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Chapter 5

Noise2Filter: self-supervised
learning and real-time
reconstruction algorithm

5.1 Introduction

Computed tomography is a non-destructive imaging technique with applications
in biology [San+14], energy research [Xu+20], materials science [Gar+18], and
many other fields [De +18]. In a tomographic scan, a rotating object is positioned
between a source emitting penetrating radiation and a detector that captures the
projections of the object. Tomographic reconstruction algorithms compute a 3D
image of the interior of the object from its projections. Besides extensive use
in medical and laboratory settings, tomography is routinely used at synchrotron
facilities, where advances in the last decade have enabled time-resolved imaging of
the interior structure of a rapidly changing object [San+14; Xu+20; Gar+18]. So
far, reconstruction algorithms are typically operated offline, enabling visualization
of the object only after a scan has completed.

Recent advances in tomographic reconstruction enable real-time interrogation
of the reconstructed volume during the scanning process using a quasi-3D recon-
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(a) FBP reconstruction (b) Noise2Filter reconstruction

Figure 5.1: Real-time reconstructions using FBP and Noise2Filter of a high-
noise acquisition using the RECAST3D software package. The highlighted slice is
currently being moved.

struction protocol [Buu+18; Buu+19]. In this framework, arbitrarily oriented
slices are selected for reconstruction and can be interactively rotated and trans-
lated, after which they are reconstructed and visualized virtually instantaneously.
This creates the illusion of having access to the full reconstructed 3D volume, but
at a fraction of the computational cost. The quasi-3D reconstruction protocol has
been implemented in the RECAST3D software package. The information gained
from this quasi-3D visualization can be used to directly steer the tomographic ex-
periment, for instance, by adjusting an external parameter — such as temperature
— in response to changes in the interior of the object. In addition, the object can
be re-positioned, or other acquisition parameters can be adjusted to facilitate the
best possible reconstruction [Van+20].

Real-time 3D reconstruction is computationally demanding and data sizes
are substantial — data acquisition rates of 7.7GB per second are not uncom-
mon [Buu+19]. To attain real-time visualization, the quasi-3D reconstruction
protocol is essentially limited to filtered backprojection type methods, since it
exploits the locality of backprojection to obtain fast reconstructions. Filtered
backprojection (FBP) methods are sensitive to measurement noise, leading to
errors in the reconstructed slices [Buz08]. Therefore, application of these methods
in the quasi-3D reconstruction protocol is not well-suited to high-noise acquisi-
tions [PBS18; Xu+20], as illustrated in Figure 5.1.a.

In this chapter, we combine a learning-based filtered reconstruction method
with a self-supervised training strategy to obtain Noise2Filter, a denoising FBP-type
reconstruction algorithm that can be applied in a quasi-3D reconstruction protocol.
This algorithm is designed to be both fast to train and fast to evaluate. Moreover,
no additional training data is required other than the measured projection data.
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For dynamic scans, our method enables a possible use case where a static
scan is performed — with the exact same acquisition rates as the dynamic scan —
permitting the Noise2Filter method to be trained immediately. After training for
tens of seconds, real-time visualization of the dynamic experiment can ensue, as
illustrated in Figure 5.1.b. In addition, we note that Noise2Filter can be used as a
stand-alone reconstruction method.

The first component of our method is the Neural Network filtered backpro-
jection (NN-FBP) method [PB13]. This method learns a set of filters, along with
additional weights, and then forms the reconstructed image as a non-linear func-
tion of the individual FBP reconstructions, resulting in higher image quality than
standard FBP. However, its application requires the availability of ground truth or
high-quality reconstructed images.

This limitation can be overcome using the second component of our method,
Noise2Inverse [HPB20], which is a recent machine learning method designed
to train denoising convolutional neural networks (CNNs) in inverse problems in
imaging. To train a denoising CNN, the method splits the measured projection
data to obtain multiple statistically independent reconstructed slices, which are
presented to the network during training, without requiring additional high-quality
data.

Our main contribution is that we show how to combine the NN-FBP method
with the Noise2Inverse training strategy. In addition, we demonstrate that NN-FBP
training can be substantially accelerated as compared to previous methods [PB13].
We evaluate our method on both simulated and experimental datasets, comparing
to both conventional filter-based methods and supervised NN-FBP Finally, we
demonstrate that the method can be used in a quasi-3D reconstruction protocol,
and exhibit its potential use for dynamic control of tomographic experiments.

