Sharing responsibility for trade-related emissions based on economic benefits
Jakob, M.; Ward, H.; Steckel, J.C.

Citation

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3201463

Note: To cite this publication please use the final published version (if applicable).
Sharing responsibility for trade-related emissions based on economic benefits

Michael Jakob\textsuperscript{a,*,1}, Hauke Ward\textsuperscript{b,*,1}, Jan Christoph Steckel\textsuperscript{a}

\textsuperscript{a} Mercator Research Institute on Global Commons and Climate Change, Berlin 10829, Germany
\textsuperscript{b} Institute of Environmental Sciences (CML), Department of Industrial Ecology, Leiden University, Leiden 2300, RA 9518, the Netherlands
\textsuperscript{c} Potsdam Institute for Climate Impact Research, Postfach 60 12 03, Potsdam 14412, Germany

\textbf{ARTICLE INFO}

\textbf{Keywords:}
Climate Change Mitigation
Trade-related Emissions
Emission Accounting
Economic benefit analysis
Economic counterfactual analysis
Responsibility
Global climate policy
Input-Output Analysis

\textbf{ABSTRACT}

How to share responsibility for greenhouse gas emissions between consumers and producers is a highly sensitive question in international climate policy negotiations. Traditional ‘Production-Based Accounting’ (PBA), which assigns responsibility to the region where emissions are released, has frequently been challenged by ‘Consumption-Based Accounting’ (CBA) schemes that suggest that greenhouse gas emissions generated to produce traded goods and services should be attributed to their final consumers. PBA and CBA both lack a sound foundation in economic theory as they do not consider the economic benefits accruing to producers or consumers if carbon emissions do not carry a price that reflects their social costs. We build on well-established economic theory to derive how to share responsibility for trade-related emissions between producers and consumers and apply this novel approach for the most prominent bilateral trade relationships using multi-regional input–output data. We propose an ‘Economic Benefit Shared Responsibility’ (EBSR) scheme, in which China is attributed significantly higher responsibility for emissions than in CBA, while lower emissions and responsibility are attributed to both the US and the EU.

\section{Introduction}

In an integrated world economy, production is increasingly distributed around the globe (Timmer et al., 2014; Baldwin, 2009; Hummels, 2007). The fragmentation of supply chains and the geographical separation of consumers and producers represent serious challenges for climate policy, complicating the assignment of responsibility for greenhouse gas emissions (Davis and Caldeira, 2010; Peters et al., 2011; Skelton, 2013). To date, emissions are most frequently attributed to the national territory from which they are released, as reflected in production-based accounting of emissions (PBA) conducted in accordance with the United Nations Framework Convention on Climate Change (United Nations, 1992; Davis and Caldeira, 2010).

In this regard, a long-standing concern is that countries could meet their commitments to reduce their territorial emissions by shifting production of carbon-intensive goods and services without reducing – or even increasing - global emissions (Kuij and Gerlagh, 2003; Dechezlepretre and Sato, 2017). For this reason, it has been argued that the responsibility for emissions should be attributed to consumers as, for instance, expressed by Davis and Caldeira (2010): “It is intuitive that individuals who benefit from a process should bear some responsibility for the associated emissions […]”. Yet, national inventories such as those conducted annually by parties to the United Nations Framework Convention on Climate Change […] account for only those emissions produced within sovereign territories […], ignoring the benefit conveyed to consumers through international trade”.

In order to address this shortcoming in emission accounting, some authors have proposed consumption-based emission accounting (CBA), which measures the level of emissions generated to meet domestic consumption (Davis and Caldeira, 2010; Peters et al., 2011; Atkinson et al., 2011). This approach is increasingly applied in policy analysis (Mehling et al., 2018) and is prominent in the latest IPCC Assessment report (IPCC, 2014) as well as the annual Carbon Budgets published by the Global Carbon Project (Global Carbon Project, 2019). However, focusing exclusively on the consumption side, CBA has been criticized as being one-sided, as it fails to take into account efforts to reduce greenhouse gas emissions in a production chain.

\textsuperscript{*} Corresponding authors at: Mercator Research Institute on Global Commons and Climate Change, Berlin 10829, Germany (Michael Jakob) and Institute of Environmental Sciences (CML) at Leiden University, Leiden 2311, the Netherlands (Hauke Ward).
\textsuperscript{1} Both corresponding authors contributed equally to the article.

