Fig. 5   Functional validation of SBAD2-HMOX1-eGFP hiPSC 
reporter using high content confocal imaging. a Experimental set up 
of compound exposure and sample collection. Nuclei were stained for 
2 h with 0.1 µg/ml Hoechst 33342 after which CDDO-Me or DEM 
compound media and cell death marker propidium iodide (PI) was 
added to the cells. HMOX1-eGFP reporter activity was assessed 
over 24  h using confocal imaging, at 24  h TempO-Seq samples 
were collected and at 72  h viability was assessed with ATP Lite. b 
Confocal images of SBAD2-HMOX1-eGFP reporter activity after 
exposure with 316.23 nM CDDO-Me and 100 µM DEM over 24 h. 
Hoechst stained nuclei visualised in blue and cytoplasmic eGFP visu-
alised in green. Scale bar is 100  µm. c Example of object segmen-

tation for image quantification on SBAD2-HMOX1-eGFP hiPSCs 
exposed to CDDO-Me for 24  h. HMOX1-eGFP channel was used 
for cytoplasmic segmentation (green), whilst nuclear segmentation 
was performed on the Hoechst channel (blue). Scale bar is 200 µm. 
d Quantified single-cell expression of eGFP during 24 h exposure to 
ten concentrations of CDDO-Me and DEM, alongside medium and 
DMSO 0.2% vehicle controls. Cytoplasmic eGFP Intensity was quan-
tified and depicted as mean eGFP ± SEM (n = 3). Values were min–
max normalized to subtract background signal, min = eGFP inten-
sity at time point 0 h & max = maximum eGFP intensity at 24 h for 
CDDO-Me
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Fig. 6   High  content confocal imaging of differentiated SBAD2-
HMOX1-eGFP hiPSC-derived reporter cells. a Example shown 
of hepatocyte-like cells (HLCs), cardiomyocyte-like cells (CMs), 
neuron-like cells (neurons) and proximal tubule-like cells (PTLCs) 
after 24  h CDDO-Me exposure. For all lineages HMOX1-eGFP 
channel was used for cytoplasmic segmentation (green), whilst 
nuclear segmentation was performed on the Hoechst channel (blue). 
Object segmentation parameters captured varying cellular mor-
phologies. Scale bar is 200  µm. b Differentiated SBAD2-HMOX1-
eGFP hiPSC-derived reporter cells exposed to ten concentrations 
of CDDO-Me for 24 h alongside medium and DMSO 0.2% vehicle 

controls. HLCs (n = 5), CMs (n = 2), neurons (n = 3), PTLCs (n = 3). 
Cytoplasmic HMOX1-eGFP intensity was quantified and depicted 
as mean eGFP ± SEM. Values were min–max normalized to sub-
tract background signal, min = eGFP intensity at time point 0  h & 
max = maximum eGFP intensity at 24 h for CDDO-Me. c) Differenti-
ated SBAD2-HMOX1-eGFP hiPSC-derived reporter cells exposed to 
ten concentrations of DEM for 24  h alongside medium and DMSO 
0.2% vehicle controls. HLCs (n = 5), CMs (n = 3), neurons (n = 3), 
PTLCs (n = 2). Min–max normalized eGFP intensity is depicted as 
mean eGFP ± SEM
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sensitive HMOX1 biomarker enabled the detection of the 
oxidative stress response for compounds and concentrations 
which may otherwise be overlooked when using more con-
ventional detections methods such as ROS dyes (Supplemen-
tary Fig. 11). Coupled with PoD modelling the application 
of the hiPSC reporter system can provide a sensitive and 
efficient tool for oxidative stress response prediction in vitro.

Discussion

There is an increasing need for reliable cellular test systems 
in the field of toxicology. CRISPR/Cas9-assisted genome 
editing offers a powerful tool to generate improved in vitro 
models through tagging of endogenous stress response genes 
in cell lines relevant for chemical safety assessment. Here, 
we have presented the generation and extensive characteri-
zation of a fluorescent HMOX1 reporter hiPSC line, which 
was used to visualise and accurately quantify the chemically 
induced oxidative stress response in a variety of stem cell 
derived lineages.

To establish the reporter cell line, a protein-based 
CRISPR/Cas9 system was used, known to be more effec-
tive, immediate and transient, thus less harmful to the cells 
than vector-based approaches. Due to a relatively short 
exposure to the delivered CRISPR/Cas9-components, there 
is a lower risk for off-target events (Kim et al. 2014b; Liang 
et al. 2015; Lin et al. 2014). Gene targeting resulting in a 
mixed cell population, required a refined selection process 
to enrich for the successful HDR-edited cells and to cre-
ate homogeneous cell lines through subcloning, achieved 
using a PiggyBac flanked selection cassette in the presented 
study. The targeting strategy was designed based on gen-
eral considerations and according to the nature and molecu-
lar structure of HMOX1. N-terminal tagging of HMOX1 
was excluded due to the risk of disturbing the endogenous 
regulatory mechanisms and the normal expression of the 
targeted gene (Majewski and Ott 2002). In general, fusion 
tagging is the most preferred strategy to generate endog-
enously tagged reporter cells, allowing for monitoring of 
the subcellular localization and expression-dynamics of 
the encoded fusion protein. However, HMOX1 is known to 
be inserted into the ER-membrane by a special mechanism 
through the TRC40/Get pathway, that is unique for the tail-
anchored proteins (Borgese et al. 2003; Borgese and Fasana 
2011; Shao and Hegde 2011; Wang et al. 2011). In case 
of C-terminal fusion-tagging the tail position of the trans-
membrane domain may be changed and shifted toward the 
middle part of the protein. As a result, the HMOX1-eGFP 
fusion protein would no longer be recognized by the regula-
tors of the special membrane insertion pathway, which may 
affect the normal localization and function of the protein. 