The chapter is structured as follows. In the next section, we introduce the
tomographic reconstruction problem and the filtered backprojection algorithm. In
addition, we introduce quasi-3D reconstruction, NN-FBE and Noise2Inverse. These
methods are combined in Section 5.3, where we describe the Noise2Filter method.
In Sections 5.4 and 5.5, we describe experiments to analyze the reconstruction
accuracy of Noise2Filter on real and simulated CT datasets. Moreover, we study the
hyper-parameters of the proposed method. We discuss these results in Section 5.6.
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5.2 Preliminaries

5.2.1 Reconstruction problem

In parallel-beam tomography, an unknown object rotates with respect to a planar
detector and a parallel source beam. Projections are acquired at a finite number
N, of rotation angles, yielding 2D images defined on an N x N pixel grid. The
reconstruction problem can be modeled by a system of linear equations

szy’ (51)

where the vector x € R" denotes the unknown object, y € R™ describes the
measured projection data, and W = (w;;) is an m x n matrix where w;; denotes
the contribution of object voxel j to detector pixel i. For the sake of simplicity
we assume that the volume consists of n =N x N x N voxels, and the projection
dataset contains m = N, x N x N pixels.

5.2.2 Filtered backprojection methods

We consider the filtered backprojection (FBP) method for parallel beam tomo-
graphy [Nat01]. The FBP algorithm is a two step algorithm. First, the datay € R™
is convolved over the width of the detector with a one-dimensional filter h € RM,
Next, the backprojection W : R™ — R" is applied to compute a reconstruction
xpgp € R". Expressing the FBP algorithm in terms of h, y and W yields

FBP(y,h) = W (y xh) = Xggp. (5.2)

Observation 1 (FBP is two-step). The FBP algorithm consists of a filtering step
and a backprojection step, and both can be computed separately. That is, the filtering
can be performed in advance, and the backprojection can occur on demand. This
technique will be used throughout the chapter.

We observe that the FBP algorithm can be described by a linear operator when
fixing either y or h. This will be exploited in the discussion of learned filter methods
in Section 5.2.4.

5.2.3 Quasi-3D reconstruction

A property shared by filtered-backprojection type algorithms is that they are
local, in the sense that each voxel of the reconstructed volume can be computed
directly from the filtered data by backprojecting onto only that voxel [Buu+18].
Therefore, if one is interested in a subset of the reconstructed volume, much of
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the computational cost of a full 3D reconstruction can be avoided. Specifically, if
the reconstructed subset is a rectangular box or a slice, efficient backprojection
algorithms such as those implemented in the ASTRA toolbox [Van+16] can be used.
This reduces the computational cost of the backprojection step by an order of N.

Observation 2 (Locality). The backprojection operator is local. Computing the
backprojection for a single voxel or a subset of voxels is therefore substantially faster
than computing the backprojection for all voxels.

This methodology has been implemented in the RECAST3D software pack-
age [Buu+18], which exposes a limited number of arbitrarily oriented 2D slices.
These slices are interactive and can be manipulated by the technician of the tomo-
graphic experiment. This technique for real-time visualization has been successfully
applied in practice to acquisitions in micro-CT systems [Cob+20], synchrotron
tomography [Buu+19], and electron tomography [Van+20].

5.2.4 NN-FBP reconstruction algorithm

The NN-FBP algorithm learns a set of suitable filters and a set of weights, and then
forms a non-linear model that combines the individual FBP reconstructions. The
algorithm may be considered as a multi-layer perceptron [HTF09] that operates
pointwise on a collection of suitable reconstructions. A schematic representation of
the NN-FBP algorithm is given in Figure 5.2, a mathematical description is given
below.