Received 21 July 2020; Received in revised form 3 November 2020; Accepted 22 November 2020
Available online 28 December 2020
0959-3780/© 2020 Elsevier Ltd. All rights reserved.
emissions in the export sector and neglects the fact that producers also benefit from generating emissions (Jakob and Marschinski, 2012; Jakob et al., 2014; Rodrigues and Domingos, 2008). For this reason, an appropriate account of responsibility for trade-related emissions needs to reflect the associated benefits accruing over the entire value chain, ranging from the extraction of fossil fuels to final consumption (Tukker et al., 2020).

Our paper contributes to the literature by proposing a novel scheme to share responsibility for trade-related emissions between producers and consumers based on the economic benefits they derive from the release of GHG emissions to the atmosphere. This paper proceeds as follows. Section 2 reviews the literature. Section 3 presents the economic theory behind our proposed accounting scheme. Section 4 describes the data and numerical methods used for our empirical application. Section 5 discusses the results. Section 6 concludes.

2. Literature review

Some authors have proposed sharing responsibility for emissions along the value chain according to the value added at each production step (Lenzen et al., 2007; Pinerio et al., 2019) or the income generated in the form of wages and capital return (Marques et al., 2012; Liang et al., 2017). Some have argued that producers should be held responsible for emissions generated through their products (Lenzen and Murray, 2010) or through economic activities under their control (Ortiz et al., 2020). While these approaches allow for a more fine-grained responsibility of the role of intermediary industries, they do not take into account the benefits accruing to final consumers. A few approaches explicitly consider how responsibility for trade-related emissions could be shared between consumers and producers. These include proposals to use a predetermined sharing rule (Ferng, 2003; Gallego and Lenzen, 2005; Lenzen et al., 2007). A more recent approach suggests the use of ‘valued added’ as a measure of producers responsibility and material throughput as a measure for consumers responsibility (Cutura and Vetőné mózner, 2014). Besides being designed for single region input–output systems and their sensitivity to changes in the material throughput coefficients, measures employed in existing studies on the sharing of responsibility for emissions between producers and consumers tend to be ad hoc rather than relying on a solid theoretical foundation.

By contrast, the approach presented in this paper uses a straightforward measure of economic benefits that we derive from economic theory to assign responsibility for trade-related emissions to different world regions in a multi-regional input–output model. We propose to divide responsibility for trade-related emissions between producers and consumers, relative to the economic surplus they derive from not being required to pay the economic costs associated with greenhouse gas emissions. Our numerical application compares this ‘Economic Benefit Shared Responsibility’ (EBSR) scheme to conventional PBA and CBA approaches.

3. Sharing responsibility for emissions between producers and consumers based on economic benefits

This paper proposes a novel approach to the allocation of responsibility for trade-related emissions between consumers and producers. To our knowledge it is the first model that exploits economic theory, artificially creating a ‘what-if’ counterfactual. Our EBSR scheme assigns responsibility for trade-related emissions in proportion to the economic benefits derived by producers and consumers from releasing emissions to the atmosphere when not being required to pay for their associated social cost. As counterfactual, we employ a scenario in which a global carbon price, which has frequently been highlighted as the economically optimal solution to address climate change (Edenhofer et al., 2015), is in place. EBSR thus distributes responsibility for trade-related emissions relative to economic costs that would accrue to producers and consumers, respectively, if such a global carbon price were in place.

The economic intuition behind this approach is visualized in Fig. 1. In a setting in which neither producers nor consumers have to pay the social costs of greenhouse gas emissions, the interplay of supply of exports and demand for imports would result in equilibrium price and quantity $p_0$ and $q_0$. If, however, climate damages were correctly accounted for, for instance by means of a global carbon price (Edenhofer et al., 2015), producers would receive a lower price $p_\text{c}$ and consumers would pay a higher price $p_\text{c}$, compared to the market equilibrium without environmental regulation (Fullerton and Muehlegger, 2019). This would reduce their benefits, which are denoted as producer and consumer surplus, respectively, in two ways: first, by foregoing the benefits of emissions that correspond to the difference between $q_0$ and $q^*$, and second, by having to pay for those emissions that would still be generated with environmental regulation in place. This implies that both producers and consumers currently benefit to a certain extent from non-existing environmental regulations. This perspective can be generalized to all cases in which carbon prices that are below the social costs of carbon are in place (see Section 6 and SI). EBSR then fulfills the principle of ‘additivity’, which requires the sum of all national EBSR emissions to equal global emissions (Kander et al., 2015). By contrast, there seems to be no obvious need to account for emissions that are appropriately priced.