Accordingly, C-terminal 2A-tagging was chosen as the most 
suitable strategy in case of this gene. Notable consequence 
of using 2A-tagging strategy is that eGFP is more stable 
in the cells than HMOX1 (half-lives ~ 26 h versus 15–21 h, 
respectively) (Corish and Tyler-Smith 1999; Dennery 2001; 
Srivastava et al. 1993), allowing for extended detection of 
the signal, thereby providing a powerful reporter system.

We reported on a large-scale study to fully validate the 
specificity and sensitivity of the new hiPSC HMOX1-eGFP 
reporter system using a HCI platform. We optimised our 
imaging pipelines to quantify eGFP in lineage-specific mor-
phologies and confirmed reporter functionality in hiPSCs 
and four hiPSC-derived lineages. During HCI we observed 
variations in basal HMOX1 expression amongst lineages, 
further confirmed at the transcriptomic level. Although it led 
to a loss of comparable HMOX1-eGFP values, optimisation 
of optical configuration for different lineages is essential to 
ensure the detection of weak signal while preventing image 
oversaturation. HCI also revealed that PI was a poor indica-
tor of cell death for neuron-like cells with high variability 
and low induction over 24 h. PI staining has been applied 
for neuronal cell counts through accumulation in the Nissl 
Bodies which could explain the high fraction of PI positive 
cells at 0 h (de Calignon et al. 2009; Niu et al. 2015).

Our HCI platform was able to detect the dynamic activa-
tion of HMOX1 amongst different lineage types, and we 
reported differences relating to time of induction and to 
concentration sensitivities. The application of reporters for 
in vitro chemical safety assessment should be paired with 
the ability to accurately identify concentrations that elicit 
the activation of the stress response, as this can predict an 
increased risk for adversity (Wink et al. 2017). Despite limi-
tations in eGFP stabilisation, PoD modelling successfully 
predicted compound-specific sensitivities for all lineages. 
This gives us confidence that the SBAD2-HMOX1-eGFP 
reporter line can accurately predict the HMOX1 specific 
oxidative stress response in vitro.

Distinct oxidative stress response dynamics were dis-
played by cardiomyocyte-like cells in regard to their delayed 
eGFP induction. Transcriptomics analysis revealed that CMs 
uniquely expressed high basal levels of KEAP1 (Fig. 6c). 
Since DEM and CDDO-Me perturb the binding of KEAP1-
CUL3 complex to NRF2 by targeting the KEAP1 sensor 
Cys151, an abundance of KEAP1 molecules in CMs might 
require more time and electrophilic binding before NRF2 
can activate the oxidative stress response (Saito et al. 2016). 
Also, we observed that CMs expressed higher levels of 
GCLC than the other lineages, suggesting improved capac-
ity to synthesize GSH, thereby protecting the CMs against 
oxidative stress.

The HLC lineage displayed by far the most adaptive 
oxidative stress response during HCI towards both CDDO-
Me and DEM, responding already at lower concentrations 
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and inducing few toxic phenotypes (nuclear decrease and 
increased PI positive fraction), independent of the stressor. 
This was in line with the lineage-specific DEG expression 
profile indicating functions relating to detoxification and 
metabolism, thereby priming HLCs with a reducing environ-
ment enabling an effective adaptive response towards oxida-
tive stress (Gu and Manautou 2012). As such, hepatocytes 
might be more flexible and adaptive in dealing with oxida-
tive stress conditions. Given the capacity of hepatocytes to 
bioactivate xenobiotics to reactive metabolites, such a versa-
tile response to such harmful conditions might be an essen-
tial characteristic to provide an efficient adaptive response.

The strength of the hiPSC reporter system lies in the 
ability to efficiently screen multiple lineages originating 
from the same genetic background, thus removing donor-
specific variations as found in multi-lineage screens. Line-
age maturity of hiPSC-derived cells, however, remains a 
concern for the toxicology field but advances in 3D and 
co-culture differentiation protocols will allow for further 
representation of the in vivo situation (Kumar et al. 2020). 
TempO-Seq analysis identified HMOX1 as a sensitive and 
highly inducible biomarker, which plays an important 
role in a stress response conserved across lineages and 
throughout different in vitro or in vivo models (Limon-
ciel et al. 2018; McMahon et al. 2018). This proof-of-
concept study allowed us to confirm the application of the 
SBAD2-HMOX1-eGFP reporter cells for in vitro safety 
prediction using HCI and demonstrated that HMOX1 is 
a powerful biomarker for oxidative stress induction. We 
foresee that this will be a powerful tool for toxicology and 
risk assessment, being accurate and high-throughput in its 
application.
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