To obtain these reconstructions, we first make some general observations: a
filter h can be seen as a vector in R™, and the FBP method is linear in the filter
when fixing the measured projection data y. Therefore, an FBP reconstruction
can be expressed as a linear combination in the basis of the filter. Let ey, ..., ey,
be any basis for the space of filters R, such as the standard basis. Define the
reconstruction of y filtered by a basis element e; as

Xe ;=W (yxe;). (5.3)

Then we can write the FBP reconstruction as a linear combination of these recon-
structions

Ne Ne
Xppp(y, h) :Zhixei ZZWT (yxhe;)=W' (yxh), (5.4)
i=1 i=1

where h; denotes the coordinate of the ith basis element e;.
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Figure 5.2: An illustration of the NN-FBP method as applied to a noisy 2D Shepp-
Logan sinogram. Before training, the data is reconstructed with filters ey,..., ey,
defined on an exponential grid. These reconstructions X, ..., Xe,, are used as input
for training a multilayer perceptron, as described in Equation (5 5). The training
target is a high-quality reconstruction. For reconstruction, learned filtersh?, ... h™
are extracted from the network (as indicated by the red arrow). Reconstructions
are computed using the learned filters, and a non-linear combination is computed,
as described in Equation (5.6).

Given a set of N, filters h!,..., h™  we can define a multi-layer perceptron
(MLP) with one hidden layer as a function of the reconstructions Xeys- o> Xey,

MLPy(Xe,, - Xe, ) = O (Z e (Z hEx,, —bk) - bo) , (5.5
i=1

k=1

where o is a non-linear activation function, such as the sigmoid. The multi-layer
perceptron has free parameters 0 = (a,b,h!,..., h™). Plugging Equation (5.4)
into Equation (5.5), we obtain the NN-FBP reconstruction algorithm

N
NN-FBPy(y) =0 (Z a;o (FBP(y, h*) — bk) — bo) , (5.6)

k=1
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which is amenable to fast, parallel computation because it is a non-linear combina-
tion of FBP reconstructions.

Observation 3 (pointwise). Note that the multi-layer perceptron operates point-
wise on the voxels of the reconstructed volumes. Therefore, a single voxel can be
computed without having to reconstruct other voxels. This observation connects to
the observation of locality on Page 111, and will return several times in this chapter.

Supervised training [HTF09] is used to determine the free parameters of the
MLP defined in Equation (5.5). The goal is to approximate a suitable target
TECONSLIUCtiON Xyrger DY mMinimizing

2

HMLPQ (xel s xeNf) — XTarget ) (5.7)

i.e., the mean square error with respect to the target reconstruction.

The size of the training problem in Equation (5.7) is related to the number of
reconstructed volumes Xeyse s Xey, and the size of these reconstructions, which
suggests two techniques that may be used to accelerate training. First, to reduce
the number of reconstructions, the filter is expressed on an exponentially binned
grid, which grows logarithmically in the width of the filter. Since the filter width
is proportional to the number of pixels in each detector row, we have N, =
O(logN¢) = O(logN). This technique yields suitable filter approximations, as
observed in [PB13; Lag+20]. Second, training may be accelerated by sampling
a subset of voxels on which to minimize Equation (5.7), rather than the full
volume. Subsampling is possible because NN-FBP operates pointwise, as noted in
Observation 3.

To summarize, we can split the NN-FBP algorithm into three parts, namely:
(1) data preparation, where the input training data X, ... »Xey, is computed, (2)
network training, where the weights 6* for the network are determined using
a supervised learning approach, and (3) the reconstruction algorithm, which is
summarized in Algorithm 5.

We use the same network architecture as proposed in [PB13]. The hyperpara-
meters used in this chapter are discussed in Section 5.4.2.

5.2.5 Noise2Inverse training

Noise2inverse is a technique to train a convolutional neural network (CNN) to de-
noise reconstructed images in a self-supervised manner [HPB20]. This means that
no additional training data is required beyond the acquired noisy measurements.
The key idea is change the training strategy by splitting the projection dataset
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Algorithm 5 NN-FBP reconstruction algorithm

Given projections y and a set of parameters 8* := (a, b,h!,..., hNh).
Compute the FBP reconstruction using the learned filters:
for k ={1,2,..,N,} do

xXp« = FBP(y, h*)
Compute a non-linear combination of these reconstructions:
NN-FBP. (y) = 0 (X0, a0 (3 —bi) — by )

S

into subsets, computing sub-reconstructions with these subsets and train a neural
network mapping one sub-reconstruction to another.