The EBSR approach we propose is based on the idea of assigning responsibility for emissions in proportion to the benefits that producers and consumers, respectively, derive from those emissions without having to pay their associated social cost. It illustrates that both exporters and importers benefit from the emissions that are released in one country to meet consumption in another country. We derive simple analytical expressions for the change in consumer and producer surplus that would occur with a carbon price – or, vice versa, the benefits that currently accrue to them due to the lack of environmental regulation.

Assuming isoelastic supply and demand functions with elasticities $\sigma$ and $\delta$, we can choose units such that we can – without loss of generality – write:

$$q_\text{c} = p_\text{c}^*, q_\text{p} = p_\text{p}^*$$

Then, in the unregulated case in which emissions can be generated

![Fig. 1](image-url)
free of charge, prices received by producers are equal to prices paid by consumers (i.e. \( p_d = p_s \)). This allows us to normalize the equilibrium price to \( p_0 = 1 \).

Now, let us consider the case in which the social costs of climate change are, at least to some extent, internalized by a carbon price \( T \). Such a carbon price \( T \) would translate into a relative price increase, depending on the relative carbon content, which can be expressed as a gap \( t \) between prices paid by consumers and received by producers:

\[
p_t = (1 + t)p_s
\]

Please note that our analysis does not presuppose that the optimal carbon price is imposed, rather it applies for any carbon price level.

Equilibrium is then simply determined by equating supply and demand (\( q_d = q_s \)). This yields the following expression for producer and consumer prices:

\[
p_s = (1 + t)^\sigma_s (p_t - p_s)
p_d = (1 + t)^\sigma_s (p_s - p_d)
\]

The change in producer surplus between the no carbon price and the carbon price scenarios can then be expressed as:

\[
\Delta P_S = \int_p^0 p^0 dp^0 \left[ 1 - \frac{1}{(1 + t)^{\sigma_s}} \right] \Delta p
\]

Likewise, the change in consumer surplus between the two scenarios is:

\[
\Delta C_S = \int_p^0 p^0 dp^0 \left[ 1 - \frac{1}{(1 + t)^{\sigma_s}} \right] \Delta p
\]

These expressions allow us to assess the division of responsibility for trade-related emissions based on economic theory. They confirm the intuition that producers’ and consumers’ benefits from not having a carbon price in place decrease with an increase in price elasticity (i.e. the less they adjust quantities as a response to a price change). Economic theory highlights that those actors who are less likely to change their behavior as a result of regulation, i.e. display a lower elasticity (which, in Fig. 1, corresponds to steeper slope), derive a higher benefit from the carbon price in place decrease with an increase in price elasticity (i.e. display a lower elasticity (which, in Fig. 1, corresponds to steeper slope), derive a higher benefit from the change in consumer surplus between the two scenarios.

4. Data and numerical implementation

For each bilateral trade relation (BTR), we first identify the value added in one country and eventually consumed in the other country, as well as the associated CO\(_2\) emissions. Combining this information with the respective export and import elasticities allows us to assess how consumers’ and producers’ economic surplus would change if the social costs of emissions were appropriately reflected in market prices.

4.1. Data

To adequately consider complex economic production chains, we use the World-Input-Output Database (WIOD) (Timmer et al., 2015; Corsetta et al., 2019). Using WIOD for the year 2014, we derive highly detailed bilateral trade flows, i.e. the sum of all value added being produced in one region and consumed in the other as directed bilateral trade flow, between the 44 regions included, considering 56 sectors. WIOD includes the EU28 countries as well as major economies, including most OECD countries (Australia, Canada, Japan, South Korea, Mexico, United States), newly industrializing economies, (i.e., Brazil, China, Indonesia, India, Turkey, Taiwan and Russia), and an aggregated residual region referred to as the “Rest of the World” (RoW). Additionally, WIOD provides detailed data on energy use and emitted greenhouse gas emissions, which allows us to calculate the carbon intensity of representative goods for bilateral trade relations.

To project the impacts of a global carbon price on producers and consumer surplus and construct the counterfactual, we take country specific export and import elasticity estimates from the literature (see Tokarik (2014) and Supplementary Table S5).

4.2. Calculating carbon footprints

Standardized MRIO data accounts for a specific numbers of regions \( n \) and sectors \( m \). They consist of an inter-industry flow matrix \( Z \in \mathbb{R}^{n \times m} \) and a final demand vector \( Y \in \mathbb{R}^{n \times 1} \), see e.g. (Miller and Blair, 2009). Entries \( z_{r,s}^{m,o} \) of \( Z \) reflect the total monetary value (in USD) of flows from sector \( s \) in region \( r \) to sector \( s \) in region \( r \), with \( r, s \in R = \{1, \ldots , n\} \) and \( s_1, s_2 \in S = \{1, \ldots , m\} \). Analogously, \( y_{r,s}^{m,d} \) represents the sum of all monetary flows from sector \( s \) of region \( r \) into final demand of region \( r \).

These can be used to calculate the total output vector \( O \in \mathbb{R}^{n \times 1} \), with entries \( o_{r,s} = \sum s \sum s (z_{r,s}^{m,o} + y_{r,s}^{m,d}) \). These describe the amount of each input that is necessary to produce one unit of output.

The Leontief inverse \( L \), which accounts for all pre-products that have been used at some stage during production is calculated as \( L = (I - A)^{-1} \). Let \( CO_{2,r,s} \) be the total direct CO\(_2\) emissions that have been released in sector \( s \) of region \( r \). The carbon intensity \( CI_{r,s} \) then results as \( CO_{2,r,s} / o_{r,s} \).

Let \( BTR_{r,s} \) be the sum of value added of production steps that have eventually been undertaken in \( r \) to serve final consumption in \( s \). These can then be calculated as

\[
BTR_{r,s} = \sum_{t=1}^{n} \sum_{s} (z_{t,s}^{r,m} \cdot vad_{t,s}^r)
\]

The associated emissions that are virtually contained within these flows \( CO_{2,r,s} \) are

\[
CO_{2,r,s} = \sum_{t=1}^{n} \sum_{s} (z_{t,s}^{r,m} \cdot CI_{t,s}^r)
\]

4.3. Evaluating the counterfactual

Our approach to assess the distributed responsibility for emissions in trade between producers and consumers requires only three parameters, namely the carbon price as well as the elasticities of supply and demand. For the former, we assume a carbon price \( T \) of 50 USD/t of CO\(_2\) in the range of what has been proposed to meet the climate targets enshrined in the Paris Agreement (Carbon Pricing Leadership Coalition, 2017), see Supplementary Fig. S6 for alternative specifications with carbon prices of USD 10, USD 100 and USD 1000 per ton of CO\(_2\). The respective share of trade-related emissions assigned to the importing (exporting) country is given by the size of the light (dark) area relative to the total area in Fig. 1.

The relative carbon price level \( t \) for a BTR of two regions then results as \( t_{r,s} = CO_{2,r,s} / BTR_{r,s} \cdot T \). This expression considers the Normalized Net Carbon Content (NNCC), a measure which refers to the carbon content per one USD of VAD, which has been introduced by Ward et al. (2019). Region specific import- (\( s \)) and export (\( e \)) elasticity estimates are taken from recent literature (Tokarik, 2014). We assign responsibility for traded emission in proportion to the distribution of the economics surplus without a price on carbon. That is, the producers’ share of trade-
related emissions is given by $s_{r_1} = \Delta PS / (\Delta PS + \Delta CS)$, the consumers’ share by $s_{r_2} = \Delta CS / (\Delta PS + \Delta CS)$. Hence, producer and consumer responsibility $R_{r_1}$ and $R_{r_2}$, respectively are:

$$R_{r_1} = s_{r_1} \cdot CO_{r_1} \quad \text{and} \quad R_{r_2} = s_{r_2} \cdot CO_{r_2}$$

(8)

5. Results

Fig. 2 maps the emissions associated with bilateral trade flows between the five regions with the highest trade-related emissions (i.e. the sum of export- and import-related emissions). These are China, the US, India, Russia and the EU28. Exports from these five regions are associated with emissions of 4.22 GtCO$_2$. Each arrow is divided into two segments denoting the emissions of the respective trade flow that are assigned to the exporting (dark) and importing (light) region under EBSR. For each region, blue bars denote the emissions that have been released in other countries to produce this region’s imports, and red bars represent all emissions released in this country to produce exports to other countries. For both bars, dark areas denote the share of import- and export-related emissions, respectively, that are assigned to the region. Whereas under a production-based (consumption-based) perspective, a region is responsible for all emissions related to its exports (imports) as indicated by the red (blue) bars, our shared responsibility perspectives assigns responsibility as given by the dark-shaded areas of both bars. Bilateral trade flows between regions are depicted by arrows, which indicate how the responsibility for the associated emissions is divided between the respective exporting (dark) and importing region (light).