First, the projection data is split into N, sub-datasets such that projection
images from successive angles are placed in different sub-datasets y;, o, ..., ¥, -
The network is trained to predict the reconstruction from one subset using the
reconstruction of the other subsets. Training therefore aims to find the parameter
0* that minimizes

2
2 (5.8)

NS

> ||CNNg(FBP(y;)) — FBP(y)))|

j=1
where FBP(y;) denotes the reconstruction from one subset of the data, and FBP(y;;)
denotes the FBP reconstruction of the remaining subsets. We observe that the FBP
reconstruction of a projection dataset is the mean of the FBP reconstruction of
each projection image individually, which enables us to obtain

1
FBP(y;4;) = N—1 Z FBP(y;). (5.9)
7

Now the original training data can be denoised by applying the trained network
to each subreconstruction individually and averaging to obtain

N,
1 S
X = 5 > CNNg. (FBP(y,)). (5.10)
S i=1

In the previous discussion, we have assumed that the target images are recon-
structed from more subsets than the input images. As in [HPB20], we call this
the 1:X strategy. A reverse X:1 training strategy is also possible. Here, the target
is a single subreconstruction and the input is reconstructed from the remaining
sub-datasets.

Note that convolutional neural networks take into account the surrounding
structure of a voxel, typically a 2D slice, and thus do not operate pointwise.
Therefore, these networks are an example where Observation 3 does not apply.
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Figure 5.3: An illustration of the training of the Noise2Filter method. Data is
acquired using a 3D parallel beam geometry. For each detector row, the sinogram
is split into three sub-datasets such that acquisitions from successive projection
angles belong to different sub-datasets. Each sub-dataset is used as input for NN-
FBP training; the remaining sub-datasets are used in the target FBP reconstruction.
This illustration depicts the 1:X strategy. In the X:1 strategy, the input is computed
from the majority of the data, and the target from the minority, rather than vice
versa.

5.3 Noise2Filter method

Our proposed method combines the three ideas introduced in the previous sec-
tion. The NN-FBP method is trained on a single projection dataset using the
Noise2Inverse training strategy. This enables fast reconstruction of arbitrarily
oriented slices using the NN-FBP reconstruction algorithm in a quasi-3D recon-
struction protocol.

Training The training procedure for the Noise2Filter method is similar to the
NN-FBP procedure described in [PB13], with two notable exceptions. First, instead
of minimizing the supervised training objective in Equation (5.7), Noise2Filter
minimizes a self-supervised training objective similar to Equation (5.8). Second,
training voxels are sampled from a subset of the reconstructed volume, rather than
the full volume.

As in Noise2Inverse, the projection data y is split into N subdatasets with FBP
reconstructions Xggp j,j = 1,...,N;. For each subdataset y;, we denote with x; .. a
reconstruction filtered with basis element e;.

Training aims to minimize the difference between the MLP output of a subset
of projection data and the FBP reconstruction of the remaining data. For the 1:X
training strategy, the MLP operates on a single subset of the data and the target
is reconstructed from the remaining subsets. For the X:1 training strategy, on the
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other hand, the target is reconstructed from a single subdataset, and the MLP
operates on the remaining subsets. The self-supervised training objective thus
becomes:

NS

2
Z MLPg(X;j e, - ..,xj,eNe)—xFBp#j‘ ) (X:1 strategy) (5.11)
j=1

N, )
Z MLPy(X;£j e, > - ..,xl#’eNe)—xFBp,j‘ ) (1:X strategy) (5.12)
=1

with

1 1
XpBP,I#j = mZXFBP,Z: Xitje = § —1 le,ei- (5.13)
ST ST

A schematic summary of the 1:X training strategy is given in Figure 5.3.

The second difference is related to the voxels that are considered for the
training. Like NN-FBB we minimize the training objective on a random sample
of Ny voxels. We have Ny < N2, and increasing the sample size in response to
increasing object size has been observed to yield diminishing returns. Unlike NN-
FBB training voxels are sampled only from the reconstructions of the axial, frontal,
and longitudinal ortho-slices, rather than the full volume. This choice substantially
reduces the computational effort of the data preparation step, as shown below.

Data preparation We discuss the 1:X strategy; similar statements hold true
for the X:1 strategy.

The data preparation step is the most computationally expensive part of the
method. In this step, an input reconstruction X;; .. is computed for each subdataset
y; and each basis element e;. In addition, a target reconstruction Xggp ; is computed
for each subdataset, resulting in a total of Ny(N, + 1) reconstructions. These
reconstructions are computed on the ortho-slices instead of the full volume. Due
to locality — see Observation 2 — the computational cost of the data preparation
is therefore reduced by an order of N.

Note that the computational cost of the FBP algorithm scales linearly in the
number of projection angles, therefore the computational cost of this step is equal
to 3(N, + 1) FBP reconstructions of a 2D slice. Splitting the projection data thus
has no adverse effect on the performance.

Reconstruction The reconstruction algorithm is almost identical to the NN-FBP
reconstruction algorithm described in Algorithm 5. Whereas the aim of NN-FBP
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is to reconstruct the full volume, we aim only to reconstruct slices on demand.
Therefore, reconstruction can be substantially accelerated.

We make use of Observation 1 that the FBP algorithm can be split in a filter-
ing and backprojection step. First, the acquired projection data is filtered with
the learned filters and cached. Then, a single slice can be reconstructed using
Algorithm 5, which can occur in real-time due to the locality of the backpro-
jection (Observation 2) and the pointwise nature of the multi-layer perceptron
(Observation 3). Therefore, the reconstruction can be integrated in the quasi-3D
reconstruction protocol, computing reconstructions of arbitrarily oriented slices in
real time.

We note that the reconstruction step deviates slightly from the Noise2Inverse
reconstruction described in Equation (5.10). Rather than averaging separate
reconstructions of each subset of the projection data, Noise2Filter computes a
reconstruction using the learned filters directly from all data. In the context
of self-supervised learning, this technique has been observed to yield improved
results [BR19].

Noise2Filter summary
The Noise2Filter method consists of three steps. A summary of these steps,
and specifically the computations performed, is given below:

1. Data preparation Compute the input and target training pairs from the
measured projection data y. Specifically, split the measured projection data
into N, equal sub-datasets and compute the following for the ortho-slices:

FBP(y;,h) fori =1,...,N, (5.14)
FBP(y;,e;) fori=1,...,N;,j=1,...,N,. (5.15)

The computational effort of this step is equal to 3(N, +1) FBP reconstructions
of a 2D slice.

2. Training Obtain a random sample of N voxels on the ortho-slices for inclu-
sion in the training set. Compute the optimal parameters 8* that minimizes
the training objective with respect to the sampled voxels. Note that the
training time depends on the size of the training set, which may be fixed
independent of the object size.

3. Reconstruction Using the computed parameters 8*, compute an NN-FBP
reconstruction for the desired 2D slices. Recall from Equation (5.6) that
the computational cost of an NN-FBP reconstruction is equivalent to Ny, FBP
reconstructions.
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The network architecture used for the Noise2Filter method is the same as the
architecture used for the NN-FBP method and the considered hyperparameters are
discussed in Section 5.4.2.

5.4 Experimental setup

In this section we discuss the setup of the experiments. Specifically, we describe
the data used in the experiments, the implementation of NN-FBP and Noise2Filter,
and the measures used to quantify these comparisons.

5.4.1 Simulated data

A phantom was generated by removing 100,000 randomly-placed non-overlapping
balls from a foam cylinder. The foam_ct_phantom package [PBS18] was used to
generate analytic projection images with 2x supersampling, were each pixel’s
value is averaged over four equally-spaced rays through the pixel. The result
contains 1024 equally-spaced projection images with 512 x 768 pixels.

In each experiment, the simulated projection images were corrupted with
Poisson noise of various levels of intensity, by altering the incident photon count
I, per pixel. Specifically, we compute the mean measured photon I.,, count for
an incident photon count I, from the analytic projection images Yanatytic:

Imean = Ipe Ymavic, (5.16)

Given the mean measured photon count, we draw from a Poisson distribution the
measured photon count I with respect to I and compute the corresponding noisy
projection data y:

I
I ~ Pois(Ipean) y= —log(l—) . (5.17)
0
The average absorption of the sample was 10%. Reconstructions without
Poisson noise and with Poisson noise (I, = 1000) are shown in Figure 5.5.

5.4.2 NN-FBP and Noise2Filter

Noise2Filter and NN-FBP benefit from a shared implementation. Therefore, most
almost all implementation details are the same. As in the original NN-FBP imple-
mentation [PB13], the number of learned filters is set to Ny, = 4, the non-linear
activation function is the sigmoid, the exponential binning parameter is set to 2, but
the filters are piece-wise linear — rather than piece-wise constant — as proposed
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in [Lag+20]. Moreover, changes have been made to the shared implementation in
order to accelerate data preparation, training, and reconstruction.