Globally, the highest trade-related emissions are found for China, whose exports correspond to more emissions than those of the exports by the US, EU, Russia and India taken together. Out of a total of 2.16 GtCO$_2$ that are released to produce Chinese exports, 375 MtCO$_2$ are generated for exports to the US, and 342 MtCO$_2$ for exports to the EU. Under EBSR, 56% of emissions related to Chinese exports to the US are assigned to the US, and 44% to China. For China-EU trade, the respective figures are 53% and 47%. Overall, 46% of all emissions related to Chinese exports are assigned to China, and 54% to its trade partners.

Russia constitutes another important source of export-related emissions of about 547 MtCO$_2$, a large share of which (145 MtCO$_2$) are targeted at the EU. Interestingly, under EBSR the lion’s share of these emissions, namely 87%, accrue to Russia. Similar numbers are found for Russia’s trade with China (86%), as well as with the US and India (85% for both partners). This is explained by Russia’s low export elasticity of 0.22, the lowest value for all regions in our sample, which might be due the country’s dependence on revenues from natural resource exports.

Regarding trade between the EU and the US, exports from the EU to the US account for about 15% of the EU total export-related emissions of 678 MtCO$_2$, that is, 105 MtCO$_2$. The EBSR approach assigns 54% of these emissions to the US, and 46% to the EU. In the other direction, exports from the US to the EU correspond to 90 MtCO$_2$, about a fifth of total US export-related emissions of 453 MtCO$_2$. Under EBSR, emissions related to US exports to the EU are shared evenly between both regions, that is, 50% each.

Finally, a substantial share of India’s export-related emissions of 386 MtCO$_2$ is released to produce exports to the EU and the US, namely 58 MtCO$_2$ and 52 MtCO$_2$, respectively. The EBSR scheme attributes 47% of emissions released for exports to the EU, and 44% of the emissions released for exports to the US, to India. For India the highest share of import-related emissions come from China, amounting to 56 MtCO$_2$. Of these, EBSR attributes 56% to India (and hence 44% to China).

Fig. 3 provides additional detail by including all countries that are among the top five recipients of export-related emissions for at least one of the regions displayed in Fig. 2 (that is, China, US, EU, India and Russia), as well as the aggregate region ‘Rest of the World’ (which consists of all other countries). This aggregate region accounts for 44% of all export-related and 47% of all import-related emissions of the five regions displayed in the center of the figure.

For the US, Canada and Mexico are trade partners responsible for substantial emission flows. For instance, with emissions of 114 MtCO$_2$,
US imports from Canada constitute a larger emission source than imports from the EU (105 MtCO\textsubscript{2}). For China, South Korea is the fourth largest destination of export-related emissions, even though it accounts for less than 4% of the total. Japan is ranked third for China, fourth for India and Russia, and fifth for the US. Finally, Turkey is the fifth-largest destination for Russia as well as the EU.

Fig. 3 also provides an insight into why EBSR may yield a very different picture of responsibility for trade-related emissions than either PBA or CBA. For instance, China’s emissions under EBSR are lower than under PBA, but higher than under CBA. This can be explained by the fact that China’s total trade-related emissions (for imports as well as exports) are dominated by emissions that are released to produce exports. Whereas PBA (CBA) attributes full (no) responsibility for export-related emissions to China, EBSR strikes a middle ground by attributing a fraction of these emissions to China. Where PBA (CBA) does not attribute any responsibility, EBSR attributes some responsibility.