In the data preparation step, reconstructions are computed of the ortho-slices
rather than the full volume. These reconstructions are performed using the
RECAST3D software package [Buu+18].

Some changes have been made to the training procedure. As in the original
implementation, the training objective is minimized using the Levenberg-Marquadt
algorithm (LMA), which requires that the data samples are split into a training set
and a validation set. Compared to the original implementation, however, the num-
ber of training samples is reduced from 10° to 5-10%, and training is stopped after
the validation set error has not improved for 10 epochs (originally 100 epochs were
used). The effect of this reduction is discussed in Section 5.5.2. In addition, the
original CPU implementation of the training process is accelerated by performing
computations on the graphics processing unit (GPU) using PyTorch [Pas+17]. Final
reconstructions are computed using the RECAST3D software package [Buu+18].

NN-FBP The free parameters for the NN-FBP method are trained and tested on
separate tomographic datasets. The training dataset consists of paired noisy and
noiseless reconstructions. Supervised training minimizes the training objective in
Equation (5.7).

Noise2Filter The Noise2Filter parameters are optimized using self-supervised
training on the noisy test dataset, rather than on a separate training dataset. No
noiseless reconstructions are necessary for training. Depending on the training
strategy (X:1 or 1:X), training minimizes either Equation (5.11) or (5.12).

5.4.3 Quantitative measures

Reconstruction accuracy is quantified using the the Peak Signal-to-Noise Ratio
(PSNR) and the Structural Similarity (SSIM) index [Wan+04] metrics. Both metrics
were computed with respect to the noiseless reconstructed images and using a
data range that was determined by the minimum and maximum intensity of the
noiseless reconstructed images. If not otherwise mentioned, the reported metrics
are the average of the metric as computed on the three ortho-slices.

5.5 Experiments & Results

We performed several experiments to evaluate the Noise2Filter method. We provide
a short summary below.

Reconstruction accuracy We compare Noise2Filter to supervised NN-FBP
training and several standard FBP improvement strategies in terms of reconstruc-
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tion accuracy.

Hyperparameter analysis Implementation choices in the design of the Noise2Filter
method are analyzed, including the number of training samples, training strategy
(X:1 or 1:X), and number of splits.

Timing An analysis of data preparation, training, and reconstruction speed is
given.

Experimental data The method is applied to experimental data, including a
showcase that illustrates the potential for use in dynamic control.

5.5.1 Reconstruction accuracy comparison

In this section, we assess the reconstruction accuracy of the Noise2Filter method.
We compare to other filter-based reconstruction techniques in terms of reconstruc-
tion accuracy. Specifically, we compare to a baseline FBP reconstruction (with a
Ram-Lak filter) and FBP with standard noise reduction techniques — Gaussian
filtering (FBP;) and frequency scaling (FBP;.). These two methods are discussed
in more detail in Appendix 5.7.1. In addition, we compare to the NN-FBB which
is trained on a separate training dataset with ground truth images.

The comparison is performed on the simulated foam dataset with varying
levels of Poisson noise. The incident photon count I, was varied between 1000
and 32,000 in powers of two.

For each of the methods, parameter selection was performed as follows. For
Noise2Filter, training was performed on the noisy test set. For NN-FBE training
was performed on a separate training dataset. For both methods, training was
repeated 20 times to obtain statistics for the PSNR and SSIM. For Gaussian filtering
and frequency scaling, the parameters maximizing the SSIM on the test set were
determined using a linear grid search.

The Noise2Filter method with the 1:X training strategy and 3 splits is used.
We find that this yields consistent results at various noise levels.

The quantitative measures for the ortho-slices are shown in Figure 5.4. For all
noise levels, the Noise2Filter metrics are higher than FBP with frequency scaling
or Gaussian filtering. The NN-FBP method attains the best metrics, although the
difference with Noise2Filter decreases as the noise level decreases. The difference
in reconstruction accuracy is illustrated in Figure 5.5, where the ground truth
phantom, reconstructions, and residuals for all considered methods are shown
for the incident photon count I, = 1000. Notice that NN-FBP and Noise2Filter
remove the noise in the voids, unlike the FBP methods.
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Figure 5.4: Reconstruction accuracy comparison of Noise2Filter (N2F-1X), NN-FBB
and FBP with Gaussian filtering, frequency scaling, and default filter. For varying
noise levels, the average (line) and standard deviation (shaded region) over 20
trials of the PSNR and SSIM are reported.

5.5.2 Hpyper parameter analysis

We consider three hyper parameters for the N2F method: the number of samples
considered for training, the training strategy X:1 or 1:X and the number of splits
N; for the measured projection data.

First, we analyzed the reconstruction accuracy as a function of Ny, the number
of training samples used in the training process. Here, the number of validation
samples is fixed to 10% of the number of training samples. Noise was applied to
the projection dataset equivalent to I, = 1000. The results for this experiment
are shown in Figure 5.6. We observe that increasing the number of voxels yields
virtually no increase in PSNR or SSIM beyond Ny = 5 - 10* voxels.

Second, we compare the training strategies and the number of splits on the
simulated foam dataset for two noise levels, I, = 1000 and I, = 8000. For various
values of the number of splits, 20 networks were trained and used to reconstruct
the projection data. The average and standard deviation of the PSNR and SSIM
are shown in Figure 5.7. For both noise levels we observe that the 1:X strategy
with 3 splits obtains the best SSIM and close to the best PSNR.

5.5.3 Timing comparison

We give timings for the data preparation, training, and reconstruction step of the
Noise2Filter method. The computations were performed on a server with 375 GB
of RAM and made use of a single Nvidia GeForce RTX 2080 Ti GPU (Nvidia, Santa
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Figure 5.5: Reconstructions and residuals of the FBP algorithm, FBP with frequency
scaling (FBP,., sc = 0.4), FBP with Gaussian filtering (FBP;, o = 1.5), Noise2Filter
(N2F), and NN-FBP on a simulated foam phantom with photon count I, = 1000.
Results are shown on an axial, frontal, and 45° slanted slice. The insets are zoomed
by a factor of four.
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Figure 5.6: Training time and reconstruction accuracy for varying amounts of
training voxels Nt. The mean (line) and standard deviation (shaded region) over
50 trials are reported. For both NN-FBP and Noise2Filter, increasing Ny yields
diminishing returns in terms of PSNR and SSIM beyond Ny = 5 - 10%, as indicated
by the dashed line.

Data size | Duration (seconds)
# voxels # pixels # angles N, | DP FBP  N2F
1283 128 x 192 256 10 0.34 0.003 0.009
2563 256 x 384 512 11 1.34 0.006 0.024
5123 512 x 768 1024 12 6.08 0.030 0.114

1024% 1024 x 1536 2048 13 44.00 — —

Table 5.1: Benchmark results for the data preparation (DP) and reconstruction
steps. FBP and Noise2Filter (N2F) reconstructions are performed on a single slice
from filtered projection data. Due to memory constraints, some reconstructions
were not performed, as indicated by a —.

Clara, CA, USA).

We computed the mean and standard deviation of the training time and number
of epochs over 50 trials, resulting in a training time of 5.45 £ 4.21s and a number
of epochs of 58.21 £+ 34.73.

In Table 5.1 we report the reconstruction times of one 2D slice using the
RECAST3D framework for standard FBP and the Noise2Filter method. We see
that Noise2Filter is roughly 4 times slower than standard FBB which is expected
considering that we use N}, = 4 learned filters.
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Figure 5.7: A comparison of Noise2Filter reconstruction accuracy for varying
number of splits N, and training strategies X:1 and 1:X. Mean (line) and standard
deviation (shaded region) over 20 trials of the PSNR and SSIM are plotted for
noise levels I, = 1000, and I, = 8000.

5.5.4 TomoBank dynamic dataset

We consider two experiments with an experimental dynamic tomographic dataset,
consisting of 60 scans at consecutive time steps. First, we train Noise2Filter on
the data from the first time step and use the trained reconstruction method to
compute reconstructions for later time steps. This experiment aims to reveal the
ability of Noise2Filter to generalize over dynamics in time. Second, we consider
determining the correct center of rotation using Noise2Filter.