Based on these results, Fig. 4 compares responsibility for trade-related emissions under EBSR, CBA and PBA in more detail on the level of individual countries. To ensure comparability between countries with very different emission levels, the figure indicates the percentage by which traditional PBA would be adjusted by considering trade-related emissions by either a consumption-based (CBA) or a shared responsibility (EBSR) perspective (i.e. the ‘emission trade balance’). For most countries we find that EBSR yields an outcome between CBA and PBA (note that PBA corresponds to a value of zero, as no adjustment is required). The magnitude of this adjustment, however, differs widely across countries. For instance, whereas EBSR is quite close to CBA for Australia, Brazil, the Czech Republic, Spain and Mexico, it is close to PBA for countries such as Belgium, Bulgaria, Croatia Denmark, Germany, Finland, Romania and Russia. Furthermore, depending on the relationship between export- and import-related emissions, as well as the respective shares that are attributed to exporters and importers, EBSR can also yield higher absolute numbers than CBA, which is the case for Indonesia, South Korea, Norway, Turkey, and Taiwan. Finally, there are also cases in which the EBSR and CBA emission trade balances have opposite signs. This can, for instance, occur if a country has high (low) elasticities for both imports and exports, generating a relatively small (high) EBSR attribution of trade-related emissions. We observe outcomes in which EBSR and CBA work in different directions for Canada, Hungary, Malta, the Netherlands as well as the ‘Rest of the World’ aggregate.

6. Discussion and conclusions

This paper proposes a novel ‘Economic Benefit Shared Responsibility’ (EBSR) scheme to account for carbon emissions that are released to the atmosphere to produce traded goods and services. We highlight that responsibility for trade-related emissions cannot be attributed exclusively to producers or consumers but needs to be shared between them. We propose the use of the economic benefits producers
and consumers derive from being able to generate emissions free of charge, respectively, as a measure of how to share responsibility for trade-related emissions. Based on the real-world data that are available, we demonstrate how this approach could be implemented.

This analysis is subject to several limitations. Perhaps most importantly, it assumes that production structures and technologies are fixed, such that an emission price would be fully passed through to consumers. In our model, producers and consumers can only react to this price change by adjusting quantities, but not by changing technologies or substituting other goods. Moreover, we do not account for the fact that even though to date most emissions are indeed unpriced, some regions have significant carbon prices in place (OECD, 2018). Conceptually, our analysis can straightforwardly be extended to account for all emissions that are priced below the social optimum (see SI for details). The most serious challenge in this regard would lie in the fact that within individual countries, carbon prices often display large variation across economic sectors. Hence, considering existing carbon prices would not only require reliable estimates of sectoral carbon prices for all countries, but also a sectoral analysis of trade flows, as discussed below. To explore how existing carbon pricing could affect our findings, we carry out our analysis for regionally differentiated carbon prices that would be compatible with the 2°C temperature target. These prices are generated with the integrated assessment model MESSAGE under the assumptions of the shared socioeconomic pathway scenario 2 (Fricko et al., 2017), which assumes technological and socio-economic developments roughly in line with historic trends. Using the carbon prices projected for the year 2030 for the five regions with the highest trade-related emission displayed in Fig. 2 hardly changes our results (see Supplementary Table S1). Finally, our assessment of how imports and exports would respond to such an emission price is based on available estimates of elasticities of export and import for individual countries. These estimates hide substantial details of sector-specific and bilateral trade relations (Cadarso et al., 2012). A more fine-grained analysis would require thousands of country- and sector-specific trade elasticities, which, to our knowledge, are not available. Future research could extend our analysis by estimating these elasticities and assess producers’ as well as consumers’ benefits from below-optimal carbon prices on a sectoral level based on a consistent set of trade data. For the reasons outlined above, our analysis should first and foremost be regarded as a conceptual contribution, illustrated with available data. Nevertheless, by going beyond a one-sided focus on producers or consumers, the approach presented in this paper could provide a basis for a more nuanced debate regarding the responsibility for trade-related emissions.

Our approach assesses the counterfactual scenario in which the social costs of greenhouse gas emissions are borne by consumers and producers by means of a carbon price. By contrast, some recent contributions apply alternative approaches, based on the counterfactual perspective of the absence of trade. These schemes evaluate a country’s imports and exports either relative to the average global emission intensity for the respective goods and services (Kander et al., 2015; Jiborn et al., 2018; Baumert et al., 2019), or from the perspective of how a country’s trade specialization contributes to meeting global consumption in a carbon-efficient manner (Dietzenbacher et al., 2020). In this way, reductions in global emission resulting from cleaner exports can be accounted for (in contrast to CBA, which attributes all export-related emissions to trade partners). Combining such schemes with accounting schemes for shared producer and consumer responsibility in dashboards for ‘multiple carbon accounting’ (Steininger et al., 2016) could help to establish a comprehensive picture of the responsibility for trade-related emissions.