The experimental data is taken from the public TomoBank repository [De
+18] and was acquired at the TOMCAT beamline at the Swiss Light Source (Paul
Scherrer Institut, Switzerland). In this experiment, sub-second X-ray tomographic
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microscopy was used to investigate liquid water dynamics in a fuel cell during
operation. The experiment took less than 6 seconds, during which 60 scans were
acquired. A scan consists of 301 projections taken by a detector with 1100 x 1440
detector pixels. Without loss of generality we have set the pixel size to 1, which
means the linear attenuation coefficient — i.e., the intensity of the reconstructions —
is expressed in attenuation per pixel. Note that there is no reference reconstruction
available for these experiments. Therefore, the analysis of these experiments is
purely qualitative.

First, we train a Noise2Filter network at the first time step T = 0 and use this
network to evaluate all further time steps. Figure 5.8 shows the results for this
strategy for T = 0,19, 39,59 and the FBP reconstructions at these time steps. There
is no visible deterioration of the reconstruction accuracy over time, indicating that
the trained network generalizes over the whole experiment.

0.0002
0.0000

—0.0002
r70.0004

0.0003

0.0001

0.0000

Figure 5.8: Reconstruction of the fuel cell at various time steps using FBP and
Noise2Filter (N2F). The Noise2Filter method was trained on the first time step and
also used to reconstruct later time steps. The insets are zoomed by a factor two.

Second, we consider determining the correct center of rotation. In the presence
of noise, determining the correct center of rotation for a dataset can be difficult
and is often performed after acquiring the measured projection data. Using the
tools developed in [Van+20], the center of rotation can be adapted interactively
in real-time. In Figure 5.9 we show Noise2Filter and FBP reconstructions with
shifted centers of rotation at the first time step. We note that no retraining was
performed for Noise2Filter: the network parameters were determined once using
a shift of 0 pixels. In the FBP reconstructions, the center of rotation artifacts (half
moons) are difficult to discern. In the Noise2Filter reconstruction, however, these
artifacts are both clearly visible, and visibly disappear at a shift of 19 pixels, which
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coincides with the reported center of rotation in [De +18].
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Figure 5.9: Reconstructions of a fuel cell at various centers of rotation using FBP
and Noise2Filter (N2F). In the inset, a center of rotation artifact is highlighted,
which disappears at a shift of 19 pixels. The distance between the detector pixels,
or pixel pitch, for this dataset is 2.75 um. The insets are zoomed by a factor four.

5.6 Conclusion and outlook

We have introduced Noise2Filter, a machine learning method for denoising filter-
based reconstruction that does not require any additional training data beyond the
acquired measurements. We show that this self-supervised method improves
reconstruction accuracy compared to standard filter-based methods, and has
limited loss of accuracy compared to its supervised counterpart (NN-FBP). The
method exhibits sub-minute training times and reconstruction times in the order
of hundred milliseconds, which demonstrates the potential for use in quasi-3D
reconstruction for real-time visualization of tomographic experiments. In addition,
we demonstrate that visual calibration of the center of rotation is possible, which
illustrates the potential of our method for use in the dynamic control of tomographic
experiments where noise is a challenge.

This method enables operators of dynamic experiments to directly adjust for
external parameters — such as temperature — in response to changes in the
measured object, even with high acquisition noise. Moreover, it can be used
in high-throughput real-time quality control applications, where a fast scanning
protocol leads to data with high acquisition noise.
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5.7 Appendices

5.7.1 Standard FBP improvement strategies

In addition to standard FBP and NN-FBRE the Noise2Filter method is compared to
two commonly used strategies to improve the reconstruction accuracy of the FBP
algorithm for noisy data [Rus17].

Gaussian filtering

In this strategy the standard filter h in the FBP algorithm is convolved with a
Gaussian filter G, € R to smooth the noise in the reconstructions, with o the
standard deviation of the Gaussian. The elements j of the filter G, are defined as
follows:

_(j_Nf/2)2

(Go)j=gyme 27 (5.18)

resulting in the smoothed reconstruction FBP;(y,h,c) = W (y« (hxG,)).

Frequency scaling

This strategy removes the higher frequencies from the FBP reconstruction. This
is done by setting the frequencies above a threshold f;, in Fourier domain of the
filter h equal to zero and using this filter in the standard FBP algorithm, obtaining
FBP,(y, hy) = WT(y *hy.).

For these strategies we optimized the choice of variable by computing recon-
structions with a range of variables and taking the reconstruction with the highest
SSIM.
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