Data and material availability

All data necessary to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Information. Additional data related to this paper may be requested from the authors.

CRediT authorship contribution statement

Michael Jakob: Conceptualization, Formal analysis, Writing - original draft, Writing - review & editing. Hauke Ward: Conceptualization, Data curation, Methodology, Software, Writing - original draft, Writing - review & editing. Jan Christoph Steckel: Conceptualization, Funding acquisition, Writing - original draft.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Astrid Kander, Magnus Jiborn, Nicolai Baumert as well seminar participants at the Institute of Social Ecology in Vienna and the MCC in Berlin for helpful comments and suggestions. We are grateful to Kay Schroder for support in visualization and Helen Colyer for language editing. Hauke Ward gratefully acknowledges funding by the Bundesministerium für Bildung und Forschung (BMBF) grant “Klimapolitische Maßnahmen und Transformationspfade zur Begrenzung der globalen Erwärmung auf 1,5°C (PEP 1p5)”, with grant number 01LI6108.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gloenvcha.2020.102207.

References

Atkinson, G., Hamilton, K., Ruta, G., Van Der Mensbrugghe, D., 2011. Trade in ‘virtual’ interests or personal relationships that could have appeared to influence acquisition, Writing - original draft.

Hauke Ward gratefully acknowledges funding by the Bundesministerium für Bildung und Forschung (BMBF) grant “Klimapolitische Maßnahmen und Transformationspfade zur Begrenzung der globalen Erwärmung auf 1,5°C (PEP 1p5)”, with grant number 01LI6108.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gloenvcha.2020.102207.

References


Baumert, N., Kander, A., Jiborn, M., Kulionis, V., Nielsen, T., 2019. Global Outsourcing atkinson, G., Hamilton, K., Ruta, G., Van Der Mensbrugghe, D., 2011. Trade in ‘virtual’ interests or personal relationships that could have appeared to influence acquisition, Writing - original draft. Hauke Ward gratefully acknowledges funding by the Bundesministerium für Bildung und Forschung (BMBF) grant “Klimapolitische Maßnahmen und Transformationspfade zur Begrenzung der globalen Erwärmung auf 1,5°C (PEP 1p5)”, with grant number 01LI6108.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gloenvcha.2020.102207.

References


Baumert, N., Kander, A., Jiborn, M., Kulionis, V., Nielsen, T., 2019. Global Outsourcing atkinson, G., Hamilton, K., Ruta, G., Van Der Mensbrugghe, D., 2011. Trade in ‘virtual’ interests or personal relationships that could have appeared to influence acquisition, Writing - original draft. Hauke Ward gratefully acknowledges funding by the Bundesministerium für Bildung und Forschung (BMBF) grant “Klimapolitische Maßnahmen und Transformationspfade zur Begrenzung der globalen Erwärmung auf 1,5°C (PEP 1p5)”, with grant number 01LI6108.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gloenvcha.2020.102207.

References


Baumert, N., Kander, A., Jiborn, M., Kulionis, V., Nielsen, T., 2019. Global Outsourcing atkinson, G., Hamilton, K., Ruta, G., Van Der Mensbrugghe, D., 2011. Trade in ‘virtual’ interests or personal relationships that could have appeared to influence acquisition, Writing - original draft. Hauke Ward gratefully acknowledges funding by the Bundesministerium für Bildung und Forschung (BMBF) grant “Klimapolitische Maßnahmen und Transformationspfade zur Begrenzung der globalen Erwärmung auf 1,5°C (PEP 1p5)”, with grant number 01LI6108.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gloenvcha.2020.102207.

References


Baumert, N., Kander, A., Jiborn, M., Kulionis, V., Nielsen, T., 2019. Global Outsourcing atkinson, G., Hamilton, K., Ruta, G., Van Der Mensbrugghe, D., 2011. Trade in ‘virtual’ interests or personal relationships that could have appeared to influence acquisition, Writing - original draft. Hauke Ward gratefully acknowledges funding by the Bundesministerium für Bildung und Forschung (BMBF) grant “Klimapolitische Maßnahmen und Transformationspfade zur Begrenzung der globalen Erwärmung auf 1,5°C (PEP 1p5)”, with grant number 01LI6108.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.gloenvcha.2020.102207.
